Merge tag 'f2fs-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[linux-2.6-microblaze.git] / drivers / gpu / drm / nouveau / nouveau_dmem.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_dmem.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dma.h"
26 #include "nouveau_mem.h"
27 #include "nouveau_bo.h"
28
29 #include <nvif/class.h>
30 #include <nvif/object.h>
31 #include <nvif/if500b.h>
32 #include <nvif/if900b.h>
33
34 #include <linux/sched/mm.h>
35 #include <linux/hmm.h>
36
37 /*
38  * FIXME: this is ugly right now we are using TTM to allocate vram and we pin
39  * it in vram while in use. We likely want to overhaul memory management for
40  * nouveau to be more page like (not necessarily with system page size but a
41  * bigger page size) at lowest level and have some shim layer on top that would
42  * provide the same functionality as TTM.
43  */
44 #define DMEM_CHUNK_SIZE (2UL << 20)
45 #define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
46
47 struct nouveau_migrate;
48
49 enum nouveau_aper {
50         NOUVEAU_APER_VIRT,
51         NOUVEAU_APER_VRAM,
52         NOUVEAU_APER_HOST,
53 };
54
55 typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
56                                       enum nouveau_aper, u64 dst_addr,
57                                       enum nouveau_aper, u64 src_addr);
58
59 struct nouveau_dmem_chunk {
60         struct list_head list;
61         struct nouveau_bo *bo;
62         struct nouveau_drm *drm;
63         unsigned long pfn_first;
64         unsigned long callocated;
65         unsigned long bitmap[BITS_TO_LONGS(DMEM_CHUNK_NPAGES)];
66         spinlock_t lock;
67 };
68
69 struct nouveau_dmem_migrate {
70         nouveau_migrate_copy_t copy_func;
71         struct nouveau_channel *chan;
72 };
73
74 struct nouveau_dmem {
75         struct nouveau_drm *drm;
76         struct dev_pagemap pagemap;
77         struct nouveau_dmem_migrate migrate;
78         struct list_head chunk_free;
79         struct list_head chunk_full;
80         struct list_head chunk_empty;
81         struct mutex mutex;
82 };
83
84 static inline struct nouveau_dmem *page_to_dmem(struct page *page)
85 {
86         return container_of(page->pgmap, struct nouveau_dmem, pagemap);
87 }
88
89 struct nouveau_dmem_fault {
90         struct nouveau_drm *drm;
91         struct nouveau_fence *fence;
92         dma_addr_t *dma;
93         unsigned long npages;
94 };
95
96 struct nouveau_migrate {
97         struct vm_area_struct *vma;
98         struct nouveau_drm *drm;
99         struct nouveau_fence *fence;
100         unsigned long npages;
101         dma_addr_t *dma;
102         unsigned long dma_nr;
103 };
104
105 static void nouveau_dmem_page_free(struct page *page)
106 {
107         struct nouveau_dmem_chunk *chunk = page->zone_device_data;
108         unsigned long idx = page_to_pfn(page) - chunk->pfn_first;
109
110         /*
111          * FIXME:
112          *
113          * This is really a bad example, we need to overhaul nouveau memory
114          * management to be more page focus and allow lighter locking scheme
115          * to be use in the process.
116          */
117         spin_lock(&chunk->lock);
118         clear_bit(idx, chunk->bitmap);
119         WARN_ON(!chunk->callocated);
120         chunk->callocated--;
121         /*
122          * FIXME when chunk->callocated reach 0 we should add the chunk to
123          * a reclaim list so that it can be freed in case of memory pressure.
124          */
125         spin_unlock(&chunk->lock);
126 }
127
128 static void
129 nouveau_dmem_fault_alloc_and_copy(struct vm_area_struct *vma,
130                                   const unsigned long *src_pfns,
131                                   unsigned long *dst_pfns,
132                                   unsigned long start,
133                                   unsigned long end,
134                                   void *private)
135 {
136         struct nouveau_dmem_fault *fault = private;
137         struct nouveau_drm *drm = fault->drm;
138         struct device *dev = drm->dev->dev;
139         unsigned long addr, i, npages = 0;
140         nouveau_migrate_copy_t copy;
141         int ret;
142
143
144         /* First allocate new memory */
145         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
146                 struct page *dpage, *spage;
147
148                 dst_pfns[i] = 0;
149                 spage = migrate_pfn_to_page(src_pfns[i]);
150                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
151                         continue;
152
153                 dpage = alloc_page_vma(GFP_HIGHUSER, vma, addr);
154                 if (!dpage) {
155                         dst_pfns[i] = MIGRATE_PFN_ERROR;
156                         continue;
157                 }
158                 lock_page(dpage);
159
160                 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
161                               MIGRATE_PFN_LOCKED;
162                 npages++;
163         }
164
165         /* Allocate storage for DMA addresses, so we can unmap later. */
166         fault->dma = kmalloc(sizeof(*fault->dma) * npages, GFP_KERNEL);
167         if (!fault->dma)
168                 goto error;
169
170         /* Copy things over */
171         copy = drm->dmem->migrate.copy_func;
172         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
173                 struct nouveau_dmem_chunk *chunk;
174                 struct page *spage, *dpage;
175                 u64 src_addr, dst_addr;
176
177                 dpage = migrate_pfn_to_page(dst_pfns[i]);
178                 if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
179                         continue;
180
181                 spage = migrate_pfn_to_page(src_pfns[i]);
182                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
183                         dst_pfns[i] = MIGRATE_PFN_ERROR;
184                         __free_page(dpage);
185                         continue;
186                 }
187
188                 fault->dma[fault->npages] =
189                         dma_map_page_attrs(dev, dpage, 0, PAGE_SIZE,
190                                            PCI_DMA_BIDIRECTIONAL,
191                                            DMA_ATTR_SKIP_CPU_SYNC);
192                 if (dma_mapping_error(dev, fault->dma[fault->npages])) {
193                         dst_pfns[i] = MIGRATE_PFN_ERROR;
194                         __free_page(dpage);
195                         continue;
196                 }
197
198                 dst_addr = fault->dma[fault->npages++];
199
200                 chunk = spage->zone_device_data;
201                 src_addr = page_to_pfn(spage) - chunk->pfn_first;
202                 src_addr = (src_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
203
204                 ret = copy(drm, 1, NOUVEAU_APER_HOST, dst_addr,
205                                    NOUVEAU_APER_VRAM, src_addr);
206                 if (ret) {
207                         dst_pfns[i] = MIGRATE_PFN_ERROR;
208                         __free_page(dpage);
209                         continue;
210                 }
211         }
212
213         nouveau_fence_new(drm->dmem->migrate.chan, false, &fault->fence);
214
215         return;
216
217 error:
218         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
219                 struct page *page;
220
221                 if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
222                         continue;
223
224                 page = migrate_pfn_to_page(dst_pfns[i]);
225                 dst_pfns[i] = MIGRATE_PFN_ERROR;
226                 if (page == NULL)
227                         continue;
228
229                 __free_page(page);
230         }
231 }
232
233 void nouveau_dmem_fault_finalize_and_map(struct vm_area_struct *vma,
234                                          const unsigned long *src_pfns,
235                                          const unsigned long *dst_pfns,
236                                          unsigned long start,
237                                          unsigned long end,
238                                          void *private)
239 {
240         struct nouveau_dmem_fault *fault = private;
241         struct nouveau_drm *drm = fault->drm;
242
243         if (fault->fence) {
244                 nouveau_fence_wait(fault->fence, true, false);
245                 nouveau_fence_unref(&fault->fence);
246         } else {
247                 /*
248                  * FIXME wait for channel to be IDLE before calling finalizing
249                  * the hmem object below (nouveau_migrate_hmem_fini()).
250                  */
251         }
252
253         while (fault->npages--) {
254                 dma_unmap_page(drm->dev->dev, fault->dma[fault->npages],
255                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
256         }
257         kfree(fault->dma);
258 }
259
260 static const struct migrate_vma_ops nouveau_dmem_fault_migrate_ops = {
261         .alloc_and_copy         = nouveau_dmem_fault_alloc_and_copy,
262         .finalize_and_map       = nouveau_dmem_fault_finalize_and_map,
263 };
264
265 static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
266 {
267         struct nouveau_dmem *dmem = page_to_dmem(vmf->page);
268         unsigned long src[1] = {0}, dst[1] = {0};
269         struct nouveau_dmem_fault fault = { .drm = dmem->drm };
270         int ret;
271
272         /*
273          * FIXME what we really want is to find some heuristic to migrate more
274          * than just one page on CPU fault. When such fault happens it is very
275          * likely that more surrounding page will CPU fault too.
276          */
277         ret = migrate_vma(&nouveau_dmem_fault_migrate_ops, vmf->vma,
278                         vmf->address, vmf->address + PAGE_SIZE,
279                         src, dst, &fault);
280         if (ret)
281                 return VM_FAULT_SIGBUS;
282
283         if (dst[0] == MIGRATE_PFN_ERROR)
284                 return VM_FAULT_SIGBUS;
285
286         return 0;
287 }
288
289 static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
290         .page_free              = nouveau_dmem_page_free,
291         .migrate_to_ram         = nouveau_dmem_migrate_to_ram,
292 };
293
294 static int
295 nouveau_dmem_chunk_alloc(struct nouveau_drm *drm)
296 {
297         struct nouveau_dmem_chunk *chunk;
298         int ret;
299
300         if (drm->dmem == NULL)
301                 return -EINVAL;
302
303         mutex_lock(&drm->dmem->mutex);
304         chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
305                                          struct nouveau_dmem_chunk,
306                                          list);
307         if (chunk == NULL) {
308                 mutex_unlock(&drm->dmem->mutex);
309                 return -ENOMEM;
310         }
311
312         list_del(&chunk->list);
313         mutex_unlock(&drm->dmem->mutex);
314
315         ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
316                              TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
317                              &chunk->bo);
318         if (ret)
319                 goto out;
320
321         ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
322         if (ret) {
323                 nouveau_bo_ref(NULL, &chunk->bo);
324                 goto out;
325         }
326
327         bitmap_zero(chunk->bitmap, DMEM_CHUNK_NPAGES);
328         spin_lock_init(&chunk->lock);
329
330 out:
331         mutex_lock(&drm->dmem->mutex);
332         if (chunk->bo)
333                 list_add(&chunk->list, &drm->dmem->chunk_empty);
334         else
335                 list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
336         mutex_unlock(&drm->dmem->mutex);
337
338         return ret;
339 }
340
341 static struct nouveau_dmem_chunk *
342 nouveau_dmem_chunk_first_free_locked(struct nouveau_drm *drm)
343 {
344         struct nouveau_dmem_chunk *chunk;
345
346         chunk = list_first_entry_or_null(&drm->dmem->chunk_free,
347                                          struct nouveau_dmem_chunk,
348                                          list);
349         if (chunk)
350                 return chunk;
351
352         chunk = list_first_entry_or_null(&drm->dmem->chunk_empty,
353                                          struct nouveau_dmem_chunk,
354                                          list);
355         if (chunk->bo)
356                 return chunk;
357
358         return NULL;
359 }
360
361 static int
362 nouveau_dmem_pages_alloc(struct nouveau_drm *drm,
363                          unsigned long npages,
364                          unsigned long *pages)
365 {
366         struct nouveau_dmem_chunk *chunk;
367         unsigned long c;
368         int ret;
369
370         memset(pages, 0xff, npages * sizeof(*pages));
371
372         mutex_lock(&drm->dmem->mutex);
373         for (c = 0; c < npages;) {
374                 unsigned long i;
375
376                 chunk = nouveau_dmem_chunk_first_free_locked(drm);
377                 if (chunk == NULL) {
378                         mutex_unlock(&drm->dmem->mutex);
379                         ret = nouveau_dmem_chunk_alloc(drm);
380                         if (ret) {
381                                 if (c)
382                                         return 0;
383                                 return ret;
384                         }
385                         mutex_lock(&drm->dmem->mutex);
386                         continue;
387                 }
388
389                 spin_lock(&chunk->lock);
390                 i = find_first_zero_bit(chunk->bitmap, DMEM_CHUNK_NPAGES);
391                 while (i < DMEM_CHUNK_NPAGES && c < npages) {
392                         pages[c] = chunk->pfn_first + i;
393                         set_bit(i, chunk->bitmap);
394                         chunk->callocated++;
395                         c++;
396
397                         i = find_next_zero_bit(chunk->bitmap,
398                                         DMEM_CHUNK_NPAGES, i);
399                 }
400                 spin_unlock(&chunk->lock);
401         }
402         mutex_unlock(&drm->dmem->mutex);
403
404         return 0;
405 }
406
407 static struct page *
408 nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
409 {
410         unsigned long pfns[1];
411         struct page *page;
412         int ret;
413
414         /* FIXME stop all the miss-match API ... */
415         ret = nouveau_dmem_pages_alloc(drm, 1, pfns);
416         if (ret)
417                 return NULL;
418
419         page = pfn_to_page(pfns[0]);
420         get_page(page);
421         lock_page(page);
422         return page;
423 }
424
425 static void
426 nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
427 {
428         unlock_page(page);
429         put_page(page);
430 }
431
432 void
433 nouveau_dmem_resume(struct nouveau_drm *drm)
434 {
435         struct nouveau_dmem_chunk *chunk;
436         int ret;
437
438         if (drm->dmem == NULL)
439                 return;
440
441         mutex_lock(&drm->dmem->mutex);
442         list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
443                 ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
444                 /* FIXME handle pin failure */
445                 WARN_ON(ret);
446         }
447         list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
448                 ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
449                 /* FIXME handle pin failure */
450                 WARN_ON(ret);
451         }
452         mutex_unlock(&drm->dmem->mutex);
453 }
454
455 void
456 nouveau_dmem_suspend(struct nouveau_drm *drm)
457 {
458         struct nouveau_dmem_chunk *chunk;
459
460         if (drm->dmem == NULL)
461                 return;
462
463         mutex_lock(&drm->dmem->mutex);
464         list_for_each_entry (chunk, &drm->dmem->chunk_free, list) {
465                 nouveau_bo_unpin(chunk->bo);
466         }
467         list_for_each_entry (chunk, &drm->dmem->chunk_full, list) {
468                 nouveau_bo_unpin(chunk->bo);
469         }
470         mutex_unlock(&drm->dmem->mutex);
471 }
472
473 void
474 nouveau_dmem_fini(struct nouveau_drm *drm)
475 {
476         struct nouveau_dmem_chunk *chunk, *tmp;
477
478         if (drm->dmem == NULL)
479                 return;
480
481         mutex_lock(&drm->dmem->mutex);
482
483         WARN_ON(!list_empty(&drm->dmem->chunk_free));
484         WARN_ON(!list_empty(&drm->dmem->chunk_full));
485
486         list_for_each_entry_safe (chunk, tmp, &drm->dmem->chunk_empty, list) {
487                 if (chunk->bo) {
488                         nouveau_bo_unpin(chunk->bo);
489                         nouveau_bo_ref(NULL, &chunk->bo);
490                 }
491                 list_del(&chunk->list);
492                 kfree(chunk);
493         }
494
495         mutex_unlock(&drm->dmem->mutex);
496 }
497
498 static int
499 nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
500                     enum nouveau_aper dst_aper, u64 dst_addr,
501                     enum nouveau_aper src_aper, u64 src_addr)
502 {
503         struct nouveau_channel *chan = drm->dmem->migrate.chan;
504         u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
505                          (1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
506                          (1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
507                          (1 << 2) /* FLUSH_ENABLE_TRUE. */ |
508                          (2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
509         int ret;
510
511         ret = RING_SPACE(chan, 13);
512         if (ret)
513                 return ret;
514
515         if (src_aper != NOUVEAU_APER_VIRT) {
516                 switch (src_aper) {
517                 case NOUVEAU_APER_VRAM:
518                         BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
519                         break;
520                 case NOUVEAU_APER_HOST:
521                         BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
522                         break;
523                 default:
524                         return -EINVAL;
525                 }
526                 launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
527         }
528
529         if (dst_aper != NOUVEAU_APER_VIRT) {
530                 switch (dst_aper) {
531                 case NOUVEAU_APER_VRAM:
532                         BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
533                         break;
534                 case NOUVEAU_APER_HOST:
535                         BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
536                         break;
537                 default:
538                         return -EINVAL;
539                 }
540                 launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
541         }
542
543         BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
544         OUT_RING  (chan, upper_32_bits(src_addr));
545         OUT_RING  (chan, lower_32_bits(src_addr));
546         OUT_RING  (chan, upper_32_bits(dst_addr));
547         OUT_RING  (chan, lower_32_bits(dst_addr));
548         OUT_RING  (chan, PAGE_SIZE);
549         OUT_RING  (chan, PAGE_SIZE);
550         OUT_RING  (chan, PAGE_SIZE);
551         OUT_RING  (chan, npages);
552         BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
553         OUT_RING  (chan, launch_dma);
554         return 0;
555 }
556
557 static int
558 nouveau_dmem_migrate_init(struct nouveau_drm *drm)
559 {
560         switch (drm->ttm.copy.oclass) {
561         case PASCAL_DMA_COPY_A:
562         case PASCAL_DMA_COPY_B:
563         case  VOLTA_DMA_COPY_A:
564         case TURING_DMA_COPY_A:
565                 drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
566                 drm->dmem->migrate.chan = drm->ttm.chan;
567                 return 0;
568         default:
569                 break;
570         }
571         return -ENODEV;
572 }
573
574 void
575 nouveau_dmem_init(struct nouveau_drm *drm)
576 {
577         struct device *device = drm->dev->dev;
578         struct resource *res;
579         unsigned long i, size, pfn_first;
580         int ret;
581
582         /* This only make sense on PASCAL or newer */
583         if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
584                 return;
585
586         if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
587                 return;
588
589         drm->dmem->drm = drm;
590         mutex_init(&drm->dmem->mutex);
591         INIT_LIST_HEAD(&drm->dmem->chunk_free);
592         INIT_LIST_HEAD(&drm->dmem->chunk_full);
593         INIT_LIST_HEAD(&drm->dmem->chunk_empty);
594
595         size = ALIGN(drm->client.device.info.ram_user, DMEM_CHUNK_SIZE);
596
597         /* Initialize migration dma helpers before registering memory */
598         ret = nouveau_dmem_migrate_init(drm);
599         if (ret)
600                 goto out_free;
601
602         /*
603          * FIXME we need some kind of policy to decide how much VRAM we
604          * want to register with HMM. For now just register everything
605          * and latter if we want to do thing like over commit then we
606          * could revisit this.
607          */
608         res = devm_request_free_mem_region(device, &iomem_resource, size);
609         if (IS_ERR(res))
610                 goto out_free;
611         drm->dmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
612         drm->dmem->pagemap.res = *res;
613         drm->dmem->pagemap.ops = &nouveau_dmem_pagemap_ops;
614         if (IS_ERR(devm_memremap_pages(device, &drm->dmem->pagemap)))
615                 goto out_free;
616
617         pfn_first = res->start >> PAGE_SHIFT;
618         for (i = 0; i < (size / DMEM_CHUNK_SIZE); ++i) {
619                 struct nouveau_dmem_chunk *chunk;
620                 struct page *page;
621                 unsigned long j;
622
623                 chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
624                 if (chunk == NULL) {
625                         nouveau_dmem_fini(drm);
626                         return;
627                 }
628
629                 chunk->drm = drm;
630                 chunk->pfn_first = pfn_first + (i * DMEM_CHUNK_NPAGES);
631                 list_add_tail(&chunk->list, &drm->dmem->chunk_empty);
632
633                 page = pfn_to_page(chunk->pfn_first);
634                 for (j = 0; j < DMEM_CHUNK_NPAGES; ++j, ++page)
635                         page->zone_device_data = chunk;
636         }
637
638         NV_INFO(drm, "DMEM: registered %ldMB of device memory\n", size >> 20);
639         return;
640 out_free:
641         kfree(drm->dmem);
642         drm->dmem = NULL;
643 }
644
645 static void
646 nouveau_dmem_migrate_alloc_and_copy(struct vm_area_struct *vma,
647                                     const unsigned long *src_pfns,
648                                     unsigned long *dst_pfns,
649                                     unsigned long start,
650                                     unsigned long end,
651                                     void *private)
652 {
653         struct nouveau_migrate *migrate = private;
654         struct nouveau_drm *drm = migrate->drm;
655         struct device *dev = drm->dev->dev;
656         unsigned long addr, i, npages = 0;
657         nouveau_migrate_copy_t copy;
658         int ret;
659
660         /* First allocate new memory */
661         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
662                 struct page *dpage, *spage;
663
664                 dst_pfns[i] = 0;
665                 spage = migrate_pfn_to_page(src_pfns[i]);
666                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
667                         continue;
668
669                 dpage = nouveau_dmem_page_alloc_locked(drm);
670                 if (!dpage)
671                         continue;
672
673                 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage)) |
674                               MIGRATE_PFN_LOCKED |
675                               MIGRATE_PFN_DEVICE;
676                 npages++;
677         }
678
679         if (!npages)
680                 return;
681
682         /* Allocate storage for DMA addresses, so we can unmap later. */
683         migrate->dma = kmalloc(sizeof(*migrate->dma) * npages, GFP_KERNEL);
684         if (!migrate->dma)
685                 goto error;
686
687         /* Copy things over */
688         copy = drm->dmem->migrate.copy_func;
689         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, i++) {
690                 struct nouveau_dmem_chunk *chunk;
691                 struct page *spage, *dpage;
692                 u64 src_addr, dst_addr;
693
694                 dpage = migrate_pfn_to_page(dst_pfns[i]);
695                 if (!dpage || dst_pfns[i] == MIGRATE_PFN_ERROR)
696                         continue;
697
698                 chunk = dpage->zone_device_data;
699                 dst_addr = page_to_pfn(dpage) - chunk->pfn_first;
700                 dst_addr = (dst_addr << PAGE_SHIFT) + chunk->bo->bo.offset;
701
702                 spage = migrate_pfn_to_page(src_pfns[i]);
703                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE)) {
704                         nouveau_dmem_page_free_locked(drm, dpage);
705                         dst_pfns[i] = 0;
706                         continue;
707                 }
708
709                 migrate->dma[migrate->dma_nr] =
710                         dma_map_page_attrs(dev, spage, 0, PAGE_SIZE,
711                                            PCI_DMA_BIDIRECTIONAL,
712                                            DMA_ATTR_SKIP_CPU_SYNC);
713                 if (dma_mapping_error(dev, migrate->dma[migrate->dma_nr])) {
714                         nouveau_dmem_page_free_locked(drm, dpage);
715                         dst_pfns[i] = 0;
716                         continue;
717                 }
718
719                 src_addr = migrate->dma[migrate->dma_nr++];
720
721                 ret = copy(drm, 1, NOUVEAU_APER_VRAM, dst_addr,
722                                    NOUVEAU_APER_HOST, src_addr);
723                 if (ret) {
724                         nouveau_dmem_page_free_locked(drm, dpage);
725                         dst_pfns[i] = 0;
726                         continue;
727                 }
728         }
729
730         nouveau_fence_new(drm->dmem->migrate.chan, false, &migrate->fence);
731
732         return;
733
734 error:
735         for (addr = start, i = 0; addr < end; addr += PAGE_SIZE, ++i) {
736                 struct page *page;
737
738                 if (!dst_pfns[i] || dst_pfns[i] == MIGRATE_PFN_ERROR)
739                         continue;
740
741                 page = migrate_pfn_to_page(dst_pfns[i]);
742                 dst_pfns[i] = MIGRATE_PFN_ERROR;
743                 if (page == NULL)
744                         continue;
745
746                 __free_page(page);
747         }
748 }
749
750 void nouveau_dmem_migrate_finalize_and_map(struct vm_area_struct *vma,
751                                            const unsigned long *src_pfns,
752                                            const unsigned long *dst_pfns,
753                                            unsigned long start,
754                                            unsigned long end,
755                                            void *private)
756 {
757         struct nouveau_migrate *migrate = private;
758         struct nouveau_drm *drm = migrate->drm;
759
760         if (migrate->fence) {
761                 nouveau_fence_wait(migrate->fence, true, false);
762                 nouveau_fence_unref(&migrate->fence);
763         } else {
764                 /*
765                  * FIXME wait for channel to be IDLE before finalizing
766                  * the hmem object below (nouveau_migrate_hmem_fini()) ?
767                  */
768         }
769
770         while (migrate->dma_nr--) {
771                 dma_unmap_page(drm->dev->dev, migrate->dma[migrate->dma_nr],
772                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
773         }
774         kfree(migrate->dma);
775
776         /*
777          * FIXME optimization: update GPU page table to point to newly
778          * migrated memory.
779          */
780 }
781
782 static const struct migrate_vma_ops nouveau_dmem_migrate_ops = {
783         .alloc_and_copy         = nouveau_dmem_migrate_alloc_and_copy,
784         .finalize_and_map       = nouveau_dmem_migrate_finalize_and_map,
785 };
786
787 int
788 nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
789                          struct vm_area_struct *vma,
790                          unsigned long start,
791                          unsigned long end)
792 {
793         unsigned long *src_pfns, *dst_pfns, npages;
794         struct nouveau_migrate migrate = {0};
795         unsigned long i, c, max;
796         int ret = 0;
797
798         npages = (end - start) >> PAGE_SHIFT;
799         max = min(SG_MAX_SINGLE_ALLOC, npages);
800         src_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
801         if (src_pfns == NULL)
802                 return -ENOMEM;
803         dst_pfns = kzalloc(sizeof(long) * max, GFP_KERNEL);
804         if (dst_pfns == NULL) {
805                 kfree(src_pfns);
806                 return -ENOMEM;
807         }
808
809         migrate.drm = drm;
810         migrate.vma = vma;
811         migrate.npages = npages;
812         for (i = 0; i < npages; i += c) {
813                 unsigned long next;
814
815                 c = min(SG_MAX_SINGLE_ALLOC, npages);
816                 next = start + (c << PAGE_SHIFT);
817                 ret = migrate_vma(&nouveau_dmem_migrate_ops, vma, start,
818                                   next, src_pfns, dst_pfns, &migrate);
819                 if (ret)
820                         goto out;
821                 start = next;
822         }
823
824 out:
825         kfree(dst_pfns);
826         kfree(src_pfns);
827         return ret;
828 }
829
830 static inline bool
831 nouveau_dmem_page(struct nouveau_drm *drm, struct page *page)
832 {
833         return is_device_private_page(page) && drm->dmem == page_to_dmem(page);
834 }
835
836 void
837 nouveau_dmem_convert_pfn(struct nouveau_drm *drm,
838                          struct hmm_range *range)
839 {
840         unsigned long i, npages;
841
842         npages = (range->end - range->start) >> PAGE_SHIFT;
843         for (i = 0; i < npages; ++i) {
844                 struct nouveau_dmem_chunk *chunk;
845                 struct page *page;
846                 uint64_t addr;
847
848                 page = hmm_pfn_to_page(range, range->pfns[i]);
849                 if (page == NULL)
850                         continue;
851
852                 if (!(range->pfns[i] & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
853                         continue;
854                 }
855
856                 if (!nouveau_dmem_page(drm, page)) {
857                         WARN(1, "Some unknown device memory !\n");
858                         range->pfns[i] = 0;
859                         continue;
860                 }
861
862                 chunk = page->zone_device_data;
863                 addr = page_to_pfn(page) - chunk->pfn_first;
864                 addr = (addr + chunk->bo->bo.mem.start) << PAGE_SHIFT;
865
866                 range->pfns[i] &= ((1UL << range->pfn_shift) - 1);
867                 range->pfns[i] |= (addr >> PAGE_SHIFT) << range->pfn_shift;
868         }
869 }