Merge branch 'linux-5.1' of git://github.com/skeggsb/linux into drm-fixes
[linux-2.6-microblaze.git] / drivers / gpu / drm / nouveau / nouveau_dmem.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28
29 #include <nvif/class.h>
30 #include <nvif/object.h>
31 #include <nvif/if500b.h>
32 #include <nvif/if900b.h>
33
34 #include <linux/sched/mm.h>
35 #include <linux/hmm.h>
36
37 /*
38  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
39  * it in vram while in use. We likely want to overhaul memory management for
40  * nouveau to be more page like (not necessarily with system page size but a
41  * bigger page size) at lowest level and have some shim layer on top that would
42  * provide the same functionality as TTM.
43  */
44 #define DMEM_CHUNK_SIZE (2UL << 20)
45 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
46
47 struct nouveau_migrate;
48
49 enum nouveau_aper {
50         NOUVEAU_APER_VIRT,
51         NOUVEAU_APER_VRAM,
52         NOUVEAU_APER_HOST,
53 };
54
55 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
56                                       enum nouveau_aper, u64 dst_addr,
57                                       enum nouveau_aper, u64 src_addr);
58
59 struct nouveau_dmem_chunk {
60         struct list_head list;
61         struct nouveau_bo *bo;
62         struct nouveau_drm *drm;
63         unsigned long pfn_first;
64         unsigned long callocated;
65         unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)];
66         spinlock_t lock;
67 };
68
69 struct nouveau_dmem_migrate {
70         nouveau_migrate_copy_t copy_func;
71         struct nouveau_channel *chan;
72 };
73
74 struct nouveau_dmem {
75         struct hmm_devmem *devmem;
76         struct nouveau_dmem_migrate migrate;
77         struct list_head chunk_free;
78         struct list_head chunk_full;
79         struct list_head chunk_empty;
80         struct mutex mutex;
81 };
82
83 struct nouveau_dmem_fault {
84         struct nouveau_drm *drm;
85         struct nouveau_fence *fence;
86         dma_addr_t *dma;
87         unsigned long npages;
88 };
89
90 struct nouveau_migrate {
91         struct vm_area_struct *vma;
92         struct nouveau_drm *drm;
93         struct nouveau_fence *fence;
94         unsigned long npages;
95         dma_addr_t *dma;
96         unsigned long dma_nr;
97 };
98
99 static void
100 nouveau_dmem_free(struct hmm_devmem *devmem, struct page *page)
101 {
102         struct nouveau_dmem_chunk *chunk;
103         unsigned long idx;
104
105         chunk = (void *)hmm_devmem_page_get_drvdata(page);
106         idx = page_to_pfn(page) - chunk->pfn_first;
107
108         /*
109          * FIXME:
110          *
111          * This is really a bad example, we need to overhaul nouveau memory
112          * management to be more page focus and allow lighter locking scheme
113          * to be use in the process.
114          */
115         spin_lock(&chunk->lock);
116         clear_bit(idx, chunk->bitmap);
117         WARN_ON(!chunk->callocated);
118         chunk->callocated--;
119         /*
120          * FIXME when chunk->callocated reach 0 we should add the chunk to
121          * a reclaim list so that it can be freed in case of memory pressure.
122          */
123         spin_unlock(&chunk->lock);
124 }
125
126 static void
127 nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma,
128                                   const unsigned long *src_pfns,
129                                   unsigned long *dst_pfns,
130                                   unsigned long start,
131                                   unsigned long end,
132                                   void *private)
133 {
134         struct nouveau_dmem_fault *fault = private;
135         struct nouveau_drm *drm = fault->drm;
136         struct device *dev = drm->dev->dev;
137         unsigned long addr, i, npages = 0;
138         nouveau_migrate_copy_t copy;
139         int ret;
140
141
142         /* First allocate new memory */
143         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
144                 struct page *dpage, *spage;
145
146                 dst_pfns[i] = 0;
147                 spage = migrate_pfn_to_page(src_pfns[i]);
148                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
149                         continue;
150
151                 dpage = hmm_vma_alloc_locked_page(vma, addr);
152                 if (!dpage) {
153                         dst_pfns[i] = MIGRATE_PFN_ERROR;
154                         continue;
155                 }
156
157                 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
158                               MIGRATE_PFN_LOCKED;
159                 npages++;
160         }
161
162         /* Allocate storage for DMA addresses, so we can unmap later. */
163         fault->dma = kmalloc(sizeof(*fault->dma) * npages, GFP_KERNEL);
164         if (!fault->dma)
165                 goto error;
166
167         /* Copy things over */
168         copy = drm->dmem->migrate.copy_func;
169         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
170                 struct nouveau_dmem_chunk *chunk;
171                 struct page *spage, *dpage;
172                 u64 src_addr, dst_addr;
173
174                 dpage = migrate_pfn_to_page(dst_pfns[i]);
175                 if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
176                         continue;
177
178                 spage = migrate_pfn_to_page(src_pfns[i]);
179                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
180                         dst_pfns[i] = MIGRATE_PFN_ERROR;
181                         __free_page(dpage);
182                         continue;
183                 }
184
185                 fault->dma[fault->npages] =
186                         dma_map_page_attrs(dev, dpage, 0, PAGE_SIZE,
187                                            PCI_DMA_BIDIRECTIONAL,
188                                            DMA_ATTR_SKIP_CPU_SYNC);
189                 if (dma_mapping_error(dev, fault->dma[fault->npages])) {
190                         dst_pfns[i] = MIGRATE_PFN_ERROR;
191                         __free_page(dpage);
192                         continue;
193                 }
194
195                 dst_addr = fault->dma[fault->npages++];
196
197                 chunk = (void *)hmm_devmem_page_get_drvdata(spage);
198                 src_addr = page_to_pfn(spage) - chunk->pfn_first;
199                 src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
200
201                 ret = copy(drm, 1, NOUVEAU_APER_HOST, dst_addr,
202                                    NOUVEAU_APER_VRAM, src_addr);
203                 if (ret) {
204                         dst_pfns[i] = MIGRATE_PFN_ERROR;
205                         __free_page(dpage);
206                         continue;
207                 }
208         }
209
210         nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence);
211
212         return;
213
214 error:
215         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
216                 struct page *page;
217
218                 if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
219                         continue;
220
221                 page = migrate_pfn_to_page(dst_pfns[i]);
222                 dst_pfns[i] = MIGRATE_PFN_ERROR;
223                 if (page == NULL)
224                         continue;
225
226                 __free_page(page);
227         }
228 }
229
230 void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma,
231                                          const unsigned long *src_pfns,
232                                          const unsigned long *dst_pfns,
233                                          unsigned long start,
234                                          unsigned long end,
235                                          void *private)
236 {
237         struct nouveau_dmem_fault *fault = private;
238         struct nouveau_drm *drm = fault->drm;
239
240         if (fault->fence) {
241                 nouveau_fence_wait(fault->fence, true, false);
242                 nouveau_fence_unref(&fault->fence);
243         } else {
244                 /*
245                  * FIXME wait for channel to be IDLE before calling finalizing
246                  * the hmem object below (nouveau_migrate_hmem_fini()).
247                  */
248         }
249
250         while (fault->npages--) {
251                 dma_unmap_page(drm->dev->dev, fault->dma[fault->npages],
252                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
253         }
254         kfree(fault->dma);
255 }
256
257 static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = {
258         .alloc_and_copy         = nouveau_dmem_fault_alloc_and_copy,
259         .finalize_and_map       = nouveau_dmem_fault_finalize_and_map,
260 };
261
262 static vm_fault_t
263 nouveau_dmem_fault(struct hmm_devmem *devmem,
264                    struct vm_area_struct *vma,
265                    unsigned long addr,
266                    const struct page *page,
267                    unsigned int flags,
268                    pmd_t *pmdp)
269 {
270         struct drm_device *drm_dev = dev_get_drvdata(devmem->device);
271         unsigned long src[1] = {0}, dst[1] = {0};
272         struct nouveau_dmem_fault fault = {0};
273         int ret;
274
275
276
277         /*
278          * FIXME what we really want is to find some heuristic to migrate more
279          * than just one page on CPU fault. When such fault happens it is very
280          * likely that more surrounding page will CPU fault too.
281          */
282         fault.drm = nouveau_drm(drm_dev);
283         ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vma, addr,
284                           addr + PAGE_SIZE, src, dst, &fault);
285         if (ret)
286                 return VM_FAULT_SIGBUS;
287
288         if (dst[0] == MIGRATE_PFN_ERROR)
289                 return VM_FAULT_SIGBUS;
290
291         return 0;
292 }
293
294 static const struct hmm_devmem_ops
295 nouveau_dmem_devmem_ops = {
296         .free = nouveau_dmem_free,
297         .fault = nouveau_dmem_fault,
298 };
299
300 static int
301 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm)
302 {
303         struct nouveau_dmem_chunk *chunk;
304         int ret;
305
306         if (drm->dmem == NULL)
307                 return -EINVAL;
308
309         mutex_lock(&drm->dmem->mutex);
310         chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
311                                          struct nouveau_dmem_chunk,
312                                          list);
313         if (chunk == NULL) {
314                 mutex_unlock(&drm->dmem->mutex);
315                 return -ENOMEM;
316         }
317
318         list_del(&chunk->list);
319         mutex_unlock(&drm->dmem->mutex);
320
321         ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
322                              TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
323                              &chunk->bo);
324         if (ret)
325                 goto out;
326
327         ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
328         if (ret) {
329                 nouveau_bo_ref(NULL, &chunk->bo);
330                 goto out;
331         }
332
333         bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES);
334         spin_lock_init(&chunk->lock);
335
336 out:
337         mutex_lock(&drm->dmem->mutex);
338         if (chunk->bo)
339                 list_add(&chunk->list, &drm->dmem->chunk_empty);
340         else
341                 list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
342         mutex_unlock(&drm->dmem->mutex);
343
344         return ret;
345 }
346
347 static struct nouveau_dmem_chunk *
348 nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm)
349 {
350         struct nouveau_dmem_chunk *chunk;
351
352         chunk = list_first_entry_or_null(&drm->dmem->chunk_free,
353                                          struct nouveau_dmem_chunk,
354                                          list);
355         if (chunk)
356                 return chunk;
357
358         chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
359                                          struct nouveau_dmem_chunk,
360                                          list);
361         if (chunk->bo)
362                 return chunk;
363
364         return NULL;
365 }
366
367 static int
368 nouveau_dmem_pages_alloc(struct nouveau_drm *drm,
369                          unsigned long npages,
370                          unsigned long *pages)
371 {
372         struct nouveau_dmem_chunk *chunk;
373         unsigned long c;
374         int ret;
375
376         memset(pages, 0xff, npages * sizeof(*pages));
377
378         mutex_lock(&drm->dmem->mutex);
379         for (c = 0; c < npages;) {
380                 unsigned long i;
381
382                 chunk = nouveau_dmem_chunk_first_free_locked(drm);
383                 if (chunk == NULL) {
384                         mutex_unlock(&drm->dmem->mutex);
385                         ret = nouveau_dmem_chunk_alloc(drm);
386                         if (ret) {
387                                 if (c)
388                                         break;
389                                 return ret;
390                         }
391                         continue;
392                 }
393
394                 spin_lock(&chunk->lock);
395                 i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES);
396                 while (i < DMEM_CHUNK_NPAGES && c < npages) {
397                         pages[c] = chunk->pfn_first + i;
398                         set_bit(i, chunk->bitmap);
399                         chunk->callocated++;
400                         c++;
401
402                         i = find_next_zero_bit(chunk->bitmap,
403                                         DMEM_CHUNK_NPAGES, i);
404                 }
405                 spin_unlock(&chunk->lock);
406         }
407         mutex_unlock(&drm->dmem->mutex);
408
409         return 0;
410 }
411
412 static struct page *
413 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
414 {
415         unsigned long pfns[1];
416         struct page *page;
417         int ret;
418
419         /* FIXME stop all the miss-match API ... */
420         ret = nouveau_dmem_pages_alloc(drm, 1, pfns);
421         if (ret)
422                 return NULL;
423
424         page = pfn_to_page(pfns[0]);
425         get_page(page);
426         lock_page(page);
427         return page;
428 }
429
430 static void
431 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
432 {
433         unlock_page(page);
434         put_page(page);
435 }
436
437 void
438 nouveau_dmem_resume(struct nouveau_drm *drm)
439 {
440         struct nouveau_dmem_chunk *chunk;
441         int ret;
442
443         if (drm->dmem == NULL)
444                 return;
445
446         mutex_lock(&drm->dmem->mutex);
447         list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
448                 ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
449                 /* FIXME handle pin failure */
450                 WARN_ON(ret);
451         }
452         list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
453                 ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
454                 /* FIXME handle pin failure */
455                 WARN_ON(ret);
456         }
457         mutex_unlock(&drm->dmem->mutex);
458 }
459
460 void
461 nouveau_dmem_suspend(struct nouveau_drm *drm)
462 {
463         struct nouveau_dmem_chunk *chunk;
464
465         if (drm->dmem == NULL)
466                 return;
467
468         mutex_lock(&drm->dmem->mutex);
469         list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
470                 nouveau_bo_unpin(chunk->bo);
471         }
472         list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
473                 nouveau_bo_unpin(chunk->bo);
474         }
475         mutex_unlock(&drm->dmem->mutex);
476 }
477
478 void
479 nouveau_dmem_fini(struct nouveau_drm *drm)
480 {
481         struct nouveau_dmem_chunk *chunk, *tmp;
482
483         if (drm->dmem == NULL)
484                 return;
485
486         mutex_lock(&drm->dmem->mutex);
487
488         WARN_ON(!list_empty(&drm->dmem->chunk_free));
489         WARN_ON(!list_empty(&drm->dmem->chunk_full));
490
491         list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) {
492                 if (chunk->bo) {
493                         nouveau_bo_unpin(chunk->bo);
494                         nouveau_bo_ref(NULL, &chunk->bo);
495                 }
496                 list_del(&chunk->list);
497                 kfree(chunk);
498         }
499
500         mutex_unlock(&drm->dmem->mutex);
501 }
502
503 static int
504 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
505                     enum nouveau_aper dst_aper, u64 dst_addr,
506                     enum nouveau_aper src_aper, u64 src_addr)
507 {
508         struct nouveau_channel *chan = drm->dmem->migrate.chan;
509         u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
510                          (1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
511                          (1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
512                          (1 << 2) /* FLUSH_ENABLE_TRUE. */ |
513                          (2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
514         int ret;
515
516         ret = RING_SPACE(chan, 13);
517         if (ret)
518                 return ret;
519
520         if (src_aper != NOUVEAU_APER_VIRT) {
521                 switch (src_aper) {
522                 case NOUVEAU_APER_VRAM:
523                         BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
524                         break;
525                 case NOUVEAU_APER_HOST:
526                         BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
527                         break;
528                 default:
529                         return -EINVAL;
530                 }
531                 launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
532         }
533
534         if (dst_aper != NOUVEAU_APER_VIRT) {
535                 switch (dst_aper) {
536                 case NOUVEAU_APER_VRAM:
537                         BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
538                         break;
539                 case NOUVEAU_APER_HOST:
540                         BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
541                         break;
542                 default:
543                         return -EINVAL;
544                 }
545                 launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
546         }
547
548         BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
549         OUT_RING  (chan, upper_32_bits(src_addr));
550         OUT_RING  (chan, lower_32_bits(src_addr));
551         OUT_RING  (chan, upper_32_bits(dst_addr));
552         OUT_RING  (chan, lower_32_bits(dst_addr));
553         OUT_RING  (chan, PAGE_SIZE);
554         OUT_RING  (chan, PAGE_SIZE);
555         OUT_RING  (chan, PAGE_SIZE);
556         OUT_RING  (chan, npages);
557         BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
558         OUT_RING  (chan, launch_dma);
559         return 0;
560 }
561
562 static int
563 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
564 {
565         switch (drm->ttm.copy.oclass) {
566         case PASCAL_DMA_COPY_A:
567         case PASCAL_DMA_COPY_B:
568         case  VOLTA_DMA_COPY_A:
569         case TURING_DMA_COPY_A:
570                 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
571                 drm->dmem->migrate.chan = drm->ttm.chan;
572                 return 0;
573         default:
574                 break;
575         }
576         return -ENODEV;
577 }
578
579 void
580 nouveau_dmem_init(struct nouveau_drm *drm)
581 {
582         struct device *device = drm->dev->dev;
583         unsigned long i, size;
584         int ret;
585
586         /* This only make sense on PASCAL or newer */
587         if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
588                 return;
589
590         if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
591                 return;
592
593         mutex_init(&drm->dmem->mutex);
594         INIT_LIST_HEAD(&drm->dmem->chunk_free);
595         INIT_LIST_HEAD(&drm->dmem->chunk_full);
596         INIT_LIST_HEAD(&drm->dmem->chunk_empty);
597
598         size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE);
599
600         /* Initialize migration dma helpers before registering memory */
601         ret = nouveau_dmem_migrate_init(drm);
602         if (ret) {
603                 kfree(drm->dmem);
604                 drm->dmem = NULL;
605                 return;
606         }
607
608         /*
609          * FIXME we need some kind of policy to decide how much VRAM we
610          * want to register with HMM. For now just register everything
611          * and latter if we want to do thing like over commit then we
612          * could revisit this.
613          */
614         drm->dmem->devmem = hmm_devmem_add(&nouveau_dmem_devmem_ops,
615                                            device, size);
616         if (IS_ERR(drm->dmem->devmem)) {
617                 kfree(drm->dmem);
618                 drm->dmem = NULL;
619                 return;
620         }
621
622         for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) {
623                 struct nouveau_dmem_chunk *chunk;
624                 struct page *page;
625                 unsigned long j;
626
627                 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
628                 if (chunk == NULL) {
629                         nouveau_dmem_fini(drm);
630                         return;
631                 }
632
633                 chunk->drm = drm;
634                 chunk->pfn_first = drm->dmem->devmem->pfn_first;
635                 chunk->pfn_first += (i * DMEM_CHUNK_NPAGES);
636                 list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
637
638                 page = pfn_to_page(chunk->pfn_first);
639                 for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page) {
640                         hmm_devmem_page_set_drvdata(page, (long)chunk);
641                 }
642         }
643
644         NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20);
645 }
646
647 static void
648 nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma,
649                                     const unsigned long *src_pfns,
650                                     unsigned long *dst_pfns,
651                                     unsigned long start,
652                                     unsigned long end,
653                                     void *private)
654 {
655         struct nouveau_migrate *migrate = private;
656         struct nouveau_drm *drm = migrate->drm;
657         struct device *dev = drm->dev->dev;
658         unsigned long addr, i, npages = 0;
659         nouveau_migrate_copy_t copy;
660         int ret;
661
662         /* First allocate new memory */
663         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
664                 struct page *dpage, *spage;
665
666                 dst_pfns[i] = 0;
667                 spage = migrate_pfn_to_page(src_pfns[i]);
668                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
669                         continue;
670
671                 dpage = nouveau_dmem_page_alloc_locked(drm);
672                 if (!dpage)
673                         continue;
674
675                 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
676                               MIGRATE_PFN_LOCKED |
677                               MIGRATE_PFN_DEVICE;
678                 npages++;
679         }
680
681         if (!npages)
682                 return;
683
684         /* Allocate storage for DMA addresses, so we can unmap later. */
685         migrate->dma = kmalloc(sizeof(*migrate->dma) * npages, GFP_KERNEL);
686         if (!migrate->dma)
687                 goto error;
688
689         /* Copy things over */
690         copy = drm->dmem->migrate.copy_func;
691         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
692                 struct nouveau_dmem_chunk *chunk;
693                 struct page *spage, *dpage;
694                 u64 src_addr, dst_addr;
695
696                 dpage = migrate_pfn_to_page(dst_pfns[i]);
697                 if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
698                         continue;
699
700                 chunk = (void *)hmm_devmem_page_get_drvdata(dpage);
701                 dst_addr = page_to_pfn(dpage) - chunk->pfn_first;
702                 dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
703
704                 spage = migrate_pfn_to_page(src_pfns[i]);
705                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
706                         nouveau_dmem_page_free_locked(drm, dpage);
707                         dst_pfns[i] = 0;
708                         continue;
709                 }
710
711                 migrate->dma[migrate->dma_nr] =
712                         dma_map_page_attrs(dev, spage, 0, PAGE_SIZE,
713                                            PCI_DMA_BIDIRECTIONAL,
714                                            DMA_ATTR_SKIP_CPU_SYNC);
715                 if (dma_mapping_error(dev, migrate->dma[migrate->dma_nr])) {
716                         nouveau_dmem_page_free_locked(drm, dpage);
717                         dst_pfns[i] = 0;
718                         continue;
719                 }
720
721                 src_addr = migrate->dma[migrate->dma_nr++];
722
723                 ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr,
724                                    NOUVEAU_APER_HOST, src_addr);
725                 if (ret) {
726                         nouveau_dmem_page_free_locked(drm, dpage);
727                         dst_pfns[i] = 0;
728                         continue;
729                 }
730         }
731
732         nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence);
733
734         return;
735
736 error:
737         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
738                 struct page *page;
739
740                 if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
741                         continue;
742
743                 page = migrate_pfn_to_page(dst_pfns[i]);
744                 dst_pfns[i] = MIGRATE_PFN_ERROR;
745                 if (page == NULL)
746                         continue;
747
748                 __free_page(page);
749         }
750 }
751
752 void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma,
753                                            const unsigned long *src_pfns,
754                                            const unsigned long *dst_pfns,
755                                            unsigned long start,
756                                            unsigned long end,
757                                            void *private)
758 {
759         struct nouveau_migrate *migrate = private;
760         struct nouveau_drm *drm = migrate->drm;
761
762         if (migrate->fence) {
763                 nouveau_fence_wait(migrate->fence, true, false);
764                 nouveau_fence_unref(&migrate->fence);
765         } else {
766                 /*
767                  * FIXME wait for channel to be IDLE before finalizing
768                  * the hmem object below (nouveau_migrate_hmem_fini()) ?
769                  */
770         }
771
772         while (migrate->dma_nr--) {
773                 dma_unmap_page(drm->dev->dev, migrate->dma[migrate->dma_nr],
774                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
775         }
776         kfree(migrate->dma);
777
778         /*
779          * FIXME optimization: update GPU page table to point to newly
780          * migrated memory.
781          */
782 }
783
784 static const struct migrate_vma_ops nouveau_dmem_migrate_ops = {
785         .alloc_and_copy         = nouveau_dmem_migrate_alloc_and_copy,
786         .finalize_and_map       = nouveau_dmem_migrate_finalize_and_map,
787 };
788
789 int
790 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
791                          struct vm_area_struct *vma,
792                          unsigned long start,
793                          unsigned long end)
794 {
795         unsigned long *src_pfns, *dst_pfns, npages;
796         struct nouveau_migrate migrate = {0};
797         unsigned long i, c, max;
798         int ret = 0;
799
800         npages = (end - start) >> PAGE_SHIFT;
801         max = min(SG_MAX_SINGLE_ALLOC, npages);
802         src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
803         if (src_pfns == NULL)
804                 return -ENOMEM;
805         dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
806         if (dst_pfns == NULL) {
807                 kfree(src_pfns);
808                 return -ENOMEM;
809         }
810
811         migrate.drm = drm;
812         migrate.vma = vma;
813         migrate.npages = npages;
814         for (i = 0; i < npages; i += c) {
815                 unsigned long next;
816
817                 c = min(SG_MAX_SINGLE_ALLOC, npages);
818                 next = start + (c << PAGE_SHIFT);
819                 ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start,
820                                   next, src_pfns, dst_pfns, &migrate);
821                 if (ret)
822                         goto out;
823                 start = next;
824         }
825
826 out:
827         kfree(dst_pfns);
828         kfree(src_pfns);
829         return ret;
830 }
831
832 static inline bool
833 nouveau_dmem_page(struct nouveau_drm *drm, struct page *page)
834 {
835         if (!is_device_private_page(page))
836                 return false;
837
838         if (drm->dmem->devmem != page->pgmap->data)
839                 return false;
840
841         return true;
842 }
843
844 void
845 nouveau_dmem_convert_pfn(struct nouveau_drm *drm,
846                          struct hmm_range *range)
847 {
848         unsigned long i, npages;
849
850         npages = (range->end - range->start) >> PAGE_SHIFT;
851         for (i = 0; i < npages; ++i) {
852                 struct nouveau_dmem_chunk *chunk;
853                 struct page *page;
854                 uint64_t addr;
855
856                 page = hmm_pfn_to_page(range, range->pfns[i]);
857                 if (page == NULL)
858                         continue;
859
860                 if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
861                         continue;
862                 }
863
864                 if (!nouveau_dmem_page(drm, page)) {
865                         WARN(1, "Some unknown device memory !\n");
866                         range->pfns[i] = 0;
867                         continue;
868                 }
869
870                 chunk = (void *)hmm_devmem_page_get_drvdata(page);
871                 addr = page_to_pfn(page) - chunk->pfn_first;
872                 addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT;
873
874                 range->pfns[i] &= ((1UL << range->pfn_shift) - 1);
875                 range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift;
876         }
877 }