Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / nouveau / nva3_pm.c
1 /*
2  * Copyright 2010 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24
25 #include <drm/drmP.h>
26 #include "nouveau_drm.h"
27 #include "nouveau_bios.h"
28 #include "nouveau_pm.h"
29
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios.h>
32 #include <subdev/clock.h>
33 #include <subdev/timer.h>
34 #include <subdev/fb.h>
35
36 static u32 read_clk(struct drm_device *, int, bool);
37 static u32 read_pll(struct drm_device *, int, u32);
38
39 static u32
40 read_vco(struct drm_device *dev, int clk)
41 {
42         struct nouveau_device *device = nouveau_dev(dev);
43         u32 sctl = nv_rd32(device, 0x4120 + (clk * 4));
44         if ((sctl & 0x00000030) != 0x00000030)
45                 return read_pll(dev, 0x41, 0x00e820);
46         return read_pll(dev, 0x42, 0x00e8a0);
47 }
48
49 static u32
50 read_clk(struct drm_device *dev, int clk, bool ignore_en)
51 {
52         struct nouveau_device *device = nouveau_dev(dev);
53         struct nouveau_drm *drm = nouveau_drm(dev);
54         u32 sctl, sdiv, sclk;
55
56         /* refclk for the 0xe8xx plls is a fixed frequency */
57         if (clk >= 0x40) {
58                 if (nv_device(drm->device)->chipset == 0xaf) {
59                         /* no joke.. seriously.. sigh.. */
60                         return nv_rd32(device, 0x00471c) * 1000;
61                 }
62
63                 return device->crystal;
64         }
65
66         sctl = nv_rd32(device, 0x4120 + (clk * 4));
67         if (!ignore_en && !(sctl & 0x00000100))
68                 return 0;
69
70         switch (sctl & 0x00003000) {
71         case 0x00000000:
72                 return device->crystal;
73         case 0x00002000:
74                 if (sctl & 0x00000040)
75                         return 108000;
76                 return 100000;
77         case 0x00003000:
78                 sclk = read_vco(dev, clk);
79                 sdiv = ((sctl & 0x003f0000) >> 16) + 2;
80                 return (sclk * 2) / sdiv;
81         default:
82                 return 0;
83         }
84 }
85
86 static u32
87 read_pll(struct drm_device *dev, int clk, u32 pll)
88 {
89         struct nouveau_device *device = nouveau_dev(dev);
90         u32 ctrl = nv_rd32(device, pll + 0);
91         u32 sclk = 0, P = 1, N = 1, M = 1;
92
93         if (!(ctrl & 0x00000008)) {
94                 if (ctrl & 0x00000001) {
95                         u32 coef = nv_rd32(device, pll + 4);
96                         M = (coef & 0x000000ff) >> 0;
97                         N = (coef & 0x0000ff00) >> 8;
98                         P = (coef & 0x003f0000) >> 16;
99
100                         /* no post-divider on these.. */
101                         if ((pll & 0x00ff00) == 0x00e800)
102                                 P = 1;
103
104                         sclk = read_clk(dev, 0x00 + clk, false);
105                 }
106         } else {
107                 sclk = read_clk(dev, 0x10 + clk, false);
108         }
109
110         if (M * P)
111                 return sclk * N / (M * P);
112         return 0;
113 }
114
115 struct creg {
116         u32 clk;
117         u32 pll;
118 };
119
120 static int
121 calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg)
122 {
123         struct nouveau_drm *drm = nouveau_drm(dev);
124         struct nouveau_device *device = nouveau_dev(dev);
125         struct nouveau_bios *bios = nouveau_bios(device);
126         struct nvbios_pll limits;
127         u32 oclk, sclk, sdiv;
128         int P, N, M, diff;
129         int ret;
130
131         reg->pll = 0;
132         reg->clk = 0;
133         if (!khz) {
134                 NV_DEBUG(drm, "no clock for 0x%04x/0x%02x\n", pll, clk);
135                 return 0;
136         }
137
138         switch (khz) {
139         case 27000:
140                 reg->clk = 0x00000100;
141                 return khz;
142         case 100000:
143                 reg->clk = 0x00002100;
144                 return khz;
145         case 108000:
146                 reg->clk = 0x00002140;
147                 return khz;
148         default:
149                 sclk = read_vco(dev, clk);
150                 sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
151                 /* if the clock has a PLL attached, and we can get a within
152                  * [-2, 3) MHz of a divider, we'll disable the PLL and use
153                  * the divider instead.
154                  *
155                  * divider can go as low as 2, limited here because NVIDIA
156                  * and the VBIOS on my NVA8 seem to prefer using the PLL
157                  * for 810MHz - is there a good reason?
158                  */
159                 if (sdiv > 4) {
160                         oclk = (sclk * 2) / sdiv;
161                         diff = khz - oclk;
162                         if (!pll || (diff >= -2000 && diff < 3000)) {
163                                 reg->clk = (((sdiv - 2) << 16) | 0x00003100);
164                                 return oclk;
165                         }
166                 }
167
168                 if (!pll) {
169                         NV_ERROR(drm, "bad freq %02x: %d %d\n", clk, khz, sclk);
170                         return -ERANGE;
171                 }
172
173                 break;
174         }
175
176         ret = nvbios_pll_parse(bios, pll, &limits);
177         if (ret)
178                 return ret;
179
180         limits.refclk = read_clk(dev, clk - 0x10, true);
181         if (!limits.refclk)
182                 return -EINVAL;
183
184         ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
185         if (ret >= 0) {
186                 reg->clk = nv_rd32(device, 0x4120 + (clk * 4));
187                 reg->pll = (P << 16) | (N << 8) | M;
188         }
189
190         return ret;
191 }
192
193 static void
194 prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg)
195 {
196         struct nouveau_device *device = nouveau_dev(dev);
197         struct nouveau_drm *drm = nouveau_drm(dev);
198         const u32 src0 = 0x004120 + (clk * 4);
199         const u32 src1 = 0x004160 + (clk * 4);
200         const u32 ctrl = pll + 0;
201         const u32 coef = pll + 4;
202
203         if (!reg->clk && !reg->pll) {
204                 NV_DEBUG(drm, "no clock for %02x\n", clk);
205                 return;
206         }
207
208         if (reg->pll) {
209                 nv_mask(device, src0, 0x00000101, 0x00000101);
210                 nv_wr32(device, coef, reg->pll);
211                 nv_mask(device, ctrl, 0x00000015, 0x00000015);
212                 nv_mask(device, ctrl, 0x00000010, 0x00000000);
213                 nv_wait(device, ctrl, 0x00020000, 0x00020000);
214                 nv_mask(device, ctrl, 0x00000010, 0x00000010);
215                 nv_mask(device, ctrl, 0x00000008, 0x00000000);
216                 nv_mask(device, src1, 0x00000100, 0x00000000);
217                 nv_mask(device, src1, 0x00000001, 0x00000000);
218         } else {
219                 nv_mask(device, src1, 0x003f3141, 0x00000101 | reg->clk);
220                 nv_mask(device, ctrl, 0x00000018, 0x00000018);
221                 udelay(20);
222                 nv_mask(device, ctrl, 0x00000001, 0x00000000);
223                 nv_mask(device, src0, 0x00000100, 0x00000000);
224                 nv_mask(device, src0, 0x00000001, 0x00000000);
225         }
226 }
227
228 static void
229 prog_clk(struct drm_device *dev, int clk, struct creg *reg)
230 {
231         struct nouveau_device *device = nouveau_dev(dev);
232         struct nouveau_drm *drm = nouveau_drm(dev);
233
234         if (!reg->clk) {
235                 NV_DEBUG(drm, "no clock for %02x\n", clk);
236                 return;
237         }
238
239         nv_mask(device, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk);
240 }
241
242 int
243 nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
244 {
245         perflvl->core   = read_pll(dev, 0x00, 0x4200);
246         perflvl->shader = read_pll(dev, 0x01, 0x4220);
247         perflvl->memory = read_pll(dev, 0x02, 0x4000);
248         perflvl->unka0  = read_clk(dev, 0x20, false);
249         perflvl->vdec   = read_clk(dev, 0x21, false);
250         perflvl->daemon = read_clk(dev, 0x25, false);
251         perflvl->copy   = perflvl->core;
252         return 0;
253 }
254
255 struct nva3_pm_state {
256         struct nouveau_pm_level *perflvl;
257
258         struct creg nclk;
259         struct creg sclk;
260         struct creg vdec;
261         struct creg unka0;
262
263         struct creg mclk;
264         u8 *rammap;
265         u8  rammap_ver;
266         u8  rammap_len;
267         u8 *ramcfg;
268         u8  ramcfg_len;
269         u32 r004018;
270         u32 r100760;
271 };
272
273 void *
274 nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
275 {
276         struct nva3_pm_state *info;
277         u8 ramcfg_cnt;
278         int ret;
279
280         info = kzalloc(sizeof(*info), GFP_KERNEL);
281         if (!info)
282                 return ERR_PTR(-ENOMEM);
283
284         ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk);
285         if (ret < 0)
286                 goto out;
287
288         ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk);
289         if (ret < 0)
290                 goto out;
291
292         ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk);
293         if (ret < 0)
294                 goto out;
295
296         ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0);
297         if (ret < 0)
298                 goto out;
299
300         ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec);
301         if (ret < 0)
302                 goto out;
303
304         info->rammap = nouveau_perf_rammap(dev, perflvl->memory,
305                                            &info->rammap_ver,
306                                            &info->rammap_len,
307                                            &ramcfg_cnt, &info->ramcfg_len);
308         if (info->rammap_ver != 0x10 || info->rammap_len < 5)
309                 info->rammap = NULL;
310
311         info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory,
312                                            &info->rammap_ver,
313                                            &info->ramcfg_len);
314         if (info->rammap_ver != 0x10)
315                 info->ramcfg = NULL;
316
317         info->perflvl = perflvl;
318 out:
319         if (ret < 0) {
320                 kfree(info);
321                 info = ERR_PTR(ret);
322         }
323         return info;
324 }
325
326 static bool
327 nva3_pm_grcp_idle(void *data)
328 {
329         struct drm_device *dev = data;
330         struct nouveau_device *device = nouveau_dev(dev);
331
332         if (!(nv_rd32(device, 0x400304) & 0x00000001))
333                 return true;
334         if (nv_rd32(device, 0x400308) == 0x0050001c)
335                 return true;
336         return false;
337 }
338
339 static void
340 mclk_precharge(struct nouveau_mem_exec_func *exec)
341 {
342         struct nouveau_device *device = nouveau_dev(exec->dev);
343         nv_wr32(device, 0x1002d4, 0x00000001);
344 }
345
346 static void
347 mclk_refresh(struct nouveau_mem_exec_func *exec)
348 {
349         struct nouveau_device *device = nouveau_dev(exec->dev);
350         nv_wr32(device, 0x1002d0, 0x00000001);
351 }
352
353 static void
354 mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
355 {
356         struct nouveau_device *device = nouveau_dev(exec->dev);
357         nv_wr32(device, 0x100210, enable ? 0x80000000 : 0x00000000);
358 }
359
360 static void
361 mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
362 {
363         struct nouveau_device *device = nouveau_dev(exec->dev);
364         nv_wr32(device, 0x1002dc, enable ? 0x00000001 : 0x00000000);
365 }
366
367 static void
368 mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
369 {
370         struct nouveau_device *device = nouveau_dev(exec->dev);
371         volatile u32 post = nv_rd32(device, 0); (void)post;
372         udelay((nsec + 500) / 1000);
373 }
374
375 static u32
376 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
377 {
378         struct nouveau_device *device = nouveau_dev(exec->dev);
379         if (mr <= 1)
380                 return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
381         if (mr <= 3)
382                 return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
383         return 0;
384 }
385
386 static void
387 mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
388 {
389         struct nouveau_device *device = nouveau_dev(exec->dev);
390         struct nouveau_fb *pfb = nouveau_fb(device);
391         if (mr <= 1) {
392                 if (pfb->ram.ranks > 1)
393                         nv_wr32(device, 0x1002c8 + ((mr - 0) * 4), data);
394                 nv_wr32(device, 0x1002c0 + ((mr - 0) * 4), data);
395         } else
396         if (mr <= 3) {
397                 if (pfb->ram.ranks > 1)
398                         nv_wr32(device, 0x1002e8 + ((mr - 2) * 4), data);
399                 nv_wr32(device, 0x1002e0 + ((mr - 2) * 4), data);
400         }
401 }
402
403 static void
404 mclk_clock_set(struct nouveau_mem_exec_func *exec)
405 {
406         struct nouveau_device *device = nouveau_dev(exec->dev);
407         struct nva3_pm_state *info = exec->priv;
408         u32 ctrl;
409
410         ctrl = nv_rd32(device, 0x004000);
411         if (!(ctrl & 0x00000008) && info->mclk.pll) {
412                 nv_wr32(device, 0x004000, (ctrl |=  0x00000008));
413                 nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
414                 nv_wr32(device, 0x004018, 0x00001000);
415                 nv_wr32(device, 0x004000, (ctrl &= ~0x00000001));
416                 nv_wr32(device, 0x004004, info->mclk.pll);
417                 nv_wr32(device, 0x004000, (ctrl |=  0x00000001));
418                 udelay(64);
419                 nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
420                 udelay(20);
421         } else
422         if (!info->mclk.pll) {
423                 nv_mask(device, 0x004168, 0x003f3040, info->mclk.clk);
424                 nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
425                 nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
426                 nv_wr32(device, 0x004018, 0x0000d000 | info->r004018);
427         }
428
429         if (info->rammap) {
430                 if (info->ramcfg && (info->rammap[4] & 0x08)) {
431                         u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) |
432                                       info->ramcfg[5];
433                         u32 unk5a4 = ROM16(info->ramcfg[7]);
434                         u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 |
435                                      (info->ramcfg[3] & 0x0f) << 16 |
436                                      (info->ramcfg[9] & 0x0f) |
437                                      0x80000000;
438                         nv_wr32(device, 0x1005a0, unk5a0);
439                         nv_wr32(device, 0x1005a4, unk5a4);
440                         nv_wr32(device, 0x10f804, unk804);
441                         nv_mask(device, 0x10053c, 0x00001000, 0x00000000);
442                 } else {
443                         nv_mask(device, 0x10053c, 0x00001000, 0x00001000);
444                         nv_mask(device, 0x10f804, 0x80000000, 0x00000000);
445                         nv_mask(device, 0x100760, 0x22222222, info->r100760);
446                         nv_mask(device, 0x1007a0, 0x22222222, info->r100760);
447                         nv_mask(device, 0x1007e0, 0x22222222, info->r100760);
448                 }
449         }
450
451         if (info->mclk.pll) {
452                 nv_mask(device, 0x1110e0, 0x00088000, 0x00011000);
453                 nv_wr32(device, 0x004000, (ctrl &= ~0x00000008));
454         }
455 }
456
457 static void
458 mclk_timing_set(struct nouveau_mem_exec_func *exec)
459 {
460         struct nouveau_device *device = nouveau_dev(exec->dev);
461         struct nva3_pm_state *info = exec->priv;
462         struct nouveau_pm_level *perflvl = info->perflvl;
463         int i;
464
465         for (i = 0; i < 9; i++)
466                 nv_wr32(device, 0x100220 + (i * 4), perflvl->timing.reg[i]);
467
468         if (info->ramcfg) {
469                 u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000;
470                 nv_mask(device, 0x100200, 0x00001000, data);
471         }
472
473         if (info->ramcfg) {
474                 u32 unk714 = nv_rd32(device, 0x100714) & ~0xf0000010;
475                 u32 unk718 = nv_rd32(device, 0x100718) & ~0x00000100;
476                 u32 unk71c = nv_rd32(device, 0x10071c) & ~0x00000100;
477                 if ( (info->ramcfg[2] & 0x20))
478                         unk714 |= 0xf0000000;
479                 if (!(info->ramcfg[2] & 0x04))
480                         unk714 |= 0x00000010;
481                 nv_wr32(device, 0x100714, unk714);
482
483                 if (info->ramcfg[2] & 0x01)
484                         unk71c |= 0x00000100;
485                 nv_wr32(device, 0x10071c, unk71c);
486
487                 if (info->ramcfg[2] & 0x02)
488                         unk718 |= 0x00000100;
489                 nv_wr32(device, 0x100718, unk718);
490
491                 if (info->ramcfg[2] & 0x10)
492                         nv_wr32(device, 0x111100, 0x48000000); /*XXX*/
493         }
494 }
495
496 static void
497 prog_mem(struct drm_device *dev, struct nva3_pm_state *info)
498 {
499         struct nouveau_device *device = nouveau_dev(dev);
500         struct nouveau_mem_exec_func exec = {
501                 .dev = dev,
502                 .precharge = mclk_precharge,
503                 .refresh = mclk_refresh,
504                 .refresh_auto = mclk_refresh_auto,
505                 .refresh_self = mclk_refresh_self,
506                 .wait = mclk_wait,
507                 .mrg = mclk_mrg,
508                 .mrs = mclk_mrs,
509                 .clock_set = mclk_clock_set,
510                 .timing_set = mclk_timing_set,
511                 .priv = info
512         };
513         u32 ctrl;
514
515         /* XXX: where the fuck does 750MHz come from? */
516         if (info->perflvl->memory <= 750000) {
517                 info->r004018 = 0x10000000;
518                 info->r100760 = 0x22222222;
519         }
520
521         ctrl = nv_rd32(device, 0x004000);
522         if (ctrl & 0x00000008) {
523                 if (info->mclk.pll) {
524                         nv_mask(device, 0x004128, 0x00000101, 0x00000101);
525                         nv_wr32(device, 0x004004, info->mclk.pll);
526                         nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
527                         nv_wr32(device, 0x004000, (ctrl &= 0xffffffef));
528                         nv_wait(device, 0x004000, 0x00020000, 0x00020000);
529                         nv_wr32(device, 0x004000, (ctrl |= 0x00000010));
530                         nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
531                         nv_wr32(device, 0x004000, (ctrl |= 0x00000004));
532                 }
533         } else {
534                 u32 ssel = 0x00000101;
535                 if (info->mclk.clk)
536                         ssel |= info->mclk.clk;
537                 else
538                         ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
539                 nv_mask(device, 0x004168, 0x003f3141, ctrl);
540         }
541
542         if (info->ramcfg) {
543                 if (info->ramcfg[2] & 0x10) {
544                         nv_mask(device, 0x111104, 0x00000600, 0x00000000);
545                 } else {
546                         nv_mask(device, 0x111100, 0x40000000, 0x40000000);
547                         nv_mask(device, 0x111104, 0x00000180, 0x00000000);
548                 }
549         }
550         if (info->rammap && !(info->rammap[4] & 0x02))
551                 nv_mask(device, 0x100200, 0x00000800, 0x00000000);
552         nv_wr32(device, 0x611200, 0x00003300);
553         if (!(info->ramcfg[2] & 0x10))
554                 nv_wr32(device, 0x111100, 0x4c020000); /*XXX*/
555
556         nouveau_mem_exec(&exec, info->perflvl);
557
558         nv_wr32(device, 0x611200, 0x00003330);
559         if (info->rammap && (info->rammap[4] & 0x02))
560                 nv_mask(device, 0x100200, 0x00000800, 0x00000800);
561         if (info->ramcfg) {
562                 if (info->ramcfg[2] & 0x10) {
563                         nv_mask(device, 0x111104, 0x00000180, 0x00000180);
564                         nv_mask(device, 0x111100, 0x40000000, 0x00000000);
565                 } else {
566                         nv_mask(device, 0x111104, 0x00000600, 0x00000600);
567                 }
568         }
569
570         if (info->mclk.pll) {
571                 nv_mask(device, 0x004168, 0x00000001, 0x00000000);
572                 nv_mask(device, 0x004168, 0x00000100, 0x00000000);
573         } else {
574                 nv_mask(device, 0x004000, 0x00000001, 0x00000000);
575                 nv_mask(device, 0x004128, 0x00000001, 0x00000000);
576                 nv_mask(device, 0x004128, 0x00000100, 0x00000000);
577         }
578 }
579
580 int
581 nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
582 {
583         struct nouveau_device *device = nouveau_dev(dev);
584         struct nouveau_drm *drm = nouveau_drm(dev);
585         struct nva3_pm_state *info = pre_state;
586         int ret = -EAGAIN;
587
588         /* prevent any new grctx switches from starting */
589         nv_wr32(device, 0x400324, 0x00000000);
590         nv_wr32(device, 0x400328, 0x0050001c); /* wait flag 0x1c */
591         /* wait for any pending grctx switches to complete */
592         if (!nv_wait_cb(device, nva3_pm_grcp_idle, dev)) {
593                 NV_ERROR(drm, "pm: ctxprog didn't go idle\n");
594                 goto cleanup;
595         }
596         /* freeze PFIFO */
597         nv_mask(device, 0x002504, 0x00000001, 0x00000001);
598         if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) {
599                 NV_ERROR(drm, "pm: fifo didn't go idle\n");
600                 goto cleanup;
601         }
602
603         prog_pll(dev, 0x00, 0x004200, &info->nclk);
604         prog_pll(dev, 0x01, 0x004220, &info->sclk);
605         prog_clk(dev, 0x20, &info->unka0);
606         prog_clk(dev, 0x21, &info->vdec);
607
608         if (info->mclk.clk || info->mclk.pll)
609                 prog_mem(dev, info);
610
611         ret = 0;
612
613 cleanup:
614         /* unfreeze PFIFO */
615         nv_mask(device, 0x002504, 0x00000001, 0x00000000);
616         /* restore ctxprog to normal */
617         nv_wr32(device, 0x400324, 0x00000000);
618         nv_wr32(device, 0x400328, 0x0070009c); /* set flag 0x1c */
619         /* unblock it if necessary */
620         if (nv_rd32(device, 0x400308) == 0x0050001c)
621                 nv_mask(device, 0x400824, 0x10000000, 0x10000000);
622         kfree(info);
623         return ret;
624 }