Merge tag 'acpi-5.12-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32                                             struct drm_crtc_state *state);
33
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36         stats->frames = 0;
37         stats->vblank = 0;
38         stats->underflow = 0;
39         stats->overflow = 0;
40 }
41
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45         u32 value;
46
47         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48         value = tegra_dc_readl(dc, offset);
49         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50
51         return value;
52 }
53
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55                                               unsigned int offset)
56 {
57         if (offset >= 0x500 && offset <= 0x638) {
58                 offset = 0x000 + (offset - 0x500);
59                 return plane->offset + offset;
60         }
61
62         if (offset >= 0x700 && offset <= 0x719) {
63                 offset = 0x180 + (offset - 0x700);
64                 return plane->offset + offset;
65         }
66
67         if (offset >= 0x800 && offset <= 0x839) {
68                 offset = 0x1c0 + (offset - 0x800);
69                 return plane->offset + offset;
70         }
71
72         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73
74         return plane->offset + offset;
75 }
76
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78                                     unsigned int offset)
79 {
80         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84                                       unsigned int offset)
85 {
86         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91         struct device_node *np = dc->dev->of_node;
92         struct of_phandle_iterator it;
93         int err;
94
95         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96                 if (it.node == dev->of_node)
97                         return true;
98
99         return false;
100 }
101
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121                                   unsigned int bpp)
122 {
123         fixed20_12 outf = dfixed_init(out);
124         fixed20_12 inf = dfixed_init(in);
125         u32 dda_inc;
126         int max;
127
128         if (v)
129                 max = 15;
130         else {
131                 switch (bpp) {
132                 case 2:
133                         max = 8;
134                         break;
135
136                 default:
137                         WARN_ON_ONCE(1);
138                         fallthrough;
139                 case 4:
140                         max = 4;
141                         break;
142                 }
143         }
144
145         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146         inf.full -= dfixed_const(1);
147
148         dda_inc = dfixed_div(inf, outf);
149         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150
151         return dda_inc;
152 }
153
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156         fixed20_12 inf = dfixed_init(in);
157         return dfixed_frac(inf);
158 }
159
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162         u32 background[3] = {
163                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166         };
167         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168                          BLEND_COLOR_KEY_NONE;
169         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170         struct tegra_plane_state *state;
171         u32 blending[2];
172         unsigned int i;
173
174         /* disable blending for non-overlapping case */
175         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177
178         state = to_tegra_plane_state(plane->base.state);
179
180         if (state->opaque) {
181                 /*
182                  * Since custom fix-weight blending isn't utilized and weight
183                  * of top window is set to max, we can enforce dependent
184                  * blending which in this case results in transparent bottom
185                  * window if top window is opaque and if top window enables
186                  * alpha blending, then bottom window is getting alpha value
187                  * of 1 minus the sum of alpha components of the overlapping
188                  * plane.
189                  */
190                 background[0] |= BLEND_CONTROL_DEPENDENT;
191                 background[1] |= BLEND_CONTROL_DEPENDENT;
192
193                 /*
194                  * The region where three windows overlap is the intersection
195                  * of the two regions where two windows overlap. It contributes
196                  * to the area if all of the windows on top of it have an alpha
197                  * component.
198                  */
199                 switch (state->base.normalized_zpos) {
200                 case 0:
201                         if (state->blending[0].alpha &&
202                             state->blending[1].alpha)
203                                 background[2] |= BLEND_CONTROL_DEPENDENT;
204                         break;
205
206                 case 1:
207                         background[2] |= BLEND_CONTROL_DEPENDENT;
208                         break;
209                 }
210         } else {
211                 /*
212                  * Enable alpha blending if pixel format has an alpha
213                  * component.
214                  */
215                 foreground |= BLEND_CONTROL_ALPHA;
216
217                 /*
218                  * If any of the windows on top of this window is opaque, it
219                  * will completely conceal this window within that area. If
220                  * top window has an alpha component, it is blended over the
221                  * bottom window.
222                  */
223                 for (i = 0; i < 2; i++) {
224                         if (state->blending[i].alpha &&
225                             state->blending[i].top)
226                                 background[i] |= BLEND_CONTROL_DEPENDENT;
227                 }
228
229                 switch (state->base.normalized_zpos) {
230                 case 0:
231                         if (state->blending[0].alpha &&
232                             state->blending[1].alpha)
233                                 background[2] |= BLEND_CONTROL_DEPENDENT;
234                         break;
235
236                 case 1:
237                         /*
238                          * When both middle and topmost windows have an alpha,
239                          * these windows a mixed together and then the result
240                          * is blended over the bottom window.
241                          */
242                         if (state->blending[0].alpha &&
243                             state->blending[0].top)
244                                 background[2] |= BLEND_CONTROL_ALPHA;
245
246                         if (state->blending[1].alpha &&
247                             state->blending[1].top)
248                                 background[2] |= BLEND_CONTROL_ALPHA;
249                         break;
250                 }
251         }
252
253         switch (state->base.normalized_zpos) {
254         case 0:
255                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258                 break;
259
260         case 1:
261                 /*
262                  * If window B / C is topmost, then X / Y registers are
263                  * matching the order of blending[...] state indices,
264                  * otherwise a swap is required.
265                  */
266                 if (!state->blending[0].top && state->blending[1].top) {
267                         blending[0] = foreground;
268                         blending[1] = background[1];
269                 } else {
270                         blending[0] = background[0];
271                         blending[1] = foreground;
272                 }
273
274                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277                 break;
278
279         case 2:
280                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283                 break;
284         }
285 }
286
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288                                        const struct tegra_dc_window *window)
289 {
290         u32 value;
291
292         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296
297         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301
302         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308                                      const struct tegra_dc_window *window)
309 {
310         struct tegra_dc *dc = plane->dc;
311
312         if (window->src.w == window->dst.w)
313                 return false;
314
315         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316                 return false;
317
318         return true;
319 }
320
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323                                    const struct tegra_dc_window *window)
324 {
325         struct tegra_dc *dc = plane->dc;
326
327         if (window->src.h == window->dst.h)
328                 return false;
329
330         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331                 return false;
332
333         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334                 return false;
335
336         return true;
337 }
338
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340                                   const struct tegra_dc_window *window)
341 {
342         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343         struct tegra_dc *dc = plane->dc;
344         bool yuv, planar;
345         u32 value;
346
347         /*
348          * For YUV planar modes, the number of bytes per pixel takes into
349          * account only the luma component and therefore is 1.
350          */
351         yuv = tegra_plane_format_is_yuv(window->format, &planar);
352         if (!yuv)
353                 bpp = window->bits_per_pixel / 8;
354         else
355                 bpp = planar ? 1 : 2;
356
357         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359
360         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361         tegra_plane_writel(plane, value, DC_WIN_POSITION);
362
363         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364         tegra_plane_writel(plane, value, DC_WIN_SIZE);
365
366         h_offset = window->src.x * bpp;
367         v_offset = window->src.y;
368         h_size = window->src.w * bpp;
369         v_size = window->src.h;
370
371         if (window->reflect_x)
372                 h_offset += (window->src.w - 1) * bpp;
373
374         if (window->reflect_y)
375                 v_offset += window->src.h - 1;
376
377         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379
380         /*
381          * For DDA computations the number of bytes per pixel for YUV planar
382          * modes needs to take into account all Y, U and V components.
383          */
384         if (yuv && planar)
385                 bpp = 2;
386
387         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389
390         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392
393         h_dda = compute_initial_dda(window->src.x);
394         v_dda = compute_initial_dda(window->src.y);
395
396         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398
399         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401
402         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403
404         if (yuv && planar) {
405                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406                 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407                 value = window->stride[1] << 16 | window->stride[0];
408                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409         } else {
410                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411         }
412
413         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415
416         if (dc->soc->supports_block_linear) {
417                 unsigned long height = window->tiling.value;
418
419                 switch (window->tiling.mode) {
420                 case TEGRA_BO_TILING_MODE_PITCH:
421                         value = DC_WINBUF_SURFACE_KIND_PITCH;
422                         break;
423
424                 case TEGRA_BO_TILING_MODE_TILED:
425                         value = DC_WINBUF_SURFACE_KIND_TILED;
426                         break;
427
428                 case TEGRA_BO_TILING_MODE_BLOCK:
429                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430                                 DC_WINBUF_SURFACE_KIND_BLOCK;
431                         break;
432                 }
433
434                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435         } else {
436                 switch (window->tiling.mode) {
437                 case TEGRA_BO_TILING_MODE_PITCH:
438                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440                         break;
441
442                 case TEGRA_BO_TILING_MODE_TILED:
443                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
445                         break;
446
447                 case TEGRA_BO_TILING_MODE_BLOCK:
448                         /*
449                          * No need to handle this here because ->atomic_check
450                          * will already have filtered it out.
451                          */
452                         break;
453                 }
454
455                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456         }
457
458         value = WIN_ENABLE;
459
460         if (yuv) {
461                 /* setup default colorspace conversion coefficients */
462                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470
471                 value |= CSC_ENABLE;
472         } else if (window->bits_per_pixel < 24) {
473                 value |= COLOR_EXPAND;
474         }
475
476         if (window->reflect_x)
477                 value |= H_DIRECTION;
478
479         if (window->reflect_y)
480                 value |= V_DIRECTION;
481
482         if (tegra_plane_use_horizontal_filtering(plane, window)) {
483                 /*
484                  * Enable horizontal 6-tap filter and set filtering
485                  * coefficients to the default values defined in TRM.
486                  */
487                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503
504                 value |= H_FILTER;
505         }
506
507         if (tegra_plane_use_vertical_filtering(plane, window)) {
508                 unsigned int i, k;
509
510                 /*
511                  * Enable vertical 2-tap filter and set filtering
512                  * coefficients to the default values defined in TRM.
513                  */
514                 for (i = 0, k = 128; i < 16; i++, k -= 8)
515                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516
517                 value |= V_FILTER;
518         }
519
520         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521
522         if (dc->soc->has_legacy_blending)
523                 tegra_plane_setup_blending_legacy(plane);
524         else
525                 tegra_plane_setup_blending(plane, window);
526 }
527
528 static const u32 tegra20_primary_formats[] = {
529         DRM_FORMAT_ARGB4444,
530         DRM_FORMAT_ARGB1555,
531         DRM_FORMAT_RGB565,
532         DRM_FORMAT_RGBA5551,
533         DRM_FORMAT_ABGR8888,
534         DRM_FORMAT_ARGB8888,
535         /* non-native formats */
536         DRM_FORMAT_XRGB1555,
537         DRM_FORMAT_RGBX5551,
538         DRM_FORMAT_XBGR8888,
539         DRM_FORMAT_XRGB8888,
540 };
541
542 static const u64 tegra20_modifiers[] = {
543         DRM_FORMAT_MOD_LINEAR,
544         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545         DRM_FORMAT_MOD_INVALID
546 };
547
548 static const u32 tegra114_primary_formats[] = {
549         DRM_FORMAT_ARGB4444,
550         DRM_FORMAT_ARGB1555,
551         DRM_FORMAT_RGB565,
552         DRM_FORMAT_RGBA5551,
553         DRM_FORMAT_ABGR8888,
554         DRM_FORMAT_ARGB8888,
555         /* new on Tegra114 */
556         DRM_FORMAT_ABGR4444,
557         DRM_FORMAT_ABGR1555,
558         DRM_FORMAT_BGRA5551,
559         DRM_FORMAT_XRGB1555,
560         DRM_FORMAT_RGBX5551,
561         DRM_FORMAT_XBGR1555,
562         DRM_FORMAT_BGRX5551,
563         DRM_FORMAT_BGR565,
564         DRM_FORMAT_BGRA8888,
565         DRM_FORMAT_RGBA8888,
566         DRM_FORMAT_XRGB8888,
567         DRM_FORMAT_XBGR8888,
568 };
569
570 static const u32 tegra124_primary_formats[] = {
571         DRM_FORMAT_ARGB4444,
572         DRM_FORMAT_ARGB1555,
573         DRM_FORMAT_RGB565,
574         DRM_FORMAT_RGBA5551,
575         DRM_FORMAT_ABGR8888,
576         DRM_FORMAT_ARGB8888,
577         /* new on Tegra114 */
578         DRM_FORMAT_ABGR4444,
579         DRM_FORMAT_ABGR1555,
580         DRM_FORMAT_BGRA5551,
581         DRM_FORMAT_XRGB1555,
582         DRM_FORMAT_RGBX5551,
583         DRM_FORMAT_XBGR1555,
584         DRM_FORMAT_BGRX5551,
585         DRM_FORMAT_BGR565,
586         DRM_FORMAT_BGRA8888,
587         DRM_FORMAT_RGBA8888,
588         DRM_FORMAT_XRGB8888,
589         DRM_FORMAT_XBGR8888,
590         /* new on Tegra124 */
591         DRM_FORMAT_RGBX8888,
592         DRM_FORMAT_BGRX8888,
593 };
594
595 static const u64 tegra124_modifiers[] = {
596         DRM_FORMAT_MOD_LINEAR,
597         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603         DRM_FORMAT_MOD_INVALID
604 };
605
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607                                     struct drm_plane_state *state)
608 {
609         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
610         unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
611                                           DRM_MODE_REFLECT_X |
612                                           DRM_MODE_REFLECT_Y;
613         unsigned int rotation = state->rotation;
614         struct tegra_bo_tiling *tiling = &plane_state->tiling;
615         struct tegra_plane *tegra = to_tegra_plane(plane);
616         struct tegra_dc *dc = to_tegra_dc(state->crtc);
617         int err;
618
619         /* no need for further checks if the plane is being disabled */
620         if (!state->crtc)
621                 return 0;
622
623         err = tegra_plane_format(state->fb->format->format,
624                                  &plane_state->format,
625                                  &plane_state->swap);
626         if (err < 0)
627                 return err;
628
629         /*
630          * Tegra20 and Tegra30 are special cases here because they support
631          * only variants of specific formats with an alpha component, but not
632          * the corresponding opaque formats. However, the opaque formats can
633          * be emulated by disabling alpha blending for the plane.
634          */
635         if (dc->soc->has_legacy_blending) {
636                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
637                 if (err < 0)
638                         return err;
639         }
640
641         err = tegra_fb_get_tiling(state->fb, tiling);
642         if (err < 0)
643                 return err;
644
645         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
646             !dc->soc->supports_block_linear) {
647                 DRM_ERROR("hardware doesn't support block linear mode\n");
648                 return -EINVAL;
649         }
650
651         /*
652          * Older userspace used custom BO flag in order to specify the Y
653          * reflection, while modern userspace uses the generic DRM rotation
654          * property in order to achieve the same result.  The legacy BO flag
655          * duplicates the DRM rotation property when both are set.
656          */
657         if (tegra_fb_is_bottom_up(state->fb))
658                 rotation |= DRM_MODE_REFLECT_Y;
659
660         rotation = drm_rotation_simplify(rotation, supported_rotation);
661
662         if (rotation & DRM_MODE_REFLECT_X)
663                 plane_state->reflect_x = true;
664         else
665                 plane_state->reflect_x = false;
666
667         if (rotation & DRM_MODE_REFLECT_Y)
668                 plane_state->reflect_y = true;
669         else
670                 plane_state->reflect_y = false;
671
672         /*
673          * Tegra doesn't support different strides for U and V planes so we
674          * error out if the user tries to display a framebuffer with such a
675          * configuration.
676          */
677         if (state->fb->format->num_planes > 2) {
678                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
679                         DRM_ERROR("unsupported UV-plane configuration\n");
680                         return -EINVAL;
681                 }
682         }
683
684         err = tegra_plane_state_add(tegra, state);
685         if (err < 0)
686                 return err;
687
688         return 0;
689 }
690
691 static void tegra_plane_atomic_disable(struct drm_plane *plane,
692                                        struct drm_plane_state *old_state)
693 {
694         struct tegra_plane *p = to_tegra_plane(plane);
695         u32 value;
696
697         /* rien ne va plus */
698         if (!old_state || !old_state->crtc)
699                 return;
700
701         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
702         value &= ~WIN_ENABLE;
703         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
704 }
705
706 static void tegra_plane_atomic_update(struct drm_plane *plane,
707                                       struct drm_plane_state *old_state)
708 {
709         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
710         struct drm_framebuffer *fb = plane->state->fb;
711         struct tegra_plane *p = to_tegra_plane(plane);
712         struct tegra_dc_window window;
713         unsigned int i;
714
715         /* rien ne va plus */
716         if (!plane->state->crtc || !plane->state->fb)
717                 return;
718
719         if (!plane->state->visible)
720                 return tegra_plane_atomic_disable(plane, old_state);
721
722         memset(&window, 0, sizeof(window));
723         window.src.x = plane->state->src.x1 >> 16;
724         window.src.y = plane->state->src.y1 >> 16;
725         window.src.w = drm_rect_width(&plane->state->src) >> 16;
726         window.src.h = drm_rect_height(&plane->state->src) >> 16;
727         window.dst.x = plane->state->dst.x1;
728         window.dst.y = plane->state->dst.y1;
729         window.dst.w = drm_rect_width(&plane->state->dst);
730         window.dst.h = drm_rect_height(&plane->state->dst);
731         window.bits_per_pixel = fb->format->cpp[0] * 8;
732         window.reflect_x = state->reflect_x;
733         window.reflect_y = state->reflect_y;
734
735         /* copy from state */
736         window.zpos = plane->state->normalized_zpos;
737         window.tiling = state->tiling;
738         window.format = state->format;
739         window.swap = state->swap;
740
741         for (i = 0; i < fb->format->num_planes; i++) {
742                 window.base[i] = state->iova[i] + fb->offsets[i];
743
744                 /*
745                  * Tegra uses a shared stride for UV planes. Framebuffers are
746                  * already checked for this in the tegra_plane_atomic_check()
747                  * function, so it's safe to ignore the V-plane pitch here.
748                  */
749                 if (i < 2)
750                         window.stride[i] = fb->pitches[i];
751         }
752
753         tegra_dc_setup_window(p, &window);
754 }
755
756 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
757         .prepare_fb = tegra_plane_prepare_fb,
758         .cleanup_fb = tegra_plane_cleanup_fb,
759         .atomic_check = tegra_plane_atomic_check,
760         .atomic_disable = tegra_plane_atomic_disable,
761         .atomic_update = tegra_plane_atomic_update,
762 };
763
764 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
765 {
766         /*
767          * Ideally this would use drm_crtc_mask(), but that would require the
768          * CRTC to already be in the mode_config's list of CRTCs. However, it
769          * will only be added to that list in the drm_crtc_init_with_planes()
770          * (in tegra_dc_init()), which in turn requires registration of these
771          * planes. So we have ourselves a nice little chicken and egg problem
772          * here.
773          *
774          * We work around this by manually creating the mask from the number
775          * of CRTCs that have been registered, and should therefore always be
776          * the same as drm_crtc_index() after registration.
777          */
778         return 1 << drm->mode_config.num_crtc;
779 }
780
781 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
782                                                     struct tegra_dc *dc)
783 {
784         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
785         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
786         struct tegra_plane *plane;
787         unsigned int num_formats;
788         const u64 *modifiers;
789         const u32 *formats;
790         int err;
791
792         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
793         if (!plane)
794                 return ERR_PTR(-ENOMEM);
795
796         /* Always use window A as primary window */
797         plane->offset = 0xa00;
798         plane->index = 0;
799         plane->dc = dc;
800
801         num_formats = dc->soc->num_primary_formats;
802         formats = dc->soc->primary_formats;
803         modifiers = dc->soc->modifiers;
804
805         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
806                                        &tegra_plane_funcs, formats,
807                                        num_formats, modifiers, type, NULL);
808         if (err < 0) {
809                 kfree(plane);
810                 return ERR_PTR(err);
811         }
812
813         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
814         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
815
816         err = drm_plane_create_rotation_property(&plane->base,
817                                                  DRM_MODE_ROTATE_0,
818                                                  DRM_MODE_ROTATE_0 |
819                                                  DRM_MODE_ROTATE_180 |
820                                                  DRM_MODE_REFLECT_X |
821                                                  DRM_MODE_REFLECT_Y);
822         if (err < 0)
823                 dev_err(dc->dev, "failed to create rotation property: %d\n",
824                         err);
825
826         return &plane->base;
827 }
828
829 static const u32 tegra_cursor_plane_formats[] = {
830         DRM_FORMAT_RGBA8888,
831 };
832
833 static int tegra_cursor_atomic_check(struct drm_plane *plane,
834                                      struct drm_plane_state *state)
835 {
836         struct tegra_plane *tegra = to_tegra_plane(plane);
837         int err;
838
839         /* no need for further checks if the plane is being disabled */
840         if (!state->crtc)
841                 return 0;
842
843         /* scaling not supported for cursor */
844         if ((state->src_w >> 16 != state->crtc_w) ||
845             (state->src_h >> 16 != state->crtc_h))
846                 return -EINVAL;
847
848         /* only square cursors supported */
849         if (state->src_w != state->src_h)
850                 return -EINVAL;
851
852         if (state->crtc_w != 32 && state->crtc_w != 64 &&
853             state->crtc_w != 128 && state->crtc_w != 256)
854                 return -EINVAL;
855
856         err = tegra_plane_state_add(tegra, state);
857         if (err < 0)
858                 return err;
859
860         return 0;
861 }
862
863 static void tegra_cursor_atomic_update(struct drm_plane *plane,
864                                        struct drm_plane_state *old_state)
865 {
866         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
867         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
868         u32 value = CURSOR_CLIP_DISPLAY;
869
870         /* rien ne va plus */
871         if (!plane->state->crtc || !plane->state->fb)
872                 return;
873
874         switch (plane->state->crtc_w) {
875         case 32:
876                 value |= CURSOR_SIZE_32x32;
877                 break;
878
879         case 64:
880                 value |= CURSOR_SIZE_64x64;
881                 break;
882
883         case 128:
884                 value |= CURSOR_SIZE_128x128;
885                 break;
886
887         case 256:
888                 value |= CURSOR_SIZE_256x256;
889                 break;
890
891         default:
892                 WARN(1, "cursor size %ux%u not supported\n",
893                      plane->state->crtc_w, plane->state->crtc_h);
894                 return;
895         }
896
897         value |= (state->iova[0] >> 10) & 0x3fffff;
898         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
899
900 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
901         value = (state->iova[0] >> 32) & 0x3;
902         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
903 #endif
904
905         /* enable cursor and set blend mode */
906         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907         value |= CURSOR_ENABLE;
908         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909
910         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
911         value &= ~CURSOR_DST_BLEND_MASK;
912         value &= ~CURSOR_SRC_BLEND_MASK;
913         value |= CURSOR_MODE_NORMAL;
914         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
915         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
916         value |= CURSOR_ALPHA;
917         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
918
919         /* position the cursor */
920         value = (plane->state->crtc_y & 0x3fff) << 16 |
921                 (plane->state->crtc_x & 0x3fff);
922         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
923 }
924
925 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
926                                         struct drm_plane_state *old_state)
927 {
928         struct tegra_dc *dc;
929         u32 value;
930
931         /* rien ne va plus */
932         if (!old_state || !old_state->crtc)
933                 return;
934
935         dc = to_tegra_dc(old_state->crtc);
936
937         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
938         value &= ~CURSOR_ENABLE;
939         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
940 }
941
942 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
943         .prepare_fb = tegra_plane_prepare_fb,
944         .cleanup_fb = tegra_plane_cleanup_fb,
945         .atomic_check = tegra_cursor_atomic_check,
946         .atomic_update = tegra_cursor_atomic_update,
947         .atomic_disable = tegra_cursor_atomic_disable,
948 };
949
950 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
951                                                       struct tegra_dc *dc)
952 {
953         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
954         struct tegra_plane *plane;
955         unsigned int num_formats;
956         const u32 *formats;
957         int err;
958
959         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
960         if (!plane)
961                 return ERR_PTR(-ENOMEM);
962
963         /*
964          * This index is kind of fake. The cursor isn't a regular plane, but
965          * its update and activation request bits in DC_CMD_STATE_CONTROL do
966          * use the same programming. Setting this fake index here allows the
967          * code in tegra_add_plane_state() to do the right thing without the
968          * need to special-casing the cursor plane.
969          */
970         plane->index = 6;
971         plane->dc = dc;
972
973         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
974         formats = tegra_cursor_plane_formats;
975
976         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
977                                        &tegra_plane_funcs, formats,
978                                        num_formats, NULL,
979                                        DRM_PLANE_TYPE_CURSOR, NULL);
980         if (err < 0) {
981                 kfree(plane);
982                 return ERR_PTR(err);
983         }
984
985         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
986         drm_plane_create_zpos_immutable_property(&plane->base, 255);
987
988         return &plane->base;
989 }
990
991 static const u32 tegra20_overlay_formats[] = {
992         DRM_FORMAT_ARGB4444,
993         DRM_FORMAT_ARGB1555,
994         DRM_FORMAT_RGB565,
995         DRM_FORMAT_RGBA5551,
996         DRM_FORMAT_ABGR8888,
997         DRM_FORMAT_ARGB8888,
998         /* non-native formats */
999         DRM_FORMAT_XRGB1555,
1000         DRM_FORMAT_RGBX5551,
1001         DRM_FORMAT_XBGR8888,
1002         DRM_FORMAT_XRGB8888,
1003         /* planar formats */
1004         DRM_FORMAT_UYVY,
1005         DRM_FORMAT_YUYV,
1006         DRM_FORMAT_YUV420,
1007         DRM_FORMAT_YUV422,
1008 };
1009
1010 static const u32 tegra114_overlay_formats[] = {
1011         DRM_FORMAT_ARGB4444,
1012         DRM_FORMAT_ARGB1555,
1013         DRM_FORMAT_RGB565,
1014         DRM_FORMAT_RGBA5551,
1015         DRM_FORMAT_ABGR8888,
1016         DRM_FORMAT_ARGB8888,
1017         /* new on Tegra114 */
1018         DRM_FORMAT_ABGR4444,
1019         DRM_FORMAT_ABGR1555,
1020         DRM_FORMAT_BGRA5551,
1021         DRM_FORMAT_XRGB1555,
1022         DRM_FORMAT_RGBX5551,
1023         DRM_FORMAT_XBGR1555,
1024         DRM_FORMAT_BGRX5551,
1025         DRM_FORMAT_BGR565,
1026         DRM_FORMAT_BGRA8888,
1027         DRM_FORMAT_RGBA8888,
1028         DRM_FORMAT_XRGB8888,
1029         DRM_FORMAT_XBGR8888,
1030         /* planar formats */
1031         DRM_FORMAT_UYVY,
1032         DRM_FORMAT_YUYV,
1033         DRM_FORMAT_YUV420,
1034         DRM_FORMAT_YUV422,
1035 };
1036
1037 static const u32 tegra124_overlay_formats[] = {
1038         DRM_FORMAT_ARGB4444,
1039         DRM_FORMAT_ARGB1555,
1040         DRM_FORMAT_RGB565,
1041         DRM_FORMAT_RGBA5551,
1042         DRM_FORMAT_ABGR8888,
1043         DRM_FORMAT_ARGB8888,
1044         /* new on Tegra114 */
1045         DRM_FORMAT_ABGR4444,
1046         DRM_FORMAT_ABGR1555,
1047         DRM_FORMAT_BGRA5551,
1048         DRM_FORMAT_XRGB1555,
1049         DRM_FORMAT_RGBX5551,
1050         DRM_FORMAT_XBGR1555,
1051         DRM_FORMAT_BGRX5551,
1052         DRM_FORMAT_BGR565,
1053         DRM_FORMAT_BGRA8888,
1054         DRM_FORMAT_RGBA8888,
1055         DRM_FORMAT_XRGB8888,
1056         DRM_FORMAT_XBGR8888,
1057         /* new on Tegra124 */
1058         DRM_FORMAT_RGBX8888,
1059         DRM_FORMAT_BGRX8888,
1060         /* planar formats */
1061         DRM_FORMAT_UYVY,
1062         DRM_FORMAT_YUYV,
1063         DRM_FORMAT_YUV420,
1064         DRM_FORMAT_YUV422,
1065 };
1066
1067 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1068                                                        struct tegra_dc *dc,
1069                                                        unsigned int index,
1070                                                        bool cursor)
1071 {
1072         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1073         struct tegra_plane *plane;
1074         unsigned int num_formats;
1075         enum drm_plane_type type;
1076         const u32 *formats;
1077         int err;
1078
1079         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1080         if (!plane)
1081                 return ERR_PTR(-ENOMEM);
1082
1083         plane->offset = 0xa00 + 0x200 * index;
1084         plane->index = index;
1085         plane->dc = dc;
1086
1087         num_formats = dc->soc->num_overlay_formats;
1088         formats = dc->soc->overlay_formats;
1089
1090         if (!cursor)
1091                 type = DRM_PLANE_TYPE_OVERLAY;
1092         else
1093                 type = DRM_PLANE_TYPE_CURSOR;
1094
1095         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1096                                        &tegra_plane_funcs, formats,
1097                                        num_formats, NULL, type, NULL);
1098         if (err < 0) {
1099                 kfree(plane);
1100                 return ERR_PTR(err);
1101         }
1102
1103         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1104         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1105
1106         err = drm_plane_create_rotation_property(&plane->base,
1107                                                  DRM_MODE_ROTATE_0,
1108                                                  DRM_MODE_ROTATE_0 |
1109                                                  DRM_MODE_ROTATE_180 |
1110                                                  DRM_MODE_REFLECT_X |
1111                                                  DRM_MODE_REFLECT_Y);
1112         if (err < 0)
1113                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1114                         err);
1115
1116         return &plane->base;
1117 }
1118
1119 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1120                                                     struct tegra_dc *dc)
1121 {
1122         struct drm_plane *plane, *primary = NULL;
1123         unsigned int i, j;
1124
1125         for (i = 0; i < dc->soc->num_wgrps; i++) {
1126                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1127
1128                 if (wgrp->dc == dc->pipe) {
1129                         for (j = 0; j < wgrp->num_windows; j++) {
1130                                 unsigned int index = wgrp->windows[j];
1131
1132                                 plane = tegra_shared_plane_create(drm, dc,
1133                                                                   wgrp->index,
1134                                                                   index);
1135                                 if (IS_ERR(plane))
1136                                         return plane;
1137
1138                                 /*
1139                                  * Choose the first shared plane owned by this
1140                                  * head as the primary plane.
1141                                  */
1142                                 if (!primary) {
1143                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1144                                         primary = plane;
1145                                 }
1146                         }
1147                 }
1148         }
1149
1150         return primary;
1151 }
1152
1153 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1154                                              struct tegra_dc *dc)
1155 {
1156         struct drm_plane *planes[2], *primary;
1157         unsigned int planes_num;
1158         unsigned int i;
1159         int err;
1160
1161         primary = tegra_primary_plane_create(drm, dc);
1162         if (IS_ERR(primary))
1163                 return primary;
1164
1165         if (dc->soc->supports_cursor)
1166                 planes_num = 2;
1167         else
1168                 planes_num = 1;
1169
1170         for (i = 0; i < planes_num; i++) {
1171                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1172                                                           false);
1173                 if (IS_ERR(planes[i])) {
1174                         err = PTR_ERR(planes[i]);
1175
1176                         while (i--)
1177                                 tegra_plane_funcs.destroy(planes[i]);
1178
1179                         tegra_plane_funcs.destroy(primary);
1180                         return ERR_PTR(err);
1181                 }
1182         }
1183
1184         return primary;
1185 }
1186
1187 static void tegra_dc_destroy(struct drm_crtc *crtc)
1188 {
1189         drm_crtc_cleanup(crtc);
1190 }
1191
1192 static void tegra_crtc_reset(struct drm_crtc *crtc)
1193 {
1194         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1195
1196         if (crtc->state)
1197                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1198
1199         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1200 }
1201
1202 static struct drm_crtc_state *
1203 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1204 {
1205         struct tegra_dc_state *state = to_dc_state(crtc->state);
1206         struct tegra_dc_state *copy;
1207
1208         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1209         if (!copy)
1210                 return NULL;
1211
1212         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1213         copy->clk = state->clk;
1214         copy->pclk = state->pclk;
1215         copy->div = state->div;
1216         copy->planes = state->planes;
1217
1218         return &copy->base;
1219 }
1220
1221 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1222                                             struct drm_crtc_state *state)
1223 {
1224         __drm_atomic_helper_crtc_destroy_state(state);
1225         kfree(state);
1226 }
1227
1228 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1229
1230 static const struct debugfs_reg32 tegra_dc_regs[] = {
1231         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1232         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1233         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1234         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1235         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1236         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1237         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1238         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1239         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1240         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1241         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1242         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1243         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1244         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1245         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1246         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1247         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1248         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1249         DEBUGFS_REG32(DC_CMD_INT_MASK),
1250         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1251         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1252         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1253         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1254         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1255         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1256         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1257         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1258         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1259         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1260         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1261         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1262         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1263         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1264         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1265         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1266         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1267         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1268         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1269         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1270         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1271         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1272         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1273         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1274         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1275         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1276         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1277         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1278         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1279         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1280         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1281         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1282         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1283         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1284         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1285         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1286         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1287         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1288         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1289         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1290         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1291         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1292         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1293         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1294         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1295         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1296         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1297         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1298         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1299         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1300         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1301         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1302         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1303         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1304         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1305         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1306         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1307         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1308         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1309         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1310         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1311         DEBUGFS_REG32(DC_DISP_ACTIVE),
1312         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1313         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1314         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1315         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1316         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1317         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1318         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1319         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1320         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1321         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1322         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1323         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1324         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1325         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1326         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1327         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1328         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1329         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1330         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1331         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1332         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1333         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1334         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1335         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1336         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1337         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1338         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1339         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1340         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1341         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1342         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1343         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1344         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1345         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1346         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1347         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1348         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1349         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1350         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1351         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1352         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1353         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1354         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1355         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1356         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1357         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1358         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1359         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1360         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1361         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1362         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1363         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1364         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1365         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1366         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1367         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1368         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1369         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1370         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1371         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1372         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1373         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1374         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1375         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1376         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1377         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1378         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1379         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1380         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1381         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1382         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1383         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1384         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1385         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1386         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1387         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1388         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1389         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1390         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1391         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1392         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1393         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1394         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1395         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1396         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1397         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1398         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1399         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1400         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1401         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1402         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1403         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1404         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1405         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1406         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1407         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1408         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1409         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1410         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1411         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1412         DEBUGFS_REG32(DC_WIN_POSITION),
1413         DEBUGFS_REG32(DC_WIN_SIZE),
1414         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1415         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1416         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1417         DEBUGFS_REG32(DC_WIN_DDA_INC),
1418         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1419         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1420         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1421         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1422         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1423         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1424         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1425         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1426         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1427         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1428         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1429         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1430         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1431         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1432         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1433         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1434         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1435         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1436         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1437         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1438         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1439         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1440         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1441         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1442         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1443 };
1444
1445 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1446 {
1447         struct drm_info_node *node = s->private;
1448         struct tegra_dc *dc = node->info_ent->data;
1449         unsigned int i;
1450         int err = 0;
1451
1452         drm_modeset_lock(&dc->base.mutex, NULL);
1453
1454         if (!dc->base.state->active) {
1455                 err = -EBUSY;
1456                 goto unlock;
1457         }
1458
1459         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1460                 unsigned int offset = tegra_dc_regs[i].offset;
1461
1462                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1463                            offset, tegra_dc_readl(dc, offset));
1464         }
1465
1466 unlock:
1467         drm_modeset_unlock(&dc->base.mutex);
1468         return err;
1469 }
1470
1471 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1472 {
1473         struct drm_info_node *node = s->private;
1474         struct tegra_dc *dc = node->info_ent->data;
1475         int err = 0;
1476         u32 value;
1477
1478         drm_modeset_lock(&dc->base.mutex, NULL);
1479
1480         if (!dc->base.state->active) {
1481                 err = -EBUSY;
1482                 goto unlock;
1483         }
1484
1485         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1486         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1487         tegra_dc_commit(dc);
1488
1489         drm_crtc_wait_one_vblank(&dc->base);
1490         drm_crtc_wait_one_vblank(&dc->base);
1491
1492         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1493         seq_printf(s, "%08x\n", value);
1494
1495         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1496
1497 unlock:
1498         drm_modeset_unlock(&dc->base.mutex);
1499         return err;
1500 }
1501
1502 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1503 {
1504         struct drm_info_node *node = s->private;
1505         struct tegra_dc *dc = node->info_ent->data;
1506
1507         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1508         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1509         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1510         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1511
1512         return 0;
1513 }
1514
1515 static struct drm_info_list debugfs_files[] = {
1516         { "regs", tegra_dc_show_regs, 0, NULL },
1517         { "crc", tegra_dc_show_crc, 0, NULL },
1518         { "stats", tegra_dc_show_stats, 0, NULL },
1519 };
1520
1521 static int tegra_dc_late_register(struct drm_crtc *crtc)
1522 {
1523         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1524         struct drm_minor *minor = crtc->dev->primary;
1525         struct dentry *root;
1526         struct tegra_dc *dc = to_tegra_dc(crtc);
1527
1528 #ifdef CONFIG_DEBUG_FS
1529         root = crtc->debugfs_entry;
1530 #else
1531         root = NULL;
1532 #endif
1533
1534         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1535                                     GFP_KERNEL);
1536         if (!dc->debugfs_files)
1537                 return -ENOMEM;
1538
1539         for (i = 0; i < count; i++)
1540                 dc->debugfs_files[i].data = dc;
1541
1542         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1543
1544         return 0;
1545 }
1546
1547 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1548 {
1549         unsigned int count = ARRAY_SIZE(debugfs_files);
1550         struct drm_minor *minor = crtc->dev->primary;
1551         struct tegra_dc *dc = to_tegra_dc(crtc);
1552
1553         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1554         kfree(dc->debugfs_files);
1555         dc->debugfs_files = NULL;
1556 }
1557
1558 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1559 {
1560         struct tegra_dc *dc = to_tegra_dc(crtc);
1561
1562         /* XXX vblank syncpoints don't work with nvdisplay yet */
1563         if (dc->syncpt && !dc->soc->has_nvdisplay)
1564                 return host1x_syncpt_read(dc->syncpt);
1565
1566         /* fallback to software emulated VBLANK counter */
1567         return (u32)drm_crtc_vblank_count(&dc->base);
1568 }
1569
1570 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1571 {
1572         struct tegra_dc *dc = to_tegra_dc(crtc);
1573         u32 value;
1574
1575         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1576         value |= VBLANK_INT;
1577         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1578
1579         return 0;
1580 }
1581
1582 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1583 {
1584         struct tegra_dc *dc = to_tegra_dc(crtc);
1585         u32 value;
1586
1587         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1588         value &= ~VBLANK_INT;
1589         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1590 }
1591
1592 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1593         .page_flip = drm_atomic_helper_page_flip,
1594         .set_config = drm_atomic_helper_set_config,
1595         .destroy = tegra_dc_destroy,
1596         .reset = tegra_crtc_reset,
1597         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1598         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1599         .late_register = tegra_dc_late_register,
1600         .early_unregister = tegra_dc_early_unregister,
1601         .get_vblank_counter = tegra_dc_get_vblank_counter,
1602         .enable_vblank = tegra_dc_enable_vblank,
1603         .disable_vblank = tegra_dc_disable_vblank,
1604 };
1605
1606 static int tegra_dc_set_timings(struct tegra_dc *dc,
1607                                 struct drm_display_mode *mode)
1608 {
1609         unsigned int h_ref_to_sync = 1;
1610         unsigned int v_ref_to_sync = 1;
1611         unsigned long value;
1612
1613         if (!dc->soc->has_nvdisplay) {
1614                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1615
1616                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1617                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1618         }
1619
1620         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1621                 ((mode->hsync_end - mode->hsync_start) <<  0);
1622         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1623
1624         value = ((mode->vtotal - mode->vsync_end) << 16) |
1625                 ((mode->htotal - mode->hsync_end) <<  0);
1626         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1627
1628         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1629                 ((mode->hsync_start - mode->hdisplay) <<  0);
1630         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1631
1632         value = (mode->vdisplay << 16) | mode->hdisplay;
1633         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1634
1635         return 0;
1636 }
1637
1638 /**
1639  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1640  *     state
1641  * @dc: display controller
1642  * @crtc_state: CRTC atomic state
1643  * @clk: parent clock for display controller
1644  * @pclk: pixel clock
1645  * @div: shift clock divider
1646  *
1647  * Returns:
1648  * 0 on success or a negative error-code on failure.
1649  */
1650 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1651                                struct drm_crtc_state *crtc_state,
1652                                struct clk *clk, unsigned long pclk,
1653                                unsigned int div)
1654 {
1655         struct tegra_dc_state *state = to_dc_state(crtc_state);
1656
1657         if (!clk_has_parent(dc->clk, clk))
1658                 return -EINVAL;
1659
1660         state->clk = clk;
1661         state->pclk = pclk;
1662         state->div = div;
1663
1664         return 0;
1665 }
1666
1667 static void tegra_dc_commit_state(struct tegra_dc *dc,
1668                                   struct tegra_dc_state *state)
1669 {
1670         u32 value;
1671         int err;
1672
1673         err = clk_set_parent(dc->clk, state->clk);
1674         if (err < 0)
1675                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1676
1677         /*
1678          * Outputs may not want to change the parent clock rate. This is only
1679          * relevant to Tegra20 where only a single display PLL is available.
1680          * Since that PLL would typically be used for HDMI, an internal LVDS
1681          * panel would need to be driven by some other clock such as PLL_P
1682          * which is shared with other peripherals. Changing the clock rate
1683          * should therefore be avoided.
1684          */
1685         if (state->pclk > 0) {
1686                 err = clk_set_rate(state->clk, state->pclk);
1687                 if (err < 0)
1688                         dev_err(dc->dev,
1689                                 "failed to set clock rate to %lu Hz\n",
1690                                 state->pclk);
1691
1692                 err = clk_set_rate(dc->clk, state->pclk);
1693                 if (err < 0)
1694                         dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1695                                 dc->clk, state->pclk, err);
1696         }
1697
1698         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1699                       state->div);
1700         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1701
1702         if (!dc->soc->has_nvdisplay) {
1703                 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1704                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1705         }
1706 }
1707
1708 static void tegra_dc_stop(struct tegra_dc *dc)
1709 {
1710         u32 value;
1711
1712         /* stop the display controller */
1713         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1714         value &= ~DISP_CTRL_MODE_MASK;
1715         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1716
1717         tegra_dc_commit(dc);
1718 }
1719
1720 static bool tegra_dc_idle(struct tegra_dc *dc)
1721 {
1722         u32 value;
1723
1724         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1725
1726         return (value & DISP_CTRL_MODE_MASK) == 0;
1727 }
1728
1729 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1730 {
1731         timeout = jiffies + msecs_to_jiffies(timeout);
1732
1733         while (time_before(jiffies, timeout)) {
1734                 if (tegra_dc_idle(dc))
1735                         return 0;
1736
1737                 usleep_range(1000, 2000);
1738         }
1739
1740         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1741         return -ETIMEDOUT;
1742 }
1743
1744 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1745                                       struct drm_atomic_state *state)
1746 {
1747         struct tegra_dc *dc = to_tegra_dc(crtc);
1748         u32 value;
1749         int err;
1750
1751         if (!tegra_dc_idle(dc)) {
1752                 tegra_dc_stop(dc);
1753
1754                 /*
1755                  * Ignore the return value, there isn't anything useful to do
1756                  * in case this fails.
1757                  */
1758                 tegra_dc_wait_idle(dc, 100);
1759         }
1760
1761         /*
1762          * This should really be part of the RGB encoder driver, but clearing
1763          * these bits has the side-effect of stopping the display controller.
1764          * When that happens no VBLANK interrupts will be raised. At the same
1765          * time the encoder is disabled before the display controller, so the
1766          * above code is always going to timeout waiting for the controller
1767          * to go idle.
1768          *
1769          * Given the close coupling between the RGB encoder and the display
1770          * controller doing it here is still kind of okay. None of the other
1771          * encoder drivers require these bits to be cleared.
1772          *
1773          * XXX: Perhaps given that the display controller is switched off at
1774          * this point anyway maybe clearing these bits isn't even useful for
1775          * the RGB encoder?
1776          */
1777         if (dc->rgb) {
1778                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1779                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1780                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1781                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1782         }
1783
1784         tegra_dc_stats_reset(&dc->stats);
1785         drm_crtc_vblank_off(crtc);
1786
1787         spin_lock_irq(&crtc->dev->event_lock);
1788
1789         if (crtc->state->event) {
1790                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1791                 crtc->state->event = NULL;
1792         }
1793
1794         spin_unlock_irq(&crtc->dev->event_lock);
1795
1796         err = host1x_client_suspend(&dc->client);
1797         if (err < 0)
1798                 dev_err(dc->dev, "failed to suspend: %d\n", err);
1799 }
1800
1801 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1802                                      struct drm_atomic_state *state)
1803 {
1804         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1805         struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1806         struct tegra_dc *dc = to_tegra_dc(crtc);
1807         u32 value;
1808         int err;
1809
1810         err = host1x_client_resume(&dc->client);
1811         if (err < 0) {
1812                 dev_err(dc->dev, "failed to resume: %d\n", err);
1813                 return;
1814         }
1815
1816         /* initialize display controller */
1817         if (dc->syncpt) {
1818                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1819
1820                 if (dc->soc->has_nvdisplay)
1821                         enable = 1 << 31;
1822                 else
1823                         enable = 1 << 8;
1824
1825                 value = SYNCPT_CNTRL_NO_STALL;
1826                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1827
1828                 value = enable | syncpt;
1829                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1830         }
1831
1832         if (dc->soc->has_nvdisplay) {
1833                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1834                         DSC_OBUF_UF_INT;
1835                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1836
1837                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1838                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1839                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1840                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1841                         VBLANK_INT | FRAME_END_INT;
1842                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1843
1844                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1845                         FRAME_END_INT;
1846                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1847
1848                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1849                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1850
1851                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1852         } else {
1853                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1854                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1855                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1856
1857                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1858                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1859                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1860
1861                 /* initialize timer */
1862                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1863                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1864                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1865
1866                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1867                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1868                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1869
1870                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1871                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1872                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1873
1874                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1875                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1876                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1877         }
1878
1879         if (dc->soc->supports_background_color)
1880                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1881         else
1882                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1883
1884         /* apply PLL and pixel clock changes */
1885         tegra_dc_commit_state(dc, crtc_state);
1886
1887         /* program display mode */
1888         tegra_dc_set_timings(dc, mode);
1889
1890         /* interlacing isn't supported yet, so disable it */
1891         if (dc->soc->supports_interlacing) {
1892                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1893                 value &= ~INTERLACE_ENABLE;
1894                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1895         }
1896
1897         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1898         value &= ~DISP_CTRL_MODE_MASK;
1899         value |= DISP_CTRL_MODE_C_DISPLAY;
1900         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1901
1902         if (!dc->soc->has_nvdisplay) {
1903                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1904                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1905                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1906                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1907         }
1908
1909         /* enable underflow reporting and display red for missing pixels */
1910         if (dc->soc->has_nvdisplay) {
1911                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1912                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1913         }
1914
1915         tegra_dc_commit(dc);
1916
1917         drm_crtc_vblank_on(crtc);
1918 }
1919
1920 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1921                                     struct drm_atomic_state *state)
1922 {
1923         unsigned long flags;
1924
1925         if (crtc->state->event) {
1926                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1927
1928                 if (drm_crtc_vblank_get(crtc) != 0)
1929                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
1930                 else
1931                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1932
1933                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1934
1935                 crtc->state->event = NULL;
1936         }
1937 }
1938
1939 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1940                                     struct drm_atomic_state *state)
1941 {
1942         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1943                                                                           crtc);
1944         struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
1945         struct tegra_dc *dc = to_tegra_dc(crtc);
1946         u32 value;
1947
1948         value = dc_state->planes << 8 | GENERAL_UPDATE;
1949         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1950         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1951
1952         value = dc_state->planes | GENERAL_ACT_REQ;
1953         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1954         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1955 }
1956
1957 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1958         .atomic_begin = tegra_crtc_atomic_begin,
1959         .atomic_flush = tegra_crtc_atomic_flush,
1960         .atomic_enable = tegra_crtc_atomic_enable,
1961         .atomic_disable = tegra_crtc_atomic_disable,
1962 };
1963
1964 static irqreturn_t tegra_dc_irq(int irq, void *data)
1965 {
1966         struct tegra_dc *dc = data;
1967         unsigned long status;
1968
1969         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1970         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1971
1972         if (status & FRAME_END_INT) {
1973                 /*
1974                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1975                 */
1976                 dc->stats.frames++;
1977         }
1978
1979         if (status & VBLANK_INT) {
1980                 /*
1981                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1982                 */
1983                 drm_crtc_handle_vblank(&dc->base);
1984                 dc->stats.vblank++;
1985         }
1986
1987         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1988                 /*
1989                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1990                 */
1991                 dc->stats.underflow++;
1992         }
1993
1994         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1995                 /*
1996                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1997                 */
1998                 dc->stats.overflow++;
1999         }
2000
2001         if (status & HEAD_UF_INT) {
2002                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2003                 dc->stats.underflow++;
2004         }
2005
2006         return IRQ_HANDLED;
2007 }
2008
2009 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2010 {
2011         unsigned int i;
2012
2013         if (!dc->soc->wgrps)
2014                 return true;
2015
2016         for (i = 0; i < dc->soc->num_wgrps; i++) {
2017                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2018
2019                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2020                         return true;
2021         }
2022
2023         return false;
2024 }
2025
2026 static int tegra_dc_init(struct host1x_client *client)
2027 {
2028         struct drm_device *drm = dev_get_drvdata(client->host);
2029         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2030         struct tegra_dc *dc = host1x_client_to_dc(client);
2031         struct tegra_drm *tegra = drm->dev_private;
2032         struct drm_plane *primary = NULL;
2033         struct drm_plane *cursor = NULL;
2034         int err;
2035
2036         /*
2037          * XXX do not register DCs with no window groups because we cannot
2038          * assign a primary plane to them, which in turn will cause KMS to
2039          * crash.
2040          */
2041         if (!tegra_dc_has_window_groups(dc))
2042                 return 0;
2043
2044         /*
2045          * Set the display hub as the host1x client parent for the display
2046          * controller. This is needed for the runtime reference counting that
2047          * ensures the display hub is always powered when any of the display
2048          * controllers are.
2049          */
2050         if (dc->soc->has_nvdisplay)
2051                 client->parent = &tegra->hub->client;
2052
2053         dc->syncpt = host1x_syncpt_request(client, flags);
2054         if (!dc->syncpt)
2055                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2056
2057         err = host1x_client_iommu_attach(client);
2058         if (err < 0 && err != -ENODEV) {
2059                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2060                 return err;
2061         }
2062
2063         if (dc->soc->wgrps)
2064                 primary = tegra_dc_add_shared_planes(drm, dc);
2065         else
2066                 primary = tegra_dc_add_planes(drm, dc);
2067
2068         if (IS_ERR(primary)) {
2069                 err = PTR_ERR(primary);
2070                 goto cleanup;
2071         }
2072
2073         if (dc->soc->supports_cursor) {
2074                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2075                 if (IS_ERR(cursor)) {
2076                         err = PTR_ERR(cursor);
2077                         goto cleanup;
2078                 }
2079         } else {
2080                 /* dedicate one overlay to mouse cursor */
2081                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2082                 if (IS_ERR(cursor)) {
2083                         err = PTR_ERR(cursor);
2084                         goto cleanup;
2085                 }
2086         }
2087
2088         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2089                                         &tegra_crtc_funcs, NULL);
2090         if (err < 0)
2091                 goto cleanup;
2092
2093         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2094
2095         /*
2096          * Keep track of the minimum pitch alignment across all display
2097          * controllers.
2098          */
2099         if (dc->soc->pitch_align > tegra->pitch_align)
2100                 tegra->pitch_align = dc->soc->pitch_align;
2101
2102         err = tegra_dc_rgb_init(drm, dc);
2103         if (err < 0 && err != -ENODEV) {
2104                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2105                 goto cleanup;
2106         }
2107
2108         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2109                                dev_name(dc->dev), dc);
2110         if (err < 0) {
2111                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2112                         err);
2113                 goto cleanup;
2114         }
2115
2116         /*
2117          * Inherit the DMA parameters (such as maximum segment size) from the
2118          * parent host1x device.
2119          */
2120         client->dev->dma_parms = client->host->dma_parms;
2121
2122         return 0;
2123
2124 cleanup:
2125         if (!IS_ERR_OR_NULL(cursor))
2126                 drm_plane_cleanup(cursor);
2127
2128         if (!IS_ERR(primary))
2129                 drm_plane_cleanup(primary);
2130
2131         host1x_client_iommu_detach(client);
2132         host1x_syncpt_free(dc->syncpt);
2133
2134         return err;
2135 }
2136
2137 static int tegra_dc_exit(struct host1x_client *client)
2138 {
2139         struct tegra_dc *dc = host1x_client_to_dc(client);
2140         int err;
2141
2142         if (!tegra_dc_has_window_groups(dc))
2143                 return 0;
2144
2145         /* avoid a dangling pointer just in case this disappears */
2146         client->dev->dma_parms = NULL;
2147
2148         devm_free_irq(dc->dev, dc->irq, dc);
2149
2150         err = tegra_dc_rgb_exit(dc);
2151         if (err) {
2152                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2153                 return err;
2154         }
2155
2156         host1x_client_iommu_detach(client);
2157         host1x_syncpt_free(dc->syncpt);
2158
2159         return 0;
2160 }
2161
2162 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2163 {
2164         struct tegra_dc *dc = host1x_client_to_dc(client);
2165         struct device *dev = client->dev;
2166         int err;
2167
2168         err = reset_control_assert(dc->rst);
2169         if (err < 0) {
2170                 dev_err(dev, "failed to assert reset: %d\n", err);
2171                 return err;
2172         }
2173
2174         if (dc->soc->has_powergate)
2175                 tegra_powergate_power_off(dc->powergate);
2176
2177         clk_disable_unprepare(dc->clk);
2178         pm_runtime_put_sync(dev);
2179
2180         return 0;
2181 }
2182
2183 static int tegra_dc_runtime_resume(struct host1x_client *client)
2184 {
2185         struct tegra_dc *dc = host1x_client_to_dc(client);
2186         struct device *dev = client->dev;
2187         int err;
2188
2189         err = pm_runtime_resume_and_get(dev);
2190         if (err < 0) {
2191                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2192                 return err;
2193         }
2194
2195         if (dc->soc->has_powergate) {
2196                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2197                                                         dc->rst);
2198                 if (err < 0) {
2199                         dev_err(dev, "failed to power partition: %d\n", err);
2200                         goto put_rpm;
2201                 }
2202         } else {
2203                 err = clk_prepare_enable(dc->clk);
2204                 if (err < 0) {
2205                         dev_err(dev, "failed to enable clock: %d\n", err);
2206                         goto put_rpm;
2207                 }
2208
2209                 err = reset_control_deassert(dc->rst);
2210                 if (err < 0) {
2211                         dev_err(dev, "failed to deassert reset: %d\n", err);
2212                         goto disable_clk;
2213                 }
2214         }
2215
2216         return 0;
2217
2218 disable_clk:
2219         clk_disable_unprepare(dc->clk);
2220 put_rpm:
2221         pm_runtime_put_sync(dev);
2222         return err;
2223 }
2224
2225 static const struct host1x_client_ops dc_client_ops = {
2226         .init = tegra_dc_init,
2227         .exit = tegra_dc_exit,
2228         .suspend = tegra_dc_runtime_suspend,
2229         .resume = tegra_dc_runtime_resume,
2230 };
2231
2232 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2233         .supports_background_color = false,
2234         .supports_interlacing = false,
2235         .supports_cursor = false,
2236         .supports_block_linear = false,
2237         .has_legacy_blending = true,
2238         .pitch_align = 8,
2239         .has_powergate = false,
2240         .coupled_pm = true,
2241         .has_nvdisplay = false,
2242         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2243         .primary_formats = tegra20_primary_formats,
2244         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2245         .overlay_formats = tegra20_overlay_formats,
2246         .modifiers = tegra20_modifiers,
2247         .has_win_a_without_filters = true,
2248         .has_win_c_without_vert_filter = true,
2249 };
2250
2251 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2252         .supports_background_color = false,
2253         .supports_interlacing = false,
2254         .supports_cursor = false,
2255         .supports_block_linear = false,
2256         .has_legacy_blending = true,
2257         .pitch_align = 8,
2258         .has_powergate = false,
2259         .coupled_pm = false,
2260         .has_nvdisplay = false,
2261         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2262         .primary_formats = tegra20_primary_formats,
2263         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2264         .overlay_formats = tegra20_overlay_formats,
2265         .modifiers = tegra20_modifiers,
2266         .has_win_a_without_filters = false,
2267         .has_win_c_without_vert_filter = false,
2268 };
2269
2270 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2271         .supports_background_color = false,
2272         .supports_interlacing = false,
2273         .supports_cursor = false,
2274         .supports_block_linear = false,
2275         .has_legacy_blending = true,
2276         .pitch_align = 64,
2277         .has_powergate = true,
2278         .coupled_pm = false,
2279         .has_nvdisplay = false,
2280         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2281         .primary_formats = tegra114_primary_formats,
2282         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2283         .overlay_formats = tegra114_overlay_formats,
2284         .modifiers = tegra20_modifiers,
2285         .has_win_a_without_filters = false,
2286         .has_win_c_without_vert_filter = false,
2287 };
2288
2289 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2290         .supports_background_color = true,
2291         .supports_interlacing = true,
2292         .supports_cursor = true,
2293         .supports_block_linear = true,
2294         .has_legacy_blending = false,
2295         .pitch_align = 64,
2296         .has_powergate = true,
2297         .coupled_pm = false,
2298         .has_nvdisplay = false,
2299         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2300         .primary_formats = tegra124_primary_formats,
2301         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2302         .overlay_formats = tegra124_overlay_formats,
2303         .modifiers = tegra124_modifiers,
2304         .has_win_a_without_filters = false,
2305         .has_win_c_without_vert_filter = false,
2306 };
2307
2308 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2309         .supports_background_color = true,
2310         .supports_interlacing = true,
2311         .supports_cursor = true,
2312         .supports_block_linear = true,
2313         .has_legacy_blending = false,
2314         .pitch_align = 64,
2315         .has_powergate = true,
2316         .coupled_pm = false,
2317         .has_nvdisplay = false,
2318         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2319         .primary_formats = tegra114_primary_formats,
2320         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2321         .overlay_formats = tegra114_overlay_formats,
2322         .modifiers = tegra124_modifiers,
2323         .has_win_a_without_filters = false,
2324         .has_win_c_without_vert_filter = false,
2325 };
2326
2327 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2328         {
2329                 .index = 0,
2330                 .dc = 0,
2331                 .windows = (const unsigned int[]) { 0 },
2332                 .num_windows = 1,
2333         }, {
2334                 .index = 1,
2335                 .dc = 1,
2336                 .windows = (const unsigned int[]) { 1 },
2337                 .num_windows = 1,
2338         }, {
2339                 .index = 2,
2340                 .dc = 1,
2341                 .windows = (const unsigned int[]) { 2 },
2342                 .num_windows = 1,
2343         }, {
2344                 .index = 3,
2345                 .dc = 2,
2346                 .windows = (const unsigned int[]) { 3 },
2347                 .num_windows = 1,
2348         }, {
2349                 .index = 4,
2350                 .dc = 2,
2351                 .windows = (const unsigned int[]) { 4 },
2352                 .num_windows = 1,
2353         }, {
2354                 .index = 5,
2355                 .dc = 2,
2356                 .windows = (const unsigned int[]) { 5 },
2357                 .num_windows = 1,
2358         },
2359 };
2360
2361 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2362         .supports_background_color = true,
2363         .supports_interlacing = true,
2364         .supports_cursor = true,
2365         .supports_block_linear = true,
2366         .has_legacy_blending = false,
2367         .pitch_align = 64,
2368         .has_powergate = false,
2369         .coupled_pm = false,
2370         .has_nvdisplay = true,
2371         .wgrps = tegra186_dc_wgrps,
2372         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2373 };
2374
2375 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2376         {
2377                 .index = 0,
2378                 .dc = 0,
2379                 .windows = (const unsigned int[]) { 0 },
2380                 .num_windows = 1,
2381         }, {
2382                 .index = 1,
2383                 .dc = 1,
2384                 .windows = (const unsigned int[]) { 1 },
2385                 .num_windows = 1,
2386         }, {
2387                 .index = 2,
2388                 .dc = 1,
2389                 .windows = (const unsigned int[]) { 2 },
2390                 .num_windows = 1,
2391         }, {
2392                 .index = 3,
2393                 .dc = 2,
2394                 .windows = (const unsigned int[]) { 3 },
2395                 .num_windows = 1,
2396         }, {
2397                 .index = 4,
2398                 .dc = 2,
2399                 .windows = (const unsigned int[]) { 4 },
2400                 .num_windows = 1,
2401         }, {
2402                 .index = 5,
2403                 .dc = 2,
2404                 .windows = (const unsigned int[]) { 5 },
2405                 .num_windows = 1,
2406         },
2407 };
2408
2409 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2410         .supports_background_color = true,
2411         .supports_interlacing = true,
2412         .supports_cursor = true,
2413         .supports_block_linear = true,
2414         .has_legacy_blending = false,
2415         .pitch_align = 64,
2416         .has_powergate = false,
2417         .coupled_pm = false,
2418         .has_nvdisplay = true,
2419         .wgrps = tegra194_dc_wgrps,
2420         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2421 };
2422
2423 static const struct of_device_id tegra_dc_of_match[] = {
2424         {
2425                 .compatible = "nvidia,tegra194-dc",
2426                 .data = &tegra194_dc_soc_info,
2427         }, {
2428                 .compatible = "nvidia,tegra186-dc",
2429                 .data = &tegra186_dc_soc_info,
2430         }, {
2431                 .compatible = "nvidia,tegra210-dc",
2432                 .data = &tegra210_dc_soc_info,
2433         }, {
2434                 .compatible = "nvidia,tegra124-dc",
2435                 .data = &tegra124_dc_soc_info,
2436         }, {
2437                 .compatible = "nvidia,tegra114-dc",
2438                 .data = &tegra114_dc_soc_info,
2439         }, {
2440                 .compatible = "nvidia,tegra30-dc",
2441                 .data = &tegra30_dc_soc_info,
2442         }, {
2443                 .compatible = "nvidia,tegra20-dc",
2444                 .data = &tegra20_dc_soc_info,
2445         }, {
2446                 /* sentinel */
2447         }
2448 };
2449 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2450
2451 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2452 {
2453         struct device_node *np;
2454         u32 value = 0;
2455         int err;
2456
2457         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2458         if (err < 0) {
2459                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2460
2461                 /*
2462                  * If the nvidia,head property isn't present, try to find the
2463                  * correct head number by looking up the position of this
2464                  * display controller's node within the device tree. Assuming
2465                  * that the nodes are ordered properly in the DTS file and
2466                  * that the translation into a flattened device tree blob
2467                  * preserves that ordering this will actually yield the right
2468                  * head number.
2469                  *
2470                  * If those assumptions don't hold, this will still work for
2471                  * cases where only a single display controller is used.
2472                  */
2473                 for_each_matching_node(np, tegra_dc_of_match) {
2474                         if (np == dc->dev->of_node) {
2475                                 of_node_put(np);
2476                                 break;
2477                         }
2478
2479                         value++;
2480                 }
2481         }
2482
2483         dc->pipe = value;
2484
2485         return 0;
2486 }
2487
2488 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2489 {
2490         struct tegra_dc *dc = dev_get_drvdata(dev);
2491         unsigned int pipe = (unsigned long)(void *)data;
2492
2493         return dc->pipe == pipe;
2494 }
2495
2496 static int tegra_dc_couple(struct tegra_dc *dc)
2497 {
2498         /*
2499          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2500          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2501          * POWER_CONTROL registers during CRTC enabling.
2502          */
2503         if (dc->soc->coupled_pm && dc->pipe == 1) {
2504                 struct device *companion;
2505                 struct tegra_dc *parent;
2506
2507                 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2508                                                tegra_dc_match_by_pipe);
2509                 if (!companion)
2510                         return -EPROBE_DEFER;
2511
2512                 parent = dev_get_drvdata(companion);
2513                 dc->client.parent = &parent->client;
2514
2515                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2516         }
2517
2518         return 0;
2519 }
2520
2521 static int tegra_dc_probe(struct platform_device *pdev)
2522 {
2523         struct tegra_dc *dc;
2524         int err;
2525
2526         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2527         if (!dc)
2528                 return -ENOMEM;
2529
2530         dc->soc = of_device_get_match_data(&pdev->dev);
2531
2532         INIT_LIST_HEAD(&dc->list);
2533         dc->dev = &pdev->dev;
2534
2535         err = tegra_dc_parse_dt(dc);
2536         if (err < 0)
2537                 return err;
2538
2539         err = tegra_dc_couple(dc);
2540         if (err < 0)
2541                 return err;
2542
2543         dc->clk = devm_clk_get(&pdev->dev, NULL);
2544         if (IS_ERR(dc->clk)) {
2545                 dev_err(&pdev->dev, "failed to get clock\n");
2546                 return PTR_ERR(dc->clk);
2547         }
2548
2549         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2550         if (IS_ERR(dc->rst)) {
2551                 dev_err(&pdev->dev, "failed to get reset\n");
2552                 return PTR_ERR(dc->rst);
2553         }
2554
2555         /* assert reset and disable clock */
2556         err = clk_prepare_enable(dc->clk);
2557         if (err < 0)
2558                 return err;
2559
2560         usleep_range(2000, 4000);
2561
2562         err = reset_control_assert(dc->rst);
2563         if (err < 0)
2564                 return err;
2565
2566         usleep_range(2000, 4000);
2567
2568         clk_disable_unprepare(dc->clk);
2569
2570         if (dc->soc->has_powergate) {
2571                 if (dc->pipe == 0)
2572                         dc->powergate = TEGRA_POWERGATE_DIS;
2573                 else
2574                         dc->powergate = TEGRA_POWERGATE_DISB;
2575
2576                 tegra_powergate_power_off(dc->powergate);
2577         }
2578
2579         dc->regs = devm_platform_ioremap_resource(pdev, 0);
2580         if (IS_ERR(dc->regs))
2581                 return PTR_ERR(dc->regs);
2582
2583         dc->irq = platform_get_irq(pdev, 0);
2584         if (dc->irq < 0)
2585                 return -ENXIO;
2586
2587         err = tegra_dc_rgb_probe(dc);
2588         if (err < 0 && err != -ENODEV) {
2589                 const char *level = KERN_ERR;
2590
2591                 if (err == -EPROBE_DEFER)
2592                         level = KERN_DEBUG;
2593
2594                 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2595                            err);
2596                 return err;
2597         }
2598
2599         platform_set_drvdata(pdev, dc);
2600         pm_runtime_enable(&pdev->dev);
2601
2602         INIT_LIST_HEAD(&dc->client.list);
2603         dc->client.ops = &dc_client_ops;
2604         dc->client.dev = &pdev->dev;
2605
2606         err = host1x_client_register(&dc->client);
2607         if (err < 0) {
2608                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2609                         err);
2610                 goto disable_pm;
2611         }
2612
2613         return 0;
2614
2615 disable_pm:
2616         pm_runtime_disable(&pdev->dev);
2617         tegra_dc_rgb_remove(dc);
2618
2619         return err;
2620 }
2621
2622 static int tegra_dc_remove(struct platform_device *pdev)
2623 {
2624         struct tegra_dc *dc = platform_get_drvdata(pdev);
2625         int err;
2626
2627         err = host1x_client_unregister(&dc->client);
2628         if (err < 0) {
2629                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2630                         err);
2631                 return err;
2632         }
2633
2634         err = tegra_dc_rgb_remove(dc);
2635         if (err < 0) {
2636                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2637                 return err;
2638         }
2639
2640         pm_runtime_disable(&pdev->dev);
2641
2642         return 0;
2643 }
2644
2645 struct platform_driver tegra_dc_driver = {
2646         .driver = {
2647                 .name = "tegra-dc",
2648                 .of_match_table = tegra_dc_of_match,
2649         },
2650         .probe = tegra_dc_probe,
2651         .remove = tegra_dc_remove,
2652 };