dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / drivers / gpu / drm / nouveau / nouveau_dmem.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28 #include "nouveau_svm.h"
29
30 #include <nvif/class.h>
31 #include <nvif/object.h>
32 #include <nvif/push906f.h>
33 #include <nvif/if000c.h>
34 #include <nvif/if500b.h>
35 #include <nvif/if900b.h>
36 #include <nvif/if000c.h>
37
38 #include <nvhw/class/cla0b5.h>
39
40 #include <linux/sched/mm.h>
41 #include <linux/hmm.h>
42 #include <linux/memremap.h>
43 #include <linux/migrate.h>
44
45 /*
46  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
47  * it in vram while in use. We likely want to overhaul memory management for
48  * nouveau to be more page like (not necessarily with system page size but a
49  * bigger page size) at lowest level and have some shim layer on top that would
50  * provide the same functionality as TTM.
51  */
52 #define DMEM_CHUNK_SIZE (2UL << 20)
53 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
54
55 enum nouveau_aper {
56         NOUVEAU_APER_VIRT,
57         NOUVEAU_APER_VRAM,
58         NOUVEAU_APER_HOST,
59 };
60
61 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
62                                       enum nouveau_aper, u64 dst_addr,
63                                       enum nouveau_aper, u64 src_addr);
64 typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
65                                       enum nouveau_aper, u64 dst_addr);
66
67 struct nouveau_dmem_chunk {
68         struct list_head list;
69         struct nouveau_bo *bo;
70         struct nouveau_drm *drm;
71         unsigned long callocated;
72         struct dev_pagemap pagemap;
73 };
74
75 struct nouveau_dmem_migrate {
76         nouveau_migrate_copy_t copy_func;
77         nouveau_clear_page_t clear_func;
78         struct nouveau_channel *chan;
79 };
80
81 struct nouveau_dmem {
82         struct nouveau_drm *drm;
83         struct nouveau_dmem_migrate migrate;
84         struct list_head chunks;
85         struct mutex mutex;
86         struct page *free_pages;
87         spinlock_t lock;
88 };
89
90 static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
91 {
92         return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
93 }
94
95 static struct nouveau_drm *page_to_drm(struct page *page)
96 {
97         struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
98
99         return chunk->drm;
100 }
101
102 unsigned long nouveau_dmem_page_addr(struct page *page)
103 {
104         struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
105         unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
106                                 chunk->pagemap.range.start;
107
108         return chunk->bo->offset + off;
109 }
110
111 static void nouveau_dmem_page_free(struct page *page)
112 {
113         struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
114         struct nouveau_dmem *dmem = chunk->drm->dmem;
115
116         spin_lock(&dmem->lock);
117         page->zone_device_data = dmem->free_pages;
118         dmem->free_pages = page;
119
120         WARN_ON(!chunk->callocated);
121         chunk->callocated--;
122         /*
123          * FIXME when chunk->callocated reach 0 we should add the chunk to
124          * a reclaim list so that it can be freed in case of memory pressure.
125          */
126         spin_unlock(&dmem->lock);
127 }
128
129 static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
130 {
131         if (fence) {
132                 nouveau_fence_wait(*fence, true, false);
133                 nouveau_fence_unref(fence);
134         } else {
135                 /*
136                  * FIXME wait for channel to be IDLE before calling finalizing
137                  * the hmem object.
138                  */
139         }
140 }
141
142 static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm,
143                 struct vm_fault *vmf, struct migrate_vma *args,
144                 dma_addr_t *dma_addr)
145 {
146         struct device *dev = drm->dev->dev;
147         struct page *dpage, *spage;
148         struct nouveau_svmm *svmm;
149
150         spage = migrate_pfn_to_page(args->src[0]);
151         if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE))
152                 return 0;
153
154         dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address);
155         if (!dpage)
156                 return VM_FAULT_SIGBUS;
157         lock_page(dpage);
158
159         *dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
160         if (dma_mapping_error(dev, *dma_addr))
161                 goto error_free_page;
162
163         svmm = spage->zone_device_data;
164         mutex_lock(&svmm->mutex);
165         nouveau_svmm_invalidate(svmm, args->start, args->end);
166         if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
167                         NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage)))
168                 goto error_dma_unmap;
169         mutex_unlock(&svmm->mutex);
170
171         args->dst[0] = migrate_pfn(page_to_pfn(dpage));
172         return 0;
173
174 error_dma_unmap:
175         mutex_unlock(&svmm->mutex);
176         dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
177 error_free_page:
178         __free_page(dpage);
179         return VM_FAULT_SIGBUS;
180 }
181
182 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
183 {
184         struct nouveau_drm *drm = page_to_drm(vmf->page);
185         struct nouveau_dmem *dmem = drm->dmem;
186         struct nouveau_fence *fence;
187         unsigned long src = 0, dst = 0;
188         dma_addr_t dma_addr = 0;
189         vm_fault_t ret;
190         struct migrate_vma args = {
191                 .vma            = vmf->vma,
192                 .start          = vmf->address,
193                 .end            = vmf->address + PAGE_SIZE,
194                 .src            = &src,
195                 .dst            = &dst,
196                 .pgmap_owner    = drm->dev,
197                 .flags          = MIGRATE_VMA_SELECT_DEVICE_PRIVATE,
198         };
199
200         /*
201          * FIXME what we really want is to find some heuristic to migrate more
202          * than just one page on CPU fault. When such fault happens it is very
203          * likely that more surrounding page will CPU fault too.
204          */
205         if (migrate_vma_setup(&args) < 0)
206                 return VM_FAULT_SIGBUS;
207         if (!args.cpages)
208                 return 0;
209
210         ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr);
211         if (ret || dst == 0)
212                 goto done;
213
214         nouveau_fence_new(dmem->migrate.chan, false, &fence);
215         migrate_vma_pages(&args);
216         nouveau_dmem_fence_done(&fence);
217         dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
218 done:
219         migrate_vma_finalize(&args);
220         return ret;
221 }
222
223 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
224         .page_free              = nouveau_dmem_page_free,
225         .migrate_to_ram         = nouveau_dmem_migrate_to_ram,
226 };
227
228 static int
229 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
230 {
231         struct nouveau_dmem_chunk *chunk;
232         struct resource *res;
233         struct page *page;
234         void *ptr;
235         unsigned long i, pfn_first;
236         int ret;
237
238         chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
239         if (chunk == NULL) {
240                 ret = -ENOMEM;
241                 goto out;
242         }
243
244         /* Allocate unused physical address space for device private pages. */
245         res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
246                                       "nouveau_dmem");
247         if (IS_ERR(res)) {
248                 ret = PTR_ERR(res);
249                 goto out_free;
250         }
251
252         chunk->drm = drm;
253         chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
254         chunk->pagemap.range.start = res->start;
255         chunk->pagemap.range.end = res->end;
256         chunk->pagemap.nr_range = 1;
257         chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
258         chunk->pagemap.owner = drm->dev;
259
260         ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
261                              NOUVEAU_GEM_DOMAIN_VRAM, 0, 0, NULL, NULL,
262                              &chunk->bo);
263         if (ret)
264                 goto out_release;
265
266         ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
267         if (ret)
268                 goto out_bo_free;
269
270         ptr = memremap_pages(&chunk->pagemap, numa_node_id());
271         if (IS_ERR(ptr)) {
272                 ret = PTR_ERR(ptr);
273                 goto out_bo_unpin;
274         }
275
276         mutex_lock(&drm->dmem->mutex);
277         list_add(&chunk->list, &drm->dmem->chunks);
278         mutex_unlock(&drm->dmem->mutex);
279
280         pfn_first = chunk->pagemap.range.start >> PAGE_SHIFT;
281         page = pfn_to_page(pfn_first);
282         spin_lock(&drm->dmem->lock);
283         for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
284                 page->zone_device_data = drm->dmem->free_pages;
285                 drm->dmem->free_pages = page;
286         }
287         *ppage = page;
288         chunk->callocated++;
289         spin_unlock(&drm->dmem->lock);
290
291         NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
292                 DMEM_CHUNK_SIZE >> 20);
293
294         return 0;
295
296 out_bo_unpin:
297         nouveau_bo_unpin(chunk->bo);
298 out_bo_free:
299         nouveau_bo_ref(NULL, &chunk->bo);
300 out_release:
301         release_mem_region(chunk->pagemap.range.start, range_len(&chunk->pagemap.range));
302 out_free:
303         kfree(chunk);
304 out:
305         return ret;
306 }
307
308 static struct page *
309 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
310 {
311         struct nouveau_dmem_chunk *chunk;
312         struct page *page = NULL;
313         int ret;
314
315         spin_lock(&drm->dmem->lock);
316         if (drm->dmem->free_pages) {
317                 page = drm->dmem->free_pages;
318                 drm->dmem->free_pages = page->zone_device_data;
319                 chunk = nouveau_page_to_chunk(page);
320                 chunk->callocated++;
321                 spin_unlock(&drm->dmem->lock);
322         } else {
323                 spin_unlock(&drm->dmem->lock);
324                 ret = nouveau_dmem_chunk_alloc(drm, &page);
325                 if (ret)
326                         return NULL;
327         }
328
329         lock_page(page);
330         return page;
331 }
332
333 static void
334 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
335 {
336         unlock_page(page);
337         put_page(page);
338 }
339
340 void
341 nouveau_dmem_resume(struct nouveau_drm *drm)
342 {
343         struct nouveau_dmem_chunk *chunk;
344         int ret;
345
346         if (drm->dmem == NULL)
347                 return;
348
349         mutex_lock(&drm->dmem->mutex);
350         list_for_each_entry(chunk, &drm->dmem->chunks, list) {
351                 ret = nouveau_bo_pin(chunk->bo, NOUVEAU_GEM_DOMAIN_VRAM, false);
352                 /* FIXME handle pin failure */
353                 WARN_ON(ret);
354         }
355         mutex_unlock(&drm->dmem->mutex);
356 }
357
358 void
359 nouveau_dmem_suspend(struct nouveau_drm *drm)
360 {
361         struct nouveau_dmem_chunk *chunk;
362
363         if (drm->dmem == NULL)
364                 return;
365
366         mutex_lock(&drm->dmem->mutex);
367         list_for_each_entry(chunk, &drm->dmem->chunks, list)
368                 nouveau_bo_unpin(chunk->bo);
369         mutex_unlock(&drm->dmem->mutex);
370 }
371
372 void
373 nouveau_dmem_fini(struct nouveau_drm *drm)
374 {
375         struct nouveau_dmem_chunk *chunk, *tmp;
376
377         if (drm->dmem == NULL)
378                 return;
379
380         mutex_lock(&drm->dmem->mutex);
381
382         list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
383                 nouveau_bo_unpin(chunk->bo);
384                 nouveau_bo_ref(NULL, &chunk->bo);
385                 list_del(&chunk->list);
386                 memunmap_pages(&chunk->pagemap);
387                 release_mem_region(chunk->pagemap.range.start,
388                                    range_len(&chunk->pagemap.range));
389                 kfree(chunk);
390         }
391
392         mutex_unlock(&drm->dmem->mutex);
393 }
394
395 static int
396 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
397                     enum nouveau_aper dst_aper, u64 dst_addr,
398                     enum nouveau_aper src_aper, u64 src_addr)
399 {
400         struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
401         u32 launch_dma = 0;
402         int ret;
403
404         ret = PUSH_WAIT(push, 13);
405         if (ret)
406                 return ret;
407
408         if (src_aper != NOUVEAU_APER_VIRT) {
409                 switch (src_aper) {
410                 case NOUVEAU_APER_VRAM:
411                         PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
412                                   NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, LOCAL_FB));
413                         break;
414                 case NOUVEAU_APER_HOST:
415                         PUSH_IMMD(push, NVA0B5, SET_SRC_PHYS_MODE,
416                                   NVDEF(NVA0B5, SET_SRC_PHYS_MODE, TARGET, COHERENT_SYSMEM));
417                         break;
418                 default:
419                         return -EINVAL;
420                 }
421
422                 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, SRC_TYPE, PHYSICAL);
423         }
424
425         if (dst_aper != NOUVEAU_APER_VIRT) {
426                 switch (dst_aper) {
427                 case NOUVEAU_APER_VRAM:
428                         PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
429                                   NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
430                         break;
431                 case NOUVEAU_APER_HOST:
432                         PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
433                                   NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
434                         break;
435                 default:
436                         return -EINVAL;
437                 }
438
439                 launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
440         }
441
442         PUSH_MTHD(push, NVA0B5, OFFSET_IN_UPPER,
443                   NVVAL(NVA0B5, OFFSET_IN_UPPER, UPPER, upper_32_bits(src_addr)),
444
445                                 OFFSET_IN_LOWER, lower_32_bits(src_addr),
446
447                                 OFFSET_OUT_UPPER,
448                   NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
449
450                                 OFFSET_OUT_LOWER, lower_32_bits(dst_addr),
451                                 PITCH_IN, PAGE_SIZE,
452                                 PITCH_OUT, PAGE_SIZE,
453                                 LINE_LENGTH_IN, PAGE_SIZE,
454                                 LINE_COUNT, npages);
455
456         PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
457                   NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
458                   NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
459                   NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
460                   NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
461                   NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
462                   NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
463                   NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, TRUE) |
464                   NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, FALSE) |
465                   NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
466         return 0;
467 }
468
469 static int
470 nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
471                      enum nouveau_aper dst_aper, u64 dst_addr)
472 {
473         struct nvif_push *push = drm->dmem->migrate.chan->chan.push;
474         u32 launch_dma = 0;
475         int ret;
476
477         ret = PUSH_WAIT(push, 12);
478         if (ret)
479                 return ret;
480
481         switch (dst_aper) {
482         case NOUVEAU_APER_VRAM:
483                 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
484                           NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, LOCAL_FB));
485                 break;
486         case NOUVEAU_APER_HOST:
487                 PUSH_IMMD(push, NVA0B5, SET_DST_PHYS_MODE,
488                           NVDEF(NVA0B5, SET_DST_PHYS_MODE, TARGET, COHERENT_SYSMEM));
489                 break;
490         default:
491                 return -EINVAL;
492         }
493
494         launch_dma |= NVDEF(NVA0B5, LAUNCH_DMA, DST_TYPE, PHYSICAL);
495
496         PUSH_MTHD(push, NVA0B5, SET_REMAP_CONST_A, 0,
497                                 SET_REMAP_CONST_B, 0,
498
499                                 SET_REMAP_COMPONENTS,
500                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_X, CONST_A) |
501                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, DST_Y, CONST_B) |
502                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, COMPONENT_SIZE, FOUR) |
503                   NVDEF(NVA0B5, SET_REMAP_COMPONENTS, NUM_DST_COMPONENTS, TWO));
504
505         PUSH_MTHD(push, NVA0B5, OFFSET_OUT_UPPER,
506                   NVVAL(NVA0B5, OFFSET_OUT_UPPER, UPPER, upper_32_bits(dst_addr)),
507
508                                 OFFSET_OUT_LOWER, lower_32_bits(dst_addr));
509
510         PUSH_MTHD(push, NVA0B5, LINE_LENGTH_IN, length >> 3);
511
512         PUSH_MTHD(push, NVA0B5, LAUNCH_DMA, launch_dma |
513                   NVDEF(NVA0B5, LAUNCH_DMA, DATA_TRANSFER_TYPE, NON_PIPELINED) |
514                   NVDEF(NVA0B5, LAUNCH_DMA, FLUSH_ENABLE, TRUE) |
515                   NVDEF(NVA0B5, LAUNCH_DMA, SEMAPHORE_TYPE, NONE) |
516                   NVDEF(NVA0B5, LAUNCH_DMA, INTERRUPT_TYPE, NONE) |
517                   NVDEF(NVA0B5, LAUNCH_DMA, SRC_MEMORY_LAYOUT, PITCH) |
518                   NVDEF(NVA0B5, LAUNCH_DMA, DST_MEMORY_LAYOUT, PITCH) |
519                   NVDEF(NVA0B5, LAUNCH_DMA, MULTI_LINE_ENABLE, FALSE) |
520                   NVDEF(NVA0B5, LAUNCH_DMA, REMAP_ENABLE, TRUE) |
521                   NVDEF(NVA0B5, LAUNCH_DMA, BYPASS_L2, USE_PTE_SETTING));
522         return 0;
523 }
524
525 static int
526 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
527 {
528         switch (drm->ttm.copy.oclass) {
529         case PASCAL_DMA_COPY_A:
530         case PASCAL_DMA_COPY_B:
531         case  VOLTA_DMA_COPY_A:
532         case TURING_DMA_COPY_A:
533                 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
534                 drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
535                 drm->dmem->migrate.chan = drm->ttm.chan;
536                 return 0;
537         default:
538                 break;
539         }
540         return -ENODEV;
541 }
542
543 void
544 nouveau_dmem_init(struct nouveau_drm *drm)
545 {
546         int ret;
547
548         /* This only make sense on PASCAL or newer */
549         if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
550                 return;
551
552         if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
553                 return;
554
555         drm->dmem->drm = drm;
556         mutex_init(&drm->dmem->mutex);
557         INIT_LIST_HEAD(&drm->dmem->chunks);
558         mutex_init(&drm->dmem->mutex);
559         spin_lock_init(&drm->dmem->lock);
560
561         /* Initialize migration dma helpers before registering memory */
562         ret = nouveau_dmem_migrate_init(drm);
563         if (ret) {
564                 kfree(drm->dmem);
565                 drm->dmem = NULL;
566         }
567 }
568
569 static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
570                 struct nouveau_svmm *svmm, unsigned long src,
571                 dma_addr_t *dma_addr, u64 *pfn)
572 {
573         struct device *dev = drm->dev->dev;
574         struct page *dpage, *spage;
575         unsigned long paddr;
576
577         spage = migrate_pfn_to_page(src);
578         if (!(src & MIGRATE_PFN_MIGRATE))
579                 goto out;
580
581         dpage = nouveau_dmem_page_alloc_locked(drm);
582         if (!dpage)
583                 goto out;
584
585         paddr = nouveau_dmem_page_addr(dpage);
586         if (spage) {
587                 *dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
588                                          DMA_BIDIRECTIONAL);
589                 if (dma_mapping_error(dev, *dma_addr))
590                         goto out_free_page;
591                 if (drm->dmem->migrate.copy_func(drm, 1,
592                         NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
593                         goto out_dma_unmap;
594         } else {
595                 *dma_addr = DMA_MAPPING_ERROR;
596                 if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
597                         NOUVEAU_APER_VRAM, paddr))
598                         goto out_free_page;
599         }
600
601         dpage->zone_device_data = svmm;
602         *pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
603                 ((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
604         if (src & MIGRATE_PFN_WRITE)
605                 *pfn |= NVIF_VMM_PFNMAP_V0_W;
606         return migrate_pfn(page_to_pfn(dpage));
607
608 out_dma_unmap:
609         dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
610 out_free_page:
611         nouveau_dmem_page_free_locked(drm, dpage);
612 out:
613         *pfn = NVIF_VMM_PFNMAP_V0_NONE;
614         return 0;
615 }
616
617 static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
618                 struct nouveau_svmm *svmm, struct migrate_vma *args,
619                 dma_addr_t *dma_addrs, u64 *pfns)
620 {
621         struct nouveau_fence *fence;
622         unsigned long addr = args->start, nr_dma = 0, i;
623
624         for (i = 0; addr < args->end; i++) {
625                 args->dst[i] = nouveau_dmem_migrate_copy_one(drm, svmm,
626                                 args->src[i], dma_addrs + nr_dma, pfns + i);
627                 if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
628                         nr_dma++;
629                 addr += PAGE_SIZE;
630         }
631
632         nouveau_fence_new(drm->dmem->migrate.chan, false, &fence);
633         migrate_vma_pages(args);
634         nouveau_dmem_fence_done(&fence);
635         nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
636
637         while (nr_dma--) {
638                 dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
639                                 DMA_BIDIRECTIONAL);
640         }
641         migrate_vma_finalize(args);
642 }
643
644 int
645 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
646                          struct nouveau_svmm *svmm,
647                          struct vm_area_struct *vma,
648                          unsigned long start,
649                          unsigned long end)
650 {
651         unsigned long npages = (end - start) >> PAGE_SHIFT;
652         unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
653         dma_addr_t *dma_addrs;
654         struct migrate_vma args = {
655                 .vma            = vma,
656                 .start          = start,
657                 .pgmap_owner    = drm->dev,
658                 .flags          = MIGRATE_VMA_SELECT_SYSTEM,
659         };
660         unsigned long i;
661         u64 *pfns;
662         int ret = -ENOMEM;
663
664         if (drm->dmem == NULL)
665                 return -ENODEV;
666
667         args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
668         if (!args.src)
669                 goto out;
670         args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
671         if (!args.dst)
672                 goto out_free_src;
673
674         dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
675         if (!dma_addrs)
676                 goto out_free_dst;
677
678         pfns = nouveau_pfns_alloc(max);
679         if (!pfns)
680                 goto out_free_dma;
681
682         for (i = 0; i < npages; i += max) {
683                 args.end = start + (max << PAGE_SHIFT);
684                 ret = migrate_vma_setup(&args);
685                 if (ret)
686                         goto out_free_pfns;
687
688                 if (args.cpages)
689                         nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
690                                                    pfns);
691                 args.start = args.end;
692         }
693
694         ret = 0;
695 out_free_pfns:
696         nouveau_pfns_free(pfns);
697 out_free_dma:
698         kfree(dma_addrs);
699 out_free_dst:
700         kfree(args.dst);
701 out_free_src:
702         kfree(args.src);
703 out:
704         return ret;
705 }