Merge tag 'cpufreq-arm-fixes-5.18-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / msm / adreno / a6xx_gpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3
4
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/soc/qcom/llcc-qcom.h>
14
15 #define GPU_PAS_ID 13
16
17 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
18 {
19         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
20         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
21
22         /* Check that the GMU is idle */
23         if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
24                 return false;
25
26         /* Check tha the CX master is idle */
27         if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
28                         ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
29                 return false;
30
31         return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
32                 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
33 }
34
35 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
36 {
37         /* wait for CP to drain ringbuffer: */
38         if (!adreno_idle(gpu, ring))
39                 return false;
40
41         if (spin_until(_a6xx_check_idle(gpu))) {
42                 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
43                         gpu->name, __builtin_return_address(0),
44                         gpu_read(gpu, REG_A6XX_RBBM_STATUS),
45                         gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
46                         gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
47                         gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
48                 return false;
49         }
50
51         return true;
52 }
53
54 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
55 {
56         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
57         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
58
59         /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
60         if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
61                 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
62                 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
63                 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
64         }
65 }
66
67 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
68 {
69         uint32_t wptr;
70         unsigned long flags;
71
72         update_shadow_rptr(gpu, ring);
73
74         spin_lock_irqsave(&ring->preempt_lock, flags);
75
76         /* Copy the shadow to the actual register */
77         ring->cur = ring->next;
78
79         /* Make sure to wrap wptr if we need to */
80         wptr = get_wptr(ring);
81
82         spin_unlock_irqrestore(&ring->preempt_lock, flags);
83
84         /* Make sure everything is posted before making a decision */
85         mb();
86
87         gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
88 }
89
90 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
91                 u64 iova)
92 {
93         OUT_PKT7(ring, CP_REG_TO_MEM, 3);
94         OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
95                 CP_REG_TO_MEM_0_CNT(2) |
96                 CP_REG_TO_MEM_0_64B);
97         OUT_RING(ring, lower_32_bits(iova));
98         OUT_RING(ring, upper_32_bits(iova));
99 }
100
101 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
102                 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
103 {
104         bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
105         phys_addr_t ttbr;
106         u32 asid;
107         u64 memptr = rbmemptr(ring, ttbr0);
108
109         if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
110                 return;
111
112         if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
113                 return;
114
115         if (!sysprof) {
116                 /* Turn off protected mode to write to special registers */
117                 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
118                 OUT_RING(ring, 0);
119
120                 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
121                 OUT_RING(ring, 1);
122         }
123
124         /* Execute the table update */
125         OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
126         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
127
128         OUT_RING(ring,
129                 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
130                 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
131         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
132         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
133
134         /*
135          * Write the new TTBR0 to the memstore. This is good for debugging.
136          */
137         OUT_PKT7(ring, CP_MEM_WRITE, 4);
138         OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
139         OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
140         OUT_RING(ring, lower_32_bits(ttbr));
141         OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
142
143         /*
144          * And finally, trigger a uche flush to be sure there isn't anything
145          * lingering in that part of the GPU
146          */
147
148         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
149         OUT_RING(ring, 0x31);
150
151         if (!sysprof) {
152                 /*
153                  * Wait for SRAM clear after the pgtable update, so the
154                  * two can happen in parallel:
155                  */
156                 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
157                 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
158                 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
159                                 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
160                 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
161                 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
162                 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
163                 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
164
165                 /* Re-enable protected mode: */
166                 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
167                 OUT_RING(ring, 1);
168         }
169 }
170
171 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
172 {
173         unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
174         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
175         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
176         struct msm_ringbuffer *ring = submit->ring;
177         unsigned int i, ibs = 0;
178
179         a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
180
181         get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
182                 rbmemptr_stats(ring, index, cpcycles_start));
183
184         /*
185          * For PM4 the GMU register offsets are calculated from the base of the
186          * GPU registers so we need to add 0x1a800 to the register value on A630
187          * to get the right value from PM4.
188          */
189         get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
190                 rbmemptr_stats(ring, index, alwayson_start));
191
192         /* Invalidate CCU depth and color */
193         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
194         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
195
196         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
197         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
198
199         /* Submit the commands */
200         for (i = 0; i < submit->nr_cmds; i++) {
201                 switch (submit->cmd[i].type) {
202                 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
203                         break;
204                 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
205                         if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
206                                 break;
207                         fallthrough;
208                 case MSM_SUBMIT_CMD_BUF:
209                         OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
210                         OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
211                         OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
212                         OUT_RING(ring, submit->cmd[i].size);
213                         ibs++;
214                         break;
215                 }
216
217                 /*
218                  * Periodically update shadow-wptr if needed, so that we
219                  * can see partial progress of submits with large # of
220                  * cmds.. otherwise we could needlessly stall waiting for
221                  * ringbuffer state, simply due to looking at a shadow
222                  * rptr value that has not been updated
223                  */
224                 if ((ibs % 32) == 0)
225                         update_shadow_rptr(gpu, ring);
226         }
227
228         get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
229                 rbmemptr_stats(ring, index, cpcycles_end));
230         get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
231                 rbmemptr_stats(ring, index, alwayson_end));
232
233         /* Write the fence to the scratch register */
234         OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
235         OUT_RING(ring, submit->seqno);
236
237         /*
238          * Execute a CACHE_FLUSH_TS event. This will ensure that the
239          * timestamp is written to the memory and then triggers the interrupt
240          */
241         OUT_PKT7(ring, CP_EVENT_WRITE, 4);
242         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
243                 CP_EVENT_WRITE_0_IRQ);
244         OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
245         OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
246         OUT_RING(ring, submit->seqno);
247
248         trace_msm_gpu_submit_flush(submit,
249                 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
250                         REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
251
252         a6xx_flush(gpu, ring);
253 }
254
255 const struct adreno_reglist a630_hwcg[] = {
256         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
257         {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
258         {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
259         {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
260         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
261         {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
262         {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
263         {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
264         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
265         {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
266         {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
267         {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
268         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
269         {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
270         {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
271         {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
272         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
273         {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
274         {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
275         {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
276         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
277         {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
278         {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
279         {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
280         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
281         {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
282         {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
283         {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
284         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
285         {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
286         {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
287         {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
288         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
289         {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
290         {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
291         {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
292         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
293         {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
294         {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
295         {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
296         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
297         {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
298         {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
299         {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
300         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
301         {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
302         {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
303         {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
304         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
305         {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
306         {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
307         {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
308         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
309         {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
310         {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
311         {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
312         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
313         {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
314         {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
315         {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
316         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
317         {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
318         {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
319         {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
320         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
321         {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
322         {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
323         {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
324         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
325         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
326         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
327         {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
328         {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
329         {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
330         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
331         {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
332         {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
333         {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
334         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
335         {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
336         {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
337         {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
338         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
339         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
340         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
341         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
342         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
343         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
344         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
345         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
346         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
347         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
348         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
349         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
350         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
351         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
352         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
353         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
354         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
355         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
356         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
357         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
358         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
359         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
360         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
361         {},
362 };
363
364 const struct adreno_reglist a640_hwcg[] = {
365         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
366         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
367         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
368         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
369         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
370         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
371         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
372         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
373         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
374         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
375         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
376         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
377         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
378         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
379         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
380         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
381         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
382         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
383         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
384         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
385         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
386         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
387         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
388         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
389         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
390         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
391         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
392         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
393         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
394         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
395         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
396         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
397         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
398         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
399         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
400         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
401         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
402         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
403         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
404         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
405         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
406         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
407         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
408         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
409         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
410         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
411         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
412         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
413         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
414         {},
415 };
416
417 const struct adreno_reglist a650_hwcg[] = {
418         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
419         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
420         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
421         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
422         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
423         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
424         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
425         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
426         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
427         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
428         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
429         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
430         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
431         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
432         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
433         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
434         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
435         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
436         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
437         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
438         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
439         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
440         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
441         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
442         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
443         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
444         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
445         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
446         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
447         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
448         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
449         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
450         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
451         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
452         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
453         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
454         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
455         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
456         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
457         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
458         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
459         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
460         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
461         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
462         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
463         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
464         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
465         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
466         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
467         {},
468 };
469
470 const struct adreno_reglist a660_hwcg[] = {
471         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
472         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
473         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
474         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
475         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
476         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
477         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
478         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
479         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
480         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
481         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
482         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
483         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
484         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
485         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
486         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
487         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
488         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
489         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
490         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
491         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
492         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
493         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
494         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
495         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
496         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
497         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
498         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
499         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
500         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
501         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
502         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
503         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
504         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
505         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
506         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
507         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
508         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
509         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
510         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
511         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
512         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
513         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
514         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
515         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
516         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
517         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
518         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
519         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
520         {},
521 };
522
523 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
524 {
525         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
526         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
527         struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
528         const struct adreno_reglist *reg;
529         unsigned int i;
530         u32 val, clock_cntl_on;
531
532         if (!adreno_gpu->info->hwcg)
533                 return;
534
535         if (adreno_is_a630(adreno_gpu))
536                 clock_cntl_on = 0x8aa8aa02;
537         else
538                 clock_cntl_on = 0x8aa8aa82;
539
540         val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
541
542         /* Don't re-program the registers if they are already correct */
543         if ((!state && !val) || (state && (val == clock_cntl_on)))
544                 return;
545
546         /* Disable SP clock before programming HWCG registers */
547         gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
548
549         for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
550                 gpu_write(gpu, reg->offset, state ? reg->value : 0);
551
552         /* Enable SP clock */
553         gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
554
555         gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
556 }
557
558 /* For a615, a616, a618, A619, a630, a640 and a680 */
559 static const u32 a6xx_protect[] = {
560         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
561         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
562         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
563         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
564         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
565         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
566         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
567         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
568         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
569         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
570         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
571         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
572         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
573         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
574         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
575         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
576         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
577         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
578         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
579         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
580         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
581         A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
582         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
583         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
584         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
585         A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
586         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
587         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
588         A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
589         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
590         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
591         A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
592 };
593
594 /* These are for a620 and a650 */
595 static const u32 a650_protect[] = {
596         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
597         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
598         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
599         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
600         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
601         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
602         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
603         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
604         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
605         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
606         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
607         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
608         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
609         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
610         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
611         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
612         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
613         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
614         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
615         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
616         A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
617         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
618         A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
619         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
620         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
621         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
622         A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
623         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
624         A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
625         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
626         A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
627         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
628         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
629         A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
630         A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
631         A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
632         A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
633         A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
634         A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
635 };
636
637 /* These are for a635 and a660 */
638 static const u32 a660_protect[] = {
639         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
640         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
641         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
642         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
643         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
644         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
645         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
646         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
647         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
648         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
649         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
650         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
651         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
652         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
653         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
654         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
655         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
656         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
657         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
658         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
659         A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
660         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
661         A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
662         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
663         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
664         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
665         A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
666         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
667         A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
668         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
669         A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
670         A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
671         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
672         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
673         A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
674         A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
675         A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
676         A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
677         A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
678         A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
679         A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
680 };
681
682 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
683 {
684         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
685         const u32 *regs = a6xx_protect;
686         unsigned i, count, count_max;
687
688         if (adreno_is_a650(adreno_gpu)) {
689                 regs = a650_protect;
690                 count = ARRAY_SIZE(a650_protect);
691                 count_max = 48;
692                 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
693         } else if (adreno_is_a660_family(adreno_gpu)) {
694                 regs = a660_protect;
695                 count = ARRAY_SIZE(a660_protect);
696                 count_max = 48;
697                 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
698         } else {
699                 regs = a6xx_protect;
700                 count = ARRAY_SIZE(a6xx_protect);
701                 count_max = 32;
702                 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
703         }
704
705         /*
706          * Enable access protection to privileged registers, fault on an access
707          * protect violation and select the last span to protect from the start
708          * address all the way to the end of the register address space
709          */
710         gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
711
712         for (i = 0; i < count - 1; i++)
713                 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
714         /* last CP_PROTECT to have "infinite" length on the last entry */
715         gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
716 }
717
718 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
719 {
720         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
721         u32 lower_bit = 2;
722         u32 amsbc = 0;
723         u32 rgb565_predicator = 0;
724         u32 uavflagprd_inv = 0;
725
726         /* a618 is using the hw default values */
727         if (adreno_is_a618(adreno_gpu))
728                 return;
729
730         if (adreno_is_a640_family(adreno_gpu))
731                 amsbc = 1;
732
733         if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
734                 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
735                 lower_bit = 3;
736                 amsbc = 1;
737                 rgb565_predicator = 1;
738                 uavflagprd_inv = 2;
739         }
740
741         if (adreno_is_7c3(adreno_gpu)) {
742                 lower_bit = 1;
743                 amsbc = 1;
744                 rgb565_predicator = 1;
745                 uavflagprd_inv = 2;
746         }
747
748         gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
749                 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
750         gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
751         gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
752                 uavflagprd_inv << 4 | lower_bit << 1);
753         gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
754 }
755
756 static int a6xx_cp_init(struct msm_gpu *gpu)
757 {
758         struct msm_ringbuffer *ring = gpu->rb[0];
759
760         OUT_PKT7(ring, CP_ME_INIT, 8);
761
762         OUT_RING(ring, 0x0000002f);
763
764         /* Enable multiple hardware contexts */
765         OUT_RING(ring, 0x00000003);
766
767         /* Enable error detection */
768         OUT_RING(ring, 0x20000000);
769
770         /* Don't enable header dump */
771         OUT_RING(ring, 0x00000000);
772         OUT_RING(ring, 0x00000000);
773
774         /* No workarounds enabled */
775         OUT_RING(ring, 0x00000000);
776
777         /* Pad rest of the cmds with 0's */
778         OUT_RING(ring, 0x00000000);
779         OUT_RING(ring, 0x00000000);
780
781         a6xx_flush(gpu, ring);
782         return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
783 }
784
785 /*
786  * Check that the microcode version is new enough to include several key
787  * security fixes. Return true if the ucode is safe.
788  */
789 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
790                 struct drm_gem_object *obj)
791 {
792         struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
793         struct msm_gpu *gpu = &adreno_gpu->base;
794         const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
795         u32 *buf = msm_gem_get_vaddr(obj);
796         bool ret = false;
797
798         if (IS_ERR(buf))
799                 return false;
800
801         /*
802          * Targets up to a640 (a618, a630 and a640) need to check for a
803          * microcode version that is patched to support the whereami opcode or
804          * one that is new enough to include it by default.
805          *
806          * a650 tier targets don't need whereami but still need to be
807          * equal to or newer than 0.95 for other security fixes
808          *
809          * a660 targets have all the critical security fixes from the start
810          */
811         if (!strcmp(sqe_name, "a630_sqe.fw")) {
812                 /*
813                  * If the lowest nibble is 0xa that is an indication that this
814                  * microcode has been patched. The actual version is in dword
815                  * [3] but we only care about the patchlevel which is the lowest
816                  * nibble of dword [3]
817                  *
818                  * Otherwise check that the firmware is greater than or equal
819                  * to 1.90 which was the first version that had this fix built
820                  * in
821                  */
822                 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
823                         (buf[0] & 0xfff) >= 0x190) {
824                         a6xx_gpu->has_whereami = true;
825                         ret = true;
826                         goto out;
827                 }
828
829                 DRM_DEV_ERROR(&gpu->pdev->dev,
830                         "a630 SQE ucode is too old. Have version %x need at least %x\n",
831                         buf[0] & 0xfff, 0x190);
832         } else if (!strcmp(sqe_name, "a650_sqe.fw")) {
833                 if ((buf[0] & 0xfff) >= 0x095) {
834                         ret = true;
835                         goto out;
836                 }
837
838                 DRM_DEV_ERROR(&gpu->pdev->dev,
839                         "a650 SQE ucode is too old. Have version %x need at least %x\n",
840                         buf[0] & 0xfff, 0x095);
841         } else if (!strcmp(sqe_name, "a660_sqe.fw")) {
842                 ret = true;
843         } else {
844                 DRM_DEV_ERROR(&gpu->pdev->dev,
845                         "unknown GPU, add it to a6xx_ucode_check_version()!!\n");
846         }
847 out:
848         msm_gem_put_vaddr(obj);
849         return ret;
850 }
851
852 static int a6xx_ucode_init(struct msm_gpu *gpu)
853 {
854         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
855         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
856
857         if (!a6xx_gpu->sqe_bo) {
858                 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
859                         adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
860
861                 if (IS_ERR(a6xx_gpu->sqe_bo)) {
862                         int ret = PTR_ERR(a6xx_gpu->sqe_bo);
863
864                         a6xx_gpu->sqe_bo = NULL;
865                         DRM_DEV_ERROR(&gpu->pdev->dev,
866                                 "Could not allocate SQE ucode: %d\n", ret);
867
868                         return ret;
869                 }
870
871                 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
872                 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
873                         msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
874                         drm_gem_object_put(a6xx_gpu->sqe_bo);
875
876                         a6xx_gpu->sqe_bo = NULL;
877                         return -EPERM;
878                 }
879         }
880
881         gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
882                 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
883
884         return 0;
885 }
886
887 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
888 {
889         static bool loaded;
890         int ret;
891
892         if (loaded)
893                 return 0;
894
895         ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
896
897         loaded = !ret;
898         return ret;
899 }
900
901 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
902           A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
903           A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
904           A6XX_RBBM_INT_0_MASK_CP_IB2 | \
905           A6XX_RBBM_INT_0_MASK_CP_IB1 | \
906           A6XX_RBBM_INT_0_MASK_CP_RB | \
907           A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
908           A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
909           A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
910           A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
911           A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
912
913 static int hw_init(struct msm_gpu *gpu)
914 {
915         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
916         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
917         int ret;
918
919         /* Make sure the GMU keeps the GPU on while we set it up */
920         a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
921
922         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
923
924         /*
925          * Disable the trusted memory range - we don't actually supported secure
926          * memory rendering at this point in time and we don't want to block off
927          * part of the virtual memory space.
928          */
929         gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
930                 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
931         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
932
933         /* Turn on 64 bit addressing for all blocks */
934         gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
935         gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
936         gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
937         gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
938         gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
939         gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
940         gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
941         gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
942         gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
943         gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
944         gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
945         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
946
947         /* enable hardware clockgating */
948         a6xx_set_hwcg(gpu, true);
949
950         /* VBIF/GBIF start*/
951         if (adreno_is_a640_family(adreno_gpu) ||
952             adreno_is_a650_family(adreno_gpu)) {
953                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
954                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
955                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
956                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
957                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
958                 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
959         } else {
960                 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
961         }
962
963         if (adreno_is_a630(adreno_gpu))
964                 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
965
966         /* Make all blocks contribute to the GPU BUSY perf counter */
967         gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
968
969         /* Disable L2 bypass in the UCHE */
970         gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
971         gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
972         gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
973         gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
974         gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
975         gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
976
977         if (!adreno_is_a650_family(adreno_gpu)) {
978                 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
979                 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
980                         REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
981
982                 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
983                         REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
984                         0x00100000 + adreno_gpu->gmem - 1);
985         }
986
987         gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
988         gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
989
990         if (adreno_is_a640_family(adreno_gpu) ||
991             adreno_is_a650_family(adreno_gpu))
992                 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
993         else
994                 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
995         gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
996
997         if (adreno_is_a660_family(adreno_gpu))
998                 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
999
1000         /* Setting the mem pool size */
1001         gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1002
1003         /* Setting the primFifo thresholds default values,
1004          * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1005         */
1006         if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1007                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1008         else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1009                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1010         else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1011                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1012         else
1013                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1014
1015         /* Set the AHB default slave response to "ERROR" */
1016         gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1017
1018         /* Turn on performance counters */
1019         gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1020
1021         /* Select CP0 to always count cycles */
1022         gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1023
1024         a6xx_set_ubwc_config(gpu);
1025
1026         /* Enable fault detection */
1027         gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
1028                 (1 << 30) | 0x1fffff);
1029
1030         gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1031
1032         /* Set weights for bicubic filtering */
1033         if (adreno_is_a650_family(adreno_gpu)) {
1034                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1035                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1036                         0x3fe05ff4);
1037                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1038                         0x3fa0ebee);
1039                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1040                         0x3f5193ed);
1041                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1042                         0x3f0243f0);
1043         }
1044
1045         /* Protect registers from the CP */
1046         a6xx_set_cp_protect(gpu);
1047
1048         if (adreno_is_a660_family(adreno_gpu)) {
1049                 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1050                 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1051         }
1052
1053         /* Set dualQ + disable afull for A660 GPU */
1054         if (adreno_is_a660(adreno_gpu))
1055                 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1056
1057         /* Enable expanded apriv for targets that support it */
1058         if (gpu->hw_apriv) {
1059                 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1060                         (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1061         }
1062
1063         /* Enable interrupts */
1064         gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1065
1066         ret = adreno_hw_init(gpu);
1067         if (ret)
1068                 goto out;
1069
1070         ret = a6xx_ucode_init(gpu);
1071         if (ret)
1072                 goto out;
1073
1074         /* Set the ringbuffer address */
1075         gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1076                 gpu->rb[0]->iova);
1077
1078         /* Targets that support extended APRIV can use the RPTR shadow from
1079          * hardware but all the other ones need to disable the feature. Targets
1080          * that support the WHERE_AM_I opcode can use that instead
1081          */
1082         if (adreno_gpu->base.hw_apriv)
1083                 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1084         else
1085                 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1086                         MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1087
1088         /*
1089          * Expanded APRIV and targets that support WHERE_AM_I both need a
1090          * privileged buffer to store the RPTR shadow
1091          */
1092
1093         if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1094                 if (!a6xx_gpu->shadow_bo) {
1095                         a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1096                                 sizeof(u32) * gpu->nr_rings,
1097                                 MSM_BO_WC | MSM_BO_MAP_PRIV,
1098                                 gpu->aspace, &a6xx_gpu->shadow_bo,
1099                                 &a6xx_gpu->shadow_iova);
1100
1101                         if (IS_ERR(a6xx_gpu->shadow))
1102                                 return PTR_ERR(a6xx_gpu->shadow);
1103
1104                         msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1105                 }
1106
1107                 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1108                         REG_A6XX_CP_RB_RPTR_ADDR_HI,
1109                         shadowptr(a6xx_gpu, gpu->rb[0]));
1110         }
1111
1112         /* Always come up on rb 0 */
1113         a6xx_gpu->cur_ring = gpu->rb[0];
1114
1115         gpu->cur_ctx_seqno = 0;
1116
1117         /* Enable the SQE_to start the CP engine */
1118         gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1119
1120         ret = a6xx_cp_init(gpu);
1121         if (ret)
1122                 goto out;
1123
1124         /*
1125          * Try to load a zap shader into the secure world. If successful
1126          * we can use the CP to switch out of secure mode. If not then we
1127          * have no resource but to try to switch ourselves out manually. If we
1128          * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1129          * be blocked and a permissions violation will soon follow.
1130          */
1131         ret = a6xx_zap_shader_init(gpu);
1132         if (!ret) {
1133                 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1134                 OUT_RING(gpu->rb[0], 0x00000000);
1135
1136                 a6xx_flush(gpu, gpu->rb[0]);
1137                 if (!a6xx_idle(gpu, gpu->rb[0]))
1138                         return -EINVAL;
1139         } else if (ret == -ENODEV) {
1140                 /*
1141                  * This device does not use zap shader (but print a warning
1142                  * just in case someone got their dt wrong.. hopefully they
1143                  * have a debug UART to realize the error of their ways...
1144                  * if you mess this up you are about to crash horribly)
1145                  */
1146                 dev_warn_once(gpu->dev->dev,
1147                         "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1148                 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1149                 ret = 0;
1150         } else {
1151                 return ret;
1152         }
1153
1154 out:
1155         /*
1156          * Tell the GMU that we are done touching the GPU and it can start power
1157          * management
1158          */
1159         a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1160
1161         if (a6xx_gpu->gmu.legacy) {
1162                 /* Take the GMU out of its special boot mode */
1163                 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1164         }
1165
1166         return ret;
1167 }
1168
1169 static int a6xx_hw_init(struct msm_gpu *gpu)
1170 {
1171         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1172         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1173         int ret;
1174
1175         mutex_lock(&a6xx_gpu->gmu.lock);
1176         ret = hw_init(gpu);
1177         mutex_unlock(&a6xx_gpu->gmu.lock);
1178
1179         return ret;
1180 }
1181
1182 static void a6xx_dump(struct msm_gpu *gpu)
1183 {
1184         DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1185                         gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1186         adreno_dump(gpu);
1187 }
1188
1189 #define VBIF_RESET_ACK_TIMEOUT  100
1190 #define VBIF_RESET_ACK_MASK     0x00f0
1191
1192 static void a6xx_recover(struct msm_gpu *gpu)
1193 {
1194         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1195         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1196         int i;
1197
1198         adreno_dump_info(gpu);
1199
1200         for (i = 0; i < 8; i++)
1201                 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1202                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1203
1204         if (hang_debug)
1205                 a6xx_dump(gpu);
1206
1207         /*
1208          * Turn off keep alive that might have been enabled by the hang
1209          * interrupt
1210          */
1211         gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1212
1213         gpu->funcs->pm_suspend(gpu);
1214         gpu->funcs->pm_resume(gpu);
1215
1216         msm_gpu_hw_init(gpu);
1217 }
1218
1219 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1220 {
1221         static const char *uche_clients[7] = {
1222                 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1223         };
1224         u32 val;
1225
1226         if (mid < 1 || mid > 3)
1227                 return "UNKNOWN";
1228
1229         /*
1230          * The source of the data depends on the mid ID read from FSYNR1.
1231          * and the client ID read from the UCHE block
1232          */
1233         val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1234
1235         /* mid = 3 is most precise and refers to only one block per client */
1236         if (mid == 3)
1237                 return uche_clients[val & 7];
1238
1239         /* For mid=2 the source is TP or VFD except when the client id is 0 */
1240         if (mid == 2)
1241                 return ((val & 7) == 0) ? "TP" : "TP|VFD";
1242
1243         /* For mid=1 just return "UCHE" as a catchall for everything else */
1244         return "UCHE";
1245 }
1246
1247 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1248 {
1249         if (id == 0)
1250                 return "CP";
1251         else if (id == 4)
1252                 return "CCU";
1253         else if (id == 6)
1254                 return "CDP Prefetch";
1255
1256         return a6xx_uche_fault_block(gpu, id);
1257 }
1258
1259 #define ARM_SMMU_FSR_TF                 BIT(1)
1260 #define ARM_SMMU_FSR_PF                 BIT(3)
1261 #define ARM_SMMU_FSR_EF                 BIT(4)
1262
1263 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1264 {
1265         struct msm_gpu *gpu = arg;
1266         struct adreno_smmu_fault_info *info = data;
1267         const char *type = "UNKNOWN";
1268         const char *block;
1269         bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1270
1271         /*
1272          * If we aren't going to be resuming later from fault_worker, then do
1273          * it now.
1274          */
1275         if (!do_devcoredump) {
1276                 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1277         }
1278
1279         /*
1280          * Print a default message if we couldn't get the data from the
1281          * adreno-smmu-priv
1282          */
1283         if (!info) {
1284                 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1285                         iova, flags,
1286                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1287                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1288                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1289                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1290
1291                 return 0;
1292         }
1293
1294         if (info->fsr & ARM_SMMU_FSR_TF)
1295                 type = "TRANSLATION";
1296         else if (info->fsr & ARM_SMMU_FSR_PF)
1297                 type = "PERMISSION";
1298         else if (info->fsr & ARM_SMMU_FSR_EF)
1299                 type = "EXTERNAL";
1300
1301         block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1302
1303         pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1304                         info->ttbr0, iova,
1305                         flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1306                         type, block,
1307                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1308                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1309                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1310                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1311
1312         if (do_devcoredump) {
1313                 /* Turn off the hangcheck timer to keep it from bothering us */
1314                 del_timer(&gpu->hangcheck_timer);
1315
1316                 gpu->fault_info.ttbr0 = info->ttbr0;
1317                 gpu->fault_info.iova  = iova;
1318                 gpu->fault_info.flags = flags;
1319                 gpu->fault_info.type  = type;
1320                 gpu->fault_info.block = block;
1321
1322                 kthread_queue_work(gpu->worker, &gpu->fault_work);
1323         }
1324
1325         return 0;
1326 }
1327
1328 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1329 {
1330         u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1331
1332         if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1333                 u32 val;
1334
1335                 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1336                 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1337                 dev_err_ratelimited(&gpu->pdev->dev,
1338                         "CP | opcode error | possible opcode=0x%8.8X\n",
1339                         val);
1340         }
1341
1342         if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1343                 dev_err_ratelimited(&gpu->pdev->dev,
1344                         "CP ucode error interrupt\n");
1345
1346         if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1347                 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1348                         gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1349
1350         if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1351                 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1352
1353                 dev_err_ratelimited(&gpu->pdev->dev,
1354                         "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1355                         val & (1 << 20) ? "READ" : "WRITE",
1356                         (val & 0x3ffff), val);
1357         }
1358
1359         if (status & A6XX_CP_INT_CP_AHB_ERROR)
1360                 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1361
1362         if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1363                 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1364
1365         if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1366                 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1367
1368 }
1369
1370 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1371 {
1372         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1373         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1374         struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1375
1376         /*
1377          * If stalled on SMMU fault, we could trip the GPU's hang detection,
1378          * but the fault handler will trigger the devcore dump, and we want
1379          * to otherwise resume normally rather than killing the submit, so
1380          * just bail.
1381          */
1382         if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1383                 return;
1384
1385         /*
1386          * Force the GPU to stay on until after we finish
1387          * collecting information
1388          */
1389         gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1390
1391         DRM_DEV_ERROR(&gpu->pdev->dev,
1392                 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1393                 ring ? ring->id : -1, ring ? ring->seqno : 0,
1394                 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1395                 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1396                 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1397                 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1398                 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1399                 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1400                 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1401
1402         /* Turn off the hangcheck timer to keep it from bothering us */
1403         del_timer(&gpu->hangcheck_timer);
1404
1405         kthread_queue_work(gpu->worker, &gpu->recover_work);
1406 }
1407
1408 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1409 {
1410         struct msm_drm_private *priv = gpu->dev->dev_private;
1411         u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1412
1413         gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1414
1415         if (priv->disable_err_irq)
1416                 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1417
1418         if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1419                 a6xx_fault_detect_irq(gpu);
1420
1421         if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1422                 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1423
1424         if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1425                 a6xx_cp_hw_err_irq(gpu);
1426
1427         if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1428                 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1429
1430         if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1431                 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1432
1433         if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1434                 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1435
1436         if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1437                 msm_gpu_retire(gpu);
1438
1439         return IRQ_HANDLED;
1440 }
1441
1442 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1443 {
1444         return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1445 }
1446
1447 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1448 {
1449         return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1450 }
1451
1452 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1453 {
1454         llcc_slice_deactivate(a6xx_gpu->llc_slice);
1455         llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1456 }
1457
1458 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1459 {
1460         struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1461         struct msm_gpu *gpu = &adreno_gpu->base;
1462         u32 cntl1_regval = 0;
1463
1464         if (IS_ERR(a6xx_gpu->llc_mmio))
1465                 return;
1466
1467         if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1468                 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1469
1470                 gpu_scid &= 0x1f;
1471                 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1472                                (gpu_scid << 15) | (gpu_scid << 20);
1473
1474                 /* On A660, the SCID programming for UCHE traffic is done in
1475                  * A6XX_GBIF_SCACHE_CNTL0[14:10]
1476                  */
1477                 if (adreno_is_a660_family(adreno_gpu))
1478                         gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1479                                 (1 << 8), (gpu_scid << 10) | (1 << 8));
1480         }
1481
1482         /*
1483          * For targets with a MMU500, activate the slice but don't program the
1484          * register.  The XBL will take care of that.
1485          */
1486         if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1487                 if (!a6xx_gpu->have_mmu500) {
1488                         u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1489
1490                         gpuhtw_scid &= 0x1f;
1491                         cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1492                 }
1493         }
1494
1495         if (!cntl1_regval)
1496                 return;
1497
1498         /*
1499          * Program the slice IDs for the various GPU blocks and GPU MMU
1500          * pagetables
1501          */
1502         if (!a6xx_gpu->have_mmu500) {
1503                 a6xx_llc_write(a6xx_gpu,
1504                         REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1505
1506                 /*
1507                  * Program cacheability overrides to not allocate cache
1508                  * lines on a write miss
1509                  */
1510                 a6xx_llc_rmw(a6xx_gpu,
1511                         REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1512                 return;
1513         }
1514
1515         gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1516 }
1517
1518 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1519 {
1520         llcc_slice_putd(a6xx_gpu->llc_slice);
1521         llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1522 }
1523
1524 static void a6xx_llc_slices_init(struct platform_device *pdev,
1525                 struct a6xx_gpu *a6xx_gpu)
1526 {
1527         struct device_node *phandle;
1528
1529         /*
1530          * There is a different programming path for targets with an mmu500
1531          * attached, so detect if that is the case
1532          */
1533         phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1534         a6xx_gpu->have_mmu500 = (phandle &&
1535                 of_device_is_compatible(phandle, "arm,mmu-500"));
1536         of_node_put(phandle);
1537
1538         if (a6xx_gpu->have_mmu500)
1539                 a6xx_gpu->llc_mmio = NULL;
1540         else
1541                 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
1542
1543         a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1544         a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1545
1546         if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1547                 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1548 }
1549
1550 static int a6xx_pm_resume(struct msm_gpu *gpu)
1551 {
1552         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1553         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1554         int ret;
1555
1556         gpu->needs_hw_init = true;
1557
1558         trace_msm_gpu_resume(0);
1559
1560         mutex_lock(&a6xx_gpu->gmu.lock);
1561         ret = a6xx_gmu_resume(a6xx_gpu);
1562         mutex_unlock(&a6xx_gpu->gmu.lock);
1563         if (ret)
1564                 return ret;
1565
1566         msm_devfreq_resume(gpu);
1567
1568         a6xx_llc_activate(a6xx_gpu);
1569
1570         return 0;
1571 }
1572
1573 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1574 {
1575         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1576         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1577         int i, ret;
1578
1579         trace_msm_gpu_suspend(0);
1580
1581         a6xx_llc_deactivate(a6xx_gpu);
1582
1583         msm_devfreq_suspend(gpu);
1584
1585         mutex_lock(&a6xx_gpu->gmu.lock);
1586         ret = a6xx_gmu_stop(a6xx_gpu);
1587         mutex_unlock(&a6xx_gpu->gmu.lock);
1588         if (ret)
1589                 return ret;
1590
1591         if (a6xx_gpu->shadow_bo)
1592                 for (i = 0; i < gpu->nr_rings; i++)
1593                         a6xx_gpu->shadow[i] = 0;
1594
1595         gpu->suspend_count++;
1596
1597         return 0;
1598 }
1599
1600 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1601 {
1602         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1603         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1604
1605         mutex_lock(&a6xx_gpu->gmu.lock);
1606
1607         /* Force the GPU power on so we can read this register */
1608         a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1609
1610         *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1611                             REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1612
1613         a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1614
1615         mutex_unlock(&a6xx_gpu->gmu.lock);
1616
1617         return 0;
1618 }
1619
1620 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1621 {
1622         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1623         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1624
1625         return a6xx_gpu->cur_ring;
1626 }
1627
1628 static void a6xx_destroy(struct msm_gpu *gpu)
1629 {
1630         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1631         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1632
1633         if (a6xx_gpu->sqe_bo) {
1634                 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1635                 drm_gem_object_put(a6xx_gpu->sqe_bo);
1636         }
1637
1638         if (a6xx_gpu->shadow_bo) {
1639                 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1640                 drm_gem_object_put(a6xx_gpu->shadow_bo);
1641         }
1642
1643         a6xx_llc_slices_destroy(a6xx_gpu);
1644
1645         a6xx_gmu_remove(a6xx_gpu);
1646
1647         adreno_gpu_cleanup(adreno_gpu);
1648
1649         kfree(a6xx_gpu);
1650 }
1651
1652 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1653 {
1654         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1655         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1656         u64 busy_cycles, busy_time;
1657
1658
1659         /* Only read the gpu busy if the hardware is already active */
1660         if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1661                 return 0;
1662
1663         busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1664                         REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1665                         REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1666
1667         busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1668         do_div(busy_time, 192);
1669
1670         gpu->devfreq.busy_cycles = busy_cycles;
1671
1672         pm_runtime_put(a6xx_gpu->gmu.dev);
1673
1674         if (WARN_ON(busy_time > ~0LU))
1675                 return ~0LU;
1676
1677         return (unsigned long)busy_time;
1678 }
1679
1680 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp)
1681 {
1682         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1683         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1684
1685         mutex_lock(&a6xx_gpu->gmu.lock);
1686         a6xx_gmu_set_freq(gpu, opp);
1687         mutex_unlock(&a6xx_gpu->gmu.lock);
1688 }
1689
1690 static struct msm_gem_address_space *
1691 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1692 {
1693         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1694         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1695         struct iommu_domain *iommu;
1696         struct msm_mmu *mmu;
1697         struct msm_gem_address_space *aspace;
1698         u64 start, size;
1699
1700         iommu = iommu_domain_alloc(&platform_bus_type);
1701         if (!iommu)
1702                 return NULL;
1703
1704         /*
1705          * This allows GPU to set the bus attributes required to use system
1706          * cache on behalf of the iommu page table walker.
1707          */
1708         if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1709                 adreno_set_llc_attributes(iommu);
1710
1711         mmu = msm_iommu_new(&pdev->dev, iommu);
1712         if (IS_ERR(mmu)) {
1713                 iommu_domain_free(iommu);
1714                 return ERR_CAST(mmu);
1715         }
1716
1717         /*
1718          * Use the aperture start or SZ_16M, whichever is greater. This will
1719          * ensure that we align with the allocated pagetable range while still
1720          * allowing room in the lower 32 bits for GMEM and whatnot
1721          */
1722         start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1723         size = iommu->geometry.aperture_end - start + 1;
1724
1725         aspace = msm_gem_address_space_create(mmu, "gpu",
1726                 start & GENMASK_ULL(48, 0), size);
1727
1728         if (IS_ERR(aspace) && !IS_ERR(mmu))
1729                 mmu->funcs->destroy(mmu);
1730
1731         return aspace;
1732 }
1733
1734 static struct msm_gem_address_space *
1735 a6xx_create_private_address_space(struct msm_gpu *gpu)
1736 {
1737         struct msm_mmu *mmu;
1738
1739         mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1740
1741         if (IS_ERR(mmu))
1742                 return ERR_CAST(mmu);
1743
1744         return msm_gem_address_space_create(mmu,
1745                 "gpu", 0x100000000ULL, SZ_4G);
1746 }
1747
1748 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1749 {
1750         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1751         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1752
1753         if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1754                 return a6xx_gpu->shadow[ring->id];
1755
1756         return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1757 }
1758
1759 static u32 a618_get_speed_bin(u32 fuse)
1760 {
1761         if (fuse == 0)
1762                 return 0;
1763         else if (fuse == 169)
1764                 return 1;
1765         else if (fuse == 174)
1766                 return 2;
1767
1768         return UINT_MAX;
1769 }
1770
1771 static u32 adreno_7c3_get_speed_bin(u32 fuse)
1772 {
1773         if (fuse == 0)
1774                 return 0;
1775         else if (fuse == 117)
1776                 return 0;
1777         else if (fuse == 190)
1778                 return 1;
1779
1780         return UINT_MAX;
1781 }
1782
1783 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1784 {
1785         u32 val = UINT_MAX;
1786
1787         if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1788                 val = a618_get_speed_bin(fuse);
1789
1790         if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev))
1791                 val = adreno_7c3_get_speed_bin(fuse);
1792
1793         if (val == UINT_MAX) {
1794                 DRM_DEV_ERROR(dev,
1795                         "missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1796                         fuse);
1797                 return UINT_MAX;
1798         }
1799
1800         return (1 << val);
1801 }
1802
1803 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1804 {
1805         u32 supp_hw = UINT_MAX;
1806         u32 speedbin;
1807         int ret;
1808
1809         ret = adreno_read_speedbin(dev, &speedbin);
1810         /*
1811          * -ENOENT means that the platform doesn't support speedbin which is
1812          * fine
1813          */
1814         if (ret == -ENOENT) {
1815                 return 0;
1816         } else if (ret) {
1817                 DRM_DEV_ERROR(dev,
1818                               "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1819                               ret);
1820                 goto done;
1821         }
1822
1823         supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1824
1825 done:
1826         ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1827         if (ret)
1828                 return ret;
1829
1830         return 0;
1831 }
1832
1833 static const struct adreno_gpu_funcs funcs = {
1834         .base = {
1835                 .get_param = adreno_get_param,
1836                 .set_param = adreno_set_param,
1837                 .hw_init = a6xx_hw_init,
1838                 .pm_suspend = a6xx_pm_suspend,
1839                 .pm_resume = a6xx_pm_resume,
1840                 .recover = a6xx_recover,
1841                 .submit = a6xx_submit,
1842                 .active_ring = a6xx_active_ring,
1843                 .irq = a6xx_irq,
1844                 .destroy = a6xx_destroy,
1845 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1846                 .show = a6xx_show,
1847 #endif
1848                 .gpu_busy = a6xx_gpu_busy,
1849                 .gpu_get_freq = a6xx_gmu_get_freq,
1850                 .gpu_set_freq = a6xx_gpu_set_freq,
1851 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1852                 .gpu_state_get = a6xx_gpu_state_get,
1853                 .gpu_state_put = a6xx_gpu_state_put,
1854 #endif
1855                 .create_address_space = a6xx_create_address_space,
1856                 .create_private_address_space = a6xx_create_private_address_space,
1857                 .get_rptr = a6xx_get_rptr,
1858         },
1859         .get_timestamp = a6xx_get_timestamp,
1860 };
1861
1862 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1863 {
1864         struct msm_drm_private *priv = dev->dev_private;
1865         struct platform_device *pdev = priv->gpu_pdev;
1866         struct adreno_platform_config *config = pdev->dev.platform_data;
1867         const struct adreno_info *info;
1868         struct device_node *node;
1869         struct a6xx_gpu *a6xx_gpu;
1870         struct adreno_gpu *adreno_gpu;
1871         struct msm_gpu *gpu;
1872         int ret;
1873
1874         a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1875         if (!a6xx_gpu)
1876                 return ERR_PTR(-ENOMEM);
1877
1878         adreno_gpu = &a6xx_gpu->base;
1879         gpu = &adreno_gpu->base;
1880
1881         adreno_gpu->registers = NULL;
1882
1883         /*
1884          * We need to know the platform type before calling into adreno_gpu_init
1885          * so that the hw_apriv flag can be correctly set. Snoop into the info
1886          * and grab the revision number
1887          */
1888         info = adreno_info(config->rev);
1889
1890         if (info && (info->revn == 650 || info->revn == 660 ||
1891                         adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
1892                 adreno_gpu->base.hw_apriv = true;
1893
1894         /*
1895          * For now only clamp to idle freq for devices where this is known not
1896          * to cause power supply issues:
1897          */
1898         if (info && (info->revn == 618))
1899                 gpu->clamp_to_idle = true;
1900
1901         a6xx_llc_slices_init(pdev, a6xx_gpu);
1902
1903         ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
1904         if (ret) {
1905                 a6xx_destroy(&(a6xx_gpu->base.base));
1906                 return ERR_PTR(ret);
1907         }
1908
1909         ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1910         if (ret) {
1911                 a6xx_destroy(&(a6xx_gpu->base.base));
1912                 return ERR_PTR(ret);
1913         }
1914
1915         /* Check if there is a GMU phandle and set it up */
1916         node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1917
1918         /* FIXME: How do we gracefully handle this? */
1919         BUG_ON(!node);
1920
1921         ret = a6xx_gmu_init(a6xx_gpu, node);
1922         if (ret) {
1923                 a6xx_destroy(&(a6xx_gpu->base.base));
1924                 return ERR_PTR(ret);
1925         }
1926
1927         if (gpu->aspace)
1928                 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1929                                 a6xx_fault_handler);
1930
1931         return gpu;
1932 }