16b3bd9ad44cd4f09f262bfb8baf353b52540d2a
[linux-2.6-microblaze.git] / drivers / gpu / drm / msm / adreno / a6xx_gpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3
4
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/nvmem-consumer.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15
16 #define GPU_PAS_ID 13
17
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22
23         /* Check that the GMU is idle */
24         if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25                 return false;
26
27         /* Check tha the CX master is idle */
28         if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29                         ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30                 return false;
31
32         return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33                 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38         /* wait for CP to drain ringbuffer: */
39         if (!adreno_idle(gpu, ring))
40                 return false;
41
42         if (spin_until(_a6xx_check_idle(gpu))) {
43                 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44                         gpu->name, __builtin_return_address(0),
45                         gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46                         gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47                         gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48                         gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49                 return false;
50         }
51
52         return true;
53 }
54
55 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59         uint32_t wptr;
60         unsigned long flags;
61
62         /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
63         if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
64                 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
65
66                 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
67                 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
68                 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
69         }
70
71         spin_lock_irqsave(&ring->preempt_lock, flags);
72
73         /* Copy the shadow to the actual register */
74         ring->cur = ring->next;
75
76         /* Make sure to wrap wptr if we need to */
77         wptr = get_wptr(ring);
78
79         spin_unlock_irqrestore(&ring->preempt_lock, flags);
80
81         /* Make sure everything is posted before making a decision */
82         mb();
83
84         gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
85 }
86
87 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
88                 u64 iova)
89 {
90         OUT_PKT7(ring, CP_REG_TO_MEM, 3);
91         OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
92                 CP_REG_TO_MEM_0_CNT(2) |
93                 CP_REG_TO_MEM_0_64B);
94         OUT_RING(ring, lower_32_bits(iova));
95         OUT_RING(ring, upper_32_bits(iova));
96 }
97
98 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
99                 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
100 {
101         phys_addr_t ttbr;
102         u32 asid;
103         u64 memptr = rbmemptr(ring, ttbr0);
104
105         if (ctx == a6xx_gpu->cur_ctx)
106                 return;
107
108         if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
109                 return;
110
111         /* Execute the table update */
112         OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
113         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
114
115         OUT_RING(ring,
116                 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
117                 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
118         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
119         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
120
121         /*
122          * Write the new TTBR0 to the memstore. This is good for debugging.
123          */
124         OUT_PKT7(ring, CP_MEM_WRITE, 4);
125         OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
126         OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
127         OUT_RING(ring, lower_32_bits(ttbr));
128         OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
129
130         /*
131          * And finally, trigger a uche flush to be sure there isn't anything
132          * lingering in that part of the GPU
133          */
134
135         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
136         OUT_RING(ring, 0x31);
137
138         a6xx_gpu->cur_ctx = ctx;
139 }
140
141 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
142 {
143         unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
144         struct msm_drm_private *priv = gpu->dev->dev_private;
145         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
146         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
147         struct msm_ringbuffer *ring = submit->ring;
148         unsigned int i;
149
150         a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
151
152         get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
153                 rbmemptr_stats(ring, index, cpcycles_start));
154
155         /*
156          * For PM4 the GMU register offsets are calculated from the base of the
157          * GPU registers so we need to add 0x1a800 to the register value on A630
158          * to get the right value from PM4.
159          */
160         get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
161                 rbmemptr_stats(ring, index, alwayson_start));
162
163         /* Invalidate CCU depth and color */
164         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
165         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
166
167         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
168         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
169
170         /* Submit the commands */
171         for (i = 0; i < submit->nr_cmds; i++) {
172                 switch (submit->cmd[i].type) {
173                 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
174                         break;
175                 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
176                         if (priv->lastctx == submit->queue->ctx)
177                                 break;
178                         fallthrough;
179                 case MSM_SUBMIT_CMD_BUF:
180                         OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
181                         OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
182                         OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
183                         OUT_RING(ring, submit->cmd[i].size);
184                         break;
185                 }
186         }
187
188         get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
189                 rbmemptr_stats(ring, index, cpcycles_end));
190         get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
191                 rbmemptr_stats(ring, index, alwayson_end));
192
193         /* Write the fence to the scratch register */
194         OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
195         OUT_RING(ring, submit->seqno);
196
197         /*
198          * Execute a CACHE_FLUSH_TS event. This will ensure that the
199          * timestamp is written to the memory and then triggers the interrupt
200          */
201         OUT_PKT7(ring, CP_EVENT_WRITE, 4);
202         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
203                 CP_EVENT_WRITE_0_IRQ);
204         OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
205         OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
206         OUT_RING(ring, submit->seqno);
207
208         trace_msm_gpu_submit_flush(submit,
209                 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
210                         REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
211
212         a6xx_flush(gpu, ring);
213 }
214
215 const struct adreno_reglist a630_hwcg[] = {
216         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
217         {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
218         {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
219         {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
220         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
221         {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
222         {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
223         {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
224         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
225         {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
226         {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
227         {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
228         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
229         {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
230         {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
231         {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
232         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
233         {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
234         {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
235         {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
236         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
237         {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
238         {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
239         {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
240         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
241         {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
242         {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
243         {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
244         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
245         {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
246         {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
247         {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
248         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
249         {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
250         {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
251         {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
252         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
253         {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
254         {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
255         {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
256         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
257         {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
258         {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
259         {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
260         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
261         {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
262         {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
263         {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
264         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
265         {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
266         {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
267         {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
268         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
269         {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
270         {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
271         {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
272         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
273         {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
274         {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
275         {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
276         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
277         {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
278         {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
279         {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
280         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
281         {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
282         {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
283         {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
284         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
285         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
286         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
287         {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
288         {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
289         {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
290         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
291         {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
292         {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
293         {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
294         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
295         {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
296         {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
297         {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
298         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
299         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
300         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
301         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
302         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
303         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
304         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
305         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
306         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
307         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
308         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
309         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
310         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
311         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
312         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
313         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
314         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
315         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
316         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
317         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
318         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
319         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
320         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
321         {},
322 };
323
324 const struct adreno_reglist a640_hwcg[] = {
325         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
326         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
327         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
328         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
329         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
330         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
331         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
332         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
333         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
334         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
335         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
336         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
337         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
338         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
339         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
340         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
341         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
342         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
343         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
344         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
345         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
346         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
347         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
348         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
349         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
350         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
351         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
352         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
353         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
354         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
355         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
356         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
357         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
358         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
359         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
360         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
361         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
362         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
363         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
364         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
365         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
366         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
367         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
368         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
369         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
370         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
371         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
372         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
373         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
374         {},
375 };
376
377 const struct adreno_reglist a650_hwcg[] = {
378         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
379         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
380         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
381         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
382         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
383         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
384         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
385         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
386         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
387         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
388         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
389         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
390         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
391         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
392         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
393         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
394         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
395         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
396         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
397         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
398         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
399         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
400         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
401         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
402         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
403         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
404         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
405         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
406         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
407         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
408         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
409         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
410         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
411         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
412         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
413         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
414         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
415         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
416         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
417         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
418         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
419         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
420         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
421         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
422         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
423         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
424         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
425         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
426         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
427         {},
428 };
429
430 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
431 {
432         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
433         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
434         struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
435         const struct adreno_reglist *reg;
436         unsigned int i;
437         u32 val, clock_cntl_on;
438
439         if (!adreno_gpu->info->hwcg)
440                 return;
441
442         if (adreno_is_a630(adreno_gpu))
443                 clock_cntl_on = 0x8aa8aa02;
444         else
445                 clock_cntl_on = 0x8aa8aa82;
446
447         val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
448
449         /* Don't re-program the registers if they are already correct */
450         if ((!state && !val) || (state && (val == clock_cntl_on)))
451                 return;
452
453         /* Disable SP clock before programming HWCG registers */
454         gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
455
456         for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
457                 gpu_write(gpu, reg->offset, state ? reg->value : 0);
458
459         /* Enable SP clock */
460         gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
461
462         gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
463 }
464
465 /* For a615, a616, a618, A619, a630, a640 and a680 */
466 static const u32 a6xx_protect[] = {
467         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
468         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
469         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
470         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
471         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
472         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
473         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
474         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
475         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
476         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
477         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
478         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
479         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
480         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
481         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
482         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
483         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
484         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
485         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
486         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
487         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
488         A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
489         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
490         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
491         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
492         A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
493         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
494         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
495         A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
496         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
497         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
498         A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
499 };
500
501 /* These are for a620 and a650 */
502 static const u32 a650_protect[] = {
503         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
504         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
505         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
506         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
507         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
508         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
509         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
510         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
511         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
512         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
513         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
514         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
515         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
516         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
517         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
518         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
519         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
520         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
521         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
522         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
523         A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
524         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
525         A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
526         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
527         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
528         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
529         A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
530         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
531         A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
532         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
533         A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
534         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
535         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
536         A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
537         A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
538         A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
539         A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
540         A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
541         A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
542 };
543
544 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
545 {
546         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
547         const u32 *regs = a6xx_protect;
548         unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32;
549
550         BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
551         BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
552
553         if (adreno_is_a650(adreno_gpu)) {
554                 regs = a650_protect;
555                 count = ARRAY_SIZE(a650_protect);
556                 count_max = 48;
557         }
558
559         /*
560          * Enable access protection to privileged registers, fault on an access
561          * protect violation and select the last span to protect from the start
562          * address all the way to the end of the register address space
563          */
564         gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
565
566         for (i = 0; i < count - 1; i++)
567                 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
568         /* last CP_PROTECT to have "infinite" length on the last entry */
569         gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
570 }
571
572 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
573 {
574         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
575         u32 lower_bit = 2;
576         u32 amsbc = 0;
577         u32 rgb565_predicator = 0;
578         u32 uavflagprd_inv = 0;
579
580         /* a618 is using the hw default values */
581         if (adreno_is_a618(adreno_gpu))
582                 return;
583
584         if (adreno_is_a640(adreno_gpu))
585                 amsbc = 1;
586
587         if (adreno_is_a650(adreno_gpu)) {
588                 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
589                 lower_bit = 3;
590                 amsbc = 1;
591                 rgb565_predicator = 1;
592                 uavflagprd_inv = 2;
593         }
594
595         gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
596                 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
597         gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
598         gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
599                 uavflagprd_inv << 4 | lower_bit << 1);
600         gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
601 }
602
603 static int a6xx_cp_init(struct msm_gpu *gpu)
604 {
605         struct msm_ringbuffer *ring = gpu->rb[0];
606
607         OUT_PKT7(ring, CP_ME_INIT, 8);
608
609         OUT_RING(ring, 0x0000002f);
610
611         /* Enable multiple hardware contexts */
612         OUT_RING(ring, 0x00000003);
613
614         /* Enable error detection */
615         OUT_RING(ring, 0x20000000);
616
617         /* Don't enable header dump */
618         OUT_RING(ring, 0x00000000);
619         OUT_RING(ring, 0x00000000);
620
621         /* No workarounds enabled */
622         OUT_RING(ring, 0x00000000);
623
624         /* Pad rest of the cmds with 0's */
625         OUT_RING(ring, 0x00000000);
626         OUT_RING(ring, 0x00000000);
627
628         a6xx_flush(gpu, ring);
629         return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
630 }
631
632 /*
633  * Check that the microcode version is new enough to include several key
634  * security fixes. Return true if the ucode is safe.
635  */
636 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
637                 struct drm_gem_object *obj)
638 {
639         struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
640         struct msm_gpu *gpu = &adreno_gpu->base;
641         u32 *buf = msm_gem_get_vaddr(obj);
642         bool ret = false;
643
644         if (IS_ERR(buf))
645                 return false;
646
647         /*
648          * Targets up to a640 (a618, a630 and a640) need to check for a
649          * microcode version that is patched to support the whereami opcode or
650          * one that is new enough to include it by default.
651          */
652         if (adreno_is_a618(adreno_gpu) || adreno_is_a630(adreno_gpu) ||
653                 adreno_is_a640(adreno_gpu)) {
654                 /*
655                  * If the lowest nibble is 0xa that is an indication that this
656                  * microcode has been patched. The actual version is in dword
657                  * [3] but we only care about the patchlevel which is the lowest
658                  * nibble of dword [3]
659                  *
660                  * Otherwise check that the firmware is greater than or equal
661                  * to 1.90 which was the first version that had this fix built
662                  * in
663                  */
664                 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
665                         (buf[0] & 0xfff) >= 0x190) {
666                         a6xx_gpu->has_whereami = true;
667                         ret = true;
668                         goto out;
669                 }
670
671                 DRM_DEV_ERROR(&gpu->pdev->dev,
672                         "a630 SQE ucode is too old. Have version %x need at least %x\n",
673                         buf[0] & 0xfff, 0x190);
674         }  else {
675                 /*
676                  * a650 tier targets don't need whereami but still need to be
677                  * equal to or newer than 0.95 for other security fixes
678                  */
679                 if (adreno_is_a650(adreno_gpu)) {
680                         if ((buf[0] & 0xfff) >= 0x095) {
681                                 ret = true;
682                                 goto out;
683                         }
684
685                         DRM_DEV_ERROR(&gpu->pdev->dev,
686                                 "a650 SQE ucode is too old. Have version %x need at least %x\n",
687                                 buf[0] & 0xfff, 0x095);
688                 }
689
690                 /*
691                  * When a660 is added those targets should return true here
692                  * since those have all the critical security fixes built in
693                  * from the start
694                  */
695         }
696 out:
697         msm_gem_put_vaddr(obj);
698         return ret;
699 }
700
701 static int a6xx_ucode_init(struct msm_gpu *gpu)
702 {
703         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
704         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
705
706         if (!a6xx_gpu->sqe_bo) {
707                 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
708                         adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
709
710                 if (IS_ERR(a6xx_gpu->sqe_bo)) {
711                         int ret = PTR_ERR(a6xx_gpu->sqe_bo);
712
713                         a6xx_gpu->sqe_bo = NULL;
714                         DRM_DEV_ERROR(&gpu->pdev->dev,
715                                 "Could not allocate SQE ucode: %d\n", ret);
716
717                         return ret;
718                 }
719
720                 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
721                 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
722                         msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
723                         drm_gem_object_put(a6xx_gpu->sqe_bo);
724
725                         a6xx_gpu->sqe_bo = NULL;
726                         return -EPERM;
727                 }
728         }
729
730         gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
731                 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
732
733         return 0;
734 }
735
736 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
737 {
738         static bool loaded;
739         int ret;
740
741         if (loaded)
742                 return 0;
743
744         ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
745
746         loaded = !ret;
747         return ret;
748 }
749
750 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
751           A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
752           A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
753           A6XX_RBBM_INT_0_MASK_CP_IB2 | \
754           A6XX_RBBM_INT_0_MASK_CP_IB1 | \
755           A6XX_RBBM_INT_0_MASK_CP_RB | \
756           A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
757           A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
758           A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
759           A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
760           A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
761
762 static int a6xx_hw_init(struct msm_gpu *gpu)
763 {
764         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
765         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
766         int ret;
767
768         /* Make sure the GMU keeps the GPU on while we set it up */
769         a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
770
771         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
772
773         /*
774          * Disable the trusted memory range - we don't actually supported secure
775          * memory rendering at this point in time and we don't want to block off
776          * part of the virtual memory space.
777          */
778         gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
779                 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
780         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
781
782         /* Turn on 64 bit addressing for all blocks */
783         gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
784         gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
785         gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
786         gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
787         gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
788         gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
789         gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
790         gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
791         gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
792         gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
793         gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
794         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
795
796         /* enable hardware clockgating */
797         a6xx_set_hwcg(gpu, true);
798
799         /* VBIF/GBIF start*/
800         if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) {
801                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
802                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
803                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
804                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
805                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
806                 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
807         } else {
808                 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
809         }
810
811         if (adreno_is_a630(adreno_gpu))
812                 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
813
814         /* Make all blocks contribute to the GPU BUSY perf counter */
815         gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
816
817         /* Disable L2 bypass in the UCHE */
818         gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
819         gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
820         gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
821         gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
822         gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
823         gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
824
825         if (!adreno_is_a650(adreno_gpu)) {
826                 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
827                 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
828                         REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
829
830                 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
831                         REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
832                         0x00100000 + adreno_gpu->gmem - 1);
833         }
834
835         gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
836         gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
837
838         if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu))
839                 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
840         else
841                 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
842         gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
843
844         /* Setting the mem pool size */
845         gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
846
847         /* Setting the primFifo thresholds default values,
848          * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
849         */
850         if (adreno_is_a650(adreno_gpu))
851                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
852         else if (adreno_is_a640(adreno_gpu))
853                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
854         else
855                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
856
857         /* Set the AHB default slave response to "ERROR" */
858         gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
859
860         /* Turn on performance counters */
861         gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
862
863         /* Select CP0 to always count cycles */
864         gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
865
866         a6xx_set_ubwc_config(gpu);
867
868         /* Enable fault detection */
869         gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
870                 (1 << 30) | 0x1fffff);
871
872         gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
873
874         /* Set weights for bicubic filtering */
875         if (adreno_is_a650(adreno_gpu)) {
876                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
877                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
878                         0x3fe05ff4);
879                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
880                         0x3fa0ebee);
881                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
882                         0x3f5193ed);
883                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
884                         0x3f0243f0);
885         }
886
887         /* Protect registers from the CP */
888         a6xx_set_cp_protect(gpu);
889
890         /* Enable expanded apriv for targets that support it */
891         if (gpu->hw_apriv) {
892                 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
893                         (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
894         }
895
896         /* Enable interrupts */
897         gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
898
899         ret = adreno_hw_init(gpu);
900         if (ret)
901                 goto out;
902
903         ret = a6xx_ucode_init(gpu);
904         if (ret)
905                 goto out;
906
907         /* Set the ringbuffer address */
908         gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
909                 gpu->rb[0]->iova);
910
911         /* Targets that support extended APRIV can use the RPTR shadow from
912          * hardware but all the other ones need to disable the feature. Targets
913          * that support the WHERE_AM_I opcode can use that instead
914          */
915         if (adreno_gpu->base.hw_apriv)
916                 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
917         else
918                 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
919                         MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
920
921         /*
922          * Expanded APRIV and targets that support WHERE_AM_I both need a
923          * privileged buffer to store the RPTR shadow
924          */
925
926         if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
927                 if (!a6xx_gpu->shadow_bo) {
928                         a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev,
929                                 sizeof(u32) * gpu->nr_rings,
930                                 MSM_BO_WC | MSM_BO_MAP_PRIV,
931                                 gpu->aspace, &a6xx_gpu->shadow_bo,
932                                 &a6xx_gpu->shadow_iova);
933
934                         if (IS_ERR(a6xx_gpu->shadow))
935                                 return PTR_ERR(a6xx_gpu->shadow);
936                 }
937
938                 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
939                         REG_A6XX_CP_RB_RPTR_ADDR_HI,
940                         shadowptr(a6xx_gpu, gpu->rb[0]));
941         }
942
943         /* Always come up on rb 0 */
944         a6xx_gpu->cur_ring = gpu->rb[0];
945
946         a6xx_gpu->cur_ctx = NULL;
947
948         /* Enable the SQE_to start the CP engine */
949         gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
950
951         ret = a6xx_cp_init(gpu);
952         if (ret)
953                 goto out;
954
955         /*
956          * Try to load a zap shader into the secure world. If successful
957          * we can use the CP to switch out of secure mode. If not then we
958          * have no resource but to try to switch ourselves out manually. If we
959          * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
960          * be blocked and a permissions violation will soon follow.
961          */
962         ret = a6xx_zap_shader_init(gpu);
963         if (!ret) {
964                 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
965                 OUT_RING(gpu->rb[0], 0x00000000);
966
967                 a6xx_flush(gpu, gpu->rb[0]);
968                 if (!a6xx_idle(gpu, gpu->rb[0]))
969                         return -EINVAL;
970         } else if (ret == -ENODEV) {
971                 /*
972                  * This device does not use zap shader (but print a warning
973                  * just in case someone got their dt wrong.. hopefully they
974                  * have a debug UART to realize the error of their ways...
975                  * if you mess this up you are about to crash horribly)
976                  */
977                 dev_warn_once(gpu->dev->dev,
978                         "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
979                 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
980                 ret = 0;
981         } else {
982                 return ret;
983         }
984
985 out:
986         /*
987          * Tell the GMU that we are done touching the GPU and it can start power
988          * management
989          */
990         a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
991
992         if (a6xx_gpu->gmu.legacy) {
993                 /* Take the GMU out of its special boot mode */
994                 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
995         }
996
997         return ret;
998 }
999
1000 static void a6xx_dump(struct msm_gpu *gpu)
1001 {
1002         DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1003                         gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1004         adreno_dump(gpu);
1005 }
1006
1007 #define VBIF_RESET_ACK_TIMEOUT  100
1008 #define VBIF_RESET_ACK_MASK     0x00f0
1009
1010 static void a6xx_recover(struct msm_gpu *gpu)
1011 {
1012         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1013         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1014         int i;
1015
1016         adreno_dump_info(gpu);
1017
1018         for (i = 0; i < 8; i++)
1019                 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1020                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1021
1022         if (hang_debug)
1023                 a6xx_dump(gpu);
1024
1025         /*
1026          * Turn off keep alive that might have been enabled by the hang
1027          * interrupt
1028          */
1029         gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1030
1031         gpu->funcs->pm_suspend(gpu);
1032         gpu->funcs->pm_resume(gpu);
1033
1034         msm_gpu_hw_init(gpu);
1035 }
1036
1037 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags)
1038 {
1039         struct msm_gpu *gpu = arg;
1040
1041         pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
1042                         iova, flags,
1043                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1044                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1045                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1046                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1047
1048         return -EFAULT;
1049 }
1050
1051 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1052 {
1053         u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1054
1055         if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1056                 u32 val;
1057
1058                 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1059                 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1060                 dev_err_ratelimited(&gpu->pdev->dev,
1061                         "CP | opcode error | possible opcode=0x%8.8X\n",
1062                         val);
1063         }
1064
1065         if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1066                 dev_err_ratelimited(&gpu->pdev->dev,
1067                         "CP ucode error interrupt\n");
1068
1069         if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1070                 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1071                         gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1072
1073         if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1074                 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1075
1076                 dev_err_ratelimited(&gpu->pdev->dev,
1077                         "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1078                         val & (1 << 20) ? "READ" : "WRITE",
1079                         (val & 0x3ffff), val);
1080         }
1081
1082         if (status & A6XX_CP_INT_CP_AHB_ERROR)
1083                 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1084
1085         if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1086                 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1087
1088         if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1089                 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1090
1091 }
1092
1093 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1094 {
1095         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1096         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1097         struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1098
1099         /*
1100          * Force the GPU to stay on until after we finish
1101          * collecting information
1102          */
1103         gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1104
1105         DRM_DEV_ERROR(&gpu->pdev->dev,
1106                 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1107                 ring ? ring->id : -1, ring ? ring->seqno : 0,
1108                 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1109                 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1110                 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1111                 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1112                 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1113                 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1114                 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1115
1116         /* Turn off the hangcheck timer to keep it from bothering us */
1117         del_timer(&gpu->hangcheck_timer);
1118
1119         kthread_queue_work(gpu->worker, &gpu->recover_work);
1120 }
1121
1122 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1123 {
1124         u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1125
1126         gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1127
1128         if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1129                 a6xx_fault_detect_irq(gpu);
1130
1131         if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1132                 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1133
1134         if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1135                 a6xx_cp_hw_err_irq(gpu);
1136
1137         if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1138                 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1139
1140         if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1141                 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1142
1143         if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1144                 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1145
1146         if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1147                 msm_gpu_retire(gpu);
1148
1149         return IRQ_HANDLED;
1150 }
1151
1152 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1153 {
1154         return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1155 }
1156
1157 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1158 {
1159         return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1160 }
1161
1162 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1163 {
1164         llcc_slice_deactivate(a6xx_gpu->llc_slice);
1165         llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1166 }
1167
1168 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1169 {
1170         struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1171         struct msm_gpu *gpu = &adreno_gpu->base;
1172         u32 cntl1_regval = 0;
1173
1174         if (IS_ERR(a6xx_gpu->llc_mmio))
1175                 return;
1176
1177         if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1178                 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1179
1180                 gpu_scid &= 0x1f;
1181                 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1182                                (gpu_scid << 15) | (gpu_scid << 20);
1183         }
1184
1185         /*
1186          * For targets with a MMU500, activate the slice but don't program the
1187          * register.  The XBL will take care of that.
1188          */
1189         if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1190                 if (!a6xx_gpu->have_mmu500) {
1191                         u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1192
1193                         gpuhtw_scid &= 0x1f;
1194                         cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1195                 }
1196         }
1197
1198         if (cntl1_regval) {
1199                 /*
1200                  * Program the slice IDs for the various GPU blocks and GPU MMU
1201                  * pagetables
1202                  */
1203                 if (a6xx_gpu->have_mmu500)
1204                         gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0),
1205                                 cntl1_regval);
1206                 else {
1207                         a6xx_llc_write(a6xx_gpu,
1208                                 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1209
1210                         /*
1211                          * Program cacheability overrides to not allocate cache
1212                          * lines on a write miss
1213                          */
1214                         a6xx_llc_rmw(a6xx_gpu,
1215                                 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1216                 }
1217         }
1218 }
1219
1220 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1221 {
1222         llcc_slice_putd(a6xx_gpu->llc_slice);
1223         llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1224 }
1225
1226 static void a6xx_llc_slices_init(struct platform_device *pdev,
1227                 struct a6xx_gpu *a6xx_gpu)
1228 {
1229         struct device_node *phandle;
1230
1231         /*
1232          * There is a different programming path for targets with an mmu500
1233          * attached, so detect if that is the case
1234          */
1235         phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1236         a6xx_gpu->have_mmu500 = (phandle &&
1237                 of_device_is_compatible(phandle, "arm,mmu-500"));
1238         of_node_put(phandle);
1239
1240         if (a6xx_gpu->have_mmu500)
1241                 a6xx_gpu->llc_mmio = NULL;
1242         else
1243                 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1244
1245         a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1246         a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1247
1248         if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1249                 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1250 }
1251
1252 static int a6xx_pm_resume(struct msm_gpu *gpu)
1253 {
1254         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1255         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1256         int ret;
1257
1258         gpu->needs_hw_init = true;
1259
1260         trace_msm_gpu_resume(0);
1261
1262         ret = a6xx_gmu_resume(a6xx_gpu);
1263         if (ret)
1264                 return ret;
1265
1266         msm_gpu_resume_devfreq(gpu);
1267
1268         a6xx_llc_activate(a6xx_gpu);
1269
1270         return 0;
1271 }
1272
1273 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1274 {
1275         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1276         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1277         int i, ret;
1278
1279         trace_msm_gpu_suspend(0);
1280
1281         a6xx_llc_deactivate(a6xx_gpu);
1282
1283         devfreq_suspend_device(gpu->devfreq.devfreq);
1284
1285         ret = a6xx_gmu_stop(a6xx_gpu);
1286         if (ret)
1287                 return ret;
1288
1289         if (a6xx_gpu->shadow_bo)
1290                 for (i = 0; i < gpu->nr_rings; i++)
1291                         a6xx_gpu->shadow[i] = 0;
1292
1293         return 0;
1294 }
1295
1296 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1297 {
1298         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1299         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1300         static DEFINE_MUTEX(perfcounter_oob);
1301
1302         mutex_lock(&perfcounter_oob);
1303
1304         /* Force the GPU power on so we can read this register */
1305         a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1306
1307         *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1308                 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1309
1310         a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1311         mutex_unlock(&perfcounter_oob);
1312         return 0;
1313 }
1314
1315 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1316 {
1317         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1318         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1319
1320         return a6xx_gpu->cur_ring;
1321 }
1322
1323 static void a6xx_destroy(struct msm_gpu *gpu)
1324 {
1325         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1326         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1327
1328         if (a6xx_gpu->sqe_bo) {
1329                 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1330                 drm_gem_object_put(a6xx_gpu->sqe_bo);
1331         }
1332
1333         if (a6xx_gpu->shadow_bo) {
1334                 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1335                 drm_gem_object_put(a6xx_gpu->shadow_bo);
1336         }
1337
1338         a6xx_llc_slices_destroy(a6xx_gpu);
1339
1340         a6xx_gmu_remove(a6xx_gpu);
1341
1342         adreno_gpu_cleanup(adreno_gpu);
1343
1344         kfree(a6xx_gpu);
1345 }
1346
1347 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1348 {
1349         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1350         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1351         u64 busy_cycles, busy_time;
1352
1353
1354         /* Only read the gpu busy if the hardware is already active */
1355         if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1356                 return 0;
1357
1358         busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1359                         REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1360                         REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1361
1362         busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1363         do_div(busy_time, 192);
1364
1365         gpu->devfreq.busy_cycles = busy_cycles;
1366
1367         pm_runtime_put(a6xx_gpu->gmu.dev);
1368
1369         if (WARN_ON(busy_time > ~0LU))
1370                 return ~0LU;
1371
1372         return (unsigned long)busy_time;
1373 }
1374
1375 static struct msm_gem_address_space *
1376 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1377 {
1378         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1379         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1380         struct iommu_domain *iommu;
1381         struct msm_mmu *mmu;
1382         struct msm_gem_address_space *aspace;
1383         u64 start, size;
1384
1385         iommu = iommu_domain_alloc(&platform_bus_type);
1386         if (!iommu)
1387                 return NULL;
1388
1389         /*
1390          * This allows GPU to set the bus attributes required to use system
1391          * cache on behalf of the iommu page table walker.
1392          */
1393         if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1394                 adreno_set_llc_attributes(iommu);
1395
1396         mmu = msm_iommu_new(&pdev->dev, iommu);
1397         if (IS_ERR(mmu)) {
1398                 iommu_domain_free(iommu);
1399                 return ERR_CAST(mmu);
1400         }
1401
1402         /*
1403          * Use the aperture start or SZ_16M, whichever is greater. This will
1404          * ensure that we align with the allocated pagetable range while still
1405          * allowing room in the lower 32 bits for GMEM and whatnot
1406          */
1407         start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1408         size = iommu->geometry.aperture_end - start + 1;
1409
1410         aspace = msm_gem_address_space_create(mmu, "gpu",
1411                 start & GENMASK_ULL(48, 0), size);
1412
1413         if (IS_ERR(aspace) && !IS_ERR(mmu))
1414                 mmu->funcs->destroy(mmu);
1415
1416         return aspace;
1417 }
1418
1419 static struct msm_gem_address_space *
1420 a6xx_create_private_address_space(struct msm_gpu *gpu)
1421 {
1422         struct msm_mmu *mmu;
1423
1424         mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1425
1426         if (IS_ERR(mmu))
1427                 return ERR_CAST(mmu);
1428
1429         return msm_gem_address_space_create(mmu,
1430                 "gpu", 0x100000000ULL, 0x1ffffffffULL);
1431 }
1432
1433 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1434 {
1435         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1436         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1437
1438         if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1439                 return a6xx_gpu->shadow[ring->id];
1440
1441         return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1442 }
1443
1444 static u32 a618_get_speed_bin(u32 fuse)
1445 {
1446         if (fuse == 0)
1447                 return 0;
1448         else if (fuse == 169)
1449                 return 1;
1450         else if (fuse == 174)
1451                 return 2;
1452
1453         return UINT_MAX;
1454 }
1455
1456 static u32 fuse_to_supp_hw(struct device *dev, u32 revn, u32 fuse)
1457 {
1458         u32 val = UINT_MAX;
1459
1460         if (revn == 618)
1461                 val = a618_get_speed_bin(fuse);
1462
1463         if (val == UINT_MAX) {
1464                 DRM_DEV_ERROR(dev,
1465                         "missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1466                         fuse);
1467                 return UINT_MAX;
1468         }
1469
1470         return (1 << val);
1471 }
1472
1473 static int a6xx_set_supported_hw(struct device *dev, struct a6xx_gpu *a6xx_gpu,
1474                 u32 revn)
1475 {
1476         u32 supp_hw = UINT_MAX;
1477         u16 speedbin;
1478         int ret;
1479
1480         ret = nvmem_cell_read_u16(dev, "speed_bin", &speedbin);
1481         /*
1482          * -ENOENT means that the platform doesn't support speedbin which is
1483          * fine
1484          */
1485         if (ret == -ENOENT) {
1486                 return 0;
1487         } else if (ret) {
1488                 DRM_DEV_ERROR(dev,
1489                               "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1490                               ret);
1491                 goto done;
1492         }
1493         speedbin = le16_to_cpu(speedbin);
1494
1495         supp_hw = fuse_to_supp_hw(dev, revn, speedbin);
1496
1497 done:
1498         ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1499         if (ret)
1500                 return ret;
1501
1502         return 0;
1503 }
1504
1505 static const struct adreno_gpu_funcs funcs = {
1506         .base = {
1507                 .get_param = adreno_get_param,
1508                 .hw_init = a6xx_hw_init,
1509                 .pm_suspend = a6xx_pm_suspend,
1510                 .pm_resume = a6xx_pm_resume,
1511                 .recover = a6xx_recover,
1512                 .submit = a6xx_submit,
1513                 .active_ring = a6xx_active_ring,
1514                 .irq = a6xx_irq,
1515                 .destroy = a6xx_destroy,
1516 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1517                 .show = a6xx_show,
1518 #endif
1519                 .gpu_busy = a6xx_gpu_busy,
1520                 .gpu_get_freq = a6xx_gmu_get_freq,
1521                 .gpu_set_freq = a6xx_gmu_set_freq,
1522 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1523                 .gpu_state_get = a6xx_gpu_state_get,
1524                 .gpu_state_put = a6xx_gpu_state_put,
1525 #endif
1526                 .create_address_space = a6xx_create_address_space,
1527                 .create_private_address_space = a6xx_create_private_address_space,
1528                 .get_rptr = a6xx_get_rptr,
1529         },
1530         .get_timestamp = a6xx_get_timestamp,
1531 };
1532
1533 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1534 {
1535         struct msm_drm_private *priv = dev->dev_private;
1536         struct platform_device *pdev = priv->gpu_pdev;
1537         struct adreno_platform_config *config = pdev->dev.platform_data;
1538         const struct adreno_info *info;
1539         struct device_node *node;
1540         struct a6xx_gpu *a6xx_gpu;
1541         struct adreno_gpu *adreno_gpu;
1542         struct msm_gpu *gpu;
1543         int ret;
1544
1545         a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1546         if (!a6xx_gpu)
1547                 return ERR_PTR(-ENOMEM);
1548
1549         adreno_gpu = &a6xx_gpu->base;
1550         gpu = &adreno_gpu->base;
1551
1552         adreno_gpu->registers = NULL;
1553
1554         /*
1555          * We need to know the platform type before calling into adreno_gpu_init
1556          * so that the hw_apriv flag can be correctly set. Snoop into the info
1557          * and grab the revision number
1558          */
1559         info = adreno_info(config->rev);
1560
1561         if (info && info->revn == 650)
1562                 adreno_gpu->base.hw_apriv = true;
1563
1564         a6xx_llc_slices_init(pdev, a6xx_gpu);
1565
1566         ret = a6xx_set_supported_hw(&pdev->dev, a6xx_gpu, info->revn);
1567         if (ret) {
1568                 a6xx_destroy(&(a6xx_gpu->base.base));
1569                 return ERR_PTR(ret);
1570         }
1571
1572         ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1573         if (ret) {
1574                 a6xx_destroy(&(a6xx_gpu->base.base));
1575                 return ERR_PTR(ret);
1576         }
1577
1578         /* Check if there is a GMU phandle and set it up */
1579         node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1580
1581         /* FIXME: How do we gracefully handle this? */
1582         BUG_ON(!node);
1583
1584         ret = a6xx_gmu_init(a6xx_gpu, node);
1585         if (ret) {
1586                 a6xx_destroy(&(a6xx_gpu->base.base));
1587                 return ERR_PTR(ret);
1588         }
1589
1590         if (gpu->aspace)
1591                 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1592                                 a6xx_fault_handler);
1593
1594         return gpu;
1595 }