Merge tag 'docs-6.8-fixes2' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_domain.h>
17 #include <linux/pm_opp.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/pmc.h>
23
24 #include <drm/drm_atomic.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_blend.h>
27 #include <drm/drm_debugfs.h>
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_framebuffer.h>
30 #include <drm/drm_vblank.h>
31
32 #include "dc.h"
33 #include "drm.h"
34 #include "gem.h"
35 #include "hub.h"
36 #include "plane.h"
37
38 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
39                                             struct drm_crtc_state *state);
40
41 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
42 {
43         stats->frames = 0;
44         stats->vblank = 0;
45         stats->underflow = 0;
46         stats->overflow = 0;
47 }
48
49 /* Reads the active copy of a register. */
50 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
51 {
52         u32 value;
53
54         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
55         value = tegra_dc_readl(dc, offset);
56         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
57
58         return value;
59 }
60
61 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
62                                               unsigned int offset)
63 {
64         if (offset >= 0x500 && offset <= 0x638) {
65                 offset = 0x000 + (offset - 0x500);
66                 return plane->offset + offset;
67         }
68
69         if (offset >= 0x700 && offset <= 0x719) {
70                 offset = 0x180 + (offset - 0x700);
71                 return plane->offset + offset;
72         }
73
74         if (offset >= 0x800 && offset <= 0x839) {
75                 offset = 0x1c0 + (offset - 0x800);
76                 return plane->offset + offset;
77         }
78
79         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
80
81         return plane->offset + offset;
82 }
83
84 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
85                                     unsigned int offset)
86 {
87         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
88 }
89
90 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
91                                       unsigned int offset)
92 {
93         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
94 }
95
96 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
97 {
98         struct device_node *np = dc->dev->of_node;
99         struct of_phandle_iterator it;
100         int err;
101
102         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
103                 if (it.node == dev->of_node)
104                         return true;
105
106         return false;
107 }
108
109 /*
110  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112  * Latching happens mmediately if the display controller is in STOP mode or
113  * on the next frame boundary otherwise.
114  *
115  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118  * into the ACTIVE copy, either immediately if the display controller is in
119  * STOP mode, or at the next frame boundary otherwise.
120  */
121 void tegra_dc_commit(struct tegra_dc *dc)
122 {
123         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
125 }
126
127 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
128                                   unsigned int bpp)
129 {
130         fixed20_12 outf = dfixed_init(out);
131         fixed20_12 inf = dfixed_init(in);
132         u32 dda_inc;
133         int max;
134
135         if (v)
136                 max = 15;
137         else {
138                 switch (bpp) {
139                 case 2:
140                         max = 8;
141                         break;
142
143                 default:
144                         WARN_ON_ONCE(1);
145                         fallthrough;
146                 case 4:
147                         max = 4;
148                         break;
149                 }
150         }
151
152         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
153         inf.full -= dfixed_const(1);
154
155         dda_inc = dfixed_div(inf, outf);
156         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
157
158         return dda_inc;
159 }
160
161 static inline u32 compute_initial_dda(unsigned int in)
162 {
163         fixed20_12 inf = dfixed_init(in);
164         return dfixed_frac(inf);
165 }
166
167 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
168 {
169         u32 background[3] = {
170                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
173         };
174         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
175                          BLEND_COLOR_KEY_NONE;
176         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
177         struct tegra_plane_state *state;
178         u32 blending[2];
179         unsigned int i;
180
181         /* disable blending for non-overlapping case */
182         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
183         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
184
185         state = to_tegra_plane_state(plane->base.state);
186
187         if (state->opaque) {
188                 /*
189                  * Since custom fix-weight blending isn't utilized and weight
190                  * of top window is set to max, we can enforce dependent
191                  * blending which in this case results in transparent bottom
192                  * window if top window is opaque and if top window enables
193                  * alpha blending, then bottom window is getting alpha value
194                  * of 1 minus the sum of alpha components of the overlapping
195                  * plane.
196                  */
197                 background[0] |= BLEND_CONTROL_DEPENDENT;
198                 background[1] |= BLEND_CONTROL_DEPENDENT;
199
200                 /*
201                  * The region where three windows overlap is the intersection
202                  * of the two regions where two windows overlap. It contributes
203                  * to the area if all of the windows on top of it have an alpha
204                  * component.
205                  */
206                 switch (state->base.normalized_zpos) {
207                 case 0:
208                         if (state->blending[0].alpha &&
209                             state->blending[1].alpha)
210                                 background[2] |= BLEND_CONTROL_DEPENDENT;
211                         break;
212
213                 case 1:
214                         background[2] |= BLEND_CONTROL_DEPENDENT;
215                         break;
216                 }
217         } else {
218                 /*
219                  * Enable alpha blending if pixel format has an alpha
220                  * component.
221                  */
222                 foreground |= BLEND_CONTROL_ALPHA;
223
224                 /*
225                  * If any of the windows on top of this window is opaque, it
226                  * will completely conceal this window within that area. If
227                  * top window has an alpha component, it is blended over the
228                  * bottom window.
229                  */
230                 for (i = 0; i < 2; i++) {
231                         if (state->blending[i].alpha &&
232                             state->blending[i].top)
233                                 background[i] |= BLEND_CONTROL_DEPENDENT;
234                 }
235
236                 switch (state->base.normalized_zpos) {
237                 case 0:
238                         if (state->blending[0].alpha &&
239                             state->blending[1].alpha)
240                                 background[2] |= BLEND_CONTROL_DEPENDENT;
241                         break;
242
243                 case 1:
244                         /*
245                          * When both middle and topmost windows have an alpha,
246                          * these windows a mixed together and then the result
247                          * is blended over the bottom window.
248                          */
249                         if (state->blending[0].alpha &&
250                             state->blending[0].top)
251                                 background[2] |= BLEND_CONTROL_ALPHA;
252
253                         if (state->blending[1].alpha &&
254                             state->blending[1].top)
255                                 background[2] |= BLEND_CONTROL_ALPHA;
256                         break;
257                 }
258         }
259
260         switch (state->base.normalized_zpos) {
261         case 0:
262                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
263                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
264                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
265                 break;
266
267         case 1:
268                 /*
269                  * If window B / C is topmost, then X / Y registers are
270                  * matching the order of blending[...] state indices,
271                  * otherwise a swap is required.
272                  */
273                 if (!state->blending[0].top && state->blending[1].top) {
274                         blending[0] = foreground;
275                         blending[1] = background[1];
276                 } else {
277                         blending[0] = background[0];
278                         blending[1] = foreground;
279                 }
280
281                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
282                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
283                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
284                 break;
285
286         case 2:
287                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
288                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
289                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
290                 break;
291         }
292 }
293
294 static void tegra_plane_setup_blending(struct tegra_plane *plane,
295                                        const struct tegra_dc_window *window)
296 {
297         u32 value;
298
299         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
300                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
301                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
302         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
303
304         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
305                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
306                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
307         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
308
309         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
310         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
311 }
312
313 static bool
314 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
315                                      const struct tegra_dc_window *window)
316 {
317         struct tegra_dc *dc = plane->dc;
318
319         if (window->src.w == window->dst.w)
320                 return false;
321
322         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
323                 return false;
324
325         return true;
326 }
327
328 static bool
329 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
330                                    const struct tegra_dc_window *window)
331 {
332         struct tegra_dc *dc = plane->dc;
333
334         if (window->src.h == window->dst.h)
335                 return false;
336
337         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
338                 return false;
339
340         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
341                 return false;
342
343         return true;
344 }
345
346 static void tegra_dc_setup_window(struct tegra_plane *plane,
347                                   const struct tegra_dc_window *window)
348 {
349         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
350         struct tegra_dc *dc = plane->dc;
351         unsigned int planes;
352         u32 value;
353         bool yuv;
354
355         /*
356          * For YUV planar modes, the number of bytes per pixel takes into
357          * account only the luma component and therefore is 1.
358          */
359         yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
360         if (!yuv)
361                 bpp = window->bits_per_pixel / 8;
362         else
363                 bpp = (planes > 1) ? 1 : 2;
364
365         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
366         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
367
368         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
369         tegra_plane_writel(plane, value, DC_WIN_POSITION);
370
371         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
372         tegra_plane_writel(plane, value, DC_WIN_SIZE);
373
374         h_offset = window->src.x * bpp;
375         v_offset = window->src.y;
376         h_size = window->src.w * bpp;
377         v_size = window->src.h;
378
379         if (window->reflect_x)
380                 h_offset += (window->src.w - 1) * bpp;
381
382         if (window->reflect_y)
383                 v_offset += window->src.h - 1;
384
385         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
386         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
387
388         /*
389          * For DDA computations the number of bytes per pixel for YUV planar
390          * modes needs to take into account all Y, U and V components.
391          */
392         if (yuv && planes > 1)
393                 bpp = 2;
394
395         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
396         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
397
398         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
399         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
400
401         h_dda = compute_initial_dda(window->src.x);
402         v_dda = compute_initial_dda(window->src.y);
403
404         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
405         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
406
407         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
408         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
409
410         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
411
412         if (yuv && planes > 1) {
413                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
414
415                 if (planes > 2)
416                         tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
417
418                 value = window->stride[1] << 16 | window->stride[0];
419                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
420         } else {
421                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
422         }
423
424         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
425         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
426
427         if (dc->soc->supports_block_linear) {
428                 unsigned long height = window->tiling.value;
429
430                 switch (window->tiling.mode) {
431                 case TEGRA_BO_TILING_MODE_PITCH:
432                         value = DC_WINBUF_SURFACE_KIND_PITCH;
433                         break;
434
435                 case TEGRA_BO_TILING_MODE_TILED:
436                         value = DC_WINBUF_SURFACE_KIND_TILED;
437                         break;
438
439                 case TEGRA_BO_TILING_MODE_BLOCK:
440                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
441                                 DC_WINBUF_SURFACE_KIND_BLOCK;
442                         break;
443                 }
444
445                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
446         } else {
447                 switch (window->tiling.mode) {
448                 case TEGRA_BO_TILING_MODE_PITCH:
449                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
450                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
451                         break;
452
453                 case TEGRA_BO_TILING_MODE_TILED:
454                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
455                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
456                         break;
457
458                 case TEGRA_BO_TILING_MODE_BLOCK:
459                         /*
460                          * No need to handle this here because ->atomic_check
461                          * will already have filtered it out.
462                          */
463                         break;
464                 }
465
466                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
467         }
468
469         value = WIN_ENABLE;
470
471         if (yuv) {
472                 /* setup default colorspace conversion coefficients */
473                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
474                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
475                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
476                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
477                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
478                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
479                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
480                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
481
482                 value |= CSC_ENABLE;
483         } else if (window->bits_per_pixel < 24) {
484                 value |= COLOR_EXPAND;
485         }
486
487         if (window->reflect_x)
488                 value |= H_DIRECTION;
489
490         if (window->reflect_y)
491                 value |= V_DIRECTION;
492
493         if (tegra_plane_use_horizontal_filtering(plane, window)) {
494                 /*
495                  * Enable horizontal 6-tap filter and set filtering
496                  * coefficients to the default values defined in TRM.
497                  */
498                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
499                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
500                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
501                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
502                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
503                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
504                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
505                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
506                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
507                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
508                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
509                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
510                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
511                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
512                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
513                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
514
515                 value |= H_FILTER;
516         }
517
518         if (tegra_plane_use_vertical_filtering(plane, window)) {
519                 unsigned int i, k;
520
521                 /*
522                  * Enable vertical 2-tap filter and set filtering
523                  * coefficients to the default values defined in TRM.
524                  */
525                 for (i = 0, k = 128; i < 16; i++, k -= 8)
526                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
527
528                 value |= V_FILTER;
529         }
530
531         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
532
533         if (dc->soc->has_legacy_blending)
534                 tegra_plane_setup_blending_legacy(plane);
535         else
536                 tegra_plane_setup_blending(plane, window);
537 }
538
539 static const u32 tegra20_primary_formats[] = {
540         DRM_FORMAT_ARGB4444,
541         DRM_FORMAT_ARGB1555,
542         DRM_FORMAT_RGB565,
543         DRM_FORMAT_RGBA5551,
544         DRM_FORMAT_ABGR8888,
545         DRM_FORMAT_ARGB8888,
546         /* non-native formats */
547         DRM_FORMAT_XRGB1555,
548         DRM_FORMAT_RGBX5551,
549         DRM_FORMAT_XBGR8888,
550         DRM_FORMAT_XRGB8888,
551 };
552
553 static const u64 tegra20_modifiers[] = {
554         DRM_FORMAT_MOD_LINEAR,
555         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
556         DRM_FORMAT_MOD_INVALID
557 };
558
559 static const u32 tegra114_primary_formats[] = {
560         DRM_FORMAT_ARGB4444,
561         DRM_FORMAT_ARGB1555,
562         DRM_FORMAT_RGB565,
563         DRM_FORMAT_RGBA5551,
564         DRM_FORMAT_ABGR8888,
565         DRM_FORMAT_ARGB8888,
566         /* new on Tegra114 */
567         DRM_FORMAT_ABGR4444,
568         DRM_FORMAT_ABGR1555,
569         DRM_FORMAT_BGRA5551,
570         DRM_FORMAT_XRGB1555,
571         DRM_FORMAT_RGBX5551,
572         DRM_FORMAT_XBGR1555,
573         DRM_FORMAT_BGRX5551,
574         DRM_FORMAT_BGR565,
575         DRM_FORMAT_BGRA8888,
576         DRM_FORMAT_RGBA8888,
577         DRM_FORMAT_XRGB8888,
578         DRM_FORMAT_XBGR8888,
579 };
580
581 static const u32 tegra124_primary_formats[] = {
582         DRM_FORMAT_ARGB4444,
583         DRM_FORMAT_ARGB1555,
584         DRM_FORMAT_RGB565,
585         DRM_FORMAT_RGBA5551,
586         DRM_FORMAT_ABGR8888,
587         DRM_FORMAT_ARGB8888,
588         /* new on Tegra114 */
589         DRM_FORMAT_ABGR4444,
590         DRM_FORMAT_ABGR1555,
591         DRM_FORMAT_BGRA5551,
592         DRM_FORMAT_XRGB1555,
593         DRM_FORMAT_RGBX5551,
594         DRM_FORMAT_XBGR1555,
595         DRM_FORMAT_BGRX5551,
596         DRM_FORMAT_BGR565,
597         DRM_FORMAT_BGRA8888,
598         DRM_FORMAT_RGBA8888,
599         DRM_FORMAT_XRGB8888,
600         DRM_FORMAT_XBGR8888,
601         /* new on Tegra124 */
602         DRM_FORMAT_RGBX8888,
603         DRM_FORMAT_BGRX8888,
604 };
605
606 static const u64 tegra124_modifiers[] = {
607         DRM_FORMAT_MOD_LINEAR,
608         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
609         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
610         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
611         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
612         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
613         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
614         DRM_FORMAT_MOD_INVALID
615 };
616
617 static int tegra_plane_atomic_check(struct drm_plane *plane,
618                                     struct drm_atomic_state *state)
619 {
620         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
621                                                                                  plane);
622         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
623         unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
624                                           DRM_MODE_REFLECT_X |
625                                           DRM_MODE_REFLECT_Y;
626         unsigned int rotation = new_plane_state->rotation;
627         struct tegra_bo_tiling *tiling = &plane_state->tiling;
628         struct tegra_plane *tegra = to_tegra_plane(plane);
629         struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
630         int err;
631
632         plane_state->peak_memory_bandwidth = 0;
633         plane_state->avg_memory_bandwidth = 0;
634
635         /* no need for further checks if the plane is being disabled */
636         if (!new_plane_state->crtc) {
637                 plane_state->total_peak_memory_bandwidth = 0;
638                 return 0;
639         }
640
641         err = tegra_plane_format(new_plane_state->fb->format->format,
642                                  &plane_state->format,
643                                  &plane_state->swap);
644         if (err < 0)
645                 return err;
646
647         /*
648          * Tegra20 and Tegra30 are special cases here because they support
649          * only variants of specific formats with an alpha component, but not
650          * the corresponding opaque formats. However, the opaque formats can
651          * be emulated by disabling alpha blending for the plane.
652          */
653         if (dc->soc->has_legacy_blending) {
654                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
655                 if (err < 0)
656                         return err;
657         }
658
659         err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
660         if (err < 0)
661                 return err;
662
663         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
664             !dc->soc->supports_block_linear) {
665                 DRM_ERROR("hardware doesn't support block linear mode\n");
666                 return -EINVAL;
667         }
668
669         /*
670          * Older userspace used custom BO flag in order to specify the Y
671          * reflection, while modern userspace uses the generic DRM rotation
672          * property in order to achieve the same result.  The legacy BO flag
673          * duplicates the DRM rotation property when both are set.
674          */
675         if (tegra_fb_is_bottom_up(new_plane_state->fb))
676                 rotation |= DRM_MODE_REFLECT_Y;
677
678         rotation = drm_rotation_simplify(rotation, supported_rotation);
679
680         if (rotation & DRM_MODE_REFLECT_X)
681                 plane_state->reflect_x = true;
682         else
683                 plane_state->reflect_x = false;
684
685         if (rotation & DRM_MODE_REFLECT_Y)
686                 plane_state->reflect_y = true;
687         else
688                 plane_state->reflect_y = false;
689
690         /*
691          * Tegra doesn't support different strides for U and V planes so we
692          * error out if the user tries to display a framebuffer with such a
693          * configuration.
694          */
695         if (new_plane_state->fb->format->num_planes > 2) {
696                 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
697                         DRM_ERROR("unsupported UV-plane configuration\n");
698                         return -EINVAL;
699                 }
700         }
701
702         err = tegra_plane_state_add(tegra, new_plane_state);
703         if (err < 0)
704                 return err;
705
706         return 0;
707 }
708
709 static void tegra_plane_atomic_disable(struct drm_plane *plane,
710                                        struct drm_atomic_state *state)
711 {
712         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
713                                                                            plane);
714         struct tegra_plane *p = to_tegra_plane(plane);
715         u32 value;
716
717         /* rien ne va plus */
718         if (!old_state || !old_state->crtc)
719                 return;
720
721         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
722         value &= ~WIN_ENABLE;
723         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
724 }
725
726 static void tegra_plane_atomic_update(struct drm_plane *plane,
727                                       struct drm_atomic_state *state)
728 {
729         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
730                                                                            plane);
731         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
732         struct drm_framebuffer *fb = new_state->fb;
733         struct tegra_plane *p = to_tegra_plane(plane);
734         struct tegra_dc_window window;
735         unsigned int i;
736
737         /* rien ne va plus */
738         if (!new_state->crtc || !new_state->fb)
739                 return;
740
741         if (!new_state->visible)
742                 return tegra_plane_atomic_disable(plane, state);
743
744         memset(&window, 0, sizeof(window));
745         window.src.x = new_state->src.x1 >> 16;
746         window.src.y = new_state->src.y1 >> 16;
747         window.src.w = drm_rect_width(&new_state->src) >> 16;
748         window.src.h = drm_rect_height(&new_state->src) >> 16;
749         window.dst.x = new_state->dst.x1;
750         window.dst.y = new_state->dst.y1;
751         window.dst.w = drm_rect_width(&new_state->dst);
752         window.dst.h = drm_rect_height(&new_state->dst);
753         window.bits_per_pixel = fb->format->cpp[0] * 8;
754         window.reflect_x = tegra_plane_state->reflect_x;
755         window.reflect_y = tegra_plane_state->reflect_y;
756
757         /* copy from state */
758         window.zpos = new_state->normalized_zpos;
759         window.tiling = tegra_plane_state->tiling;
760         window.format = tegra_plane_state->format;
761         window.swap = tegra_plane_state->swap;
762
763         for (i = 0; i < fb->format->num_planes; i++) {
764                 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
765
766                 /*
767                  * Tegra uses a shared stride for UV planes. Framebuffers are
768                  * already checked for this in the tegra_plane_atomic_check()
769                  * function, so it's safe to ignore the V-plane pitch here.
770                  */
771                 if (i < 2)
772                         window.stride[i] = fb->pitches[i];
773         }
774
775         tegra_dc_setup_window(p, &window);
776 }
777
778 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
779         .prepare_fb = tegra_plane_prepare_fb,
780         .cleanup_fb = tegra_plane_cleanup_fb,
781         .atomic_check = tegra_plane_atomic_check,
782         .atomic_disable = tegra_plane_atomic_disable,
783         .atomic_update = tegra_plane_atomic_update,
784 };
785
786 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
787 {
788         /*
789          * Ideally this would use drm_crtc_mask(), but that would require the
790          * CRTC to already be in the mode_config's list of CRTCs. However, it
791          * will only be added to that list in the drm_crtc_init_with_planes()
792          * (in tegra_dc_init()), which in turn requires registration of these
793          * planes. So we have ourselves a nice little chicken and egg problem
794          * here.
795          *
796          * We work around this by manually creating the mask from the number
797          * of CRTCs that have been registered, and should therefore always be
798          * the same as drm_crtc_index() after registration.
799          */
800         return 1 << drm->mode_config.num_crtc;
801 }
802
803 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
804                                                     struct tegra_dc *dc)
805 {
806         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
807         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
808         struct tegra_plane *plane;
809         unsigned int num_formats;
810         const u64 *modifiers;
811         const u32 *formats;
812         int err;
813
814         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815         if (!plane)
816                 return ERR_PTR(-ENOMEM);
817
818         /* Always use window A as primary window */
819         plane->offset = 0xa00;
820         plane->index = 0;
821         plane->dc = dc;
822
823         num_formats = dc->soc->num_primary_formats;
824         formats = dc->soc->primary_formats;
825         modifiers = dc->soc->modifiers;
826
827         err = tegra_plane_interconnect_init(plane);
828         if (err) {
829                 kfree(plane);
830                 return ERR_PTR(err);
831         }
832
833         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
834                                        &tegra_plane_funcs, formats,
835                                        num_formats, modifiers, type, NULL);
836         if (err < 0) {
837                 kfree(plane);
838                 return ERR_PTR(err);
839         }
840
841         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
842         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
843
844         err = drm_plane_create_rotation_property(&plane->base,
845                                                  DRM_MODE_ROTATE_0,
846                                                  DRM_MODE_ROTATE_0 |
847                                                  DRM_MODE_ROTATE_180 |
848                                                  DRM_MODE_REFLECT_X |
849                                                  DRM_MODE_REFLECT_Y);
850         if (err < 0)
851                 dev_err(dc->dev, "failed to create rotation property: %d\n",
852                         err);
853
854         return &plane->base;
855 }
856
857 static const u32 tegra_legacy_cursor_plane_formats[] = {
858         DRM_FORMAT_RGBA8888,
859 };
860
861 static const u32 tegra_cursor_plane_formats[] = {
862         DRM_FORMAT_ARGB8888,
863 };
864
865 static int tegra_cursor_atomic_check(struct drm_plane *plane,
866                                      struct drm_atomic_state *state)
867 {
868         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
869                                                                                  plane);
870         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
871         struct tegra_plane *tegra = to_tegra_plane(plane);
872         int err;
873
874         plane_state->peak_memory_bandwidth = 0;
875         plane_state->avg_memory_bandwidth = 0;
876
877         /* no need for further checks if the plane is being disabled */
878         if (!new_plane_state->crtc) {
879                 plane_state->total_peak_memory_bandwidth = 0;
880                 return 0;
881         }
882
883         /* scaling not supported for cursor */
884         if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
885             (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
886                 return -EINVAL;
887
888         /* only square cursors supported */
889         if (new_plane_state->src_w != new_plane_state->src_h)
890                 return -EINVAL;
891
892         if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
893             new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
894                 return -EINVAL;
895
896         err = tegra_plane_state_add(tegra, new_plane_state);
897         if (err < 0)
898                 return err;
899
900         return 0;
901 }
902
903 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
904                                          struct drm_plane_state *new_state)
905 {
906         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
907         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
908         struct tegra_drm *tegra = plane->dev->dev_private;
909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910         u64 dma_mask = *dc->dev->dma_mask;
911 #endif
912         unsigned int x, y;
913         u32 value = 0;
914
915         /* rien ne va plus */
916         if (!new_state->crtc || !new_state->fb)
917                 return;
918
919         /*
920          * Legacy display supports hardware clipping of the cursor, but
921          * nvdisplay relies on software to clip the cursor to the screen.
922          */
923         if (!dc->soc->has_nvdisplay)
924                 value |= CURSOR_CLIP_DISPLAY;
925
926         switch (new_state->crtc_w) {
927         case 32:
928                 value |= CURSOR_SIZE_32x32;
929                 break;
930
931         case 64:
932                 value |= CURSOR_SIZE_64x64;
933                 break;
934
935         case 128:
936                 value |= CURSOR_SIZE_128x128;
937                 break;
938
939         case 256:
940                 value |= CURSOR_SIZE_256x256;
941                 break;
942
943         default:
944                 WARN(1, "cursor size %ux%u not supported\n",
945                      new_state->crtc_w, new_state->crtc_h);
946                 return;
947         }
948
949         value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
950         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
951
952 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
953         value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
954         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
955 #endif
956
957         /* enable cursor and set blend mode */
958         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
959         value |= CURSOR_ENABLE;
960         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
961
962         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
963         value &= ~CURSOR_DST_BLEND_MASK;
964         value &= ~CURSOR_SRC_BLEND_MASK;
965
966         if (dc->soc->has_nvdisplay)
967                 value &= ~CURSOR_COMPOSITION_MODE_XOR;
968         else
969                 value |= CURSOR_MODE_NORMAL;
970
971         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
972         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
973         value |= CURSOR_ALPHA;
974         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
975
976         /* nvdisplay relies on software for clipping */
977         if (dc->soc->has_nvdisplay) {
978                 struct drm_rect src;
979
980                 x = new_state->dst.x1;
981                 y = new_state->dst.y1;
982
983                 drm_rect_fp_to_int(&src, &new_state->src);
984
985                 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
986                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
987
988                 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
989                         (drm_rect_width(&src) & tegra->hmask);
990                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
991         } else {
992                 x = new_state->crtc_x;
993                 y = new_state->crtc_y;
994         }
995
996         /* position the cursor */
997         value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
998         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
999 }
1000
1001 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1002                                        struct drm_atomic_state *state)
1003 {
1004         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1005
1006         __tegra_cursor_atomic_update(plane, new_state);
1007 }
1008
1009 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1010                                         struct drm_atomic_state *state)
1011 {
1012         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1013                                                                            plane);
1014         struct tegra_dc *dc;
1015         u32 value;
1016
1017         /* rien ne va plus */
1018         if (!old_state || !old_state->crtc)
1019                 return;
1020
1021         dc = to_tegra_dc(old_state->crtc);
1022
1023         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1024         value &= ~CURSOR_ENABLE;
1025         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1026 }
1027
1028 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1029 {
1030         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1031         struct drm_crtc_state *crtc_state;
1032         int min_scale, max_scale;
1033         int err;
1034
1035         crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1036         if (WARN_ON(!crtc_state))
1037                 return -EINVAL;
1038
1039         if (!crtc_state->active)
1040                 return -EINVAL;
1041
1042         if (plane->state->crtc != new_state->crtc ||
1043             plane->state->src_w != new_state->src_w ||
1044             plane->state->src_h != new_state->src_h ||
1045             plane->state->crtc_w != new_state->crtc_w ||
1046             plane->state->crtc_h != new_state->crtc_h ||
1047             plane->state->fb != new_state->fb ||
1048             plane->state->fb == NULL)
1049                 return -EINVAL;
1050
1051         min_scale = (1 << 16) / 8;
1052         max_scale = (8 << 16) / 1;
1053
1054         err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1055                                                   true, true);
1056         if (err < 0)
1057                 return err;
1058
1059         if (new_state->visible != plane->state->visible)
1060                 return -EINVAL;
1061
1062         return 0;
1063 }
1064
1065 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1066                                              struct drm_atomic_state *state)
1067 {
1068         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1069         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1070
1071         plane->state->src_x = new_state->src_x;
1072         plane->state->src_y = new_state->src_y;
1073         plane->state->crtc_x = new_state->crtc_x;
1074         plane->state->crtc_y = new_state->crtc_y;
1075
1076         if (new_state->visible) {
1077                 struct tegra_plane *p = to_tegra_plane(plane);
1078                 u32 value;
1079
1080                 __tegra_cursor_atomic_update(plane, new_state);
1081
1082                 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1083                 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1084                 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1085
1086                 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1087                 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1088                 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1089         }
1090 }
1091
1092 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1093         .prepare_fb = tegra_plane_prepare_fb,
1094         .cleanup_fb = tegra_plane_cleanup_fb,
1095         .atomic_check = tegra_cursor_atomic_check,
1096         .atomic_update = tegra_cursor_atomic_update,
1097         .atomic_disable = tegra_cursor_atomic_disable,
1098         .atomic_async_check = tegra_cursor_atomic_async_check,
1099         .atomic_async_update = tegra_cursor_atomic_async_update,
1100 };
1101
1102 static const uint64_t linear_modifiers[] = {
1103         DRM_FORMAT_MOD_LINEAR,
1104         DRM_FORMAT_MOD_INVALID
1105 };
1106
1107 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1108                                                       struct tegra_dc *dc)
1109 {
1110         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1111         struct tegra_plane *plane;
1112         unsigned int num_formats;
1113         const u32 *formats;
1114         int err;
1115
1116         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1117         if (!plane)
1118                 return ERR_PTR(-ENOMEM);
1119
1120         /*
1121          * This index is kind of fake. The cursor isn't a regular plane, but
1122          * its update and activation request bits in DC_CMD_STATE_CONTROL do
1123          * use the same programming. Setting this fake index here allows the
1124          * code in tegra_add_plane_state() to do the right thing without the
1125          * need to special-casing the cursor plane.
1126          */
1127         plane->index = 6;
1128         plane->dc = dc;
1129
1130         if (!dc->soc->has_nvdisplay) {
1131                 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1132                 formats = tegra_legacy_cursor_plane_formats;
1133
1134                 err = tegra_plane_interconnect_init(plane);
1135                 if (err) {
1136                         kfree(plane);
1137                         return ERR_PTR(err);
1138                 }
1139         } else {
1140                 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1141                 formats = tegra_cursor_plane_formats;
1142         }
1143
1144         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1145                                        &tegra_plane_funcs, formats,
1146                                        num_formats, linear_modifiers,
1147                                        DRM_PLANE_TYPE_CURSOR, NULL);
1148         if (err < 0) {
1149                 kfree(plane);
1150                 return ERR_PTR(err);
1151         }
1152
1153         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1154         drm_plane_create_zpos_immutable_property(&plane->base, 255);
1155
1156         return &plane->base;
1157 }
1158
1159 static const u32 tegra20_overlay_formats[] = {
1160         DRM_FORMAT_ARGB4444,
1161         DRM_FORMAT_ARGB1555,
1162         DRM_FORMAT_RGB565,
1163         DRM_FORMAT_RGBA5551,
1164         DRM_FORMAT_ABGR8888,
1165         DRM_FORMAT_ARGB8888,
1166         /* non-native formats */
1167         DRM_FORMAT_XRGB1555,
1168         DRM_FORMAT_RGBX5551,
1169         DRM_FORMAT_XBGR8888,
1170         DRM_FORMAT_XRGB8888,
1171         /* planar formats */
1172         DRM_FORMAT_UYVY,
1173         DRM_FORMAT_YUYV,
1174         DRM_FORMAT_YUV420,
1175         DRM_FORMAT_YUV422,
1176 };
1177
1178 static const u32 tegra114_overlay_formats[] = {
1179         DRM_FORMAT_ARGB4444,
1180         DRM_FORMAT_ARGB1555,
1181         DRM_FORMAT_RGB565,
1182         DRM_FORMAT_RGBA5551,
1183         DRM_FORMAT_ABGR8888,
1184         DRM_FORMAT_ARGB8888,
1185         /* new on Tegra114 */
1186         DRM_FORMAT_ABGR4444,
1187         DRM_FORMAT_ABGR1555,
1188         DRM_FORMAT_BGRA5551,
1189         DRM_FORMAT_XRGB1555,
1190         DRM_FORMAT_RGBX5551,
1191         DRM_FORMAT_XBGR1555,
1192         DRM_FORMAT_BGRX5551,
1193         DRM_FORMAT_BGR565,
1194         DRM_FORMAT_BGRA8888,
1195         DRM_FORMAT_RGBA8888,
1196         DRM_FORMAT_XRGB8888,
1197         DRM_FORMAT_XBGR8888,
1198         /* planar formats */
1199         DRM_FORMAT_UYVY,
1200         DRM_FORMAT_YUYV,
1201         DRM_FORMAT_YUV420,
1202         DRM_FORMAT_YUV422,
1203         /* semi-planar formats */
1204         DRM_FORMAT_NV12,
1205         DRM_FORMAT_NV21,
1206         DRM_FORMAT_NV16,
1207         DRM_FORMAT_NV61,
1208         DRM_FORMAT_NV24,
1209         DRM_FORMAT_NV42,
1210 };
1211
1212 static const u32 tegra124_overlay_formats[] = {
1213         DRM_FORMAT_ARGB4444,
1214         DRM_FORMAT_ARGB1555,
1215         DRM_FORMAT_RGB565,
1216         DRM_FORMAT_RGBA5551,
1217         DRM_FORMAT_ABGR8888,
1218         DRM_FORMAT_ARGB8888,
1219         /* new on Tegra114 */
1220         DRM_FORMAT_ABGR4444,
1221         DRM_FORMAT_ABGR1555,
1222         DRM_FORMAT_BGRA5551,
1223         DRM_FORMAT_XRGB1555,
1224         DRM_FORMAT_RGBX5551,
1225         DRM_FORMAT_XBGR1555,
1226         DRM_FORMAT_BGRX5551,
1227         DRM_FORMAT_BGR565,
1228         DRM_FORMAT_BGRA8888,
1229         DRM_FORMAT_RGBA8888,
1230         DRM_FORMAT_XRGB8888,
1231         DRM_FORMAT_XBGR8888,
1232         /* new on Tegra124 */
1233         DRM_FORMAT_RGBX8888,
1234         DRM_FORMAT_BGRX8888,
1235         /* planar formats */
1236         DRM_FORMAT_UYVY,
1237         DRM_FORMAT_YUYV,
1238         DRM_FORMAT_YVYU,
1239         DRM_FORMAT_VYUY,
1240         DRM_FORMAT_YUV420, /* YU12 */
1241         DRM_FORMAT_YUV422, /* YU16 */
1242         DRM_FORMAT_YUV444, /* YU24 */
1243         /* semi-planar formats */
1244         DRM_FORMAT_NV12,
1245         DRM_FORMAT_NV21,
1246         DRM_FORMAT_NV16,
1247         DRM_FORMAT_NV61,
1248         DRM_FORMAT_NV24,
1249         DRM_FORMAT_NV42,
1250 };
1251
1252 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1253                                                        struct tegra_dc *dc,
1254                                                        unsigned int index,
1255                                                        bool cursor)
1256 {
1257         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1258         struct tegra_plane *plane;
1259         unsigned int num_formats;
1260         enum drm_plane_type type;
1261         const u32 *formats;
1262         int err;
1263
1264         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1265         if (!plane)
1266                 return ERR_PTR(-ENOMEM);
1267
1268         plane->offset = 0xa00 + 0x200 * index;
1269         plane->index = index;
1270         plane->dc = dc;
1271
1272         num_formats = dc->soc->num_overlay_formats;
1273         formats = dc->soc->overlay_formats;
1274
1275         err = tegra_plane_interconnect_init(plane);
1276         if (err) {
1277                 kfree(plane);
1278                 return ERR_PTR(err);
1279         }
1280
1281         if (!cursor)
1282                 type = DRM_PLANE_TYPE_OVERLAY;
1283         else
1284                 type = DRM_PLANE_TYPE_CURSOR;
1285
1286         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1287                                        &tegra_plane_funcs, formats,
1288                                        num_formats, linear_modifiers,
1289                                        type, NULL);
1290         if (err < 0) {
1291                 kfree(plane);
1292                 return ERR_PTR(err);
1293         }
1294
1295         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1296         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1297
1298         err = drm_plane_create_rotation_property(&plane->base,
1299                                                  DRM_MODE_ROTATE_0,
1300                                                  DRM_MODE_ROTATE_0 |
1301                                                  DRM_MODE_ROTATE_180 |
1302                                                  DRM_MODE_REFLECT_X |
1303                                                  DRM_MODE_REFLECT_Y);
1304         if (err < 0)
1305                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1306                         err);
1307
1308         return &plane->base;
1309 }
1310
1311 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1312                                                     struct tegra_dc *dc)
1313 {
1314         struct drm_plane *plane, *primary = NULL;
1315         unsigned int i, j;
1316
1317         for (i = 0; i < dc->soc->num_wgrps; i++) {
1318                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1319
1320                 if (wgrp->dc == dc->pipe) {
1321                         for (j = 0; j < wgrp->num_windows; j++) {
1322                                 unsigned int index = wgrp->windows[j];
1323
1324                                 plane = tegra_shared_plane_create(drm, dc,
1325                                                                   wgrp->index,
1326                                                                   index);
1327                                 if (IS_ERR(plane))
1328                                         return plane;
1329
1330                                 /*
1331                                  * Choose the first shared plane owned by this
1332                                  * head as the primary plane.
1333                                  */
1334                                 if (!primary) {
1335                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1336                                         primary = plane;
1337                                 }
1338                         }
1339                 }
1340         }
1341
1342         return primary;
1343 }
1344
1345 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1346                                              struct tegra_dc *dc)
1347 {
1348         struct drm_plane *planes[2], *primary;
1349         unsigned int planes_num;
1350         unsigned int i;
1351         int err;
1352
1353         primary = tegra_primary_plane_create(drm, dc);
1354         if (IS_ERR(primary))
1355                 return primary;
1356
1357         if (dc->soc->supports_cursor)
1358                 planes_num = 2;
1359         else
1360                 planes_num = 1;
1361
1362         for (i = 0; i < planes_num; i++) {
1363                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1364                                                           false);
1365                 if (IS_ERR(planes[i])) {
1366                         err = PTR_ERR(planes[i]);
1367
1368                         while (i--)
1369                                 planes[i]->funcs->destroy(planes[i]);
1370
1371                         primary->funcs->destroy(primary);
1372                         return ERR_PTR(err);
1373                 }
1374         }
1375
1376         return primary;
1377 }
1378
1379 static void tegra_dc_destroy(struct drm_crtc *crtc)
1380 {
1381         drm_crtc_cleanup(crtc);
1382 }
1383
1384 static void tegra_crtc_reset(struct drm_crtc *crtc)
1385 {
1386         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1387
1388         if (crtc->state)
1389                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1390
1391         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1392 }
1393
1394 static struct drm_crtc_state *
1395 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1396 {
1397         struct tegra_dc_state *state = to_dc_state(crtc->state);
1398         struct tegra_dc_state *copy;
1399
1400         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1401         if (!copy)
1402                 return NULL;
1403
1404         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1405         copy->clk = state->clk;
1406         copy->pclk = state->pclk;
1407         copy->div = state->div;
1408         copy->planes = state->planes;
1409
1410         return &copy->base;
1411 }
1412
1413 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1414                                             struct drm_crtc_state *state)
1415 {
1416         __drm_atomic_helper_crtc_destroy_state(state);
1417         kfree(state);
1418 }
1419
1420 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1421
1422 static const struct debugfs_reg32 tegra_dc_regs[] = {
1423         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1424         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1425         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1426         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1427         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1428         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1429         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1430         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1431         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1432         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1433         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1434         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1435         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1436         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1437         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1438         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1439         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1440         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1441         DEBUGFS_REG32(DC_CMD_INT_MASK),
1442         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1443         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1444         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1445         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1446         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1447         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1448         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1449         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1450         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1451         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1452         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1453         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1454         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1455         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1456         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1457         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1458         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1459         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1460         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1461         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1462         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1463         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1464         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1465         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1466         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1467         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1468         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1469         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1470         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1471         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1472         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1473         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1474         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1475         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1476         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1477         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1478         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1479         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1480         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1481         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1482         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1483         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1484         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1485         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1486         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1487         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1488         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1489         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1490         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1491         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1492         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1493         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1494         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1495         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1496         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1497         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1498         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1499         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1500         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1501         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1502         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1503         DEBUGFS_REG32(DC_DISP_ACTIVE),
1504         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1505         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1506         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1507         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1508         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1509         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1510         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1511         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1512         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1513         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1514         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1515         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1516         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1517         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1518         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1519         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1520         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1521         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1522         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1523         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1524         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1525         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1526         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1527         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1528         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1529         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1530         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1531         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1532         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1533         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1534         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1535         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1536         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1537         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1538         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1539         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1540         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1541         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1542         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1543         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1544         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1545         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1546         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1547         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1548         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1549         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1550         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1551         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1552         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1553         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1554         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1555         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1556         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1557         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1558         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1559         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1560         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1561         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1562         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1563         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1564         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1565         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1566         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1567         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1568         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1569         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1570         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1571         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1572         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1573         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1574         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1575         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1576         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1577         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1578         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1579         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1580         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1581         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1582         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1583         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1584         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1585         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1586         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1587         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1588         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1589         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1590         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1591         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1592         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1593         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1594         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1595         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1596         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1597         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1598         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1599         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1600         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1601         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1602         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1603         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1604         DEBUGFS_REG32(DC_WIN_POSITION),
1605         DEBUGFS_REG32(DC_WIN_SIZE),
1606         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1607         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1608         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1609         DEBUGFS_REG32(DC_WIN_DDA_INC),
1610         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1611         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1612         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1613         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1614         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1615         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1616         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1617         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1618         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1619         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1620         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1621         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1622         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1623         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1624         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1625         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1626         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1627         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1628         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1629         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1630         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1631         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1632         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1633         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1634         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1635 };
1636
1637 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1638 {
1639         struct drm_info_node *node = s->private;
1640         struct tegra_dc *dc = node->info_ent->data;
1641         unsigned int i;
1642         int err = 0;
1643
1644         drm_modeset_lock(&dc->base.mutex, NULL);
1645
1646         if (!dc->base.state->active) {
1647                 err = -EBUSY;
1648                 goto unlock;
1649         }
1650
1651         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1652                 unsigned int offset = tegra_dc_regs[i].offset;
1653
1654                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1655                            offset, tegra_dc_readl(dc, offset));
1656         }
1657
1658 unlock:
1659         drm_modeset_unlock(&dc->base.mutex);
1660         return err;
1661 }
1662
1663 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1664 {
1665         struct drm_info_node *node = s->private;
1666         struct tegra_dc *dc = node->info_ent->data;
1667         int err = 0;
1668         u32 value;
1669
1670         drm_modeset_lock(&dc->base.mutex, NULL);
1671
1672         if (!dc->base.state->active) {
1673                 err = -EBUSY;
1674                 goto unlock;
1675         }
1676
1677         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1678         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1679         tegra_dc_commit(dc);
1680
1681         drm_crtc_wait_one_vblank(&dc->base);
1682         drm_crtc_wait_one_vblank(&dc->base);
1683
1684         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1685         seq_printf(s, "%08x\n", value);
1686
1687         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1688
1689 unlock:
1690         drm_modeset_unlock(&dc->base.mutex);
1691         return err;
1692 }
1693
1694 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1695 {
1696         struct drm_info_node *node = s->private;
1697         struct tegra_dc *dc = node->info_ent->data;
1698
1699         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1700         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1701         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1702         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1703
1704         seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1705         seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1706         seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1707         seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1708
1709         return 0;
1710 }
1711
1712 static struct drm_info_list debugfs_files[] = {
1713         { "regs", tegra_dc_show_regs, 0, NULL },
1714         { "crc", tegra_dc_show_crc, 0, NULL },
1715         { "stats", tegra_dc_show_stats, 0, NULL },
1716 };
1717
1718 static int tegra_dc_late_register(struct drm_crtc *crtc)
1719 {
1720         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1721         struct drm_minor *minor = crtc->dev->primary;
1722         struct dentry *root;
1723         struct tegra_dc *dc = to_tegra_dc(crtc);
1724
1725 #ifdef CONFIG_DEBUG_FS
1726         root = crtc->debugfs_entry;
1727 #else
1728         root = NULL;
1729 #endif
1730
1731         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1732                                     GFP_KERNEL);
1733         if (!dc->debugfs_files)
1734                 return -ENOMEM;
1735
1736         for (i = 0; i < count; i++)
1737                 dc->debugfs_files[i].data = dc;
1738
1739         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1740
1741         return 0;
1742 }
1743
1744 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1745 {
1746         unsigned int count = ARRAY_SIZE(debugfs_files);
1747         struct drm_minor *minor = crtc->dev->primary;
1748         struct tegra_dc *dc = to_tegra_dc(crtc);
1749         struct dentry *root;
1750
1751 #ifdef CONFIG_DEBUG_FS
1752         root = crtc->debugfs_entry;
1753 #else
1754         root = NULL;
1755 #endif
1756
1757         drm_debugfs_remove_files(dc->debugfs_files, count, root, minor);
1758         kfree(dc->debugfs_files);
1759         dc->debugfs_files = NULL;
1760 }
1761
1762 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1763 {
1764         struct tegra_dc *dc = to_tegra_dc(crtc);
1765
1766         /* XXX vblank syncpoints don't work with nvdisplay yet */
1767         if (dc->syncpt && !dc->soc->has_nvdisplay)
1768                 return host1x_syncpt_read(dc->syncpt);
1769
1770         /* fallback to software emulated VBLANK counter */
1771         return (u32)drm_crtc_vblank_count(&dc->base);
1772 }
1773
1774 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1775 {
1776         struct tegra_dc *dc = to_tegra_dc(crtc);
1777         u32 value;
1778
1779         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1780         value |= VBLANK_INT;
1781         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1782
1783         return 0;
1784 }
1785
1786 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1787 {
1788         struct tegra_dc *dc = to_tegra_dc(crtc);
1789         u32 value;
1790
1791         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1792         value &= ~VBLANK_INT;
1793         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794 }
1795
1796 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1797         .page_flip = drm_atomic_helper_page_flip,
1798         .set_config = drm_atomic_helper_set_config,
1799         .destroy = tegra_dc_destroy,
1800         .reset = tegra_crtc_reset,
1801         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1802         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1803         .late_register = tegra_dc_late_register,
1804         .early_unregister = tegra_dc_early_unregister,
1805         .get_vblank_counter = tegra_dc_get_vblank_counter,
1806         .enable_vblank = tegra_dc_enable_vblank,
1807         .disable_vblank = tegra_dc_disable_vblank,
1808 };
1809
1810 static int tegra_dc_set_timings(struct tegra_dc *dc,
1811                                 struct drm_display_mode *mode)
1812 {
1813         unsigned int h_ref_to_sync = 1;
1814         unsigned int v_ref_to_sync = 1;
1815         unsigned long value;
1816
1817         if (!dc->soc->has_nvdisplay) {
1818                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1819
1820                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1821                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1822         }
1823
1824         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1825                 ((mode->hsync_end - mode->hsync_start) <<  0);
1826         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1827
1828         value = ((mode->vtotal - mode->vsync_end) << 16) |
1829                 ((mode->htotal - mode->hsync_end) <<  0);
1830         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1831
1832         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1833                 ((mode->hsync_start - mode->hdisplay) <<  0);
1834         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1835
1836         value = (mode->vdisplay << 16) | mode->hdisplay;
1837         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1838
1839         return 0;
1840 }
1841
1842 /**
1843  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1844  *     state
1845  * @dc: display controller
1846  * @crtc_state: CRTC atomic state
1847  * @clk: parent clock for display controller
1848  * @pclk: pixel clock
1849  * @div: shift clock divider
1850  *
1851  * Returns:
1852  * 0 on success or a negative error-code on failure.
1853  */
1854 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1855                                struct drm_crtc_state *crtc_state,
1856                                struct clk *clk, unsigned long pclk,
1857                                unsigned int div)
1858 {
1859         struct tegra_dc_state *state = to_dc_state(crtc_state);
1860
1861         if (!clk_has_parent(dc->clk, clk))
1862                 return -EINVAL;
1863
1864         state->clk = clk;
1865         state->pclk = pclk;
1866         state->div = div;
1867
1868         return 0;
1869 }
1870
1871 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1872                                           struct tegra_dc_state *state)
1873 {
1874         unsigned long rate, pstate;
1875         struct dev_pm_opp *opp;
1876         int err;
1877
1878         if (!dc->has_opp_table)
1879                 return;
1880
1881         /* calculate actual pixel clock rate which depends on internal divider */
1882         rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1883
1884         /* find suitable OPP for the rate */
1885         opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1886
1887         /*
1888          * Very high resolution modes may results in a clock rate that is
1889          * above the characterized maximum. In this case it's okay to fall
1890          * back to the characterized maximum.
1891          */
1892         if (opp == ERR_PTR(-ERANGE))
1893                 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1894
1895         if (IS_ERR(opp)) {
1896                 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1897                         rate, opp);
1898                 return;
1899         }
1900
1901         pstate = dev_pm_opp_get_required_pstate(opp, 0);
1902         dev_pm_opp_put(opp);
1903
1904         /*
1905          * The minimum core voltage depends on the pixel clock rate (which
1906          * depends on internal clock divider of the CRTC) and not on the
1907          * rate of the display controller clock. This is why we're not using
1908          * dev_pm_opp_set_rate() API and instead controlling the power domain
1909          * directly.
1910          */
1911         err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1912         if (err)
1913                 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1914                         pstate, err);
1915 }
1916
1917 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1918                                     struct tegra_dc_state *state)
1919 {
1920         int err;
1921
1922         err = clk_set_parent(dc->clk, state->clk);
1923         if (err < 0)
1924                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1925
1926         /*
1927          * Outputs may not want to change the parent clock rate. This is only
1928          * relevant to Tegra20 where only a single display PLL is available.
1929          * Since that PLL would typically be used for HDMI, an internal LVDS
1930          * panel would need to be driven by some other clock such as PLL_P
1931          * which is shared with other peripherals. Changing the clock rate
1932          * should therefore be avoided.
1933          */
1934         if (state->pclk > 0) {
1935                 err = clk_set_rate(state->clk, state->pclk);
1936                 if (err < 0)
1937                         dev_err(dc->dev,
1938                                 "failed to set clock rate to %lu Hz\n",
1939                                 state->pclk);
1940
1941                 err = clk_set_rate(dc->clk, state->pclk);
1942                 if (err < 0)
1943                         dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1944                                 dc->clk, state->pclk, err);
1945         }
1946
1947         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1948                       state->div);
1949         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1950
1951         tegra_dc_update_voltage_state(dc, state);
1952 }
1953
1954 static void tegra_dc_stop(struct tegra_dc *dc)
1955 {
1956         u32 value;
1957
1958         /* stop the display controller */
1959         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1960         value &= ~DISP_CTRL_MODE_MASK;
1961         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1962
1963         tegra_dc_commit(dc);
1964 }
1965
1966 static bool tegra_dc_idle(struct tegra_dc *dc)
1967 {
1968         u32 value;
1969
1970         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1971
1972         return (value & DISP_CTRL_MODE_MASK) == 0;
1973 }
1974
1975 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1976 {
1977         timeout = jiffies + msecs_to_jiffies(timeout);
1978
1979         while (time_before(jiffies, timeout)) {
1980                 if (tegra_dc_idle(dc))
1981                         return 0;
1982
1983                 usleep_range(1000, 2000);
1984         }
1985
1986         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1987         return -ETIMEDOUT;
1988 }
1989
1990 static void
1991 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1992                                    struct drm_atomic_state *state,
1993                                    bool prepare_bandwidth_transition)
1994 {
1995         const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1996         u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1997         const struct drm_plane_state *old_plane_state;
1998         const struct drm_crtc_state *old_crtc_state;
1999         struct tegra_dc_window window, old_window;
2000         struct tegra_dc *dc = to_tegra_dc(crtc);
2001         struct tegra_plane *tegra;
2002         struct drm_plane *plane;
2003
2004         if (dc->soc->has_nvdisplay)
2005                 return;
2006
2007         old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2008
2009         if (!crtc->state->active) {
2010                 if (!old_crtc_state->active)
2011                         return;
2012
2013                 /*
2014                  * When CRTC is disabled on DPMS, the state of attached planes
2015                  * is kept unchanged. Hence we need to enforce removal of the
2016                  * bandwidths from the ICC paths.
2017                  */
2018                 drm_atomic_crtc_for_each_plane(plane, crtc) {
2019                         tegra = to_tegra_plane(plane);
2020
2021                         icc_set_bw(tegra->icc_mem, 0, 0);
2022                         icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2023                 }
2024
2025                 return;
2026         }
2027
2028         for_each_old_plane_in_state(old_crtc_state->state, plane,
2029                                     old_plane_state, i) {
2030                 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2031                 new_tegra_state = to_const_tegra_plane_state(plane->state);
2032                 tegra = to_tegra_plane(plane);
2033
2034                 /*
2035                  * We're iterating over the global atomic state and it contains
2036                  * planes from another CRTC, hence we need to filter out the
2037                  * planes unrelated to this CRTC.
2038                  */
2039                 if (tegra->dc != dc)
2040                         continue;
2041
2042                 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2043                 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2044
2045                 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2046                 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2047
2048                 /*
2049                  * See the comment related to !crtc->state->active above,
2050                  * which explains why bandwidths need to be updated when
2051                  * CRTC is turning ON.
2052                  */
2053                 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2054                     old_crtc_state->active)
2055                         continue;
2056
2057                 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2058                 window.dst.h = drm_rect_height(&plane->state->dst);
2059
2060                 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2061                 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2062
2063                 /*
2064                  * During the preparation phase (atomic_begin), the memory
2065                  * freq should go high before the DC changes are committed
2066                  * if bandwidth requirement goes up, otherwise memory freq
2067                  * should to stay high if BW requirement goes down.  The
2068                  * opposite applies to the completion phase (post_commit).
2069                  */
2070                 if (prepare_bandwidth_transition) {
2071                         new_avg_bw = max(old_avg_bw, new_avg_bw);
2072                         new_peak_bw = max(old_peak_bw, new_peak_bw);
2073
2074                         if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2075                                 window = old_window;
2076                 }
2077
2078                 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2079
2080                 if (tegra_plane_use_vertical_filtering(tegra, &window))
2081                         icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2082                 else
2083                         icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2084         }
2085 }
2086
2087 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2088                                       struct drm_atomic_state *state)
2089 {
2090         struct tegra_dc *dc = to_tegra_dc(crtc);
2091         u32 value;
2092         int err;
2093
2094         if (!tegra_dc_idle(dc)) {
2095                 tegra_dc_stop(dc);
2096
2097                 /*
2098                  * Ignore the return value, there isn't anything useful to do
2099                  * in case this fails.
2100                  */
2101                 tegra_dc_wait_idle(dc, 100);
2102         }
2103
2104         /*
2105          * This should really be part of the RGB encoder driver, but clearing
2106          * these bits has the side-effect of stopping the display controller.
2107          * When that happens no VBLANK interrupts will be raised. At the same
2108          * time the encoder is disabled before the display controller, so the
2109          * above code is always going to timeout waiting for the controller
2110          * to go idle.
2111          *
2112          * Given the close coupling between the RGB encoder and the display
2113          * controller doing it here is still kind of okay. None of the other
2114          * encoder drivers require these bits to be cleared.
2115          *
2116          * XXX: Perhaps given that the display controller is switched off at
2117          * this point anyway maybe clearing these bits isn't even useful for
2118          * the RGB encoder?
2119          */
2120         if (dc->rgb) {
2121                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2122                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2123                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2124                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2125         }
2126
2127         tegra_dc_stats_reset(&dc->stats);
2128         drm_crtc_vblank_off(crtc);
2129
2130         spin_lock_irq(&crtc->dev->event_lock);
2131
2132         if (crtc->state->event) {
2133                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2134                 crtc->state->event = NULL;
2135         }
2136
2137         spin_unlock_irq(&crtc->dev->event_lock);
2138
2139         err = host1x_client_suspend(&dc->client);
2140         if (err < 0)
2141                 dev_err(dc->dev, "failed to suspend: %d\n", err);
2142
2143         if (dc->has_opp_table) {
2144                 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2145                 if (err)
2146                         dev_err(dc->dev,
2147                                 "failed to clear power domain state: %d\n", err);
2148         }
2149 }
2150
2151 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2152                                      struct drm_atomic_state *state)
2153 {
2154         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2155         struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2156         struct tegra_dc *dc = to_tegra_dc(crtc);
2157         u32 value;
2158         int err;
2159
2160         /* apply PLL changes */
2161         tegra_dc_set_clock_rate(dc, crtc_state);
2162
2163         err = host1x_client_resume(&dc->client);
2164         if (err < 0) {
2165                 dev_err(dc->dev, "failed to resume: %d\n", err);
2166                 return;
2167         }
2168
2169         /* initialize display controller */
2170         if (dc->syncpt) {
2171                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2172
2173                 if (dc->soc->has_nvdisplay)
2174                         enable = 1 << 31;
2175                 else
2176                         enable = 1 << 8;
2177
2178                 value = SYNCPT_CNTRL_NO_STALL;
2179                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2180
2181                 value = enable | syncpt;
2182                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2183         }
2184
2185         if (dc->soc->has_nvdisplay) {
2186                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2187                         DSC_OBUF_UF_INT;
2188                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2189
2190                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2191                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2192                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2193                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2194                         VBLANK_INT | FRAME_END_INT;
2195                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2196
2197                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2198                         FRAME_END_INT;
2199                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2200
2201                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2202                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2203
2204                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2205         } else {
2206                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2207                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2208                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2209
2210                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2211                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2212                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2213
2214                 /* initialize timer */
2215                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2216                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2217                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2218
2219                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2220                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2221                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2222
2223                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2224                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2225                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2226
2227                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2228                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2229                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2230         }
2231
2232         if (dc->soc->supports_background_color)
2233                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2234         else
2235                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2236
2237         /* apply pixel clock changes */
2238         if (!dc->soc->has_nvdisplay) {
2239                 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2240                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2241         }
2242
2243         /* program display mode */
2244         tegra_dc_set_timings(dc, mode);
2245
2246         /* interlacing isn't supported yet, so disable it */
2247         if (dc->soc->supports_interlacing) {
2248                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2249                 value &= ~INTERLACE_ENABLE;
2250                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2251         }
2252
2253         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2254         value &= ~DISP_CTRL_MODE_MASK;
2255         value |= DISP_CTRL_MODE_C_DISPLAY;
2256         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2257
2258         if (!dc->soc->has_nvdisplay) {
2259                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2260                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2261                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2262                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2263         }
2264
2265         /* enable underflow reporting and display red for missing pixels */
2266         if (dc->soc->has_nvdisplay) {
2267                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2268                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2269         }
2270
2271         if (dc->rgb) {
2272                 /* XXX: parameterize? */
2273                 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2274                 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2275         }
2276
2277         tegra_dc_commit(dc);
2278
2279         drm_crtc_vblank_on(crtc);
2280 }
2281
2282 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2283                                     struct drm_atomic_state *state)
2284 {
2285         unsigned long flags;
2286
2287         tegra_crtc_update_memory_bandwidth(crtc, state, true);
2288
2289         if (crtc->state->event) {
2290                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2291
2292                 if (drm_crtc_vblank_get(crtc) != 0)
2293                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
2294                 else
2295                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2296
2297                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2298
2299                 crtc->state->event = NULL;
2300         }
2301 }
2302
2303 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2304                                     struct drm_atomic_state *state)
2305 {
2306         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2307                                                                           crtc);
2308         struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2309         struct tegra_dc *dc = to_tegra_dc(crtc);
2310         u32 value;
2311
2312         value = dc_state->planes << 8 | GENERAL_UPDATE;
2313         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2314         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2315
2316         value = dc_state->planes | GENERAL_ACT_REQ;
2317         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2318         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2319 }
2320
2321 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2322 {
2323         const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2324         const struct drm_format_info *fmt = state->fb->format;
2325         unsigned int src_w = drm_rect_width(&state->src) >> 16;
2326         unsigned int dst_w = drm_rect_width(&state->dst);
2327
2328         if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2329                 return false;
2330
2331         if (soc->supports_cursor)
2332                 return true;
2333
2334         if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2335                 return false;
2336
2337         return true;
2338 }
2339
2340 static unsigned long
2341 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2342                          const struct drm_plane_state *plane_state)
2343 {
2344         const struct drm_plane_state *other_state;
2345         const struct tegra_plane *tegra;
2346         unsigned long overlap_mask = 0;
2347         struct drm_plane *plane;
2348         struct drm_rect rect;
2349
2350         if (!plane_state->visible || !plane_state->fb)
2351                 return 0;
2352
2353         /*
2354          * Data-prefetch FIFO will easily help to overcome temporal memory
2355          * pressure if other plane overlaps with the cursor plane.
2356          */
2357         if (tegra_plane_is_cursor(plane_state))
2358                 return 0;
2359
2360         drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2361                 rect = plane_state->dst;
2362
2363                 tegra = to_tegra_plane(other_state->plane);
2364
2365                 if (!other_state->visible || !other_state->fb)
2366                         continue;
2367
2368                 /*
2369                  * Ignore cursor plane overlaps because it's not practical to
2370                  * assume that it contributes to the bandwidth in overlapping
2371                  * area if window width is small.
2372                  */
2373                 if (tegra_plane_is_cursor(other_state))
2374                         continue;
2375
2376                 if (drm_rect_intersect(&rect, &other_state->dst))
2377                         overlap_mask |= BIT(tegra->index);
2378         }
2379
2380         return overlap_mask;
2381 }
2382
2383 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2384                                                  struct drm_atomic_state *state)
2385 {
2386         ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2387         u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2388         bool all_planes_overlap_simultaneously = true;
2389         const struct tegra_plane_state *tegra_state;
2390         const struct drm_plane_state *plane_state;
2391         struct tegra_dc *dc = to_tegra_dc(crtc);
2392         struct drm_crtc_state *new_state;
2393         struct tegra_plane *tegra;
2394         struct drm_plane *plane;
2395
2396         /*
2397          * The nv-display uses shared planes.  The algorithm below assumes
2398          * maximum 3 planes per-CRTC, this assumption isn't applicable to
2399          * the nv-display.  Note that T124 support has additional windows,
2400          * but currently they aren't supported by the driver.
2401          */
2402         if (dc->soc->has_nvdisplay)
2403                 return 0;
2404
2405         new_state = drm_atomic_get_new_crtc_state(state, crtc);
2406
2407         /*
2408          * For overlapping planes pixel's data is fetched for each plane at
2409          * the same time, hence bandwidths are accumulated in this case.
2410          * This needs to be taken into account for calculating total bandwidth
2411          * consumed by all planes.
2412          *
2413          * Here we get the overlapping state of each plane, which is a
2414          * bitmask of plane indices telling with what planes there is an
2415          * overlap. Note that bitmask[plane] includes BIT(plane) in order
2416          * to make further code nicer and simpler.
2417          */
2418         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2419                 tegra_state = to_const_tegra_plane_state(plane_state);
2420                 tegra = to_tegra_plane(plane);
2421
2422                 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2423                         return -EINVAL;
2424
2425                 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2426                 mask = tegra_plane_overlap_mask(new_state, plane_state);
2427                 overlap_mask[tegra->index] = mask;
2428
2429                 if (hweight_long(mask) != 3)
2430                         all_planes_overlap_simultaneously = false;
2431         }
2432
2433         /*
2434          * Then we calculate maximum bandwidth of each plane state.
2435          * The bandwidth includes the plane BW + BW of the "simultaneously"
2436          * overlapping planes, where "simultaneously" means areas where DC
2437          * fetches from the planes simultaneously during of scan-out process.
2438          *
2439          * For example, if plane A overlaps with planes B and C, but B and C
2440          * don't overlap, then the peak bandwidth will be either in area where
2441          * A-and-B or A-and-C planes overlap.
2442          *
2443          * The plane_peak_bw[] contains peak memory bandwidth values of
2444          * each plane, this information is needed by interconnect provider
2445          * in order to set up latency allowance based on the peak BW, see
2446          * tegra_crtc_update_memory_bandwidth().
2447          */
2448         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2449                 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2450
2451                 /*
2452                  * Note that plane's atomic check doesn't touch the
2453                  * total_peak_memory_bandwidth of enabled plane, hence the
2454                  * current state contains the old bandwidth state from the
2455                  * previous CRTC commit.
2456                  */
2457                 tegra_state = to_const_tegra_plane_state(plane_state);
2458                 tegra = to_tegra_plane(plane);
2459
2460                 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2461                         if (i == tegra->index)
2462                                 continue;
2463
2464                         if (all_planes_overlap_simultaneously)
2465                                 overlap_bw += plane_peak_bw[i];
2466                         else
2467                                 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2468                 }
2469
2470                 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2471                 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2472
2473                 /*
2474                  * If plane's peak bandwidth changed (for example plane isn't
2475                  * overlapped anymore) and plane isn't in the atomic state,
2476                  * then add plane to the state in order to have the bandwidth
2477                  * updated.
2478                  */
2479                 if (old_peak_bw != new_peak_bw) {
2480                         struct tegra_plane_state *new_tegra_state;
2481                         struct drm_plane_state *new_plane_state;
2482
2483                         new_plane_state = drm_atomic_get_plane_state(state, plane);
2484                         if (IS_ERR(new_plane_state))
2485                                 return PTR_ERR(new_plane_state);
2486
2487                         new_tegra_state = to_tegra_plane_state(new_plane_state);
2488                         new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2489                 }
2490         }
2491
2492         return 0;
2493 }
2494
2495 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2496                                    struct drm_atomic_state *state)
2497 {
2498         int err;
2499
2500         err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2501         if (err)
2502                 return err;
2503
2504         return 0;
2505 }
2506
2507 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2508                                    struct drm_atomic_state *state)
2509 {
2510         /*
2511          * Display bandwidth is allowed to go down only once hardware state
2512          * is known to be armed, i.e. state was committed and VBLANK event
2513          * received.
2514          */
2515         tegra_crtc_update_memory_bandwidth(crtc, state, false);
2516 }
2517
2518 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2519         .atomic_check = tegra_crtc_atomic_check,
2520         .atomic_begin = tegra_crtc_atomic_begin,
2521         .atomic_flush = tegra_crtc_atomic_flush,
2522         .atomic_enable = tegra_crtc_atomic_enable,
2523         .atomic_disable = tegra_crtc_atomic_disable,
2524 };
2525
2526 static irqreturn_t tegra_dc_irq(int irq, void *data)
2527 {
2528         struct tegra_dc *dc = data;
2529         unsigned long status;
2530
2531         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2532         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2533
2534         if (status & FRAME_END_INT) {
2535                 /*
2536                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2537                 */
2538                 dc->stats.frames_total++;
2539                 dc->stats.frames++;
2540         }
2541
2542         if (status & VBLANK_INT) {
2543                 /*
2544                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2545                 */
2546                 drm_crtc_handle_vblank(&dc->base);
2547                 dc->stats.vblank_total++;
2548                 dc->stats.vblank++;
2549         }
2550
2551         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2552                 /*
2553                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2554                 */
2555                 dc->stats.underflow_total++;
2556                 dc->stats.underflow++;
2557         }
2558
2559         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2560                 /*
2561                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2562                 */
2563                 dc->stats.overflow_total++;
2564                 dc->stats.overflow++;
2565         }
2566
2567         if (status & HEAD_UF_INT) {
2568                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2569                 dc->stats.underflow_total++;
2570                 dc->stats.underflow++;
2571         }
2572
2573         return IRQ_HANDLED;
2574 }
2575
2576 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2577 {
2578         unsigned int i;
2579
2580         if (!dc->soc->wgrps)
2581                 return true;
2582
2583         for (i = 0; i < dc->soc->num_wgrps; i++) {
2584                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2585
2586                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2587                         return true;
2588         }
2589
2590         return false;
2591 }
2592
2593 static int tegra_dc_early_init(struct host1x_client *client)
2594 {
2595         struct drm_device *drm = dev_get_drvdata(client->host);
2596         struct tegra_drm *tegra = drm->dev_private;
2597
2598         tegra->num_crtcs++;
2599
2600         return 0;
2601 }
2602
2603 static int tegra_dc_init(struct host1x_client *client)
2604 {
2605         struct drm_device *drm = dev_get_drvdata(client->host);
2606         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2607         struct tegra_dc *dc = host1x_client_to_dc(client);
2608         struct tegra_drm *tegra = drm->dev_private;
2609         struct drm_plane *primary = NULL;
2610         struct drm_plane *cursor = NULL;
2611         int err;
2612
2613         /*
2614          * DC has been reset by now, so VBLANK syncpoint can be released
2615          * for general use.
2616          */
2617         host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2618
2619         /*
2620          * XXX do not register DCs with no window groups because we cannot
2621          * assign a primary plane to them, which in turn will cause KMS to
2622          * crash.
2623          */
2624         if (!tegra_dc_has_window_groups(dc))
2625                 return 0;
2626
2627         /*
2628          * Set the display hub as the host1x client parent for the display
2629          * controller. This is needed for the runtime reference counting that
2630          * ensures the display hub is always powered when any of the display
2631          * controllers are.
2632          */
2633         if (dc->soc->has_nvdisplay)
2634                 client->parent = &tegra->hub->client;
2635
2636         dc->syncpt = host1x_syncpt_request(client, flags);
2637         if (!dc->syncpt)
2638                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2639
2640         err = host1x_client_iommu_attach(client);
2641         if (err < 0 && err != -ENODEV) {
2642                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2643                 return err;
2644         }
2645
2646         if (dc->soc->wgrps)
2647                 primary = tegra_dc_add_shared_planes(drm, dc);
2648         else
2649                 primary = tegra_dc_add_planes(drm, dc);
2650
2651         if (IS_ERR(primary)) {
2652                 err = PTR_ERR(primary);
2653                 goto cleanup;
2654         }
2655
2656         if (dc->soc->supports_cursor) {
2657                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2658                 if (IS_ERR(cursor)) {
2659                         err = PTR_ERR(cursor);
2660                         goto cleanup;
2661                 }
2662         } else {
2663                 /* dedicate one overlay to mouse cursor */
2664                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2665                 if (IS_ERR(cursor)) {
2666                         err = PTR_ERR(cursor);
2667                         goto cleanup;
2668                 }
2669         }
2670
2671         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2672                                         &tegra_crtc_funcs, NULL);
2673         if (err < 0)
2674                 goto cleanup;
2675
2676         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2677
2678         /*
2679          * Keep track of the minimum pitch alignment across all display
2680          * controllers.
2681          */
2682         if (dc->soc->pitch_align > tegra->pitch_align)
2683                 tegra->pitch_align = dc->soc->pitch_align;
2684
2685         /* track maximum resolution */
2686         if (dc->soc->has_nvdisplay)
2687                 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2688         else
2689                 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2690
2691         err = tegra_dc_rgb_init(drm, dc);
2692         if (err < 0 && err != -ENODEV) {
2693                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2694                 goto cleanup;
2695         }
2696
2697         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2698                                dev_name(dc->dev), dc);
2699         if (err < 0) {
2700                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2701                         err);
2702                 goto cleanup;
2703         }
2704
2705         /*
2706          * Inherit the DMA parameters (such as maximum segment size) from the
2707          * parent host1x device.
2708          */
2709         client->dev->dma_parms = client->host->dma_parms;
2710
2711         return 0;
2712
2713 cleanup:
2714         if (!IS_ERR_OR_NULL(cursor))
2715                 drm_plane_cleanup(cursor);
2716
2717         if (!IS_ERR(primary))
2718                 drm_plane_cleanup(primary);
2719
2720         host1x_client_iommu_detach(client);
2721         host1x_syncpt_put(dc->syncpt);
2722
2723         return err;
2724 }
2725
2726 static int tegra_dc_exit(struct host1x_client *client)
2727 {
2728         struct tegra_dc *dc = host1x_client_to_dc(client);
2729         int err;
2730
2731         if (!tegra_dc_has_window_groups(dc))
2732                 return 0;
2733
2734         /* avoid a dangling pointer just in case this disappears */
2735         client->dev->dma_parms = NULL;
2736
2737         devm_free_irq(dc->dev, dc->irq, dc);
2738
2739         err = tegra_dc_rgb_exit(dc);
2740         if (err) {
2741                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2742                 return err;
2743         }
2744
2745         host1x_client_iommu_detach(client);
2746         host1x_syncpt_put(dc->syncpt);
2747
2748         return 0;
2749 }
2750
2751 static int tegra_dc_late_exit(struct host1x_client *client)
2752 {
2753         struct drm_device *drm = dev_get_drvdata(client->host);
2754         struct tegra_drm *tegra = drm->dev_private;
2755
2756         tegra->num_crtcs--;
2757
2758         return 0;
2759 }
2760
2761 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2762 {
2763         struct tegra_dc *dc = host1x_client_to_dc(client);
2764         struct device *dev = client->dev;
2765         int err;
2766
2767         err = reset_control_assert(dc->rst);
2768         if (err < 0) {
2769                 dev_err(dev, "failed to assert reset: %d\n", err);
2770                 return err;
2771         }
2772
2773         if (dc->soc->has_powergate)
2774                 tegra_powergate_power_off(dc->powergate);
2775
2776         clk_disable_unprepare(dc->clk);
2777         pm_runtime_put_sync(dev);
2778
2779         return 0;
2780 }
2781
2782 static int tegra_dc_runtime_resume(struct host1x_client *client)
2783 {
2784         struct tegra_dc *dc = host1x_client_to_dc(client);
2785         struct device *dev = client->dev;
2786         int err;
2787
2788         err = pm_runtime_resume_and_get(dev);
2789         if (err < 0) {
2790                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2791                 return err;
2792         }
2793
2794         if (dc->soc->has_powergate) {
2795                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2796                                                         dc->rst);
2797                 if (err < 0) {
2798                         dev_err(dev, "failed to power partition: %d\n", err);
2799                         goto put_rpm;
2800                 }
2801         } else {
2802                 err = clk_prepare_enable(dc->clk);
2803                 if (err < 0) {
2804                         dev_err(dev, "failed to enable clock: %d\n", err);
2805                         goto put_rpm;
2806                 }
2807
2808                 err = reset_control_deassert(dc->rst);
2809                 if (err < 0) {
2810                         dev_err(dev, "failed to deassert reset: %d\n", err);
2811                         goto disable_clk;
2812                 }
2813         }
2814
2815         return 0;
2816
2817 disable_clk:
2818         clk_disable_unprepare(dc->clk);
2819 put_rpm:
2820         pm_runtime_put_sync(dev);
2821         return err;
2822 }
2823
2824 static const struct host1x_client_ops dc_client_ops = {
2825         .early_init = tegra_dc_early_init,
2826         .init = tegra_dc_init,
2827         .exit = tegra_dc_exit,
2828         .late_exit = tegra_dc_late_exit,
2829         .suspend = tegra_dc_runtime_suspend,
2830         .resume = tegra_dc_runtime_resume,
2831 };
2832
2833 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2834         .supports_background_color = false,
2835         .supports_interlacing = false,
2836         .supports_cursor = false,
2837         .supports_block_linear = false,
2838         .supports_sector_layout = false,
2839         .has_legacy_blending = true,
2840         .pitch_align = 8,
2841         .has_powergate = false,
2842         .coupled_pm = true,
2843         .has_nvdisplay = false,
2844         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2845         .primary_formats = tegra20_primary_formats,
2846         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2847         .overlay_formats = tegra20_overlay_formats,
2848         .modifiers = tegra20_modifiers,
2849         .has_win_a_without_filters = true,
2850         .has_win_b_vfilter_mem_client = true,
2851         .has_win_c_without_vert_filter = true,
2852         .plane_tiled_memory_bandwidth_x2 = false,
2853         .has_pll_d2_out0 = false,
2854 };
2855
2856 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2857         .supports_background_color = false,
2858         .supports_interlacing = false,
2859         .supports_cursor = false,
2860         .supports_block_linear = false,
2861         .supports_sector_layout = false,
2862         .has_legacy_blending = true,
2863         .pitch_align = 8,
2864         .has_powergate = false,
2865         .coupled_pm = false,
2866         .has_nvdisplay = false,
2867         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2868         .primary_formats = tegra20_primary_formats,
2869         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2870         .overlay_formats = tegra20_overlay_formats,
2871         .modifiers = tegra20_modifiers,
2872         .has_win_a_without_filters = false,
2873         .has_win_b_vfilter_mem_client = true,
2874         .has_win_c_without_vert_filter = false,
2875         .plane_tiled_memory_bandwidth_x2 = true,
2876         .has_pll_d2_out0 = true,
2877 };
2878
2879 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2880         .supports_background_color = false,
2881         .supports_interlacing = false,
2882         .supports_cursor = false,
2883         .supports_block_linear = false,
2884         .supports_sector_layout = false,
2885         .has_legacy_blending = true,
2886         .pitch_align = 64,
2887         .has_powergate = true,
2888         .coupled_pm = false,
2889         .has_nvdisplay = false,
2890         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2891         .primary_formats = tegra114_primary_formats,
2892         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2893         .overlay_formats = tegra114_overlay_formats,
2894         .modifiers = tegra20_modifiers,
2895         .has_win_a_without_filters = false,
2896         .has_win_b_vfilter_mem_client = false,
2897         .has_win_c_without_vert_filter = false,
2898         .plane_tiled_memory_bandwidth_x2 = true,
2899         .has_pll_d2_out0 = true,
2900 };
2901
2902 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2903         .supports_background_color = true,
2904         .supports_interlacing = true,
2905         .supports_cursor = true,
2906         .supports_block_linear = true,
2907         .supports_sector_layout = false,
2908         .has_legacy_blending = false,
2909         .pitch_align = 64,
2910         .has_powergate = true,
2911         .coupled_pm = false,
2912         .has_nvdisplay = false,
2913         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2914         .primary_formats = tegra124_primary_formats,
2915         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2916         .overlay_formats = tegra124_overlay_formats,
2917         .modifiers = tegra124_modifiers,
2918         .has_win_a_without_filters = false,
2919         .has_win_b_vfilter_mem_client = false,
2920         .has_win_c_without_vert_filter = false,
2921         .plane_tiled_memory_bandwidth_x2 = false,
2922         .has_pll_d2_out0 = true,
2923 };
2924
2925 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2926         .supports_background_color = true,
2927         .supports_interlacing = true,
2928         .supports_cursor = true,
2929         .supports_block_linear = true,
2930         .supports_sector_layout = false,
2931         .has_legacy_blending = false,
2932         .pitch_align = 64,
2933         .has_powergate = true,
2934         .coupled_pm = false,
2935         .has_nvdisplay = false,
2936         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2937         .primary_formats = tegra114_primary_formats,
2938         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2939         .overlay_formats = tegra114_overlay_formats,
2940         .modifiers = tegra124_modifiers,
2941         .has_win_a_without_filters = false,
2942         .has_win_b_vfilter_mem_client = false,
2943         .has_win_c_without_vert_filter = false,
2944         .plane_tiled_memory_bandwidth_x2 = false,
2945         .has_pll_d2_out0 = true,
2946 };
2947
2948 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2949         {
2950                 .index = 0,
2951                 .dc = 0,
2952                 .windows = (const unsigned int[]) { 0 },
2953                 .num_windows = 1,
2954         }, {
2955                 .index = 1,
2956                 .dc = 1,
2957                 .windows = (const unsigned int[]) { 1 },
2958                 .num_windows = 1,
2959         }, {
2960                 .index = 2,
2961                 .dc = 1,
2962                 .windows = (const unsigned int[]) { 2 },
2963                 .num_windows = 1,
2964         }, {
2965                 .index = 3,
2966                 .dc = 2,
2967                 .windows = (const unsigned int[]) { 3 },
2968                 .num_windows = 1,
2969         }, {
2970                 .index = 4,
2971                 .dc = 2,
2972                 .windows = (const unsigned int[]) { 4 },
2973                 .num_windows = 1,
2974         }, {
2975                 .index = 5,
2976                 .dc = 2,
2977                 .windows = (const unsigned int[]) { 5 },
2978                 .num_windows = 1,
2979         },
2980 };
2981
2982 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2983         .supports_background_color = true,
2984         .supports_interlacing = true,
2985         .supports_cursor = true,
2986         .supports_block_linear = true,
2987         .supports_sector_layout = false,
2988         .has_legacy_blending = false,
2989         .pitch_align = 64,
2990         .has_powergate = false,
2991         .coupled_pm = false,
2992         .has_nvdisplay = true,
2993         .wgrps = tegra186_dc_wgrps,
2994         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2995         .plane_tiled_memory_bandwidth_x2 = false,
2996         .has_pll_d2_out0 = false,
2997 };
2998
2999 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
3000         {
3001                 .index = 0,
3002                 .dc = 0,
3003                 .windows = (const unsigned int[]) { 0 },
3004                 .num_windows = 1,
3005         }, {
3006                 .index = 1,
3007                 .dc = 1,
3008                 .windows = (const unsigned int[]) { 1 },
3009                 .num_windows = 1,
3010         }, {
3011                 .index = 2,
3012                 .dc = 1,
3013                 .windows = (const unsigned int[]) { 2 },
3014                 .num_windows = 1,
3015         }, {
3016                 .index = 3,
3017                 .dc = 2,
3018                 .windows = (const unsigned int[]) { 3 },
3019                 .num_windows = 1,
3020         }, {
3021                 .index = 4,
3022                 .dc = 2,
3023                 .windows = (const unsigned int[]) { 4 },
3024                 .num_windows = 1,
3025         }, {
3026                 .index = 5,
3027                 .dc = 2,
3028                 .windows = (const unsigned int[]) { 5 },
3029                 .num_windows = 1,
3030         },
3031 };
3032
3033 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3034         .supports_background_color = true,
3035         .supports_interlacing = true,
3036         .supports_cursor = true,
3037         .supports_block_linear = true,
3038         .supports_sector_layout = true,
3039         .has_legacy_blending = false,
3040         .pitch_align = 64,
3041         .has_powergate = false,
3042         .coupled_pm = false,
3043         .has_nvdisplay = true,
3044         .wgrps = tegra194_dc_wgrps,
3045         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3046         .plane_tiled_memory_bandwidth_x2 = false,
3047         .has_pll_d2_out0 = false,
3048 };
3049
3050 static const struct of_device_id tegra_dc_of_match[] = {
3051         {
3052                 .compatible = "nvidia,tegra194-dc",
3053                 .data = &tegra194_dc_soc_info,
3054         }, {
3055                 .compatible = "nvidia,tegra186-dc",
3056                 .data = &tegra186_dc_soc_info,
3057         }, {
3058                 .compatible = "nvidia,tegra210-dc",
3059                 .data = &tegra210_dc_soc_info,
3060         }, {
3061                 .compatible = "nvidia,tegra124-dc",
3062                 .data = &tegra124_dc_soc_info,
3063         }, {
3064                 .compatible = "nvidia,tegra114-dc",
3065                 .data = &tegra114_dc_soc_info,
3066         }, {
3067                 .compatible = "nvidia,tegra30-dc",
3068                 .data = &tegra30_dc_soc_info,
3069         }, {
3070                 .compatible = "nvidia,tegra20-dc",
3071                 .data = &tegra20_dc_soc_info,
3072         }, {
3073                 /* sentinel */
3074         }
3075 };
3076 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3077
3078 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3079 {
3080         struct device_node *np;
3081         u32 value = 0;
3082         int err;
3083
3084         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3085         if (err < 0) {
3086                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3087
3088                 /*
3089                  * If the nvidia,head property isn't present, try to find the
3090                  * correct head number by looking up the position of this
3091                  * display controller's node within the device tree. Assuming
3092                  * that the nodes are ordered properly in the DTS file and
3093                  * that the translation into a flattened device tree blob
3094                  * preserves that ordering this will actually yield the right
3095                  * head number.
3096                  *
3097                  * If those assumptions don't hold, this will still work for
3098                  * cases where only a single display controller is used.
3099                  */
3100                 for_each_matching_node(np, tegra_dc_of_match) {
3101                         if (np == dc->dev->of_node) {
3102                                 of_node_put(np);
3103                                 break;
3104                         }
3105
3106                         value++;
3107                 }
3108         }
3109
3110         dc->pipe = value;
3111
3112         return 0;
3113 }
3114
3115 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3116 {
3117         struct tegra_dc *dc = dev_get_drvdata(dev);
3118         unsigned int pipe = (unsigned long)(void *)data;
3119
3120         return dc->pipe == pipe;
3121 }
3122
3123 static int tegra_dc_couple(struct tegra_dc *dc)
3124 {
3125         /*
3126          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3127          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3128          * POWER_CONTROL registers during CRTC enabling.
3129          */
3130         if (dc->soc->coupled_pm && dc->pipe == 1) {
3131                 struct device *companion;
3132                 struct tegra_dc *parent;
3133
3134                 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3135                                                tegra_dc_match_by_pipe);
3136                 if (!companion)
3137                         return -EPROBE_DEFER;
3138
3139                 parent = dev_get_drvdata(companion);
3140                 dc->client.parent = &parent->client;
3141
3142                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3143         }
3144
3145         return 0;
3146 }
3147
3148 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3149 {
3150         struct tegra_core_opp_params opp_params = {};
3151         int err;
3152
3153         err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3154         if (err && err != -ENODEV)
3155                 return err;
3156
3157         if (err)
3158                 dc->has_opp_table = false;
3159         else
3160                 dc->has_opp_table = true;
3161
3162         return 0;
3163 }
3164
3165 static int tegra_dc_probe(struct platform_device *pdev)
3166 {
3167         u64 dma_mask = dma_get_mask(pdev->dev.parent);
3168         struct tegra_dc *dc;
3169         int err;
3170
3171         err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3172         if (err < 0) {
3173                 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3174                 return err;
3175         }
3176
3177         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3178         if (!dc)
3179                 return -ENOMEM;
3180
3181         dc->soc = of_device_get_match_data(&pdev->dev);
3182
3183         INIT_LIST_HEAD(&dc->list);
3184         dc->dev = &pdev->dev;
3185
3186         err = tegra_dc_parse_dt(dc);
3187         if (err < 0)
3188                 return err;
3189
3190         err = tegra_dc_couple(dc);
3191         if (err < 0)
3192                 return err;
3193
3194         dc->clk = devm_clk_get(&pdev->dev, NULL);
3195         if (IS_ERR(dc->clk)) {
3196                 dev_err(&pdev->dev, "failed to get clock\n");
3197                 return PTR_ERR(dc->clk);
3198         }
3199
3200         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3201         if (IS_ERR(dc->rst)) {
3202                 dev_err(&pdev->dev, "failed to get reset\n");
3203                 return PTR_ERR(dc->rst);
3204         }
3205
3206         /* assert reset and disable clock */
3207         err = clk_prepare_enable(dc->clk);
3208         if (err < 0)
3209                 return err;
3210
3211         usleep_range(2000, 4000);
3212
3213         err = reset_control_assert(dc->rst);
3214         if (err < 0) {
3215                 clk_disable_unprepare(dc->clk);
3216                 return err;
3217         }
3218
3219         usleep_range(2000, 4000);
3220
3221         clk_disable_unprepare(dc->clk);
3222
3223         if (dc->soc->has_powergate) {
3224                 if (dc->pipe == 0)
3225                         dc->powergate = TEGRA_POWERGATE_DIS;
3226                 else
3227                         dc->powergate = TEGRA_POWERGATE_DISB;
3228
3229                 tegra_powergate_power_off(dc->powergate);
3230         }
3231
3232         err = tegra_dc_init_opp_table(dc);
3233         if (err < 0)
3234                 return err;
3235
3236         dc->regs = devm_platform_ioremap_resource(pdev, 0);
3237         if (IS_ERR(dc->regs))
3238                 return PTR_ERR(dc->regs);
3239
3240         dc->irq = platform_get_irq(pdev, 0);
3241         if (dc->irq < 0)
3242                 return -ENXIO;
3243
3244         err = tegra_dc_rgb_probe(dc);
3245         if (err < 0 && err != -ENODEV)
3246                 return dev_err_probe(&pdev->dev, err,
3247                                      "failed to probe RGB output\n");
3248
3249         platform_set_drvdata(pdev, dc);
3250         pm_runtime_enable(&pdev->dev);
3251
3252         INIT_LIST_HEAD(&dc->client.list);
3253         dc->client.ops = &dc_client_ops;
3254         dc->client.dev = &pdev->dev;
3255
3256         err = host1x_client_register(&dc->client);
3257         if (err < 0) {
3258                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3259                         err);
3260                 goto disable_pm;
3261         }
3262
3263         return 0;
3264
3265 disable_pm:
3266         pm_runtime_disable(&pdev->dev);
3267         tegra_dc_rgb_remove(dc);
3268
3269         return err;
3270 }
3271
3272 static void tegra_dc_remove(struct platform_device *pdev)
3273 {
3274         struct tegra_dc *dc = platform_get_drvdata(pdev);
3275
3276         host1x_client_unregister(&dc->client);
3277
3278         tegra_dc_rgb_remove(dc);
3279
3280         pm_runtime_disable(&pdev->dev);
3281 }
3282
3283 struct platform_driver tegra_dc_driver = {
3284         .driver = {
3285                 .name = "tegra-dc",
3286                 .of_match_table = tegra_dc_of_match,
3287         },
3288         .probe = tegra_dc_probe,
3289         .remove_new = tegra_dc_remove,
3290 };