Merge tag 'drm/panel/for-3.15-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         drm_i915_private_t *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         drm_i915_private_t *dev_priv = ring->dev->dev_private;
416         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417                         RING_ACTHD(ring->mmio_base) : ACTHD;
418
419         return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424         struct drm_i915_private *dev_priv = ring->dev->dev_private;
425         u32 addr;
426
427         addr = dev_priv->status_page_dmah->busaddr;
428         if (INTEL_INFO(ring->dev)->gen >= 4)
429                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430         I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435         struct drm_device *dev = ring->dev;
436         drm_i915_private_t *dev_priv = dev->dev_private;
437         struct drm_i915_gem_object *obj = ring->obj;
438         int ret = 0;
439         u32 head;
440
441         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443         /* Stop the ring if it's running. */
444         I915_WRITE_CTL(ring, 0);
445         I915_WRITE_HEAD(ring, 0);
446         ring->write_tail(ring, 0);
447         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
448                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
449
450         if (I915_NEED_GFX_HWS(dev))
451                 intel_ring_setup_status_page(ring);
452         else
453                 ring_setup_phys_status_page(ring);
454
455         head = I915_READ_HEAD(ring) & HEAD_ADDR;
456
457         /* G45 ring initialization fails to reset head to zero */
458         if (head != 0) {
459                 DRM_DEBUG_KMS("%s head not reset to zero "
460                               "ctl %08x head %08x tail %08x start %08x\n",
461                               ring->name,
462                               I915_READ_CTL(ring),
463                               I915_READ_HEAD(ring),
464                               I915_READ_TAIL(ring),
465                               I915_READ_START(ring));
466
467                 I915_WRITE_HEAD(ring, 0);
468
469                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
470                         DRM_ERROR("failed to set %s head to zero "
471                                   "ctl %08x head %08x tail %08x start %08x\n",
472                                   ring->name,
473                                   I915_READ_CTL(ring),
474                                   I915_READ_HEAD(ring),
475                                   I915_READ_TAIL(ring),
476                                   I915_READ_START(ring));
477                 }
478         }
479
480         /* Initialize the ring. This must happen _after_ we've cleared the ring
481          * registers with the above sequence (the readback of the HEAD registers
482          * also enforces ordering), otherwise the hw might lose the new ring
483          * register values. */
484         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
485         I915_WRITE_CTL(ring,
486                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
487                         | RING_VALID);
488
489         /* If the head is still not zero, the ring is dead */
490         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
491                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
492                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
493                 DRM_ERROR("%s initialization failed "
494                                 "ctl %08x head %08x tail %08x start %08x\n",
495                                 ring->name,
496                                 I915_READ_CTL(ring),
497                                 I915_READ_HEAD(ring),
498                                 I915_READ_TAIL(ring),
499                                 I915_READ_START(ring));
500                 ret = -EIO;
501                 goto out;
502         }
503
504         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
505                 i915_kernel_lost_context(ring->dev);
506         else {
507                 ring->head = I915_READ_HEAD(ring);
508                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
509                 ring->space = ring_space(ring);
510                 ring->last_retired_head = -1;
511         }
512
513         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
514
515 out:
516         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
517
518         return ret;
519 }
520
521 static int
522 init_pipe_control(struct intel_ring_buffer *ring)
523 {
524         int ret;
525
526         if (ring->scratch.obj)
527                 return 0;
528
529         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
530         if (ring->scratch.obj == NULL) {
531                 DRM_ERROR("Failed to allocate seqno page\n");
532                 ret = -ENOMEM;
533                 goto err;
534         }
535
536         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
537         if (ret)
538                 goto err_unref;
539
540         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
541         if (ret)
542                 goto err_unref;
543
544         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
545         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
546         if (ring->scratch.cpu_page == NULL) {
547                 ret = -ENOMEM;
548                 goto err_unpin;
549         }
550
551         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
552                          ring->name, ring->scratch.gtt_offset);
553         return 0;
554
555 err_unpin:
556         i915_gem_object_ggtt_unpin(ring->scratch.obj);
557 err_unref:
558         drm_gem_object_unreference(&ring->scratch.obj->base);
559 err:
560         return ret;
561 }
562
563 static int init_render_ring(struct intel_ring_buffer *ring)
564 {
565         struct drm_device *dev = ring->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         int ret = init_ring_common(ring);
568
569         if (INTEL_INFO(dev)->gen > 3)
570                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
571
572         /* We need to disable the AsyncFlip performance optimisations in order
573          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
574          * programmed to '1' on all products.
575          *
576          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
577          */
578         if (INTEL_INFO(dev)->gen >= 6)
579                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
580
581         /* Required for the hardware to program scanline values for waiting */
582         if (INTEL_INFO(dev)->gen == 6)
583                 I915_WRITE(GFX_MODE,
584                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
585
586         if (IS_GEN7(dev))
587                 I915_WRITE(GFX_MODE_GEN7,
588                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
589                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
590
591         if (INTEL_INFO(dev)->gen >= 5) {
592                 ret = init_pipe_control(ring);
593                 if (ret)
594                         return ret;
595         }
596
597         if (IS_GEN6(dev)) {
598                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
599                  * "If this bit is set, STCunit will have LRA as replacement
600                  *  policy. [...] This bit must be reset.  LRA replacement
601                  *  policy is not supported."
602                  */
603                 I915_WRITE(CACHE_MODE_0,
604                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
605
606                 /* This is not explicitly set for GEN6, so read the register.
607                  * see intel_ring_mi_set_context() for why we care.
608                  * TODO: consider explicitly setting the bit for GEN5
609                  */
610                 ring->itlb_before_ctx_switch =
611                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
612         }
613
614         if (INTEL_INFO(dev)->gen >= 6)
615                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
616
617         if (HAS_L3_DPF(dev))
618                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
619
620         return ret;
621 }
622
623 static void render_ring_cleanup(struct intel_ring_buffer *ring)
624 {
625         struct drm_device *dev = ring->dev;
626
627         if (ring->scratch.obj == NULL)
628                 return;
629
630         if (INTEL_INFO(dev)->gen >= 5) {
631                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
632                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
633         }
634
635         drm_gem_object_unreference(&ring->scratch.obj->base);
636         ring->scratch.obj = NULL;
637 }
638
639 static void
640 update_mboxes(struct intel_ring_buffer *ring,
641               u32 mmio_offset)
642 {
643 /* NB: In order to be able to do semaphore MBOX updates for varying number
644  * of rings, it's easiest if we round up each individual update to a
645  * multiple of 2 (since ring updates must always be a multiple of 2)
646  * even though the actual update only requires 3 dwords.
647  */
648 #define MBOX_UPDATE_DWORDS 4
649         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
650         intel_ring_emit(ring, mmio_offset);
651         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
652         intel_ring_emit(ring, MI_NOOP);
653 }
654
655 /**
656  * gen6_add_request - Update the semaphore mailbox registers
657  * 
658  * @ring - ring that is adding a request
659  * @seqno - return seqno stuck into the ring
660  *
661  * Update the mailbox registers in the *other* rings with the current seqno.
662  * This acts like a signal in the canonical semaphore.
663  */
664 static int
665 gen6_add_request(struct intel_ring_buffer *ring)
666 {
667         struct drm_device *dev = ring->dev;
668         struct drm_i915_private *dev_priv = dev->dev_private;
669         struct intel_ring_buffer *useless;
670         int i, ret, num_dwords = 4;
671
672         if (i915_semaphore_is_enabled(dev))
673                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
674 #undef MBOX_UPDATE_DWORDS
675
676         ret = intel_ring_begin(ring, num_dwords);
677         if (ret)
678                 return ret;
679
680         if (i915_semaphore_is_enabled(dev)) {
681                 for_each_ring(useless, dev_priv, i) {
682                         u32 mbox_reg = ring->signal_mbox[i];
683                         if (mbox_reg != GEN6_NOSYNC)
684                                 update_mboxes(ring, mbox_reg);
685                 }
686         }
687
688         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
689         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
690         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
691         intel_ring_emit(ring, MI_USER_INTERRUPT);
692         __intel_ring_advance(ring);
693
694         return 0;
695 }
696
697 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
698                                               u32 seqno)
699 {
700         struct drm_i915_private *dev_priv = dev->dev_private;
701         return dev_priv->last_seqno < seqno;
702 }
703
704 /**
705  * intel_ring_sync - sync the waiter to the signaller on seqno
706  *
707  * @waiter - ring that is waiting
708  * @signaller - ring which has, or will signal
709  * @seqno - seqno which the waiter will block on
710  */
711 static int
712 gen6_ring_sync(struct intel_ring_buffer *waiter,
713                struct intel_ring_buffer *signaller,
714                u32 seqno)
715 {
716         int ret;
717         u32 dw1 = MI_SEMAPHORE_MBOX |
718                   MI_SEMAPHORE_COMPARE |
719                   MI_SEMAPHORE_REGISTER;
720
721         /* Throughout all of the GEM code, seqno passed implies our current
722          * seqno is >= the last seqno executed. However for hardware the
723          * comparison is strictly greater than.
724          */
725         seqno -= 1;
726
727         WARN_ON(signaller->semaphore_register[waiter->id] ==
728                 MI_SEMAPHORE_SYNC_INVALID);
729
730         ret = intel_ring_begin(waiter, 4);
731         if (ret)
732                 return ret;
733
734         /* If seqno wrap happened, omit the wait with no-ops */
735         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
736                 intel_ring_emit(waiter,
737                                 dw1 |
738                                 signaller->semaphore_register[waiter->id]);
739                 intel_ring_emit(waiter, seqno);
740                 intel_ring_emit(waiter, 0);
741                 intel_ring_emit(waiter, MI_NOOP);
742         } else {
743                 intel_ring_emit(waiter, MI_NOOP);
744                 intel_ring_emit(waiter, MI_NOOP);
745                 intel_ring_emit(waiter, MI_NOOP);
746                 intel_ring_emit(waiter, MI_NOOP);
747         }
748         intel_ring_advance(waiter);
749
750         return 0;
751 }
752
753 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
754 do {                                                                    \
755         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
756                  PIPE_CONTROL_DEPTH_STALL);                             \
757         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
758         intel_ring_emit(ring__, 0);                                                     \
759         intel_ring_emit(ring__, 0);                                                     \
760 } while (0)
761
762 static int
763 pc_render_add_request(struct intel_ring_buffer *ring)
764 {
765         u32 scratch_addr = ring->scratch.gtt_offset + 128;
766         int ret;
767
768         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
769          * incoherent with writes to memory, i.e. completely fubar,
770          * so we need to use PIPE_NOTIFY instead.
771          *
772          * However, we also need to workaround the qword write
773          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
774          * memory before requesting an interrupt.
775          */
776         ret = intel_ring_begin(ring, 32);
777         if (ret)
778                 return ret;
779
780         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
781                         PIPE_CONTROL_WRITE_FLUSH |
782                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
783         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
785         intel_ring_emit(ring, 0);
786         PIPE_CONTROL_FLUSH(ring, scratch_addr);
787         scratch_addr += 128; /* write to separate cachelines */
788         PIPE_CONTROL_FLUSH(ring, scratch_addr);
789         scratch_addr += 128;
790         PIPE_CONTROL_FLUSH(ring, scratch_addr);
791         scratch_addr += 128;
792         PIPE_CONTROL_FLUSH(ring, scratch_addr);
793         scratch_addr += 128;
794         PIPE_CONTROL_FLUSH(ring, scratch_addr);
795         scratch_addr += 128;
796         PIPE_CONTROL_FLUSH(ring, scratch_addr);
797
798         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
799                         PIPE_CONTROL_WRITE_FLUSH |
800                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
801                         PIPE_CONTROL_NOTIFY);
802         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
803         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
804         intel_ring_emit(ring, 0);
805         __intel_ring_advance(ring);
806
807         return 0;
808 }
809
810 static u32
811 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
812 {
813         /* Workaround to force correct ordering between irq and seqno writes on
814          * ivb (and maybe also on snb) by reading from a CS register (like
815          * ACTHD) before reading the status page. */
816         if (!lazy_coherency)
817                 intel_ring_get_active_head(ring);
818         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
819 }
820
821 static u32
822 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
823 {
824         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
825 }
826
827 static void
828 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
829 {
830         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
831 }
832
833 static u32
834 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
835 {
836         return ring->scratch.cpu_page[0];
837 }
838
839 static void
840 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
841 {
842         ring->scratch.cpu_page[0] = seqno;
843 }
844
845 static bool
846 gen5_ring_get_irq(struct intel_ring_buffer *ring)
847 {
848         struct drm_device *dev = ring->dev;
849         drm_i915_private_t *dev_priv = dev->dev_private;
850         unsigned long flags;
851
852         if (!dev->irq_enabled)
853                 return false;
854
855         spin_lock_irqsave(&dev_priv->irq_lock, flags);
856         if (ring->irq_refcount++ == 0)
857                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
858         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
859
860         return true;
861 }
862
863 static void
864 gen5_ring_put_irq(struct intel_ring_buffer *ring)
865 {
866         struct drm_device *dev = ring->dev;
867         drm_i915_private_t *dev_priv = dev->dev_private;
868         unsigned long flags;
869
870         spin_lock_irqsave(&dev_priv->irq_lock, flags);
871         if (--ring->irq_refcount == 0)
872                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
873         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
874 }
875
876 static bool
877 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
878 {
879         struct drm_device *dev = ring->dev;
880         drm_i915_private_t *dev_priv = dev->dev_private;
881         unsigned long flags;
882
883         if (!dev->irq_enabled)
884                 return false;
885
886         spin_lock_irqsave(&dev_priv->irq_lock, flags);
887         if (ring->irq_refcount++ == 0) {
888                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
889                 I915_WRITE(IMR, dev_priv->irq_mask);
890                 POSTING_READ(IMR);
891         }
892         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
893
894         return true;
895 }
896
897 static void
898 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
899 {
900         struct drm_device *dev = ring->dev;
901         drm_i915_private_t *dev_priv = dev->dev_private;
902         unsigned long flags;
903
904         spin_lock_irqsave(&dev_priv->irq_lock, flags);
905         if (--ring->irq_refcount == 0) {
906                 dev_priv->irq_mask |= ring->irq_enable_mask;
907                 I915_WRITE(IMR, dev_priv->irq_mask);
908                 POSTING_READ(IMR);
909         }
910         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
911 }
912
913 static bool
914 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
915 {
916         struct drm_device *dev = ring->dev;
917         drm_i915_private_t *dev_priv = dev->dev_private;
918         unsigned long flags;
919
920         if (!dev->irq_enabled)
921                 return false;
922
923         spin_lock_irqsave(&dev_priv->irq_lock, flags);
924         if (ring->irq_refcount++ == 0) {
925                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
926                 I915_WRITE16(IMR, dev_priv->irq_mask);
927                 POSTING_READ16(IMR);
928         }
929         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
930
931         return true;
932 }
933
934 static void
935 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
936 {
937         struct drm_device *dev = ring->dev;
938         drm_i915_private_t *dev_priv = dev->dev_private;
939         unsigned long flags;
940
941         spin_lock_irqsave(&dev_priv->irq_lock, flags);
942         if (--ring->irq_refcount == 0) {
943                 dev_priv->irq_mask |= ring->irq_enable_mask;
944                 I915_WRITE16(IMR, dev_priv->irq_mask);
945                 POSTING_READ16(IMR);
946         }
947         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
948 }
949
950 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
951 {
952         struct drm_device *dev = ring->dev;
953         drm_i915_private_t *dev_priv = ring->dev->dev_private;
954         u32 mmio = 0;
955
956         /* The ring status page addresses are no longer next to the rest of
957          * the ring registers as of gen7.
958          */
959         if (IS_GEN7(dev)) {
960                 switch (ring->id) {
961                 case RCS:
962                         mmio = RENDER_HWS_PGA_GEN7;
963                         break;
964                 case BCS:
965                         mmio = BLT_HWS_PGA_GEN7;
966                         break;
967                 case VCS:
968                         mmio = BSD_HWS_PGA_GEN7;
969                         break;
970                 case VECS:
971                         mmio = VEBOX_HWS_PGA_GEN7;
972                         break;
973                 }
974         } else if (IS_GEN6(ring->dev)) {
975                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
976         } else {
977                 /* XXX: gen8 returns to sanity */
978                 mmio = RING_HWS_PGA(ring->mmio_base);
979         }
980
981         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
982         POSTING_READ(mmio);
983
984         /*
985          * Flush the TLB for this page
986          *
987          * FIXME: These two bits have disappeared on gen8, so a question
988          * arises: do we still need this and if so how should we go about
989          * invalidating the TLB?
990          */
991         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
992                 u32 reg = RING_INSTPM(ring->mmio_base);
993
994                 /* ring should be idle before issuing a sync flush*/
995                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
996
997                 I915_WRITE(reg,
998                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
999                                               INSTPM_SYNC_FLUSH));
1000                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1001                              1000))
1002                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1003                                   ring->name);
1004         }
1005 }
1006
1007 static int
1008 bsd_ring_flush(struct intel_ring_buffer *ring,
1009                u32     invalidate_domains,
1010                u32     flush_domains)
1011 {
1012         int ret;
1013
1014         ret = intel_ring_begin(ring, 2);
1015         if (ret)
1016                 return ret;
1017
1018         intel_ring_emit(ring, MI_FLUSH);
1019         intel_ring_emit(ring, MI_NOOP);
1020         intel_ring_advance(ring);
1021         return 0;
1022 }
1023
1024 static int
1025 i9xx_add_request(struct intel_ring_buffer *ring)
1026 {
1027         int ret;
1028
1029         ret = intel_ring_begin(ring, 4);
1030         if (ret)
1031                 return ret;
1032
1033         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1034         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1035         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1036         intel_ring_emit(ring, MI_USER_INTERRUPT);
1037         __intel_ring_advance(ring);
1038
1039         return 0;
1040 }
1041
1042 static bool
1043 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1044 {
1045         struct drm_device *dev = ring->dev;
1046         drm_i915_private_t *dev_priv = dev->dev_private;
1047         unsigned long flags;
1048
1049         if (!dev->irq_enabled)
1050                return false;
1051
1052         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1053         if (ring->irq_refcount++ == 0) {
1054                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1055                         I915_WRITE_IMR(ring,
1056                                        ~(ring->irq_enable_mask |
1057                                          GT_PARITY_ERROR(dev)));
1058                 else
1059                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1060                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1061         }
1062         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1063
1064         return true;
1065 }
1066
1067 static void
1068 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1069 {
1070         struct drm_device *dev = ring->dev;
1071         drm_i915_private_t *dev_priv = dev->dev_private;
1072         unsigned long flags;
1073
1074         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1075         if (--ring->irq_refcount == 0) {
1076                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1077                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1078                 else
1079                         I915_WRITE_IMR(ring, ~0);
1080                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1081         }
1082         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1083 }
1084
1085 static bool
1086 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1087 {
1088         struct drm_device *dev = ring->dev;
1089         struct drm_i915_private *dev_priv = dev->dev_private;
1090         unsigned long flags;
1091
1092         if (!dev->irq_enabled)
1093                 return false;
1094
1095         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1096         if (ring->irq_refcount++ == 0) {
1097                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1098                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1099         }
1100         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1101
1102         return true;
1103 }
1104
1105 static void
1106 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1107 {
1108         struct drm_device *dev = ring->dev;
1109         struct drm_i915_private *dev_priv = dev->dev_private;
1110         unsigned long flags;
1111
1112         if (!dev->irq_enabled)
1113                 return;
1114
1115         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1116         if (--ring->irq_refcount == 0) {
1117                 I915_WRITE_IMR(ring, ~0);
1118                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1119         }
1120         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1121 }
1122
1123 static bool
1124 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1125 {
1126         struct drm_device *dev = ring->dev;
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128         unsigned long flags;
1129
1130         if (!dev->irq_enabled)
1131                 return false;
1132
1133         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1134         if (ring->irq_refcount++ == 0) {
1135                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1136                         I915_WRITE_IMR(ring,
1137                                        ~(ring->irq_enable_mask |
1138                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1139                 } else {
1140                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1141                 }
1142                 POSTING_READ(RING_IMR(ring->mmio_base));
1143         }
1144         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1145
1146         return true;
1147 }
1148
1149 static void
1150 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1151 {
1152         struct drm_device *dev = ring->dev;
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         unsigned long flags;
1155
1156         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1157         if (--ring->irq_refcount == 0) {
1158                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1159                         I915_WRITE_IMR(ring,
1160                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1161                 } else {
1162                         I915_WRITE_IMR(ring, ~0);
1163                 }
1164                 POSTING_READ(RING_IMR(ring->mmio_base));
1165         }
1166         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1167 }
1168
1169 static int
1170 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1171                          u32 offset, u32 length,
1172                          unsigned flags)
1173 {
1174         int ret;
1175
1176         ret = intel_ring_begin(ring, 2);
1177         if (ret)
1178                 return ret;
1179
1180         intel_ring_emit(ring,
1181                         MI_BATCH_BUFFER_START |
1182                         MI_BATCH_GTT |
1183                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1184         intel_ring_emit(ring, offset);
1185         intel_ring_advance(ring);
1186
1187         return 0;
1188 }
1189
1190 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1191 #define I830_BATCH_LIMIT (256*1024)
1192 static int
1193 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1194                                 u32 offset, u32 len,
1195                                 unsigned flags)
1196 {
1197         int ret;
1198
1199         if (flags & I915_DISPATCH_PINNED) {
1200                 ret = intel_ring_begin(ring, 4);
1201                 if (ret)
1202                         return ret;
1203
1204                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1205                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1206                 intel_ring_emit(ring, offset + len - 8);
1207                 intel_ring_emit(ring, MI_NOOP);
1208                 intel_ring_advance(ring);
1209         } else {
1210                 u32 cs_offset = ring->scratch.gtt_offset;
1211
1212                 if (len > I830_BATCH_LIMIT)
1213                         return -ENOSPC;
1214
1215                 ret = intel_ring_begin(ring, 9+3);
1216                 if (ret)
1217                         return ret;
1218                 /* Blit the batch (which has now all relocs applied) to the stable batch
1219                  * scratch bo area (so that the CS never stumbles over its tlb
1220                  * invalidation bug) ... */
1221                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1222                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1223                                 XY_SRC_COPY_BLT_WRITE_RGB);
1224                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1225                 intel_ring_emit(ring, 0);
1226                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1227                 intel_ring_emit(ring, cs_offset);
1228                 intel_ring_emit(ring, 0);
1229                 intel_ring_emit(ring, 4096);
1230                 intel_ring_emit(ring, offset);
1231                 intel_ring_emit(ring, MI_FLUSH);
1232
1233                 /* ... and execute it. */
1234                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1235                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1236                 intel_ring_emit(ring, cs_offset + len - 8);
1237                 intel_ring_advance(ring);
1238         }
1239
1240         return 0;
1241 }
1242
1243 static int
1244 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1245                          u32 offset, u32 len,
1246                          unsigned flags)
1247 {
1248         int ret;
1249
1250         ret = intel_ring_begin(ring, 2);
1251         if (ret)
1252                 return ret;
1253
1254         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1255         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1256         intel_ring_advance(ring);
1257
1258         return 0;
1259 }
1260
1261 static void cleanup_status_page(struct intel_ring_buffer *ring)
1262 {
1263         struct drm_i915_gem_object *obj;
1264
1265         obj = ring->status_page.obj;
1266         if (obj == NULL)
1267                 return;
1268
1269         kunmap(sg_page(obj->pages->sgl));
1270         i915_gem_object_ggtt_unpin(obj);
1271         drm_gem_object_unreference(&obj->base);
1272         ring->status_page.obj = NULL;
1273 }
1274
1275 static int init_status_page(struct intel_ring_buffer *ring)
1276 {
1277         struct drm_device *dev = ring->dev;
1278         struct drm_i915_gem_object *obj;
1279         int ret;
1280
1281         obj = i915_gem_alloc_object(dev, 4096);
1282         if (obj == NULL) {
1283                 DRM_ERROR("Failed to allocate status page\n");
1284                 ret = -ENOMEM;
1285                 goto err;
1286         }
1287
1288         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1289         if (ret)
1290                 goto err_unref;
1291
1292         ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1293         if (ret)
1294                 goto err_unref;
1295
1296         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1297         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1298         if (ring->status_page.page_addr == NULL) {
1299                 ret = -ENOMEM;
1300                 goto err_unpin;
1301         }
1302         ring->status_page.obj = obj;
1303         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1304
1305         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1306                         ring->name, ring->status_page.gfx_addr);
1307
1308         return 0;
1309
1310 err_unpin:
1311         i915_gem_object_ggtt_unpin(obj);
1312 err_unref:
1313         drm_gem_object_unreference(&obj->base);
1314 err:
1315         return ret;
1316 }
1317
1318 static int init_phys_status_page(struct intel_ring_buffer *ring)
1319 {
1320         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1321
1322         if (!dev_priv->status_page_dmah) {
1323                 dev_priv->status_page_dmah =
1324                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1325                 if (!dev_priv->status_page_dmah)
1326                         return -ENOMEM;
1327         }
1328
1329         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1330         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1331
1332         return 0;
1333 }
1334
1335 static int intel_init_ring_buffer(struct drm_device *dev,
1336                                   struct intel_ring_buffer *ring)
1337 {
1338         struct drm_i915_gem_object *obj;
1339         struct drm_i915_private *dev_priv = dev->dev_private;
1340         int ret;
1341
1342         ring->dev = dev;
1343         INIT_LIST_HEAD(&ring->active_list);
1344         INIT_LIST_HEAD(&ring->request_list);
1345         ring->size = 32 * PAGE_SIZE;
1346         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1347
1348         init_waitqueue_head(&ring->irq_queue);
1349
1350         if (I915_NEED_GFX_HWS(dev)) {
1351                 ret = init_status_page(ring);
1352                 if (ret)
1353                         return ret;
1354         } else {
1355                 BUG_ON(ring->id != RCS);
1356                 ret = init_phys_status_page(ring);
1357                 if (ret)
1358                         return ret;
1359         }
1360
1361         obj = NULL;
1362         if (!HAS_LLC(dev))
1363                 obj = i915_gem_object_create_stolen(dev, ring->size);
1364         if (obj == NULL)
1365                 obj = i915_gem_alloc_object(dev, ring->size);
1366         if (obj == NULL) {
1367                 DRM_ERROR("Failed to allocate ringbuffer\n");
1368                 ret = -ENOMEM;
1369                 goto err_hws;
1370         }
1371
1372         ring->obj = obj;
1373
1374         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1375         if (ret)
1376                 goto err_unref;
1377
1378         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1379         if (ret)
1380                 goto err_unpin;
1381
1382         ring->virtual_start =
1383                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1384                            ring->size);
1385         if (ring->virtual_start == NULL) {
1386                 DRM_ERROR("Failed to map ringbuffer.\n");
1387                 ret = -EINVAL;
1388                 goto err_unpin;
1389         }
1390
1391         ret = ring->init(ring);
1392         if (ret)
1393                 goto err_unmap;
1394
1395         /* Workaround an erratum on the i830 which causes a hang if
1396          * the TAIL pointer points to within the last 2 cachelines
1397          * of the buffer.
1398          */
1399         ring->effective_size = ring->size;
1400         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1401                 ring->effective_size -= 128;
1402
1403         i915_cmd_parser_init_ring(ring);
1404
1405         return 0;
1406
1407 err_unmap:
1408         iounmap(ring->virtual_start);
1409 err_unpin:
1410         i915_gem_object_ggtt_unpin(obj);
1411 err_unref:
1412         drm_gem_object_unreference(&obj->base);
1413         ring->obj = NULL;
1414 err_hws:
1415         cleanup_status_page(ring);
1416         return ret;
1417 }
1418
1419 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1420 {
1421         struct drm_i915_private *dev_priv;
1422         int ret;
1423
1424         if (ring->obj == NULL)
1425                 return;
1426
1427         /* Disable the ring buffer. The ring must be idle at this point */
1428         dev_priv = ring->dev->dev_private;
1429         ret = intel_ring_idle(ring);
1430         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1431                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1432                           ring->name, ret);
1433
1434         I915_WRITE_CTL(ring, 0);
1435
1436         iounmap(ring->virtual_start);
1437
1438         i915_gem_object_ggtt_unpin(ring->obj);
1439         drm_gem_object_unreference(&ring->obj->base);
1440         ring->obj = NULL;
1441         ring->preallocated_lazy_request = NULL;
1442         ring->outstanding_lazy_seqno = 0;
1443
1444         if (ring->cleanup)
1445                 ring->cleanup(ring);
1446
1447         cleanup_status_page(ring);
1448 }
1449
1450 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1451 {
1452         struct drm_i915_gem_request *request;
1453         u32 seqno = 0, tail;
1454         int ret;
1455
1456         if (ring->last_retired_head != -1) {
1457                 ring->head = ring->last_retired_head;
1458                 ring->last_retired_head = -1;
1459
1460                 ring->space = ring_space(ring);
1461                 if (ring->space >= n)
1462                         return 0;
1463         }
1464
1465         list_for_each_entry(request, &ring->request_list, list) {
1466                 int space;
1467
1468                 if (request->tail == -1)
1469                         continue;
1470
1471                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1472                 if (space < 0)
1473                         space += ring->size;
1474                 if (space >= n) {
1475                         seqno = request->seqno;
1476                         tail = request->tail;
1477                         break;
1478                 }
1479
1480                 /* Consume this request in case we need more space than
1481                  * is available and so need to prevent a race between
1482                  * updating last_retired_head and direct reads of
1483                  * I915_RING_HEAD. It also provides a nice sanity check.
1484                  */
1485                 request->tail = -1;
1486         }
1487
1488         if (seqno == 0)
1489                 return -ENOSPC;
1490
1491         ret = i915_wait_seqno(ring, seqno);
1492         if (ret)
1493                 return ret;
1494
1495         ring->head = tail;
1496         ring->space = ring_space(ring);
1497         if (WARN_ON(ring->space < n))
1498                 return -ENOSPC;
1499
1500         return 0;
1501 }
1502
1503 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1504 {
1505         struct drm_device *dev = ring->dev;
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         unsigned long end;
1508         int ret;
1509
1510         ret = intel_ring_wait_request(ring, n);
1511         if (ret != -ENOSPC)
1512                 return ret;
1513
1514         /* force the tail write in case we have been skipping them */
1515         __intel_ring_advance(ring);
1516
1517         trace_i915_ring_wait_begin(ring);
1518         /* With GEM the hangcheck timer should kick us out of the loop,
1519          * leaving it early runs the risk of corrupting GEM state (due
1520          * to running on almost untested codepaths). But on resume
1521          * timers don't work yet, so prevent a complete hang in that
1522          * case by choosing an insanely large timeout. */
1523         end = jiffies + 60 * HZ;
1524
1525         do {
1526                 ring->head = I915_READ_HEAD(ring);
1527                 ring->space = ring_space(ring);
1528                 if (ring->space >= n) {
1529                         trace_i915_ring_wait_end(ring);
1530                         return 0;
1531                 }
1532
1533                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1534                     dev->primary->master) {
1535                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1536                         if (master_priv->sarea_priv)
1537                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1538                 }
1539
1540                 msleep(1);
1541
1542                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1543                                            dev_priv->mm.interruptible);
1544                 if (ret)
1545                         return ret;
1546         } while (!time_after(jiffies, end));
1547         trace_i915_ring_wait_end(ring);
1548         return -EBUSY;
1549 }
1550
1551 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1552 {
1553         uint32_t __iomem *virt;
1554         int rem = ring->size - ring->tail;
1555
1556         if (ring->space < rem) {
1557                 int ret = ring_wait_for_space(ring, rem);
1558                 if (ret)
1559                         return ret;
1560         }
1561
1562         virt = ring->virtual_start + ring->tail;
1563         rem /= 4;
1564         while (rem--)
1565                 iowrite32(MI_NOOP, virt++);
1566
1567         ring->tail = 0;
1568         ring->space = ring_space(ring);
1569
1570         return 0;
1571 }
1572
1573 int intel_ring_idle(struct intel_ring_buffer *ring)
1574 {
1575         u32 seqno;
1576         int ret;
1577
1578         /* We need to add any requests required to flush the objects and ring */
1579         if (ring->outstanding_lazy_seqno) {
1580                 ret = i915_add_request(ring, NULL);
1581                 if (ret)
1582                         return ret;
1583         }
1584
1585         /* Wait upon the last request to be completed */
1586         if (list_empty(&ring->request_list))
1587                 return 0;
1588
1589         seqno = list_entry(ring->request_list.prev,
1590                            struct drm_i915_gem_request,
1591                            list)->seqno;
1592
1593         return i915_wait_seqno(ring, seqno);
1594 }
1595
1596 static int
1597 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1598 {
1599         if (ring->outstanding_lazy_seqno)
1600                 return 0;
1601
1602         if (ring->preallocated_lazy_request == NULL) {
1603                 struct drm_i915_gem_request *request;
1604
1605                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1606                 if (request == NULL)
1607                         return -ENOMEM;
1608
1609                 ring->preallocated_lazy_request = request;
1610         }
1611
1612         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1613 }
1614
1615 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1616                                 int bytes)
1617 {
1618         int ret;
1619
1620         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1621                 ret = intel_wrap_ring_buffer(ring);
1622                 if (unlikely(ret))
1623                         return ret;
1624         }
1625
1626         if (unlikely(ring->space < bytes)) {
1627                 ret = ring_wait_for_space(ring, bytes);
1628                 if (unlikely(ret))
1629                         return ret;
1630         }
1631
1632         return 0;
1633 }
1634
1635 int intel_ring_begin(struct intel_ring_buffer *ring,
1636                      int num_dwords)
1637 {
1638         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1639         int ret;
1640
1641         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1642                                    dev_priv->mm.interruptible);
1643         if (ret)
1644                 return ret;
1645
1646         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1647         if (ret)
1648                 return ret;
1649
1650         /* Preallocate the olr before touching the ring */
1651         ret = intel_ring_alloc_seqno(ring);
1652         if (ret)
1653                 return ret;
1654
1655         ring->space -= num_dwords * sizeof(uint32_t);
1656         return 0;
1657 }
1658
1659 /* Align the ring tail to a cacheline boundary */
1660 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1661 {
1662         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1663         int ret;
1664
1665         if (num_dwords == 0)
1666                 return 0;
1667
1668         ret = intel_ring_begin(ring, num_dwords);
1669         if (ret)
1670                 return ret;
1671
1672         while (num_dwords--)
1673                 intel_ring_emit(ring, MI_NOOP);
1674
1675         intel_ring_advance(ring);
1676
1677         return 0;
1678 }
1679
1680 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1681 {
1682         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1683
1684         BUG_ON(ring->outstanding_lazy_seqno);
1685
1686         if (INTEL_INFO(ring->dev)->gen >= 6) {
1687                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1688                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1689                 if (HAS_VEBOX(ring->dev))
1690                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1691         }
1692
1693         ring->set_seqno(ring, seqno);
1694         ring->hangcheck.seqno = seqno;
1695 }
1696
1697 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1698                                      u32 value)
1699 {
1700         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1701
1702        /* Every tail move must follow the sequence below */
1703
1704         /* Disable notification that the ring is IDLE. The GT
1705          * will then assume that it is busy and bring it out of rc6.
1706          */
1707         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1708                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1709
1710         /* Clear the context id. Here be magic! */
1711         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1712
1713         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1714         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1715                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1716                      50))
1717                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1718
1719         /* Now that the ring is fully powered up, update the tail */
1720         I915_WRITE_TAIL(ring, value);
1721         POSTING_READ(RING_TAIL(ring->mmio_base));
1722
1723         /* Let the ring send IDLE messages to the GT again,
1724          * and so let it sleep to conserve power when idle.
1725          */
1726         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1727                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1728 }
1729
1730 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1731                                u32 invalidate, u32 flush)
1732 {
1733         uint32_t cmd;
1734         int ret;
1735
1736         ret = intel_ring_begin(ring, 4);
1737         if (ret)
1738                 return ret;
1739
1740         cmd = MI_FLUSH_DW;
1741         if (INTEL_INFO(ring->dev)->gen >= 8)
1742                 cmd += 1;
1743         /*
1744          * Bspec vol 1c.5 - video engine command streamer:
1745          * "If ENABLED, all TLBs will be invalidated once the flush
1746          * operation is complete. This bit is only valid when the
1747          * Post-Sync Operation field is a value of 1h or 3h."
1748          */
1749         if (invalidate & I915_GEM_GPU_DOMAINS)
1750                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1751                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1752         intel_ring_emit(ring, cmd);
1753         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1754         if (INTEL_INFO(ring->dev)->gen >= 8) {
1755                 intel_ring_emit(ring, 0); /* upper addr */
1756                 intel_ring_emit(ring, 0); /* value */
1757         } else  {
1758                 intel_ring_emit(ring, 0);
1759                 intel_ring_emit(ring, MI_NOOP);
1760         }
1761         intel_ring_advance(ring);
1762         return 0;
1763 }
1764
1765 static int
1766 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1767                               u32 offset, u32 len,
1768                               unsigned flags)
1769 {
1770         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1771         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1772                 !(flags & I915_DISPATCH_SECURE);
1773         int ret;
1774
1775         ret = intel_ring_begin(ring, 4);
1776         if (ret)
1777                 return ret;
1778
1779         /* FIXME(BDW): Address space and security selectors. */
1780         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1781         intel_ring_emit(ring, offset);
1782         intel_ring_emit(ring, 0);
1783         intel_ring_emit(ring, MI_NOOP);
1784         intel_ring_advance(ring);
1785
1786         return 0;
1787 }
1788
1789 static int
1790 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1791                               u32 offset, u32 len,
1792                               unsigned flags)
1793 {
1794         int ret;
1795
1796         ret = intel_ring_begin(ring, 2);
1797         if (ret)
1798                 return ret;
1799
1800         intel_ring_emit(ring,
1801                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1802                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1803         /* bit0-7 is the length on GEN6+ */
1804         intel_ring_emit(ring, offset);
1805         intel_ring_advance(ring);
1806
1807         return 0;
1808 }
1809
1810 static int
1811 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1812                               u32 offset, u32 len,
1813                               unsigned flags)
1814 {
1815         int ret;
1816
1817         ret = intel_ring_begin(ring, 2);
1818         if (ret)
1819                 return ret;
1820
1821         intel_ring_emit(ring,
1822                         MI_BATCH_BUFFER_START |
1823                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1824         /* bit0-7 is the length on GEN6+ */
1825         intel_ring_emit(ring, offset);
1826         intel_ring_advance(ring);
1827
1828         return 0;
1829 }
1830
1831 /* Blitter support (SandyBridge+) */
1832
1833 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1834                            u32 invalidate, u32 flush)
1835 {
1836         struct drm_device *dev = ring->dev;
1837         uint32_t cmd;
1838         int ret;
1839
1840         ret = intel_ring_begin(ring, 4);
1841         if (ret)
1842                 return ret;
1843
1844         cmd = MI_FLUSH_DW;
1845         if (INTEL_INFO(ring->dev)->gen >= 8)
1846                 cmd += 1;
1847         /*
1848          * Bspec vol 1c.3 - blitter engine command streamer:
1849          * "If ENABLED, all TLBs will be invalidated once the flush
1850          * operation is complete. This bit is only valid when the
1851          * Post-Sync Operation field is a value of 1h or 3h."
1852          */
1853         if (invalidate & I915_GEM_DOMAIN_RENDER)
1854                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1855                         MI_FLUSH_DW_OP_STOREDW;
1856         intel_ring_emit(ring, cmd);
1857         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1858         if (INTEL_INFO(ring->dev)->gen >= 8) {
1859                 intel_ring_emit(ring, 0); /* upper addr */
1860                 intel_ring_emit(ring, 0); /* value */
1861         } else  {
1862                 intel_ring_emit(ring, 0);
1863                 intel_ring_emit(ring, MI_NOOP);
1864         }
1865         intel_ring_advance(ring);
1866
1867         if (IS_GEN7(dev) && !invalidate && flush)
1868                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1869
1870         return 0;
1871 }
1872
1873 int intel_init_render_ring_buffer(struct drm_device *dev)
1874 {
1875         drm_i915_private_t *dev_priv = dev->dev_private;
1876         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1877
1878         ring->name = "render ring";
1879         ring->id = RCS;
1880         ring->mmio_base = RENDER_RING_BASE;
1881
1882         if (INTEL_INFO(dev)->gen >= 6) {
1883                 ring->add_request = gen6_add_request;
1884                 ring->flush = gen7_render_ring_flush;
1885                 if (INTEL_INFO(dev)->gen == 6)
1886                         ring->flush = gen6_render_ring_flush;
1887                 if (INTEL_INFO(dev)->gen >= 8) {
1888                         ring->flush = gen8_render_ring_flush;
1889                         ring->irq_get = gen8_ring_get_irq;
1890                         ring->irq_put = gen8_ring_put_irq;
1891                 } else {
1892                         ring->irq_get = gen6_ring_get_irq;
1893                         ring->irq_put = gen6_ring_put_irq;
1894                 }
1895                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1896                 ring->get_seqno = gen6_ring_get_seqno;
1897                 ring->set_seqno = ring_set_seqno;
1898                 ring->sync_to = gen6_ring_sync;
1899                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1900                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1901                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1902                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1903                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1904                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1905                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1906                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1907         } else if (IS_GEN5(dev)) {
1908                 ring->add_request = pc_render_add_request;
1909                 ring->flush = gen4_render_ring_flush;
1910                 ring->get_seqno = pc_render_get_seqno;
1911                 ring->set_seqno = pc_render_set_seqno;
1912                 ring->irq_get = gen5_ring_get_irq;
1913                 ring->irq_put = gen5_ring_put_irq;
1914                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1915                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1916         } else {
1917                 ring->add_request = i9xx_add_request;
1918                 if (INTEL_INFO(dev)->gen < 4)
1919                         ring->flush = gen2_render_ring_flush;
1920                 else
1921                         ring->flush = gen4_render_ring_flush;
1922                 ring->get_seqno = ring_get_seqno;
1923                 ring->set_seqno = ring_set_seqno;
1924                 if (IS_GEN2(dev)) {
1925                         ring->irq_get = i8xx_ring_get_irq;
1926                         ring->irq_put = i8xx_ring_put_irq;
1927                 } else {
1928                         ring->irq_get = i9xx_ring_get_irq;
1929                         ring->irq_put = i9xx_ring_put_irq;
1930                 }
1931                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1932         }
1933         ring->write_tail = ring_write_tail;
1934         if (IS_HASWELL(dev))
1935                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1936         else if (IS_GEN8(dev))
1937                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1938         else if (INTEL_INFO(dev)->gen >= 6)
1939                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1940         else if (INTEL_INFO(dev)->gen >= 4)
1941                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1942         else if (IS_I830(dev) || IS_845G(dev))
1943                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1944         else
1945                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1946         ring->init = init_render_ring;
1947         ring->cleanup = render_ring_cleanup;
1948
1949         /* Workaround batchbuffer to combat CS tlb bug. */
1950         if (HAS_BROKEN_CS_TLB(dev)) {
1951                 struct drm_i915_gem_object *obj;
1952                 int ret;
1953
1954                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1955                 if (obj == NULL) {
1956                         DRM_ERROR("Failed to allocate batch bo\n");
1957                         return -ENOMEM;
1958                 }
1959
1960                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1961                 if (ret != 0) {
1962                         drm_gem_object_unreference(&obj->base);
1963                         DRM_ERROR("Failed to ping batch bo\n");
1964                         return ret;
1965                 }
1966
1967                 ring->scratch.obj = obj;
1968                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1969         }
1970
1971         return intel_init_ring_buffer(dev, ring);
1972 }
1973
1974 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1975 {
1976         drm_i915_private_t *dev_priv = dev->dev_private;
1977         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1978         int ret;
1979
1980         ring->name = "render ring";
1981         ring->id = RCS;
1982         ring->mmio_base = RENDER_RING_BASE;
1983
1984         if (INTEL_INFO(dev)->gen >= 6) {
1985                 /* non-kms not supported on gen6+ */
1986                 return -ENODEV;
1987         }
1988
1989         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1990          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1991          * the special gen5 functions. */
1992         ring->add_request = i9xx_add_request;
1993         if (INTEL_INFO(dev)->gen < 4)
1994                 ring->flush = gen2_render_ring_flush;
1995         else
1996                 ring->flush = gen4_render_ring_flush;
1997         ring->get_seqno = ring_get_seqno;
1998         ring->set_seqno = ring_set_seqno;
1999         if (IS_GEN2(dev)) {
2000                 ring->irq_get = i8xx_ring_get_irq;
2001                 ring->irq_put = i8xx_ring_put_irq;
2002         } else {
2003                 ring->irq_get = i9xx_ring_get_irq;
2004                 ring->irq_put = i9xx_ring_put_irq;
2005         }
2006         ring->irq_enable_mask = I915_USER_INTERRUPT;
2007         ring->write_tail = ring_write_tail;
2008         if (INTEL_INFO(dev)->gen >= 4)
2009                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2010         else if (IS_I830(dev) || IS_845G(dev))
2011                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2012         else
2013                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2014         ring->init = init_render_ring;
2015         ring->cleanup = render_ring_cleanup;
2016
2017         ring->dev = dev;
2018         INIT_LIST_HEAD(&ring->active_list);
2019         INIT_LIST_HEAD(&ring->request_list);
2020
2021         ring->size = size;
2022         ring->effective_size = ring->size;
2023         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2024                 ring->effective_size -= 128;
2025
2026         ring->virtual_start = ioremap_wc(start, size);
2027         if (ring->virtual_start == NULL) {
2028                 DRM_ERROR("can not ioremap virtual address for"
2029                           " ring buffer\n");
2030                 return -ENOMEM;
2031         }
2032
2033         if (!I915_NEED_GFX_HWS(dev)) {
2034                 ret = init_phys_status_page(ring);
2035                 if (ret)
2036                         return ret;
2037         }
2038
2039         return 0;
2040 }
2041
2042 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2043 {
2044         drm_i915_private_t *dev_priv = dev->dev_private;
2045         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2046
2047         ring->name = "bsd ring";
2048         ring->id = VCS;
2049
2050         ring->write_tail = ring_write_tail;
2051         if (INTEL_INFO(dev)->gen >= 6) {
2052                 ring->mmio_base = GEN6_BSD_RING_BASE;
2053                 /* gen6 bsd needs a special wa for tail updates */
2054                 if (IS_GEN6(dev))
2055                         ring->write_tail = gen6_bsd_ring_write_tail;
2056                 ring->flush = gen6_bsd_ring_flush;
2057                 ring->add_request = gen6_add_request;
2058                 ring->get_seqno = gen6_ring_get_seqno;
2059                 ring->set_seqno = ring_set_seqno;
2060                 if (INTEL_INFO(dev)->gen >= 8) {
2061                         ring->irq_enable_mask =
2062                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2063                         ring->irq_get = gen8_ring_get_irq;
2064                         ring->irq_put = gen8_ring_put_irq;
2065                         ring->dispatch_execbuffer =
2066                                 gen8_ring_dispatch_execbuffer;
2067                 } else {
2068                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2069                         ring->irq_get = gen6_ring_get_irq;
2070                         ring->irq_put = gen6_ring_put_irq;
2071                         ring->dispatch_execbuffer =
2072                                 gen6_ring_dispatch_execbuffer;
2073                 }
2074                 ring->sync_to = gen6_ring_sync;
2075                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2076                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2077                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2078                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2079                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2080                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2081                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2082                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2083         } else {
2084                 ring->mmio_base = BSD_RING_BASE;
2085                 ring->flush = bsd_ring_flush;
2086                 ring->add_request = i9xx_add_request;
2087                 ring->get_seqno = ring_get_seqno;
2088                 ring->set_seqno = ring_set_seqno;
2089                 if (IS_GEN5(dev)) {
2090                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2091                         ring->irq_get = gen5_ring_get_irq;
2092                         ring->irq_put = gen5_ring_put_irq;
2093                 } else {
2094                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2095                         ring->irq_get = i9xx_ring_get_irq;
2096                         ring->irq_put = i9xx_ring_put_irq;
2097                 }
2098                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2099         }
2100         ring->init = init_ring_common;
2101
2102         return intel_init_ring_buffer(dev, ring);
2103 }
2104
2105 int intel_init_blt_ring_buffer(struct drm_device *dev)
2106 {
2107         drm_i915_private_t *dev_priv = dev->dev_private;
2108         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2109
2110         ring->name = "blitter ring";
2111         ring->id = BCS;
2112
2113         ring->mmio_base = BLT_RING_BASE;
2114         ring->write_tail = ring_write_tail;
2115         ring->flush = gen6_ring_flush;
2116         ring->add_request = gen6_add_request;
2117         ring->get_seqno = gen6_ring_get_seqno;
2118         ring->set_seqno = ring_set_seqno;
2119         if (INTEL_INFO(dev)->gen >= 8) {
2120                 ring->irq_enable_mask =
2121                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2122                 ring->irq_get = gen8_ring_get_irq;
2123                 ring->irq_put = gen8_ring_put_irq;
2124                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2125         } else {
2126                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2127                 ring->irq_get = gen6_ring_get_irq;
2128                 ring->irq_put = gen6_ring_put_irq;
2129                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2130         }
2131         ring->sync_to = gen6_ring_sync;
2132         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2133         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2134         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2135         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2136         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2137         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2138         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2139         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2140         ring->init = init_ring_common;
2141
2142         return intel_init_ring_buffer(dev, ring);
2143 }
2144
2145 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2146 {
2147         drm_i915_private_t *dev_priv = dev->dev_private;
2148         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2149
2150         ring->name = "video enhancement ring";
2151         ring->id = VECS;
2152
2153         ring->mmio_base = VEBOX_RING_BASE;
2154         ring->write_tail = ring_write_tail;
2155         ring->flush = gen6_ring_flush;
2156         ring->add_request = gen6_add_request;
2157         ring->get_seqno = gen6_ring_get_seqno;
2158         ring->set_seqno = ring_set_seqno;
2159
2160         if (INTEL_INFO(dev)->gen >= 8) {
2161                 ring->irq_enable_mask =
2162                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2163                 ring->irq_get = gen8_ring_get_irq;
2164                 ring->irq_put = gen8_ring_put_irq;
2165                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2166         } else {
2167                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2168                 ring->irq_get = hsw_vebox_get_irq;
2169                 ring->irq_put = hsw_vebox_put_irq;
2170                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2171         }
2172         ring->sync_to = gen6_ring_sync;
2173         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2174         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2175         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2176         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2177         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2178         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2179         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2180         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2181         ring->init = init_ring_common;
2182
2183         return intel_init_ring_buffer(dev, ring);
2184 }
2185
2186 int
2187 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2188 {
2189         int ret;
2190
2191         if (!ring->gpu_caches_dirty)
2192                 return 0;
2193
2194         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2195         if (ret)
2196                 return ret;
2197
2198         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2199
2200         ring->gpu_caches_dirty = false;
2201         return 0;
2202 }
2203
2204 int
2205 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2206 {
2207         uint32_t flush_domains;
2208         int ret;
2209
2210         flush_domains = 0;
2211         if (ring->gpu_caches_dirty)
2212                 flush_domains = I915_GEM_GPU_DOMAINS;
2213
2214         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2215         if (ret)
2216                 return ret;
2217
2218         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2219
2220         ring->gpu_caches_dirty = false;
2221         return 0;
2222 }