Merge tag 'edac_for_5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/i915_drm.h>
33
34 #include "i915_drv.h"
35 #include "i915_gem_render_state.h"
36 #include "i915_reset.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42  * set-context and then emitting the batch.
43  */
44 #define LEGACY_REQUEST_SIZE 200
45
46 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
47 {
48         return (i915_ggtt_offset(engine->status_page.vma) +
49                 I915_GEM_HWS_INDEX_ADDR);
50 }
51
52 unsigned int intel_ring_update_space(struct intel_ring *ring)
53 {
54         unsigned int space;
55
56         space = __intel_ring_space(ring->head, ring->emit, ring->size);
57
58         ring->space = space;
59         return space;
60 }
61
62 static int
63 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
64 {
65         unsigned int num_store_dw;
66         u32 cmd, *cs;
67
68         cmd = MI_FLUSH;
69         num_store_dw = 0;
70         if (mode & EMIT_INVALIDATE)
71                 cmd |= MI_READ_FLUSH;
72         if (mode & EMIT_FLUSH)
73                 num_store_dw = 4;
74
75         cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
76         if (IS_ERR(cs))
77                 return PTR_ERR(cs);
78
79         *cs++ = cmd;
80         while (num_store_dw--) {
81                 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
82                 *cs++ = i915_scratch_offset(rq->i915);
83                 *cs++ = 0;
84         }
85         *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
86
87         intel_ring_advance(rq, cs);
88
89         return 0;
90 }
91
92 static int
93 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
94 {
95         u32 cmd, *cs;
96         int i;
97
98         /*
99          * read/write caches:
100          *
101          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
102          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
103          * also flushed at 2d versus 3d pipeline switches.
104          *
105          * read-only caches:
106          *
107          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
108          * MI_READ_FLUSH is set, and is always flushed on 965.
109          *
110          * I915_GEM_DOMAIN_COMMAND may not exist?
111          *
112          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
113          * invalidated when MI_EXE_FLUSH is set.
114          *
115          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
116          * invalidated with every MI_FLUSH.
117          *
118          * TLBs:
119          *
120          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
121          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
122          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
123          * are flushed at any MI_FLUSH.
124          */
125
126         cmd = MI_FLUSH;
127         if (mode & EMIT_INVALIDATE) {
128                 cmd |= MI_EXE_FLUSH;
129                 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
130                         cmd |= MI_INVALIDATE_ISP;
131         }
132
133         i = 2;
134         if (mode & EMIT_INVALIDATE)
135                 i += 20;
136
137         cs = intel_ring_begin(rq, i);
138         if (IS_ERR(cs))
139                 return PTR_ERR(cs);
140
141         *cs++ = cmd;
142
143         /*
144          * A random delay to let the CS invalidate take effect? Without this
145          * delay, the GPU relocation path fails as the CS does not see
146          * the updated contents. Just as important, if we apply the flushes
147          * to the EMIT_FLUSH branch (i.e. immediately after the relocation
148          * write and before the invalidate on the next batch), the relocations
149          * still fail. This implies that is a delay following invalidation
150          * that is required to reset the caches as opposed to a delay to
151          * ensure the memory is written.
152          */
153         if (mode & EMIT_INVALIDATE) {
154                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
155                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
156                 *cs++ = 0;
157                 *cs++ = 0;
158
159                 for (i = 0; i < 12; i++)
160                         *cs++ = MI_FLUSH;
161
162                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
163                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
164                 *cs++ = 0;
165                 *cs++ = 0;
166         }
167
168         *cs++ = cmd;
169
170         intel_ring_advance(rq, cs);
171
172         return 0;
173 }
174
175 /*
176  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
177  * implementing two workarounds on gen6.  From section 1.4.7.1
178  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
179  *
180  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
181  * produced by non-pipelined state commands), software needs to first
182  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
183  * 0.
184  *
185  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
186  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
187  *
188  * And the workaround for these two requires this workaround first:
189  *
190  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
191  * BEFORE the pipe-control with a post-sync op and no write-cache
192  * flushes.
193  *
194  * And this last workaround is tricky because of the requirements on
195  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
196  * volume 2 part 1:
197  *
198  *     "1 of the following must also be set:
199  *      - Render Target Cache Flush Enable ([12] of DW1)
200  *      - Depth Cache Flush Enable ([0] of DW1)
201  *      - Stall at Pixel Scoreboard ([1] of DW1)
202  *      - Depth Stall ([13] of DW1)
203  *      - Post-Sync Operation ([13] of DW1)
204  *      - Notify Enable ([8] of DW1)"
205  *
206  * The cache flushes require the workaround flush that triggered this
207  * one, so we can't use it.  Depth stall would trigger the same.
208  * Post-sync nonzero is what triggered this second workaround, so we
209  * can't use that one either.  Notify enable is IRQs, which aren't
210  * really our business.  That leaves only stall at scoreboard.
211  */
212 static int
213 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
214 {
215         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
216         u32 *cs;
217
218         cs = intel_ring_begin(rq, 6);
219         if (IS_ERR(cs))
220                 return PTR_ERR(cs);
221
222         *cs++ = GFX_OP_PIPE_CONTROL(5);
223         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
224         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
225         *cs++ = 0; /* low dword */
226         *cs++ = 0; /* high dword */
227         *cs++ = MI_NOOP;
228         intel_ring_advance(rq, cs);
229
230         cs = intel_ring_begin(rq, 6);
231         if (IS_ERR(cs))
232                 return PTR_ERR(cs);
233
234         *cs++ = GFX_OP_PIPE_CONTROL(5);
235         *cs++ = PIPE_CONTROL_QW_WRITE;
236         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
237         *cs++ = 0;
238         *cs++ = 0;
239         *cs++ = MI_NOOP;
240         intel_ring_advance(rq, cs);
241
242         return 0;
243 }
244
245 static int
246 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
247 {
248         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
249         u32 *cs, flags = 0;
250         int ret;
251
252         /* Force SNB workarounds for PIPE_CONTROL flushes */
253         ret = gen6_emit_post_sync_nonzero_flush(rq);
254         if (ret)
255                 return ret;
256
257         /* Just flush everything.  Experiments have shown that reducing the
258          * number of bits based on the write domains has little performance
259          * impact.
260          */
261         if (mode & EMIT_FLUSH) {
262                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
263                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
264                 /*
265                  * Ensure that any following seqno writes only happen
266                  * when the render cache is indeed flushed.
267                  */
268                 flags |= PIPE_CONTROL_CS_STALL;
269         }
270         if (mode & EMIT_INVALIDATE) {
271                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
272                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
273                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
274                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
275                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
276                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
277                 /*
278                  * TLB invalidate requires a post-sync write.
279                  */
280                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
281         }
282
283         cs = intel_ring_begin(rq, 4);
284         if (IS_ERR(cs))
285                 return PTR_ERR(cs);
286
287         *cs++ = GFX_OP_PIPE_CONTROL(4);
288         *cs++ = flags;
289         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
290         *cs++ = 0;
291         intel_ring_advance(rq, cs);
292
293         return 0;
294 }
295
296 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
297 {
298         /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
299         *cs++ = GFX_OP_PIPE_CONTROL(4);
300         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
301         *cs++ = 0;
302         *cs++ = 0;
303
304         *cs++ = GFX_OP_PIPE_CONTROL(4);
305         *cs++ = PIPE_CONTROL_QW_WRITE;
306         *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
307         *cs++ = 0;
308
309         /* Finally we can flush and with it emit the breadcrumb */
310         *cs++ = GFX_OP_PIPE_CONTROL(4);
311         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
312                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
313                  PIPE_CONTROL_DC_FLUSH_ENABLE |
314                  PIPE_CONTROL_QW_WRITE |
315                  PIPE_CONTROL_CS_STALL);
316         *cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
317         *cs++ = rq->fence.seqno;
318
319         *cs++ = GFX_OP_PIPE_CONTROL(4);
320         *cs++ = PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
321         *cs++ = intel_hws_seqno_address(rq->engine) | PIPE_CONTROL_GLOBAL_GTT;
322         *cs++ = rq->global_seqno;
323
324         *cs++ = MI_USER_INTERRUPT;
325         *cs++ = MI_NOOP;
326
327         rq->tail = intel_ring_offset(rq, cs);
328         assert_ring_tail_valid(rq->ring, rq->tail);
329
330         return cs;
331 }
332
333 static int
334 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
335 {
336         u32 *cs;
337
338         cs = intel_ring_begin(rq, 4);
339         if (IS_ERR(cs))
340                 return PTR_ERR(cs);
341
342         *cs++ = GFX_OP_PIPE_CONTROL(4);
343         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
344         *cs++ = 0;
345         *cs++ = 0;
346         intel_ring_advance(rq, cs);
347
348         return 0;
349 }
350
351 static int
352 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
353 {
354         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
355         u32 *cs, flags = 0;
356
357         /*
358          * Ensure that any following seqno writes only happen when the render
359          * cache is indeed flushed.
360          *
361          * Workaround: 4th PIPE_CONTROL command (except the ones with only
362          * read-cache invalidate bits set) must have the CS_STALL bit set. We
363          * don't try to be clever and just set it unconditionally.
364          */
365         flags |= PIPE_CONTROL_CS_STALL;
366
367         /* Just flush everything.  Experiments have shown that reducing the
368          * number of bits based on the write domains has little performance
369          * impact.
370          */
371         if (mode & EMIT_FLUSH) {
372                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
373                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
374                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
375                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
376         }
377         if (mode & EMIT_INVALIDATE) {
378                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
379                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
380                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
381                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
385                 /*
386                  * TLB invalidate requires a post-sync write.
387                  */
388                 flags |= PIPE_CONTROL_QW_WRITE;
389                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
390
391                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
392
393                 /* Workaround: we must issue a pipe_control with CS-stall bit
394                  * set before a pipe_control command that has the state cache
395                  * invalidate bit set. */
396                 gen7_render_ring_cs_stall_wa(rq);
397         }
398
399         cs = intel_ring_begin(rq, 4);
400         if (IS_ERR(cs))
401                 return PTR_ERR(cs);
402
403         *cs++ = GFX_OP_PIPE_CONTROL(4);
404         *cs++ = flags;
405         *cs++ = scratch_addr;
406         *cs++ = 0;
407         intel_ring_advance(rq, cs);
408
409         return 0;
410 }
411
412 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
413 {
414         *cs++ = GFX_OP_PIPE_CONTROL(4);
415         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
416                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
417                  PIPE_CONTROL_DC_FLUSH_ENABLE |
418                  PIPE_CONTROL_FLUSH_ENABLE |
419                  PIPE_CONTROL_QW_WRITE |
420                  PIPE_CONTROL_GLOBAL_GTT_IVB |
421                  PIPE_CONTROL_CS_STALL);
422         *cs++ = rq->timeline->hwsp_offset;
423         *cs++ = rq->fence.seqno;
424
425         *cs++ = GFX_OP_PIPE_CONTROL(4);
426         *cs++ = (PIPE_CONTROL_QW_WRITE |
427                  PIPE_CONTROL_GLOBAL_GTT_IVB |
428                  PIPE_CONTROL_CS_STALL);
429         *cs++ = intel_hws_seqno_address(rq->engine);
430         *cs++ = rq->global_seqno;
431
432         *cs++ = MI_USER_INTERRUPT;
433         *cs++ = MI_NOOP;
434
435         rq->tail = intel_ring_offset(rq, cs);
436         assert_ring_tail_valid(rq->ring, rq->tail);
437
438         return cs;
439 }
440
441 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
442 {
443         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
444         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
445
446         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
447         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
448         *cs++ = rq->fence.seqno;
449
450         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
451         *cs++ = I915_GEM_HWS_INDEX_ADDR | MI_FLUSH_DW_USE_GTT;
452         *cs++ = rq->global_seqno;
453
454         *cs++ = MI_USER_INTERRUPT;
455         *cs++ = MI_NOOP;
456
457         rq->tail = intel_ring_offset(rq, cs);
458         assert_ring_tail_valid(rq->ring, rq->tail);
459
460         return cs;
461 }
462
463 #define GEN7_XCS_WA 32
464 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
465 {
466         int i;
467
468         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
469         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
470
471         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
472         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
473         *cs++ = rq->fence.seqno;
474
475         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
476         *cs++ = I915_GEM_HWS_INDEX_ADDR | MI_FLUSH_DW_USE_GTT;
477         *cs++ = rq->global_seqno;
478
479         for (i = 0; i < GEN7_XCS_WA; i++) {
480                 *cs++ = MI_STORE_DWORD_INDEX;
481                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
482                 *cs++ = rq->fence.seqno;
483         }
484
485         *cs++ = MI_FLUSH_DW;
486         *cs++ = 0;
487         *cs++ = 0;
488
489         *cs++ = MI_USER_INTERRUPT;
490
491         rq->tail = intel_ring_offset(rq, cs);
492         assert_ring_tail_valid(rq->ring, rq->tail);
493
494         return cs;
495 }
496 #undef GEN7_XCS_WA
497
498 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
499 {
500         /*
501          * Keep the render interrupt unmasked as this papers over
502          * lost interrupts following a reset.
503          */
504         if (engine->class == RENDER_CLASS) {
505                 if (INTEL_GEN(engine->i915) >= 6)
506                         mask &= ~BIT(0);
507                 else
508                         mask &= ~I915_USER_INTERRUPT;
509         }
510
511         intel_engine_set_hwsp_writemask(engine, mask);
512 }
513
514 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
515 {
516         struct drm_i915_private *dev_priv = engine->i915;
517         u32 addr;
518
519         addr = lower_32_bits(phys);
520         if (INTEL_GEN(dev_priv) >= 4)
521                 addr |= (phys >> 28) & 0xf0;
522
523         I915_WRITE(HWS_PGA, addr);
524 }
525
526 static struct page *status_page(struct intel_engine_cs *engine)
527 {
528         struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
529
530         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
531         return sg_page(obj->mm.pages->sgl);
532 }
533
534 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
535 {
536         set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
537         set_hwstam(engine, ~0u);
538 }
539
540 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
541 {
542         struct drm_i915_private *dev_priv = engine->i915;
543         i915_reg_t hwsp;
544
545         /*
546          * The ring status page addresses are no longer next to the rest of
547          * the ring registers as of gen7.
548          */
549         if (IS_GEN(dev_priv, 7)) {
550                 switch (engine->id) {
551                 /*
552                  * No more rings exist on Gen7. Default case is only to shut up
553                  * gcc switch check warning.
554                  */
555                 default:
556                         GEM_BUG_ON(engine->id);
557                 case RCS:
558                         hwsp = RENDER_HWS_PGA_GEN7;
559                         break;
560                 case BCS:
561                         hwsp = BLT_HWS_PGA_GEN7;
562                         break;
563                 case VCS:
564                         hwsp = BSD_HWS_PGA_GEN7;
565                         break;
566                 case VECS:
567                         hwsp = VEBOX_HWS_PGA_GEN7;
568                         break;
569                 }
570         } else if (IS_GEN(dev_priv, 6)) {
571                 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
572         } else {
573                 hwsp = RING_HWS_PGA(engine->mmio_base);
574         }
575
576         I915_WRITE(hwsp, offset);
577         POSTING_READ(hwsp);
578 }
579
580 static void flush_cs_tlb(struct intel_engine_cs *engine)
581 {
582         struct drm_i915_private *dev_priv = engine->i915;
583         i915_reg_t instpm = RING_INSTPM(engine->mmio_base);
584
585         if (!IS_GEN_RANGE(dev_priv, 6, 7))
586                 return;
587
588         /* ring should be idle before issuing a sync flush*/
589         WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
590
591         I915_WRITE(instpm,
592                    _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
593                                       INSTPM_SYNC_FLUSH));
594         if (intel_wait_for_register(dev_priv,
595                                     instpm, INSTPM_SYNC_FLUSH, 0,
596                                     1000))
597                 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
598                           engine->name);
599 }
600
601 static void ring_setup_status_page(struct intel_engine_cs *engine)
602 {
603         set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
604         set_hwstam(engine, ~0u);
605
606         flush_cs_tlb(engine);
607 }
608
609 static bool stop_ring(struct intel_engine_cs *engine)
610 {
611         struct drm_i915_private *dev_priv = engine->i915;
612
613         if (INTEL_GEN(dev_priv) > 2) {
614                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
615                 if (intel_wait_for_register(dev_priv,
616                                             RING_MI_MODE(engine->mmio_base),
617                                             MODE_IDLE,
618                                             MODE_IDLE,
619                                             1000)) {
620                         DRM_ERROR("%s : timed out trying to stop ring\n",
621                                   engine->name);
622                         /* Sometimes we observe that the idle flag is not
623                          * set even though the ring is empty. So double
624                          * check before giving up.
625                          */
626                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
627                                 return false;
628                 }
629         }
630
631         I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
632
633         I915_WRITE_HEAD(engine, 0);
634         I915_WRITE_TAIL(engine, 0);
635
636         /* The ring must be empty before it is disabled */
637         I915_WRITE_CTL(engine, 0);
638
639         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
640 }
641
642 static int init_ring_common(struct intel_engine_cs *engine)
643 {
644         struct drm_i915_private *dev_priv = engine->i915;
645         struct intel_ring *ring = engine->buffer;
646         int ret = 0;
647
648         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
649
650         if (!stop_ring(engine)) {
651                 /* G45 ring initialization often fails to reset head to zero */
652                 DRM_DEBUG_DRIVER("%s head not reset to zero "
653                                 "ctl %08x head %08x tail %08x start %08x\n",
654                                 engine->name,
655                                 I915_READ_CTL(engine),
656                                 I915_READ_HEAD(engine),
657                                 I915_READ_TAIL(engine),
658                                 I915_READ_START(engine));
659
660                 if (!stop_ring(engine)) {
661                         DRM_ERROR("failed to set %s head to zero "
662                                   "ctl %08x head %08x tail %08x start %08x\n",
663                                   engine->name,
664                                   I915_READ_CTL(engine),
665                                   I915_READ_HEAD(engine),
666                                   I915_READ_TAIL(engine),
667                                   I915_READ_START(engine));
668                         ret = -EIO;
669                         goto out;
670                 }
671         }
672
673         if (HWS_NEEDS_PHYSICAL(dev_priv))
674                 ring_setup_phys_status_page(engine);
675         else
676                 ring_setup_status_page(engine);
677
678         intel_engine_reset_breadcrumbs(engine);
679
680         /* Enforce ordering by reading HEAD register back */
681         I915_READ_HEAD(engine);
682
683         /* Initialize the ring. This must happen _after_ we've cleared the ring
684          * registers with the above sequence (the readback of the HEAD registers
685          * also enforces ordering), otherwise the hw might lose the new ring
686          * register values. */
687         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
688
689         /* WaClearRingBufHeadRegAtInit:ctg,elk */
690         if (I915_READ_HEAD(engine))
691                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
692                                  engine->name, I915_READ_HEAD(engine));
693
694         /* Check that the ring offsets point within the ring! */
695         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
696         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
697         intel_ring_update_space(ring);
698
699         /* First wake the ring up to an empty/idle ring */
700         I915_WRITE_HEAD(engine, ring->head);
701         I915_WRITE_TAIL(engine, ring->head);
702         (void)I915_READ_TAIL(engine);
703
704         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
705
706         /* If the head is still not zero, the ring is dead */
707         if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
708                                     RING_VALID, RING_VALID,
709                                     50)) {
710                 DRM_ERROR("%s initialization failed "
711                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
712                           engine->name,
713                           I915_READ_CTL(engine),
714                           I915_READ_CTL(engine) & RING_VALID,
715                           I915_READ_HEAD(engine), ring->head,
716                           I915_READ_TAIL(engine), ring->tail,
717                           I915_READ_START(engine),
718                           i915_ggtt_offset(ring->vma));
719                 ret = -EIO;
720                 goto out;
721         }
722
723         if (INTEL_GEN(dev_priv) > 2)
724                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
725
726         /* Now awake, let it get started */
727         if (ring->tail != ring->head) {
728                 I915_WRITE_TAIL(engine, ring->tail);
729                 (void)I915_READ_TAIL(engine);
730         }
731
732         /* Papering over lost _interrupts_ immediately following the restart */
733         intel_engine_queue_breadcrumbs(engine);
734 out:
735         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
736
737         return ret;
738 }
739
740 static void reset_prepare(struct intel_engine_cs *engine)
741 {
742         intel_engine_stop_cs(engine);
743 }
744
745 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
746 {
747         struct i915_timeline *tl = &engine->timeline;
748         struct i915_request *pos, *rq;
749         unsigned long flags;
750         u32 head;
751
752         rq = NULL;
753         spin_lock_irqsave(&tl->lock, flags);
754         list_for_each_entry(pos, &tl->requests, link) {
755                 if (!i915_request_completed(pos)) {
756                         rq = pos;
757                         break;
758                 }
759         }
760
761         GEM_TRACE("%s seqno=%d, current=%d, stalled? %s\n",
762                   engine->name,
763                   rq ? rq->global_seqno : 0,
764                   intel_engine_get_seqno(engine),
765                   yesno(stalled));
766         /*
767          * The guilty request will get skipped on a hung engine.
768          *
769          * Users of client default contexts do not rely on logical
770          * state preserved between batches so it is safe to execute
771          * queued requests following the hang. Non default contexts
772          * rely on preserved state, so skipping a batch loses the
773          * evolution of the state and it needs to be considered corrupted.
774          * Executing more queued batches on top of corrupted state is
775          * risky. But we take the risk by trying to advance through
776          * the queued requests in order to make the client behaviour
777          * more predictable around resets, by not throwing away random
778          * amount of batches it has prepared for execution. Sophisticated
779          * clients can use gem_reset_stats_ioctl and dma fence status
780          * (exported via sync_file info ioctl on explicit fences) to observe
781          * when it loses the context state and should rebuild accordingly.
782          *
783          * The context ban, and ultimately the client ban, mechanism are safety
784          * valves if client submission ends up resulting in nothing more than
785          * subsequent hangs.
786          */
787
788         if (rq) {
789                 /*
790                  * Try to restore the logical GPU state to match the
791                  * continuation of the request queue. If we skip the
792                  * context/PD restore, then the next request may try to execute
793                  * assuming that its context is valid and loaded on the GPU and
794                  * so may try to access invalid memory, prompting repeated GPU
795                  * hangs.
796                  *
797                  * If the request was guilty, we still restore the logical
798                  * state in case the next request requires it (e.g. the
799                  * aliasing ppgtt), but skip over the hung batch.
800                  *
801                  * If the request was innocent, we try to replay the request
802                  * with the restored context.
803                  */
804                 i915_reset_request(rq, stalled);
805
806                 GEM_BUG_ON(rq->ring != engine->buffer);
807                 head = rq->head;
808         } else {
809                 head = engine->buffer->tail;
810         }
811         engine->buffer->head = intel_ring_wrap(engine->buffer, head);
812
813         spin_unlock_irqrestore(&tl->lock, flags);
814 }
815
816 static void reset_finish(struct intel_engine_cs *engine)
817 {
818 }
819
820 static int intel_rcs_ctx_init(struct i915_request *rq)
821 {
822         int ret;
823
824         ret = intel_engine_emit_ctx_wa(rq);
825         if (ret != 0)
826                 return ret;
827
828         ret = i915_gem_render_state_emit(rq);
829         if (ret)
830                 return ret;
831
832         return 0;
833 }
834
835 static int init_render_ring(struct intel_engine_cs *engine)
836 {
837         struct drm_i915_private *dev_priv = engine->i915;
838         int ret = init_ring_common(engine);
839         if (ret)
840                 return ret;
841
842         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
843         if (IS_GEN_RANGE(dev_priv, 4, 6))
844                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
845
846         /* We need to disable the AsyncFlip performance optimisations in order
847          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
848          * programmed to '1' on all products.
849          *
850          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
851          */
852         if (IS_GEN_RANGE(dev_priv, 6, 7))
853                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
854
855         /* Required for the hardware to program scanline values for waiting */
856         /* WaEnableFlushTlbInvalidationMode:snb */
857         if (IS_GEN(dev_priv, 6))
858                 I915_WRITE(GFX_MODE,
859                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
860
861         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
862         if (IS_GEN(dev_priv, 7))
863                 I915_WRITE(GFX_MODE_GEN7,
864                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
865                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
866
867         if (IS_GEN(dev_priv, 6)) {
868                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
869                  * "If this bit is set, STCunit will have LRA as replacement
870                  *  policy. [...] This bit must be reset.  LRA replacement
871                  *  policy is not supported."
872                  */
873                 I915_WRITE(CACHE_MODE_0,
874                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
875         }
876
877         if (IS_GEN_RANGE(dev_priv, 6, 7))
878                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
879
880         if (INTEL_GEN(dev_priv) >= 6)
881                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
882
883         return 0;
884 }
885
886 static void cancel_requests(struct intel_engine_cs *engine)
887 {
888         struct i915_request *request;
889         unsigned long flags;
890
891         spin_lock_irqsave(&engine->timeline.lock, flags);
892
893         /* Mark all submitted requests as skipped. */
894         list_for_each_entry(request, &engine->timeline.requests, link) {
895                 GEM_BUG_ON(!request->global_seqno);
896
897                 if (!i915_request_signaled(request))
898                         dma_fence_set_error(&request->fence, -EIO);
899
900                 i915_request_mark_complete(request);
901         }
902
903         intel_write_status_page(engine,
904                                 I915_GEM_HWS_INDEX,
905                                 intel_engine_last_submit(engine));
906
907         /* Remaining _unready_ requests will be nop'ed when submitted */
908
909         spin_unlock_irqrestore(&engine->timeline.lock, flags);
910 }
911
912 static void i9xx_submit_request(struct i915_request *request)
913 {
914         struct drm_i915_private *dev_priv = request->i915;
915
916         i915_request_submit(request);
917
918         I915_WRITE_TAIL(request->engine,
919                         intel_ring_set_tail(request->ring, request->tail));
920 }
921
922 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
923 {
924         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
925         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
926
927         *cs++ = MI_FLUSH;
928
929         *cs++ = MI_STORE_DWORD_INDEX;
930         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
931         *cs++ = rq->fence.seqno;
932
933         *cs++ = MI_STORE_DWORD_INDEX;
934         *cs++ = I915_GEM_HWS_INDEX_ADDR;
935         *cs++ = rq->global_seqno;
936
937         *cs++ = MI_USER_INTERRUPT;
938
939         rq->tail = intel_ring_offset(rq, cs);
940         assert_ring_tail_valid(rq->ring, rq->tail);
941
942         return cs;
943 }
944
945 #define GEN5_WA_STORES 8 /* must be at least 1! */
946 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
947 {
948         int i;
949
950         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
951         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
952
953         *cs++ = MI_FLUSH;
954
955         *cs++ = MI_STORE_DWORD_INDEX;
956         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
957         *cs++ = rq->fence.seqno;
958
959         BUILD_BUG_ON(GEN5_WA_STORES < 1);
960         for (i = 0; i < GEN5_WA_STORES; i++) {
961                 *cs++ = MI_STORE_DWORD_INDEX;
962                 *cs++ = I915_GEM_HWS_INDEX_ADDR;
963                 *cs++ = rq->global_seqno;
964         }
965
966         *cs++ = MI_USER_INTERRUPT;
967         *cs++ = MI_NOOP;
968
969         rq->tail = intel_ring_offset(rq, cs);
970         assert_ring_tail_valid(rq->ring, rq->tail);
971
972         return cs;
973 }
974 #undef GEN5_WA_STORES
975
976 static void
977 gen5_irq_enable(struct intel_engine_cs *engine)
978 {
979         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
980 }
981
982 static void
983 gen5_irq_disable(struct intel_engine_cs *engine)
984 {
985         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
986 }
987
988 static void
989 i9xx_irq_enable(struct intel_engine_cs *engine)
990 {
991         struct drm_i915_private *dev_priv = engine->i915;
992
993         dev_priv->irq_mask &= ~engine->irq_enable_mask;
994         I915_WRITE(IMR, dev_priv->irq_mask);
995         POSTING_READ_FW(RING_IMR(engine->mmio_base));
996 }
997
998 static void
999 i9xx_irq_disable(struct intel_engine_cs *engine)
1000 {
1001         struct drm_i915_private *dev_priv = engine->i915;
1002
1003         dev_priv->irq_mask |= engine->irq_enable_mask;
1004         I915_WRITE(IMR, dev_priv->irq_mask);
1005 }
1006
1007 static void
1008 i8xx_irq_enable(struct intel_engine_cs *engine)
1009 {
1010         struct drm_i915_private *dev_priv = engine->i915;
1011
1012         dev_priv->irq_mask &= ~engine->irq_enable_mask;
1013         I915_WRITE16(IMR, dev_priv->irq_mask);
1014         POSTING_READ16(RING_IMR(engine->mmio_base));
1015 }
1016
1017 static void
1018 i8xx_irq_disable(struct intel_engine_cs *engine)
1019 {
1020         struct drm_i915_private *dev_priv = engine->i915;
1021
1022         dev_priv->irq_mask |= engine->irq_enable_mask;
1023         I915_WRITE16(IMR, dev_priv->irq_mask);
1024 }
1025
1026 static int
1027 bsd_ring_flush(struct i915_request *rq, u32 mode)
1028 {
1029         u32 *cs;
1030
1031         cs = intel_ring_begin(rq, 2);
1032         if (IS_ERR(cs))
1033                 return PTR_ERR(cs);
1034
1035         *cs++ = MI_FLUSH;
1036         *cs++ = MI_NOOP;
1037         intel_ring_advance(rq, cs);
1038         return 0;
1039 }
1040
1041 static void
1042 gen6_irq_enable(struct intel_engine_cs *engine)
1043 {
1044         struct drm_i915_private *dev_priv = engine->i915;
1045
1046         I915_WRITE_IMR(engine,
1047                        ~(engine->irq_enable_mask |
1048                          engine->irq_keep_mask));
1049
1050         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1051         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1052
1053         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1054 }
1055
1056 static void
1057 gen6_irq_disable(struct intel_engine_cs *engine)
1058 {
1059         struct drm_i915_private *dev_priv = engine->i915;
1060
1061         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1062         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1063 }
1064
1065 static void
1066 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1067 {
1068         struct drm_i915_private *dev_priv = engine->i915;
1069
1070         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1071
1072         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1073         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1074
1075         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1076 }
1077
1078 static void
1079 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1080 {
1081         struct drm_i915_private *dev_priv = engine->i915;
1082
1083         I915_WRITE_IMR(engine, ~0);
1084         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1085 }
1086
1087 static int
1088 i965_emit_bb_start(struct i915_request *rq,
1089                    u64 offset, u32 length,
1090                    unsigned int dispatch_flags)
1091 {
1092         u32 *cs;
1093
1094         cs = intel_ring_begin(rq, 2);
1095         if (IS_ERR(cs))
1096                 return PTR_ERR(cs);
1097
1098         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1099                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1100         *cs++ = offset;
1101         intel_ring_advance(rq, cs);
1102
1103         return 0;
1104 }
1105
1106 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1107 #define I830_BATCH_LIMIT SZ_256K
1108 #define I830_TLB_ENTRIES (2)
1109 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1110 static int
1111 i830_emit_bb_start(struct i915_request *rq,
1112                    u64 offset, u32 len,
1113                    unsigned int dispatch_flags)
1114 {
1115         u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
1116
1117         GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1118
1119         cs = intel_ring_begin(rq, 6);
1120         if (IS_ERR(cs))
1121                 return PTR_ERR(cs);
1122
1123         /* Evict the invalid PTE TLBs */
1124         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1125         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1126         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1127         *cs++ = cs_offset;
1128         *cs++ = 0xdeadbeef;
1129         *cs++ = MI_NOOP;
1130         intel_ring_advance(rq, cs);
1131
1132         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1133                 if (len > I830_BATCH_LIMIT)
1134                         return -ENOSPC;
1135
1136                 cs = intel_ring_begin(rq, 6 + 2);
1137                 if (IS_ERR(cs))
1138                         return PTR_ERR(cs);
1139
1140                 /* Blit the batch (which has now all relocs applied) to the
1141                  * stable batch scratch bo area (so that the CS never
1142                  * stumbles over its tlb invalidation bug) ...
1143                  */
1144                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1145                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1146                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1147                 *cs++ = cs_offset;
1148                 *cs++ = 4096;
1149                 *cs++ = offset;
1150
1151                 *cs++ = MI_FLUSH;
1152                 *cs++ = MI_NOOP;
1153                 intel_ring_advance(rq, cs);
1154
1155                 /* ... and execute it. */
1156                 offset = cs_offset;
1157         }
1158
1159         cs = intel_ring_begin(rq, 2);
1160         if (IS_ERR(cs))
1161                 return PTR_ERR(cs);
1162
1163         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1164         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1165                 MI_BATCH_NON_SECURE);
1166         intel_ring_advance(rq, cs);
1167
1168         return 0;
1169 }
1170
1171 static int
1172 i915_emit_bb_start(struct i915_request *rq,
1173                    u64 offset, u32 len,
1174                    unsigned int dispatch_flags)
1175 {
1176         u32 *cs;
1177
1178         cs = intel_ring_begin(rq, 2);
1179         if (IS_ERR(cs))
1180                 return PTR_ERR(cs);
1181
1182         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1183         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1184                 MI_BATCH_NON_SECURE);
1185         intel_ring_advance(rq, cs);
1186
1187         return 0;
1188 }
1189
1190 int intel_ring_pin(struct intel_ring *ring)
1191 {
1192         struct i915_vma *vma = ring->vma;
1193         enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1194         unsigned int flags;
1195         void *addr;
1196         int ret;
1197
1198         GEM_BUG_ON(ring->vaddr);
1199
1200         ret = i915_timeline_pin(ring->timeline);
1201         if (ret)
1202                 return ret;
1203
1204         flags = PIN_GLOBAL;
1205
1206         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1207         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1208
1209         if (vma->obj->stolen)
1210                 flags |= PIN_MAPPABLE;
1211         else
1212                 flags |= PIN_HIGH;
1213
1214         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1215                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1216                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1217                 else
1218                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1219                 if (unlikely(ret))
1220                         goto unpin_timeline;
1221         }
1222
1223         ret = i915_vma_pin(vma, 0, 0, flags);
1224         if (unlikely(ret))
1225                 goto unpin_timeline;
1226
1227         if (i915_vma_is_map_and_fenceable(vma))
1228                 addr = (void __force *)i915_vma_pin_iomap(vma);
1229         else
1230                 addr = i915_gem_object_pin_map(vma->obj, map);
1231         if (IS_ERR(addr)) {
1232                 ret = PTR_ERR(addr);
1233                 goto unpin_ring;
1234         }
1235
1236         vma->obj->pin_global++;
1237
1238         ring->vaddr = addr;
1239         return 0;
1240
1241 unpin_ring:
1242         i915_vma_unpin(vma);
1243 unpin_timeline:
1244         i915_timeline_unpin(ring->timeline);
1245         return ret;
1246 }
1247
1248 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1249 {
1250         GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1251
1252         ring->tail = tail;
1253         ring->head = tail;
1254         ring->emit = tail;
1255         intel_ring_update_space(ring);
1256 }
1257
1258 void intel_ring_unpin(struct intel_ring *ring)
1259 {
1260         GEM_BUG_ON(!ring->vma);
1261         GEM_BUG_ON(!ring->vaddr);
1262
1263         /* Discard any unused bytes beyond that submitted to hw. */
1264         intel_ring_reset(ring, ring->tail);
1265
1266         if (i915_vma_is_map_and_fenceable(ring->vma))
1267                 i915_vma_unpin_iomap(ring->vma);
1268         else
1269                 i915_gem_object_unpin_map(ring->vma->obj);
1270         ring->vaddr = NULL;
1271
1272         ring->vma->obj->pin_global--;
1273         i915_vma_unpin(ring->vma);
1274
1275         i915_timeline_unpin(ring->timeline);
1276 }
1277
1278 static struct i915_vma *
1279 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1280 {
1281         struct i915_address_space *vm = &dev_priv->ggtt.vm;
1282         struct drm_i915_gem_object *obj;
1283         struct i915_vma *vma;
1284
1285         obj = i915_gem_object_create_stolen(dev_priv, size);
1286         if (!obj)
1287                 obj = i915_gem_object_create_internal(dev_priv, size);
1288         if (IS_ERR(obj))
1289                 return ERR_CAST(obj);
1290
1291         /*
1292          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1293          * if supported by the platform's GGTT.
1294          */
1295         if (vm->has_read_only)
1296                 i915_gem_object_set_readonly(obj);
1297
1298         vma = i915_vma_instance(obj, vm, NULL);
1299         if (IS_ERR(vma))
1300                 goto err;
1301
1302         return vma;
1303
1304 err:
1305         i915_gem_object_put(obj);
1306         return vma;
1307 }
1308
1309 struct intel_ring *
1310 intel_engine_create_ring(struct intel_engine_cs *engine,
1311                          struct i915_timeline *timeline,
1312                          int size)
1313 {
1314         struct intel_ring *ring;
1315         struct i915_vma *vma;
1316
1317         GEM_BUG_ON(!is_power_of_2(size));
1318         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1319         GEM_BUG_ON(timeline == &engine->timeline);
1320         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1321
1322         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1323         if (!ring)
1324                 return ERR_PTR(-ENOMEM);
1325
1326         INIT_LIST_HEAD(&ring->request_list);
1327         ring->timeline = i915_timeline_get(timeline);
1328
1329         ring->size = size;
1330         /* Workaround an erratum on the i830 which causes a hang if
1331          * the TAIL pointer points to within the last 2 cachelines
1332          * of the buffer.
1333          */
1334         ring->effective_size = size;
1335         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1336                 ring->effective_size -= 2 * CACHELINE_BYTES;
1337
1338         intel_ring_update_space(ring);
1339
1340         vma = intel_ring_create_vma(engine->i915, size);
1341         if (IS_ERR(vma)) {
1342                 kfree(ring);
1343                 return ERR_CAST(vma);
1344         }
1345         ring->vma = vma;
1346
1347         return ring;
1348 }
1349
1350 void
1351 intel_ring_free(struct intel_ring *ring)
1352 {
1353         struct drm_i915_gem_object *obj = ring->vma->obj;
1354
1355         i915_vma_close(ring->vma);
1356         __i915_gem_object_release_unless_active(obj);
1357
1358         i915_timeline_put(ring->timeline);
1359         kfree(ring);
1360 }
1361
1362 static void intel_ring_context_destroy(struct intel_context *ce)
1363 {
1364         GEM_BUG_ON(ce->pin_count);
1365
1366         if (!ce->state)
1367                 return;
1368
1369         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1370         i915_gem_object_put(ce->state->obj);
1371 }
1372
1373 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1374 {
1375         struct i915_hw_ppgtt *ppgtt;
1376         int err = 0;
1377
1378         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1379         if (ppgtt)
1380                 err = gen6_ppgtt_pin(ppgtt);
1381
1382         return err;
1383 }
1384
1385 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1386 {
1387         struct i915_hw_ppgtt *ppgtt;
1388
1389         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1390         if (ppgtt)
1391                 gen6_ppgtt_unpin(ppgtt);
1392 }
1393
1394 static int __context_pin(struct intel_context *ce)
1395 {
1396         struct i915_vma *vma;
1397         int err;
1398
1399         vma = ce->state;
1400         if (!vma)
1401                 return 0;
1402
1403         /*
1404          * Clear this page out of any CPU caches for coherent swap-in/out.
1405          * We only want to do this on the first bind so that we do not stall
1406          * on an active context (which by nature is already on the GPU).
1407          */
1408         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1409                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1410                 if (err)
1411                         return err;
1412         }
1413
1414         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1415         if (err)
1416                 return err;
1417
1418         /*
1419          * And mark is as a globally pinned object to let the shrinker know
1420          * it cannot reclaim the object until we release it.
1421          */
1422         vma->obj->pin_global++;
1423
1424         return 0;
1425 }
1426
1427 static void __context_unpin(struct intel_context *ce)
1428 {
1429         struct i915_vma *vma;
1430
1431         vma = ce->state;
1432         if (!vma)
1433                 return;
1434
1435         vma->obj->pin_global--;
1436         i915_vma_unpin(vma);
1437 }
1438
1439 static void intel_ring_context_unpin(struct intel_context *ce)
1440 {
1441         __context_unpin_ppgtt(ce->gem_context);
1442         __context_unpin(ce);
1443
1444         i915_gem_context_put(ce->gem_context);
1445 }
1446
1447 static struct i915_vma *
1448 alloc_context_vma(struct intel_engine_cs *engine)
1449 {
1450         struct drm_i915_private *i915 = engine->i915;
1451         struct drm_i915_gem_object *obj;
1452         struct i915_vma *vma;
1453         int err;
1454
1455         obj = i915_gem_object_create(i915, engine->context_size);
1456         if (IS_ERR(obj))
1457                 return ERR_CAST(obj);
1458
1459         if (engine->default_state) {
1460                 void *defaults, *vaddr;
1461
1462                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1463                 if (IS_ERR(vaddr)) {
1464                         err = PTR_ERR(vaddr);
1465                         goto err_obj;
1466                 }
1467
1468                 defaults = i915_gem_object_pin_map(engine->default_state,
1469                                                    I915_MAP_WB);
1470                 if (IS_ERR(defaults)) {
1471                         err = PTR_ERR(defaults);
1472                         goto err_map;
1473                 }
1474
1475                 memcpy(vaddr, defaults, engine->context_size);
1476
1477                 i915_gem_object_unpin_map(engine->default_state);
1478                 i915_gem_object_unpin_map(obj);
1479         }
1480
1481         /*
1482          * Try to make the context utilize L3 as well as LLC.
1483          *
1484          * On VLV we don't have L3 controls in the PTEs so we
1485          * shouldn't touch the cache level, especially as that
1486          * would make the object snooped which might have a
1487          * negative performance impact.
1488          *
1489          * Snooping is required on non-llc platforms in execlist
1490          * mode, but since all GGTT accesses use PAT entry 0 we
1491          * get snooping anyway regardless of cache_level.
1492          *
1493          * This is only applicable for Ivy Bridge devices since
1494          * later platforms don't have L3 control bits in the PTE.
1495          */
1496         if (IS_IVYBRIDGE(i915)) {
1497                 /* Ignore any error, regard it as a simple optimisation */
1498                 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1499         }
1500
1501         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1502         if (IS_ERR(vma)) {
1503                 err = PTR_ERR(vma);
1504                 goto err_obj;
1505         }
1506
1507         return vma;
1508
1509 err_map:
1510         i915_gem_object_unpin_map(obj);
1511 err_obj:
1512         i915_gem_object_put(obj);
1513         return ERR_PTR(err);
1514 }
1515
1516 static struct intel_context *
1517 __ring_context_pin(struct intel_engine_cs *engine,
1518                    struct i915_gem_context *ctx,
1519                    struct intel_context *ce)
1520 {
1521         int err;
1522
1523         if (!ce->state && engine->context_size) {
1524                 struct i915_vma *vma;
1525
1526                 vma = alloc_context_vma(engine);
1527                 if (IS_ERR(vma)) {
1528                         err = PTR_ERR(vma);
1529                         goto err;
1530                 }
1531
1532                 ce->state = vma;
1533         }
1534
1535         err = __context_pin(ce);
1536         if (err)
1537                 goto err;
1538
1539         err = __context_pin_ppgtt(ce->gem_context);
1540         if (err)
1541                 goto err_unpin;
1542
1543         i915_gem_context_get(ctx);
1544
1545         /* One ringbuffer to rule them all */
1546         GEM_BUG_ON(!engine->buffer);
1547         ce->ring = engine->buffer;
1548
1549         return ce;
1550
1551 err_unpin:
1552         __context_unpin(ce);
1553 err:
1554         ce->pin_count = 0;
1555         return ERR_PTR(err);
1556 }
1557
1558 static const struct intel_context_ops ring_context_ops = {
1559         .unpin = intel_ring_context_unpin,
1560         .destroy = intel_ring_context_destroy,
1561 };
1562
1563 static struct intel_context *
1564 intel_ring_context_pin(struct intel_engine_cs *engine,
1565                        struct i915_gem_context *ctx)
1566 {
1567         struct intel_context *ce = to_intel_context(ctx, engine);
1568
1569         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1570
1571         if (likely(ce->pin_count++))
1572                 return ce;
1573         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1574
1575         ce->ops = &ring_context_ops;
1576
1577         return __ring_context_pin(engine, ctx, ce);
1578 }
1579
1580 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1581 {
1582         struct i915_timeline *timeline;
1583         struct intel_ring *ring;
1584         int err;
1585
1586         err = intel_engine_setup_common(engine);
1587         if (err)
1588                 return err;
1589
1590         timeline = i915_timeline_create(engine->i915,
1591                                         engine->name,
1592                                         engine->status_page.vma);
1593         if (IS_ERR(timeline)) {
1594                 err = PTR_ERR(timeline);
1595                 goto err;
1596         }
1597         GEM_BUG_ON(timeline->has_initial_breadcrumb);
1598
1599         ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1600         i915_timeline_put(timeline);
1601         if (IS_ERR(ring)) {
1602                 err = PTR_ERR(ring);
1603                 goto err;
1604         }
1605
1606         err = intel_ring_pin(ring);
1607         if (err)
1608                 goto err_ring;
1609
1610         GEM_BUG_ON(engine->buffer);
1611         engine->buffer = ring;
1612
1613         err = intel_engine_init_common(engine);
1614         if (err)
1615                 goto err_unpin;
1616
1617         GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);
1618
1619         return 0;
1620
1621 err_unpin:
1622         intel_ring_unpin(ring);
1623 err_ring:
1624         intel_ring_free(ring);
1625 err:
1626         intel_engine_cleanup_common(engine);
1627         return err;
1628 }
1629
1630 void intel_engine_cleanup(struct intel_engine_cs *engine)
1631 {
1632         struct drm_i915_private *dev_priv = engine->i915;
1633
1634         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1635                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1636
1637         intel_ring_unpin(engine->buffer);
1638         intel_ring_free(engine->buffer);
1639
1640         if (engine->cleanup)
1641                 engine->cleanup(engine);
1642
1643         intel_engine_cleanup_common(engine);
1644
1645         dev_priv->engine[engine->id] = NULL;
1646         kfree(engine);
1647 }
1648
1649 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1650 {
1651         struct intel_engine_cs *engine;
1652         enum intel_engine_id id;
1653
1654         /* Restart from the beginning of the rings for convenience */
1655         for_each_engine(engine, dev_priv, id)
1656                 intel_ring_reset(engine->buffer, 0);
1657 }
1658
1659 static int load_pd_dir(struct i915_request *rq,
1660                        const struct i915_hw_ppgtt *ppgtt)
1661 {
1662         const struct intel_engine_cs * const engine = rq->engine;
1663         u32 *cs;
1664
1665         cs = intel_ring_begin(rq, 6);
1666         if (IS_ERR(cs))
1667                 return PTR_ERR(cs);
1668
1669         *cs++ = MI_LOAD_REGISTER_IMM(1);
1670         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1671         *cs++ = PP_DIR_DCLV_2G;
1672
1673         *cs++ = MI_LOAD_REGISTER_IMM(1);
1674         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1675         *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1676
1677         intel_ring_advance(rq, cs);
1678
1679         return 0;
1680 }
1681
1682 static int flush_pd_dir(struct i915_request *rq)
1683 {
1684         const struct intel_engine_cs * const engine = rq->engine;
1685         u32 *cs;
1686
1687         cs = intel_ring_begin(rq, 4);
1688         if (IS_ERR(cs))
1689                 return PTR_ERR(cs);
1690
1691         /* Stall until the page table load is complete */
1692         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1693         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1694         *cs++ = i915_scratch_offset(rq->i915);
1695         *cs++ = MI_NOOP;
1696
1697         intel_ring_advance(rq, cs);
1698         return 0;
1699 }
1700
1701 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1702 {
1703         struct drm_i915_private *i915 = rq->i915;
1704         struct intel_engine_cs *engine = rq->engine;
1705         enum intel_engine_id id;
1706         const int num_rings =
1707                 IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_rings - 1 : 0;
1708         bool force_restore = false;
1709         int len;
1710         u32 *cs;
1711
1712         flags |= MI_MM_SPACE_GTT;
1713         if (IS_HASWELL(i915))
1714                 /* These flags are for resource streamer on HSW+ */
1715                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1716         else
1717                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1718
1719         len = 4;
1720         if (IS_GEN(i915, 7))
1721                 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1722         if (flags & MI_FORCE_RESTORE) {
1723                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1724                 flags &= ~MI_FORCE_RESTORE;
1725                 force_restore = true;
1726                 len += 2;
1727         }
1728
1729         cs = intel_ring_begin(rq, len);
1730         if (IS_ERR(cs))
1731                 return PTR_ERR(cs);
1732
1733         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1734         if (IS_GEN(i915, 7)) {
1735                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1736                 if (num_rings) {
1737                         struct intel_engine_cs *signaller;
1738
1739                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1740                         for_each_engine(signaller, i915, id) {
1741                                 if (signaller == engine)
1742                                         continue;
1743
1744                                 *cs++ = i915_mmio_reg_offset(
1745                                            RING_PSMI_CTL(signaller->mmio_base));
1746                                 *cs++ = _MASKED_BIT_ENABLE(
1747                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1748                         }
1749                 }
1750         }
1751
1752         if (force_restore) {
1753                 /*
1754                  * The HW doesn't handle being told to restore the current
1755                  * context very well. Quite often it likes goes to go off and
1756                  * sulk, especially when it is meant to be reloading PP_DIR.
1757                  * A very simple fix to force the reload is to simply switch
1758                  * away from the current context and back again.
1759                  *
1760                  * Note that the kernel_context will contain random state
1761                  * following the INHIBIT_RESTORE. We accept this since we
1762                  * never use the kernel_context state; it is merely a
1763                  * placeholder we use to flush other contexts.
1764                  */
1765                 *cs++ = MI_SET_CONTEXT;
1766                 *cs++ = i915_ggtt_offset(to_intel_context(i915->kernel_context,
1767                                                           engine)->state) |
1768                         MI_MM_SPACE_GTT |
1769                         MI_RESTORE_INHIBIT;
1770         }
1771
1772         *cs++ = MI_NOOP;
1773         *cs++ = MI_SET_CONTEXT;
1774         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1775         /*
1776          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1777          * WaMiSetContext_Hang:snb,ivb,vlv
1778          */
1779         *cs++ = MI_NOOP;
1780
1781         if (IS_GEN(i915, 7)) {
1782                 if (num_rings) {
1783                         struct intel_engine_cs *signaller;
1784                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1785
1786                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1787                         for_each_engine(signaller, i915, id) {
1788                                 if (signaller == engine)
1789                                         continue;
1790
1791                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1792                                 *cs++ = i915_mmio_reg_offset(last_reg);
1793                                 *cs++ = _MASKED_BIT_DISABLE(
1794                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1795                         }
1796
1797                         /* Insert a delay before the next switch! */
1798                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1799                         *cs++ = i915_mmio_reg_offset(last_reg);
1800                         *cs++ = i915_scratch_offset(rq->i915);
1801                         *cs++ = MI_NOOP;
1802                 }
1803                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1804         }
1805
1806         intel_ring_advance(rq, cs);
1807
1808         return 0;
1809 }
1810
1811 static int remap_l3(struct i915_request *rq, int slice)
1812 {
1813         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1814         int i;
1815
1816         if (!remap_info)
1817                 return 0;
1818
1819         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1820         if (IS_ERR(cs))
1821                 return PTR_ERR(cs);
1822
1823         /*
1824          * Note: We do not worry about the concurrent register cacheline hang
1825          * here because no other code should access these registers other than
1826          * at initialization time.
1827          */
1828         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1829         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1830                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1831                 *cs++ = remap_info[i];
1832         }
1833         *cs++ = MI_NOOP;
1834         intel_ring_advance(rq, cs);
1835
1836         return 0;
1837 }
1838
1839 static int switch_context(struct i915_request *rq)
1840 {
1841         struct intel_engine_cs *engine = rq->engine;
1842         struct i915_gem_context *ctx = rq->gem_context;
1843         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1844         unsigned int unwind_mm = 0;
1845         u32 hw_flags = 0;
1846         int ret, i;
1847
1848         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1849         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1850
1851         if (ppgtt) {
1852                 int loops;
1853
1854                 /*
1855                  * Baytail takes a little more convincing that it really needs
1856                  * to reload the PD between contexts. It is not just a little
1857                  * longer, as adding more stalls after the load_pd_dir (i.e.
1858                  * adding a long loop around flush_pd_dir) is not as effective
1859                  * as reloading the PD umpteen times. 32 is derived from
1860                  * experimentation (gem_exec_parallel/fds) and has no good
1861                  * explanation.
1862                  */
1863                 loops = 1;
1864                 if (engine->id == BCS && IS_VALLEYVIEW(engine->i915))
1865                         loops = 32;
1866
1867                 do {
1868                         ret = load_pd_dir(rq, ppgtt);
1869                         if (ret)
1870                                 goto err;
1871                 } while (--loops);
1872
1873                 if (intel_engine_flag(engine) & ppgtt->pd_dirty_rings) {
1874                         unwind_mm = intel_engine_flag(engine);
1875                         ppgtt->pd_dirty_rings &= ~unwind_mm;
1876                         hw_flags = MI_FORCE_RESTORE;
1877                 }
1878         }
1879
1880         if (rq->hw_context->state) {
1881                 GEM_BUG_ON(engine->id != RCS);
1882
1883                 /*
1884                  * The kernel context(s) is treated as pure scratch and is not
1885                  * expected to retain any state (as we sacrifice it during
1886                  * suspend and on resume it may be corrupted). This is ok,
1887                  * as nothing actually executes using the kernel context; it
1888                  * is purely used for flushing user contexts.
1889                  */
1890                 if (i915_gem_context_is_kernel(ctx))
1891                         hw_flags = MI_RESTORE_INHIBIT;
1892
1893                 ret = mi_set_context(rq, hw_flags);
1894                 if (ret)
1895                         goto err_mm;
1896         }
1897
1898         if (ppgtt) {
1899                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1900                 if (ret)
1901                         goto err_mm;
1902
1903                 ret = flush_pd_dir(rq);
1904                 if (ret)
1905                         goto err_mm;
1906
1907                 /*
1908                  * Not only do we need a full barrier (post-sync write) after
1909                  * invalidating the TLBs, but we need to wait a little bit
1910                  * longer. Whether this is merely delaying us, or the
1911                  * subsequent flush is a key part of serialising with the
1912                  * post-sync op, this extra pass appears vital before a
1913                  * mm switch!
1914                  */
1915                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1916                 if (ret)
1917                         goto err_mm;
1918
1919                 ret = engine->emit_flush(rq, EMIT_FLUSH);
1920                 if (ret)
1921                         goto err_mm;
1922         }
1923
1924         if (ctx->remap_slice) {
1925                 for (i = 0; i < MAX_L3_SLICES; i++) {
1926                         if (!(ctx->remap_slice & BIT(i)))
1927                                 continue;
1928
1929                         ret = remap_l3(rq, i);
1930                         if (ret)
1931                                 goto err_mm;
1932                 }
1933
1934                 ctx->remap_slice = 0;
1935         }
1936
1937         return 0;
1938
1939 err_mm:
1940         if (unwind_mm)
1941                 ppgtt->pd_dirty_rings |= unwind_mm;
1942 err:
1943         return ret;
1944 }
1945
1946 static int ring_request_alloc(struct i915_request *request)
1947 {
1948         int ret;
1949
1950         GEM_BUG_ON(!request->hw_context->pin_count);
1951         GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1952
1953         /*
1954          * Flush enough space to reduce the likelihood of waiting after
1955          * we start building the request - in which case we will just
1956          * have to repeat work.
1957          */
1958         request->reserved_space += LEGACY_REQUEST_SIZE;
1959
1960         ret = switch_context(request);
1961         if (ret)
1962                 return ret;
1963
1964         /* Unconditionally invalidate GPU caches and TLBs. */
1965         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1966         if (ret)
1967                 return ret;
1968
1969         request->reserved_space -= LEGACY_REQUEST_SIZE;
1970         return 0;
1971 }
1972
1973 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1974 {
1975         struct i915_request *target;
1976         long timeout;
1977
1978         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1979
1980         if (intel_ring_update_space(ring) >= bytes)
1981                 return 0;
1982
1983         GEM_BUG_ON(list_empty(&ring->request_list));
1984         list_for_each_entry(target, &ring->request_list, ring_link) {
1985                 /* Would completion of this request free enough space? */
1986                 if (bytes <= __intel_ring_space(target->postfix,
1987                                                 ring->emit, ring->size))
1988                         break;
1989         }
1990
1991         if (WARN_ON(&target->ring_link == &ring->request_list))
1992                 return -ENOSPC;
1993
1994         timeout = i915_request_wait(target,
1995                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1996                                     MAX_SCHEDULE_TIMEOUT);
1997         if (timeout < 0)
1998                 return timeout;
1999
2000         i915_request_retire_upto(target);
2001
2002         intel_ring_update_space(ring);
2003         GEM_BUG_ON(ring->space < bytes);
2004         return 0;
2005 }
2006
2007 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
2008 {
2009         struct intel_ring *ring = rq->ring;
2010         const unsigned int remain_usable = ring->effective_size - ring->emit;
2011         const unsigned int bytes = num_dwords * sizeof(u32);
2012         unsigned int need_wrap = 0;
2013         unsigned int total_bytes;
2014         u32 *cs;
2015
2016         /* Packets must be qword aligned. */
2017         GEM_BUG_ON(num_dwords & 1);
2018
2019         total_bytes = bytes + rq->reserved_space;
2020         GEM_BUG_ON(total_bytes > ring->effective_size);
2021
2022         if (unlikely(total_bytes > remain_usable)) {
2023                 const int remain_actual = ring->size - ring->emit;
2024
2025                 if (bytes > remain_usable) {
2026                         /*
2027                          * Not enough space for the basic request. So need to
2028                          * flush out the remainder and then wait for
2029                          * base + reserved.
2030                          */
2031                         total_bytes += remain_actual;
2032                         need_wrap = remain_actual | 1;
2033                 } else  {
2034                         /*
2035                          * The base request will fit but the reserved space
2036                          * falls off the end. So we don't need an immediate
2037                          * wrap and only need to effectively wait for the
2038                          * reserved size from the start of ringbuffer.
2039                          */
2040                         total_bytes = rq->reserved_space + remain_actual;
2041                 }
2042         }
2043
2044         if (unlikely(total_bytes > ring->space)) {
2045                 int ret;
2046
2047                 /*
2048                  * Space is reserved in the ringbuffer for finalising the
2049                  * request, as that cannot be allowed to fail. During request
2050                  * finalisation, reserved_space is set to 0 to stop the
2051                  * overallocation and the assumption is that then we never need
2052                  * to wait (which has the risk of failing with EINTR).
2053                  *
2054                  * See also i915_request_alloc() and i915_request_add().
2055                  */
2056                 GEM_BUG_ON(!rq->reserved_space);
2057
2058                 ret = wait_for_space(ring, total_bytes);
2059                 if (unlikely(ret))
2060                         return ERR_PTR(ret);
2061         }
2062
2063         if (unlikely(need_wrap)) {
2064                 need_wrap &= ~1;
2065                 GEM_BUG_ON(need_wrap > ring->space);
2066                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
2067                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
2068
2069                 /* Fill the tail with MI_NOOP */
2070                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
2071                 ring->space -= need_wrap;
2072                 ring->emit = 0;
2073         }
2074
2075         GEM_BUG_ON(ring->emit > ring->size - bytes);
2076         GEM_BUG_ON(ring->space < bytes);
2077         cs = ring->vaddr + ring->emit;
2078         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
2079         ring->emit += bytes;
2080         ring->space -= bytes;
2081
2082         return cs;
2083 }
2084
2085 /* Align the ring tail to a cacheline boundary */
2086 int intel_ring_cacheline_align(struct i915_request *rq)
2087 {
2088         int num_dwords;
2089         void *cs;
2090
2091         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
2092         if (num_dwords == 0)
2093                 return 0;
2094
2095         num_dwords = CACHELINE_DWORDS - num_dwords;
2096         GEM_BUG_ON(num_dwords & 1);
2097
2098         cs = intel_ring_begin(rq, num_dwords);
2099         if (IS_ERR(cs))
2100                 return PTR_ERR(cs);
2101
2102         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2103         intel_ring_advance(rq, cs);
2104
2105         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2106         return 0;
2107 }
2108
2109 static void gen6_bsd_submit_request(struct i915_request *request)
2110 {
2111         struct drm_i915_private *dev_priv = request->i915;
2112
2113         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2114
2115        /* Every tail move must follow the sequence below */
2116
2117         /* Disable notification that the ring is IDLE. The GT
2118          * will then assume that it is busy and bring it out of rc6.
2119          */
2120         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2121                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2122
2123         /* Clear the context id. Here be magic! */
2124         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2125
2126         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2127         if (__intel_wait_for_register_fw(dev_priv,
2128                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
2129                                          GEN6_BSD_SLEEP_INDICATOR,
2130                                          0,
2131                                          1000, 0, NULL))
2132                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2133
2134         /* Now that the ring is fully powered up, update the tail */
2135         i9xx_submit_request(request);
2136
2137         /* Let the ring send IDLE messages to the GT again,
2138          * and so let it sleep to conserve power when idle.
2139          */
2140         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2141                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2142
2143         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2144 }
2145
2146 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2147 {
2148         u32 cmd, *cs;
2149
2150         cs = intel_ring_begin(rq, 4);
2151         if (IS_ERR(cs))
2152                 return PTR_ERR(cs);
2153
2154         cmd = MI_FLUSH_DW;
2155
2156         /*
2157          * We always require a command barrier so that subsequent
2158          * commands, such as breadcrumb interrupts, are strictly ordered
2159          * wrt the contents of the write cache being flushed to memory
2160          * (and thus being coherent from the CPU).
2161          */
2162         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2163
2164         /*
2165          * Bspec vol 1c.3 - blitter engine command streamer:
2166          * "If ENABLED, all TLBs will be invalidated once the flush
2167          * operation is complete. This bit is only valid when the
2168          * Post-Sync Operation field is a value of 1h or 3h."
2169          */
2170         cmd |= flags;
2171
2172         *cs++ = cmd;
2173         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2174         *cs++ = 0;
2175         *cs++ = MI_NOOP;
2176
2177         intel_ring_advance(rq, cs);
2178
2179         return 0;
2180 }
2181
2182 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2183 {
2184         return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2185 }
2186
2187 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2188 {
2189         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2190 }
2191
2192 static int
2193 hsw_emit_bb_start(struct i915_request *rq,
2194                   u64 offset, u32 len,
2195                   unsigned int dispatch_flags)
2196 {
2197         u32 *cs;
2198
2199         cs = intel_ring_begin(rq, 2);
2200         if (IS_ERR(cs))
2201                 return PTR_ERR(cs);
2202
2203         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2204                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2205         /* bit0-7 is the length on GEN6+ */
2206         *cs++ = offset;
2207         intel_ring_advance(rq, cs);
2208
2209         return 0;
2210 }
2211
2212 static int
2213 gen6_emit_bb_start(struct i915_request *rq,
2214                    u64 offset, u32 len,
2215                    unsigned int dispatch_flags)
2216 {
2217         u32 *cs;
2218
2219         cs = intel_ring_begin(rq, 2);
2220         if (IS_ERR(cs))
2221                 return PTR_ERR(cs);
2222
2223         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2224                 0 : MI_BATCH_NON_SECURE_I965);
2225         /* bit0-7 is the length on GEN6+ */
2226         *cs++ = offset;
2227         intel_ring_advance(rq, cs);
2228
2229         return 0;
2230 }
2231
2232 /* Blitter support (SandyBridge+) */
2233
2234 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2235 {
2236         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2237 }
2238
2239 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2240                                 struct intel_engine_cs *engine)
2241 {
2242         if (INTEL_GEN(dev_priv) >= 6) {
2243                 engine->irq_enable = gen6_irq_enable;
2244                 engine->irq_disable = gen6_irq_disable;
2245         } else if (INTEL_GEN(dev_priv) >= 5) {
2246                 engine->irq_enable = gen5_irq_enable;
2247                 engine->irq_disable = gen5_irq_disable;
2248         } else if (INTEL_GEN(dev_priv) >= 3) {
2249                 engine->irq_enable = i9xx_irq_enable;
2250                 engine->irq_disable = i9xx_irq_disable;
2251         } else {
2252                 engine->irq_enable = i8xx_irq_enable;
2253                 engine->irq_disable = i8xx_irq_disable;
2254         }
2255 }
2256
2257 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2258 {
2259         engine->submit_request = i9xx_submit_request;
2260         engine->cancel_requests = cancel_requests;
2261
2262         engine->park = NULL;
2263         engine->unpark = NULL;
2264 }
2265
2266 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2267 {
2268         i9xx_set_default_submission(engine);
2269         engine->submit_request = gen6_bsd_submit_request;
2270 }
2271
2272 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2273                                       struct intel_engine_cs *engine)
2274 {
2275         /* gen8+ are only supported with execlists */
2276         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2277
2278         intel_ring_init_irq(dev_priv, engine);
2279
2280         engine->init_hw = init_ring_common;
2281         engine->reset.prepare = reset_prepare;
2282         engine->reset.reset = reset_ring;
2283         engine->reset.finish = reset_finish;
2284
2285         engine->context_pin = intel_ring_context_pin;
2286         engine->request_alloc = ring_request_alloc;
2287
2288         /*
2289          * Using a global execution timeline; the previous final breadcrumb is
2290          * equivalent to our next initial bread so we can elide
2291          * engine->emit_init_breadcrumb().
2292          */
2293         engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2294         if (IS_GEN(dev_priv, 5))
2295                 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2296
2297         engine->set_default_submission = i9xx_set_default_submission;
2298
2299         if (INTEL_GEN(dev_priv) >= 6)
2300                 engine->emit_bb_start = gen6_emit_bb_start;
2301         else if (INTEL_GEN(dev_priv) >= 4)
2302                 engine->emit_bb_start = i965_emit_bb_start;
2303         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2304                 engine->emit_bb_start = i830_emit_bb_start;
2305         else
2306                 engine->emit_bb_start = i915_emit_bb_start;
2307 }
2308
2309 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2310 {
2311         struct drm_i915_private *dev_priv = engine->i915;
2312         int ret;
2313
2314         intel_ring_default_vfuncs(dev_priv, engine);
2315
2316         if (HAS_L3_DPF(dev_priv))
2317                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2318
2319         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2320
2321         if (INTEL_GEN(dev_priv) >= 7) {
2322                 engine->init_context = intel_rcs_ctx_init;
2323                 engine->emit_flush = gen7_render_ring_flush;
2324                 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2325         } else if (IS_GEN(dev_priv, 6)) {
2326                 engine->init_context = intel_rcs_ctx_init;
2327                 engine->emit_flush = gen6_render_ring_flush;
2328                 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2329         } else if (IS_GEN(dev_priv, 5)) {
2330                 engine->emit_flush = gen4_render_ring_flush;
2331         } else {
2332                 if (INTEL_GEN(dev_priv) < 4)
2333                         engine->emit_flush = gen2_render_ring_flush;
2334                 else
2335                         engine->emit_flush = gen4_render_ring_flush;
2336                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2337         }
2338
2339         if (IS_HASWELL(dev_priv))
2340                 engine->emit_bb_start = hsw_emit_bb_start;
2341
2342         engine->init_hw = init_render_ring;
2343
2344         ret = intel_init_ring_buffer(engine);
2345         if (ret)
2346                 return ret;
2347
2348         return 0;
2349 }
2350
2351 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2352 {
2353         struct drm_i915_private *dev_priv = engine->i915;
2354
2355         intel_ring_default_vfuncs(dev_priv, engine);
2356
2357         if (INTEL_GEN(dev_priv) >= 6) {
2358                 /* gen6 bsd needs a special wa for tail updates */
2359                 if (IS_GEN(dev_priv, 6))
2360                         engine->set_default_submission = gen6_bsd_set_default_submission;
2361                 engine->emit_flush = gen6_bsd_ring_flush;
2362                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2363
2364                 if (IS_GEN(dev_priv, 6))
2365                         engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2366                 else
2367                         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2368         } else {
2369                 engine->emit_flush = bsd_ring_flush;
2370                 if (IS_GEN(dev_priv, 5))
2371                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2372                 else
2373                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2374         }
2375
2376         return intel_init_ring_buffer(engine);
2377 }
2378
2379 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2380 {
2381         struct drm_i915_private *dev_priv = engine->i915;
2382
2383         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2384
2385         intel_ring_default_vfuncs(dev_priv, engine);
2386
2387         engine->emit_flush = gen6_ring_flush;
2388         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2389
2390         if (IS_GEN(dev_priv, 6))
2391                 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2392         else
2393                 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2394
2395         return intel_init_ring_buffer(engine);
2396 }
2397
2398 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2399 {
2400         struct drm_i915_private *dev_priv = engine->i915;
2401
2402         GEM_BUG_ON(INTEL_GEN(dev_priv) < 7);
2403
2404         intel_ring_default_vfuncs(dev_priv, engine);
2405
2406         engine->emit_flush = gen6_ring_flush;
2407         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2408         engine->irq_enable = hsw_vebox_irq_enable;
2409         engine->irq_disable = hsw_vebox_irq_disable;
2410
2411         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2412
2413         return intel_init_ring_buffer(engine);
2414 }