Merge tag 'selinux-pr-20200210' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "rcar_cmm.h"
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_encoder.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 #include "rcar_lvds.h"
34
35 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
36 {
37         struct rcar_du_device *rcdu = rcrtc->dev;
38
39         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
40 }
41
42 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
43 {
44         struct rcar_du_device *rcdu = rcrtc->dev;
45
46         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
47 }
48
49 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
50 {
51         struct rcar_du_device *rcdu = rcrtc->dev;
52
53         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
54                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
55 }
56
57 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
58 {
59         struct rcar_du_device *rcdu = rcrtc->dev;
60
61         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
62                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
63 }
64
65 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
66 {
67         struct rcar_du_device *rcdu = rcrtc->dev;
68
69         rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
70         rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
71 }
72
73 /* -----------------------------------------------------------------------------
74  * Hardware Setup
75  */
76
77 struct dpll_info {
78         unsigned int output;
79         unsigned int fdpll;
80         unsigned int n;
81         unsigned int m;
82 };
83
84 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
85                                  struct dpll_info *dpll,
86                                  unsigned long input,
87                                  unsigned long target)
88 {
89         unsigned long best_diff = (unsigned long)-1;
90         unsigned long diff;
91         unsigned int fdpll;
92         unsigned int m;
93         unsigned int n;
94
95         /*
96          *   fin                                 fvco        fout       fclkout
97          * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
98          *              +-> |  |                             |
99          *              |                                    |
100          *              +---------------- [1/N] <------------+
101          *
102          *      fclkout = fvco / P / FDPLL -- (1)
103          *
104          * fin/M = fvco/P/N
105          *
106          *      fvco = fin * P *  N / M -- (2)
107          *
108          * (1) + (2) indicates
109          *
110          *      fclkout = fin * N / M / FDPLL
111          *
112          * NOTES
113          *      N       : (n + 1)
114          *      M       : (m + 1)
115          *      FDPLL   : (fdpll + 1)
116          *      P       : 2
117          *      2kHz < fvco < 4096MHz
118          *
119          * To minimize the jitter,
120          * N : as large as possible
121          * M : as small as possible
122          */
123         for (m = 0; m < 4; m++) {
124                 for (n = 119; n > 38; n--) {
125                         /*
126                          * This code only runs on 64-bit architectures, the
127                          * unsigned long type can thus be used for 64-bit
128                          * computation. It will still compile without any
129                          * warning on 32-bit architectures.
130                          *
131                          * To optimize calculations, use fout instead of fvco
132                          * to verify the VCO frequency constraint.
133                          */
134                         unsigned long fout = input * (n + 1) / (m + 1);
135
136                         if (fout < 1000 || fout > 2048 * 1000 * 1000U)
137                                 continue;
138
139                         for (fdpll = 1; fdpll < 32; fdpll++) {
140                                 unsigned long output;
141
142                                 output = fout / (fdpll + 1);
143                                 if (output >= 400 * 1000 * 1000)
144                                         continue;
145
146                                 diff = abs((long)output - (long)target);
147                                 if (best_diff > diff) {
148                                         best_diff = diff;
149                                         dpll->n = n;
150                                         dpll->m = m;
151                                         dpll->fdpll = fdpll;
152                                         dpll->output = output;
153                                 }
154
155                                 if (diff == 0)
156                                         goto done;
157                         }
158                 }
159         }
160
161 done:
162         dev_dbg(rcrtc->dev->dev,
163                 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164                  dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
165 }
166
167 struct du_clk_params {
168         struct clk *clk;
169         unsigned long rate;
170         unsigned long diff;
171         u32 escr;
172 };
173
174 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
175                                  u32 escr, struct du_clk_params *params)
176 {
177         unsigned long rate;
178         unsigned long diff;
179         u32 div;
180
181         /*
182          * If the target rate has already been achieved perfectly we can't do
183          * better.
184          */
185         if (params->diff == 0)
186                 return;
187
188         /*
189          * Compute the input clock rate and internal divisor values to obtain
190          * the clock rate closest to the target frequency.
191          */
192         rate = clk_round_rate(clk, target);
193         div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
194         diff = abs(rate / (div + 1) - target);
195
196         /*
197          * Store the parameters if the resulting frequency is better than any
198          * previously calculated value.
199          */
200         if (diff < params->diff) {
201                 params->clk = clk;
202                 params->rate = rate;
203                 params->diff = diff;
204                 params->escr = escr | div;
205         }
206 }
207
208 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
209         { .soc_id = "r8a7795", .revision = "ES1.*" },
210         { /* sentinel */ }
211 };
212
213 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
214 {
215         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
216         struct rcar_du_device *rcdu = rcrtc->dev;
217         unsigned long mode_clock = mode->clock * 1000;
218         u32 dsmr;
219         u32 escr;
220
221         if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
222                 unsigned long target = mode_clock;
223                 struct dpll_info dpll = { 0 };
224                 unsigned long extclk;
225                 u32 dpllcr;
226                 u32 div = 0;
227
228                 /*
229                  * DU channels that have a display PLL can't use the internal
230                  * system clock, and have no internal clock divider.
231                  */
232
233                 /*
234                  * The H3 ES1.x exhibits dot clock duty cycle stability issues.
235                  * We can work around them by configuring the DPLL to twice the
236                  * desired frequency, coupled with a /2 post-divider. Restrict
237                  * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
238                  * no post-divider when a display PLL is present (as shown by
239                  * the workaround breaking HDMI output on M3-W during testing).
240                  */
241                 if (soc_device_match(rcar_du_r8a7795_es1)) {
242                         target *= 2;
243                         div = 1;
244                 }
245
246                 extclk = clk_get_rate(rcrtc->extclock);
247                 rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
248
249                 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
250                        | DPLLCR_FDPLL(dpll.fdpll)
251                        | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
252                        | DPLLCR_STBY;
253
254                 if (rcrtc->index == 1)
255                         dpllcr |= DPLLCR_PLCS1
256                                |  DPLLCR_INCS_DOTCLKIN1;
257                 else
258                         dpllcr |= DPLLCR_PLCS0
259                                |  DPLLCR_INCS_DOTCLKIN0;
260
261                 rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
262
263                 escr = ESCR_DCLKSEL_DCLKIN | div;
264         } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
265                 /*
266                  * Use the LVDS PLL output as the dot clock when outputting to
267                  * the LVDS encoder on an SoC that supports this clock routing
268                  * option. We use the clock directly in that case, without any
269                  * additional divider.
270                  */
271                 escr = ESCR_DCLKSEL_DCLKIN;
272         } else {
273                 struct du_clk_params params = { .diff = (unsigned long)-1 };
274
275                 rcar_du_escr_divider(rcrtc->clock, mode_clock,
276                                      ESCR_DCLKSEL_CLKS, &params);
277                 if (rcrtc->extclock)
278                         rcar_du_escr_divider(rcrtc->extclock, mode_clock,
279                                              ESCR_DCLKSEL_DCLKIN, &params);
280
281                 dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
282                         mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
283                         params.rate);
284
285                 clk_set_rate(params.clk, params.rate);
286                 escr = params.escr;
287         }
288
289         dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
290
291         rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
292         rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
293
294         /* Signal polarities */
295         dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
296              | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
297              | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
298              | DSMR_DIPM_DISP | DSMR_CSPM;
299         rcar_du_crtc_write(rcrtc, DSMR, dsmr);
300
301         /* Display timings */
302         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
303         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
304                                         mode->hdisplay - 19);
305         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
306                                         mode->hsync_start - 1);
307         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
308
309         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
310                                         mode->crtc_vsync_end - 2);
311         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
312                                         mode->crtc_vsync_end +
313                                         mode->crtc_vdisplay - 2);
314         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
315                                         mode->crtc_vsync_end +
316                                         mode->crtc_vsync_start - 1);
317         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
318
319         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
320         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
321 }
322
323 static unsigned int plane_zpos(struct rcar_du_plane *plane)
324 {
325         return plane->plane.state->normalized_zpos;
326 }
327
328 static const struct rcar_du_format_info *
329 plane_format(struct rcar_du_plane *plane)
330 {
331         return to_rcar_plane_state(plane->plane.state)->format;
332 }
333
334 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
335 {
336         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
337         struct rcar_du_device *rcdu = rcrtc->dev;
338         unsigned int num_planes = 0;
339         unsigned int dptsr_planes;
340         unsigned int hwplanes = 0;
341         unsigned int prio = 0;
342         unsigned int i;
343         u32 dspr = 0;
344
345         for (i = 0; i < rcrtc->group->num_planes; ++i) {
346                 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
347                 unsigned int j;
348
349                 if (plane->plane.state->crtc != &rcrtc->crtc ||
350                     !plane->plane.state->visible)
351                         continue;
352
353                 /* Insert the plane in the sorted planes array. */
354                 for (j = num_planes++; j > 0; --j) {
355                         if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
356                                 break;
357                         planes[j] = planes[j-1];
358                 }
359
360                 planes[j] = plane;
361                 prio += plane_format(plane)->planes * 4;
362         }
363
364         for (i = 0; i < num_planes; ++i) {
365                 struct rcar_du_plane *plane = planes[i];
366                 struct drm_plane_state *state = plane->plane.state;
367                 unsigned int index = to_rcar_plane_state(state)->hwindex;
368
369                 prio -= 4;
370                 dspr |= (index + 1) << prio;
371                 hwplanes |= 1 << index;
372
373                 if (plane_format(plane)->planes == 2) {
374                         index = (index + 1) % 8;
375
376                         prio -= 4;
377                         dspr |= (index + 1) << prio;
378                         hwplanes |= 1 << index;
379                 }
380         }
381
382         /* If VSP+DU integration is enabled the plane assignment is fixed. */
383         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
384                 if (rcdu->info->gen < 3) {
385                         dspr = (rcrtc->index % 2) + 1;
386                         hwplanes = 1 << (rcrtc->index % 2);
387                 } else {
388                         dspr = (rcrtc->index % 2) ? 3 : 1;
389                         hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
390                 }
391         }
392
393         /*
394          * Update the planes to display timing and dot clock generator
395          * associations.
396          *
397          * Updating the DPTSR register requires restarting the CRTC group,
398          * resulting in visible flicker. To mitigate the issue only update the
399          * association if needed by enabled planes. Planes being disabled will
400          * keep their current association.
401          */
402         mutex_lock(&rcrtc->group->lock);
403
404         dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
405                      : rcrtc->group->dptsr_planes & ~hwplanes;
406
407         if (dptsr_planes != rcrtc->group->dptsr_planes) {
408                 rcar_du_group_write(rcrtc->group, DPTSR,
409                                     (dptsr_planes << 16) | dptsr_planes);
410                 rcrtc->group->dptsr_planes = dptsr_planes;
411
412                 if (rcrtc->group->used_crtcs)
413                         rcar_du_group_restart(rcrtc->group);
414         }
415
416         /* Restart the group if plane sources have changed. */
417         if (rcrtc->group->need_restart)
418                 rcar_du_group_restart(rcrtc->group);
419
420         mutex_unlock(&rcrtc->group->lock);
421
422         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
423                             dspr);
424 }
425
426 /* -----------------------------------------------------------------------------
427  * Page Flip
428  */
429
430 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
431 {
432         struct drm_pending_vblank_event *event;
433         struct drm_device *dev = rcrtc->crtc.dev;
434         unsigned long flags;
435
436         spin_lock_irqsave(&dev->event_lock, flags);
437         event = rcrtc->event;
438         rcrtc->event = NULL;
439         spin_unlock_irqrestore(&dev->event_lock, flags);
440
441         if (event == NULL)
442                 return;
443
444         spin_lock_irqsave(&dev->event_lock, flags);
445         drm_crtc_send_vblank_event(&rcrtc->crtc, event);
446         wake_up(&rcrtc->flip_wait);
447         spin_unlock_irqrestore(&dev->event_lock, flags);
448
449         drm_crtc_vblank_put(&rcrtc->crtc);
450 }
451
452 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
453 {
454         struct drm_device *dev = rcrtc->crtc.dev;
455         unsigned long flags;
456         bool pending;
457
458         spin_lock_irqsave(&dev->event_lock, flags);
459         pending = rcrtc->event != NULL;
460         spin_unlock_irqrestore(&dev->event_lock, flags);
461
462         return pending;
463 }
464
465 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
466 {
467         struct rcar_du_device *rcdu = rcrtc->dev;
468
469         if (wait_event_timeout(rcrtc->flip_wait,
470                                !rcar_du_crtc_page_flip_pending(rcrtc),
471                                msecs_to_jiffies(50)))
472                 return;
473
474         dev_warn(rcdu->dev, "page flip timeout\n");
475
476         rcar_du_crtc_finish_page_flip(rcrtc);
477 }
478
479 /* -----------------------------------------------------------------------------
480  * Color Management Module (CMM)
481  */
482
483 static int rcar_du_cmm_check(struct drm_crtc *crtc,
484                              struct drm_crtc_state *state)
485 {
486         struct drm_property_blob *drm_lut = state->gamma_lut;
487         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
488         struct device *dev = rcrtc->dev->dev;
489
490         if (!drm_lut)
491                 return 0;
492
493         /* We only accept fully populated LUT tables. */
494         if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
495                 dev_err(dev, "invalid gamma lut size: %zu bytes\n",
496                         drm_lut->length);
497                 return -EINVAL;
498         }
499
500         return 0;
501 }
502
503 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
504 {
505         struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
506         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
507         struct rcar_cmm_config cmm_config = {};
508
509         if (!rcrtc->cmm)
510                 return;
511
512         if (drm_lut)
513                 cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
514
515         rcar_cmm_setup(rcrtc->cmm, &cmm_config);
516 }
517
518 /* -----------------------------------------------------------------------------
519  * Start/Stop and Suspend/Resume
520  */
521
522 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
523 {
524         /* Set display off and background to black */
525         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
526         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
527
528         /* Configure display timings and output routing */
529         rcar_du_crtc_set_display_timing(rcrtc);
530         rcar_du_group_set_routing(rcrtc->group);
531
532         /* Start with all planes disabled. */
533         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
534
535         /* Enable the VSP compositor. */
536         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
537                 rcar_du_vsp_enable(rcrtc);
538
539         /* Turn vertical blanking interrupt reporting on. */
540         drm_crtc_vblank_on(&rcrtc->crtc);
541 }
542
543 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
544 {
545         int ret;
546
547         /*
548          * Guard against double-get, as the function is called from both the
549          * .atomic_enable() and .atomic_begin() handlers.
550          */
551         if (rcrtc->initialized)
552                 return 0;
553
554         ret = clk_prepare_enable(rcrtc->clock);
555         if (ret < 0)
556                 return ret;
557
558         ret = clk_prepare_enable(rcrtc->extclock);
559         if (ret < 0)
560                 goto error_clock;
561
562         ret = rcar_du_group_get(rcrtc->group);
563         if (ret < 0)
564                 goto error_group;
565
566         rcar_du_crtc_setup(rcrtc);
567         rcrtc->initialized = true;
568
569         return 0;
570
571 error_group:
572         clk_disable_unprepare(rcrtc->extclock);
573 error_clock:
574         clk_disable_unprepare(rcrtc->clock);
575         return ret;
576 }
577
578 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
579 {
580         rcar_du_group_put(rcrtc->group);
581
582         clk_disable_unprepare(rcrtc->extclock);
583         clk_disable_unprepare(rcrtc->clock);
584
585         rcrtc->initialized = false;
586 }
587
588 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
589 {
590         bool interlaced;
591
592         /*
593          * Select master sync mode. This enables display operation in master
594          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
595          * actively driven).
596          */
597         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
598         rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
599                                    (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
600                                    DSYSR_TVM_MASTER);
601
602         rcar_du_group_start_stop(rcrtc->group, true);
603 }
604
605 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
606 {
607         struct rcar_du_device *rcdu = rcrtc->dev;
608         struct drm_crtc *crtc = &rcrtc->crtc;
609         u32 status;
610
611         /* Make sure vblank interrupts are enabled. */
612         drm_crtc_vblank_get(crtc);
613
614         /*
615          * Disable planes and calculate how many vertical blanking interrupts we
616          * have to wait for. If a vertical blanking interrupt has been triggered
617          * but not processed yet, we don't know whether it occurred before or
618          * after the planes got disabled. We thus have to wait for two vblank
619          * interrupts in that case.
620          */
621         spin_lock_irq(&rcrtc->vblank_lock);
622         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
623         status = rcar_du_crtc_read(rcrtc, DSSR);
624         rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
625         spin_unlock_irq(&rcrtc->vblank_lock);
626
627         if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
628                                 msecs_to_jiffies(100)))
629                 dev_warn(rcdu->dev, "vertical blanking timeout\n");
630
631         drm_crtc_vblank_put(crtc);
632 }
633
634 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
635 {
636         struct drm_crtc *crtc = &rcrtc->crtc;
637
638         /*
639          * Disable all planes and wait for the change to take effect. This is
640          * required as the plane enable registers are updated on vblank, and no
641          * vblank will occur once the CRTC is stopped. Disabling planes when
642          * starting the CRTC thus wouldn't be enough as it would start scanning
643          * out immediately from old frame buffers until the next vblank.
644          *
645          * This increases the CRTC stop delay, especially when multiple CRTCs
646          * are stopped in one operation as we now wait for one vblank per CRTC.
647          * Whether this can be improved needs to be researched.
648          */
649         rcar_du_crtc_disable_planes(rcrtc);
650
651         /*
652          * Disable vertical blanking interrupt reporting. We first need to wait
653          * for page flip completion before stopping the CRTC as userspace
654          * expects page flips to eventually complete.
655          */
656         rcar_du_crtc_wait_page_flip(rcrtc);
657         drm_crtc_vblank_off(crtc);
658
659         /* Disable the VSP compositor. */
660         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
661                 rcar_du_vsp_disable(rcrtc);
662
663         if (rcrtc->cmm)
664                 rcar_cmm_disable(rcrtc->cmm);
665
666         /*
667          * Select switch sync mode. This stops display operation and configures
668          * the HSYNC and VSYNC signals as inputs.
669          *
670          * TODO: Find another way to stop the display for DUs that don't support
671          * TVM sync.
672          */
673         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
674                 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
675                                            DSYSR_TVM_SWITCH);
676
677         rcar_du_group_start_stop(rcrtc->group, false);
678 }
679
680 /* -----------------------------------------------------------------------------
681  * CRTC Functions
682  */
683
684 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
685                                      struct drm_crtc_state *state)
686 {
687         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
688         struct drm_encoder *encoder;
689         int ret;
690
691         ret = rcar_du_cmm_check(crtc, state);
692         if (ret)
693                 return ret;
694
695         /* Store the routes from the CRTC output to the DU outputs. */
696         rstate->outputs = 0;
697
698         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
699                 struct rcar_du_encoder *renc;
700
701                 /* Skip the writeback encoder. */
702                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
703                         continue;
704
705                 renc = to_rcar_encoder(encoder);
706                 rstate->outputs |= BIT(renc->output);
707         }
708
709         return 0;
710 }
711
712 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
713                                        struct drm_crtc_state *old_state)
714 {
715         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
716         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
717         struct rcar_du_device *rcdu = rcrtc->dev;
718
719         if (rcrtc->cmm)
720                 rcar_cmm_enable(rcrtc->cmm);
721         rcar_du_crtc_get(rcrtc);
722
723         /*
724          * On D3/E3 the dot clock is provided by the LVDS encoder attached to
725          * the DU channel. We need to enable its clock output explicitly if
726          * the LVDS output is disabled.
727          */
728         if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
729             rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
730                 struct rcar_du_encoder *encoder =
731                         rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
732                 const struct drm_display_mode *mode =
733                         &crtc->state->adjusted_mode;
734                 struct drm_bridge *bridge;
735
736                 bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
737                 rcar_lvds_clk_enable(bridge, mode->clock * 1000);
738         }
739
740         rcar_du_crtc_start(rcrtc);
741
742         /*
743          * TODO: The chip manual indicates that CMM tables should be written
744          * after the DU channel has been activated. Investigate the impact
745          * of this restriction on the first displayed frame.
746          */
747         rcar_du_cmm_setup(crtc);
748 }
749
750 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
751                                         struct drm_crtc_state *old_state)
752 {
753         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
754         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
755         struct rcar_du_device *rcdu = rcrtc->dev;
756
757         rcar_du_crtc_stop(rcrtc);
758         rcar_du_crtc_put(rcrtc);
759
760         if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
761             rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
762                 struct rcar_du_encoder *encoder =
763                         rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
764                 struct drm_bridge *bridge;
765
766                 /*
767                  * Disable the LVDS clock output, see
768                  * rcar_du_crtc_atomic_enable().
769                  */
770                 bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
771                 rcar_lvds_clk_disable(bridge);
772         }
773
774         spin_lock_irq(&crtc->dev->event_lock);
775         if (crtc->state->event) {
776                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
777                 crtc->state->event = NULL;
778         }
779         spin_unlock_irq(&crtc->dev->event_lock);
780 }
781
782 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
783                                       struct drm_crtc_state *old_crtc_state)
784 {
785         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
786
787         WARN_ON(!crtc->state->enable);
788
789         /*
790          * If a mode set is in progress we can be called with the CRTC disabled.
791          * We thus need to first get and setup the CRTC in order to configure
792          * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
793          * kept awake until the .atomic_enable() call that will follow. The get
794          * operation in .atomic_enable() will in that case be a no-op, and the
795          * CRTC will be put later in .atomic_disable().
796          *
797          * If a mode set is not in progress the CRTC is enabled, and the
798          * following get call will be a no-op. There is thus no need to balance
799          * it in .atomic_flush() either.
800          */
801         rcar_du_crtc_get(rcrtc);
802
803         /* If the active state changed, we let .atomic_enable handle CMM. */
804         if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
805                 rcar_du_cmm_setup(crtc);
806
807         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
808                 rcar_du_vsp_atomic_begin(rcrtc);
809 }
810
811 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
812                                       struct drm_crtc_state *old_crtc_state)
813 {
814         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
815         struct drm_device *dev = rcrtc->crtc.dev;
816         unsigned long flags;
817
818         rcar_du_crtc_update_planes(rcrtc);
819
820         if (crtc->state->event) {
821                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
822
823                 spin_lock_irqsave(&dev->event_lock, flags);
824                 rcrtc->event = crtc->state->event;
825                 crtc->state->event = NULL;
826                 spin_unlock_irqrestore(&dev->event_lock, flags);
827         }
828
829         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
830                 rcar_du_vsp_atomic_flush(rcrtc);
831 }
832
833 static enum drm_mode_status
834 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
835                         const struct drm_display_mode *mode)
836 {
837         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
838         struct rcar_du_device *rcdu = rcrtc->dev;
839         bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
840         unsigned int vbp;
841
842         if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
843                 return MODE_NO_INTERLACE;
844
845         /*
846          * The hardware requires a minimum combined horizontal sync and back
847          * porch of 20 pixels and a minimum vertical back porch of 3 lines.
848          */
849         if (mode->htotal - mode->hsync_start < 20)
850                 return MODE_HBLANK_NARROW;
851
852         vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
853         if (vbp < 3)
854                 return MODE_VBLANK_NARROW;
855
856         return MODE_OK;
857 }
858
859 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
860         .atomic_check = rcar_du_crtc_atomic_check,
861         .atomic_begin = rcar_du_crtc_atomic_begin,
862         .atomic_flush = rcar_du_crtc_atomic_flush,
863         .atomic_enable = rcar_du_crtc_atomic_enable,
864         .atomic_disable = rcar_du_crtc_atomic_disable,
865         .mode_valid = rcar_du_crtc_mode_valid,
866 };
867
868 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
869 {
870         struct rcar_du_device *rcdu = rcrtc->dev;
871         const char **sources;
872         unsigned int count;
873         int i = -1;
874
875         /* CRC available only on Gen3 HW. */
876         if (rcdu->info->gen < 3)
877                 return;
878
879         /* Reserve 1 for "auto" source. */
880         count = rcrtc->vsp->num_planes + 1;
881
882         sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
883         if (!sources)
884                 return;
885
886         sources[0] = kstrdup("auto", GFP_KERNEL);
887         if (!sources[0])
888                 goto error;
889
890         for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
891                 struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
892                 char name[16];
893
894                 sprintf(name, "plane%u", plane->base.id);
895                 sources[i + 1] = kstrdup(name, GFP_KERNEL);
896                 if (!sources[i + 1])
897                         goto error;
898         }
899
900         rcrtc->sources = sources;
901         rcrtc->sources_count = count;
902         return;
903
904 error:
905         while (i >= 0) {
906                 kfree(sources[i]);
907                 i--;
908         }
909         kfree(sources);
910 }
911
912 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
913 {
914         unsigned int i;
915
916         if (!rcrtc->sources)
917                 return;
918
919         for (i = 0; i < rcrtc->sources_count; i++)
920                 kfree(rcrtc->sources[i]);
921         kfree(rcrtc->sources);
922
923         rcrtc->sources = NULL;
924         rcrtc->sources_count = 0;
925 }
926
927 static struct drm_crtc_state *
928 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
929 {
930         struct rcar_du_crtc_state *state;
931         struct rcar_du_crtc_state *copy;
932
933         if (WARN_ON(!crtc->state))
934                 return NULL;
935
936         state = to_rcar_crtc_state(crtc->state);
937         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
938         if (copy == NULL)
939                 return NULL;
940
941         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
942
943         return &copy->state;
944 }
945
946 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
947                                               struct drm_crtc_state *state)
948 {
949         __drm_atomic_helper_crtc_destroy_state(state);
950         kfree(to_rcar_crtc_state(state));
951 }
952
953 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
954 {
955         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
956
957         rcar_du_crtc_crc_cleanup(rcrtc);
958
959         return drm_crtc_cleanup(crtc);
960 }
961
962 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
963 {
964         struct rcar_du_crtc_state *state;
965
966         if (crtc->state) {
967                 rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
968                 crtc->state = NULL;
969         }
970
971         state = kzalloc(sizeof(*state), GFP_KERNEL);
972         if (state == NULL)
973                 return;
974
975         state->crc.source = VSP1_DU_CRC_NONE;
976         state->crc.index = 0;
977
978         crtc->state = &state->state;
979         crtc->state->crtc = crtc;
980 }
981
982 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
983 {
984         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
985
986         rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
987         rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
988         rcrtc->vblank_enable = true;
989
990         return 0;
991 }
992
993 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
994 {
995         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
996
997         rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
998         rcrtc->vblank_enable = false;
999 }
1000
1001 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1002                                          const char *source_name,
1003                                          enum vsp1_du_crc_source *source)
1004 {
1005         unsigned int index;
1006         int ret;
1007
1008         /*
1009          * Parse the source name. Supported values are "plane%u" to compute the
1010          * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1011          * CRC on the composer (VSP) output.
1012          */
1013
1014         if (!source_name) {
1015                 *source = VSP1_DU_CRC_NONE;
1016                 return 0;
1017         } else if (!strcmp(source_name, "auto")) {
1018                 *source = VSP1_DU_CRC_OUTPUT;
1019                 return 0;
1020         } else if (strstarts(source_name, "plane")) {
1021                 unsigned int i;
1022
1023                 *source = VSP1_DU_CRC_PLANE;
1024
1025                 ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1026                 if (ret < 0)
1027                         return ret;
1028
1029                 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1030                         if (index == rcrtc->vsp->planes[i].plane.base.id)
1031                                 return i;
1032                 }
1033         }
1034
1035         return -EINVAL;
1036 }
1037
1038 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1039                                           const char *source_name,
1040                                           size_t *values_cnt)
1041 {
1042         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1043         enum vsp1_du_crc_source source;
1044
1045         if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1046                 DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1047                 return -EINVAL;
1048         }
1049
1050         *values_cnt = 1;
1051         return 0;
1052 }
1053
1054 static const char *const *
1055 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1056 {
1057         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1058
1059         *count = rcrtc->sources_count;
1060         return rcrtc->sources;
1061 }
1062
1063 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1064                                        const char *source_name)
1065 {
1066         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1067         struct drm_modeset_acquire_ctx ctx;
1068         struct drm_crtc_state *crtc_state;
1069         struct drm_atomic_state *state;
1070         enum vsp1_du_crc_source source;
1071         unsigned int index;
1072         int ret;
1073
1074         ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1075         if (ret < 0)
1076                 return ret;
1077
1078         index = ret;
1079
1080         /* Perform an atomic commit to set the CRC source. */
1081         drm_modeset_acquire_init(&ctx, 0);
1082
1083         state = drm_atomic_state_alloc(crtc->dev);
1084         if (!state) {
1085                 ret = -ENOMEM;
1086                 goto unlock;
1087         }
1088
1089         state->acquire_ctx = &ctx;
1090
1091 retry:
1092         crtc_state = drm_atomic_get_crtc_state(state, crtc);
1093         if (!IS_ERR(crtc_state)) {
1094                 struct rcar_du_crtc_state *rcrtc_state;
1095
1096                 rcrtc_state = to_rcar_crtc_state(crtc_state);
1097                 rcrtc_state->crc.source = source;
1098                 rcrtc_state->crc.index = index;
1099
1100                 ret = drm_atomic_commit(state);
1101         } else {
1102                 ret = PTR_ERR(crtc_state);
1103         }
1104
1105         if (ret == -EDEADLK) {
1106                 drm_atomic_state_clear(state);
1107                 drm_modeset_backoff(&ctx);
1108                 goto retry;
1109         }
1110
1111         drm_atomic_state_put(state);
1112
1113 unlock:
1114         drm_modeset_drop_locks(&ctx);
1115         drm_modeset_acquire_fini(&ctx);
1116
1117         return ret;
1118 }
1119
1120 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1121         .reset = rcar_du_crtc_reset,
1122         .destroy = drm_crtc_cleanup,
1123         .set_config = drm_atomic_helper_set_config,
1124         .page_flip = drm_atomic_helper_page_flip,
1125         .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1126         .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1127         .enable_vblank = rcar_du_crtc_enable_vblank,
1128         .disable_vblank = rcar_du_crtc_disable_vblank,
1129 };
1130
1131 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1132         .reset = rcar_du_crtc_reset,
1133         .destroy = rcar_du_crtc_cleanup,
1134         .set_config = drm_atomic_helper_set_config,
1135         .page_flip = drm_atomic_helper_page_flip,
1136         .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1137         .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1138         .enable_vblank = rcar_du_crtc_enable_vblank,
1139         .disable_vblank = rcar_du_crtc_disable_vblank,
1140         .set_crc_source = rcar_du_crtc_set_crc_source,
1141         .verify_crc_source = rcar_du_crtc_verify_crc_source,
1142         .get_crc_sources = rcar_du_crtc_get_crc_sources,
1143         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1144 };
1145
1146 /* -----------------------------------------------------------------------------
1147  * Interrupt Handling
1148  */
1149
1150 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1151 {
1152         struct rcar_du_crtc *rcrtc = arg;
1153         struct rcar_du_device *rcdu = rcrtc->dev;
1154         irqreturn_t ret = IRQ_NONE;
1155         u32 status;
1156
1157         spin_lock(&rcrtc->vblank_lock);
1158
1159         status = rcar_du_crtc_read(rcrtc, DSSR);
1160         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1161
1162         if (status & DSSR_VBK) {
1163                 /*
1164                  * Wake up the vblank wait if the counter reaches 0. This must
1165                  * be protected by the vblank_lock to avoid races in
1166                  * rcar_du_crtc_disable_planes().
1167                  */
1168                 if (rcrtc->vblank_count) {
1169                         if (--rcrtc->vblank_count == 0)
1170                                 wake_up(&rcrtc->vblank_wait);
1171                 }
1172         }
1173
1174         spin_unlock(&rcrtc->vblank_lock);
1175
1176         if (status & DSSR_VBK) {
1177                 if (rcdu->info->gen < 3) {
1178                         drm_crtc_handle_vblank(&rcrtc->crtc);
1179                         rcar_du_crtc_finish_page_flip(rcrtc);
1180                 }
1181
1182                 ret = IRQ_HANDLED;
1183         }
1184
1185         return ret;
1186 }
1187
1188 /* -----------------------------------------------------------------------------
1189  * Initialization
1190  */
1191
1192 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1193                         unsigned int hwindex)
1194 {
1195         static const unsigned int mmio_offsets[] = {
1196                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1197         };
1198
1199         struct rcar_du_device *rcdu = rgrp->dev;
1200         struct platform_device *pdev = to_platform_device(rcdu->dev);
1201         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1202         struct drm_crtc *crtc = &rcrtc->crtc;
1203         struct drm_plane *primary;
1204         unsigned int irqflags;
1205         struct clk *clk;
1206         char clk_name[9];
1207         char *name;
1208         int irq;
1209         int ret;
1210
1211         /* Get the CRTC clock and the optional external clock. */
1212         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1213                 sprintf(clk_name, "du.%u", hwindex);
1214                 name = clk_name;
1215         } else {
1216                 name = NULL;
1217         }
1218
1219         rcrtc->clock = devm_clk_get(rcdu->dev, name);
1220         if (IS_ERR(rcrtc->clock)) {
1221                 dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1222                 return PTR_ERR(rcrtc->clock);
1223         }
1224
1225         sprintf(clk_name, "dclkin.%u", hwindex);
1226         clk = devm_clk_get(rcdu->dev, clk_name);
1227         if (!IS_ERR(clk)) {
1228                 rcrtc->extclock = clk;
1229         } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1230                 return -EPROBE_DEFER;
1231         } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1232                 /*
1233                  * DU channels that have a display PLL can't use the internal
1234                  * system clock and thus require an external clock.
1235                  */
1236                 ret = PTR_ERR(clk);
1237                 dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1238                 return ret;
1239         }
1240
1241         init_waitqueue_head(&rcrtc->flip_wait);
1242         init_waitqueue_head(&rcrtc->vblank_wait);
1243         spin_lock_init(&rcrtc->vblank_lock);
1244
1245         rcrtc->dev = rcdu;
1246         rcrtc->group = rgrp;
1247         rcrtc->mmio_offset = mmio_offsets[hwindex];
1248         rcrtc->index = hwindex;
1249         rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1250
1251         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1252                 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1253         else
1254                 primary = &rgrp->planes[swindex % 2].plane;
1255
1256         ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1257                                         rcdu->info->gen <= 2 ?
1258                                         &crtc_funcs_gen2 : &crtc_funcs_gen3,
1259                                         NULL);
1260         if (ret < 0)
1261                 return ret;
1262
1263         /* CMM might be disabled for this CRTC. */
1264         if (rcdu->cmms[swindex]) {
1265                 rcrtc->cmm = rcdu->cmms[swindex];
1266                 rgrp->cmms_mask |= BIT(hwindex % 2);
1267
1268                 drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1269                 drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1270         }
1271
1272         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1273
1274         /* Start with vertical blanking interrupt reporting disabled. */
1275         drm_crtc_vblank_off(crtc);
1276
1277         /* Register the interrupt handler. */
1278         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1279                 /* The IRQ's are associated with the CRTC (sw)index. */
1280                 irq = platform_get_irq(pdev, swindex);
1281                 irqflags = 0;
1282         } else {
1283                 irq = platform_get_irq(pdev, 0);
1284                 irqflags = IRQF_SHARED;
1285         }
1286
1287         if (irq < 0) {
1288                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1289                 return irq;
1290         }
1291
1292         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1293                                dev_name(rcdu->dev), rcrtc);
1294         if (ret < 0) {
1295                 dev_err(rcdu->dev,
1296                         "failed to register IRQ for CRTC %u\n", swindex);
1297                 return ret;
1298         }
1299
1300         rcar_du_crtc_crc_init(rcrtc);
1301
1302         return 0;
1303 }