Merge tag 'pci-v4.18-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / drivers / gpu / drm / ttm / ttm_page_alloc.c
1 /*
2  * Copyright (c) Red Hat Inc.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Dave Airlie <airlied@redhat.com>
24  *          Jerome Glisse <jglisse@redhat.com>
25  *          Pauli Nieminen <suokkos@gmail.com>
26  */
27
28 /* simple list based uncached page pool
29  * - Pool collects resently freed pages for reuse
30  * - Use page->lru to keep a free list
31  * - doesn't track currently in use pages
32  */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #if IS_ENABLED(CONFIG_AGP)
52 #include <asm/agp.h>
53 #endif
54 #ifdef CONFIG_X86
55 #include <asm/set_memory.h>
56 #endif
57
58 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
59 #define SMALL_ALLOCATION                16
60 #define FREE_ALL_PAGES                  (~0U)
61 /* times are in msecs */
62 #define PAGE_FREE_INTERVAL              1000
63
64 /**
65  * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
66  *
67  * @lock: Protects the shared pool from concurrnet access. Must be used with
68  * irqsave/irqrestore variants because pool allocator maybe called from
69  * delayed work.
70  * @fill_lock: Prevent concurrent calls to fill.
71  * @list: Pool of free uc/wc pages for fast reuse.
72  * @gfp_flags: Flags to pass for alloc_page.
73  * @npages: Number of pages in pool.
74  */
75 struct ttm_page_pool {
76         spinlock_t              lock;
77         bool                    fill_lock;
78         struct list_head        list;
79         gfp_t                   gfp_flags;
80         unsigned                npages;
81         char                    *name;
82         unsigned long           nfrees;
83         unsigned long           nrefills;
84         unsigned int            order;
85 };
86
87 /**
88  * Limits for the pool. They are handled without locks because only place where
89  * they may change is in sysfs store. They won't have immediate effect anyway
90  * so forcing serialization to access them is pointless.
91  */
92
93 struct ttm_pool_opts {
94         unsigned        alloc_size;
95         unsigned        max_size;
96         unsigned        small;
97 };
98
99 #define NUM_POOLS 6
100
101 /**
102  * struct ttm_pool_manager - Holds memory pools for fst allocation
103  *
104  * Manager is read only object for pool code so it doesn't need locking.
105  *
106  * @free_interval: minimum number of jiffies between freeing pages from pool.
107  * @page_alloc_inited: reference counting for pool allocation.
108  * @work: Work that is used to shrink the pool. Work is only run when there is
109  * some pages to free.
110  * @small_allocation: Limit in number of pages what is small allocation.
111  *
112  * @pools: All pool objects in use.
113  **/
114 struct ttm_pool_manager {
115         struct kobject          kobj;
116         struct shrinker         mm_shrink;
117         struct ttm_pool_opts    options;
118
119         union {
120                 struct ttm_page_pool    pools[NUM_POOLS];
121                 struct {
122                         struct ttm_page_pool    wc_pool;
123                         struct ttm_page_pool    uc_pool;
124                         struct ttm_page_pool    wc_pool_dma32;
125                         struct ttm_page_pool    uc_pool_dma32;
126                         struct ttm_page_pool    wc_pool_huge;
127                         struct ttm_page_pool    uc_pool_huge;
128                 } ;
129         };
130 };
131
132 static struct attribute ttm_page_pool_max = {
133         .name = "pool_max_size",
134         .mode = S_IRUGO | S_IWUSR
135 };
136 static struct attribute ttm_page_pool_small = {
137         .name = "pool_small_allocation",
138         .mode = S_IRUGO | S_IWUSR
139 };
140 static struct attribute ttm_page_pool_alloc_size = {
141         .name = "pool_allocation_size",
142         .mode = S_IRUGO | S_IWUSR
143 };
144
145 static struct attribute *ttm_pool_attrs[] = {
146         &ttm_page_pool_max,
147         &ttm_page_pool_small,
148         &ttm_page_pool_alloc_size,
149         NULL
150 };
151
152 static void ttm_pool_kobj_release(struct kobject *kobj)
153 {
154         struct ttm_pool_manager *m =
155                 container_of(kobj, struct ttm_pool_manager, kobj);
156         kfree(m);
157 }
158
159 static ssize_t ttm_pool_store(struct kobject *kobj,
160                 struct attribute *attr, const char *buffer, size_t size)
161 {
162         struct ttm_pool_manager *m =
163                 container_of(kobj, struct ttm_pool_manager, kobj);
164         int chars;
165         unsigned val;
166         chars = sscanf(buffer, "%u", &val);
167         if (chars == 0)
168                 return size;
169
170         /* Convert kb to number of pages */
171         val = val / (PAGE_SIZE >> 10);
172
173         if (attr == &ttm_page_pool_max)
174                 m->options.max_size = val;
175         else if (attr == &ttm_page_pool_small)
176                 m->options.small = val;
177         else if (attr == &ttm_page_pool_alloc_size) {
178                 if (val > NUM_PAGES_TO_ALLOC*8) {
179                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
180                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
181                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
182                         return size;
183                 } else if (val > NUM_PAGES_TO_ALLOC) {
184                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
185                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
186                 }
187                 m->options.alloc_size = val;
188         }
189
190         return size;
191 }
192
193 static ssize_t ttm_pool_show(struct kobject *kobj,
194                 struct attribute *attr, char *buffer)
195 {
196         struct ttm_pool_manager *m =
197                 container_of(kobj, struct ttm_pool_manager, kobj);
198         unsigned val = 0;
199
200         if (attr == &ttm_page_pool_max)
201                 val = m->options.max_size;
202         else if (attr == &ttm_page_pool_small)
203                 val = m->options.small;
204         else if (attr == &ttm_page_pool_alloc_size)
205                 val = m->options.alloc_size;
206
207         val = val * (PAGE_SIZE >> 10);
208
209         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
210 }
211
212 static const struct sysfs_ops ttm_pool_sysfs_ops = {
213         .show = &ttm_pool_show,
214         .store = &ttm_pool_store,
215 };
216
217 static struct kobj_type ttm_pool_kobj_type = {
218         .release = &ttm_pool_kobj_release,
219         .sysfs_ops = &ttm_pool_sysfs_ops,
220         .default_attrs = ttm_pool_attrs,
221 };
222
223 static struct ttm_pool_manager *_manager;
224
225 #ifndef CONFIG_X86
226 static int set_pages_wb(struct page *page, int numpages)
227 {
228 #if IS_ENABLED(CONFIG_AGP)
229         int i;
230
231         for (i = 0; i < numpages; i++)
232                 unmap_page_from_agp(page++);
233 #endif
234         return 0;
235 }
236
237 static int set_pages_array_wb(struct page **pages, int addrinarray)
238 {
239 #if IS_ENABLED(CONFIG_AGP)
240         int i;
241
242         for (i = 0; i < addrinarray; i++)
243                 unmap_page_from_agp(pages[i]);
244 #endif
245         return 0;
246 }
247
248 static int set_pages_array_wc(struct page **pages, int addrinarray)
249 {
250 #if IS_ENABLED(CONFIG_AGP)
251         int i;
252
253         for (i = 0; i < addrinarray; i++)
254                 map_page_into_agp(pages[i]);
255 #endif
256         return 0;
257 }
258
259 static int set_pages_array_uc(struct page **pages, int addrinarray)
260 {
261 #if IS_ENABLED(CONFIG_AGP)
262         int i;
263
264         for (i = 0; i < addrinarray; i++)
265                 map_page_into_agp(pages[i]);
266 #endif
267         return 0;
268 }
269 #endif
270
271 /**
272  * Select the right pool or requested caching state and ttm flags. */
273 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
274                                           enum ttm_caching_state cstate)
275 {
276         int pool_index;
277
278         if (cstate == tt_cached)
279                 return NULL;
280
281         if (cstate == tt_wc)
282                 pool_index = 0x0;
283         else
284                 pool_index = 0x1;
285
286         if (flags & TTM_PAGE_FLAG_DMA32) {
287                 if (huge)
288                         return NULL;
289                 pool_index |= 0x2;
290
291         } else if (huge) {
292                 pool_index |= 0x4;
293         }
294
295         return &_manager->pools[pool_index];
296 }
297
298 /* set memory back to wb and free the pages. */
299 static void ttm_pages_put(struct page *pages[], unsigned npages,
300                 unsigned int order)
301 {
302         unsigned int i, pages_nr = (1 << order);
303
304         if (order == 0) {
305                 if (set_pages_array_wb(pages, npages))
306                         pr_err("Failed to set %d pages to wb!\n", npages);
307         }
308
309         for (i = 0; i < npages; ++i) {
310                 if (order > 0) {
311                         if (set_pages_wb(pages[i], pages_nr))
312                                 pr_err("Failed to set %d pages to wb!\n", pages_nr);
313                 }
314                 __free_pages(pages[i], order);
315         }
316 }
317
318 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
319                 unsigned freed_pages)
320 {
321         pool->npages -= freed_pages;
322         pool->nfrees += freed_pages;
323 }
324
325 /**
326  * Free pages from pool.
327  *
328  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
329  * number of pages in one go.
330  *
331  * @pool: to free the pages from
332  * @free_all: If set to true will free all pages in pool
333  * @use_static: Safe to use static buffer
334  **/
335 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
336                               bool use_static)
337 {
338         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
339         unsigned long irq_flags;
340         struct page *p;
341         struct page **pages_to_free;
342         unsigned freed_pages = 0,
343                  npages_to_free = nr_free;
344
345         if (NUM_PAGES_TO_ALLOC < nr_free)
346                 npages_to_free = NUM_PAGES_TO_ALLOC;
347
348         if (use_static)
349                 pages_to_free = static_buf;
350         else
351                 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
352                                         GFP_KERNEL);
353         if (!pages_to_free) {
354                 pr_debug("Failed to allocate memory for pool free operation\n");
355                 return 0;
356         }
357
358 restart:
359         spin_lock_irqsave(&pool->lock, irq_flags);
360
361         list_for_each_entry_reverse(p, &pool->list, lru) {
362                 if (freed_pages >= npages_to_free)
363                         break;
364
365                 pages_to_free[freed_pages++] = p;
366                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
367                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
368                         /* remove range of pages from the pool */
369                         __list_del(p->lru.prev, &pool->list);
370
371                         ttm_pool_update_free_locked(pool, freed_pages);
372                         /**
373                          * Because changing page caching is costly
374                          * we unlock the pool to prevent stalling.
375                          */
376                         spin_unlock_irqrestore(&pool->lock, irq_flags);
377
378                         ttm_pages_put(pages_to_free, freed_pages, pool->order);
379                         if (likely(nr_free != FREE_ALL_PAGES))
380                                 nr_free -= freed_pages;
381
382                         if (NUM_PAGES_TO_ALLOC >= nr_free)
383                                 npages_to_free = nr_free;
384                         else
385                                 npages_to_free = NUM_PAGES_TO_ALLOC;
386
387                         freed_pages = 0;
388
389                         /* free all so restart the processing */
390                         if (nr_free)
391                                 goto restart;
392
393                         /* Not allowed to fall through or break because
394                          * following context is inside spinlock while we are
395                          * outside here.
396                          */
397                         goto out;
398
399                 }
400         }
401
402         /* remove range of pages from the pool */
403         if (freed_pages) {
404                 __list_del(&p->lru, &pool->list);
405
406                 ttm_pool_update_free_locked(pool, freed_pages);
407                 nr_free -= freed_pages;
408         }
409
410         spin_unlock_irqrestore(&pool->lock, irq_flags);
411
412         if (freed_pages)
413                 ttm_pages_put(pages_to_free, freed_pages, pool->order);
414 out:
415         if (pages_to_free != static_buf)
416                 kfree(pages_to_free);
417         return nr_free;
418 }
419
420 /**
421  * Callback for mm to request pool to reduce number of page held.
422  *
423  * XXX: (dchinner) Deadlock warning!
424  *
425  * This code is crying out for a shrinker per pool....
426  */
427 static unsigned long
428 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
429 {
430         static DEFINE_MUTEX(lock);
431         static unsigned start_pool;
432         unsigned i;
433         unsigned pool_offset;
434         struct ttm_page_pool *pool;
435         int shrink_pages = sc->nr_to_scan;
436         unsigned long freed = 0;
437         unsigned int nr_free_pool;
438
439         if (!mutex_trylock(&lock))
440                 return SHRINK_STOP;
441         pool_offset = ++start_pool % NUM_POOLS;
442         /* select start pool in round robin fashion */
443         for (i = 0; i < NUM_POOLS; ++i) {
444                 unsigned nr_free = shrink_pages;
445                 unsigned page_nr;
446
447                 if (shrink_pages == 0)
448                         break;
449
450                 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
451                 page_nr = (1 << pool->order);
452                 /* OK to use static buffer since global mutex is held. */
453                 nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
454                 shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
455                 freed += (nr_free_pool - shrink_pages) << pool->order;
456                 if (freed >= sc->nr_to_scan)
457                         break;
458                 shrink_pages <<= pool->order;
459         }
460         mutex_unlock(&lock);
461         return freed;
462 }
463
464
465 static unsigned long
466 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
467 {
468         unsigned i;
469         unsigned long count = 0;
470         struct ttm_page_pool *pool;
471
472         for (i = 0; i < NUM_POOLS; ++i) {
473                 pool = &_manager->pools[i];
474                 count += (pool->npages << pool->order);
475         }
476
477         return count;
478 }
479
480 static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
481 {
482         manager->mm_shrink.count_objects = ttm_pool_shrink_count;
483         manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
484         manager->mm_shrink.seeks = 1;
485         return register_shrinker(&manager->mm_shrink);
486 }
487
488 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
489 {
490         unregister_shrinker(&manager->mm_shrink);
491 }
492
493 static int ttm_set_pages_caching(struct page **pages,
494                 enum ttm_caching_state cstate, unsigned cpages)
495 {
496         int r = 0;
497         /* Set page caching */
498         switch (cstate) {
499         case tt_uncached:
500                 r = set_pages_array_uc(pages, cpages);
501                 if (r)
502                         pr_err("Failed to set %d pages to uc!\n", cpages);
503                 break;
504         case tt_wc:
505                 r = set_pages_array_wc(pages, cpages);
506                 if (r)
507                         pr_err("Failed to set %d pages to wc!\n", cpages);
508                 break;
509         default:
510                 break;
511         }
512         return r;
513 }
514
515 /**
516  * Free pages the pages that failed to change the caching state. If there is
517  * any pages that have changed their caching state already put them to the
518  * pool.
519  */
520 static void ttm_handle_caching_state_failure(struct list_head *pages,
521                 int ttm_flags, enum ttm_caching_state cstate,
522                 struct page **failed_pages, unsigned cpages)
523 {
524         unsigned i;
525         /* Failed pages have to be freed */
526         for (i = 0; i < cpages; ++i) {
527                 list_del(&failed_pages[i]->lru);
528                 __free_page(failed_pages[i]);
529         }
530 }
531
532 /**
533  * Allocate new pages with correct caching.
534  *
535  * This function is reentrant if caller updates count depending on number of
536  * pages returned in pages array.
537  */
538 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
539                                int ttm_flags, enum ttm_caching_state cstate,
540                                unsigned count, unsigned order)
541 {
542         struct page **caching_array;
543         struct page *p;
544         int r = 0;
545         unsigned i, j, cpages;
546         unsigned npages = 1 << order;
547         unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
548
549         /* allocate array for page caching change */
550         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
551
552         if (!caching_array) {
553                 pr_debug("Unable to allocate table for new pages\n");
554                 return -ENOMEM;
555         }
556
557         for (i = 0, cpages = 0; i < count; ++i) {
558                 p = alloc_pages(gfp_flags, order);
559
560                 if (!p) {
561                         pr_debug("Unable to get page %u\n", i);
562
563                         /* store already allocated pages in the pool after
564                          * setting the caching state */
565                         if (cpages) {
566                                 r = ttm_set_pages_caching(caching_array,
567                                                           cstate, cpages);
568                                 if (r)
569                                         ttm_handle_caching_state_failure(pages,
570                                                 ttm_flags, cstate,
571                                                 caching_array, cpages);
572                         }
573                         r = -ENOMEM;
574                         goto out;
575                 }
576
577                 list_add(&p->lru, pages);
578
579 #ifdef CONFIG_HIGHMEM
580                 /* gfp flags of highmem page should never be dma32 so we
581                  * we should be fine in such case
582                  */
583                 if (PageHighMem(p))
584                         continue;
585
586 #endif
587                 for (j = 0; j < npages; ++j) {
588                         caching_array[cpages++] = p++;
589                         if (cpages == max_cpages) {
590
591                                 r = ttm_set_pages_caching(caching_array,
592                                                 cstate, cpages);
593                                 if (r) {
594                                         ttm_handle_caching_state_failure(pages,
595                                                 ttm_flags, cstate,
596                                                 caching_array, cpages);
597                                         goto out;
598                                 }
599                                 cpages = 0;
600                         }
601                 }
602         }
603
604         if (cpages) {
605                 r = ttm_set_pages_caching(caching_array, cstate, cpages);
606                 if (r)
607                         ttm_handle_caching_state_failure(pages,
608                                         ttm_flags, cstate,
609                                         caching_array, cpages);
610         }
611 out:
612         kfree(caching_array);
613
614         return r;
615 }
616
617 /**
618  * Fill the given pool if there aren't enough pages and the requested number of
619  * pages is small.
620  */
621 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
622                                       enum ttm_caching_state cstate,
623                                       unsigned count, unsigned long *irq_flags)
624 {
625         struct page *p;
626         int r;
627         unsigned cpages = 0;
628         /**
629          * Only allow one pool fill operation at a time.
630          * If pool doesn't have enough pages for the allocation new pages are
631          * allocated from outside of pool.
632          */
633         if (pool->fill_lock)
634                 return;
635
636         pool->fill_lock = true;
637
638         /* If allocation request is small and there are not enough
639          * pages in a pool we fill the pool up first. */
640         if (count < _manager->options.small
641                 && count > pool->npages) {
642                 struct list_head new_pages;
643                 unsigned alloc_size = _manager->options.alloc_size;
644
645                 /**
646                  * Can't change page caching if in irqsave context. We have to
647                  * drop the pool->lock.
648                  */
649                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
650
651                 INIT_LIST_HEAD(&new_pages);
652                 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
653                                         cstate, alloc_size, 0);
654                 spin_lock_irqsave(&pool->lock, *irq_flags);
655
656                 if (!r) {
657                         list_splice(&new_pages, &pool->list);
658                         ++pool->nrefills;
659                         pool->npages += alloc_size;
660                 } else {
661                         pr_debug("Failed to fill pool (%p)\n", pool);
662                         /* If we have any pages left put them to the pool. */
663                         list_for_each_entry(p, &new_pages, lru) {
664                                 ++cpages;
665                         }
666                         list_splice(&new_pages, &pool->list);
667                         pool->npages += cpages;
668                 }
669
670         }
671         pool->fill_lock = false;
672 }
673
674 /**
675  * Allocate pages from the pool and put them on the return list.
676  *
677  * @return zero for success or negative error code.
678  */
679 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
680                                    struct list_head *pages,
681                                    int ttm_flags,
682                                    enum ttm_caching_state cstate,
683                                    unsigned count, unsigned order)
684 {
685         unsigned long irq_flags;
686         struct list_head *p;
687         unsigned i;
688         int r = 0;
689
690         spin_lock_irqsave(&pool->lock, irq_flags);
691         if (!order)
692                 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
693                                           &irq_flags);
694
695         if (count >= pool->npages) {
696                 /* take all pages from the pool */
697                 list_splice_init(&pool->list, pages);
698                 count -= pool->npages;
699                 pool->npages = 0;
700                 goto out;
701         }
702         /* find the last pages to include for requested number of pages. Split
703          * pool to begin and halve it to reduce search space. */
704         if (count <= pool->npages/2) {
705                 i = 0;
706                 list_for_each(p, &pool->list) {
707                         if (++i == count)
708                                 break;
709                 }
710         } else {
711                 i = pool->npages + 1;
712                 list_for_each_prev(p, &pool->list) {
713                         if (--i == count)
714                                 break;
715                 }
716         }
717         /* Cut 'count' number of pages from the pool */
718         list_cut_position(pages, &pool->list, p);
719         pool->npages -= count;
720         count = 0;
721 out:
722         spin_unlock_irqrestore(&pool->lock, irq_flags);
723
724         /* clear the pages coming from the pool if requested */
725         if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
726                 struct page *page;
727
728                 list_for_each_entry(page, pages, lru) {
729                         if (PageHighMem(page))
730                                 clear_highpage(page);
731                         else
732                                 clear_page(page_address(page));
733                 }
734         }
735
736         /* If pool didn't have enough pages allocate new one. */
737         if (count) {
738                 gfp_t gfp_flags = pool->gfp_flags;
739
740                 /* set zero flag for page allocation if required */
741                 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
742                         gfp_flags |= __GFP_ZERO;
743
744                 if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
745                         gfp_flags |= __GFP_RETRY_MAYFAIL;
746
747                 /* ttm_alloc_new_pages doesn't reference pool so we can run
748                  * multiple requests in parallel.
749                  **/
750                 r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
751                                         count, order);
752         }
753
754         return r;
755 }
756
757 /* Put all pages in pages list to correct pool to wait for reuse */
758 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
759                           enum ttm_caching_state cstate)
760 {
761         struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
763         struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
764 #endif
765         unsigned long irq_flags;
766         unsigned i;
767
768         if (pool == NULL) {
769                 /* No pool for this memory type so free the pages */
770                 i = 0;
771                 while (i < npages) {
772 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
773                         struct page *p = pages[i];
774 #endif
775                         unsigned order = 0, j;
776
777                         if (!pages[i]) {
778                                 ++i;
779                                 continue;
780                         }
781
782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
783                         if (!(flags & TTM_PAGE_FLAG_DMA32)) {
784                                 for (j = 0; j < HPAGE_PMD_NR; ++j)
785                                         if (p++ != pages[i + j])
786                                             break;
787
788                                 if (j == HPAGE_PMD_NR)
789                                         order = HPAGE_PMD_ORDER;
790                         }
791 #endif
792
793                         if (page_count(pages[i]) != 1)
794                                 pr_err("Erroneous page count. Leaking pages.\n");
795                         __free_pages(pages[i], order);
796
797                         j = 1 << order;
798                         while (j) {
799                                 pages[i++] = NULL;
800                                 --j;
801                         }
802                 }
803                 return;
804         }
805
806         i = 0;
807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
808         if (huge) {
809                 unsigned max_size, n2free;
810
811                 spin_lock_irqsave(&huge->lock, irq_flags);
812                 while (i < npages) {
813                         struct page *p = pages[i];
814                         unsigned j;
815
816                         if (!p)
817                                 break;
818
819                         for (j = 0; j < HPAGE_PMD_NR; ++j)
820                                 if (p++ != pages[i + j])
821                                     break;
822
823                         if (j != HPAGE_PMD_NR)
824                                 break;
825
826                         list_add_tail(&pages[i]->lru, &huge->list);
827
828                         for (j = 0; j < HPAGE_PMD_NR; ++j)
829                                 pages[i++] = NULL;
830                         huge->npages++;
831                 }
832
833                 /* Check that we don't go over the pool limit */
834                 max_size = _manager->options.max_size;
835                 max_size /= HPAGE_PMD_NR;
836                 if (huge->npages > max_size)
837                         n2free = huge->npages - max_size;
838                 else
839                         n2free = 0;
840                 spin_unlock_irqrestore(&huge->lock, irq_flags);
841                 if (n2free)
842                         ttm_page_pool_free(huge, n2free, false);
843         }
844 #endif
845
846         spin_lock_irqsave(&pool->lock, irq_flags);
847         while (i < npages) {
848                 if (pages[i]) {
849                         if (page_count(pages[i]) != 1)
850                                 pr_err("Erroneous page count. Leaking pages.\n");
851                         list_add_tail(&pages[i]->lru, &pool->list);
852                         pages[i] = NULL;
853                         pool->npages++;
854                 }
855                 ++i;
856         }
857         /* Check that we don't go over the pool limit */
858         npages = 0;
859         if (pool->npages > _manager->options.max_size) {
860                 npages = pool->npages - _manager->options.max_size;
861                 /* free at least NUM_PAGES_TO_ALLOC number of pages
862                  * to reduce calls to set_memory_wb */
863                 if (npages < NUM_PAGES_TO_ALLOC)
864                         npages = NUM_PAGES_TO_ALLOC;
865         }
866         spin_unlock_irqrestore(&pool->lock, irq_flags);
867         if (npages)
868                 ttm_page_pool_free(pool, npages, false);
869 }
870
871 /*
872  * On success pages list will hold count number of correctly
873  * cached pages.
874  */
875 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
876                          enum ttm_caching_state cstate)
877 {
878         struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
880         struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
881 #endif
882         struct list_head plist;
883         struct page *p = NULL;
884         unsigned count, first;
885         int r;
886
887         /* No pool for cached pages */
888         if (pool == NULL) {
889                 gfp_t gfp_flags = GFP_USER;
890                 unsigned i;
891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
892                 unsigned j;
893 #endif
894
895                 /* set zero flag for page allocation if required */
896                 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
897                         gfp_flags |= __GFP_ZERO;
898
899                 if (flags & TTM_PAGE_FLAG_NO_RETRY)
900                         gfp_flags |= __GFP_RETRY_MAYFAIL;
901
902                 if (flags & TTM_PAGE_FLAG_DMA32)
903                         gfp_flags |= GFP_DMA32;
904                 else
905                         gfp_flags |= GFP_HIGHUSER;
906
907                 i = 0;
908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
909                 if (!(gfp_flags & GFP_DMA32)) {
910                         while (npages >= HPAGE_PMD_NR) {
911                                 gfp_t huge_flags = gfp_flags;
912
913                                 huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
914                                         __GFP_KSWAPD_RECLAIM;
915                                 huge_flags &= ~__GFP_MOVABLE;
916                                 huge_flags &= ~__GFP_COMP;
917                                 p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
918                                 if (!p)
919                                         break;
920
921                                 for (j = 0; j < HPAGE_PMD_NR; ++j)
922                                         pages[i++] = p++;
923
924                                 npages -= HPAGE_PMD_NR;
925                         }
926                 }
927 #endif
928
929                 first = i;
930                 while (npages) {
931                         p = alloc_page(gfp_flags);
932                         if (!p) {
933                                 pr_debug("Unable to allocate page\n");
934                                 return -ENOMEM;
935                         }
936
937                         /* Swap the pages if we detect consecutive order */
938                         if (i > first && pages[i - 1] == p - 1)
939                                 swap(p, pages[i - 1]);
940
941                         pages[i++] = p;
942                         --npages;
943                 }
944                 return 0;
945         }
946
947         count = 0;
948
949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
950         if (huge && npages >= HPAGE_PMD_NR) {
951                 INIT_LIST_HEAD(&plist);
952                 ttm_page_pool_get_pages(huge, &plist, flags, cstate,
953                                         npages / HPAGE_PMD_NR,
954                                         HPAGE_PMD_ORDER);
955
956                 list_for_each_entry(p, &plist, lru) {
957                         unsigned j;
958
959                         for (j = 0; j < HPAGE_PMD_NR; ++j)
960                                 pages[count++] = &p[j];
961                 }
962         }
963 #endif
964
965         INIT_LIST_HEAD(&plist);
966         r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
967                                     npages - count, 0);
968
969         first = count;
970         list_for_each_entry(p, &plist, lru) {
971                 struct page *tmp = p;
972
973                 /* Swap the pages if we detect consecutive order */
974                 if (count > first && pages[count - 1] == tmp - 1)
975                         swap(tmp, pages[count - 1]);
976                 pages[count++] = tmp;
977         }
978
979         if (r) {
980                 /* If there is any pages in the list put them back to
981                  * the pool.
982                  */
983                 pr_debug("Failed to allocate extra pages for large request\n");
984                 ttm_put_pages(pages, count, flags, cstate);
985                 return r;
986         }
987
988         return 0;
989 }
990
991 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
992                 char *name, unsigned int order)
993 {
994         spin_lock_init(&pool->lock);
995         pool->fill_lock = false;
996         INIT_LIST_HEAD(&pool->list);
997         pool->npages = pool->nfrees = 0;
998         pool->gfp_flags = flags;
999         pool->name = name;
1000         pool->order = order;
1001 }
1002
1003 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1004 {
1005         int ret;
1006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1007         unsigned order = HPAGE_PMD_ORDER;
1008 #else
1009         unsigned order = 0;
1010 #endif
1011
1012         WARN_ON(_manager);
1013
1014         pr_info("Initializing pool allocator\n");
1015
1016         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1017         if (!_manager)
1018                 return -ENOMEM;
1019
1020         ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
1021
1022         ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
1023
1024         ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
1025                                   GFP_USER | GFP_DMA32, "wc dma", 0);
1026
1027         ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
1028                                   GFP_USER | GFP_DMA32, "uc dma", 0);
1029
1030         ttm_page_pool_init_locked(&_manager->wc_pool_huge,
1031                                   (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
1032                                    __GFP_KSWAPD_RECLAIM) &
1033                                   ~(__GFP_MOVABLE | __GFP_COMP),
1034                                   "wc huge", order);
1035
1036         ttm_page_pool_init_locked(&_manager->uc_pool_huge,
1037                                   (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
1038                                    __GFP_KSWAPD_RECLAIM) &
1039                                   ~(__GFP_MOVABLE | __GFP_COMP)
1040                                   , "uc huge", order);
1041
1042         _manager->options.max_size = max_pages;
1043         _manager->options.small = SMALL_ALLOCATION;
1044         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1045
1046         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1047                                    &glob->kobj, "pool");
1048         if (unlikely(ret != 0))
1049                 goto error;
1050
1051         ret = ttm_pool_mm_shrink_init(_manager);
1052         if (unlikely(ret != 0))
1053                 goto error;
1054         return 0;
1055
1056 error:
1057         kobject_put(&_manager->kobj);
1058         _manager = NULL;
1059         return ret;
1060 }
1061
1062 void ttm_page_alloc_fini(void)
1063 {
1064         int i;
1065
1066         pr_info("Finalizing pool allocator\n");
1067         ttm_pool_mm_shrink_fini(_manager);
1068
1069         /* OK to use static buffer since global mutex is no longer used. */
1070         for (i = 0; i < NUM_POOLS; ++i)
1071                 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1072
1073         kobject_put(&_manager->kobj);
1074         _manager = NULL;
1075 }
1076
1077 static void
1078 ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
1079 {
1080         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1081         unsigned i;
1082
1083         if (mem_count_update == 0)
1084                 goto put_pages;
1085
1086         for (i = 0; i < mem_count_update; ++i) {
1087                 if (!ttm->pages[i])
1088                         continue;
1089
1090                 ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
1091         }
1092
1093 put_pages:
1094         ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1095                       ttm->caching_state);
1096         ttm->state = tt_unpopulated;
1097 }
1098
1099 int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1100 {
1101         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1102         unsigned i;
1103         int ret;
1104
1105         if (ttm->state != tt_unpopulated)
1106                 return 0;
1107
1108         if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
1109                 return -ENOMEM;
1110
1111         ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1112                             ttm->caching_state);
1113         if (unlikely(ret != 0)) {
1114                 ttm_pool_unpopulate_helper(ttm, 0);
1115                 return ret;
1116         }
1117
1118         for (i = 0; i < ttm->num_pages; ++i) {
1119                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1120                                                 PAGE_SIZE, ctx);
1121                 if (unlikely(ret != 0)) {
1122                         ttm_pool_unpopulate_helper(ttm, i);
1123                         return -ENOMEM;
1124                 }
1125         }
1126
1127         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1128                 ret = ttm_tt_swapin(ttm);
1129                 if (unlikely(ret != 0)) {
1130                         ttm_pool_unpopulate(ttm);
1131                         return ret;
1132                 }
1133         }
1134
1135         ttm->state = tt_unbound;
1136         return 0;
1137 }
1138 EXPORT_SYMBOL(ttm_pool_populate);
1139
1140 void ttm_pool_unpopulate(struct ttm_tt *ttm)
1141 {
1142         ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
1143 }
1144 EXPORT_SYMBOL(ttm_pool_unpopulate);
1145
1146 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
1147                                         struct ttm_operation_ctx *ctx)
1148 {
1149         unsigned i, j;
1150         int r;
1151
1152         r = ttm_pool_populate(&tt->ttm, ctx);
1153         if (r)
1154                 return r;
1155
1156         for (i = 0; i < tt->ttm.num_pages; ++i) {
1157                 struct page *p = tt->ttm.pages[i];
1158                 size_t num_pages = 1;
1159
1160                 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1161                         if (++p != tt->ttm.pages[j])
1162                                 break;
1163
1164                         ++num_pages;
1165                 }
1166
1167                 tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1168                                                   0, num_pages * PAGE_SIZE,
1169                                                   DMA_BIDIRECTIONAL);
1170                 if (dma_mapping_error(dev, tt->dma_address[i])) {
1171                         while (i--) {
1172                                 dma_unmap_page(dev, tt->dma_address[i],
1173                                                PAGE_SIZE, DMA_BIDIRECTIONAL);
1174                                 tt->dma_address[i] = 0;
1175                         }
1176                         ttm_pool_unpopulate(&tt->ttm);
1177                         return -EFAULT;
1178                 }
1179
1180                 for (j = 1; j < num_pages; ++j) {
1181                         tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1182                         ++i;
1183                 }
1184         }
1185         return 0;
1186 }
1187 EXPORT_SYMBOL(ttm_populate_and_map_pages);
1188
1189 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1190 {
1191         unsigned i, j;
1192
1193         for (i = 0; i < tt->ttm.num_pages;) {
1194                 struct page *p = tt->ttm.pages[i];
1195                 size_t num_pages = 1;
1196
1197                 if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1198                         ++i;
1199                         continue;
1200                 }
1201
1202                 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1203                         if (++p != tt->ttm.pages[j])
1204                                 break;
1205
1206                         ++num_pages;
1207                 }
1208
1209                 dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1210                                DMA_BIDIRECTIONAL);
1211
1212                 i += num_pages;
1213         }
1214         ttm_pool_unpopulate(&tt->ttm);
1215 }
1216 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1217
1218 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1219 {
1220         struct ttm_page_pool *p;
1221         unsigned i;
1222         char *h[] = {"pool", "refills", "pages freed", "size"};
1223         if (!_manager) {
1224                 seq_printf(m, "No pool allocator running.\n");
1225                 return 0;
1226         }
1227         seq_printf(m, "%7s %12s %13s %8s\n",
1228                         h[0], h[1], h[2], h[3]);
1229         for (i = 0; i < NUM_POOLS; ++i) {
1230                 p = &_manager->pools[i];
1231
1232                 seq_printf(m, "%7s %12ld %13ld %8d\n",
1233                                 p->name, p->nrefills,
1234                                 p->nfrees, p->npages);
1235         }
1236         return 0;
1237 }
1238 EXPORT_SYMBOL(ttm_page_alloc_debugfs);