Merge tag 'arm-dt-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_encoder.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9
10 #define pr_fmt(fmt)     "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_file.h>
17 #include <drm/drm_probe_helper.h>
18
19 #include "msm_drv.h"
20 #include "dpu_kms.h"
21 #include "dpu_hwio.h"
22 #include "dpu_hw_catalog.h"
23 #include "dpu_hw_intf.h"
24 #include "dpu_hw_ctl.h"
25 #include "dpu_hw_dspp.h"
26 #include "dpu_hw_dsc.h"
27 #include "dpu_hw_merge3d.h"
28 #include "dpu_formats.h"
29 #include "dpu_encoder_phys.h"
30 #include "dpu_crtc.h"
31 #include "dpu_trace.h"
32 #include "dpu_core_irq.h"
33 #include "disp/msm_disp_snapshot.h"
34
35 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
36                 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
37
38 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
39                 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40
41 /*
42  * Two to anticipate panels that can do cmd/vid dynamic switching
43  * plan is to create all possible physical encoder types, and switch between
44  * them at runtime
45  */
46 #define NUM_PHYS_ENCODER_TYPES 2
47
48 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
49         (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
50
51 #define MAX_CHANNELS_PER_ENC 2
52
53 #define IDLE_SHORT_TIMEOUT      1
54
55 #define MAX_HDISPLAY_SPLIT 1080
56
57 /* timeout in frames waiting for frame done */
58 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
59
60 /**
61  * enum dpu_enc_rc_events - events for resource control state machine
62  * @DPU_ENC_RC_EVENT_KICKOFF:
63  *      This event happens at NORMAL priority.
64  *      Event that signals the start of the transfer. When this event is
65  *      received, enable MDP/DSI core clocks. Regardless of the previous
66  *      state, the resource should be in ON state at the end of this event.
67  * @DPU_ENC_RC_EVENT_FRAME_DONE:
68  *      This event happens at INTERRUPT level.
69  *      Event signals the end of the data transfer after the PP FRAME_DONE
70  *      event. At the end of this event, a delayed work is scheduled to go to
71  *      IDLE_PC state after IDLE_TIMEOUT time.
72  * @DPU_ENC_RC_EVENT_PRE_STOP:
73  *      This event happens at NORMAL priority.
74  *      This event, when received during the ON state, leave the RC STATE
75  *      in the PRE_OFF state. It should be followed by the STOP event as
76  *      part of encoder disable.
77  *      If received during IDLE or OFF states, it will do nothing.
78  * @DPU_ENC_RC_EVENT_STOP:
79  *      This event happens at NORMAL priority.
80  *      When this event is received, disable all the MDP/DSI core clocks, and
81  *      disable IRQs. It should be called from the PRE_OFF or IDLE states.
82  *      IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
83  *      PRE_OFF is expected when PRE_STOP was executed during the ON state.
84  *      Resource state should be in OFF at the end of the event.
85  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
86  *      This event happens at NORMAL priority from a work item.
87  *      Event signals that there were no frame updates for IDLE_TIMEOUT time.
88  *      This would disable MDP/DSI core clocks and change the resource state
89  *      to IDLE.
90  */
91 enum dpu_enc_rc_events {
92         DPU_ENC_RC_EVENT_KICKOFF = 1,
93         DPU_ENC_RC_EVENT_FRAME_DONE,
94         DPU_ENC_RC_EVENT_PRE_STOP,
95         DPU_ENC_RC_EVENT_STOP,
96         DPU_ENC_RC_EVENT_ENTER_IDLE
97 };
98
99 /*
100  * enum dpu_enc_rc_states - states that the resource control maintains
101  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
102  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
103  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
104  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
105  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
106  */
107 enum dpu_enc_rc_states {
108         DPU_ENC_RC_STATE_OFF,
109         DPU_ENC_RC_STATE_PRE_OFF,
110         DPU_ENC_RC_STATE_ON,
111         DPU_ENC_RC_STATE_IDLE
112 };
113
114 /**
115  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
116  *      encoders. Virtual encoder manages one "logical" display. Physical
117  *      encoders manage one intf block, tied to a specific panel/sub-panel.
118  *      Virtual encoder defers as much as possible to the physical encoders.
119  *      Virtual encoder registers itself with the DRM Framework as the encoder.
120  * @base:               drm_encoder base class for registration with DRM
121  * @enc_spinlock:       Virtual-Encoder-Wide Spin Lock for IRQ purposes
122  * @enabled:            True if the encoder is active, protected by enc_lock
123  * @num_phys_encs:      Actual number of physical encoders contained.
124  * @phys_encs:          Container of physical encoders managed.
125  * @cur_master:         Pointer to the current master in this mode. Optimization
126  *                      Only valid after enable. Cleared as disable.
127  * @cur_slave:          As above but for the slave encoder.
128  * @hw_pp:              Handle to the pingpong blocks used for the display. No.
129  *                      pingpong blocks can be different than num_phys_encs.
130  * @hw_dsc:             Handle to the DSC blocks used for the display.
131  * @dsc_mask:           Bitmask of used DSC blocks.
132  * @intfs_swapped:      Whether or not the phys_enc interfaces have been swapped
133  *                      for partial update right-only cases, such as pingpong
134  *                      split where virtual pingpong does not generate IRQs
135  * @crtc:               Pointer to the currently assigned crtc. Normally you
136  *                      would use crtc->state->encoder_mask to determine the
137  *                      link between encoder/crtc. However in this case we need
138  *                      to track crtc in the disable() hook which is called
139  *                      _after_ encoder_mask is cleared.
140  * @connector:          If a mode is set, cached pointer to the active connector
141  * @crtc_kickoff_cb:            Callback into CRTC that will flush & start
142  *                              all CTL paths
143  * @crtc_kickoff_cb_data:       Opaque user data given to crtc_kickoff_cb
144  * @debugfs_root:               Debug file system root file node
145  * @enc_lock:                   Lock around physical encoder
146  *                              create/destroy/enable/disable
147  * @frame_busy_mask:            Bitmask tracking which phys_enc we are still
148  *                              busy processing current command.
149  *                              Bit0 = phys_encs[0] etc.
150  * @crtc_frame_event_cb:        callback handler for frame event
151  * @crtc_frame_event_cb_data:   callback handler private data
152  * @frame_done_timeout_ms:      frame done timeout in ms
153  * @frame_done_timer:           watchdog timer for frame done event
154  * @vsync_event_timer:          vsync timer
155  * @disp_info:                  local copy of msm_display_info struct
156  * @idle_pc_supported:          indicate if idle power collaps is supported
157  * @rc_lock:                    resource control mutex lock to protect
158  *                              virt encoder over various state changes
159  * @rc_state:                   resource controller state
160  * @delayed_off_work:           delayed worker to schedule disabling of
161  *                              clks and resources after IDLE_TIMEOUT time.
162  * @vsync_event_work:           worker to handle vsync event for autorefresh
163  * @topology:                   topology of the display
164  * @idle_timeout:               idle timeout duration in milliseconds
165  * @dsc:                        msm_display_dsc_config pointer, for DSC-enabled encoders
166  */
167 struct dpu_encoder_virt {
168         struct drm_encoder base;
169         spinlock_t enc_spinlock;
170
171         bool enabled;
172
173         unsigned int num_phys_encs;
174         struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
175         struct dpu_encoder_phys *cur_master;
176         struct dpu_encoder_phys *cur_slave;
177         struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
178         struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
179
180         unsigned int dsc_mask;
181
182         bool intfs_swapped;
183
184         struct drm_crtc *crtc;
185         struct drm_connector *connector;
186
187         struct dentry *debugfs_root;
188         struct mutex enc_lock;
189         DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190         void (*crtc_frame_event_cb)(void *, u32 event);
191         void *crtc_frame_event_cb_data;
192
193         atomic_t frame_done_timeout_ms;
194         struct timer_list frame_done_timer;
195         struct timer_list vsync_event_timer;
196
197         struct msm_display_info disp_info;
198
199         bool idle_pc_supported;
200         struct mutex rc_lock;
201         enum dpu_enc_rc_states rc_state;
202         struct delayed_work delayed_off_work;
203         struct kthread_work vsync_event_work;
204         struct msm_display_topology topology;
205
206         u32 idle_timeout;
207
208         bool wide_bus_en;
209
210         /* DSC configuration */
211         struct msm_display_dsc_config *dsc;
212 };
213
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217         15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219
220
221 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
222 {
223         const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
224
225         return dpu_enc->wide_bus_en;
226 }
227
228 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
229 {
230         struct dpu_hw_dither_cfg dither_cfg = { 0 };
231
232         if (!hw_pp->ops.setup_dither)
233                 return;
234
235         switch (bpc) {
236         case 6:
237                 dither_cfg.c0_bitdepth = 6;
238                 dither_cfg.c1_bitdepth = 6;
239                 dither_cfg.c2_bitdepth = 6;
240                 dither_cfg.c3_bitdepth = 6;
241                 dither_cfg.temporal_en = 0;
242                 break;
243         default:
244                 hw_pp->ops.setup_dither(hw_pp, NULL);
245                 return;
246         }
247
248         memcpy(&dither_cfg.matrix, dither_matrix,
249                         sizeof(u32) * DITHER_MATRIX_SZ);
250
251         hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
252 }
253
254 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
255 {
256         switch (intf_mode) {
257         case INTF_MODE_VIDEO:
258                 return "INTF_MODE_VIDEO";
259         case INTF_MODE_CMD:
260                 return "INTF_MODE_CMD";
261         case INTF_MODE_WB_BLOCK:
262                 return "INTF_MODE_WB_BLOCK";
263         case INTF_MODE_WB_LINE:
264                 return "INTF_MODE_WB_LINE";
265         default:
266                 return "INTF_MODE_UNKNOWN";
267         }
268 }
269
270 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
271                 enum dpu_intr_idx intr_idx)
272 {
273         DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
274                         DRMID(phys_enc->parent),
275                         dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
276                         phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0,
277                         phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
278
279         if (phys_enc->parent_ops->handle_frame_done)
280                 phys_enc->parent_ops->handle_frame_done(
281                                 phys_enc->parent, phys_enc,
282                                 DPU_ENCODER_FRAME_EVENT_ERROR);
283 }
284
285 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
286                 u32 irq_idx, struct dpu_encoder_wait_info *info);
287
288 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
289                 int irq,
290                 void (*func)(void *arg, int irq_idx),
291                 struct dpu_encoder_wait_info *wait_info)
292 {
293         u32 irq_status;
294         int ret;
295
296         if (!wait_info) {
297                 DPU_ERROR("invalid params\n");
298                 return -EINVAL;
299         }
300         /* note: do master / slave checking outside */
301
302         /* return EWOULDBLOCK since we know the wait isn't necessary */
303         if (phys_enc->enable_state == DPU_ENC_DISABLED) {
304                 DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
305                           DRMID(phys_enc->parent), func,
306                           irq);
307                 return -EWOULDBLOCK;
308         }
309
310         if (irq < 0) {
311                 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
312                               DRMID(phys_enc->parent), func);
313                 return 0;
314         }
315
316         DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
317                       DRMID(phys_enc->parent), func,
318                       irq, phys_enc->hw_pp->idx - PINGPONG_0,
319                       atomic_read(wait_info->atomic_cnt));
320
321         ret = dpu_encoder_helper_wait_event_timeout(
322                         DRMID(phys_enc->parent),
323                         irq,
324                         wait_info);
325
326         if (ret <= 0) {
327                 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
328                 if (irq_status) {
329                         unsigned long flags;
330
331                         DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
332                                       DRMID(phys_enc->parent), func,
333                                       irq,
334                                       phys_enc->hw_pp->idx - PINGPONG_0,
335                                       atomic_read(wait_info->atomic_cnt));
336                         local_irq_save(flags);
337                         func(phys_enc, irq);
338                         local_irq_restore(flags);
339                         ret = 0;
340                 } else {
341                         ret = -ETIMEDOUT;
342                         DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
343                                       DRMID(phys_enc->parent), func,
344                                       irq,
345                                       phys_enc->hw_pp->idx - PINGPONG_0,
346                                       atomic_read(wait_info->atomic_cnt));
347                 }
348         } else {
349                 ret = 0;
350                 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
351                         func, irq,
352                         phys_enc->hw_pp->idx - PINGPONG_0,
353                         atomic_read(wait_info->atomic_cnt));
354         }
355
356         return ret;
357 }
358
359 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
360 {
361         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
362         struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
363         return phys ? atomic_read(&phys->vsync_cnt) : 0;
364 }
365
366 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
367 {
368         struct dpu_encoder_virt *dpu_enc;
369         struct dpu_encoder_phys *phys;
370         int linecount = 0;
371
372         dpu_enc = to_dpu_encoder_virt(drm_enc);
373         phys = dpu_enc ? dpu_enc->cur_master : NULL;
374
375         if (phys && phys->ops.get_line_count)
376                 linecount = phys->ops.get_line_count(phys);
377
378         return linecount;
379 }
380
381 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
382 {
383         struct dpu_encoder_virt *dpu_enc = NULL;
384         int i = 0;
385
386         if (!drm_enc) {
387                 DPU_ERROR("invalid encoder\n");
388                 return;
389         }
390
391         dpu_enc = to_dpu_encoder_virt(drm_enc);
392         DPU_DEBUG_ENC(dpu_enc, "\n");
393
394         mutex_lock(&dpu_enc->enc_lock);
395
396         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
397                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
398
399                 if (phys->ops.destroy) {
400                         phys->ops.destroy(phys);
401                         --dpu_enc->num_phys_encs;
402                         dpu_enc->phys_encs[i] = NULL;
403                 }
404         }
405
406         if (dpu_enc->num_phys_encs)
407                 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
408                                 dpu_enc->num_phys_encs);
409         dpu_enc->num_phys_encs = 0;
410         mutex_unlock(&dpu_enc->enc_lock);
411
412         drm_encoder_cleanup(drm_enc);
413         mutex_destroy(&dpu_enc->enc_lock);
414 }
415
416 void dpu_encoder_helper_split_config(
417                 struct dpu_encoder_phys *phys_enc,
418                 enum dpu_intf interface)
419 {
420         struct dpu_encoder_virt *dpu_enc;
421         struct split_pipe_cfg cfg = { 0 };
422         struct dpu_hw_mdp *hw_mdptop;
423         struct msm_display_info *disp_info;
424
425         if (!phys_enc->hw_mdptop || !phys_enc->parent) {
426                 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
427                 return;
428         }
429
430         dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
431         hw_mdptop = phys_enc->hw_mdptop;
432         disp_info = &dpu_enc->disp_info;
433
434         if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
435                 return;
436
437         /**
438          * disable split modes since encoder will be operating in as the only
439          * encoder, either for the entire use case in the case of, for example,
440          * single DSI, or for this frame in the case of left/right only partial
441          * update.
442          */
443         if (phys_enc->split_role == ENC_ROLE_SOLO) {
444                 if (hw_mdptop->ops.setup_split_pipe)
445                         hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
446                 return;
447         }
448
449         cfg.en = true;
450         cfg.mode = phys_enc->intf_mode;
451         cfg.intf = interface;
452
453         if (cfg.en && phys_enc->ops.needs_single_flush &&
454                         phys_enc->ops.needs_single_flush(phys_enc))
455                 cfg.split_flush_en = true;
456
457         if (phys_enc->split_role == ENC_ROLE_MASTER) {
458                 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
459
460                 if (hw_mdptop->ops.setup_split_pipe)
461                         hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
462         }
463 }
464
465 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
466 {
467         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
468         int i, intf_count = 0, num_dsc = 0;
469
470         for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
471                 if (dpu_enc->phys_encs[i])
472                         intf_count++;
473
474         /* See dpu_encoder_get_topology, we only support 2:2:1 topology */
475         if (dpu_enc->dsc)
476                 num_dsc = 2;
477
478         return (num_dsc > 0) && (num_dsc > intf_count);
479 }
480
481 static struct msm_display_topology dpu_encoder_get_topology(
482                         struct dpu_encoder_virt *dpu_enc,
483                         struct dpu_kms *dpu_kms,
484                         struct drm_display_mode *mode)
485 {
486         struct msm_display_topology topology = {0};
487         int i, intf_count = 0;
488
489         for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
490                 if (dpu_enc->phys_encs[i])
491                         intf_count++;
492
493         /* Datapath topology selection
494          *
495          * Dual display
496          * 2 LM, 2 INTF ( Split display using 2 interfaces)
497          *
498          * Single display
499          * 1 LM, 1 INTF
500          * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
501          *
502          * Adding color blocks only to primary interface if available in
503          * sufficient number
504          */
505         if (intf_count == 2)
506                 topology.num_lm = 2;
507         else if (!dpu_kms->catalog->caps->has_3d_merge)
508                 topology.num_lm = 1;
509         else
510                 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
511
512         if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
513                 if (dpu_kms->catalog->dspp &&
514                         (dpu_kms->catalog->dspp_count >= topology.num_lm))
515                         topology.num_dspp = topology.num_lm;
516         }
517
518         topology.num_enc = 0;
519         topology.num_intf = intf_count;
520
521         if (dpu_enc->dsc) {
522                 /* In case of Display Stream Compression (DSC), we would use
523                  * 2 encoders, 2 layer mixers and 1 interface
524                  * this is power optimal and can drive up to (including) 4k
525                  * screens
526                  */
527                 topology.num_enc = 2;
528                 topology.num_dsc = 2;
529                 topology.num_intf = 1;
530                 topology.num_lm = 2;
531         }
532
533         return topology;
534 }
535
536 static int dpu_encoder_virt_atomic_check(
537                 struct drm_encoder *drm_enc,
538                 struct drm_crtc_state *crtc_state,
539                 struct drm_connector_state *conn_state)
540 {
541         struct dpu_encoder_virt *dpu_enc;
542         struct msm_drm_private *priv;
543         struct dpu_kms *dpu_kms;
544         struct drm_display_mode *adj_mode;
545         struct msm_display_topology topology;
546         struct dpu_global_state *global_state;
547         int i = 0;
548         int ret = 0;
549
550         if (!drm_enc || !crtc_state || !conn_state) {
551                 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
552                                 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
553                 return -EINVAL;
554         }
555
556         dpu_enc = to_dpu_encoder_virt(drm_enc);
557         DPU_DEBUG_ENC(dpu_enc, "\n");
558
559         priv = drm_enc->dev->dev_private;
560         dpu_kms = to_dpu_kms(priv->kms);
561         adj_mode = &crtc_state->adjusted_mode;
562         global_state = dpu_kms_get_global_state(crtc_state->state);
563         if (IS_ERR(global_state))
564                 return PTR_ERR(global_state);
565
566         trace_dpu_enc_atomic_check(DRMID(drm_enc));
567
568         /* perform atomic check on the first physical encoder (master) */
569         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
570                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
571
572                 if (phys->ops.atomic_check)
573                         ret = phys->ops.atomic_check(phys, crtc_state,
574                                         conn_state);
575                 if (ret) {
576                         DPU_ERROR_ENC(dpu_enc,
577                                         "mode unsupported, phys idx %d\n", i);
578                         break;
579                 }
580         }
581
582         topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
583
584         /* Reserve dynamic resources now. */
585         if (!ret) {
586                 /*
587                  * Release and Allocate resources on every modeset
588                  * Dont allocate when active is false.
589                  */
590                 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
591                         dpu_rm_release(global_state, drm_enc);
592
593                         if (!crtc_state->active_changed || crtc_state->active)
594                                 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
595                                                 drm_enc, crtc_state, topology);
596                 }
597         }
598
599         trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
600
601         return ret;
602 }
603
604 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
605                         struct msm_display_info *disp_info)
606 {
607         struct dpu_vsync_source_cfg vsync_cfg = { 0 };
608         struct msm_drm_private *priv;
609         struct dpu_kms *dpu_kms;
610         struct dpu_hw_mdp *hw_mdptop;
611         struct drm_encoder *drm_enc;
612         int i;
613
614         if (!dpu_enc || !disp_info) {
615                 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
616                                         dpu_enc != NULL, disp_info != NULL);
617                 return;
618         } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
619                 DPU_ERROR("invalid num phys enc %d/%d\n",
620                                 dpu_enc->num_phys_encs,
621                                 (int) ARRAY_SIZE(dpu_enc->hw_pp));
622                 return;
623         }
624
625         drm_enc = &dpu_enc->base;
626         /* this pointers are checked in virt_enable_helper */
627         priv = drm_enc->dev->dev_private;
628
629         dpu_kms = to_dpu_kms(priv->kms);
630         hw_mdptop = dpu_kms->hw_mdp;
631         if (!hw_mdptop) {
632                 DPU_ERROR("invalid mdptop\n");
633                 return;
634         }
635
636         if (hw_mdptop->ops.setup_vsync_source &&
637                         disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
638                 for (i = 0; i < dpu_enc->num_phys_encs; i++)
639                         vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
640
641                 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
642                 if (disp_info->is_te_using_watchdog_timer)
643                         vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
644                 else
645                         vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
646
647                 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
648         }
649 }
650
651 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
652 {
653         struct dpu_encoder_virt *dpu_enc;
654         int i;
655
656         if (!drm_enc) {
657                 DPU_ERROR("invalid encoder\n");
658                 return;
659         }
660
661         dpu_enc = to_dpu_encoder_virt(drm_enc);
662
663         DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
664         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
665                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
666
667                 if (phys->ops.irq_control)
668                         phys->ops.irq_control(phys, enable);
669         }
670
671 }
672
673 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
674                 bool enable)
675 {
676         struct msm_drm_private *priv;
677         struct dpu_kms *dpu_kms;
678         struct dpu_encoder_virt *dpu_enc;
679
680         dpu_enc = to_dpu_encoder_virt(drm_enc);
681         priv = drm_enc->dev->dev_private;
682         dpu_kms = to_dpu_kms(priv->kms);
683
684         trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
685
686         if (!dpu_enc->cur_master) {
687                 DPU_ERROR("encoder master not set\n");
688                 return;
689         }
690
691         if (enable) {
692                 /* enable DPU core clks */
693                 pm_runtime_get_sync(&dpu_kms->pdev->dev);
694
695                 /* enable all the irq */
696                 _dpu_encoder_irq_control(drm_enc, true);
697
698         } else {
699                 /* disable all the irq */
700                 _dpu_encoder_irq_control(drm_enc, false);
701
702                 /* disable DPU core clks */
703                 pm_runtime_put_sync(&dpu_kms->pdev->dev);
704         }
705
706 }
707
708 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
709                 u32 sw_event)
710 {
711         struct dpu_encoder_virt *dpu_enc;
712         struct msm_drm_private *priv;
713         bool is_vid_mode = false;
714
715         if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
716                 DPU_ERROR("invalid parameters\n");
717                 return -EINVAL;
718         }
719         dpu_enc = to_dpu_encoder_virt(drm_enc);
720         priv = drm_enc->dev->dev_private;
721         is_vid_mode = dpu_enc->disp_info.capabilities &
722                                                 MSM_DISPLAY_CAP_VID_MODE;
723
724         /*
725          * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
726          * events and return early for other events (ie wb display).
727          */
728         if (!dpu_enc->idle_pc_supported &&
729                         (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
730                         sw_event != DPU_ENC_RC_EVENT_STOP &&
731                         sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
732                 return 0;
733
734         trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
735                          dpu_enc->rc_state, "begin");
736
737         switch (sw_event) {
738         case DPU_ENC_RC_EVENT_KICKOFF:
739                 /* cancel delayed off work, if any */
740                 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
741                         DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
742                                         sw_event);
743
744                 mutex_lock(&dpu_enc->rc_lock);
745
746                 /* return if the resource control is already in ON state */
747                 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
748                         DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
749                                       DRMID(drm_enc), sw_event);
750                         mutex_unlock(&dpu_enc->rc_lock);
751                         return 0;
752                 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
753                                 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
754                         DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
755                                       DRMID(drm_enc), sw_event,
756                                       dpu_enc->rc_state);
757                         mutex_unlock(&dpu_enc->rc_lock);
758                         return -EINVAL;
759                 }
760
761                 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
762                         _dpu_encoder_irq_control(drm_enc, true);
763                 else
764                         _dpu_encoder_resource_control_helper(drm_enc, true);
765
766                 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
767
768                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
769                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
770                                  "kickoff");
771
772                 mutex_unlock(&dpu_enc->rc_lock);
773                 break;
774
775         case DPU_ENC_RC_EVENT_FRAME_DONE:
776                 /*
777                  * mutex lock is not used as this event happens at interrupt
778                  * context. And locking is not required as, the other events
779                  * like KICKOFF and STOP does a wait-for-idle before executing
780                  * the resource_control
781                  */
782                 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
783                         DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
784                                       DRMID(drm_enc), sw_event,
785                                       dpu_enc->rc_state);
786                         return -EINVAL;
787                 }
788
789                 /*
790                  * schedule off work item only when there are no
791                  * frames pending
792                  */
793                 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
794                         DRM_DEBUG_KMS("id:%d skip schedule work\n",
795                                       DRMID(drm_enc));
796                         return 0;
797                 }
798
799                 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
800                                    msecs_to_jiffies(dpu_enc->idle_timeout));
801
802                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
803                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
804                                  "frame done");
805                 break;
806
807         case DPU_ENC_RC_EVENT_PRE_STOP:
808                 /* cancel delayed off work, if any */
809                 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
810                         DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
811                                         sw_event);
812
813                 mutex_lock(&dpu_enc->rc_lock);
814
815                 if (is_vid_mode &&
816                           dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
817                         _dpu_encoder_irq_control(drm_enc, true);
818                 }
819                 /* skip if is already OFF or IDLE, resources are off already */
820                 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
821                                 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
822                         DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
823                                       DRMID(drm_enc), sw_event,
824                                       dpu_enc->rc_state);
825                         mutex_unlock(&dpu_enc->rc_lock);
826                         return 0;
827                 }
828
829                 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
830
831                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
832                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
833                                  "pre stop");
834
835                 mutex_unlock(&dpu_enc->rc_lock);
836                 break;
837
838         case DPU_ENC_RC_EVENT_STOP:
839                 mutex_lock(&dpu_enc->rc_lock);
840
841                 /* return if the resource control is already in OFF state */
842                 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
843                         DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
844                                       DRMID(drm_enc), sw_event);
845                         mutex_unlock(&dpu_enc->rc_lock);
846                         return 0;
847                 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
848                         DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
849                                   DRMID(drm_enc), sw_event, dpu_enc->rc_state);
850                         mutex_unlock(&dpu_enc->rc_lock);
851                         return -EINVAL;
852                 }
853
854                 /**
855                  * expect to arrive here only if in either idle state or pre-off
856                  * and in IDLE state the resources are already disabled
857                  */
858                 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
859                         _dpu_encoder_resource_control_helper(drm_enc, false);
860
861                 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
862
863                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
864                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
865                                  "stop");
866
867                 mutex_unlock(&dpu_enc->rc_lock);
868                 break;
869
870         case DPU_ENC_RC_EVENT_ENTER_IDLE:
871                 mutex_lock(&dpu_enc->rc_lock);
872
873                 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
874                         DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
875                                   DRMID(drm_enc), sw_event, dpu_enc->rc_state);
876                         mutex_unlock(&dpu_enc->rc_lock);
877                         return 0;
878                 }
879
880                 /*
881                  * if we are in ON but a frame was just kicked off,
882                  * ignore the IDLE event, it's probably a stale timer event
883                  */
884                 if (dpu_enc->frame_busy_mask[0]) {
885                         DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
886                                   DRMID(drm_enc), sw_event, dpu_enc->rc_state);
887                         mutex_unlock(&dpu_enc->rc_lock);
888                         return 0;
889                 }
890
891                 if (is_vid_mode)
892                         _dpu_encoder_irq_control(drm_enc, false);
893                 else
894                         _dpu_encoder_resource_control_helper(drm_enc, false);
895
896                 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
897
898                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
899                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
900                                  "idle");
901
902                 mutex_unlock(&dpu_enc->rc_lock);
903                 break;
904
905         default:
906                 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
907                           sw_event);
908                 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
909                                  dpu_enc->idle_pc_supported, dpu_enc->rc_state,
910                                  "error");
911                 break;
912         }
913
914         trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
915                          dpu_enc->idle_pc_supported, dpu_enc->rc_state,
916                          "end");
917         return 0;
918 }
919
920 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
921                 struct drm_writeback_job *job)
922 {
923         struct dpu_encoder_virt *dpu_enc;
924         int i;
925
926         dpu_enc = to_dpu_encoder_virt(drm_enc);
927
928         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
929                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
930
931                 if (phys->ops.prepare_wb_job)
932                         phys->ops.prepare_wb_job(phys, job);
933
934         }
935 }
936
937 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
938                 struct drm_writeback_job *job)
939 {
940         struct dpu_encoder_virt *dpu_enc;
941         int i;
942
943         dpu_enc = to_dpu_encoder_virt(drm_enc);
944
945         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
946                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
947
948                 if (phys->ops.cleanup_wb_job)
949                         phys->ops.cleanup_wb_job(phys, job);
950
951         }
952 }
953
954 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
955                                              struct drm_crtc_state *crtc_state,
956                                              struct drm_connector_state *conn_state)
957 {
958         struct dpu_encoder_virt *dpu_enc;
959         struct msm_drm_private *priv;
960         struct dpu_kms *dpu_kms;
961         struct dpu_crtc_state *cstate;
962         struct dpu_global_state *global_state;
963         struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
964         struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
965         struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
966         struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
967         struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
968         int num_lm, num_ctl, num_pp, num_dsc;
969         unsigned int dsc_mask = 0;
970         int i;
971
972         if (!drm_enc) {
973                 DPU_ERROR("invalid encoder\n");
974                 return;
975         }
976
977         dpu_enc = to_dpu_encoder_virt(drm_enc);
978         DPU_DEBUG_ENC(dpu_enc, "\n");
979
980         priv = drm_enc->dev->dev_private;
981         dpu_kms = to_dpu_kms(priv->kms);
982
983         global_state = dpu_kms_get_existing_global_state(dpu_kms);
984         if (IS_ERR_OR_NULL(global_state)) {
985                 DPU_ERROR("Failed to get global state");
986                 return;
987         }
988
989         trace_dpu_enc_mode_set(DRMID(drm_enc));
990
991         /* Query resource that have been reserved in atomic check step. */
992         num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
993                 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
994                 ARRAY_SIZE(hw_pp));
995         num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
996                 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
997         num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
998                 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
999         dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1000                 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1001                 ARRAY_SIZE(hw_dspp));
1002
1003         for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1004                 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1005                                                 : NULL;
1006
1007         if (dpu_enc->dsc) {
1008                 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1009                                                         drm_enc->base.id, DPU_HW_BLK_DSC,
1010                                                         hw_dsc, ARRAY_SIZE(hw_dsc));
1011                 for (i = 0; i < num_dsc; i++) {
1012                         dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1013                         dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1014                 }
1015         }
1016
1017         dpu_enc->dsc_mask = dsc_mask;
1018
1019         cstate = to_dpu_crtc_state(crtc_state);
1020
1021         for (i = 0; i < num_lm; i++) {
1022                 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1023
1024                 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1025                 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1026                 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1027         }
1028
1029         cstate->num_mixers = num_lm;
1030
1031         dpu_enc->connector = conn_state->connector;
1032
1033         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1034                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1035
1036                 if (!dpu_enc->hw_pp[i]) {
1037                         DPU_ERROR_ENC(dpu_enc,
1038                                 "no pp block assigned at idx: %d\n", i);
1039                         return;
1040                 }
1041
1042                 if (!hw_ctl[i]) {
1043                         DPU_ERROR_ENC(dpu_enc,
1044                                 "no ctl block assigned at idx: %d\n", i);
1045                         return;
1046                 }
1047
1048                 phys->hw_pp = dpu_enc->hw_pp[i];
1049                 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1050
1051                 if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX)
1052                         phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx);
1053
1054                 if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX)
1055                         phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx);
1056
1057                 if (!phys->hw_intf && !phys->hw_wb) {
1058                         DPU_ERROR_ENC(dpu_enc,
1059                                       "no intf or wb block assigned at idx: %d\n", i);
1060                         return;
1061                 }
1062
1063                 if (phys->hw_intf && phys->hw_wb) {
1064                         DPU_ERROR_ENC(dpu_enc,
1065                                         "invalid phys both intf and wb block at idx: %d\n", i);
1066                         return;
1067                 }
1068
1069                 phys->cached_mode = crtc_state->adjusted_mode;
1070                 if (phys->ops.atomic_mode_set)
1071                         phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1072         }
1073 }
1074
1075 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1076 {
1077         struct dpu_encoder_virt *dpu_enc = NULL;
1078         int i;
1079
1080         if (!drm_enc || !drm_enc->dev) {
1081                 DPU_ERROR("invalid parameters\n");
1082                 return;
1083         }
1084
1085         dpu_enc = to_dpu_encoder_virt(drm_enc);
1086         if (!dpu_enc || !dpu_enc->cur_master) {
1087                 DPU_ERROR("invalid dpu encoder/master\n");
1088                 return;
1089         }
1090
1091
1092         if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1093                 dpu_enc->cur_master->hw_mdptop &&
1094                 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1095                 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1096                         dpu_enc->cur_master->hw_mdptop);
1097
1098         _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1099
1100         if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1101                         !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1102                 unsigned bpc = dpu_enc->connector->display_info.bpc;
1103                 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1104                         if (!dpu_enc->hw_pp[i])
1105                                 continue;
1106                         _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1107                 }
1108         }
1109 }
1110
1111 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1112 {
1113         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1114
1115         mutex_lock(&dpu_enc->enc_lock);
1116
1117         if (!dpu_enc->enabled)
1118                 goto out;
1119
1120         if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1121                 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1122         if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1123                 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1124
1125         _dpu_encoder_virt_enable_helper(drm_enc);
1126
1127 out:
1128         mutex_unlock(&dpu_enc->enc_lock);
1129 }
1130
1131 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1132 {
1133         struct dpu_encoder_virt *dpu_enc = NULL;
1134         int ret = 0;
1135         struct drm_display_mode *cur_mode = NULL;
1136
1137         dpu_enc = to_dpu_encoder_virt(drm_enc);
1138
1139         mutex_lock(&dpu_enc->enc_lock);
1140         cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1141
1142         trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1143                              cur_mode->vdisplay);
1144
1145         /* always enable slave encoder before master */
1146         if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1147                 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1148
1149         if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1150                 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1151
1152         ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1153         if (ret) {
1154                 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1155                                 ret);
1156                 goto out;
1157         }
1158
1159         _dpu_encoder_virt_enable_helper(drm_enc);
1160
1161         dpu_enc->enabled = true;
1162
1163 out:
1164         mutex_unlock(&dpu_enc->enc_lock);
1165 }
1166
1167 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1168 {
1169         struct dpu_encoder_virt *dpu_enc = NULL;
1170         int i = 0;
1171
1172         dpu_enc = to_dpu_encoder_virt(drm_enc);
1173         DPU_DEBUG_ENC(dpu_enc, "\n");
1174
1175         mutex_lock(&dpu_enc->enc_lock);
1176         dpu_enc->enabled = false;
1177
1178         trace_dpu_enc_disable(DRMID(drm_enc));
1179
1180         /* wait for idle */
1181         dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1182
1183         dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1184
1185         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1186                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1187
1188                 if (phys->ops.disable)
1189                         phys->ops.disable(phys);
1190         }
1191
1192
1193         /* after phys waits for frame-done, should be no more frames pending */
1194         if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1195                 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1196                 del_timer_sync(&dpu_enc->frame_done_timer);
1197         }
1198
1199         dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1200
1201         dpu_enc->connector = NULL;
1202
1203         DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1204
1205         mutex_unlock(&dpu_enc->enc_lock);
1206 }
1207
1208 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1209                 enum dpu_intf_type type, u32 controller_id)
1210 {
1211         int i = 0;
1212
1213         if (type != INTF_WB) {
1214                 for (i = 0; i < catalog->intf_count; i++) {
1215                         if (catalog->intf[i].type == type
1216                                 && catalog->intf[i].controller_id == controller_id) {
1217                                 return catalog->intf[i].id;
1218                         }
1219                 }
1220         }
1221
1222         return INTF_MAX;
1223 }
1224
1225 static enum dpu_wb dpu_encoder_get_wb(struct dpu_mdss_cfg *catalog,
1226                 enum dpu_intf_type type, u32 controller_id)
1227 {
1228         int i = 0;
1229
1230         if (type != INTF_WB)
1231                 goto end;
1232
1233         for (i = 0; i < catalog->wb_count; i++) {
1234                 if (catalog->wb[i].id == controller_id)
1235                         return catalog->wb[i].id;
1236         }
1237
1238 end:
1239         return WB_MAX;
1240 }
1241
1242 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1243                 struct dpu_encoder_phys *phy_enc)
1244 {
1245         struct dpu_encoder_virt *dpu_enc = NULL;
1246         unsigned long lock_flags;
1247
1248         if (!drm_enc || !phy_enc)
1249                 return;
1250
1251         DPU_ATRACE_BEGIN("encoder_vblank_callback");
1252         dpu_enc = to_dpu_encoder_virt(drm_enc);
1253
1254         atomic_inc(&phy_enc->vsync_cnt);
1255
1256         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1257         if (dpu_enc->crtc)
1258                 dpu_crtc_vblank_callback(dpu_enc->crtc);
1259         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1260
1261         DPU_ATRACE_END("encoder_vblank_callback");
1262 }
1263
1264 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1265                 struct dpu_encoder_phys *phy_enc)
1266 {
1267         if (!phy_enc)
1268                 return;
1269
1270         DPU_ATRACE_BEGIN("encoder_underrun_callback");
1271         atomic_inc(&phy_enc->underrun_cnt);
1272
1273         /* trigger dump only on the first underrun */
1274         if (atomic_read(&phy_enc->underrun_cnt) == 1)
1275                 msm_disp_snapshot_state(drm_enc->dev);
1276
1277         trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1278                                   atomic_read(&phy_enc->underrun_cnt));
1279         DPU_ATRACE_END("encoder_underrun_callback");
1280 }
1281
1282 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1283 {
1284         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1285         unsigned long lock_flags;
1286
1287         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1288         /* crtc should always be cleared before re-assigning */
1289         WARN_ON(crtc && dpu_enc->crtc);
1290         dpu_enc->crtc = crtc;
1291         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1292 }
1293
1294 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1295                                         struct drm_crtc *crtc, bool enable)
1296 {
1297         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1298         unsigned long lock_flags;
1299         int i;
1300
1301         trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1302
1303         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1304         if (dpu_enc->crtc != crtc) {
1305                 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1306                 return;
1307         }
1308         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1309
1310         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1311                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1312
1313                 if (phys->ops.control_vblank_irq)
1314                         phys->ops.control_vblank_irq(phys, enable);
1315         }
1316 }
1317
1318 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1319                 void (*frame_event_cb)(void *, u32 event),
1320                 void *frame_event_cb_data)
1321 {
1322         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1323         unsigned long lock_flags;
1324         bool enable;
1325
1326         enable = frame_event_cb ? true : false;
1327
1328         if (!drm_enc) {
1329                 DPU_ERROR("invalid encoder\n");
1330                 return;
1331         }
1332         trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1333
1334         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1335         dpu_enc->crtc_frame_event_cb = frame_event_cb;
1336         dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1337         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1338 }
1339
1340 static void dpu_encoder_frame_done_callback(
1341                 struct drm_encoder *drm_enc,
1342                 struct dpu_encoder_phys *ready_phys, u32 event)
1343 {
1344         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1345         unsigned int i;
1346
1347         if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1348                         | DPU_ENCODER_FRAME_EVENT_ERROR
1349                         | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1350
1351                 if (!dpu_enc->frame_busy_mask[0]) {
1352                         /**
1353                          * suppress frame_done without waiter,
1354                          * likely autorefresh
1355                          */
1356                         trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1357                                         dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1358                                         ready_phys->intf_idx, ready_phys->wb_idx);
1359                         return;
1360                 }
1361
1362                 /* One of the physical encoders has become idle */
1363                 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1364                         if (dpu_enc->phys_encs[i] == ready_phys) {
1365                                 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1366                                                 dpu_enc->frame_busy_mask[0]);
1367                                 clear_bit(i, dpu_enc->frame_busy_mask);
1368                         }
1369                 }
1370
1371                 if (!dpu_enc->frame_busy_mask[0]) {
1372                         atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1373                         del_timer(&dpu_enc->frame_done_timer);
1374
1375                         dpu_encoder_resource_control(drm_enc,
1376                                         DPU_ENC_RC_EVENT_FRAME_DONE);
1377
1378                         if (dpu_enc->crtc_frame_event_cb)
1379                                 dpu_enc->crtc_frame_event_cb(
1380                                         dpu_enc->crtc_frame_event_cb_data,
1381                                         event);
1382                 }
1383         } else {
1384                 if (dpu_enc->crtc_frame_event_cb)
1385                         dpu_enc->crtc_frame_event_cb(
1386                                 dpu_enc->crtc_frame_event_cb_data, event);
1387         }
1388 }
1389
1390 static void dpu_encoder_off_work(struct work_struct *work)
1391 {
1392         struct dpu_encoder_virt *dpu_enc = container_of(work,
1393                         struct dpu_encoder_virt, delayed_off_work.work);
1394
1395         dpu_encoder_resource_control(&dpu_enc->base,
1396                                                 DPU_ENC_RC_EVENT_ENTER_IDLE);
1397
1398         dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1399                                 DPU_ENCODER_FRAME_EVENT_IDLE);
1400 }
1401
1402 /**
1403  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1404  * @drm_enc: Pointer to drm encoder structure
1405  * @phys: Pointer to physical encoder structure
1406  * @extra_flush_bits: Additional bit mask to include in flush trigger
1407  */
1408 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1409                 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1410 {
1411         struct dpu_hw_ctl *ctl;
1412         int pending_kickoff_cnt;
1413         u32 ret = UINT_MAX;
1414
1415         if (!phys->hw_pp) {
1416                 DPU_ERROR("invalid pingpong hw\n");
1417                 return;
1418         }
1419
1420         ctl = phys->hw_ctl;
1421         if (!ctl->ops.trigger_flush) {
1422                 DPU_ERROR("missing trigger cb\n");
1423                 return;
1424         }
1425
1426         pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1427
1428         if (extra_flush_bits && ctl->ops.update_pending_flush)
1429                 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1430
1431         ctl->ops.trigger_flush(ctl);
1432
1433         if (ctl->ops.get_pending_flush)
1434                 ret = ctl->ops.get_pending_flush(ctl);
1435
1436         trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1437                         dpu_encoder_helper_get_intf_type(phys->intf_mode),
1438                         phys->intf_idx, phys->wb_idx,
1439                         pending_kickoff_cnt, ctl->idx,
1440                         extra_flush_bits, ret);
1441 }
1442
1443 /**
1444  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1445  * @phys: Pointer to physical encoder structure
1446  */
1447 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1448 {
1449         if (!phys) {
1450                 DPU_ERROR("invalid argument(s)\n");
1451                 return;
1452         }
1453
1454         if (!phys->hw_pp) {
1455                 DPU_ERROR("invalid pingpong hw\n");
1456                 return;
1457         }
1458
1459         if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1460                 phys->ops.trigger_start(phys);
1461 }
1462
1463 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1464 {
1465         struct dpu_hw_ctl *ctl;
1466
1467         ctl = phys_enc->hw_ctl;
1468         if (ctl->ops.trigger_start) {
1469                 ctl->ops.trigger_start(ctl);
1470                 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1471         }
1472 }
1473
1474 static int dpu_encoder_helper_wait_event_timeout(
1475                 int32_t drm_id,
1476                 u32 irq_idx,
1477                 struct dpu_encoder_wait_info *info)
1478 {
1479         int rc = 0;
1480         s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1481         s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1482         s64 time;
1483
1484         do {
1485                 rc = wait_event_timeout(*(info->wq),
1486                                 atomic_read(info->atomic_cnt) == 0, jiffies);
1487                 time = ktime_to_ms(ktime_get());
1488
1489                 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1490                                                  expected_time,
1491                                                  atomic_read(info->atomic_cnt));
1492         /* If we timed out, counter is valid and time is less, wait again */
1493         } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1494                         (time < expected_time));
1495
1496         return rc;
1497 }
1498
1499 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1500 {
1501         struct dpu_encoder_virt *dpu_enc;
1502         struct dpu_hw_ctl *ctl;
1503         int rc;
1504         struct drm_encoder *drm_enc;
1505
1506         dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1507         ctl = phys_enc->hw_ctl;
1508         drm_enc = phys_enc->parent;
1509
1510         if (!ctl->ops.reset)
1511                 return;
1512
1513         DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1514                       ctl->idx);
1515
1516         rc = ctl->ops.reset(ctl);
1517         if (rc) {
1518                 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1519                 msm_disp_snapshot_state(drm_enc->dev);
1520         }
1521
1522         phys_enc->enable_state = DPU_ENC_ENABLED;
1523 }
1524
1525 /**
1526  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1527  *      Iterate through the physical encoders and perform consolidated flush
1528  *      and/or control start triggering as needed. This is done in the virtual
1529  *      encoder rather than the individual physical ones in order to handle
1530  *      use cases that require visibility into multiple physical encoders at
1531  *      a time.
1532  * @dpu_enc: Pointer to virtual encoder structure
1533  */
1534 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1535 {
1536         struct dpu_hw_ctl *ctl;
1537         uint32_t i, pending_flush;
1538         unsigned long lock_flags;
1539
1540         pending_flush = 0x0;
1541
1542         /* update pending counts and trigger kickoff ctl flush atomically */
1543         spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1544
1545         /* don't perform flush/start operations for slave encoders */
1546         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1547                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1548
1549                 if (phys->enable_state == DPU_ENC_DISABLED)
1550                         continue;
1551
1552                 ctl = phys->hw_ctl;
1553
1554                 /*
1555                  * This is cleared in frame_done worker, which isn't invoked
1556                  * for async commits. So don't set this for async, since it'll
1557                  * roll over to the next commit.
1558                  */
1559                 if (phys->split_role != ENC_ROLE_SLAVE)
1560                         set_bit(i, dpu_enc->frame_busy_mask);
1561
1562                 if (!phys->ops.needs_single_flush ||
1563                                 !phys->ops.needs_single_flush(phys))
1564                         _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1565                 else if (ctl->ops.get_pending_flush)
1566                         pending_flush |= ctl->ops.get_pending_flush(ctl);
1567         }
1568
1569         /* for split flush, combine pending flush masks and send to master */
1570         if (pending_flush && dpu_enc->cur_master) {
1571                 _dpu_encoder_trigger_flush(
1572                                 &dpu_enc->base,
1573                                 dpu_enc->cur_master,
1574                                 pending_flush);
1575         }
1576
1577         _dpu_encoder_trigger_start(dpu_enc->cur_master);
1578
1579         spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1580 }
1581
1582 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1583 {
1584         struct dpu_encoder_virt *dpu_enc;
1585         struct dpu_encoder_phys *phys;
1586         unsigned int i;
1587         struct dpu_hw_ctl *ctl;
1588         struct msm_display_info *disp_info;
1589
1590         if (!drm_enc) {
1591                 DPU_ERROR("invalid encoder\n");
1592                 return;
1593         }
1594         dpu_enc = to_dpu_encoder_virt(drm_enc);
1595         disp_info = &dpu_enc->disp_info;
1596
1597         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1598                 phys = dpu_enc->phys_encs[i];
1599
1600                 ctl = phys->hw_ctl;
1601                 if (ctl->ops.clear_pending_flush)
1602                         ctl->ops.clear_pending_flush(ctl);
1603
1604                 /* update only for command mode primary ctl */
1605                 if ((phys == dpu_enc->cur_master) &&
1606                    (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1607                     && ctl->ops.trigger_pending)
1608                         ctl->ops.trigger_pending(ctl);
1609         }
1610 }
1611
1612 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1613                 struct drm_display_mode *mode)
1614 {
1615         u64 pclk_rate;
1616         u32 pclk_period;
1617         u32 line_time;
1618
1619         /*
1620          * For linetime calculation, only operate on master encoder.
1621          */
1622         if (!dpu_enc->cur_master)
1623                 return 0;
1624
1625         if (!dpu_enc->cur_master->ops.get_line_count) {
1626                 DPU_ERROR("get_line_count function not defined\n");
1627                 return 0;
1628         }
1629
1630         pclk_rate = mode->clock; /* pixel clock in kHz */
1631         if (pclk_rate == 0) {
1632                 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1633                 return 0;
1634         }
1635
1636         pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1637         if (pclk_period == 0) {
1638                 DPU_ERROR("pclk period is 0\n");
1639                 return 0;
1640         }
1641
1642         /*
1643          * Line time calculation based on Pixel clock and HTOTAL.
1644          * Final unit is in ns.
1645          */
1646         line_time = (pclk_period * mode->htotal) / 1000;
1647         if (line_time == 0) {
1648                 DPU_ERROR("line time calculation is 0\n");
1649                 return 0;
1650         }
1651
1652         DPU_DEBUG_ENC(dpu_enc,
1653                         "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1654                         pclk_rate, pclk_period, line_time);
1655
1656         return line_time;
1657 }
1658
1659 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1660 {
1661         struct drm_display_mode *mode;
1662         struct dpu_encoder_virt *dpu_enc;
1663         u32 cur_line;
1664         u32 line_time;
1665         u32 vtotal, time_to_vsync;
1666         ktime_t cur_time;
1667
1668         dpu_enc = to_dpu_encoder_virt(drm_enc);
1669
1670         if (!drm_enc->crtc || !drm_enc->crtc->state) {
1671                 DPU_ERROR("crtc/crtc state object is NULL\n");
1672                 return -EINVAL;
1673         }
1674         mode = &drm_enc->crtc->state->adjusted_mode;
1675
1676         line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1677         if (!line_time)
1678                 return -EINVAL;
1679
1680         cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1681
1682         vtotal = mode->vtotal;
1683         if (cur_line >= vtotal)
1684                 time_to_vsync = line_time * vtotal;
1685         else
1686                 time_to_vsync = line_time * (vtotal - cur_line);
1687
1688         if (time_to_vsync == 0) {
1689                 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1690                                 vtotal);
1691                 return -EINVAL;
1692         }
1693
1694         cur_time = ktime_get();
1695         *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1696
1697         DPU_DEBUG_ENC(dpu_enc,
1698                         "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1699                         cur_line, vtotal, time_to_vsync,
1700                         ktime_to_ms(cur_time),
1701                         ktime_to_ms(*wakeup_time));
1702         return 0;
1703 }
1704
1705 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1706 {
1707         struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1708                         vsync_event_timer);
1709         struct drm_encoder *drm_enc = &dpu_enc->base;
1710         struct msm_drm_private *priv;
1711         struct msm_drm_thread *event_thread;
1712
1713         if (!drm_enc->dev || !drm_enc->crtc) {
1714                 DPU_ERROR("invalid parameters\n");
1715                 return;
1716         }
1717
1718         priv = drm_enc->dev->dev_private;
1719
1720         if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1721                 DPU_ERROR("invalid crtc index\n");
1722                 return;
1723         }
1724         event_thread = &priv->event_thread[drm_enc->crtc->index];
1725         if (!event_thread) {
1726                 DPU_ERROR("event_thread not found for crtc:%d\n",
1727                                 drm_enc->crtc->index);
1728                 return;
1729         }
1730
1731         del_timer(&dpu_enc->vsync_event_timer);
1732 }
1733
1734 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1735 {
1736         struct dpu_encoder_virt *dpu_enc = container_of(work,
1737                         struct dpu_encoder_virt, vsync_event_work);
1738         ktime_t wakeup_time;
1739
1740         if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1741                 return;
1742
1743         trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1744         mod_timer(&dpu_enc->vsync_event_timer,
1745                         nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1746 }
1747
1748 static u32
1749 dpu_encoder_dsc_initial_line_calc(struct msm_display_dsc_config *dsc,
1750                                   u32 enc_ip_width)
1751 {
1752         int ssm_delay, total_pixels, soft_slice_per_enc;
1753
1754         soft_slice_per_enc = enc_ip_width / dsc->drm->slice_width;
1755
1756         /*
1757          * minimum number of initial line pixels is a sum of:
1758          * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1759          *    91 for 10 bpc) * 3
1760          * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1761          * 3. the initial xmit delay
1762          * 4. total pipeline delay through the "lock step" of encoder (47)
1763          * 5. 6 additional pixels as the output of the rate buffer is
1764          *    48 bits wide
1765          */
1766         ssm_delay = ((dsc->drm->bits_per_component < 10) ? 84 : 92);
1767         total_pixels = ssm_delay * 3 + dsc->drm->initial_xmit_delay + 47;
1768         if (soft_slice_per_enc > 1)
1769                 total_pixels += (ssm_delay * 3);
1770         return DIV_ROUND_UP(total_pixels, dsc->drm->slice_width);
1771 }
1772
1773 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc,
1774                                      struct dpu_hw_pingpong *hw_pp,
1775                                      struct msm_display_dsc_config *dsc,
1776                                      u32 common_mode,
1777                                      u32 initial_lines)
1778 {
1779         if (hw_dsc->ops.dsc_config)
1780                 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1781
1782         if (hw_dsc->ops.dsc_config_thresh)
1783                 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1784
1785         if (hw_pp->ops.setup_dsc)
1786                 hw_pp->ops.setup_dsc(hw_pp);
1787
1788         if (hw_pp->ops.enable_dsc)
1789                 hw_pp->ops.enable_dsc(hw_pp);
1790 }
1791
1792 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1793                                  struct msm_display_dsc_config *dsc)
1794 {
1795         /* coding only for 2LM, 2enc, 1 dsc config */
1796         struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1797         struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1798         struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1799         int this_frame_slices;
1800         int intf_ip_w, enc_ip_w;
1801         int dsc_common_mode;
1802         int pic_width;
1803         u32 initial_lines;
1804         int i;
1805
1806         for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1807                 hw_pp[i] = dpu_enc->hw_pp[i];
1808                 hw_dsc[i] = dpu_enc->hw_dsc[i];
1809
1810                 if (!hw_pp[i] || !hw_dsc[i]) {
1811                         DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1812                         return;
1813                 }
1814         }
1815
1816         pic_width = dsc->drm->pic_width;
1817
1818         dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1819         if (enc_master->intf_mode == INTF_MODE_VIDEO)
1820                 dsc_common_mode |= DSC_MODE_VIDEO;
1821
1822         this_frame_slices = pic_width / dsc->drm->slice_width;
1823         intf_ip_w = this_frame_slices * dsc->drm->slice_width;
1824
1825         /*
1826          * dsc merge case: when using 2 encoders for the same stream,
1827          * no. of slices need to be same on both the encoders.
1828          */
1829         enc_ip_w = intf_ip_w / 2;
1830         initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1831
1832         for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1833                 dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines);
1834 }
1835
1836 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1837 {
1838         struct dpu_encoder_virt *dpu_enc;
1839         struct dpu_encoder_phys *phys;
1840         bool needs_hw_reset = false;
1841         unsigned int i;
1842
1843         dpu_enc = to_dpu_encoder_virt(drm_enc);
1844
1845         trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1846
1847         /* prepare for next kickoff, may include waiting on previous kickoff */
1848         DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1849         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1850                 phys = dpu_enc->phys_encs[i];
1851                 if (phys->ops.prepare_for_kickoff)
1852                         phys->ops.prepare_for_kickoff(phys);
1853                 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1854                         needs_hw_reset = true;
1855         }
1856         DPU_ATRACE_END("enc_prepare_for_kickoff");
1857
1858         dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1859
1860         /* if any phys needs reset, reset all phys, in-order */
1861         if (needs_hw_reset) {
1862                 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1863                 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1864                         dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1865                 }
1866         }
1867
1868         if (dpu_enc->dsc)
1869                 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1870 }
1871
1872 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1873 {
1874         struct dpu_encoder_virt *dpu_enc;
1875         unsigned int i;
1876         struct dpu_encoder_phys *phys;
1877
1878         dpu_enc = to_dpu_encoder_virt(drm_enc);
1879
1880         if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1881                 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1882                         phys = dpu_enc->phys_encs[i];
1883                         if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1884                                 DPU_DEBUG("invalid FB not kicking off\n");
1885                                 return false;
1886                         }
1887                 }
1888         }
1889
1890         return true;
1891 }
1892
1893 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1894 {
1895         struct dpu_encoder_virt *dpu_enc;
1896         struct dpu_encoder_phys *phys;
1897         ktime_t wakeup_time;
1898         unsigned long timeout_ms;
1899         unsigned int i;
1900
1901         DPU_ATRACE_BEGIN("encoder_kickoff");
1902         dpu_enc = to_dpu_encoder_virt(drm_enc);
1903
1904         trace_dpu_enc_kickoff(DRMID(drm_enc));
1905
1906         timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1907                         drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1908
1909         atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1910         mod_timer(&dpu_enc->frame_done_timer,
1911                         jiffies + msecs_to_jiffies(timeout_ms));
1912
1913         /* All phys encs are ready to go, trigger the kickoff */
1914         _dpu_encoder_kickoff_phys(dpu_enc);
1915
1916         /* allow phys encs to handle any post-kickoff business */
1917         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1918                 phys = dpu_enc->phys_encs[i];
1919                 if (phys->ops.handle_post_kickoff)
1920                         phys->ops.handle_post_kickoff(phys);
1921         }
1922
1923         if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1924                         !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1925                 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1926                                             ktime_to_ms(wakeup_time));
1927                 mod_timer(&dpu_enc->vsync_event_timer,
1928                                 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1929         }
1930
1931         DPU_ATRACE_END("encoder_kickoff");
1932 }
1933
1934 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1935 {
1936         struct dpu_hw_mixer_cfg mixer;
1937         int i, num_lm;
1938         u32 flush_mask = 0;
1939         struct dpu_global_state *global_state;
1940         struct dpu_hw_blk *hw_lm[2];
1941         struct dpu_hw_mixer *hw_mixer[2];
1942         struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1943
1944         memset(&mixer, 0, sizeof(mixer));
1945
1946         /* reset all mixers for this encoder */
1947         if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1948                 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1949
1950         global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1951
1952         num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1953                 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1954
1955         for (i = 0; i < num_lm; i++) {
1956                 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1957                 flush_mask = phys_enc->hw_ctl->ops.get_bitmask_mixer(ctl, hw_mixer[i]->idx);
1958                 if (phys_enc->hw_ctl->ops.update_pending_flush)
1959                         phys_enc->hw_ctl->ops.update_pending_flush(ctl, flush_mask);
1960
1961                 /* clear all blendstages */
1962                 if (phys_enc->hw_ctl->ops.setup_blendstage)
1963                         phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
1964         }
1965 }
1966
1967 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
1968 {
1969         struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1970         struct dpu_hw_intf_cfg intf_cfg = { 0 };
1971         int i;
1972         struct dpu_encoder_virt *dpu_enc;
1973
1974         dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1975
1976         phys_enc->hw_ctl->ops.reset(ctl);
1977
1978         dpu_encoder_helper_reset_mixers(phys_enc);
1979
1980         /*
1981          * TODO: move the once-only operation like CTL flush/trigger
1982          * into dpu_encoder_virt_disable() and all operations which need
1983          * to be done per phys encoder into the phys_disable() op.
1984          */
1985         if (phys_enc->hw_wb) {
1986                 /* disable the PP block */
1987                 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
1988                         phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false,
1989                                         phys_enc->hw_pp->idx);
1990
1991                 /* mark WB flush as pending */
1992                 if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
1993                         phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
1994         } else {
1995                 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1996                         if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
1997                                 phys_enc->hw_intf->ops.bind_pingpong_blk(
1998                                                 dpu_enc->phys_encs[i]->hw_intf, false,
1999                                                 dpu_enc->phys_encs[i]->hw_pp->idx);
2000
2001                         /* mark INTF flush as pending */
2002                         if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2003                                 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2004                                                 dpu_enc->phys_encs[i]->hw_intf->idx);
2005                 }
2006         }
2007
2008         /* reset the merge 3D HW block */
2009         if (phys_enc->hw_pp->merge_3d) {
2010                 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2011                                 BLEND_3D_NONE);
2012                 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2013                         phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2014                                         phys_enc->hw_pp->merge_3d->idx);
2015         }
2016
2017         intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2018         intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2019         if (phys_enc->hw_pp->merge_3d)
2020                 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2021
2022         if (ctl->ops.reset_intf_cfg)
2023                 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2024
2025         ctl->ops.trigger_flush(ctl);
2026         ctl->ops.trigger_start(ctl);
2027         ctl->ops.clear_pending_flush(ctl);
2028 }
2029
2030 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
2031 {
2032         struct dpu_encoder_virt *dpu_enc;
2033         struct dpu_encoder_phys *phys;
2034         int i;
2035
2036         if (!drm_enc) {
2037                 DPU_ERROR("invalid encoder\n");
2038                 return;
2039         }
2040         dpu_enc = to_dpu_encoder_virt(drm_enc);
2041
2042         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2043                 phys = dpu_enc->phys_encs[i];
2044                 if (phys->ops.prepare_commit)
2045                         phys->ops.prepare_commit(phys);
2046         }
2047 }
2048
2049 #ifdef CONFIG_DEBUG_FS
2050 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2051 {
2052         struct dpu_encoder_virt *dpu_enc = s->private;
2053         int i;
2054
2055         mutex_lock(&dpu_enc->enc_lock);
2056         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2057                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2058
2059                 seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2060                                 phys->intf_idx - INTF_0, phys->wb_idx - WB_0,
2061                                 atomic_read(&phys->vsync_cnt),
2062                                 atomic_read(&phys->underrun_cnt));
2063
2064                 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2065         }
2066         mutex_unlock(&dpu_enc->enc_lock);
2067
2068         return 0;
2069 }
2070
2071 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2072
2073 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2074 {
2075         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2076         int i;
2077
2078         char name[DPU_NAME_SIZE];
2079
2080         if (!drm_enc->dev) {
2081                 DPU_ERROR("invalid encoder or kms\n");
2082                 return -EINVAL;
2083         }
2084
2085         snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
2086
2087         /* create overall sub-directory for the encoder */
2088         dpu_enc->debugfs_root = debugfs_create_dir(name,
2089                         drm_enc->dev->primary->debugfs_root);
2090
2091         /* don't error check these */
2092         debugfs_create_file("status", 0600,
2093                 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2094
2095         for (i = 0; i < dpu_enc->num_phys_encs; i++)
2096                 if (dpu_enc->phys_encs[i]->ops.late_register)
2097                         dpu_enc->phys_encs[i]->ops.late_register(
2098                                         dpu_enc->phys_encs[i],
2099                                         dpu_enc->debugfs_root);
2100
2101         return 0;
2102 }
2103 #else
2104 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2105 {
2106         return 0;
2107 }
2108 #endif
2109
2110 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2111 {
2112         return _dpu_encoder_init_debugfs(encoder);
2113 }
2114
2115 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2116 {
2117         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2118
2119         debugfs_remove_recursive(dpu_enc->debugfs_root);
2120 }
2121
2122 static int dpu_encoder_virt_add_phys_encs(
2123                 struct msm_display_info *disp_info,
2124                 struct dpu_encoder_virt *dpu_enc,
2125                 struct dpu_enc_phys_init_params *params)
2126 {
2127         struct dpu_encoder_phys *enc = NULL;
2128
2129         DPU_DEBUG_ENC(dpu_enc, "\n");
2130
2131         /*
2132          * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2133          * in this function, check up-front.
2134          */
2135         if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2136                         ARRAY_SIZE(dpu_enc->phys_encs)) {
2137                 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2138                           dpu_enc->num_phys_encs);
2139                 return -EINVAL;
2140         }
2141
2142         if (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE) {
2143                 enc = dpu_encoder_phys_vid_init(params);
2144
2145                 if (IS_ERR_OR_NULL(enc)) {
2146                         DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2147                                 PTR_ERR(enc));
2148                         return enc == NULL ? -EINVAL : PTR_ERR(enc);
2149                 }
2150
2151                 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2152                 ++dpu_enc->num_phys_encs;
2153         }
2154
2155         if (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
2156                 enc = dpu_encoder_phys_cmd_init(params);
2157
2158                 if (IS_ERR_OR_NULL(enc)) {
2159                         DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2160                                 PTR_ERR(enc));
2161                         return enc == NULL ? -EINVAL : PTR_ERR(enc);
2162                 }
2163
2164                 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2165                 ++dpu_enc->num_phys_encs;
2166         }
2167
2168         if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) {
2169                 enc = dpu_encoder_phys_wb_init(params);
2170
2171                 if (IS_ERR_OR_NULL(enc)) {
2172                         DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2173                                         PTR_ERR(enc));
2174                         return enc == NULL ? -EINVAL : PTR_ERR(enc);
2175                 }
2176
2177                 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2178                 ++dpu_enc->num_phys_encs;
2179         }
2180
2181         if (params->split_role == ENC_ROLE_SLAVE)
2182                 dpu_enc->cur_slave = enc;
2183         else
2184                 dpu_enc->cur_master = enc;
2185
2186         return 0;
2187 }
2188
2189 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2190         .handle_vblank_virt = dpu_encoder_vblank_callback,
2191         .handle_underrun_virt = dpu_encoder_underrun_callback,
2192         .handle_frame_done = dpu_encoder_frame_done_callback,
2193 };
2194
2195 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2196                                  struct dpu_kms *dpu_kms,
2197                                  struct msm_display_info *disp_info)
2198 {
2199         int ret = 0;
2200         int i = 0;
2201         enum dpu_intf_type intf_type = INTF_NONE;
2202         struct dpu_enc_phys_init_params phys_params;
2203
2204         if (!dpu_enc) {
2205                 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2206                 return -EINVAL;
2207         }
2208
2209         dpu_enc->cur_master = NULL;
2210
2211         memset(&phys_params, 0, sizeof(phys_params));
2212         phys_params.dpu_kms = dpu_kms;
2213         phys_params.parent = &dpu_enc->base;
2214         phys_params.parent_ops = &dpu_encoder_parent_ops;
2215         phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2216
2217         switch (disp_info->intf_type) {
2218         case DRM_MODE_ENCODER_DSI:
2219                 intf_type = INTF_DSI;
2220                 break;
2221         case DRM_MODE_ENCODER_TMDS:
2222                 intf_type = INTF_DP;
2223                 break;
2224         case DRM_MODE_ENCODER_VIRTUAL:
2225                 intf_type = INTF_WB;
2226                 break;
2227         }
2228
2229         WARN_ON(disp_info->num_of_h_tiles < 1);
2230
2231         DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2232
2233         if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2234             (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2235                 dpu_enc->idle_pc_supported =
2236                                 dpu_kms->catalog->caps->has_idle_pc;
2237
2238         dpu_enc->dsc = disp_info->dsc;
2239
2240         mutex_lock(&dpu_enc->enc_lock);
2241         for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2242                 /*
2243                  * Left-most tile is at index 0, content is controller id
2244                  * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2245                  * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2246                  */
2247                 u32 controller_id = disp_info->h_tile_instance[i];
2248
2249                 if (disp_info->num_of_h_tiles > 1) {
2250                         if (i == 0)
2251                                 phys_params.split_role = ENC_ROLE_MASTER;
2252                         else
2253                                 phys_params.split_role = ENC_ROLE_SLAVE;
2254                 } else {
2255                         phys_params.split_role = ENC_ROLE_SOLO;
2256                 }
2257
2258                 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2259                                 i, controller_id, phys_params.split_role);
2260
2261                 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2262                                                                                                         intf_type,
2263                                                                                                         controller_id);
2264
2265                 phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog,
2266                                 intf_type, controller_id);
2267                 /*
2268                  * The phys_params might represent either an INTF or a WB unit, but not
2269                  * both of them at the same time.
2270                  */
2271                 if ((phys_params.intf_idx == INTF_MAX) &&
2272                                 (phys_params.wb_idx == WB_MAX)) {
2273                         DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n",
2274                                                   intf_type, controller_id);
2275                         ret = -EINVAL;
2276                 }
2277
2278                 if ((phys_params.intf_idx != INTF_MAX) &&
2279                                 (phys_params.wb_idx != WB_MAX)) {
2280                         DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n",
2281                                                   intf_type, controller_id);
2282                         ret = -EINVAL;
2283                 }
2284
2285                 if (!ret) {
2286                         ret = dpu_encoder_virt_add_phys_encs(disp_info,
2287                                         dpu_enc, &phys_params);
2288                         if (ret)
2289                                 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2290                 }
2291         }
2292
2293         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2294                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2295                 atomic_set(&phys->vsync_cnt, 0);
2296                 atomic_set(&phys->underrun_cnt, 0);
2297         }
2298         mutex_unlock(&dpu_enc->enc_lock);
2299
2300         return ret;
2301 }
2302
2303 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2304 {
2305         struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2306                         frame_done_timer);
2307         struct drm_encoder *drm_enc = &dpu_enc->base;
2308         u32 event;
2309
2310         if (!drm_enc->dev) {
2311                 DPU_ERROR("invalid parameters\n");
2312                 return;
2313         }
2314
2315         if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2316                 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2317                               DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2318                 return;
2319         } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2320                 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2321                 return;
2322         }
2323
2324         DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2325
2326         event = DPU_ENCODER_FRAME_EVENT_ERROR;
2327         trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2328         dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2329 }
2330
2331 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2332         .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2333         .disable = dpu_encoder_virt_disable,
2334         .enable = dpu_encoder_virt_enable,
2335         .atomic_check = dpu_encoder_virt_atomic_check,
2336 };
2337
2338 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2339                 .destroy = dpu_encoder_destroy,
2340                 .late_register = dpu_encoder_late_register,
2341                 .early_unregister = dpu_encoder_early_unregister,
2342 };
2343
2344 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2345                 struct msm_display_info *disp_info)
2346 {
2347         struct msm_drm_private *priv = dev->dev_private;
2348         struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2349         struct drm_encoder *drm_enc = NULL;
2350         struct dpu_encoder_virt *dpu_enc = NULL;
2351         int ret = 0;
2352
2353         dpu_enc = to_dpu_encoder_virt(enc);
2354
2355         ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2356         if (ret)
2357                 goto fail;
2358
2359         atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2360         timer_setup(&dpu_enc->frame_done_timer,
2361                         dpu_encoder_frame_done_timeout, 0);
2362
2363         if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2364                 timer_setup(&dpu_enc->vsync_event_timer,
2365                                 dpu_encoder_vsync_event_handler,
2366                                 0);
2367         else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS)
2368                 dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2369                                 priv->dp[disp_info->h_tile_instance[0]]);
2370
2371         INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2372                         dpu_encoder_off_work);
2373         dpu_enc->idle_timeout = IDLE_TIMEOUT;
2374
2375         kthread_init_work(&dpu_enc->vsync_event_work,
2376                         dpu_encoder_vsync_event_work_handler);
2377
2378         memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2379
2380         DPU_DEBUG_ENC(dpu_enc, "created\n");
2381
2382         return ret;
2383
2384 fail:
2385         DPU_ERROR("failed to create encoder\n");
2386         if (drm_enc)
2387                 dpu_encoder_destroy(drm_enc);
2388
2389         return ret;
2390
2391
2392 }
2393
2394 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2395                 int drm_enc_mode)
2396 {
2397         struct dpu_encoder_virt *dpu_enc = NULL;
2398         int rc = 0;
2399
2400         dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2401         if (!dpu_enc)
2402                 return ERR_PTR(-ENOMEM);
2403
2404
2405         rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2406                                                           drm_enc_mode, NULL);
2407         if (rc) {
2408                 devm_kfree(dev->dev, dpu_enc);
2409                 return ERR_PTR(rc);
2410         }
2411
2412         drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2413
2414         spin_lock_init(&dpu_enc->enc_spinlock);
2415         dpu_enc->enabled = false;
2416         mutex_init(&dpu_enc->enc_lock);
2417         mutex_init(&dpu_enc->rc_lock);
2418
2419         return &dpu_enc->base;
2420 }
2421
2422 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2423         enum msm_event_wait event)
2424 {
2425         int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2426         struct dpu_encoder_virt *dpu_enc = NULL;
2427         int i, ret = 0;
2428
2429         if (!drm_enc) {
2430                 DPU_ERROR("invalid encoder\n");
2431                 return -EINVAL;
2432         }
2433         dpu_enc = to_dpu_encoder_virt(drm_enc);
2434         DPU_DEBUG_ENC(dpu_enc, "\n");
2435
2436         for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2437                 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2438
2439                 switch (event) {
2440                 case MSM_ENC_COMMIT_DONE:
2441                         fn_wait = phys->ops.wait_for_commit_done;
2442                         break;
2443                 case MSM_ENC_TX_COMPLETE:
2444                         fn_wait = phys->ops.wait_for_tx_complete;
2445                         break;
2446                 case MSM_ENC_VBLANK:
2447                         fn_wait = phys->ops.wait_for_vblank;
2448                         break;
2449                 default:
2450                         DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2451                                         event);
2452                         return -EINVAL;
2453                 }
2454
2455                 if (fn_wait) {
2456                         DPU_ATRACE_BEGIN("wait_for_completion_event");
2457                         ret = fn_wait(phys);
2458                         DPU_ATRACE_END("wait_for_completion_event");
2459                         if (ret)
2460                                 return ret;
2461                 }
2462         }
2463
2464         return ret;
2465 }
2466
2467 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2468 {
2469         struct dpu_encoder_virt *dpu_enc = NULL;
2470
2471         if (!encoder) {
2472                 DPU_ERROR("invalid encoder\n");
2473                 return INTF_MODE_NONE;
2474         }
2475         dpu_enc = to_dpu_encoder_virt(encoder);
2476
2477         if (dpu_enc->cur_master)
2478                 return dpu_enc->cur_master->intf_mode;
2479
2480         if (dpu_enc->num_phys_encs)
2481                 return dpu_enc->phys_encs[0]->intf_mode;
2482
2483         return INTF_MODE_NONE;
2484 }
2485
2486 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2487 {
2488         struct drm_encoder *encoder = phys_enc->parent;
2489         struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2490
2491         return dpu_enc->dsc_mask;
2492 }