Merge tag 'drm-misc-next-2019-05-24' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/i915_drm.h>
33
34 #include "i915_drv.h"
35 #include "i915_gem_render_state.h"
36 #include "i915_reset.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42  * set-context and then emitting the batch.
43  */
44 #define LEGACY_REQUEST_SIZE 200
45
46 unsigned int intel_ring_update_space(struct intel_ring *ring)
47 {
48         unsigned int space;
49
50         space = __intel_ring_space(ring->head, ring->emit, ring->size);
51
52         ring->space = space;
53         return space;
54 }
55
56 static int
57 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
58 {
59         unsigned int num_store_dw;
60         u32 cmd, *cs;
61
62         cmd = MI_FLUSH;
63         num_store_dw = 0;
64         if (mode & EMIT_INVALIDATE)
65                 cmd |= MI_READ_FLUSH;
66         if (mode & EMIT_FLUSH)
67                 num_store_dw = 4;
68
69         cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
70         if (IS_ERR(cs))
71                 return PTR_ERR(cs);
72
73         *cs++ = cmd;
74         while (num_store_dw--) {
75                 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
76                 *cs++ = i915_scratch_offset(rq->i915);
77                 *cs++ = 0;
78         }
79         *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
80
81         intel_ring_advance(rq, cs);
82
83         return 0;
84 }
85
86 static int
87 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
88 {
89         u32 cmd, *cs;
90         int i;
91
92         /*
93          * read/write caches:
94          *
95          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
96          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
97          * also flushed at 2d versus 3d pipeline switches.
98          *
99          * read-only caches:
100          *
101          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
102          * MI_READ_FLUSH is set, and is always flushed on 965.
103          *
104          * I915_GEM_DOMAIN_COMMAND may not exist?
105          *
106          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
107          * invalidated when MI_EXE_FLUSH is set.
108          *
109          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
110          * invalidated with every MI_FLUSH.
111          *
112          * TLBs:
113          *
114          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
115          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
116          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
117          * are flushed at any MI_FLUSH.
118          */
119
120         cmd = MI_FLUSH;
121         if (mode & EMIT_INVALIDATE) {
122                 cmd |= MI_EXE_FLUSH;
123                 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
124                         cmd |= MI_INVALIDATE_ISP;
125         }
126
127         i = 2;
128         if (mode & EMIT_INVALIDATE)
129                 i += 20;
130
131         cs = intel_ring_begin(rq, i);
132         if (IS_ERR(cs))
133                 return PTR_ERR(cs);
134
135         *cs++ = cmd;
136
137         /*
138          * A random delay to let the CS invalidate take effect? Without this
139          * delay, the GPU relocation path fails as the CS does not see
140          * the updated contents. Just as important, if we apply the flushes
141          * to the EMIT_FLUSH branch (i.e. immediately after the relocation
142          * write and before the invalidate on the next batch), the relocations
143          * still fail. This implies that is a delay following invalidation
144          * that is required to reset the caches as opposed to a delay to
145          * ensure the memory is written.
146          */
147         if (mode & EMIT_INVALIDATE) {
148                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
149                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
150                 *cs++ = 0;
151                 *cs++ = 0;
152
153                 for (i = 0; i < 12; i++)
154                         *cs++ = MI_FLUSH;
155
156                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
157                 *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
158                 *cs++ = 0;
159                 *cs++ = 0;
160         }
161
162         *cs++ = cmd;
163
164         intel_ring_advance(rq, cs);
165
166         return 0;
167 }
168
169 /*
170  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
171  * implementing two workarounds on gen6.  From section 1.4.7.1
172  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
173  *
174  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
175  * produced by non-pipelined state commands), software needs to first
176  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
177  * 0.
178  *
179  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
180  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
181  *
182  * And the workaround for these two requires this workaround first:
183  *
184  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
185  * BEFORE the pipe-control with a post-sync op and no write-cache
186  * flushes.
187  *
188  * And this last workaround is tricky because of the requirements on
189  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
190  * volume 2 part 1:
191  *
192  *     "1 of the following must also be set:
193  *      - Render Target Cache Flush Enable ([12] of DW1)
194  *      - Depth Cache Flush Enable ([0] of DW1)
195  *      - Stall at Pixel Scoreboard ([1] of DW1)
196  *      - Depth Stall ([13] of DW1)
197  *      - Post-Sync Operation ([13] of DW1)
198  *      - Notify Enable ([8] of DW1)"
199  *
200  * The cache flushes require the workaround flush that triggered this
201  * one, so we can't use it.  Depth stall would trigger the same.
202  * Post-sync nonzero is what triggered this second workaround, so we
203  * can't use that one either.  Notify enable is IRQs, which aren't
204  * really our business.  That leaves only stall at scoreboard.
205  */
206 static int
207 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
208 {
209         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
210         u32 *cs;
211
212         cs = intel_ring_begin(rq, 6);
213         if (IS_ERR(cs))
214                 return PTR_ERR(cs);
215
216         *cs++ = GFX_OP_PIPE_CONTROL(5);
217         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
218         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
219         *cs++ = 0; /* low dword */
220         *cs++ = 0; /* high dword */
221         *cs++ = MI_NOOP;
222         intel_ring_advance(rq, cs);
223
224         cs = intel_ring_begin(rq, 6);
225         if (IS_ERR(cs))
226                 return PTR_ERR(cs);
227
228         *cs++ = GFX_OP_PIPE_CONTROL(5);
229         *cs++ = PIPE_CONTROL_QW_WRITE;
230         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
231         *cs++ = 0;
232         *cs++ = 0;
233         *cs++ = MI_NOOP;
234         intel_ring_advance(rq, cs);
235
236         return 0;
237 }
238
239 static int
240 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
241 {
242         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
243         u32 *cs, flags = 0;
244         int ret;
245
246         /* Force SNB workarounds for PIPE_CONTROL flushes */
247         ret = gen6_emit_post_sync_nonzero_flush(rq);
248         if (ret)
249                 return ret;
250
251         /* Just flush everything.  Experiments have shown that reducing the
252          * number of bits based on the write domains has little performance
253          * impact.
254          */
255         if (mode & EMIT_FLUSH) {
256                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258                 /*
259                  * Ensure that any following seqno writes only happen
260                  * when the render cache is indeed flushed.
261                  */
262                 flags |= PIPE_CONTROL_CS_STALL;
263         }
264         if (mode & EMIT_INVALIDATE) {
265                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271                 /*
272                  * TLB invalidate requires a post-sync write.
273                  */
274                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275         }
276
277         cs = intel_ring_begin(rq, 4);
278         if (IS_ERR(cs))
279                 return PTR_ERR(cs);
280
281         *cs++ = GFX_OP_PIPE_CONTROL(4);
282         *cs++ = flags;
283         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
284         *cs++ = 0;
285         intel_ring_advance(rq, cs);
286
287         return 0;
288 }
289
290 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
291 {
292         /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
293         *cs++ = GFX_OP_PIPE_CONTROL(4);
294         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
295         *cs++ = 0;
296         *cs++ = 0;
297
298         *cs++ = GFX_OP_PIPE_CONTROL(4);
299         *cs++ = PIPE_CONTROL_QW_WRITE;
300         *cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
301         *cs++ = 0;
302
303         /* Finally we can flush and with it emit the breadcrumb */
304         *cs++ = GFX_OP_PIPE_CONTROL(4);
305         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
306                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
307                  PIPE_CONTROL_DC_FLUSH_ENABLE |
308                  PIPE_CONTROL_QW_WRITE |
309                  PIPE_CONTROL_CS_STALL);
310         *cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
311         *cs++ = rq->fence.seqno;
312
313         *cs++ = GFX_OP_PIPE_CONTROL(4);
314         *cs++ = PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_STORE_DATA_INDEX;
315         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | PIPE_CONTROL_GLOBAL_GTT;
316         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
317
318         *cs++ = MI_USER_INTERRUPT;
319         *cs++ = MI_NOOP;
320
321         rq->tail = intel_ring_offset(rq, cs);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323
324         return cs;
325 }
326
327 static int
328 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
329 {
330         u32 *cs;
331
332         cs = intel_ring_begin(rq, 4);
333         if (IS_ERR(cs))
334                 return PTR_ERR(cs);
335
336         *cs++ = GFX_OP_PIPE_CONTROL(4);
337         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
338         *cs++ = 0;
339         *cs++ = 0;
340         intel_ring_advance(rq, cs);
341
342         return 0;
343 }
344
345 static int
346 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
347 {
348         u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
349         u32 *cs, flags = 0;
350
351         /*
352          * Ensure that any following seqno writes only happen when the render
353          * cache is indeed flushed.
354          *
355          * Workaround: 4th PIPE_CONTROL command (except the ones with only
356          * read-cache invalidate bits set) must have the CS_STALL bit set. We
357          * don't try to be clever and just set it unconditionally.
358          */
359         flags |= PIPE_CONTROL_CS_STALL;
360
361         /* Just flush everything.  Experiments have shown that reducing the
362          * number of bits based on the write domains has little performance
363          * impact.
364          */
365         if (mode & EMIT_FLUSH) {
366                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
367                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
368                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
369                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
370         }
371         if (mode & EMIT_INVALIDATE) {
372                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
373                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
374                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
375                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
376                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
377                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
378                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
379                 /*
380                  * TLB invalidate requires a post-sync write.
381                  */
382                 flags |= PIPE_CONTROL_QW_WRITE;
383                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
384
385                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
386
387                 /* Workaround: we must issue a pipe_control with CS-stall bit
388                  * set before a pipe_control command that has the state cache
389                  * invalidate bit set. */
390                 gen7_render_ring_cs_stall_wa(rq);
391         }
392
393         cs = intel_ring_begin(rq, 4);
394         if (IS_ERR(cs))
395                 return PTR_ERR(cs);
396
397         *cs++ = GFX_OP_PIPE_CONTROL(4);
398         *cs++ = flags;
399         *cs++ = scratch_addr;
400         *cs++ = 0;
401         intel_ring_advance(rq, cs);
402
403         return 0;
404 }
405
406 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
407 {
408         *cs++ = GFX_OP_PIPE_CONTROL(4);
409         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
410                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
411                  PIPE_CONTROL_DC_FLUSH_ENABLE |
412                  PIPE_CONTROL_FLUSH_ENABLE |
413                  PIPE_CONTROL_QW_WRITE |
414                  PIPE_CONTROL_GLOBAL_GTT_IVB |
415                  PIPE_CONTROL_CS_STALL);
416         *cs++ = rq->timeline->hwsp_offset;
417         *cs++ = rq->fence.seqno;
418
419         *cs++ = GFX_OP_PIPE_CONTROL(4);
420         *cs++ = (PIPE_CONTROL_QW_WRITE |
421                  PIPE_CONTROL_STORE_DATA_INDEX |
422                  PIPE_CONTROL_GLOBAL_GTT_IVB);
423         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
424         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
425
426         *cs++ = MI_USER_INTERRUPT;
427         *cs++ = MI_NOOP;
428
429         rq->tail = intel_ring_offset(rq, cs);
430         assert_ring_tail_valid(rq->ring, rq->tail);
431
432         return cs;
433 }
434
435 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
436 {
437         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
438         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
439
440         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
441         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
442         *cs++ = rq->fence.seqno;
443
444         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
445         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
446         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
447
448         *cs++ = MI_USER_INTERRUPT;
449         *cs++ = MI_NOOP;
450
451         rq->tail = intel_ring_offset(rq, cs);
452         assert_ring_tail_valid(rq->ring, rq->tail);
453
454         return cs;
455 }
456
457 #define GEN7_XCS_WA 32
458 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
459 {
460         int i;
461
462         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
463         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
464
465         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
466         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
467         *cs++ = rq->fence.seqno;
468
469         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
470         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
471         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
472
473         for (i = 0; i < GEN7_XCS_WA; i++) {
474                 *cs++ = MI_STORE_DWORD_INDEX;
475                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
476                 *cs++ = rq->fence.seqno;
477         }
478
479         *cs++ = MI_FLUSH_DW;
480         *cs++ = 0;
481         *cs++ = 0;
482
483         *cs++ = MI_USER_INTERRUPT;
484
485         rq->tail = intel_ring_offset(rq, cs);
486         assert_ring_tail_valid(rq->ring, rq->tail);
487
488         return cs;
489 }
490 #undef GEN7_XCS_WA
491
492 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
493 {
494         /*
495          * Keep the render interrupt unmasked as this papers over
496          * lost interrupts following a reset.
497          */
498         if (engine->class == RENDER_CLASS) {
499                 if (INTEL_GEN(engine->i915) >= 6)
500                         mask &= ~BIT(0);
501                 else
502                         mask &= ~I915_USER_INTERRUPT;
503         }
504
505         intel_engine_set_hwsp_writemask(engine, mask);
506 }
507
508 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
509 {
510         struct drm_i915_private *dev_priv = engine->i915;
511         u32 addr;
512
513         addr = lower_32_bits(phys);
514         if (INTEL_GEN(dev_priv) >= 4)
515                 addr |= (phys >> 28) & 0xf0;
516
517         I915_WRITE(HWS_PGA, addr);
518 }
519
520 static struct page *status_page(struct intel_engine_cs *engine)
521 {
522         struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
523
524         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
525         return sg_page(obj->mm.pages->sgl);
526 }
527
528 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
529 {
530         set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
531         set_hwstam(engine, ~0u);
532 }
533
534 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
535 {
536         struct drm_i915_private *dev_priv = engine->i915;
537         i915_reg_t hwsp;
538
539         /*
540          * The ring status page addresses are no longer next to the rest of
541          * the ring registers as of gen7.
542          */
543         if (IS_GEN(dev_priv, 7)) {
544                 switch (engine->id) {
545                 /*
546                  * No more rings exist on Gen7. Default case is only to shut up
547                  * gcc switch check warning.
548                  */
549                 default:
550                         GEM_BUG_ON(engine->id);
551                         /* fallthrough */
552                 case RCS0:
553                         hwsp = RENDER_HWS_PGA_GEN7;
554                         break;
555                 case BCS0:
556                         hwsp = BLT_HWS_PGA_GEN7;
557                         break;
558                 case VCS0:
559                         hwsp = BSD_HWS_PGA_GEN7;
560                         break;
561                 case VECS0:
562                         hwsp = VEBOX_HWS_PGA_GEN7;
563                         break;
564                 }
565         } else if (IS_GEN(dev_priv, 6)) {
566                 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
567         } else {
568                 hwsp = RING_HWS_PGA(engine->mmio_base);
569         }
570
571         I915_WRITE(hwsp, offset);
572         POSTING_READ(hwsp);
573 }
574
575 static void flush_cs_tlb(struct intel_engine_cs *engine)
576 {
577         struct drm_i915_private *dev_priv = engine->i915;
578
579         if (!IS_GEN_RANGE(dev_priv, 6, 7))
580                 return;
581
582         /* ring should be idle before issuing a sync flush*/
583         WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
584
585         ENGINE_WRITE(engine, RING_INSTPM,
586                      _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
587                                         INSTPM_SYNC_FLUSH));
588         if (intel_wait_for_register(engine->uncore,
589                                     RING_INSTPM(engine->mmio_base),
590                                     INSTPM_SYNC_FLUSH, 0,
591                                     1000))
592                 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
593                           engine->name);
594 }
595
596 static void ring_setup_status_page(struct intel_engine_cs *engine)
597 {
598         set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
599         set_hwstam(engine, ~0u);
600
601         flush_cs_tlb(engine);
602 }
603
604 static bool stop_ring(struct intel_engine_cs *engine)
605 {
606         struct drm_i915_private *dev_priv = engine->i915;
607
608         if (INTEL_GEN(dev_priv) > 2) {
609                 ENGINE_WRITE(engine,
610                              RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
611                 if (intel_wait_for_register(engine->uncore,
612                                             RING_MI_MODE(engine->mmio_base),
613                                             MODE_IDLE,
614                                             MODE_IDLE,
615                                             1000)) {
616                         DRM_ERROR("%s : timed out trying to stop ring\n",
617                                   engine->name);
618
619                         /*
620                          * Sometimes we observe that the idle flag is not
621                          * set even though the ring is empty. So double
622                          * check before giving up.
623                          */
624                         if (ENGINE_READ(engine, RING_HEAD) !=
625                             ENGINE_READ(engine, RING_TAIL))
626                                 return false;
627                 }
628         }
629
630         ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
631
632         ENGINE_WRITE(engine, RING_HEAD, 0);
633         ENGINE_WRITE(engine, RING_TAIL, 0);
634
635         /* The ring must be empty before it is disabled */
636         ENGINE_WRITE(engine, RING_CTL, 0);
637
638         return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
639 }
640
641 static int init_ring_common(struct intel_engine_cs *engine)
642 {
643         struct drm_i915_private *dev_priv = engine->i915;
644         struct intel_ring *ring = engine->buffer;
645         int ret = 0;
646
647         intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
648
649         if (!stop_ring(engine)) {
650                 /* G45 ring initialization often fails to reset head to zero */
651                 DRM_DEBUG_DRIVER("%s head not reset to zero "
652                                 "ctl %08x head %08x tail %08x start %08x\n",
653                                 engine->name,
654                                 ENGINE_READ(engine, RING_CTL),
655                                 ENGINE_READ(engine, RING_HEAD),
656                                 ENGINE_READ(engine, RING_TAIL),
657                                 ENGINE_READ(engine, RING_START));
658
659                 if (!stop_ring(engine)) {
660                         DRM_ERROR("failed to set %s head to zero "
661                                   "ctl %08x head %08x tail %08x start %08x\n",
662                                   engine->name,
663                                   ENGINE_READ(engine, RING_CTL),
664                                   ENGINE_READ(engine, RING_HEAD),
665                                   ENGINE_READ(engine, RING_TAIL),
666                                   ENGINE_READ(engine, RING_START));
667                         ret = -EIO;
668                         goto out;
669                 }
670         }
671
672         if (HWS_NEEDS_PHYSICAL(dev_priv))
673                 ring_setup_phys_status_page(engine);
674         else
675                 ring_setup_status_page(engine);
676
677         intel_engine_reset_breadcrumbs(engine);
678
679         /* Enforce ordering by reading HEAD register back */
680         ENGINE_READ(engine, RING_HEAD);
681
682         /* Initialize the ring. This must happen _after_ we've cleared the ring
683          * registers with the above sequence (the readback of the HEAD registers
684          * also enforces ordering), otherwise the hw might lose the new ring
685          * register values. */
686         ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
687
688         /* WaClearRingBufHeadRegAtInit:ctg,elk */
689         if (ENGINE_READ(engine, RING_HEAD))
690                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
691                                  engine->name, ENGINE_READ(engine, RING_HEAD));
692
693         /* Check that the ring offsets point within the ring! */
694         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
695         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
696         intel_ring_update_space(ring);
697
698         /* First wake the ring up to an empty/idle ring */
699         ENGINE_WRITE(engine, RING_HEAD, ring->head);
700         ENGINE_WRITE(engine, RING_TAIL, ring->head);
701         ENGINE_POSTING_READ(engine, RING_TAIL);
702
703         ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
704
705         /* If the head is still not zero, the ring is dead */
706         if (intel_wait_for_register(engine->uncore,
707                                     RING_CTL(engine->mmio_base),
708                                     RING_VALID, RING_VALID,
709                                     50)) {
710                 DRM_ERROR("%s initialization failed "
711                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
712                           engine->name,
713                           ENGINE_READ(engine, RING_CTL),
714                           ENGINE_READ(engine, RING_CTL) & RING_VALID,
715                           ENGINE_READ(engine, RING_HEAD), ring->head,
716                           ENGINE_READ(engine, RING_TAIL), ring->tail,
717                           ENGINE_READ(engine, RING_START),
718                           i915_ggtt_offset(ring->vma));
719                 ret = -EIO;
720                 goto out;
721         }
722
723         if (INTEL_GEN(dev_priv) > 2)
724                 ENGINE_WRITE(engine,
725                              RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
726
727         /* Now awake, let it get started */
728         if (ring->tail != ring->head) {
729                 ENGINE_WRITE(engine, RING_TAIL, ring->tail);
730                 ENGINE_POSTING_READ(engine, RING_TAIL);
731         }
732
733         /* Papering over lost _interrupts_ immediately following the restart */
734         intel_engine_queue_breadcrumbs(engine);
735 out:
736         intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
737
738         return ret;
739 }
740
741 static void reset_prepare(struct intel_engine_cs *engine)
742 {
743         intel_engine_stop_cs(engine);
744 }
745
746 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
747 {
748         struct i915_timeline *tl = &engine->timeline;
749         struct i915_request *pos, *rq;
750         unsigned long flags;
751         u32 head;
752
753         rq = NULL;
754         spin_lock_irqsave(&tl->lock, flags);
755         list_for_each_entry(pos, &tl->requests, link) {
756                 if (!i915_request_completed(pos)) {
757                         rq = pos;
758                         break;
759                 }
760         }
761
762         /*
763          * The guilty request will get skipped on a hung engine.
764          *
765          * Users of client default contexts do not rely on logical
766          * state preserved between batches so it is safe to execute
767          * queued requests following the hang. Non default contexts
768          * rely on preserved state, so skipping a batch loses the
769          * evolution of the state and it needs to be considered corrupted.
770          * Executing more queued batches on top of corrupted state is
771          * risky. But we take the risk by trying to advance through
772          * the queued requests in order to make the client behaviour
773          * more predictable around resets, by not throwing away random
774          * amount of batches it has prepared for execution. Sophisticated
775          * clients can use gem_reset_stats_ioctl and dma fence status
776          * (exported via sync_file info ioctl on explicit fences) to observe
777          * when it loses the context state and should rebuild accordingly.
778          *
779          * The context ban, and ultimately the client ban, mechanism are safety
780          * valves if client submission ends up resulting in nothing more than
781          * subsequent hangs.
782          */
783
784         if (rq) {
785                 /*
786                  * Try to restore the logical GPU state to match the
787                  * continuation of the request queue. If we skip the
788                  * context/PD restore, then the next request may try to execute
789                  * assuming that its context is valid and loaded on the GPU and
790                  * so may try to access invalid memory, prompting repeated GPU
791                  * hangs.
792                  *
793                  * If the request was guilty, we still restore the logical
794                  * state in case the next request requires it (e.g. the
795                  * aliasing ppgtt), but skip over the hung batch.
796                  *
797                  * If the request was innocent, we try to replay the request
798                  * with the restored context.
799                  */
800                 i915_reset_request(rq, stalled);
801
802                 GEM_BUG_ON(rq->ring != engine->buffer);
803                 head = rq->head;
804         } else {
805                 head = engine->buffer->tail;
806         }
807         engine->buffer->head = intel_ring_wrap(engine->buffer, head);
808
809         spin_unlock_irqrestore(&tl->lock, flags);
810 }
811
812 static void reset_finish(struct intel_engine_cs *engine)
813 {
814 }
815
816 static int intel_rcs_ctx_init(struct i915_request *rq)
817 {
818         int ret;
819
820         ret = intel_engine_emit_ctx_wa(rq);
821         if (ret != 0)
822                 return ret;
823
824         ret = i915_gem_render_state_emit(rq);
825         if (ret)
826                 return ret;
827
828         return 0;
829 }
830
831 static int init_render_ring(struct intel_engine_cs *engine)
832 {
833         struct drm_i915_private *dev_priv = engine->i915;
834         int ret = init_ring_common(engine);
835         if (ret)
836                 return ret;
837
838         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
839         if (IS_GEN_RANGE(dev_priv, 4, 6))
840                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
841
842         /* We need to disable the AsyncFlip performance optimisations in order
843          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
844          * programmed to '1' on all products.
845          *
846          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
847          */
848         if (IS_GEN_RANGE(dev_priv, 6, 7))
849                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
850
851         /* Required for the hardware to program scanline values for waiting */
852         /* WaEnableFlushTlbInvalidationMode:snb */
853         if (IS_GEN(dev_priv, 6))
854                 I915_WRITE(GFX_MODE,
855                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
856
857         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
858         if (IS_GEN(dev_priv, 7))
859                 I915_WRITE(GFX_MODE_GEN7,
860                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
861                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
862
863         if (IS_GEN(dev_priv, 6)) {
864                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
865                  * "If this bit is set, STCunit will have LRA as replacement
866                  *  policy. [...] This bit must be reset.  LRA replacement
867                  *  policy is not supported."
868                  */
869                 I915_WRITE(CACHE_MODE_0,
870                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
871         }
872
873         if (IS_GEN_RANGE(dev_priv, 6, 7))
874                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
875
876         if (INTEL_GEN(dev_priv) >= 6)
877                 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
878
879         return 0;
880 }
881
882 static void cancel_requests(struct intel_engine_cs *engine)
883 {
884         struct i915_request *request;
885         unsigned long flags;
886
887         spin_lock_irqsave(&engine->timeline.lock, flags);
888
889         /* Mark all submitted requests as skipped. */
890         list_for_each_entry(request, &engine->timeline.requests, link) {
891                 if (!i915_request_signaled(request))
892                         dma_fence_set_error(&request->fence, -EIO);
893
894                 i915_request_mark_complete(request);
895         }
896
897         /* Remaining _unready_ requests will be nop'ed when submitted */
898
899         spin_unlock_irqrestore(&engine->timeline.lock, flags);
900 }
901
902 static void i9xx_submit_request(struct i915_request *request)
903 {
904         i915_request_submit(request);
905
906         ENGINE_WRITE(request->engine, RING_TAIL,
907                      intel_ring_set_tail(request->ring, request->tail));
908 }
909
910 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
911 {
912         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
913         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
914
915         *cs++ = MI_FLUSH;
916
917         *cs++ = MI_STORE_DWORD_INDEX;
918         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
919         *cs++ = rq->fence.seqno;
920
921         *cs++ = MI_STORE_DWORD_INDEX;
922         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
923         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
924
925         *cs++ = MI_USER_INTERRUPT;
926
927         rq->tail = intel_ring_offset(rq, cs);
928         assert_ring_tail_valid(rq->ring, rq->tail);
929
930         return cs;
931 }
932
933 #define GEN5_WA_STORES 8 /* must be at least 1! */
934 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
935 {
936         int i;
937
938         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
939         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
940
941         *cs++ = MI_FLUSH;
942
943         *cs++ = MI_STORE_DWORD_INDEX;
944         *cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
945         *cs++ = intel_engine_next_hangcheck_seqno(rq->engine);
946
947         BUILD_BUG_ON(GEN5_WA_STORES < 1);
948         for (i = 0; i < GEN5_WA_STORES; i++) {
949                 *cs++ = MI_STORE_DWORD_INDEX;
950                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
951                 *cs++ = rq->fence.seqno;
952         }
953
954         *cs++ = MI_USER_INTERRUPT;
955         *cs++ = MI_NOOP;
956
957         rq->tail = intel_ring_offset(rq, cs);
958         assert_ring_tail_valid(rq->ring, rq->tail);
959
960         return cs;
961 }
962 #undef GEN5_WA_STORES
963
964 static void
965 gen5_irq_enable(struct intel_engine_cs *engine)
966 {
967         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
968 }
969
970 static void
971 gen5_irq_disable(struct intel_engine_cs *engine)
972 {
973         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
974 }
975
976 static void
977 i9xx_irq_enable(struct intel_engine_cs *engine)
978 {
979         engine->i915->irq_mask &= ~engine->irq_enable_mask;
980         intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
981         intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
982 }
983
984 static void
985 i9xx_irq_disable(struct intel_engine_cs *engine)
986 {
987         engine->i915->irq_mask |= engine->irq_enable_mask;
988         intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
989 }
990
991 static void
992 i8xx_irq_enable(struct intel_engine_cs *engine)
993 {
994         struct drm_i915_private *dev_priv = engine->i915;
995
996         dev_priv->irq_mask &= ~engine->irq_enable_mask;
997         I915_WRITE16(GEN2_IMR, dev_priv->irq_mask);
998         POSTING_READ16(RING_IMR(engine->mmio_base));
999 }
1000
1001 static void
1002 i8xx_irq_disable(struct intel_engine_cs *engine)
1003 {
1004         struct drm_i915_private *dev_priv = engine->i915;
1005
1006         dev_priv->irq_mask |= engine->irq_enable_mask;
1007         I915_WRITE16(GEN2_IMR, dev_priv->irq_mask);
1008 }
1009
1010 static int
1011 bsd_ring_flush(struct i915_request *rq, u32 mode)
1012 {
1013         u32 *cs;
1014
1015         cs = intel_ring_begin(rq, 2);
1016         if (IS_ERR(cs))
1017                 return PTR_ERR(cs);
1018
1019         *cs++ = MI_FLUSH;
1020         *cs++ = MI_NOOP;
1021         intel_ring_advance(rq, cs);
1022         return 0;
1023 }
1024
1025 static void
1026 gen6_irq_enable(struct intel_engine_cs *engine)
1027 {
1028         ENGINE_WRITE(engine, RING_IMR,
1029                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
1030
1031         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1032         ENGINE_POSTING_READ(engine, RING_IMR);
1033
1034         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1035 }
1036
1037 static void
1038 gen6_irq_disable(struct intel_engine_cs *engine)
1039 {
1040         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1041         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1042 }
1043
1044 static void
1045 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1046 {
1047         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1048
1049         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1050         ENGINE_POSTING_READ(engine, RING_IMR);
1051
1052         gen6_unmask_pm_irq(engine->i915, engine->irq_enable_mask);
1053 }
1054
1055 static void
1056 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1057 {
1058         ENGINE_WRITE(engine, RING_IMR, ~0);
1059         gen6_mask_pm_irq(engine->i915, engine->irq_enable_mask);
1060 }
1061
1062 static int
1063 i965_emit_bb_start(struct i915_request *rq,
1064                    u64 offset, u32 length,
1065                    unsigned int dispatch_flags)
1066 {
1067         u32 *cs;
1068
1069         cs = intel_ring_begin(rq, 2);
1070         if (IS_ERR(cs))
1071                 return PTR_ERR(cs);
1072
1073         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1074                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1075         *cs++ = offset;
1076         intel_ring_advance(rq, cs);
1077
1078         return 0;
1079 }
1080
1081 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1082 #define I830_BATCH_LIMIT SZ_256K
1083 #define I830_TLB_ENTRIES (2)
1084 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1085 static int
1086 i830_emit_bb_start(struct i915_request *rq,
1087                    u64 offset, u32 len,
1088                    unsigned int dispatch_flags)
1089 {
1090         u32 *cs, cs_offset = i915_scratch_offset(rq->i915);
1091
1092         GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1093
1094         cs = intel_ring_begin(rq, 6);
1095         if (IS_ERR(cs))
1096                 return PTR_ERR(cs);
1097
1098         /* Evict the invalid PTE TLBs */
1099         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1100         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1101         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1102         *cs++ = cs_offset;
1103         *cs++ = 0xdeadbeef;
1104         *cs++ = MI_NOOP;
1105         intel_ring_advance(rq, cs);
1106
1107         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1108                 if (len > I830_BATCH_LIMIT)
1109                         return -ENOSPC;
1110
1111                 cs = intel_ring_begin(rq, 6 + 2);
1112                 if (IS_ERR(cs))
1113                         return PTR_ERR(cs);
1114
1115                 /* Blit the batch (which has now all relocs applied) to the
1116                  * stable batch scratch bo area (so that the CS never
1117                  * stumbles over its tlb invalidation bug) ...
1118                  */
1119                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1120                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1121                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1122                 *cs++ = cs_offset;
1123                 *cs++ = 4096;
1124                 *cs++ = offset;
1125
1126                 *cs++ = MI_FLUSH;
1127                 *cs++ = MI_NOOP;
1128                 intel_ring_advance(rq, cs);
1129
1130                 /* ... and execute it. */
1131                 offset = cs_offset;
1132         }
1133
1134         cs = intel_ring_begin(rq, 2);
1135         if (IS_ERR(cs))
1136                 return PTR_ERR(cs);
1137
1138         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1139         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1140                 MI_BATCH_NON_SECURE);
1141         intel_ring_advance(rq, cs);
1142
1143         return 0;
1144 }
1145
1146 static int
1147 i915_emit_bb_start(struct i915_request *rq,
1148                    u64 offset, u32 len,
1149                    unsigned int dispatch_flags)
1150 {
1151         u32 *cs;
1152
1153         cs = intel_ring_begin(rq, 2);
1154         if (IS_ERR(cs))
1155                 return PTR_ERR(cs);
1156
1157         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1158         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1159                 MI_BATCH_NON_SECURE);
1160         intel_ring_advance(rq, cs);
1161
1162         return 0;
1163 }
1164
1165 int intel_ring_pin(struct intel_ring *ring)
1166 {
1167         struct i915_vma *vma = ring->vma;
1168         enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1169         unsigned int flags;
1170         void *addr;
1171         int ret;
1172
1173         GEM_BUG_ON(ring->vaddr);
1174
1175         ret = i915_timeline_pin(ring->timeline);
1176         if (ret)
1177                 return ret;
1178
1179         flags = PIN_GLOBAL;
1180
1181         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1182         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1183
1184         if (vma->obj->stolen)
1185                 flags |= PIN_MAPPABLE;
1186         else
1187                 flags |= PIN_HIGH;
1188
1189         ret = i915_vma_pin(vma, 0, 0, flags);
1190         if (unlikely(ret))
1191                 goto unpin_timeline;
1192
1193         if (i915_vma_is_map_and_fenceable(vma))
1194                 addr = (void __force *)i915_vma_pin_iomap(vma);
1195         else
1196                 addr = i915_gem_object_pin_map(vma->obj, map);
1197         if (IS_ERR(addr)) {
1198                 ret = PTR_ERR(addr);
1199                 goto unpin_ring;
1200         }
1201
1202         vma->obj->pin_global++;
1203
1204         ring->vaddr = addr;
1205         return 0;
1206
1207 unpin_ring:
1208         i915_vma_unpin(vma);
1209 unpin_timeline:
1210         i915_timeline_unpin(ring->timeline);
1211         return ret;
1212 }
1213
1214 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1215 {
1216         GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
1217
1218         ring->tail = tail;
1219         ring->head = tail;
1220         ring->emit = tail;
1221         intel_ring_update_space(ring);
1222 }
1223
1224 void intel_ring_unpin(struct intel_ring *ring)
1225 {
1226         GEM_BUG_ON(!ring->vma);
1227         GEM_BUG_ON(!ring->vaddr);
1228
1229         /* Discard any unused bytes beyond that submitted to hw. */
1230         intel_ring_reset(ring, ring->tail);
1231
1232         if (i915_vma_is_map_and_fenceable(ring->vma))
1233                 i915_vma_unpin_iomap(ring->vma);
1234         else
1235                 i915_gem_object_unpin_map(ring->vma->obj);
1236         ring->vaddr = NULL;
1237
1238         ring->vma->obj->pin_global--;
1239         i915_vma_unpin(ring->vma);
1240
1241         i915_timeline_unpin(ring->timeline);
1242 }
1243
1244 static struct i915_vma *
1245 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1246 {
1247         struct i915_address_space *vm = &dev_priv->ggtt.vm;
1248         struct drm_i915_gem_object *obj;
1249         struct i915_vma *vma;
1250
1251         obj = i915_gem_object_create_stolen(dev_priv, size);
1252         if (!obj)
1253                 obj = i915_gem_object_create_internal(dev_priv, size);
1254         if (IS_ERR(obj))
1255                 return ERR_CAST(obj);
1256
1257         /*
1258          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1259          * if supported by the platform's GGTT.
1260          */
1261         if (vm->has_read_only)
1262                 i915_gem_object_set_readonly(obj);
1263
1264         vma = i915_vma_instance(obj, vm, NULL);
1265         if (IS_ERR(vma))
1266                 goto err;
1267
1268         return vma;
1269
1270 err:
1271         i915_gem_object_put(obj);
1272         return vma;
1273 }
1274
1275 struct intel_ring *
1276 intel_engine_create_ring(struct intel_engine_cs *engine,
1277                          struct i915_timeline *timeline,
1278                          int size)
1279 {
1280         struct intel_ring *ring;
1281         struct i915_vma *vma;
1282
1283         GEM_BUG_ON(!is_power_of_2(size));
1284         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1285         GEM_BUG_ON(timeline == &engine->timeline);
1286         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1287
1288         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1289         if (!ring)
1290                 return ERR_PTR(-ENOMEM);
1291
1292         kref_init(&ring->ref);
1293         INIT_LIST_HEAD(&ring->request_list);
1294         ring->timeline = i915_timeline_get(timeline);
1295
1296         ring->size = size;
1297         /* Workaround an erratum on the i830 which causes a hang if
1298          * the TAIL pointer points to within the last 2 cachelines
1299          * of the buffer.
1300          */
1301         ring->effective_size = size;
1302         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1303                 ring->effective_size -= 2 * CACHELINE_BYTES;
1304
1305         intel_ring_update_space(ring);
1306
1307         vma = intel_ring_create_vma(engine->i915, size);
1308         if (IS_ERR(vma)) {
1309                 kfree(ring);
1310                 return ERR_CAST(vma);
1311         }
1312         ring->vma = vma;
1313
1314         return ring;
1315 }
1316
1317 void intel_ring_free(struct kref *ref)
1318 {
1319         struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1320         struct drm_i915_gem_object *obj = ring->vma->obj;
1321
1322         i915_vma_close(ring->vma);
1323         __i915_gem_object_release_unless_active(obj);
1324
1325         i915_timeline_put(ring->timeline);
1326         kfree(ring);
1327 }
1328
1329 static void __ring_context_fini(struct intel_context *ce)
1330 {
1331         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1332         i915_gem_object_put(ce->state->obj);
1333 }
1334
1335 static void ring_context_destroy(struct kref *ref)
1336 {
1337         struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1338
1339         GEM_BUG_ON(intel_context_is_pinned(ce));
1340
1341         if (ce->state)
1342                 __ring_context_fini(ce);
1343
1344         intel_context_free(ce);
1345 }
1346
1347 static int __context_pin_ppgtt(struct i915_gem_context *ctx)
1348 {
1349         struct i915_hw_ppgtt *ppgtt;
1350         int err = 0;
1351
1352         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1353         if (ppgtt)
1354                 err = gen6_ppgtt_pin(ppgtt);
1355
1356         return err;
1357 }
1358
1359 static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
1360 {
1361         struct i915_hw_ppgtt *ppgtt;
1362
1363         ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
1364         if (ppgtt)
1365                 gen6_ppgtt_unpin(ppgtt);
1366 }
1367
1368 static int __context_pin(struct intel_context *ce)
1369 {
1370         struct i915_vma *vma;
1371         int err;
1372
1373         vma = ce->state;
1374         if (!vma)
1375                 return 0;
1376
1377         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1378         if (err)
1379                 return err;
1380
1381         /*
1382          * And mark is as a globally pinned object to let the shrinker know
1383          * it cannot reclaim the object until we release it.
1384          */
1385         vma->obj->pin_global++;
1386         vma->obj->mm.dirty = true;
1387
1388         return 0;
1389 }
1390
1391 static void __context_unpin(struct intel_context *ce)
1392 {
1393         struct i915_vma *vma;
1394
1395         vma = ce->state;
1396         if (!vma)
1397                 return;
1398
1399         vma->obj->pin_global--;
1400         i915_vma_unpin(vma);
1401 }
1402
1403 static void ring_context_unpin(struct intel_context *ce)
1404 {
1405         __context_unpin_ppgtt(ce->gem_context);
1406         __context_unpin(ce);
1407 }
1408
1409 static struct i915_vma *
1410 alloc_context_vma(struct intel_engine_cs *engine)
1411 {
1412         struct drm_i915_private *i915 = engine->i915;
1413         struct drm_i915_gem_object *obj;
1414         struct i915_vma *vma;
1415         int err;
1416
1417         obj = i915_gem_object_create(i915, engine->context_size);
1418         if (IS_ERR(obj))
1419                 return ERR_CAST(obj);
1420
1421         /*
1422          * Try to make the context utilize L3 as well as LLC.
1423          *
1424          * On VLV we don't have L3 controls in the PTEs so we
1425          * shouldn't touch the cache level, especially as that
1426          * would make the object snooped which might have a
1427          * negative performance impact.
1428          *
1429          * Snooping is required on non-llc platforms in execlist
1430          * mode, but since all GGTT accesses use PAT entry 0 we
1431          * get snooping anyway regardless of cache_level.
1432          *
1433          * This is only applicable for Ivy Bridge devices since
1434          * later platforms don't have L3 control bits in the PTE.
1435          */
1436         if (IS_IVYBRIDGE(i915))
1437                 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1438
1439         if (engine->default_state) {
1440                 void *defaults, *vaddr;
1441
1442                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1443                 if (IS_ERR(vaddr)) {
1444                         err = PTR_ERR(vaddr);
1445                         goto err_obj;
1446                 }
1447
1448                 defaults = i915_gem_object_pin_map(engine->default_state,
1449                                                    I915_MAP_WB);
1450                 if (IS_ERR(defaults)) {
1451                         err = PTR_ERR(defaults);
1452                         goto err_map;
1453                 }
1454
1455                 memcpy(vaddr, defaults, engine->context_size);
1456                 i915_gem_object_unpin_map(engine->default_state);
1457
1458                 i915_gem_object_flush_map(obj);
1459                 i915_gem_object_unpin_map(obj);
1460         }
1461
1462         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1463         if (IS_ERR(vma)) {
1464                 err = PTR_ERR(vma);
1465                 goto err_obj;
1466         }
1467
1468         return vma;
1469
1470 err_map:
1471         i915_gem_object_unpin_map(obj);
1472 err_obj:
1473         i915_gem_object_put(obj);
1474         return ERR_PTR(err);
1475 }
1476
1477 static int ring_context_pin(struct intel_context *ce)
1478 {
1479         struct intel_engine_cs *engine = ce->engine;
1480         int err;
1481
1482         /* One ringbuffer to rule them all */
1483         GEM_BUG_ON(!engine->buffer);
1484         ce->ring = engine->buffer;
1485
1486         if (!ce->state && engine->context_size) {
1487                 struct i915_vma *vma;
1488
1489                 vma = alloc_context_vma(engine);
1490                 if (IS_ERR(vma))
1491                         return PTR_ERR(vma);
1492
1493                 ce->state = vma;
1494         }
1495
1496         err = __context_pin(ce);
1497         if (err)
1498                 return err;
1499
1500         err = __context_pin_ppgtt(ce->gem_context);
1501         if (err)
1502                 goto err_unpin;
1503
1504         return 0;
1505
1506 err_unpin:
1507         __context_unpin(ce);
1508         return err;
1509 }
1510
1511 static void ring_context_reset(struct intel_context *ce)
1512 {
1513         intel_ring_reset(ce->ring, 0);
1514 }
1515
1516 static const struct intel_context_ops ring_context_ops = {
1517         .pin = ring_context_pin,
1518         .unpin = ring_context_unpin,
1519
1520         .reset = ring_context_reset,
1521         .destroy = ring_context_destroy,
1522 };
1523
1524 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1525 {
1526         struct i915_timeline *timeline;
1527         struct intel_ring *ring;
1528         int err;
1529
1530         err = intel_engine_setup_common(engine);
1531         if (err)
1532                 return err;
1533
1534         timeline = i915_timeline_create(engine->i915, engine->status_page.vma);
1535         if (IS_ERR(timeline)) {
1536                 err = PTR_ERR(timeline);
1537                 goto err;
1538         }
1539         GEM_BUG_ON(timeline->has_initial_breadcrumb);
1540
1541         ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1542         i915_timeline_put(timeline);
1543         if (IS_ERR(ring)) {
1544                 err = PTR_ERR(ring);
1545                 goto err;
1546         }
1547
1548         err = intel_ring_pin(ring);
1549         if (err)
1550                 goto err_ring;
1551
1552         GEM_BUG_ON(engine->buffer);
1553         engine->buffer = ring;
1554
1555         err = intel_engine_init_common(engine);
1556         if (err)
1557                 goto err_unpin;
1558
1559         GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);
1560
1561         return 0;
1562
1563 err_unpin:
1564         intel_ring_unpin(ring);
1565 err_ring:
1566         intel_ring_put(ring);
1567 err:
1568         intel_engine_cleanup_common(engine);
1569         return err;
1570 }
1571
1572 void intel_engine_cleanup(struct intel_engine_cs *engine)
1573 {
1574         struct drm_i915_private *dev_priv = engine->i915;
1575
1576         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1577                 (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1578
1579         intel_ring_unpin(engine->buffer);
1580         intel_ring_put(engine->buffer);
1581
1582         if (engine->cleanup)
1583                 engine->cleanup(engine);
1584
1585         intel_engine_cleanup_common(engine);
1586
1587         dev_priv->engine[engine->id] = NULL;
1588         kfree(engine);
1589 }
1590
1591 static int load_pd_dir(struct i915_request *rq,
1592                        const struct i915_hw_ppgtt *ppgtt)
1593 {
1594         const struct intel_engine_cs * const engine = rq->engine;
1595         u32 *cs;
1596
1597         cs = intel_ring_begin(rq, 6);
1598         if (IS_ERR(cs))
1599                 return PTR_ERR(cs);
1600
1601         *cs++ = MI_LOAD_REGISTER_IMM(1);
1602         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1603         *cs++ = PP_DIR_DCLV_2G;
1604
1605         *cs++ = MI_LOAD_REGISTER_IMM(1);
1606         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1607         *cs++ = ppgtt->pd.base.ggtt_offset << 10;
1608
1609         intel_ring_advance(rq, cs);
1610
1611         return 0;
1612 }
1613
1614 static int flush_pd_dir(struct i915_request *rq)
1615 {
1616         const struct intel_engine_cs * const engine = rq->engine;
1617         u32 *cs;
1618
1619         cs = intel_ring_begin(rq, 4);
1620         if (IS_ERR(cs))
1621                 return PTR_ERR(cs);
1622
1623         /* Stall until the page table load is complete */
1624         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1625         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1626         *cs++ = i915_scratch_offset(rq->i915);
1627         *cs++ = MI_NOOP;
1628
1629         intel_ring_advance(rq, cs);
1630         return 0;
1631 }
1632
1633 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1634 {
1635         struct drm_i915_private *i915 = rq->i915;
1636         struct intel_engine_cs *engine = rq->engine;
1637         enum intel_engine_id id;
1638         const int num_engines =
1639                 IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1640         bool force_restore = false;
1641         int len;
1642         u32 *cs;
1643
1644         flags |= MI_MM_SPACE_GTT;
1645         if (IS_HASWELL(i915))
1646                 /* These flags are for resource streamer on HSW+ */
1647                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1648         else
1649                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1650
1651         len = 4;
1652         if (IS_GEN(i915, 7))
1653                 len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1654         if (flags & MI_FORCE_RESTORE) {
1655                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1656                 flags &= ~MI_FORCE_RESTORE;
1657                 force_restore = true;
1658                 len += 2;
1659         }
1660
1661         cs = intel_ring_begin(rq, len);
1662         if (IS_ERR(cs))
1663                 return PTR_ERR(cs);
1664
1665         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1666         if (IS_GEN(i915, 7)) {
1667                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1668                 if (num_engines) {
1669                         struct intel_engine_cs *signaller;
1670
1671                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1672                         for_each_engine(signaller, i915, id) {
1673                                 if (signaller == engine)
1674                                         continue;
1675
1676                                 *cs++ = i915_mmio_reg_offset(
1677                                            RING_PSMI_CTL(signaller->mmio_base));
1678                                 *cs++ = _MASKED_BIT_ENABLE(
1679                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1680                         }
1681                 }
1682         }
1683
1684         if (force_restore) {
1685                 /*
1686                  * The HW doesn't handle being told to restore the current
1687                  * context very well. Quite often it likes goes to go off and
1688                  * sulk, especially when it is meant to be reloading PP_DIR.
1689                  * A very simple fix to force the reload is to simply switch
1690                  * away from the current context and back again.
1691                  *
1692                  * Note that the kernel_context will contain random state
1693                  * following the INHIBIT_RESTORE. We accept this since we
1694                  * never use the kernel_context state; it is merely a
1695                  * placeholder we use to flush other contexts.
1696                  */
1697                 *cs++ = MI_SET_CONTEXT;
1698                 *cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1699                         MI_MM_SPACE_GTT |
1700                         MI_RESTORE_INHIBIT;
1701         }
1702
1703         *cs++ = MI_NOOP;
1704         *cs++ = MI_SET_CONTEXT;
1705         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1706         /*
1707          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1708          * WaMiSetContext_Hang:snb,ivb,vlv
1709          */
1710         *cs++ = MI_NOOP;
1711
1712         if (IS_GEN(i915, 7)) {
1713                 if (num_engines) {
1714                         struct intel_engine_cs *signaller;
1715                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1716
1717                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1718                         for_each_engine(signaller, i915, id) {
1719                                 if (signaller == engine)
1720                                         continue;
1721
1722                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1723                                 *cs++ = i915_mmio_reg_offset(last_reg);
1724                                 *cs++ = _MASKED_BIT_DISABLE(
1725                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1726                         }
1727
1728                         /* Insert a delay before the next switch! */
1729                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1730                         *cs++ = i915_mmio_reg_offset(last_reg);
1731                         *cs++ = i915_scratch_offset(rq->i915);
1732                         *cs++ = MI_NOOP;
1733                 }
1734                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1735         }
1736
1737         intel_ring_advance(rq, cs);
1738
1739         return 0;
1740 }
1741
1742 static int remap_l3(struct i915_request *rq, int slice)
1743 {
1744         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1745         int i;
1746
1747         if (!remap_info)
1748                 return 0;
1749
1750         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1751         if (IS_ERR(cs))
1752                 return PTR_ERR(cs);
1753
1754         /*
1755          * Note: We do not worry about the concurrent register cacheline hang
1756          * here because no other code should access these registers other than
1757          * at initialization time.
1758          */
1759         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1760         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1761                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1762                 *cs++ = remap_info[i];
1763         }
1764         *cs++ = MI_NOOP;
1765         intel_ring_advance(rq, cs);
1766
1767         return 0;
1768 }
1769
1770 static int switch_context(struct i915_request *rq)
1771 {
1772         struct intel_engine_cs *engine = rq->engine;
1773         struct i915_gem_context *ctx = rq->gem_context;
1774         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1775         unsigned int unwind_mm = 0;
1776         u32 hw_flags = 0;
1777         int ret, i;
1778
1779         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1780         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1781
1782         if (ppgtt) {
1783                 int loops;
1784
1785                 /*
1786                  * Baytail takes a little more convincing that it really needs
1787                  * to reload the PD between contexts. It is not just a little
1788                  * longer, as adding more stalls after the load_pd_dir (i.e.
1789                  * adding a long loop around flush_pd_dir) is not as effective
1790                  * as reloading the PD umpteen times. 32 is derived from
1791                  * experimentation (gem_exec_parallel/fds) and has no good
1792                  * explanation.
1793                  */
1794                 loops = 1;
1795                 if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1796                         loops = 32;
1797
1798                 do {
1799                         ret = load_pd_dir(rq, ppgtt);
1800                         if (ret)
1801                                 goto err;
1802                 } while (--loops);
1803
1804                 if (ppgtt->pd_dirty_engines & engine->mask) {
1805                         unwind_mm = engine->mask;
1806                         ppgtt->pd_dirty_engines &= ~unwind_mm;
1807                         hw_flags = MI_FORCE_RESTORE;
1808                 }
1809         }
1810
1811         if (rq->hw_context->state) {
1812                 GEM_BUG_ON(engine->id != RCS0);
1813
1814                 /*
1815                  * The kernel context(s) is treated as pure scratch and is not
1816                  * expected to retain any state (as we sacrifice it during
1817                  * suspend and on resume it may be corrupted). This is ok,
1818                  * as nothing actually executes using the kernel context; it
1819                  * is purely used for flushing user contexts.
1820                  */
1821                 if (i915_gem_context_is_kernel(ctx))
1822                         hw_flags = MI_RESTORE_INHIBIT;
1823
1824                 ret = mi_set_context(rq, hw_flags);
1825                 if (ret)
1826                         goto err_mm;
1827         }
1828
1829         if (ppgtt) {
1830                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1831                 if (ret)
1832                         goto err_mm;
1833
1834                 ret = flush_pd_dir(rq);
1835                 if (ret)
1836                         goto err_mm;
1837
1838                 /*
1839                  * Not only do we need a full barrier (post-sync write) after
1840                  * invalidating the TLBs, but we need to wait a little bit
1841                  * longer. Whether this is merely delaying us, or the
1842                  * subsequent flush is a key part of serialising with the
1843                  * post-sync op, this extra pass appears vital before a
1844                  * mm switch!
1845                  */
1846                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1847                 if (ret)
1848                         goto err_mm;
1849
1850                 ret = engine->emit_flush(rq, EMIT_FLUSH);
1851                 if (ret)
1852                         goto err_mm;
1853         }
1854
1855         if (ctx->remap_slice) {
1856                 for (i = 0; i < MAX_L3_SLICES; i++) {
1857                         if (!(ctx->remap_slice & BIT(i)))
1858                                 continue;
1859
1860                         ret = remap_l3(rq, i);
1861                         if (ret)
1862                                 goto err_mm;
1863                 }
1864
1865                 ctx->remap_slice = 0;
1866         }
1867
1868         return 0;
1869
1870 err_mm:
1871         if (unwind_mm)
1872                 ppgtt->pd_dirty_engines |= unwind_mm;
1873 err:
1874         return ret;
1875 }
1876
1877 static int ring_request_alloc(struct i915_request *request)
1878 {
1879         int ret;
1880
1881         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1882         GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1883
1884         /*
1885          * Flush enough space to reduce the likelihood of waiting after
1886          * we start building the request - in which case we will just
1887          * have to repeat work.
1888          */
1889         request->reserved_space += LEGACY_REQUEST_SIZE;
1890
1891         ret = switch_context(request);
1892         if (ret)
1893                 return ret;
1894
1895         /* Unconditionally invalidate GPU caches and TLBs. */
1896         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1897         if (ret)
1898                 return ret;
1899
1900         request->reserved_space -= LEGACY_REQUEST_SIZE;
1901         return 0;
1902 }
1903
1904 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1905 {
1906         struct i915_request *target;
1907         long timeout;
1908
1909         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1910
1911         if (intel_ring_update_space(ring) >= bytes)
1912                 return 0;
1913
1914         GEM_BUG_ON(list_empty(&ring->request_list));
1915         list_for_each_entry(target, &ring->request_list, ring_link) {
1916                 /* Would completion of this request free enough space? */
1917                 if (bytes <= __intel_ring_space(target->postfix,
1918                                                 ring->emit, ring->size))
1919                         break;
1920         }
1921
1922         if (WARN_ON(&target->ring_link == &ring->request_list))
1923                 return -ENOSPC;
1924
1925         timeout = i915_request_wait(target,
1926                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1927                                     MAX_SCHEDULE_TIMEOUT);
1928         if (timeout < 0)
1929                 return timeout;
1930
1931         i915_request_retire_upto(target);
1932
1933         intel_ring_update_space(ring);
1934         GEM_BUG_ON(ring->space < bytes);
1935         return 0;
1936 }
1937
1938 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1939 {
1940         struct intel_ring *ring = rq->ring;
1941         const unsigned int remain_usable = ring->effective_size - ring->emit;
1942         const unsigned int bytes = num_dwords * sizeof(u32);
1943         unsigned int need_wrap = 0;
1944         unsigned int total_bytes;
1945         u32 *cs;
1946
1947         /* Packets must be qword aligned. */
1948         GEM_BUG_ON(num_dwords & 1);
1949
1950         total_bytes = bytes + rq->reserved_space;
1951         GEM_BUG_ON(total_bytes > ring->effective_size);
1952
1953         if (unlikely(total_bytes > remain_usable)) {
1954                 const int remain_actual = ring->size - ring->emit;
1955
1956                 if (bytes > remain_usable) {
1957                         /*
1958                          * Not enough space for the basic request. So need to
1959                          * flush out the remainder and then wait for
1960                          * base + reserved.
1961                          */
1962                         total_bytes += remain_actual;
1963                         need_wrap = remain_actual | 1;
1964                 } else  {
1965                         /*
1966                          * The base request will fit but the reserved space
1967                          * falls off the end. So we don't need an immediate
1968                          * wrap and only need to effectively wait for the
1969                          * reserved size from the start of ringbuffer.
1970                          */
1971                         total_bytes = rq->reserved_space + remain_actual;
1972                 }
1973         }
1974
1975         if (unlikely(total_bytes > ring->space)) {
1976                 int ret;
1977
1978                 /*
1979                  * Space is reserved in the ringbuffer for finalising the
1980                  * request, as that cannot be allowed to fail. During request
1981                  * finalisation, reserved_space is set to 0 to stop the
1982                  * overallocation and the assumption is that then we never need
1983                  * to wait (which has the risk of failing with EINTR).
1984                  *
1985                  * See also i915_request_alloc() and i915_request_add().
1986                  */
1987                 GEM_BUG_ON(!rq->reserved_space);
1988
1989                 ret = wait_for_space(ring, total_bytes);
1990                 if (unlikely(ret))
1991                         return ERR_PTR(ret);
1992         }
1993
1994         if (unlikely(need_wrap)) {
1995                 need_wrap &= ~1;
1996                 GEM_BUG_ON(need_wrap > ring->space);
1997                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1998                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1999
2000                 /* Fill the tail with MI_NOOP */
2001                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
2002                 ring->space -= need_wrap;
2003                 ring->emit = 0;
2004         }
2005
2006         GEM_BUG_ON(ring->emit > ring->size - bytes);
2007         GEM_BUG_ON(ring->space < bytes);
2008         cs = ring->vaddr + ring->emit;
2009         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
2010         ring->emit += bytes;
2011         ring->space -= bytes;
2012
2013         return cs;
2014 }
2015
2016 /* Align the ring tail to a cacheline boundary */
2017 int intel_ring_cacheline_align(struct i915_request *rq)
2018 {
2019         int num_dwords;
2020         void *cs;
2021
2022         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
2023         if (num_dwords == 0)
2024                 return 0;
2025
2026         num_dwords = CACHELINE_DWORDS - num_dwords;
2027         GEM_BUG_ON(num_dwords & 1);
2028
2029         cs = intel_ring_begin(rq, num_dwords);
2030         if (IS_ERR(cs))
2031                 return PTR_ERR(cs);
2032
2033         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2034         intel_ring_advance(rq, cs);
2035
2036         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2037         return 0;
2038 }
2039
2040 static void gen6_bsd_submit_request(struct i915_request *request)
2041 {
2042         struct intel_uncore *uncore = request->engine->uncore;
2043
2044         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2045
2046        /* Every tail move must follow the sequence below */
2047
2048         /* Disable notification that the ring is IDLE. The GT
2049          * will then assume that it is busy and bring it out of rc6.
2050          */
2051         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2052                               _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2053
2054         /* Clear the context id. Here be magic! */
2055         intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2056
2057         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2058         if (__intel_wait_for_register_fw(uncore,
2059                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
2060                                          GEN6_BSD_SLEEP_INDICATOR,
2061                                          0,
2062                                          1000, 0, NULL))
2063                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2064
2065         /* Now that the ring is fully powered up, update the tail */
2066         i9xx_submit_request(request);
2067
2068         /* Let the ring send IDLE messages to the GT again,
2069          * and so let it sleep to conserve power when idle.
2070          */
2071         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2072                               _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2073
2074         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2075 }
2076
2077 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2078 {
2079         u32 cmd, *cs;
2080
2081         cs = intel_ring_begin(rq, 4);
2082         if (IS_ERR(cs))
2083                 return PTR_ERR(cs);
2084
2085         cmd = MI_FLUSH_DW;
2086
2087         /*
2088          * We always require a command barrier so that subsequent
2089          * commands, such as breadcrumb interrupts, are strictly ordered
2090          * wrt the contents of the write cache being flushed to memory
2091          * (and thus being coherent from the CPU).
2092          */
2093         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2094
2095         /*
2096          * Bspec vol 1c.3 - blitter engine command streamer:
2097          * "If ENABLED, all TLBs will be invalidated once the flush
2098          * operation is complete. This bit is only valid when the
2099          * Post-Sync Operation field is a value of 1h or 3h."
2100          */
2101         cmd |= flags;
2102
2103         *cs++ = cmd;
2104         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2105         *cs++ = 0;
2106         *cs++ = MI_NOOP;
2107
2108         intel_ring_advance(rq, cs);
2109
2110         return 0;
2111 }
2112
2113 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2114 {
2115         return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2116 }
2117
2118 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2119 {
2120         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2121 }
2122
2123 static int
2124 hsw_emit_bb_start(struct i915_request *rq,
2125                   u64 offset, u32 len,
2126                   unsigned int dispatch_flags)
2127 {
2128         u32 *cs;
2129
2130         cs = intel_ring_begin(rq, 2);
2131         if (IS_ERR(cs))
2132                 return PTR_ERR(cs);
2133
2134         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2135                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2136         /* bit0-7 is the length on GEN6+ */
2137         *cs++ = offset;
2138         intel_ring_advance(rq, cs);
2139
2140         return 0;
2141 }
2142
2143 static int
2144 gen6_emit_bb_start(struct i915_request *rq,
2145                    u64 offset, u32 len,
2146                    unsigned int dispatch_flags)
2147 {
2148         u32 *cs;
2149
2150         cs = intel_ring_begin(rq, 2);
2151         if (IS_ERR(cs))
2152                 return PTR_ERR(cs);
2153
2154         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2155                 0 : MI_BATCH_NON_SECURE_I965);
2156         /* bit0-7 is the length on GEN6+ */
2157         *cs++ = offset;
2158         intel_ring_advance(rq, cs);
2159
2160         return 0;
2161 }
2162
2163 /* Blitter support (SandyBridge+) */
2164
2165 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2166 {
2167         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2168 }
2169
2170 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2171                                 struct intel_engine_cs *engine)
2172 {
2173         if (INTEL_GEN(dev_priv) >= 6) {
2174                 engine->irq_enable = gen6_irq_enable;
2175                 engine->irq_disable = gen6_irq_disable;
2176         } else if (INTEL_GEN(dev_priv) >= 5) {
2177                 engine->irq_enable = gen5_irq_enable;
2178                 engine->irq_disable = gen5_irq_disable;
2179         } else if (INTEL_GEN(dev_priv) >= 3) {
2180                 engine->irq_enable = i9xx_irq_enable;
2181                 engine->irq_disable = i9xx_irq_disable;
2182         } else {
2183                 engine->irq_enable = i8xx_irq_enable;
2184                 engine->irq_disable = i8xx_irq_disable;
2185         }
2186 }
2187
2188 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2189 {
2190         engine->submit_request = i9xx_submit_request;
2191         engine->cancel_requests = cancel_requests;
2192
2193         engine->park = NULL;
2194         engine->unpark = NULL;
2195 }
2196
2197 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2198 {
2199         i9xx_set_default_submission(engine);
2200         engine->submit_request = gen6_bsd_submit_request;
2201 }
2202
2203 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2204                                       struct intel_engine_cs *engine)
2205 {
2206         /* gen8+ are only supported with execlists */
2207         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2208
2209         intel_ring_init_irq(dev_priv, engine);
2210
2211         engine->init_hw = init_ring_common;
2212         engine->reset.prepare = reset_prepare;
2213         engine->reset.reset = reset_ring;
2214         engine->reset.finish = reset_finish;
2215
2216         engine->cops = &ring_context_ops;
2217         engine->request_alloc = ring_request_alloc;
2218
2219         /*
2220          * Using a global execution timeline; the previous final breadcrumb is
2221          * equivalent to our next initial bread so we can elide
2222          * engine->emit_init_breadcrumb().
2223          */
2224         engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2225         if (IS_GEN(dev_priv, 5))
2226                 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2227
2228         engine->set_default_submission = i9xx_set_default_submission;
2229
2230         if (INTEL_GEN(dev_priv) >= 6)
2231                 engine->emit_bb_start = gen6_emit_bb_start;
2232         else if (INTEL_GEN(dev_priv) >= 4)
2233                 engine->emit_bb_start = i965_emit_bb_start;
2234         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2235                 engine->emit_bb_start = i830_emit_bb_start;
2236         else
2237                 engine->emit_bb_start = i915_emit_bb_start;
2238 }
2239
2240 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2241 {
2242         struct drm_i915_private *dev_priv = engine->i915;
2243         int ret;
2244
2245         intel_ring_default_vfuncs(dev_priv, engine);
2246
2247         if (HAS_L3_DPF(dev_priv))
2248                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2249
2250         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2251
2252         if (INTEL_GEN(dev_priv) >= 7) {
2253                 engine->init_context = intel_rcs_ctx_init;
2254                 engine->emit_flush = gen7_render_ring_flush;
2255                 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2256         } else if (IS_GEN(dev_priv, 6)) {
2257                 engine->init_context = intel_rcs_ctx_init;
2258                 engine->emit_flush = gen6_render_ring_flush;
2259                 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2260         } else if (IS_GEN(dev_priv, 5)) {
2261                 engine->emit_flush = gen4_render_ring_flush;
2262         } else {
2263                 if (INTEL_GEN(dev_priv) < 4)
2264                         engine->emit_flush = gen2_render_ring_flush;
2265                 else
2266                         engine->emit_flush = gen4_render_ring_flush;
2267                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2268         }
2269
2270         if (IS_HASWELL(dev_priv))
2271                 engine->emit_bb_start = hsw_emit_bb_start;
2272
2273         engine->init_hw = init_render_ring;
2274
2275         ret = intel_init_ring_buffer(engine);
2276         if (ret)
2277                 return ret;
2278
2279         return 0;
2280 }
2281
2282 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2283 {
2284         struct drm_i915_private *dev_priv = engine->i915;
2285
2286         intel_ring_default_vfuncs(dev_priv, engine);
2287
2288         if (INTEL_GEN(dev_priv) >= 6) {
2289                 /* gen6 bsd needs a special wa for tail updates */
2290                 if (IS_GEN(dev_priv, 6))
2291                         engine->set_default_submission = gen6_bsd_set_default_submission;
2292                 engine->emit_flush = gen6_bsd_ring_flush;
2293                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2294
2295                 if (IS_GEN(dev_priv, 6))
2296                         engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2297                 else
2298                         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2299         } else {
2300                 engine->emit_flush = bsd_ring_flush;
2301                 if (IS_GEN(dev_priv, 5))
2302                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2303                 else
2304                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2305         }
2306
2307         return intel_init_ring_buffer(engine);
2308 }
2309
2310 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2311 {
2312         struct drm_i915_private *dev_priv = engine->i915;
2313
2314         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
2315
2316         intel_ring_default_vfuncs(dev_priv, engine);
2317
2318         engine->emit_flush = gen6_ring_flush;
2319         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2320
2321         if (IS_GEN(dev_priv, 6))
2322                 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2323         else
2324                 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2325
2326         return intel_init_ring_buffer(engine);
2327 }
2328
2329 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2330 {
2331         struct drm_i915_private *dev_priv = engine->i915;
2332
2333         GEM_BUG_ON(INTEL_GEN(dev_priv) < 7);
2334
2335         intel_ring_default_vfuncs(dev_priv, engine);
2336
2337         engine->emit_flush = gen6_ring_flush;
2338         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2339         engine->irq_enable = hsw_vebox_irq_enable;
2340         engine->irq_disable = hsw_vebox_irq_disable;
2341
2342         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2343
2344         return intel_init_ring_buffer(engine);
2345 }