Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-microblaze.git] / drivers / gpu / drm / ttm / ttm_page_alloc.c
1 /*
2  * Copyright (c) Red Hat Inc.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Dave Airlie <airlied@redhat.com>
24  *          Jerome Glisse <jglisse@redhat.com>
25  *          Pauli Nieminen <suokkos@gmail.com>
26  */
27
28 /* simple list based uncached page pool
29  * - Pool collects resently freed pages for reuse
30  * - Use page->lru to keep a free list
31  * - doesn't track currently in use pages
32  */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #if IS_ENABLED(CONFIG_AGP)
52 #include <asm/agp.h>
53 #endif
54 #ifdef CONFIG_X86
55 #include <asm/set_memory.h>
56 #endif
57
58 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
59 #define SMALL_ALLOCATION                16
60 #define FREE_ALL_PAGES                  (~0U)
61 /* times are in msecs */
62 #define PAGE_FREE_INTERVAL              1000
63
64 /**
65  * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
66  *
67  * @lock: Protects the shared pool from concurrnet access. Must be used with
68  * irqsave/irqrestore variants because pool allocator maybe called from
69  * delayed work.
70  * @fill_lock: Prevent concurrent calls to fill.
71  * @list: Pool of free uc/wc pages for fast reuse.
72  * @gfp_flags: Flags to pass for alloc_page.
73  * @npages: Number of pages in pool.
74  */
75 struct ttm_page_pool {
76         spinlock_t              lock;
77         bool                    fill_lock;
78         struct list_head        list;
79         gfp_t                   gfp_flags;
80         unsigned                npages;
81         char                    *name;
82         unsigned long           nfrees;
83         unsigned long           nrefills;
84         unsigned int            order;
85 };
86
87 /**
88  * Limits for the pool. They are handled without locks because only place where
89  * they may change is in sysfs store. They won't have immediate effect anyway
90  * so forcing serialization to access them is pointless.
91  */
92
93 struct ttm_pool_opts {
94         unsigned        alloc_size;
95         unsigned        max_size;
96         unsigned        small;
97 };
98
99 #define NUM_POOLS 6
100
101 /**
102  * struct ttm_pool_manager - Holds memory pools for fst allocation
103  *
104  * Manager is read only object for pool code so it doesn't need locking.
105  *
106  * @free_interval: minimum number of jiffies between freeing pages from pool.
107  * @page_alloc_inited: reference counting for pool allocation.
108  * @work: Work that is used to shrink the pool. Work is only run when there is
109  * some pages to free.
110  * @small_allocation: Limit in number of pages what is small allocation.
111  *
112  * @pools: All pool objects in use.
113  **/
114 struct ttm_pool_manager {
115         struct kobject          kobj;
116         struct shrinker         mm_shrink;
117         struct ttm_pool_opts    options;
118
119         union {
120                 struct ttm_page_pool    pools[NUM_POOLS];
121                 struct {
122                         struct ttm_page_pool    wc_pool;
123                         struct ttm_page_pool    uc_pool;
124                         struct ttm_page_pool    wc_pool_dma32;
125                         struct ttm_page_pool    uc_pool_dma32;
126                         struct ttm_page_pool    wc_pool_huge;
127                         struct ttm_page_pool    uc_pool_huge;
128                 } ;
129         };
130 };
131
132 static struct attribute ttm_page_pool_max = {
133         .name = "pool_max_size",
134         .mode = S_IRUGO | S_IWUSR
135 };
136 static struct attribute ttm_page_pool_small = {
137         .name = "pool_small_allocation",
138         .mode = S_IRUGO | S_IWUSR
139 };
140 static struct attribute ttm_page_pool_alloc_size = {
141         .name = "pool_allocation_size",
142         .mode = S_IRUGO | S_IWUSR
143 };
144
145 static struct attribute *ttm_pool_attrs[] = {
146         &ttm_page_pool_max,
147         &ttm_page_pool_small,
148         &ttm_page_pool_alloc_size,
149         NULL
150 };
151
152 static void ttm_pool_kobj_release(struct kobject *kobj)
153 {
154         struct ttm_pool_manager *m =
155                 container_of(kobj, struct ttm_pool_manager, kobj);
156         kfree(m);
157 }
158
159 static ssize_t ttm_pool_store(struct kobject *kobj,
160                 struct attribute *attr, const char *buffer, size_t size)
161 {
162         struct ttm_pool_manager *m =
163                 container_of(kobj, struct ttm_pool_manager, kobj);
164         int chars;
165         unsigned val;
166         chars = sscanf(buffer, "%u", &val);
167         if (chars == 0)
168                 return size;
169
170         /* Convert kb to number of pages */
171         val = val / (PAGE_SIZE >> 10);
172
173         if (attr == &ttm_page_pool_max)
174                 m->options.max_size = val;
175         else if (attr == &ttm_page_pool_small)
176                 m->options.small = val;
177         else if (attr == &ttm_page_pool_alloc_size) {
178                 if (val > NUM_PAGES_TO_ALLOC*8) {
179                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
180                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
181                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
182                         return size;
183                 } else if (val > NUM_PAGES_TO_ALLOC) {
184                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
185                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
186                 }
187                 m->options.alloc_size = val;
188         }
189
190         return size;
191 }
192
193 static ssize_t ttm_pool_show(struct kobject *kobj,
194                 struct attribute *attr, char *buffer)
195 {
196         struct ttm_pool_manager *m =
197                 container_of(kobj, struct ttm_pool_manager, kobj);
198         unsigned val = 0;
199
200         if (attr == &ttm_page_pool_max)
201                 val = m->options.max_size;
202         else if (attr == &ttm_page_pool_small)
203                 val = m->options.small;
204         else if (attr == &ttm_page_pool_alloc_size)
205                 val = m->options.alloc_size;
206
207         val = val * (PAGE_SIZE >> 10);
208
209         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
210 }
211
212 static const struct sysfs_ops ttm_pool_sysfs_ops = {
213         .show = &ttm_pool_show,
214         .store = &ttm_pool_store,
215 };
216
217 static struct kobj_type ttm_pool_kobj_type = {
218         .release = &ttm_pool_kobj_release,
219         .sysfs_ops = &ttm_pool_sysfs_ops,
220         .default_attrs = ttm_pool_attrs,
221 };
222
223 static struct ttm_pool_manager *_manager;
224
225 #ifndef CONFIG_X86
226 static int set_pages_wb(struct page *page, int numpages)
227 {
228 #if IS_ENABLED(CONFIG_AGP)
229         int i;
230
231         for (i = 0; i < numpages; i++)
232                 unmap_page_from_agp(page++);
233 #endif
234         return 0;
235 }
236
237 static int set_pages_array_wb(struct page **pages, int addrinarray)
238 {
239 #if IS_ENABLED(CONFIG_AGP)
240         int i;
241
242         for (i = 0; i < addrinarray; i++)
243                 unmap_page_from_agp(pages[i]);
244 #endif
245         return 0;
246 }
247
248 static int set_pages_array_wc(struct page **pages, int addrinarray)
249 {
250 #if IS_ENABLED(CONFIG_AGP)
251         int i;
252
253         for (i = 0; i < addrinarray; i++)
254                 map_page_into_agp(pages[i]);
255 #endif
256         return 0;
257 }
258
259 static int set_pages_array_uc(struct page **pages, int addrinarray)
260 {
261 #if IS_ENABLED(CONFIG_AGP)
262         int i;
263
264         for (i = 0; i < addrinarray; i++)
265                 map_page_into_agp(pages[i]);
266 #endif
267         return 0;
268 }
269 #endif
270
271 /**
272  * Select the right pool or requested caching state and ttm flags. */
273 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
274                                           enum ttm_caching_state cstate)
275 {
276         int pool_index;
277
278         if (cstate == tt_cached)
279                 return NULL;
280
281         if (cstate == tt_wc)
282                 pool_index = 0x0;
283         else
284                 pool_index = 0x1;
285
286         if (flags & TTM_PAGE_FLAG_DMA32) {
287                 if (huge)
288                         return NULL;
289                 pool_index |= 0x2;
290
291         } else if (huge) {
292                 pool_index |= 0x4;
293         }
294
295         return &_manager->pools[pool_index];
296 }
297
298 /* set memory back to wb and free the pages. */
299 static void ttm_pages_put(struct page *pages[], unsigned npages,
300                 unsigned int order)
301 {
302         unsigned int i, pages_nr = (1 << order);
303
304         if (order == 0) {
305                 if (set_pages_array_wb(pages, npages))
306                         pr_err("Failed to set %d pages to wb!\n", npages);
307         }
308
309         for (i = 0; i < npages; ++i) {
310                 if (order > 0) {
311                         if (set_pages_wb(pages[i], pages_nr))
312                                 pr_err("Failed to set %d pages to wb!\n", pages_nr);
313                 }
314                 __free_pages(pages[i], order);
315         }
316 }
317
318 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
319                 unsigned freed_pages)
320 {
321         pool->npages -= freed_pages;
322         pool->nfrees += freed_pages;
323 }
324
325 /**
326  * Free pages from pool.
327  *
328  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
329  * number of pages in one go.
330  *
331  * @pool: to free the pages from
332  * @free_all: If set to true will free all pages in pool
333  * @use_static: Safe to use static buffer
334  **/
335 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
336                               bool use_static)
337 {
338         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
339         unsigned long irq_flags;
340         struct page *p;
341         struct page **pages_to_free;
342         unsigned freed_pages = 0,
343                  npages_to_free = nr_free;
344
345         if (NUM_PAGES_TO_ALLOC < nr_free)
346                 npages_to_free = NUM_PAGES_TO_ALLOC;
347
348         if (use_static)
349                 pages_to_free = static_buf;
350         else
351                 pages_to_free = kmalloc_array(npages_to_free,
352                                               sizeof(struct page *),
353                                               GFP_KERNEL);
354         if (!pages_to_free) {
355                 pr_debug("Failed to allocate memory for pool free operation\n");
356                 return 0;
357         }
358
359 restart:
360         spin_lock_irqsave(&pool->lock, irq_flags);
361
362         list_for_each_entry_reverse(p, &pool->list, lru) {
363                 if (freed_pages >= npages_to_free)
364                         break;
365
366                 pages_to_free[freed_pages++] = p;
367                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
368                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
369                         /* remove range of pages from the pool */
370                         __list_del(p->lru.prev, &pool->list);
371
372                         ttm_pool_update_free_locked(pool, freed_pages);
373                         /**
374                          * Because changing page caching is costly
375                          * we unlock the pool to prevent stalling.
376                          */
377                         spin_unlock_irqrestore(&pool->lock, irq_flags);
378
379                         ttm_pages_put(pages_to_free, freed_pages, pool->order);
380                         if (likely(nr_free != FREE_ALL_PAGES))
381                                 nr_free -= freed_pages;
382
383                         if (NUM_PAGES_TO_ALLOC >= nr_free)
384                                 npages_to_free = nr_free;
385                         else
386                                 npages_to_free = NUM_PAGES_TO_ALLOC;
387
388                         freed_pages = 0;
389
390                         /* free all so restart the processing */
391                         if (nr_free)
392                                 goto restart;
393
394                         /* Not allowed to fall through or break because
395                          * following context is inside spinlock while we are
396                          * outside here.
397                          */
398                         goto out;
399
400                 }
401         }
402
403         /* remove range of pages from the pool */
404         if (freed_pages) {
405                 __list_del(&p->lru, &pool->list);
406
407                 ttm_pool_update_free_locked(pool, freed_pages);
408                 nr_free -= freed_pages;
409         }
410
411         spin_unlock_irqrestore(&pool->lock, irq_flags);
412
413         if (freed_pages)
414                 ttm_pages_put(pages_to_free, freed_pages, pool->order);
415 out:
416         if (pages_to_free != static_buf)
417                 kfree(pages_to_free);
418         return nr_free;
419 }
420
421 /**
422  * Callback for mm to request pool to reduce number of page held.
423  *
424  * XXX: (dchinner) Deadlock warning!
425  *
426  * This code is crying out for a shrinker per pool....
427  */
428 static unsigned long
429 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
430 {
431         static DEFINE_MUTEX(lock);
432         static unsigned start_pool;
433         unsigned i;
434         unsigned pool_offset;
435         struct ttm_page_pool *pool;
436         int shrink_pages = sc->nr_to_scan;
437         unsigned long freed = 0;
438         unsigned int nr_free_pool;
439
440         if (!mutex_trylock(&lock))
441                 return SHRINK_STOP;
442         pool_offset = ++start_pool % NUM_POOLS;
443         /* select start pool in round robin fashion */
444         for (i = 0; i < NUM_POOLS; ++i) {
445                 unsigned nr_free = shrink_pages;
446                 unsigned page_nr;
447
448                 if (shrink_pages == 0)
449                         break;
450
451                 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
452                 page_nr = (1 << pool->order);
453                 /* OK to use static buffer since global mutex is held. */
454                 nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
455                 shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
456                 freed += (nr_free_pool - shrink_pages) << pool->order;
457                 if (freed >= sc->nr_to_scan)
458                         break;
459                 shrink_pages <<= pool->order;
460         }
461         mutex_unlock(&lock);
462         return freed;
463 }
464
465
466 static unsigned long
467 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
468 {
469         unsigned i;
470         unsigned long count = 0;
471         struct ttm_page_pool *pool;
472
473         for (i = 0; i < NUM_POOLS; ++i) {
474                 pool = &_manager->pools[i];
475                 count += (pool->npages << pool->order);
476         }
477
478         return count;
479 }
480
481 static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
482 {
483         manager->mm_shrink.count_objects = ttm_pool_shrink_count;
484         manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
485         manager->mm_shrink.seeks = 1;
486         return register_shrinker(&manager->mm_shrink);
487 }
488
489 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
490 {
491         unregister_shrinker(&manager->mm_shrink);
492 }
493
494 static int ttm_set_pages_caching(struct page **pages,
495                 enum ttm_caching_state cstate, unsigned cpages)
496 {
497         int r = 0;
498         /* Set page caching */
499         switch (cstate) {
500         case tt_uncached:
501                 r = set_pages_array_uc(pages, cpages);
502                 if (r)
503                         pr_err("Failed to set %d pages to uc!\n", cpages);
504                 break;
505         case tt_wc:
506                 r = set_pages_array_wc(pages, cpages);
507                 if (r)
508                         pr_err("Failed to set %d pages to wc!\n", cpages);
509                 break;
510         default:
511                 break;
512         }
513         return r;
514 }
515
516 /**
517  * Free pages the pages that failed to change the caching state. If there is
518  * any pages that have changed their caching state already put them to the
519  * pool.
520  */
521 static void ttm_handle_caching_state_failure(struct list_head *pages,
522                 int ttm_flags, enum ttm_caching_state cstate,
523                 struct page **failed_pages, unsigned cpages)
524 {
525         unsigned i;
526         /* Failed pages have to be freed */
527         for (i = 0; i < cpages; ++i) {
528                 list_del(&failed_pages[i]->lru);
529                 __free_page(failed_pages[i]);
530         }
531 }
532
533 /**
534  * Allocate new pages with correct caching.
535  *
536  * This function is reentrant if caller updates count depending on number of
537  * pages returned in pages array.
538  */
539 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
540                                int ttm_flags, enum ttm_caching_state cstate,
541                                unsigned count, unsigned order)
542 {
543         struct page **caching_array;
544         struct page *p;
545         int r = 0;
546         unsigned i, j, cpages;
547         unsigned npages = 1 << order;
548         unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
549
550         /* allocate array for page caching change */
551         caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
552                                       GFP_KERNEL);
553
554         if (!caching_array) {
555                 pr_debug("Unable to allocate table for new pages\n");
556                 return -ENOMEM;
557         }
558
559         for (i = 0, cpages = 0; i < count; ++i) {
560                 p = alloc_pages(gfp_flags, order);
561
562                 if (!p) {
563                         pr_debug("Unable to get page %u\n", i);
564
565                         /* store already allocated pages in the pool after
566                          * setting the caching state */
567                         if (cpages) {
568                                 r = ttm_set_pages_caching(caching_array,
569                                                           cstate, cpages);
570                                 if (r)
571                                         ttm_handle_caching_state_failure(pages,
572                                                 ttm_flags, cstate,
573                                                 caching_array, cpages);
574                         }
575                         r = -ENOMEM;
576                         goto out;
577                 }
578
579                 list_add(&p->lru, pages);
580
581 #ifdef CONFIG_HIGHMEM
582                 /* gfp flags of highmem page should never be dma32 so we
583                  * we should be fine in such case
584                  */
585                 if (PageHighMem(p))
586                         continue;
587
588 #endif
589                 for (j = 0; j < npages; ++j) {
590                         caching_array[cpages++] = p++;
591                         if (cpages == max_cpages) {
592
593                                 r = ttm_set_pages_caching(caching_array,
594                                                 cstate, cpages);
595                                 if (r) {
596                                         ttm_handle_caching_state_failure(pages,
597                                                 ttm_flags, cstate,
598                                                 caching_array, cpages);
599                                         goto out;
600                                 }
601                                 cpages = 0;
602                         }
603                 }
604         }
605
606         if (cpages) {
607                 r = ttm_set_pages_caching(caching_array, cstate, cpages);
608                 if (r)
609                         ttm_handle_caching_state_failure(pages,
610                                         ttm_flags, cstate,
611                                         caching_array, cpages);
612         }
613 out:
614         kfree(caching_array);
615
616         return r;
617 }
618
619 /**
620  * Fill the given pool if there aren't enough pages and the requested number of
621  * pages is small.
622  */
623 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
624                                       enum ttm_caching_state cstate,
625                                       unsigned count, unsigned long *irq_flags)
626 {
627         struct page *p;
628         int r;
629         unsigned cpages = 0;
630         /**
631          * Only allow one pool fill operation at a time.
632          * If pool doesn't have enough pages for the allocation new pages are
633          * allocated from outside of pool.
634          */
635         if (pool->fill_lock)
636                 return;
637
638         pool->fill_lock = true;
639
640         /* If allocation request is small and there are not enough
641          * pages in a pool we fill the pool up first. */
642         if (count < _manager->options.small
643                 && count > pool->npages) {
644                 struct list_head new_pages;
645                 unsigned alloc_size = _manager->options.alloc_size;
646
647                 /**
648                  * Can't change page caching if in irqsave context. We have to
649                  * drop the pool->lock.
650                  */
651                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
652
653                 INIT_LIST_HEAD(&new_pages);
654                 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
655                                         cstate, alloc_size, 0);
656                 spin_lock_irqsave(&pool->lock, *irq_flags);
657
658                 if (!r) {
659                         list_splice(&new_pages, &pool->list);
660                         ++pool->nrefills;
661                         pool->npages += alloc_size;
662                 } else {
663                         pr_debug("Failed to fill pool (%p)\n", pool);
664                         /* If we have any pages left put them to the pool. */
665                         list_for_each_entry(p, &new_pages, lru) {
666                                 ++cpages;
667                         }
668                         list_splice(&new_pages, &pool->list);
669                         pool->npages += cpages;
670                 }
671
672         }
673         pool->fill_lock = false;
674 }
675
676 /**
677  * Allocate pages from the pool and put them on the return list.
678  *
679  * @return zero for success or negative error code.
680  */
681 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
682                                    struct list_head *pages,
683                                    int ttm_flags,
684                                    enum ttm_caching_state cstate,
685                                    unsigned count, unsigned order)
686 {
687         unsigned long irq_flags;
688         struct list_head *p;
689         unsigned i;
690         int r = 0;
691
692         spin_lock_irqsave(&pool->lock, irq_flags);
693         if (!order)
694                 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
695                                           &irq_flags);
696
697         if (count >= pool->npages) {
698                 /* take all pages from the pool */
699                 list_splice_init(&pool->list, pages);
700                 count -= pool->npages;
701                 pool->npages = 0;
702                 goto out;
703         }
704         /* find the last pages to include for requested number of pages. Split
705          * pool to begin and halve it to reduce search space. */
706         if (count <= pool->npages/2) {
707                 i = 0;
708                 list_for_each(p, &pool->list) {
709                         if (++i == count)
710                                 break;
711                 }
712         } else {
713                 i = pool->npages + 1;
714                 list_for_each_prev(p, &pool->list) {
715                         if (--i == count)
716                                 break;
717                 }
718         }
719         /* Cut 'count' number of pages from the pool */
720         list_cut_position(pages, &pool->list, p);
721         pool->npages -= count;
722         count = 0;
723 out:
724         spin_unlock_irqrestore(&pool->lock, irq_flags);
725
726         /* clear the pages coming from the pool if requested */
727         if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
728                 struct page *page;
729
730                 list_for_each_entry(page, pages, lru) {
731                         if (PageHighMem(page))
732                                 clear_highpage(page);
733                         else
734                                 clear_page(page_address(page));
735                 }
736         }
737
738         /* If pool didn't have enough pages allocate new one. */
739         if (count) {
740                 gfp_t gfp_flags = pool->gfp_flags;
741
742                 /* set zero flag for page allocation if required */
743                 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
744                         gfp_flags |= __GFP_ZERO;
745
746                 if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
747                         gfp_flags |= __GFP_RETRY_MAYFAIL;
748
749                 /* ttm_alloc_new_pages doesn't reference pool so we can run
750                  * multiple requests in parallel.
751                  **/
752                 r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
753                                         count, order);
754         }
755
756         return r;
757 }
758
759 /* Put all pages in pages list to correct pool to wait for reuse */
760 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
761                           enum ttm_caching_state cstate)
762 {
763         struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
765         struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
766 #endif
767         unsigned long irq_flags;
768         unsigned i;
769
770         if (pool == NULL) {
771                 /* No pool for this memory type so free the pages */
772                 i = 0;
773                 while (i < npages) {
774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
775                         struct page *p = pages[i];
776 #endif
777                         unsigned order = 0, j;
778
779                         if (!pages[i]) {
780                                 ++i;
781                                 continue;
782                         }
783
784 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
785                         if (!(flags & TTM_PAGE_FLAG_DMA32)) {
786                                 for (j = 0; j < HPAGE_PMD_NR; ++j)
787                                         if (p++ != pages[i + j])
788                                             break;
789
790                                 if (j == HPAGE_PMD_NR)
791                                         order = HPAGE_PMD_ORDER;
792                         }
793 #endif
794
795                         if (page_count(pages[i]) != 1)
796                                 pr_err("Erroneous page count. Leaking pages.\n");
797                         __free_pages(pages[i], order);
798
799                         j = 1 << order;
800                         while (j) {
801                                 pages[i++] = NULL;
802                                 --j;
803                         }
804                 }
805                 return;
806         }
807
808         i = 0;
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810         if (huge) {
811                 unsigned max_size, n2free;
812
813                 spin_lock_irqsave(&huge->lock, irq_flags);
814                 while (i < npages) {
815                         struct page *p = pages[i];
816                         unsigned j;
817
818                         if (!p)
819                                 break;
820
821                         for (j = 0; j < HPAGE_PMD_NR; ++j)
822                                 if (p++ != pages[i + j])
823                                     break;
824
825                         if (j != HPAGE_PMD_NR)
826                                 break;
827
828                         list_add_tail(&pages[i]->lru, &huge->list);
829
830                         for (j = 0; j < HPAGE_PMD_NR; ++j)
831                                 pages[i++] = NULL;
832                         huge->npages++;
833                 }
834
835                 /* Check that we don't go over the pool limit */
836                 max_size = _manager->options.max_size;
837                 max_size /= HPAGE_PMD_NR;
838                 if (huge->npages > max_size)
839                         n2free = huge->npages - max_size;
840                 else
841                         n2free = 0;
842                 spin_unlock_irqrestore(&huge->lock, irq_flags);
843                 if (n2free)
844                         ttm_page_pool_free(huge, n2free, false);
845         }
846 #endif
847
848         spin_lock_irqsave(&pool->lock, irq_flags);
849         while (i < npages) {
850                 if (pages[i]) {
851                         if (page_count(pages[i]) != 1)
852                                 pr_err("Erroneous page count. Leaking pages.\n");
853                         list_add_tail(&pages[i]->lru, &pool->list);
854                         pages[i] = NULL;
855                         pool->npages++;
856                 }
857                 ++i;
858         }
859         /* Check that we don't go over the pool limit */
860         npages = 0;
861         if (pool->npages > _manager->options.max_size) {
862                 npages = pool->npages - _manager->options.max_size;
863                 /* free at least NUM_PAGES_TO_ALLOC number of pages
864                  * to reduce calls to set_memory_wb */
865                 if (npages < NUM_PAGES_TO_ALLOC)
866                         npages = NUM_PAGES_TO_ALLOC;
867         }
868         spin_unlock_irqrestore(&pool->lock, irq_flags);
869         if (npages)
870                 ttm_page_pool_free(pool, npages, false);
871 }
872
873 /*
874  * On success pages list will hold count number of correctly
875  * cached pages.
876  */
877 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
878                          enum ttm_caching_state cstate)
879 {
880         struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
882         struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
883 #endif
884         struct list_head plist;
885         struct page *p = NULL;
886         unsigned count, first;
887         int r;
888
889         /* No pool for cached pages */
890         if (pool == NULL) {
891                 gfp_t gfp_flags = GFP_USER;
892                 unsigned i;
893 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
894                 unsigned j;
895 #endif
896
897                 /* set zero flag for page allocation if required */
898                 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
899                         gfp_flags |= __GFP_ZERO;
900
901                 if (flags & TTM_PAGE_FLAG_NO_RETRY)
902                         gfp_flags |= __GFP_RETRY_MAYFAIL;
903
904                 if (flags & TTM_PAGE_FLAG_DMA32)
905                         gfp_flags |= GFP_DMA32;
906                 else
907                         gfp_flags |= GFP_HIGHUSER;
908
909                 i = 0;
910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
911                 if (!(gfp_flags & GFP_DMA32)) {
912                         while (npages >= HPAGE_PMD_NR) {
913                                 gfp_t huge_flags = gfp_flags;
914
915                                 huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
916                                         __GFP_KSWAPD_RECLAIM;
917                                 huge_flags &= ~__GFP_MOVABLE;
918                                 huge_flags &= ~__GFP_COMP;
919                                 p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
920                                 if (!p)
921                                         break;
922
923                                 for (j = 0; j < HPAGE_PMD_NR; ++j)
924                                         pages[i++] = p++;
925
926                                 npages -= HPAGE_PMD_NR;
927                         }
928                 }
929 #endif
930
931                 first = i;
932                 while (npages) {
933                         p = alloc_page(gfp_flags);
934                         if (!p) {
935                                 pr_debug("Unable to allocate page\n");
936                                 return -ENOMEM;
937                         }
938
939                         /* Swap the pages if we detect consecutive order */
940                         if (i > first && pages[i - 1] == p - 1)
941                                 swap(p, pages[i - 1]);
942
943                         pages[i++] = p;
944                         --npages;
945                 }
946                 return 0;
947         }
948
949         count = 0;
950
951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
952         if (huge && npages >= HPAGE_PMD_NR) {
953                 INIT_LIST_HEAD(&plist);
954                 ttm_page_pool_get_pages(huge, &plist, flags, cstate,
955                                         npages / HPAGE_PMD_NR,
956                                         HPAGE_PMD_ORDER);
957
958                 list_for_each_entry(p, &plist, lru) {
959                         unsigned j;
960
961                         for (j = 0; j < HPAGE_PMD_NR; ++j)
962                                 pages[count++] = &p[j];
963                 }
964         }
965 #endif
966
967         INIT_LIST_HEAD(&plist);
968         r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
969                                     npages - count, 0);
970
971         first = count;
972         list_for_each_entry(p, &plist, lru) {
973                 struct page *tmp = p;
974
975                 /* Swap the pages if we detect consecutive order */
976                 if (count > first && pages[count - 1] == tmp - 1)
977                         swap(tmp, pages[count - 1]);
978                 pages[count++] = tmp;
979         }
980
981         if (r) {
982                 /* If there is any pages in the list put them back to
983                  * the pool.
984                  */
985                 pr_debug("Failed to allocate extra pages for large request\n");
986                 ttm_put_pages(pages, count, flags, cstate);
987                 return r;
988         }
989
990         return 0;
991 }
992
993 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
994                 char *name, unsigned int order)
995 {
996         spin_lock_init(&pool->lock);
997         pool->fill_lock = false;
998         INIT_LIST_HEAD(&pool->list);
999         pool->npages = pool->nfrees = 0;
1000         pool->gfp_flags = flags;
1001         pool->name = name;
1002         pool->order = order;
1003 }
1004
1005 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1006 {
1007         int ret;
1008 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1009         unsigned order = HPAGE_PMD_ORDER;
1010 #else
1011         unsigned order = 0;
1012 #endif
1013
1014         WARN_ON(_manager);
1015
1016         pr_info("Initializing pool allocator\n");
1017
1018         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1019         if (!_manager)
1020                 return -ENOMEM;
1021
1022         ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
1023
1024         ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
1025
1026         ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
1027                                   GFP_USER | GFP_DMA32, "wc dma", 0);
1028
1029         ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
1030                                   GFP_USER | GFP_DMA32, "uc dma", 0);
1031
1032         ttm_page_pool_init_locked(&_manager->wc_pool_huge,
1033                                   (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
1034                                    __GFP_KSWAPD_RECLAIM) &
1035                                   ~(__GFP_MOVABLE | __GFP_COMP),
1036                                   "wc huge", order);
1037
1038         ttm_page_pool_init_locked(&_manager->uc_pool_huge,
1039                                   (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
1040                                    __GFP_KSWAPD_RECLAIM) &
1041                                   ~(__GFP_MOVABLE | __GFP_COMP)
1042                                   , "uc huge", order);
1043
1044         _manager->options.max_size = max_pages;
1045         _manager->options.small = SMALL_ALLOCATION;
1046         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1047
1048         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1049                                    &glob->kobj, "pool");
1050         if (unlikely(ret != 0))
1051                 goto error;
1052
1053         ret = ttm_pool_mm_shrink_init(_manager);
1054         if (unlikely(ret != 0))
1055                 goto error;
1056         return 0;
1057
1058 error:
1059         kobject_put(&_manager->kobj);
1060         _manager = NULL;
1061         return ret;
1062 }
1063
1064 void ttm_page_alloc_fini(void)
1065 {
1066         int i;
1067
1068         pr_info("Finalizing pool allocator\n");
1069         ttm_pool_mm_shrink_fini(_manager);
1070
1071         /* OK to use static buffer since global mutex is no longer used. */
1072         for (i = 0; i < NUM_POOLS; ++i)
1073                 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1074
1075         kobject_put(&_manager->kobj);
1076         _manager = NULL;
1077 }
1078
1079 static void
1080 ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
1081 {
1082         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1083         unsigned i;
1084
1085         if (mem_count_update == 0)
1086                 goto put_pages;
1087
1088         for (i = 0; i < mem_count_update; ++i) {
1089                 if (!ttm->pages[i])
1090                         continue;
1091
1092                 ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
1093         }
1094
1095 put_pages:
1096         ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1097                       ttm->caching_state);
1098         ttm->state = tt_unpopulated;
1099 }
1100
1101 int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1102 {
1103         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1104         unsigned i;
1105         int ret;
1106
1107         if (ttm->state != tt_unpopulated)
1108                 return 0;
1109
1110         if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
1111                 return -ENOMEM;
1112
1113         ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1114                             ttm->caching_state);
1115         if (unlikely(ret != 0)) {
1116                 ttm_pool_unpopulate_helper(ttm, 0);
1117                 return ret;
1118         }
1119
1120         for (i = 0; i < ttm->num_pages; ++i) {
1121                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1122                                                 PAGE_SIZE, ctx);
1123                 if (unlikely(ret != 0)) {
1124                         ttm_pool_unpopulate_helper(ttm, i);
1125                         return -ENOMEM;
1126                 }
1127         }
1128
1129         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1130                 ret = ttm_tt_swapin(ttm);
1131                 if (unlikely(ret != 0)) {
1132                         ttm_pool_unpopulate(ttm);
1133                         return ret;
1134                 }
1135         }
1136
1137         ttm->state = tt_unbound;
1138         return 0;
1139 }
1140 EXPORT_SYMBOL(ttm_pool_populate);
1141
1142 void ttm_pool_unpopulate(struct ttm_tt *ttm)
1143 {
1144         ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
1145 }
1146 EXPORT_SYMBOL(ttm_pool_unpopulate);
1147
1148 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
1149                                         struct ttm_operation_ctx *ctx)
1150 {
1151         unsigned i, j;
1152         int r;
1153
1154         r = ttm_pool_populate(&tt->ttm, ctx);
1155         if (r)
1156                 return r;
1157
1158         for (i = 0; i < tt->ttm.num_pages; ++i) {
1159                 struct page *p = tt->ttm.pages[i];
1160                 size_t num_pages = 1;
1161
1162                 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1163                         if (++p != tt->ttm.pages[j])
1164                                 break;
1165
1166                         ++num_pages;
1167                 }
1168
1169                 tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1170                                                   0, num_pages * PAGE_SIZE,
1171                                                   DMA_BIDIRECTIONAL);
1172                 if (dma_mapping_error(dev, tt->dma_address[i])) {
1173                         while (i--) {
1174                                 dma_unmap_page(dev, tt->dma_address[i],
1175                                                PAGE_SIZE, DMA_BIDIRECTIONAL);
1176                                 tt->dma_address[i] = 0;
1177                         }
1178                         ttm_pool_unpopulate(&tt->ttm);
1179                         return -EFAULT;
1180                 }
1181
1182                 for (j = 1; j < num_pages; ++j) {
1183                         tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1184                         ++i;
1185                 }
1186         }
1187         return 0;
1188 }
1189 EXPORT_SYMBOL(ttm_populate_and_map_pages);
1190
1191 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1192 {
1193         unsigned i, j;
1194
1195         for (i = 0; i < tt->ttm.num_pages;) {
1196                 struct page *p = tt->ttm.pages[i];
1197                 size_t num_pages = 1;
1198
1199                 if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1200                         ++i;
1201                         continue;
1202                 }
1203
1204                 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1205                         if (++p != tt->ttm.pages[j])
1206                                 break;
1207
1208                         ++num_pages;
1209                 }
1210
1211                 dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1212                                DMA_BIDIRECTIONAL);
1213
1214                 i += num_pages;
1215         }
1216         ttm_pool_unpopulate(&tt->ttm);
1217 }
1218 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1219
1220 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1221 {
1222         struct ttm_page_pool *p;
1223         unsigned i;
1224         char *h[] = {"pool", "refills", "pages freed", "size"};
1225         if (!_manager) {
1226                 seq_printf(m, "No pool allocator running.\n");
1227                 return 0;
1228         }
1229         seq_printf(m, "%7s %12s %13s %8s\n",
1230                         h[0], h[1], h[2], h[3]);
1231         for (i = 0; i < NUM_POOLS; ++i) {
1232                 p = &_manager->pools[i];
1233
1234                 seq_printf(m, "%7s %12ld %13ld %8d\n",
1235                                 p->name, p->nrefills,
1236                                 p->nfrees, p->npages);
1237         }
1238         return 0;
1239 }
1240 EXPORT_SYMBOL(ttm_page_alloc_debugfs);