drm/i915: Extract skl SAGV checking
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34
35 #include "display/intel_atomic.h"
36 #include "display/intel_display_types.h"
37 #include "display/intel_fbc.h"
38 #include "display/intel_sprite.h"
39
40 #include "gt/intel_llc.h"
41
42 #include "i915_drv.h"
43 #include "i915_fixed.h"
44 #include "i915_irq.h"
45 #include "i915_trace.h"
46 #include "display/intel_bw.h"
47 #include "intel_pm.h"
48 #include "intel_sideband.h"
49 #include "../../../platform/x86/intel_ips.h"
50
51 /* Stores plane specific WM parameters */
52 struct skl_wm_params {
53         bool x_tiled, y_tiled;
54         bool rc_surface;
55         bool is_planar;
56         u32 width;
57         u8 cpp;
58         u32 plane_pixel_rate;
59         u32 y_min_scanlines;
60         u32 plane_bytes_per_line;
61         uint_fixed_16_16_t plane_blocks_per_line;
62         uint_fixed_16_16_t y_tile_minimum;
63         u32 linetime_us;
64         u32 dbuf_block_size;
65 };
66
67 /* used in computing the new watermarks state */
68 struct intel_wm_config {
69         unsigned int num_pipes_active;
70         bool sprites_enabled;
71         bool sprites_scaled;
72 };
73
74 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75 {
76         if (HAS_LLC(dev_priv)) {
77                 /*
78                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
79                  * Display WA #0390: skl,kbl
80                  *
81                  * Must match Sampler, Pixel Back End, and Media. See
82                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
83                  */
84                 I915_WRITE(CHICKEN_PAR1_1,
85                            I915_READ(CHICKEN_PAR1_1) |
86                            SKL_DE_COMPRESSED_HASH_MODE);
87         }
88
89         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90         I915_WRITE(CHICKEN_PAR1_1,
91                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
92
93         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94         I915_WRITE(GEN8_CHICKEN_DCPR_1,
95                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96
97         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
98         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
99         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
100                    DISP_FBC_WM_DIS |
101                    DISP_FBC_MEMORY_WAKE);
102
103         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
104         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
105                    ILK_DPFC_DISABLE_DUMMY0);
106
107         if (IS_SKYLAKE(dev_priv)) {
108                 /* WaDisableDopClockGating */
109                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
110                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
111         }
112 }
113
114 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
115 {
116         gen9_init_clock_gating(dev_priv);
117
118         /* WaDisableSDEUnitClockGating:bxt */
119         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
120                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
121
122         /*
123          * FIXME:
124          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
125          */
126         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
127                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
128
129         /*
130          * Wa: Backlight PWM may stop in the asserted state, causing backlight
131          * to stay fully on.
132          */
133         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
134                    PWM1_GATING_DIS | PWM2_GATING_DIS);
135
136         /*
137          * Lower the display internal timeout.
138          * This is needed to avoid any hard hangs when DSI port PLL
139          * is off and a MMIO access is attempted by any privilege
140          * application, using batch buffers or any other means.
141          */
142         I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
143 }
144
145 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
146 {
147         gen9_init_clock_gating(dev_priv);
148
149         /*
150          * WaDisablePWMClockGating:glk
151          * Backlight PWM may stop in the asserted state, causing backlight
152          * to stay fully on.
153          */
154         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
155                    PWM1_GATING_DIS | PWM2_GATING_DIS);
156 }
157
158 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
159 {
160         u32 tmp;
161
162         tmp = I915_READ(CLKCFG);
163
164         switch (tmp & CLKCFG_FSB_MASK) {
165         case CLKCFG_FSB_533:
166                 dev_priv->fsb_freq = 533; /* 133*4 */
167                 break;
168         case CLKCFG_FSB_800:
169                 dev_priv->fsb_freq = 800; /* 200*4 */
170                 break;
171         case CLKCFG_FSB_667:
172                 dev_priv->fsb_freq =  667; /* 167*4 */
173                 break;
174         case CLKCFG_FSB_400:
175                 dev_priv->fsb_freq = 400; /* 100*4 */
176                 break;
177         }
178
179         switch (tmp & CLKCFG_MEM_MASK) {
180         case CLKCFG_MEM_533:
181                 dev_priv->mem_freq = 533;
182                 break;
183         case CLKCFG_MEM_667:
184                 dev_priv->mem_freq = 667;
185                 break;
186         case CLKCFG_MEM_800:
187                 dev_priv->mem_freq = 800;
188                 break;
189         }
190
191         /* detect pineview DDR3 setting */
192         tmp = I915_READ(CSHRDDR3CTL);
193         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
194 }
195
196 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
197 {
198         u16 ddrpll, csipll;
199
200         ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
201         csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
202
203         switch (ddrpll & 0xff) {
204         case 0xc:
205                 dev_priv->mem_freq = 800;
206                 break;
207         case 0x10:
208                 dev_priv->mem_freq = 1066;
209                 break;
210         case 0x14:
211                 dev_priv->mem_freq = 1333;
212                 break;
213         case 0x18:
214                 dev_priv->mem_freq = 1600;
215                 break;
216         default:
217                 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
218                         ddrpll & 0xff);
219                 dev_priv->mem_freq = 0;
220                 break;
221         }
222
223         switch (csipll & 0x3ff) {
224         case 0x00c:
225                 dev_priv->fsb_freq = 3200;
226                 break;
227         case 0x00e:
228                 dev_priv->fsb_freq = 3733;
229                 break;
230         case 0x010:
231                 dev_priv->fsb_freq = 4266;
232                 break;
233         case 0x012:
234                 dev_priv->fsb_freq = 4800;
235                 break;
236         case 0x014:
237                 dev_priv->fsb_freq = 5333;
238                 break;
239         case 0x016:
240                 dev_priv->fsb_freq = 5866;
241                 break;
242         case 0x018:
243                 dev_priv->fsb_freq = 6400;
244                 break;
245         default:
246                 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
247                         csipll & 0x3ff);
248                 dev_priv->fsb_freq = 0;
249                 break;
250         }
251 }
252
253 static const struct cxsr_latency cxsr_latency_table[] = {
254         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
255         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
256         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
257         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
258         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
259
260         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
261         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
262         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
263         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
264         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
265
266         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
267         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
268         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
269         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
270         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
271
272         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
273         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
274         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
275         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
276         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
277
278         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
279         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
280         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
281         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
282         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
283
284         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
285         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
286         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
287         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
288         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
289 };
290
291 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
292                                                          bool is_ddr3,
293                                                          int fsb,
294                                                          int mem)
295 {
296         const struct cxsr_latency *latency;
297         int i;
298
299         if (fsb == 0 || mem == 0)
300                 return NULL;
301
302         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
303                 latency = &cxsr_latency_table[i];
304                 if (is_desktop == latency->is_desktop &&
305                     is_ddr3 == latency->is_ddr3 &&
306                     fsb == latency->fsb_freq && mem == latency->mem_freq)
307                         return latency;
308         }
309
310         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
311
312         return NULL;
313 }
314
315 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
316 {
317         u32 val;
318
319         vlv_punit_get(dev_priv);
320
321         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
322         if (enable)
323                 val &= ~FORCE_DDR_HIGH_FREQ;
324         else
325                 val |= FORCE_DDR_HIGH_FREQ;
326         val &= ~FORCE_DDR_LOW_FREQ;
327         val |= FORCE_DDR_FREQ_REQ_ACK;
328         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
329
330         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
331                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332                 drm_err(&dev_priv->drm,
333                         "timed out waiting for Punit DDR DVFS request\n");
334
335         vlv_punit_put(dev_priv);
336 }
337
338 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
339 {
340         u32 val;
341
342         vlv_punit_get(dev_priv);
343
344         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
345         if (enable)
346                 val |= DSP_MAXFIFO_PM5_ENABLE;
347         else
348                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
349         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
350
351         vlv_punit_put(dev_priv);
352 }
353
354 #define FW_WM(value, plane) \
355         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
356
357 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358 {
359         bool was_enabled;
360         u32 val;
361
362         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365                 POSTING_READ(FW_BLC_SELF_VLV);
366         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369                 POSTING_READ(FW_BLC_SELF);
370         } else if (IS_PINEVIEW(dev_priv)) {
371                 val = I915_READ(DSPFW3);
372                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
373                 if (enable)
374                         val |= PINEVIEW_SELF_REFRESH_EN;
375                 else
376                         val &= ~PINEVIEW_SELF_REFRESH_EN;
377                 I915_WRITE(DSPFW3, val);
378                 POSTING_READ(DSPFW3);
379         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
382                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
383                 I915_WRITE(FW_BLC_SELF, val);
384                 POSTING_READ(FW_BLC_SELF);
385         } else if (IS_I915GM(dev_priv)) {
386                 /*
387                  * FIXME can't find a bit like this for 915G, and
388                  * and yet it does have the related watermark in
389                  * FW_BLC_SELF. What's going on?
390                  */
391                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
393                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
394                 I915_WRITE(INSTPM, val);
395                 POSTING_READ(INSTPM);
396         } else {
397                 return false;
398         }
399
400         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
401
402         drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
403                     enableddisabled(enable),
404                     enableddisabled(was_enabled));
405
406         return was_enabled;
407 }
408
409 /**
410  * intel_set_memory_cxsr - Configure CxSR state
411  * @dev_priv: i915 device
412  * @enable: Allow vs. disallow CxSR
413  *
414  * Allow or disallow the system to enter a special CxSR
415  * (C-state self refresh) state. What typically happens in CxSR mode
416  * is that several display FIFOs may get combined into a single larger
417  * FIFO for a particular plane (so called max FIFO mode) to allow the
418  * system to defer memory fetches longer, and the memory will enter
419  * self refresh.
420  *
421  * Note that enabling CxSR does not guarantee that the system enter
422  * this special mode, nor does it guarantee that the system stays
423  * in that mode once entered. So this just allows/disallows the system
424  * to autonomously utilize the CxSR mode. Other factors such as core
425  * C-states will affect when/if the system actually enters/exits the
426  * CxSR mode.
427  *
428  * Note that on VLV/CHV this actually only controls the max FIFO mode,
429  * and the system is free to enter/exit memory self refresh at any time
430  * even when the use of CxSR has been disallowed.
431  *
432  * While the system is actually in the CxSR/max FIFO mode, some plane
433  * control registers will not get latched on vblank. Thus in order to
434  * guarantee the system will respond to changes in the plane registers
435  * we must always disallow CxSR prior to making changes to those registers.
436  * Unfortunately the system will re-evaluate the CxSR conditions at
437  * frame start which happens after vblank start (which is when the plane
438  * registers would get latched), so we can't proceed with the plane update
439  * during the same frame where we disallowed CxSR.
440  *
441  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
442  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
443  * the hardware w.r.t. HPLL SR when writing to plane registers.
444  * Disallowing just CxSR is sufficient.
445  */
446 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447 {
448         bool ret;
449
450         mutex_lock(&dev_priv->wm.wm_mutex);
451         ret = _intel_set_memory_cxsr(dev_priv, enable);
452         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
453                 dev_priv->wm.vlv.cxsr = enable;
454         else if (IS_G4X(dev_priv))
455                 dev_priv->wm.g4x.cxsr = enable;
456         mutex_unlock(&dev_priv->wm.wm_mutex);
457
458         return ret;
459 }
460
461 /*
462  * Latency for FIFO fetches is dependent on several factors:
463  *   - memory configuration (speed, channels)
464  *   - chipset
465  *   - current MCH state
466  * It can be fairly high in some situations, so here we assume a fairly
467  * pessimal value.  It's a tradeoff between extra memory fetches (if we
468  * set this value too high, the FIFO will fetch frequently to stay full)
469  * and power consumption (set it too low to save power and we might see
470  * FIFO underruns and display "flicker").
471  *
472  * A value of 5us seems to be a good balance; safe for very low end
473  * platforms but not overly aggressive on lower latency configs.
474  */
475 static const int pessimal_latency_ns = 5000;
476
477 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
478         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
479
480 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481 {
482         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
483         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485         enum pipe pipe = crtc->pipe;
486         int sprite0_start, sprite1_start;
487         u32 dsparb, dsparb2, dsparb3;
488
489         switch (pipe) {
490         case PIPE_A:
491                 dsparb = I915_READ(DSPARB);
492                 dsparb2 = I915_READ(DSPARB2);
493                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
494                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
495                 break;
496         case PIPE_B:
497                 dsparb = I915_READ(DSPARB);
498                 dsparb2 = I915_READ(DSPARB2);
499                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
500                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
501                 break;
502         case PIPE_C:
503                 dsparb2 = I915_READ(DSPARB2);
504                 dsparb3 = I915_READ(DSPARB3);
505                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
506                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
507                 break;
508         default:
509                 MISSING_CASE(pipe);
510                 return;
511         }
512
513         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
514         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
515         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
516         fifo_state->plane[PLANE_CURSOR] = 63;
517 }
518
519 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
520                               enum i9xx_plane_id i9xx_plane)
521 {
522         u32 dsparb = I915_READ(DSPARB);
523         int size;
524
525         size = dsparb & 0x7f;
526         if (i9xx_plane == PLANE_B)
527                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
528
529         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
530                     dsparb, plane_name(i9xx_plane), size);
531
532         return size;
533 }
534
535 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
536                               enum i9xx_plane_id i9xx_plane)
537 {
538         u32 dsparb = I915_READ(DSPARB);
539         int size;
540
541         size = dsparb & 0x1ff;
542         if (i9xx_plane == PLANE_B)
543                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
544         size >>= 1; /* Convert to cachelines */
545
546         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
547                     dsparb, plane_name(i9xx_plane), size);
548
549         return size;
550 }
551
552 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
553                               enum i9xx_plane_id i9xx_plane)
554 {
555         u32 dsparb = I915_READ(DSPARB);
556         int size;
557
558         size = dsparb & 0x7f;
559         size >>= 2; /* Convert to cachelines */
560
561         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
562                     dsparb, plane_name(i9xx_plane), size);
563
564         return size;
565 }
566
567 /* Pineview has different values for various configs */
568 static const struct intel_watermark_params pnv_display_wm = {
569         .fifo_size = PINEVIEW_DISPLAY_FIFO,
570         .max_wm = PINEVIEW_MAX_WM,
571         .default_wm = PINEVIEW_DFT_WM,
572         .guard_size = PINEVIEW_GUARD_WM,
573         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 };
575
576 static const struct intel_watermark_params pnv_display_hplloff_wm = {
577         .fifo_size = PINEVIEW_DISPLAY_FIFO,
578         .max_wm = PINEVIEW_MAX_WM,
579         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
580         .guard_size = PINEVIEW_GUARD_WM,
581         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 };
583
584 static const struct intel_watermark_params pnv_cursor_wm = {
585         .fifo_size = PINEVIEW_CURSOR_FIFO,
586         .max_wm = PINEVIEW_CURSOR_MAX_WM,
587         .default_wm = PINEVIEW_CURSOR_DFT_WM,
588         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
589         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590 };
591
592 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
593         .fifo_size = PINEVIEW_CURSOR_FIFO,
594         .max_wm = PINEVIEW_CURSOR_MAX_WM,
595         .default_wm = PINEVIEW_CURSOR_DFT_WM,
596         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
597         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 };
599
600 static const struct intel_watermark_params i965_cursor_wm_info = {
601         .fifo_size = I965_CURSOR_FIFO,
602         .max_wm = I965_CURSOR_MAX_WM,
603         .default_wm = I965_CURSOR_DFT_WM,
604         .guard_size = 2,
605         .cacheline_size = I915_FIFO_LINE_SIZE,
606 };
607
608 static const struct intel_watermark_params i945_wm_info = {
609         .fifo_size = I945_FIFO_SIZE,
610         .max_wm = I915_MAX_WM,
611         .default_wm = 1,
612         .guard_size = 2,
613         .cacheline_size = I915_FIFO_LINE_SIZE,
614 };
615
616 static const struct intel_watermark_params i915_wm_info = {
617         .fifo_size = I915_FIFO_SIZE,
618         .max_wm = I915_MAX_WM,
619         .default_wm = 1,
620         .guard_size = 2,
621         .cacheline_size = I915_FIFO_LINE_SIZE,
622 };
623
624 static const struct intel_watermark_params i830_a_wm_info = {
625         .fifo_size = I855GM_FIFO_SIZE,
626         .max_wm = I915_MAX_WM,
627         .default_wm = 1,
628         .guard_size = 2,
629         .cacheline_size = I830_FIFO_LINE_SIZE,
630 };
631
632 static const struct intel_watermark_params i830_bc_wm_info = {
633         .fifo_size = I855GM_FIFO_SIZE,
634         .max_wm = I915_MAX_WM/2,
635         .default_wm = 1,
636         .guard_size = 2,
637         .cacheline_size = I830_FIFO_LINE_SIZE,
638 };
639
640 static const struct intel_watermark_params i845_wm_info = {
641         .fifo_size = I830_FIFO_SIZE,
642         .max_wm = I915_MAX_WM,
643         .default_wm = 1,
644         .guard_size = 2,
645         .cacheline_size = I830_FIFO_LINE_SIZE,
646 };
647
648 /**
649  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
650  * @pixel_rate: Pipe pixel rate in kHz
651  * @cpp: Plane bytes per pixel
652  * @latency: Memory wakeup latency in 0.1us units
653  *
654  * Compute the watermark using the method 1 or "small buffer"
655  * formula. The caller may additonally add extra cachelines
656  * to account for TLB misses and clock crossings.
657  *
658  * This method is concerned with the short term drain rate
659  * of the FIFO, ie. it does not account for blanking periods
660  * which would effectively reduce the average drain rate across
661  * a longer period. The name "small" refers to the fact the
662  * FIFO is relatively small compared to the amount of data
663  * fetched.
664  *
665  * The FIFO level vs. time graph might look something like:
666  *
667  *   |\   |\
668  *   | \  | \
669  * __---__---__ (- plane active, _ blanking)
670  * -> time
671  *
672  * or perhaps like this:
673  *
674  *   |\|\  |\|\
675  * __----__----__ (- plane active, _ blanking)
676  * -> time
677  *
678  * Returns:
679  * The watermark in bytes
680  */
681 static unsigned int intel_wm_method1(unsigned int pixel_rate,
682                                      unsigned int cpp,
683                                      unsigned int latency)
684 {
685         u64 ret;
686
687         ret = mul_u32_u32(pixel_rate, cpp * latency);
688         ret = DIV_ROUND_UP_ULL(ret, 10000);
689
690         return ret;
691 }
692
693 /**
694  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
695  * @pixel_rate: Pipe pixel rate in kHz
696  * @htotal: Pipe horizontal total
697  * @width: Plane width in pixels
698  * @cpp: Plane bytes per pixel
699  * @latency: Memory wakeup latency in 0.1us units
700  *
701  * Compute the watermark using the method 2 or "large buffer"
702  * formula. The caller may additonally add extra cachelines
703  * to account for TLB misses and clock crossings.
704  *
705  * This method is concerned with the long term drain rate
706  * of the FIFO, ie. it does account for blanking periods
707  * which effectively reduce the average drain rate across
708  * a longer period. The name "large" refers to the fact the
709  * FIFO is relatively large compared to the amount of data
710  * fetched.
711  *
712  * The FIFO level vs. time graph might look something like:
713  *
714  *    |\___       |\___
715  *    |    \___   |    \___
716  *    |        \  |        \
717  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
718  * -> time
719  *
720  * Returns:
721  * The watermark in bytes
722  */
723 static unsigned int intel_wm_method2(unsigned int pixel_rate,
724                                      unsigned int htotal,
725                                      unsigned int width,
726                                      unsigned int cpp,
727                                      unsigned int latency)
728 {
729         unsigned int ret;
730
731         /*
732          * FIXME remove once all users are computing
733          * watermarks in the correct place.
734          */
735         if (WARN_ON_ONCE(htotal == 0))
736                 htotal = 1;
737
738         ret = (latency * pixel_rate) / (htotal * 10000);
739         ret = (ret + 1) * width * cpp;
740
741         return ret;
742 }
743
744 /**
745  * intel_calculate_wm - calculate watermark level
746  * @pixel_rate: pixel clock
747  * @wm: chip FIFO params
748  * @fifo_size: size of the FIFO buffer
749  * @cpp: bytes per pixel
750  * @latency_ns: memory latency for the platform
751  *
752  * Calculate the watermark level (the level at which the display plane will
753  * start fetching from memory again).  Each chip has a different display
754  * FIFO size and allocation, so the caller needs to figure that out and pass
755  * in the correct intel_watermark_params structure.
756  *
757  * As the pixel clock runs, the FIFO will be drained at a rate that depends
758  * on the pixel size.  When it reaches the watermark level, it'll start
759  * fetching FIFO line sized based chunks from memory until the FIFO fills
760  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
761  * will occur, and a display engine hang could result.
762  */
763 static unsigned int intel_calculate_wm(int pixel_rate,
764                                        const struct intel_watermark_params *wm,
765                                        int fifo_size, int cpp,
766                                        unsigned int latency_ns)
767 {
768         int entries, wm_size;
769
770         /*
771          * Note: we need to make sure we don't overflow for various clock &
772          * latency values.
773          * clocks go from a few thousand to several hundred thousand.
774          * latency is usually a few thousand
775          */
776         entries = intel_wm_method1(pixel_rate, cpp,
777                                    latency_ns / 100);
778         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
779                 wm->guard_size;
780         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
781
782         wm_size = fifo_size - entries;
783         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
784
785         /* Don't promote wm_size to unsigned... */
786         if (wm_size > wm->max_wm)
787                 wm_size = wm->max_wm;
788         if (wm_size <= 0)
789                 wm_size = wm->default_wm;
790
791         /*
792          * Bspec seems to indicate that the value shouldn't be lower than
793          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
794          * Lets go for 8 which is the burst size since certain platforms
795          * already use a hardcoded 8 (which is what the spec says should be
796          * done).
797          */
798         if (wm_size <= 8)
799                 wm_size = 8;
800
801         return wm_size;
802 }
803
804 static bool is_disabling(int old, int new, int threshold)
805 {
806         return old >= threshold && new < threshold;
807 }
808
809 static bool is_enabling(int old, int new, int threshold)
810 {
811         return old < threshold && new >= threshold;
812 }
813
814 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
815 {
816         return dev_priv->wm.max_level + 1;
817 }
818
819 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
820                                    const struct intel_plane_state *plane_state)
821 {
822         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
823
824         /* FIXME check the 'enable' instead */
825         if (!crtc_state->hw.active)
826                 return false;
827
828         /*
829          * Treat cursor with fb as always visible since cursor updates
830          * can happen faster than the vrefresh rate, and the current
831          * watermark code doesn't handle that correctly. Cursor updates
832          * which set/clear the fb or change the cursor size are going
833          * to get throttled by intel_legacy_cursor_update() to work
834          * around this problem with the watermark code.
835          */
836         if (plane->id == PLANE_CURSOR)
837                 return plane_state->hw.fb != NULL;
838         else
839                 return plane_state->uapi.visible;
840 }
841
842 static bool intel_crtc_active(struct intel_crtc *crtc)
843 {
844         /* Be paranoid as we can arrive here with only partial
845          * state retrieved from the hardware during setup.
846          *
847          * We can ditch the adjusted_mode.crtc_clock check as soon
848          * as Haswell has gained clock readout/fastboot support.
849          *
850          * We can ditch the crtc->primary->state->fb check as soon as we can
851          * properly reconstruct framebuffers.
852          *
853          * FIXME: The intel_crtc->active here should be switched to
854          * crtc->state->active once we have proper CRTC states wired up
855          * for atomic.
856          */
857         return crtc->active && crtc->base.primary->state->fb &&
858                 crtc->config->hw.adjusted_mode.crtc_clock;
859 }
860
861 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
862 {
863         struct intel_crtc *crtc, *enabled = NULL;
864
865         for_each_intel_crtc(&dev_priv->drm, crtc) {
866                 if (intel_crtc_active(crtc)) {
867                         if (enabled)
868                                 return NULL;
869                         enabled = crtc;
870                 }
871         }
872
873         return enabled;
874 }
875
876 static void pnv_update_wm(struct intel_crtc *unused_crtc)
877 {
878         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
879         struct intel_crtc *crtc;
880         const struct cxsr_latency *latency;
881         u32 reg;
882         unsigned int wm;
883
884         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
885                                          dev_priv->is_ddr3,
886                                          dev_priv->fsb_freq,
887                                          dev_priv->mem_freq);
888         if (!latency) {
889                 drm_dbg_kms(&dev_priv->drm,
890                             "Unknown FSB/MEM found, disable CxSR\n");
891                 intel_set_memory_cxsr(dev_priv, false);
892                 return;
893         }
894
895         crtc = single_enabled_crtc(dev_priv);
896         if (crtc) {
897                 const struct drm_display_mode *adjusted_mode =
898                         &crtc->config->hw.adjusted_mode;
899                 const struct drm_framebuffer *fb =
900                         crtc->base.primary->state->fb;
901                 int cpp = fb->format->cpp[0];
902                 int clock = adjusted_mode->crtc_clock;
903
904                 /* Display SR */
905                 wm = intel_calculate_wm(clock, &pnv_display_wm,
906                                         pnv_display_wm.fifo_size,
907                                         cpp, latency->display_sr);
908                 reg = I915_READ(DSPFW1);
909                 reg &= ~DSPFW_SR_MASK;
910                 reg |= FW_WM(wm, SR);
911                 I915_WRITE(DSPFW1, reg);
912                 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
913
914                 /* cursor SR */
915                 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
916                                         pnv_display_wm.fifo_size,
917                                         4, latency->cursor_sr);
918                 reg = I915_READ(DSPFW3);
919                 reg &= ~DSPFW_CURSOR_SR_MASK;
920                 reg |= FW_WM(wm, CURSOR_SR);
921                 I915_WRITE(DSPFW3, reg);
922
923                 /* Display HPLL off SR */
924                 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
925                                         pnv_display_hplloff_wm.fifo_size,
926                                         cpp, latency->display_hpll_disable);
927                 reg = I915_READ(DSPFW3);
928                 reg &= ~DSPFW_HPLL_SR_MASK;
929                 reg |= FW_WM(wm, HPLL_SR);
930                 I915_WRITE(DSPFW3, reg);
931
932                 /* cursor HPLL off SR */
933                 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
934                                         pnv_display_hplloff_wm.fifo_size,
935                                         4, latency->cursor_hpll_disable);
936                 reg = I915_READ(DSPFW3);
937                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
938                 reg |= FW_WM(wm, HPLL_CURSOR);
939                 I915_WRITE(DSPFW3, reg);
940                 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
941
942                 intel_set_memory_cxsr(dev_priv, true);
943         } else {
944                 intel_set_memory_cxsr(dev_priv, false);
945         }
946 }
947
948 /*
949  * Documentation says:
950  * "If the line size is small, the TLB fetches can get in the way of the
951  *  data fetches, causing some lag in the pixel data return which is not
952  *  accounted for in the above formulas. The following adjustment only
953  *  needs to be applied if eight whole lines fit in the buffer at once.
954  *  The WM is adjusted upwards by the difference between the FIFO size
955  *  and the size of 8 whole lines. This adjustment is always performed
956  *  in the actual pixel depth regardless of whether FBC is enabled or not."
957  */
958 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
959 {
960         int tlb_miss = fifo_size * 64 - width * cpp * 8;
961
962         return max(0, tlb_miss);
963 }
964
965 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
966                                 const struct g4x_wm_values *wm)
967 {
968         enum pipe pipe;
969
970         for_each_pipe(dev_priv, pipe)
971                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
972
973         I915_WRITE(DSPFW1,
974                    FW_WM(wm->sr.plane, SR) |
975                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
976                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
977                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
978         I915_WRITE(DSPFW2,
979                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
980                    FW_WM(wm->sr.fbc, FBC_SR) |
981                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
982                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
983                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
984                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
985         I915_WRITE(DSPFW3,
986                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
987                    FW_WM(wm->sr.cursor, CURSOR_SR) |
988                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
989                    FW_WM(wm->hpll.plane, HPLL_SR));
990
991         POSTING_READ(DSPFW1);
992 }
993
994 #define FW_WM_VLV(value, plane) \
995         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
996
997 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
998                                 const struct vlv_wm_values *wm)
999 {
1000         enum pipe pipe;
1001
1002         for_each_pipe(dev_priv, pipe) {
1003                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1004
1005                 I915_WRITE(VLV_DDL(pipe),
1006                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1007                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1008                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1009                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1010         }
1011
1012         /*
1013          * Zero the (unused) WM1 watermarks, and also clear all the
1014          * high order bits so that there are no out of bounds values
1015          * present in the registers during the reprogramming.
1016          */
1017         I915_WRITE(DSPHOWM, 0);
1018         I915_WRITE(DSPHOWM1, 0);
1019         I915_WRITE(DSPFW4, 0);
1020         I915_WRITE(DSPFW5, 0);
1021         I915_WRITE(DSPFW6, 0);
1022
1023         I915_WRITE(DSPFW1,
1024                    FW_WM(wm->sr.plane, SR) |
1025                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1026                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1027                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1028         I915_WRITE(DSPFW2,
1029                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1030                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1031                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1032         I915_WRITE(DSPFW3,
1033                    FW_WM(wm->sr.cursor, CURSOR_SR));
1034
1035         if (IS_CHERRYVIEW(dev_priv)) {
1036                 I915_WRITE(DSPFW7_CHV,
1037                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1038                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1039                 I915_WRITE(DSPFW8_CHV,
1040                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1041                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1042                 I915_WRITE(DSPFW9_CHV,
1043                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1044                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1045                 I915_WRITE(DSPHOWM,
1046                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1047                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1048                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1049                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1050                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1051                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1052                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1053                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1054                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1055                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1056         } else {
1057                 I915_WRITE(DSPFW7,
1058                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1059                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1060                 I915_WRITE(DSPHOWM,
1061                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1062                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1063                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1064                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1065                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1066                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1067                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1068         }
1069
1070         POSTING_READ(DSPFW1);
1071 }
1072
1073 #undef FW_WM_VLV
1074
1075 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1076 {
1077         /* all latencies in usec */
1078         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1079         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1080         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1081
1082         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1083 }
1084
1085 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1086 {
1087         /*
1088          * DSPCNTR[13] supposedly controls whether the
1089          * primary plane can use the FIFO space otherwise
1090          * reserved for the sprite plane. It's not 100% clear
1091          * what the actual FIFO size is, but it looks like we
1092          * can happily set both primary and sprite watermarks
1093          * up to 127 cachelines. So that would seem to mean
1094          * that either DSPCNTR[13] doesn't do anything, or that
1095          * the total FIFO is >= 256 cachelines in size. Either
1096          * way, we don't seem to have to worry about this
1097          * repartitioning as the maximum watermark value the
1098          * register can hold for each plane is lower than the
1099          * minimum FIFO size.
1100          */
1101         switch (plane_id) {
1102         case PLANE_CURSOR:
1103                 return 63;
1104         case PLANE_PRIMARY:
1105                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1106         case PLANE_SPRITE0:
1107                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1108         default:
1109                 MISSING_CASE(plane_id);
1110                 return 0;
1111         }
1112 }
1113
1114 static int g4x_fbc_fifo_size(int level)
1115 {
1116         switch (level) {
1117         case G4X_WM_LEVEL_SR:
1118                 return 7;
1119         case G4X_WM_LEVEL_HPLL:
1120                 return 15;
1121         default:
1122                 MISSING_CASE(level);
1123                 return 0;
1124         }
1125 }
1126
1127 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1128                           const struct intel_plane_state *plane_state,
1129                           int level)
1130 {
1131         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1132         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1133         const struct drm_display_mode *adjusted_mode =
1134                 &crtc_state->hw.adjusted_mode;
1135         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1136         unsigned int clock, htotal, cpp, width, wm;
1137
1138         if (latency == 0)
1139                 return USHRT_MAX;
1140
1141         if (!intel_wm_plane_visible(crtc_state, plane_state))
1142                 return 0;
1143
1144         cpp = plane_state->hw.fb->format->cpp[0];
1145
1146         /*
1147          * Not 100% sure which way ELK should go here as the
1148          * spec only says CL/CTG should assume 32bpp and BW
1149          * doesn't need to. But as these things followed the
1150          * mobile vs. desktop lines on gen3 as well, let's
1151          * assume ELK doesn't need this.
1152          *
1153          * The spec also fails to list such a restriction for
1154          * the HPLL watermark, which seems a little strange.
1155          * Let's use 32bpp for the HPLL watermark as well.
1156          */
1157         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1158             level != G4X_WM_LEVEL_NORMAL)
1159                 cpp = max(cpp, 4u);
1160
1161         clock = adjusted_mode->crtc_clock;
1162         htotal = adjusted_mode->crtc_htotal;
1163
1164         width = drm_rect_width(&plane_state->uapi.dst);
1165
1166         if (plane->id == PLANE_CURSOR) {
1167                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1168         } else if (plane->id == PLANE_PRIMARY &&
1169                    level == G4X_WM_LEVEL_NORMAL) {
1170                 wm = intel_wm_method1(clock, cpp, latency);
1171         } else {
1172                 unsigned int small, large;
1173
1174                 small = intel_wm_method1(clock, cpp, latency);
1175                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1176
1177                 wm = min(small, large);
1178         }
1179
1180         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1181                               width, cpp);
1182
1183         wm = DIV_ROUND_UP(wm, 64) + 2;
1184
1185         return min_t(unsigned int, wm, USHRT_MAX);
1186 }
1187
1188 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1189                                  int level, enum plane_id plane_id, u16 value)
1190 {
1191         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1192         bool dirty = false;
1193
1194         for (; level < intel_wm_num_levels(dev_priv); level++) {
1195                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1196
1197                 dirty |= raw->plane[plane_id] != value;
1198                 raw->plane[plane_id] = value;
1199         }
1200
1201         return dirty;
1202 }
1203
1204 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1205                                int level, u16 value)
1206 {
1207         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1208         bool dirty = false;
1209
1210         /* NORMAL level doesn't have an FBC watermark */
1211         level = max(level, G4X_WM_LEVEL_SR);
1212
1213         for (; level < intel_wm_num_levels(dev_priv); level++) {
1214                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1215
1216                 dirty |= raw->fbc != value;
1217                 raw->fbc = value;
1218         }
1219
1220         return dirty;
1221 }
1222
1223 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1224                               const struct intel_plane_state *plane_state,
1225                               u32 pri_val);
1226
1227 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1228                                      const struct intel_plane_state *plane_state)
1229 {
1230         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1231         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1232         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1233         enum plane_id plane_id = plane->id;
1234         bool dirty = false;
1235         int level;
1236
1237         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1238                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1239                 if (plane_id == PLANE_PRIMARY)
1240                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1241                 goto out;
1242         }
1243
1244         for (level = 0; level < num_levels; level++) {
1245                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1246                 int wm, max_wm;
1247
1248                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1249                 max_wm = g4x_plane_fifo_size(plane_id, level);
1250
1251                 if (wm > max_wm)
1252                         break;
1253
1254                 dirty |= raw->plane[plane_id] != wm;
1255                 raw->plane[plane_id] = wm;
1256
1257                 if (plane_id != PLANE_PRIMARY ||
1258                     level == G4X_WM_LEVEL_NORMAL)
1259                         continue;
1260
1261                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1262                                         raw->plane[plane_id]);
1263                 max_wm = g4x_fbc_fifo_size(level);
1264
1265                 /*
1266                  * FBC wm is not mandatory as we
1267                  * can always just disable its use.
1268                  */
1269                 if (wm > max_wm)
1270                         wm = USHRT_MAX;
1271
1272                 dirty |= raw->fbc != wm;
1273                 raw->fbc = wm;
1274         }
1275
1276         /* mark watermarks as invalid */
1277         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1278
1279         if (plane_id == PLANE_PRIMARY)
1280                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1281
1282  out:
1283         if (dirty) {
1284                 drm_dbg_kms(&dev_priv->drm,
1285                             "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1286                             plane->base.name,
1287                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1288                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1289                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1290
1291                 if (plane_id == PLANE_PRIMARY)
1292                         drm_dbg_kms(&dev_priv->drm,
1293                                     "FBC watermarks: SR=%d, HPLL=%d\n",
1294                                     crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1295                                     crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1296         }
1297
1298         return dirty;
1299 }
1300
1301 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1302                                       enum plane_id plane_id, int level)
1303 {
1304         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1305
1306         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1307 }
1308
1309 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1310                                      int level)
1311 {
1312         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1313
1314         if (level > dev_priv->wm.max_level)
1315                 return false;
1316
1317         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1318                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1319                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1320 }
1321
1322 /* mark all levels starting from 'level' as invalid */
1323 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1324                                struct g4x_wm_state *wm_state, int level)
1325 {
1326         if (level <= G4X_WM_LEVEL_NORMAL) {
1327                 enum plane_id plane_id;
1328
1329                 for_each_plane_id_on_crtc(crtc, plane_id)
1330                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1331         }
1332
1333         if (level <= G4X_WM_LEVEL_SR) {
1334                 wm_state->cxsr = false;
1335                 wm_state->sr.cursor = USHRT_MAX;
1336                 wm_state->sr.plane = USHRT_MAX;
1337                 wm_state->sr.fbc = USHRT_MAX;
1338         }
1339
1340         if (level <= G4X_WM_LEVEL_HPLL) {
1341                 wm_state->hpll_en = false;
1342                 wm_state->hpll.cursor = USHRT_MAX;
1343                 wm_state->hpll.plane = USHRT_MAX;
1344                 wm_state->hpll.fbc = USHRT_MAX;
1345         }
1346 }
1347
1348 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1349 {
1350         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1351         struct intel_atomic_state *state =
1352                 to_intel_atomic_state(crtc_state->uapi.state);
1353         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1354         int num_active_planes = hweight8(crtc_state->active_planes &
1355                                          ~BIT(PLANE_CURSOR));
1356         const struct g4x_pipe_wm *raw;
1357         const struct intel_plane_state *old_plane_state;
1358         const struct intel_plane_state *new_plane_state;
1359         struct intel_plane *plane;
1360         enum plane_id plane_id;
1361         int i, level;
1362         unsigned int dirty = 0;
1363
1364         for_each_oldnew_intel_plane_in_state(state, plane,
1365                                              old_plane_state,
1366                                              new_plane_state, i) {
1367                 if (new_plane_state->hw.crtc != &crtc->base &&
1368                     old_plane_state->hw.crtc != &crtc->base)
1369                         continue;
1370
1371                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1372                         dirty |= BIT(plane->id);
1373         }
1374
1375         if (!dirty)
1376                 return 0;
1377
1378         level = G4X_WM_LEVEL_NORMAL;
1379         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1380                 goto out;
1381
1382         raw = &crtc_state->wm.g4x.raw[level];
1383         for_each_plane_id_on_crtc(crtc, plane_id)
1384                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1385
1386         level = G4X_WM_LEVEL_SR;
1387
1388         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1389                 goto out;
1390
1391         raw = &crtc_state->wm.g4x.raw[level];
1392         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1393         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1394         wm_state->sr.fbc = raw->fbc;
1395
1396         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1397
1398         level = G4X_WM_LEVEL_HPLL;
1399
1400         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1401                 goto out;
1402
1403         raw = &crtc_state->wm.g4x.raw[level];
1404         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1405         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1406         wm_state->hpll.fbc = raw->fbc;
1407
1408         wm_state->hpll_en = wm_state->cxsr;
1409
1410         level++;
1411
1412  out:
1413         if (level == G4X_WM_LEVEL_NORMAL)
1414                 return -EINVAL;
1415
1416         /* invalidate the higher levels */
1417         g4x_invalidate_wms(crtc, wm_state, level);
1418
1419         /*
1420          * Determine if the FBC watermark(s) can be used. IF
1421          * this isn't the case we prefer to disable the FBC
1422          ( watermark(s) rather than disable the SR/HPLL
1423          * level(s) entirely.
1424          */
1425         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1426
1427         if (level >= G4X_WM_LEVEL_SR &&
1428             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1429                 wm_state->fbc_en = false;
1430         else if (level >= G4X_WM_LEVEL_HPLL &&
1431                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1432                 wm_state->fbc_en = false;
1433
1434         return 0;
1435 }
1436
1437 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1438 {
1439         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1440         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1441         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1442         struct intel_atomic_state *intel_state =
1443                 to_intel_atomic_state(new_crtc_state->uapi.state);
1444         const struct intel_crtc_state *old_crtc_state =
1445                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1446         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1447         enum plane_id plane_id;
1448
1449         if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1450                 *intermediate = *optimal;
1451
1452                 intermediate->cxsr = false;
1453                 intermediate->hpll_en = false;
1454                 goto out;
1455         }
1456
1457         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1458                 !new_crtc_state->disable_cxsr;
1459         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1460                 !new_crtc_state->disable_cxsr;
1461         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1462
1463         for_each_plane_id_on_crtc(crtc, plane_id) {
1464                 intermediate->wm.plane[plane_id] =
1465                         max(optimal->wm.plane[plane_id],
1466                             active->wm.plane[plane_id]);
1467
1468                 WARN_ON(intermediate->wm.plane[plane_id] >
1469                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1470         }
1471
1472         intermediate->sr.plane = max(optimal->sr.plane,
1473                                      active->sr.plane);
1474         intermediate->sr.cursor = max(optimal->sr.cursor,
1475                                       active->sr.cursor);
1476         intermediate->sr.fbc = max(optimal->sr.fbc,
1477                                    active->sr.fbc);
1478
1479         intermediate->hpll.plane = max(optimal->hpll.plane,
1480                                        active->hpll.plane);
1481         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1482                                         active->hpll.cursor);
1483         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1484                                      active->hpll.fbc);
1485
1486         WARN_ON((intermediate->sr.plane >
1487                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1488                  intermediate->sr.cursor >
1489                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1490                 intermediate->cxsr);
1491         WARN_ON((intermediate->sr.plane >
1492                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1493                  intermediate->sr.cursor >
1494                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1495                 intermediate->hpll_en);
1496
1497         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1498                 intermediate->fbc_en && intermediate->cxsr);
1499         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1500                 intermediate->fbc_en && intermediate->hpll_en);
1501
1502 out:
1503         /*
1504          * If our intermediate WM are identical to the final WM, then we can
1505          * omit the post-vblank programming; only update if it's different.
1506          */
1507         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1508                 new_crtc_state->wm.need_postvbl_update = true;
1509
1510         return 0;
1511 }
1512
1513 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1514                          struct g4x_wm_values *wm)
1515 {
1516         struct intel_crtc *crtc;
1517         int num_active_pipes = 0;
1518
1519         wm->cxsr = true;
1520         wm->hpll_en = true;
1521         wm->fbc_en = true;
1522
1523         for_each_intel_crtc(&dev_priv->drm, crtc) {
1524                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1525
1526                 if (!crtc->active)
1527                         continue;
1528
1529                 if (!wm_state->cxsr)
1530                         wm->cxsr = false;
1531                 if (!wm_state->hpll_en)
1532                         wm->hpll_en = false;
1533                 if (!wm_state->fbc_en)
1534                         wm->fbc_en = false;
1535
1536                 num_active_pipes++;
1537         }
1538
1539         if (num_active_pipes != 1) {
1540                 wm->cxsr = false;
1541                 wm->hpll_en = false;
1542                 wm->fbc_en = false;
1543         }
1544
1545         for_each_intel_crtc(&dev_priv->drm, crtc) {
1546                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1547                 enum pipe pipe = crtc->pipe;
1548
1549                 wm->pipe[pipe] = wm_state->wm;
1550                 if (crtc->active && wm->cxsr)
1551                         wm->sr = wm_state->sr;
1552                 if (crtc->active && wm->hpll_en)
1553                         wm->hpll = wm_state->hpll;
1554         }
1555 }
1556
1557 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1558 {
1559         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1560         struct g4x_wm_values new_wm = {};
1561
1562         g4x_merge_wm(dev_priv, &new_wm);
1563
1564         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1565                 return;
1566
1567         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1568                 _intel_set_memory_cxsr(dev_priv, false);
1569
1570         g4x_write_wm_values(dev_priv, &new_wm);
1571
1572         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1573                 _intel_set_memory_cxsr(dev_priv, true);
1574
1575         *old_wm = new_wm;
1576 }
1577
1578 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1579                                    struct intel_crtc *crtc)
1580 {
1581         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1582         const struct intel_crtc_state *crtc_state =
1583                 intel_atomic_get_new_crtc_state(state, crtc);
1584
1585         mutex_lock(&dev_priv->wm.wm_mutex);
1586         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1587         g4x_program_watermarks(dev_priv);
1588         mutex_unlock(&dev_priv->wm.wm_mutex);
1589 }
1590
1591 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1592                                     struct intel_crtc *crtc)
1593 {
1594         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1595         const struct intel_crtc_state *crtc_state =
1596                 intel_atomic_get_new_crtc_state(state, crtc);
1597
1598         if (!crtc_state->wm.need_postvbl_update)
1599                 return;
1600
1601         mutex_lock(&dev_priv->wm.wm_mutex);
1602         crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1603         g4x_program_watermarks(dev_priv);
1604         mutex_unlock(&dev_priv->wm.wm_mutex);
1605 }
1606
1607 /* latency must be in 0.1us units. */
1608 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1609                                    unsigned int htotal,
1610                                    unsigned int width,
1611                                    unsigned int cpp,
1612                                    unsigned int latency)
1613 {
1614         unsigned int ret;
1615
1616         ret = intel_wm_method2(pixel_rate, htotal,
1617                                width, cpp, latency);
1618         ret = DIV_ROUND_UP(ret, 64);
1619
1620         return ret;
1621 }
1622
1623 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1624 {
1625         /* all latencies in usec */
1626         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1627
1628         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1629
1630         if (IS_CHERRYVIEW(dev_priv)) {
1631                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1632                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1633
1634                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1635         }
1636 }
1637
1638 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1639                                 const struct intel_plane_state *plane_state,
1640                                 int level)
1641 {
1642         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1643         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1644         const struct drm_display_mode *adjusted_mode =
1645                 &crtc_state->hw.adjusted_mode;
1646         unsigned int clock, htotal, cpp, width, wm;
1647
1648         if (dev_priv->wm.pri_latency[level] == 0)
1649                 return USHRT_MAX;
1650
1651         if (!intel_wm_plane_visible(crtc_state, plane_state))
1652                 return 0;
1653
1654         cpp = plane_state->hw.fb->format->cpp[0];
1655         clock = adjusted_mode->crtc_clock;
1656         htotal = adjusted_mode->crtc_htotal;
1657         width = crtc_state->pipe_src_w;
1658
1659         if (plane->id == PLANE_CURSOR) {
1660                 /*
1661                  * FIXME the formula gives values that are
1662                  * too big for the cursor FIFO, and hence we
1663                  * would never be able to use cursors. For
1664                  * now just hardcode the watermark.
1665                  */
1666                 wm = 63;
1667         } else {
1668                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1669                                     dev_priv->wm.pri_latency[level] * 10);
1670         }
1671
1672         return min_t(unsigned int, wm, USHRT_MAX);
1673 }
1674
1675 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1676 {
1677         return (active_planes & (BIT(PLANE_SPRITE0) |
1678                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1679 }
1680
1681 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1682 {
1683         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1684         const struct g4x_pipe_wm *raw =
1685                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1686         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1687         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1688         int num_active_planes = hweight8(active_planes);
1689         const int fifo_size = 511;
1690         int fifo_extra, fifo_left = fifo_size;
1691         int sprite0_fifo_extra = 0;
1692         unsigned int total_rate;
1693         enum plane_id plane_id;
1694
1695         /*
1696          * When enabling sprite0 after sprite1 has already been enabled
1697          * we tend to get an underrun unless sprite0 already has some
1698          * FIFO space allcoated. Hence we always allocate at least one
1699          * cacheline for sprite0 whenever sprite1 is enabled.
1700          *
1701          * All other plane enable sequences appear immune to this problem.
1702          */
1703         if (vlv_need_sprite0_fifo_workaround(active_planes))
1704                 sprite0_fifo_extra = 1;
1705
1706         total_rate = raw->plane[PLANE_PRIMARY] +
1707                 raw->plane[PLANE_SPRITE0] +
1708                 raw->plane[PLANE_SPRITE1] +
1709                 sprite0_fifo_extra;
1710
1711         if (total_rate > fifo_size)
1712                 return -EINVAL;
1713
1714         if (total_rate == 0)
1715                 total_rate = 1;
1716
1717         for_each_plane_id_on_crtc(crtc, plane_id) {
1718                 unsigned int rate;
1719
1720                 if ((active_planes & BIT(plane_id)) == 0) {
1721                         fifo_state->plane[plane_id] = 0;
1722                         continue;
1723                 }
1724
1725                 rate = raw->plane[plane_id];
1726                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1727                 fifo_left -= fifo_state->plane[plane_id];
1728         }
1729
1730         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1731         fifo_left -= sprite0_fifo_extra;
1732
1733         fifo_state->plane[PLANE_CURSOR] = 63;
1734
1735         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1736
1737         /* spread the remainder evenly */
1738         for_each_plane_id_on_crtc(crtc, plane_id) {
1739                 int plane_extra;
1740
1741                 if (fifo_left == 0)
1742                         break;
1743
1744                 if ((active_planes & BIT(plane_id)) == 0)
1745                         continue;
1746
1747                 plane_extra = min(fifo_extra, fifo_left);
1748                 fifo_state->plane[plane_id] += plane_extra;
1749                 fifo_left -= plane_extra;
1750         }
1751
1752         WARN_ON(active_planes != 0 && fifo_left != 0);
1753
1754         /* give it all to the first plane if none are active */
1755         if (active_planes == 0) {
1756                 WARN_ON(fifo_left != fifo_size);
1757                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1758         }
1759
1760         return 0;
1761 }
1762
1763 /* mark all levels starting from 'level' as invalid */
1764 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1765                                struct vlv_wm_state *wm_state, int level)
1766 {
1767         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1768
1769         for (; level < intel_wm_num_levels(dev_priv); level++) {
1770                 enum plane_id plane_id;
1771
1772                 for_each_plane_id_on_crtc(crtc, plane_id)
1773                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1774
1775                 wm_state->sr[level].cursor = USHRT_MAX;
1776                 wm_state->sr[level].plane = USHRT_MAX;
1777         }
1778 }
1779
1780 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1781 {
1782         if (wm > fifo_size)
1783                 return USHRT_MAX;
1784         else
1785                 return fifo_size - wm;
1786 }
1787
1788 /*
1789  * Starting from 'level' set all higher
1790  * levels to 'value' in the "raw" watermarks.
1791  */
1792 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1793                                  int level, enum plane_id plane_id, u16 value)
1794 {
1795         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1796         int num_levels = intel_wm_num_levels(dev_priv);
1797         bool dirty = false;
1798
1799         for (; level < num_levels; level++) {
1800                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1801
1802                 dirty |= raw->plane[plane_id] != value;
1803                 raw->plane[plane_id] = value;
1804         }
1805
1806         return dirty;
1807 }
1808
1809 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1810                                      const struct intel_plane_state *plane_state)
1811 {
1812         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1813         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1814         enum plane_id plane_id = plane->id;
1815         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1816         int level;
1817         bool dirty = false;
1818
1819         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1820                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1821                 goto out;
1822         }
1823
1824         for (level = 0; level < num_levels; level++) {
1825                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1826                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1827                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1828
1829                 if (wm > max_wm)
1830                         break;
1831
1832                 dirty |= raw->plane[plane_id] != wm;
1833                 raw->plane[plane_id] = wm;
1834         }
1835
1836         /* mark all higher levels as invalid */
1837         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1838
1839 out:
1840         if (dirty)
1841                 drm_dbg_kms(&dev_priv->drm,
1842                             "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1843                             plane->base.name,
1844                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1845                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1846                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1847
1848         return dirty;
1849 }
1850
1851 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1852                                       enum plane_id plane_id, int level)
1853 {
1854         const struct g4x_pipe_wm *raw =
1855                 &crtc_state->wm.vlv.raw[level];
1856         const struct vlv_fifo_state *fifo_state =
1857                 &crtc_state->wm.vlv.fifo_state;
1858
1859         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1860 }
1861
1862 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1863 {
1864         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1865                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1866                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1867                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1868 }
1869
1870 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1871 {
1872         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1873         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1874         struct intel_atomic_state *state =
1875                 to_intel_atomic_state(crtc_state->uapi.state);
1876         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1877         const struct vlv_fifo_state *fifo_state =
1878                 &crtc_state->wm.vlv.fifo_state;
1879         int num_active_planes = hweight8(crtc_state->active_planes &
1880                                          ~BIT(PLANE_CURSOR));
1881         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1882         const struct intel_plane_state *old_plane_state;
1883         const struct intel_plane_state *new_plane_state;
1884         struct intel_plane *plane;
1885         enum plane_id plane_id;
1886         int level, ret, i;
1887         unsigned int dirty = 0;
1888
1889         for_each_oldnew_intel_plane_in_state(state, plane,
1890                                              old_plane_state,
1891                                              new_plane_state, i) {
1892                 if (new_plane_state->hw.crtc != &crtc->base &&
1893                     old_plane_state->hw.crtc != &crtc->base)
1894                         continue;
1895
1896                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1897                         dirty |= BIT(plane->id);
1898         }
1899
1900         /*
1901          * DSPARB registers may have been reset due to the
1902          * power well being turned off. Make sure we restore
1903          * them to a consistent state even if no primary/sprite
1904          * planes are initially active.
1905          */
1906         if (needs_modeset)
1907                 crtc_state->fifo_changed = true;
1908
1909         if (!dirty)
1910                 return 0;
1911
1912         /* cursor changes don't warrant a FIFO recompute */
1913         if (dirty & ~BIT(PLANE_CURSOR)) {
1914                 const struct intel_crtc_state *old_crtc_state =
1915                         intel_atomic_get_old_crtc_state(state, crtc);
1916                 const struct vlv_fifo_state *old_fifo_state =
1917                         &old_crtc_state->wm.vlv.fifo_state;
1918
1919                 ret = vlv_compute_fifo(crtc_state);
1920                 if (ret)
1921                         return ret;
1922
1923                 if (needs_modeset ||
1924                     memcmp(old_fifo_state, fifo_state,
1925                            sizeof(*fifo_state)) != 0)
1926                         crtc_state->fifo_changed = true;
1927         }
1928
1929         /* initially allow all levels */
1930         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1931         /*
1932          * Note that enabling cxsr with no primary/sprite planes
1933          * enabled can wedge the pipe. Hence we only allow cxsr
1934          * with exactly one enabled primary/sprite plane.
1935          */
1936         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1937
1938         for (level = 0; level < wm_state->num_levels; level++) {
1939                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1940                 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1941
1942                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1943                         break;
1944
1945                 for_each_plane_id_on_crtc(crtc, plane_id) {
1946                         wm_state->wm[level].plane[plane_id] =
1947                                 vlv_invert_wm_value(raw->plane[plane_id],
1948                                                     fifo_state->plane[plane_id]);
1949                 }
1950
1951                 wm_state->sr[level].plane =
1952                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1953                                                  raw->plane[PLANE_SPRITE0],
1954                                                  raw->plane[PLANE_SPRITE1]),
1955                                             sr_fifo_size);
1956
1957                 wm_state->sr[level].cursor =
1958                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1959                                             63);
1960         }
1961
1962         if (level == 0)
1963                 return -EINVAL;
1964
1965         /* limit to only levels we can actually handle */
1966         wm_state->num_levels = level;
1967
1968         /* invalidate the higher levels */
1969         vlv_invalidate_wms(crtc, wm_state, level);
1970
1971         return 0;
1972 }
1973
1974 #define VLV_FIFO(plane, value) \
1975         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1976
1977 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1978                                    struct intel_crtc *crtc)
1979 {
1980         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1981         struct intel_uncore *uncore = &dev_priv->uncore;
1982         const struct intel_crtc_state *crtc_state =
1983                 intel_atomic_get_new_crtc_state(state, crtc);
1984         const struct vlv_fifo_state *fifo_state =
1985                 &crtc_state->wm.vlv.fifo_state;
1986         int sprite0_start, sprite1_start, fifo_size;
1987         u32 dsparb, dsparb2, dsparb3;
1988
1989         if (!crtc_state->fifo_changed)
1990                 return;
1991
1992         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1993         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1994         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1995
1996         drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1997         drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1998
1999         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2000
2001         /*
2002          * uncore.lock serves a double purpose here. It allows us to
2003          * use the less expensive I915_{READ,WRITE}_FW() functions, and
2004          * it protects the DSPARB registers from getting clobbered by
2005          * parallel updates from multiple pipes.
2006          *
2007          * intel_pipe_update_start() has already disabled interrupts
2008          * for us, so a plain spin_lock() is sufficient here.
2009          */
2010         spin_lock(&uncore->lock);
2011
2012         switch (crtc->pipe) {
2013         case PIPE_A:
2014                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2015                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2016
2017                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2018                             VLV_FIFO(SPRITEB, 0xff));
2019                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2020                            VLV_FIFO(SPRITEB, sprite1_start));
2021
2022                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2023                              VLV_FIFO(SPRITEB_HI, 0x1));
2024                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2025                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2026
2027                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2028                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2029                 break;
2030         case PIPE_B:
2031                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2032                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2033
2034                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2035                             VLV_FIFO(SPRITED, 0xff));
2036                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2037                            VLV_FIFO(SPRITED, sprite1_start));
2038
2039                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2040                              VLV_FIFO(SPRITED_HI, 0xff));
2041                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2042                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2043
2044                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2045                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2046                 break;
2047         case PIPE_C:
2048                 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2049                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2050
2051                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2052                              VLV_FIFO(SPRITEF, 0xff));
2053                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2054                             VLV_FIFO(SPRITEF, sprite1_start));
2055
2056                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2057                              VLV_FIFO(SPRITEF_HI, 0xff));
2058                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2059                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2060
2061                 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2062                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2063                 break;
2064         default:
2065                 break;
2066         }
2067
2068         intel_uncore_posting_read_fw(uncore, DSPARB);
2069
2070         spin_unlock(&uncore->lock);
2071 }
2072
2073 #undef VLV_FIFO
2074
2075 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2076 {
2077         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2078         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2079         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2080         struct intel_atomic_state *intel_state =
2081                 to_intel_atomic_state(new_crtc_state->uapi.state);
2082         const struct intel_crtc_state *old_crtc_state =
2083                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2084         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2085         int level;
2086
2087         if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2088                 *intermediate = *optimal;
2089
2090                 intermediate->cxsr = false;
2091                 goto out;
2092         }
2093
2094         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2095         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2096                 !new_crtc_state->disable_cxsr;
2097
2098         for (level = 0; level < intermediate->num_levels; level++) {
2099                 enum plane_id plane_id;
2100
2101                 for_each_plane_id_on_crtc(crtc, plane_id) {
2102                         intermediate->wm[level].plane[plane_id] =
2103                                 min(optimal->wm[level].plane[plane_id],
2104                                     active->wm[level].plane[plane_id]);
2105                 }
2106
2107                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2108                                                     active->sr[level].plane);
2109                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2110                                                      active->sr[level].cursor);
2111         }
2112
2113         vlv_invalidate_wms(crtc, intermediate, level);
2114
2115 out:
2116         /*
2117          * If our intermediate WM are identical to the final WM, then we can
2118          * omit the post-vblank programming; only update if it's different.
2119          */
2120         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2121                 new_crtc_state->wm.need_postvbl_update = true;
2122
2123         return 0;
2124 }
2125
2126 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2127                          struct vlv_wm_values *wm)
2128 {
2129         struct intel_crtc *crtc;
2130         int num_active_pipes = 0;
2131
2132         wm->level = dev_priv->wm.max_level;
2133         wm->cxsr = true;
2134
2135         for_each_intel_crtc(&dev_priv->drm, crtc) {
2136                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2137
2138                 if (!crtc->active)
2139                         continue;
2140
2141                 if (!wm_state->cxsr)
2142                         wm->cxsr = false;
2143
2144                 num_active_pipes++;
2145                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2146         }
2147
2148         if (num_active_pipes != 1)
2149                 wm->cxsr = false;
2150
2151         if (num_active_pipes > 1)
2152                 wm->level = VLV_WM_LEVEL_PM2;
2153
2154         for_each_intel_crtc(&dev_priv->drm, crtc) {
2155                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2156                 enum pipe pipe = crtc->pipe;
2157
2158                 wm->pipe[pipe] = wm_state->wm[wm->level];
2159                 if (crtc->active && wm->cxsr)
2160                         wm->sr = wm_state->sr[wm->level];
2161
2162                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2163                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2164                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2165                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2166         }
2167 }
2168
2169 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2170 {
2171         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2172         struct vlv_wm_values new_wm = {};
2173
2174         vlv_merge_wm(dev_priv, &new_wm);
2175
2176         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2177                 return;
2178
2179         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2180                 chv_set_memory_dvfs(dev_priv, false);
2181
2182         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2183                 chv_set_memory_pm5(dev_priv, false);
2184
2185         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2186                 _intel_set_memory_cxsr(dev_priv, false);
2187
2188         vlv_write_wm_values(dev_priv, &new_wm);
2189
2190         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2191                 _intel_set_memory_cxsr(dev_priv, true);
2192
2193         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2194                 chv_set_memory_pm5(dev_priv, true);
2195
2196         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2197                 chv_set_memory_dvfs(dev_priv, true);
2198
2199         *old_wm = new_wm;
2200 }
2201
2202 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2203                                    struct intel_crtc *crtc)
2204 {
2205         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2206         const struct intel_crtc_state *crtc_state =
2207                 intel_atomic_get_new_crtc_state(state, crtc);
2208
2209         mutex_lock(&dev_priv->wm.wm_mutex);
2210         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2211         vlv_program_watermarks(dev_priv);
2212         mutex_unlock(&dev_priv->wm.wm_mutex);
2213 }
2214
2215 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2216                                     struct intel_crtc *crtc)
2217 {
2218         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2219         const struct intel_crtc_state *crtc_state =
2220                 intel_atomic_get_new_crtc_state(state, crtc);
2221
2222         if (!crtc_state->wm.need_postvbl_update)
2223                 return;
2224
2225         mutex_lock(&dev_priv->wm.wm_mutex);
2226         crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2227         vlv_program_watermarks(dev_priv);
2228         mutex_unlock(&dev_priv->wm.wm_mutex);
2229 }
2230
2231 static void i965_update_wm(struct intel_crtc *unused_crtc)
2232 {
2233         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2234         struct intel_crtc *crtc;
2235         int srwm = 1;
2236         int cursor_sr = 16;
2237         bool cxsr_enabled;
2238
2239         /* Calc sr entries for one plane configs */
2240         crtc = single_enabled_crtc(dev_priv);
2241         if (crtc) {
2242                 /* self-refresh has much higher latency */
2243                 static const int sr_latency_ns = 12000;
2244                 const struct drm_display_mode *adjusted_mode =
2245                         &crtc->config->hw.adjusted_mode;
2246                 const struct drm_framebuffer *fb =
2247                         crtc->base.primary->state->fb;
2248                 int clock = adjusted_mode->crtc_clock;
2249                 int htotal = adjusted_mode->crtc_htotal;
2250                 int hdisplay = crtc->config->pipe_src_w;
2251                 int cpp = fb->format->cpp[0];
2252                 int entries;
2253
2254                 entries = intel_wm_method2(clock, htotal,
2255                                            hdisplay, cpp, sr_latency_ns / 100);
2256                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2257                 srwm = I965_FIFO_SIZE - entries;
2258                 if (srwm < 0)
2259                         srwm = 1;
2260                 srwm &= 0x1ff;
2261                 drm_dbg_kms(&dev_priv->drm,
2262                             "self-refresh entries: %d, wm: %d\n",
2263                             entries, srwm);
2264
2265                 entries = intel_wm_method2(clock, htotal,
2266                                            crtc->base.cursor->state->crtc_w, 4,
2267                                            sr_latency_ns / 100);
2268                 entries = DIV_ROUND_UP(entries,
2269                                        i965_cursor_wm_info.cacheline_size) +
2270                         i965_cursor_wm_info.guard_size;
2271
2272                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2273                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2274                         cursor_sr = i965_cursor_wm_info.max_wm;
2275
2276                 drm_dbg_kms(&dev_priv->drm,
2277                             "self-refresh watermark: display plane %d "
2278                             "cursor %d\n", srwm, cursor_sr);
2279
2280                 cxsr_enabled = true;
2281         } else {
2282                 cxsr_enabled = false;
2283                 /* Turn off self refresh if both pipes are enabled */
2284                 intel_set_memory_cxsr(dev_priv, false);
2285         }
2286
2287         drm_dbg_kms(&dev_priv->drm,
2288                     "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2289                     srwm);
2290
2291         /* 965 has limitations... */
2292         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2293                    FW_WM(8, CURSORB) |
2294                    FW_WM(8, PLANEB) |
2295                    FW_WM(8, PLANEA));
2296         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2297                    FW_WM(8, PLANEC_OLD));
2298         /* update cursor SR watermark */
2299         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2300
2301         if (cxsr_enabled)
2302                 intel_set_memory_cxsr(dev_priv, true);
2303 }
2304
2305 #undef FW_WM
2306
2307 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2308 {
2309         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2310         const struct intel_watermark_params *wm_info;
2311         u32 fwater_lo;
2312         u32 fwater_hi;
2313         int cwm, srwm = 1;
2314         int fifo_size;
2315         int planea_wm, planeb_wm;
2316         struct intel_crtc *crtc, *enabled = NULL;
2317
2318         if (IS_I945GM(dev_priv))
2319                 wm_info = &i945_wm_info;
2320         else if (!IS_GEN(dev_priv, 2))
2321                 wm_info = &i915_wm_info;
2322         else
2323                 wm_info = &i830_a_wm_info;
2324
2325         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2326         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2327         if (intel_crtc_active(crtc)) {
2328                 const struct drm_display_mode *adjusted_mode =
2329                         &crtc->config->hw.adjusted_mode;
2330                 const struct drm_framebuffer *fb =
2331                         crtc->base.primary->state->fb;
2332                 int cpp;
2333
2334                 if (IS_GEN(dev_priv, 2))
2335                         cpp = 4;
2336                 else
2337                         cpp = fb->format->cpp[0];
2338
2339                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2340                                                wm_info, fifo_size, cpp,
2341                                                pessimal_latency_ns);
2342                 enabled = crtc;
2343         } else {
2344                 planea_wm = fifo_size - wm_info->guard_size;
2345                 if (planea_wm > (long)wm_info->max_wm)
2346                         planea_wm = wm_info->max_wm;
2347         }
2348
2349         if (IS_GEN(dev_priv, 2))
2350                 wm_info = &i830_bc_wm_info;
2351
2352         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2353         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2354         if (intel_crtc_active(crtc)) {
2355                 const struct drm_display_mode *adjusted_mode =
2356                         &crtc->config->hw.adjusted_mode;
2357                 const struct drm_framebuffer *fb =
2358                         crtc->base.primary->state->fb;
2359                 int cpp;
2360
2361                 if (IS_GEN(dev_priv, 2))
2362                         cpp = 4;
2363                 else
2364                         cpp = fb->format->cpp[0];
2365
2366                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2367                                                wm_info, fifo_size, cpp,
2368                                                pessimal_latency_ns);
2369                 if (enabled == NULL)
2370                         enabled = crtc;
2371                 else
2372                         enabled = NULL;
2373         } else {
2374                 planeb_wm = fifo_size - wm_info->guard_size;
2375                 if (planeb_wm > (long)wm_info->max_wm)
2376                         planeb_wm = wm_info->max_wm;
2377         }
2378
2379         drm_dbg_kms(&dev_priv->drm,
2380                     "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2381
2382         if (IS_I915GM(dev_priv) && enabled) {
2383                 struct drm_i915_gem_object *obj;
2384
2385                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2386
2387                 /* self-refresh seems busted with untiled */
2388                 if (!i915_gem_object_is_tiled(obj))
2389                         enabled = NULL;
2390         }
2391
2392         /*
2393          * Overlay gets an aggressive default since video jitter is bad.
2394          */
2395         cwm = 2;
2396
2397         /* Play safe and disable self-refresh before adjusting watermarks. */
2398         intel_set_memory_cxsr(dev_priv, false);
2399
2400         /* Calc sr entries for one plane configs */
2401         if (HAS_FW_BLC(dev_priv) && enabled) {
2402                 /* self-refresh has much higher latency */
2403                 static const int sr_latency_ns = 6000;
2404                 const struct drm_display_mode *adjusted_mode =
2405                         &enabled->config->hw.adjusted_mode;
2406                 const struct drm_framebuffer *fb =
2407                         enabled->base.primary->state->fb;
2408                 int clock = adjusted_mode->crtc_clock;
2409                 int htotal = adjusted_mode->crtc_htotal;
2410                 int hdisplay = enabled->config->pipe_src_w;
2411                 int cpp;
2412                 int entries;
2413
2414                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2415                         cpp = 4;
2416                 else
2417                         cpp = fb->format->cpp[0];
2418
2419                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2420                                            sr_latency_ns / 100);
2421                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2422                 drm_dbg_kms(&dev_priv->drm,
2423                             "self-refresh entries: %d\n", entries);
2424                 srwm = wm_info->fifo_size - entries;
2425                 if (srwm < 0)
2426                         srwm = 1;
2427
2428                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2429                         I915_WRITE(FW_BLC_SELF,
2430                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2431                 else
2432                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2433         }
2434
2435         drm_dbg_kms(&dev_priv->drm,
2436                     "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2437                      planea_wm, planeb_wm, cwm, srwm);
2438
2439         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2440         fwater_hi = (cwm & 0x1f);
2441
2442         /* Set request length to 8 cachelines per fetch */
2443         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2444         fwater_hi = fwater_hi | (1 << 8);
2445
2446         I915_WRITE(FW_BLC, fwater_lo);
2447         I915_WRITE(FW_BLC2, fwater_hi);
2448
2449         if (enabled)
2450                 intel_set_memory_cxsr(dev_priv, true);
2451 }
2452
2453 static void i845_update_wm(struct intel_crtc *unused_crtc)
2454 {
2455         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2456         struct intel_crtc *crtc;
2457         const struct drm_display_mode *adjusted_mode;
2458         u32 fwater_lo;
2459         int planea_wm;
2460
2461         crtc = single_enabled_crtc(dev_priv);
2462         if (crtc == NULL)
2463                 return;
2464
2465         adjusted_mode = &crtc->config->hw.adjusted_mode;
2466         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2467                                        &i845_wm_info,
2468                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2469                                        4, pessimal_latency_ns);
2470         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2471         fwater_lo |= (3<<8) | planea_wm;
2472
2473         drm_dbg_kms(&dev_priv->drm,
2474                     "Setting FIFO watermarks - A: %d\n", planea_wm);
2475
2476         I915_WRITE(FW_BLC, fwater_lo);
2477 }
2478
2479 /* latency must be in 0.1us units. */
2480 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2481                                    unsigned int cpp,
2482                                    unsigned int latency)
2483 {
2484         unsigned int ret;
2485
2486         ret = intel_wm_method1(pixel_rate, cpp, latency);
2487         ret = DIV_ROUND_UP(ret, 64) + 2;
2488
2489         return ret;
2490 }
2491
2492 /* latency must be in 0.1us units. */
2493 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2494                                    unsigned int htotal,
2495                                    unsigned int width,
2496                                    unsigned int cpp,
2497                                    unsigned int latency)
2498 {
2499         unsigned int ret;
2500
2501         ret = intel_wm_method2(pixel_rate, htotal,
2502                                width, cpp, latency);
2503         ret = DIV_ROUND_UP(ret, 64) + 2;
2504
2505         return ret;
2506 }
2507
2508 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2509 {
2510         /*
2511          * Neither of these should be possible since this function shouldn't be
2512          * called if the CRTC is off or the plane is invisible.  But let's be
2513          * extra paranoid to avoid a potential divide-by-zero if we screw up
2514          * elsewhere in the driver.
2515          */
2516         if (WARN_ON(!cpp))
2517                 return 0;
2518         if (WARN_ON(!horiz_pixels))
2519                 return 0;
2520
2521         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2522 }
2523
2524 struct ilk_wm_maximums {
2525         u16 pri;
2526         u16 spr;
2527         u16 cur;
2528         u16 fbc;
2529 };
2530
2531 /*
2532  * For both WM_PIPE and WM_LP.
2533  * mem_value must be in 0.1us units.
2534  */
2535 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2536                               const struct intel_plane_state *plane_state,
2537                               u32 mem_value, bool is_lp)
2538 {
2539         u32 method1, method2;
2540         int cpp;
2541
2542         if (mem_value == 0)
2543                 return U32_MAX;
2544
2545         if (!intel_wm_plane_visible(crtc_state, plane_state))
2546                 return 0;
2547
2548         cpp = plane_state->hw.fb->format->cpp[0];
2549
2550         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2551
2552         if (!is_lp)
2553                 return method1;
2554
2555         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2556                                  crtc_state->hw.adjusted_mode.crtc_htotal,
2557                                  drm_rect_width(&plane_state->uapi.dst),
2558                                  cpp, mem_value);
2559
2560         return min(method1, method2);
2561 }
2562
2563 /*
2564  * For both WM_PIPE and WM_LP.
2565  * mem_value must be in 0.1us units.
2566  */
2567 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2568                               const struct intel_plane_state *plane_state,
2569                               u32 mem_value)
2570 {
2571         u32 method1, method2;
2572         int cpp;
2573
2574         if (mem_value == 0)
2575                 return U32_MAX;
2576
2577         if (!intel_wm_plane_visible(crtc_state, plane_state))
2578                 return 0;
2579
2580         cpp = plane_state->hw.fb->format->cpp[0];
2581
2582         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2583         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2584                                  crtc_state->hw.adjusted_mode.crtc_htotal,
2585                                  drm_rect_width(&plane_state->uapi.dst),
2586                                  cpp, mem_value);
2587         return min(method1, method2);
2588 }
2589
2590 /*
2591  * For both WM_PIPE and WM_LP.
2592  * mem_value must be in 0.1us units.
2593  */
2594 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2595                               const struct intel_plane_state *plane_state,
2596                               u32 mem_value)
2597 {
2598         int cpp;
2599
2600         if (mem_value == 0)
2601                 return U32_MAX;
2602
2603         if (!intel_wm_plane_visible(crtc_state, plane_state))
2604                 return 0;
2605
2606         cpp = plane_state->hw.fb->format->cpp[0];
2607
2608         return ilk_wm_method2(crtc_state->pixel_rate,
2609                               crtc_state->hw.adjusted_mode.crtc_htotal,
2610                               drm_rect_width(&plane_state->uapi.dst),
2611                               cpp, mem_value);
2612 }
2613
2614 /* Only for WM_LP. */
2615 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2616                               const struct intel_plane_state *plane_state,
2617                               u32 pri_val)
2618 {
2619         int cpp;
2620
2621         if (!intel_wm_plane_visible(crtc_state, plane_state))
2622                 return 0;
2623
2624         cpp = plane_state->hw.fb->format->cpp[0];
2625
2626         return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2627                           cpp);
2628 }
2629
2630 static unsigned int
2631 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2632 {
2633         if (INTEL_GEN(dev_priv) >= 8)
2634                 return 3072;
2635         else if (INTEL_GEN(dev_priv) >= 7)
2636                 return 768;
2637         else
2638                 return 512;
2639 }
2640
2641 static unsigned int
2642 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2643                      int level, bool is_sprite)
2644 {
2645         if (INTEL_GEN(dev_priv) >= 8)
2646                 /* BDW primary/sprite plane watermarks */
2647                 return level == 0 ? 255 : 2047;
2648         else if (INTEL_GEN(dev_priv) >= 7)
2649                 /* IVB/HSW primary/sprite plane watermarks */
2650                 return level == 0 ? 127 : 1023;
2651         else if (!is_sprite)
2652                 /* ILK/SNB primary plane watermarks */
2653                 return level == 0 ? 127 : 511;
2654         else
2655                 /* ILK/SNB sprite plane watermarks */
2656                 return level == 0 ? 63 : 255;
2657 }
2658
2659 static unsigned int
2660 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2661 {
2662         if (INTEL_GEN(dev_priv) >= 7)
2663                 return level == 0 ? 63 : 255;
2664         else
2665                 return level == 0 ? 31 : 63;
2666 }
2667
2668 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2669 {
2670         if (INTEL_GEN(dev_priv) >= 8)
2671                 return 31;
2672         else
2673                 return 15;
2674 }
2675
2676 /* Calculate the maximum primary/sprite plane watermark */
2677 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2678                                      int level,
2679                                      const struct intel_wm_config *config,
2680                                      enum intel_ddb_partitioning ddb_partitioning,
2681                                      bool is_sprite)
2682 {
2683         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2684
2685         /* if sprites aren't enabled, sprites get nothing */
2686         if (is_sprite && !config->sprites_enabled)
2687                 return 0;
2688
2689         /* HSW allows LP1+ watermarks even with multiple pipes */
2690         if (level == 0 || config->num_pipes_active > 1) {
2691                 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2692
2693                 /*
2694                  * For some reason the non self refresh
2695                  * FIFO size is only half of the self
2696                  * refresh FIFO size on ILK/SNB.
2697                  */
2698                 if (INTEL_GEN(dev_priv) <= 6)
2699                         fifo_size /= 2;
2700         }
2701
2702         if (config->sprites_enabled) {
2703                 /* level 0 is always calculated with 1:1 split */
2704                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2705                         if (is_sprite)
2706                                 fifo_size *= 5;
2707                         fifo_size /= 6;
2708                 } else {
2709                         fifo_size /= 2;
2710                 }
2711         }
2712
2713         /* clamp to max that the registers can hold */
2714         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2715 }
2716
2717 /* Calculate the maximum cursor plane watermark */
2718 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2719                                       int level,
2720                                       const struct intel_wm_config *config)
2721 {
2722         /* HSW LP1+ watermarks w/ multiple pipes */
2723         if (level > 0 && config->num_pipes_active > 1)
2724                 return 64;
2725
2726         /* otherwise just report max that registers can hold */
2727         return ilk_cursor_wm_reg_max(dev_priv, level);
2728 }
2729
2730 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2731                                     int level,
2732                                     const struct intel_wm_config *config,
2733                                     enum intel_ddb_partitioning ddb_partitioning,
2734                                     struct ilk_wm_maximums *max)
2735 {
2736         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2737         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2738         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2739         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2740 }
2741
2742 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2743                                         int level,
2744                                         struct ilk_wm_maximums *max)
2745 {
2746         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2747         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2748         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2749         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2750 }
2751
2752 static bool ilk_validate_wm_level(int level,
2753                                   const struct ilk_wm_maximums *max,
2754                                   struct intel_wm_level *result)
2755 {
2756         bool ret;
2757
2758         /* already determined to be invalid? */
2759         if (!result->enable)
2760                 return false;
2761
2762         result->enable = result->pri_val <= max->pri &&
2763                          result->spr_val <= max->spr &&
2764                          result->cur_val <= max->cur;
2765
2766         ret = result->enable;
2767
2768         /*
2769          * HACK until we can pre-compute everything,
2770          * and thus fail gracefully if LP0 watermarks
2771          * are exceeded...
2772          */
2773         if (level == 0 && !result->enable) {
2774                 if (result->pri_val > max->pri)
2775                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2776                                       level, result->pri_val, max->pri);
2777                 if (result->spr_val > max->spr)
2778                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2779                                       level, result->spr_val, max->spr);
2780                 if (result->cur_val > max->cur)
2781                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2782                                       level, result->cur_val, max->cur);
2783
2784                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2785                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2786                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2787                 result->enable = true;
2788         }
2789
2790         return ret;
2791 }
2792
2793 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2794                                  const struct intel_crtc *crtc,
2795                                  int level,
2796                                  struct intel_crtc_state *crtc_state,
2797                                  const struct intel_plane_state *pristate,
2798                                  const struct intel_plane_state *sprstate,
2799                                  const struct intel_plane_state *curstate,
2800                                  struct intel_wm_level *result)
2801 {
2802         u16 pri_latency = dev_priv->wm.pri_latency[level];
2803         u16 spr_latency = dev_priv->wm.spr_latency[level];
2804         u16 cur_latency = dev_priv->wm.cur_latency[level];
2805
2806         /* WM1+ latency values stored in 0.5us units */
2807         if (level > 0) {
2808                 pri_latency *= 5;
2809                 spr_latency *= 5;
2810                 cur_latency *= 5;
2811         }
2812
2813         if (pristate) {
2814                 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2815                                                      pri_latency, level);
2816                 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2817         }
2818
2819         if (sprstate)
2820                 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2821
2822         if (curstate)
2823                 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2824
2825         result->enable = true;
2826 }
2827
2828 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2829                                   u16 wm[8])
2830 {
2831         struct intel_uncore *uncore = &dev_priv->uncore;
2832
2833         if (INTEL_GEN(dev_priv) >= 9) {
2834                 u32 val;
2835                 int ret, i;
2836                 int level, max_level = ilk_wm_max_level(dev_priv);
2837
2838                 /* read the first set of memory latencies[0:3] */
2839                 val = 0; /* data0 to be programmed to 0 for first set */
2840                 ret = sandybridge_pcode_read(dev_priv,
2841                                              GEN9_PCODE_READ_MEM_LATENCY,
2842                                              &val, NULL);
2843
2844                 if (ret) {
2845                         drm_err(&dev_priv->drm,
2846                                 "SKL Mailbox read error = %d\n", ret);
2847                         return;
2848                 }
2849
2850                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2851                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2852                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2853                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2854                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2855                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2856                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2857
2858                 /* read the second set of memory latencies[4:7] */
2859                 val = 1; /* data0 to be programmed to 1 for second set */
2860                 ret = sandybridge_pcode_read(dev_priv,
2861                                              GEN9_PCODE_READ_MEM_LATENCY,
2862                                              &val, NULL);
2863                 if (ret) {
2864                         drm_err(&dev_priv->drm,
2865                                 "SKL Mailbox read error = %d\n", ret);
2866                         return;
2867                 }
2868
2869                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2870                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2871                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2872                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2873                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2874                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2875                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2876
2877                 /*
2878                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2879                  * need to be disabled. We make sure to sanitize the values out
2880                  * of the punit to satisfy this requirement.
2881                  */
2882                 for (level = 1; level <= max_level; level++) {
2883                         if (wm[level] == 0) {
2884                                 for (i = level + 1; i <= max_level; i++)
2885                                         wm[i] = 0;
2886                                 break;
2887                         }
2888                 }
2889
2890                 /*
2891                  * WaWmMemoryReadLatency:skl+,glk
2892                  *
2893                  * punit doesn't take into account the read latency so we need
2894                  * to add 2us to the various latency levels we retrieve from the
2895                  * punit when level 0 response data us 0us.
2896                  */
2897                 if (wm[0] == 0) {
2898                         wm[0] += 2;
2899                         for (level = 1; level <= max_level; level++) {
2900                                 if (wm[level] == 0)
2901                                         break;
2902                                 wm[level] += 2;
2903                         }
2904                 }
2905
2906                 /*
2907                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2908                  * If we could not get dimm info enable this WA to prevent from
2909                  * any underrun. If not able to get Dimm info assume 16GB dimm
2910                  * to avoid any underrun.
2911                  */
2912                 if (dev_priv->dram_info.is_16gb_dimm)
2913                         wm[0] += 1;
2914
2915         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2916                 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2917
2918                 wm[0] = (sskpd >> 56) & 0xFF;
2919                 if (wm[0] == 0)
2920                         wm[0] = sskpd & 0xF;
2921                 wm[1] = (sskpd >> 4) & 0xFF;
2922                 wm[2] = (sskpd >> 12) & 0xFF;
2923                 wm[3] = (sskpd >> 20) & 0x1FF;
2924                 wm[4] = (sskpd >> 32) & 0x1FF;
2925         } else if (INTEL_GEN(dev_priv) >= 6) {
2926                 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2927
2928                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2929                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2930                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2931                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2932         } else if (INTEL_GEN(dev_priv) >= 5) {
2933                 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2934
2935                 /* ILK primary LP0 latency is 700 ns */
2936                 wm[0] = 7;
2937                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2938                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2939         } else {
2940                 MISSING_CASE(INTEL_DEVID(dev_priv));
2941         }
2942 }
2943
2944 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2945                                        u16 wm[5])
2946 {
2947         /* ILK sprite LP0 latency is 1300 ns */
2948         if (IS_GEN(dev_priv, 5))
2949                 wm[0] = 13;
2950 }
2951
2952 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2953                                        u16 wm[5])
2954 {
2955         /* ILK cursor LP0 latency is 1300 ns */
2956         if (IS_GEN(dev_priv, 5))
2957                 wm[0] = 13;
2958 }
2959
2960 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2961 {
2962         /* how many WM levels are we expecting */
2963         if (INTEL_GEN(dev_priv) >= 9)
2964                 return 7;
2965         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2966                 return 4;
2967         else if (INTEL_GEN(dev_priv) >= 6)
2968                 return 3;
2969         else
2970                 return 2;
2971 }
2972
2973 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2974                                    const char *name,
2975                                    const u16 wm[8])
2976 {
2977         int level, max_level = ilk_wm_max_level(dev_priv);
2978
2979         for (level = 0; level <= max_level; level++) {
2980                 unsigned int latency = wm[level];
2981
2982                 if (latency == 0) {
2983                         drm_dbg_kms(&dev_priv->drm,
2984                                     "%s WM%d latency not provided\n",
2985                                     name, level);
2986                         continue;
2987                 }
2988
2989                 /*
2990                  * - latencies are in us on gen9.
2991                  * - before then, WM1+ latency values are in 0.5us units
2992                  */
2993                 if (INTEL_GEN(dev_priv) >= 9)
2994                         latency *= 10;
2995                 else if (level > 0)
2996                         latency *= 5;
2997
2998                 drm_dbg_kms(&dev_priv->drm,
2999                             "%s WM%d latency %u (%u.%u usec)\n", name, level,
3000                             wm[level], latency / 10, latency % 10);
3001         }
3002 }
3003
3004 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3005                                     u16 wm[5], u16 min)
3006 {
3007         int level, max_level = ilk_wm_max_level(dev_priv);
3008
3009         if (wm[0] >= min)
3010                 return false;
3011
3012         wm[0] = max(wm[0], min);
3013         for (level = 1; level <= max_level; level++)
3014                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3015
3016         return true;
3017 }
3018
3019 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3020 {
3021         bool changed;
3022
3023         /*
3024          * The BIOS provided WM memory latency values are often
3025          * inadequate for high resolution displays. Adjust them.
3026          */
3027         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3028                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3029                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3030
3031         if (!changed)
3032                 return;
3033
3034         drm_dbg_kms(&dev_priv->drm,
3035                     "WM latency values increased to avoid potential underruns\n");
3036         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3037         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3038         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3039 }
3040
3041 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3042 {
3043         /*
3044          * On some SNB machines (Thinkpad X220 Tablet at least)
3045          * LP3 usage can cause vblank interrupts to be lost.
3046          * The DEIIR bit will go high but it looks like the CPU
3047          * never gets interrupted.
3048          *
3049          * It's not clear whether other interrupt source could
3050          * be affected or if this is somehow limited to vblank
3051          * interrupts only. To play it safe we disable LP3
3052          * watermarks entirely.
3053          */
3054         if (dev_priv->wm.pri_latency[3] == 0 &&
3055             dev_priv->wm.spr_latency[3] == 0 &&
3056             dev_priv->wm.cur_latency[3] == 0)
3057                 return;
3058
3059         dev_priv->wm.pri_latency[3] = 0;
3060         dev_priv->wm.spr_latency[3] = 0;
3061         dev_priv->wm.cur_latency[3] = 0;
3062
3063         drm_dbg_kms(&dev_priv->drm,
3064                     "LP3 watermarks disabled due to potential for lost interrupts\n");
3065         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3066         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3067         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3068 }
3069
3070 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3071 {
3072         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3073
3074         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3075                sizeof(dev_priv->wm.pri_latency));
3076         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3077                sizeof(dev_priv->wm.pri_latency));
3078
3079         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3080         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3081
3082         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3083         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3084         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3085
3086         if (IS_GEN(dev_priv, 6)) {
3087                 snb_wm_latency_quirk(dev_priv);
3088                 snb_wm_lp3_irq_quirk(dev_priv);
3089         }
3090 }
3091
3092 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3093 {
3094         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3095         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3096 }
3097
3098 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3099                                  struct intel_pipe_wm *pipe_wm)
3100 {
3101         /* LP0 watermark maximums depend on this pipe alone */
3102         const struct intel_wm_config config = {
3103                 .num_pipes_active = 1,
3104                 .sprites_enabled = pipe_wm->sprites_enabled,
3105                 .sprites_scaled = pipe_wm->sprites_scaled,
3106         };
3107         struct ilk_wm_maximums max;
3108
3109         /* LP0 watermarks always use 1/2 DDB partitioning */
3110         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3111
3112         /* At least LP0 must be valid */
3113         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3114                 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3115                 return false;
3116         }
3117
3118         return true;
3119 }
3120
3121 /* Compute new watermarks for the pipe */
3122 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3123 {
3124         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3125         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3126         struct intel_pipe_wm *pipe_wm;
3127         struct intel_plane *plane;
3128         const struct intel_plane_state *plane_state;
3129         const struct intel_plane_state *pristate = NULL;
3130         const struct intel_plane_state *sprstate = NULL;
3131         const struct intel_plane_state *curstate = NULL;
3132         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3133         struct ilk_wm_maximums max;
3134
3135         pipe_wm = &crtc_state->wm.ilk.optimal;
3136
3137         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3138                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3139                         pristate = plane_state;
3140                 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3141                         sprstate = plane_state;
3142                 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3143                         curstate = plane_state;
3144         }
3145
3146         pipe_wm->pipe_enabled = crtc_state->hw.active;
3147         if (sprstate) {
3148                 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3149                 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3150                         (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3151                          drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3152         }
3153
3154         usable_level = max_level;
3155
3156         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3157         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3158                 usable_level = 1;
3159
3160         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3161         if (pipe_wm->sprites_scaled)
3162                 usable_level = 0;
3163
3164         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3165         ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3166                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3167
3168         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3169                 return -EINVAL;
3170
3171         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3172
3173         for (level = 1; level <= usable_level; level++) {
3174                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3175
3176                 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3177                                      pristate, sprstate, curstate, wm);
3178
3179                 /*
3180                  * Disable any watermark level that exceeds the
3181                  * register maximums since such watermarks are
3182                  * always invalid.
3183                  */
3184                 if (!ilk_validate_wm_level(level, &max, wm)) {
3185                         memset(wm, 0, sizeof(*wm));
3186                         break;
3187                 }
3188         }
3189
3190         return 0;
3191 }
3192
3193 /*
3194  * Build a set of 'intermediate' watermark values that satisfy both the old
3195  * state and the new state.  These can be programmed to the hardware
3196  * immediately.
3197  */
3198 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3199 {
3200         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3201         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3202         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3203         struct intel_atomic_state *intel_state =
3204                 to_intel_atomic_state(newstate->uapi.state);
3205         const struct intel_crtc_state *oldstate =
3206                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3207         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3208         int level, max_level = ilk_wm_max_level(dev_priv);
3209
3210         /*
3211          * Start with the final, target watermarks, then combine with the
3212          * currently active watermarks to get values that are safe both before
3213          * and after the vblank.
3214          */
3215         *a = newstate->wm.ilk.optimal;
3216         if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3217             intel_state->skip_intermediate_wm)
3218                 return 0;
3219
3220         a->pipe_enabled |= b->pipe_enabled;
3221         a->sprites_enabled |= b->sprites_enabled;
3222         a->sprites_scaled |= b->sprites_scaled;
3223
3224         for (level = 0; level <= max_level; level++) {
3225                 struct intel_wm_level *a_wm = &a->wm[level];
3226                 const struct intel_wm_level *b_wm = &b->wm[level];
3227
3228                 a_wm->enable &= b_wm->enable;
3229                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3230                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3231                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3232                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3233         }
3234
3235         /*
3236          * We need to make sure that these merged watermark values are
3237          * actually a valid configuration themselves.  If they're not,
3238          * there's no safe way to transition from the old state to
3239          * the new state, so we need to fail the atomic transaction.
3240          */
3241         if (!ilk_validate_pipe_wm(dev_priv, a))
3242                 return -EINVAL;
3243
3244         /*
3245          * If our intermediate WM are identical to the final WM, then we can
3246          * omit the post-vblank programming; only update if it's different.
3247          */
3248         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3249                 newstate->wm.need_postvbl_update = true;
3250
3251         return 0;
3252 }
3253
3254 /*
3255  * Merge the watermarks from all active pipes for a specific level.
3256  */
3257 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3258                                int level,
3259                                struct intel_wm_level *ret_wm)
3260 {
3261         const struct intel_crtc *intel_crtc;
3262
3263         ret_wm->enable = true;
3264
3265         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3266                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3267                 const struct intel_wm_level *wm = &active->wm[level];
3268
3269                 if (!active->pipe_enabled)
3270                         continue;
3271
3272                 /*
3273                  * The watermark values may have been used in the past,
3274                  * so we must maintain them in the registers for some
3275                  * time even if the level is now disabled.
3276                  */
3277                 if (!wm->enable)
3278                         ret_wm->enable = false;
3279
3280                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3281                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3282                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3283                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3284         }
3285 }
3286
3287 /*
3288  * Merge all low power watermarks for all active pipes.
3289  */
3290 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3291                          const struct intel_wm_config *config,
3292                          const struct ilk_wm_maximums *max,
3293                          struct intel_pipe_wm *merged)
3294 {
3295         int level, max_level = ilk_wm_max_level(dev_priv);
3296         int last_enabled_level = max_level;
3297
3298         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3299         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3300             config->num_pipes_active > 1)
3301                 last_enabled_level = 0;
3302
3303         /* ILK: FBC WM must be disabled always */
3304         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3305
3306         /* merge each WM1+ level */
3307         for (level = 1; level <= max_level; level++) {
3308                 struct intel_wm_level *wm = &merged->wm[level];
3309
3310                 ilk_merge_wm_level(dev_priv, level, wm);
3311
3312                 if (level > last_enabled_level)
3313                         wm->enable = false;
3314                 else if (!ilk_validate_wm_level(level, max, wm))
3315                         /* make sure all following levels get disabled */
3316                         last_enabled_level = level - 1;
3317
3318                 /*
3319                  * The spec says it is preferred to disable
3320                  * FBC WMs instead of disabling a WM level.
3321                  */
3322                 if (wm->fbc_val > max->fbc) {
3323                         if (wm->enable)
3324                                 merged->fbc_wm_enabled = false;
3325                         wm->fbc_val = 0;
3326                 }
3327         }
3328
3329         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3330         /*
3331          * FIXME this is racy. FBC might get enabled later.
3332          * What we should check here is whether FBC can be
3333          * enabled sometime later.
3334          */
3335         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3336             intel_fbc_is_active(dev_priv)) {
3337                 for (level = 2; level <= max_level; level++) {
3338                         struct intel_wm_level *wm = &merged->wm[level];
3339
3340                         wm->enable = false;
3341                 }
3342         }
3343 }
3344
3345 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3346 {
3347         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3348         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3349 }
3350
3351 /* The value we need to program into the WM_LPx latency field */
3352 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3353                                       int level)
3354 {
3355         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3356                 return 2 * level;
3357         else
3358                 return dev_priv->wm.pri_latency[level];
3359 }
3360
3361 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3362                                    const struct intel_pipe_wm *merged,
3363                                    enum intel_ddb_partitioning partitioning,
3364                                    struct ilk_wm_values *results)
3365 {
3366         struct intel_crtc *intel_crtc;
3367         int level, wm_lp;
3368
3369         results->enable_fbc_wm = merged->fbc_wm_enabled;
3370         results->partitioning = partitioning;
3371
3372         /* LP1+ register values */
3373         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3374                 const struct intel_wm_level *r;
3375
3376                 level = ilk_wm_lp_to_level(wm_lp, merged);
3377
3378                 r = &merged->wm[level];
3379
3380                 /*
3381                  * Maintain the watermark values even if the level is
3382                  * disabled. Doing otherwise could cause underruns.
3383                  */
3384                 results->wm_lp[wm_lp - 1] =
3385                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3386                         (r->pri_val << WM1_LP_SR_SHIFT) |
3387                         r->cur_val;
3388
3389                 if (r->enable)
3390                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3391
3392                 if (INTEL_GEN(dev_priv) >= 8)
3393                         results->wm_lp[wm_lp - 1] |=
3394                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3395                 else
3396                         results->wm_lp[wm_lp - 1] |=
3397                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3398
3399                 /*
3400                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3401                  * level is disabled. Doing otherwise could cause underruns.
3402                  */
3403                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3404                         drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3405                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3406                 } else
3407                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3408         }
3409
3410         /* LP0 register values */
3411         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3412                 enum pipe pipe = intel_crtc->pipe;
3413                 const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3414                 const struct intel_wm_level *r = &pipe_wm->wm[0];
3415
3416                 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3417                         continue;
3418
3419                 results->wm_pipe[pipe] =
3420                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3421                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3422                         r->cur_val;
3423         }
3424 }
3425
3426 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3427  * case both are at the same level. Prefer r1 in case they're the same. */
3428 static struct intel_pipe_wm *
3429 ilk_find_best_result(struct drm_i915_private *dev_priv,
3430                      struct intel_pipe_wm *r1,
3431                      struct intel_pipe_wm *r2)
3432 {
3433         int level, max_level = ilk_wm_max_level(dev_priv);
3434         int level1 = 0, level2 = 0;
3435
3436         for (level = 1; level <= max_level; level++) {
3437                 if (r1->wm[level].enable)
3438                         level1 = level;
3439                 if (r2->wm[level].enable)
3440                         level2 = level;
3441         }
3442
3443         if (level1 == level2) {
3444                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445                         return r2;
3446                 else
3447                         return r1;
3448         } else if (level1 > level2) {
3449                 return r1;
3450         } else {
3451                 return r2;
3452         }
3453 }
3454
3455 /* dirty bits used to track which watermarks need changes */
3456 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3457 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3458 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3459 #define WM_DIRTY_FBC (1 << 24)
3460 #define WM_DIRTY_DDB (1 << 25)
3461
3462 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3463                                          const struct ilk_wm_values *old,
3464                                          const struct ilk_wm_values *new)
3465 {
3466         unsigned int dirty = 0;
3467         enum pipe pipe;
3468         int wm_lp;
3469
3470         for_each_pipe(dev_priv, pipe) {
3471                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3472                         dirty |= WM_DIRTY_PIPE(pipe);
3473                         /* Must disable LP1+ watermarks too */
3474                         dirty |= WM_DIRTY_LP_ALL;
3475                 }
3476         }
3477
3478         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3479                 dirty |= WM_DIRTY_FBC;
3480                 /* Must disable LP1+ watermarks too */
3481                 dirty |= WM_DIRTY_LP_ALL;
3482         }
3483
3484         if (old->partitioning != new->partitioning) {
3485                 dirty |= WM_DIRTY_DDB;
3486                 /* Must disable LP1+ watermarks too */
3487                 dirty |= WM_DIRTY_LP_ALL;
3488         }
3489
3490         /* LP1+ watermarks already deemed dirty, no need to continue */
3491         if (dirty & WM_DIRTY_LP_ALL)
3492                 return dirty;
3493
3494         /* Find the lowest numbered LP1+ watermark in need of an update... */
3495         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3496                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3497                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3498                         break;
3499         }
3500
3501         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3502         for (; wm_lp <= 3; wm_lp++)
3503                 dirty |= WM_DIRTY_LP(wm_lp);
3504
3505         return dirty;
3506 }
3507
3508 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3509                                unsigned int dirty)
3510 {
3511         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3512         bool changed = false;
3513
3514         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3515                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3516                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3517                 changed = true;
3518         }
3519         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3520                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3521                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3522                 changed = true;
3523         }
3524         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3525                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3526                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3527                 changed = true;
3528         }
3529
3530         /*
3531          * Don't touch WM1S_LP_EN here.
3532          * Doing so could cause underruns.
3533          */
3534
3535         return changed;
3536 }
3537
3538 /*
3539  * The spec says we shouldn't write when we don't need, because every write
3540  * causes WMs to be re-evaluated, expending some power.
3541  */
3542 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3543                                 struct ilk_wm_values *results)
3544 {
3545         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3546         unsigned int dirty;
3547         u32 val;
3548
3549         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3550         if (!dirty)
3551                 return;
3552
3553         _ilk_disable_lp_wm(dev_priv, dirty);
3554
3555         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3556                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3557         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3558                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3559         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3560                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3561
3562         if (dirty & WM_DIRTY_DDB) {
3563                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3564                         val = I915_READ(WM_MISC);
3565                         if (results->partitioning == INTEL_DDB_PART_1_2)
3566                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3567                         else
3568                                 val |= WM_MISC_DATA_PARTITION_5_6;
3569                         I915_WRITE(WM_MISC, val);
3570                 } else {
3571                         val = I915_READ(DISP_ARB_CTL2);
3572                         if (results->partitioning == INTEL_DDB_PART_1_2)
3573                                 val &= ~DISP_DATA_PARTITION_5_6;
3574                         else
3575                                 val |= DISP_DATA_PARTITION_5_6;
3576                         I915_WRITE(DISP_ARB_CTL2, val);
3577                 }
3578         }
3579
3580         if (dirty & WM_DIRTY_FBC) {
3581                 val = I915_READ(DISP_ARB_CTL);
3582                 if (results->enable_fbc_wm)
3583                         val &= ~DISP_FBC_WM_DIS;
3584                 else
3585                         val |= DISP_FBC_WM_DIS;
3586                 I915_WRITE(DISP_ARB_CTL, val);
3587         }
3588
3589         if (dirty & WM_DIRTY_LP(1) &&
3590             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3591                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3592
3593         if (INTEL_GEN(dev_priv) >= 7) {
3594                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3595                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3596                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3597                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3598         }
3599
3600         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3601                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3602         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3603                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3604         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3605                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3606
3607         dev_priv->wm.hw = *results;
3608 }
3609
3610 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3611 {
3612         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3613 }
3614
3615 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3616 {
3617         int i;
3618         int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3619         u8 enabled_slices_mask = 0;
3620
3621         for (i = 0; i < max_slices; i++) {
3622                 if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3623                         enabled_slices_mask |= BIT(i);
3624         }
3625
3626         return enabled_slices_mask;
3627 }
3628
3629 /*
3630  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3631  * so assume we'll always need it in order to avoid underruns.
3632  */
3633 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3634 {
3635         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3636 }
3637
3638 static bool
3639 intel_has_sagv(struct drm_i915_private *dev_priv)
3640 {
3641         /* HACK! */
3642         if (IS_GEN(dev_priv, 12))
3643                 return false;
3644
3645         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3646                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3647 }
3648
3649 static void
3650 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3651 {
3652         if (INTEL_GEN(dev_priv) >= 12) {
3653                 u32 val = 0;
3654                 int ret;
3655
3656                 ret = sandybridge_pcode_read(dev_priv,
3657                                              GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3658                                              &val, NULL);
3659                 if (!ret) {
3660                         dev_priv->sagv_block_time_us = val;
3661                         return;
3662                 }
3663
3664                 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3665         } else if (IS_GEN(dev_priv, 11)) {
3666                 dev_priv->sagv_block_time_us = 10;
3667                 return;
3668         } else if (IS_GEN(dev_priv, 10)) {
3669                 dev_priv->sagv_block_time_us = 20;
3670                 return;
3671         } else if (IS_GEN(dev_priv, 9)) {
3672                 dev_priv->sagv_block_time_us = 30;
3673                 return;
3674         } else {
3675                 MISSING_CASE(INTEL_GEN(dev_priv));
3676         }
3677
3678         /* Default to an unusable block time */
3679         dev_priv->sagv_block_time_us = -1;
3680 }
3681
3682 /*
3683  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3684  * depending on power and performance requirements. The display engine access
3685  * to system memory is blocked during the adjustment time. Because of the
3686  * blocking time, having this enabled can cause full system hangs and/or pipe
3687  * underruns if we don't meet all of the following requirements:
3688  *
3689  *  - <= 1 pipe enabled
3690  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3691  *  - We're not using an interlaced display configuration
3692  */
3693 int
3694 intel_enable_sagv(struct drm_i915_private *dev_priv)
3695 {
3696         int ret;
3697
3698         if (!intel_has_sagv(dev_priv))
3699                 return 0;
3700
3701         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3702                 return 0;
3703
3704         drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3705         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3706                                       GEN9_SAGV_ENABLE);
3707
3708         /* We don't need to wait for SAGV when enabling */
3709
3710         /*
3711          * Some skl systems, pre-release machines in particular,
3712          * don't actually have SAGV.
3713          */
3714         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3715                 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3716                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3717                 return 0;
3718         } else if (ret < 0) {
3719                 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3720                 return ret;
3721         }
3722
3723         dev_priv->sagv_status = I915_SAGV_ENABLED;
3724         return 0;
3725 }
3726
3727 int
3728 intel_disable_sagv(struct drm_i915_private *dev_priv)
3729 {
3730         int ret;
3731
3732         if (!intel_has_sagv(dev_priv))
3733                 return 0;
3734
3735         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3736                 return 0;
3737
3738         drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3739         /* bspec says to keep retrying for at least 1 ms */
3740         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3741                                 GEN9_SAGV_DISABLE,
3742                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3743                                 1);
3744         /*
3745          * Some skl systems, pre-release machines in particular,
3746          * don't actually have SAGV.
3747          */
3748         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3749                 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3750                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3751                 return 0;
3752         } else if (ret < 0) {
3753                 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3754                 return ret;
3755         }
3756
3757         dev_priv->sagv_status = I915_SAGV_DISABLED;
3758         return 0;
3759 }
3760
3761 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3762 {
3763         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3764         const struct intel_bw_state *new_bw_state;
3765
3766         /*
3767          * Just return if we can't control SAGV or don't have it.
3768          * This is different from situation when we have SAGV but just can't
3769          * afford it due to DBuf limitation - in case if SAGV is completely
3770          * disabled in a BIOS, we are not even allowed to send a PCode request,
3771          * as it will throw an error. So have to check it here.
3772          */
3773         if (!intel_has_sagv(dev_priv))
3774                 return;
3775
3776         new_bw_state = intel_atomic_get_new_bw_state(state);
3777         if (!new_bw_state)
3778                 return;
3779
3780         if (!intel_can_enable_sagv(new_bw_state))
3781                 intel_disable_sagv(dev_priv);
3782 }
3783
3784 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3785 {
3786         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3787         const struct intel_bw_state *new_bw_state;
3788
3789         /*
3790          * Just return if we can't control SAGV or don't have it.
3791          * This is different from situation when we have SAGV but just can't
3792          * afford it due to DBuf limitation - in case if SAGV is completely
3793          * disabled in a BIOS, we are not even allowed to send a PCode request,
3794          * as it will throw an error. So have to check it here.
3795          */
3796         if (!intel_has_sagv(dev_priv))
3797                 return;
3798
3799         new_bw_state = intel_atomic_get_new_bw_state(state);
3800         if (!new_bw_state)
3801                 return;
3802
3803         if (intel_can_enable_sagv(new_bw_state))
3804                 intel_enable_sagv(dev_priv);
3805 }
3806
3807 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3808 {
3809         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3810         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3811         struct intel_plane *plane;
3812         const struct intel_plane_state *plane_state;
3813         int level, latency;
3814
3815         if (!intel_has_sagv(dev_priv))
3816                 return false;
3817
3818         if (!crtc_state->hw.active)
3819                 return true;
3820
3821         if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3822                 return false;
3823
3824         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3825                 const struct skl_plane_wm *wm =
3826                         &crtc_state->wm.skl.optimal.planes[plane->id];
3827
3828                 /* Skip this plane if it's not enabled */
3829                 if (!wm->wm[0].plane_en)
3830                         continue;
3831
3832                 /* Find the highest enabled wm level for this plane */
3833                 for (level = ilk_wm_max_level(dev_priv);
3834                      !wm->wm[level].plane_en; --level)
3835                      { }
3836
3837                 latency = dev_priv->wm.skl_latency[level];
3838
3839                 if (skl_needs_memory_bw_wa(dev_priv) &&
3840                     plane_state->uapi.fb->modifier ==
3841                     I915_FORMAT_MOD_X_TILED)
3842                         latency += 15;
3843
3844                 /*
3845                  * If any of the planes on this pipe don't enable wm levels that
3846                  * incur memory latencies higher than sagv_block_time_us we
3847                  * can't enable SAGV.
3848                  */
3849                 if (latency < dev_priv->sagv_block_time_us)
3850                         return false;
3851         }
3852
3853         return true;
3854 }
3855
3856 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3857 {
3858         return skl_crtc_can_enable_sagv(crtc_state);
3859 }
3860
3861 bool intel_can_enable_sagv(const struct intel_bw_state *bw_state)
3862 {
3863         if (bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3864                 return false;
3865
3866         return bw_state->pipe_sagv_reject == 0;
3867 }
3868
3869 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3870 {
3871         int ret;
3872         struct intel_crtc *crtc;
3873         const struct intel_crtc_state *new_crtc_state;
3874         struct intel_bw_state *new_bw_state = NULL;
3875         const struct intel_bw_state *old_bw_state = NULL;
3876         int i;
3877
3878         for_each_new_intel_crtc_in_state(state, crtc,
3879                                          new_crtc_state, i) {
3880                 new_bw_state = intel_atomic_get_bw_state(state);
3881                 if (IS_ERR(new_bw_state))
3882                         return PTR_ERR(new_bw_state);
3883
3884                 old_bw_state = intel_atomic_get_old_bw_state(state);
3885
3886                 if (intel_crtc_can_enable_sagv(new_crtc_state))
3887                         new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
3888                 else
3889                         new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
3890         }
3891
3892         if (!new_bw_state)
3893                 return 0;
3894
3895         new_bw_state->active_pipes =
3896                 intel_calc_active_pipes(state, old_bw_state->active_pipes);
3897
3898         if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
3899                 ret = intel_atomic_lock_global_state(&new_bw_state->base);
3900                 if (ret)
3901                         return ret;
3902         }
3903
3904         if (intel_can_enable_sagv(new_bw_state) != intel_can_enable_sagv(old_bw_state)) {
3905                 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
3906                 if (ret)
3907                         return ret;
3908         } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
3909                 ret = intel_atomic_lock_global_state(&new_bw_state->base);
3910                 if (ret)
3911                         return ret;
3912         }
3913
3914         return 0;
3915 }
3916
3917 /*
3918  * Calculate initial DBuf slice offset, based on slice size
3919  * and mask(i.e if slice size is 1024 and second slice is enabled
3920  * offset would be 1024)
3921  */
3922 static unsigned int
3923 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
3924                                 u32 slice_size,
3925                                 u32 ddb_size)
3926 {
3927         unsigned int offset = 0;
3928
3929         if (!dbuf_slice_mask)
3930                 return 0;
3931
3932         offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
3933
3934         WARN_ON(offset >= ddb_size);
3935         return offset;
3936 }
3937
3938 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3939 {
3940         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3941
3942         drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3943
3944         if (INTEL_GEN(dev_priv) < 11)
3945                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3946
3947         return ddb_size;
3948 }
3949
3950 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3951                                   u8 active_pipes);
3952
3953 static void
3954 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3955                                    const struct intel_crtc_state *crtc_state,
3956                                    const u64 total_data_rate,
3957                                    struct skl_ddb_entry *alloc, /* out */
3958                                    int *num_active /* out */)
3959 {
3960         struct drm_atomic_state *state = crtc_state->uapi.state;
3961         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3962         struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3963         const struct intel_crtc *crtc;
3964         u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3965         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3966         u16 ddb_size;
3967         u32 ddb_range_size;
3968         u32 i;
3969         u32 dbuf_slice_mask;
3970         u32 active_pipes;
3971         u32 offset;
3972         u32 slice_size;
3973         u32 total_slice_mask;
3974         u32 start, end;
3975
3976         if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3977                 alloc->start = 0;
3978                 alloc->end = 0;
3979                 *num_active = hweight8(dev_priv->active_pipes);
3980                 return;
3981         }
3982
3983         if (intel_state->active_pipe_changes)
3984                 active_pipes = intel_state->active_pipes;
3985         else
3986                 active_pipes = dev_priv->active_pipes;
3987
3988         *num_active = hweight8(active_pipes);
3989
3990         ddb_size = intel_get_ddb_size(dev_priv);
3991
3992         slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3993
3994         /*
3995          * If the state doesn't change the active CRTC's or there is no
3996          * modeset request, then there's no need to recalculate;
3997          * the existing pipe allocation limits should remain unchanged.
3998          * Note that we're safe from racing commits since any racing commit
3999          * that changes the active CRTC list or do modeset would need to
4000          * grab _all_ crtc locks, including the one we currently hold.
4001          */
4002         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
4003                 /*
4004                  * alloc may be cleared by clear_intel_crtc_state,
4005                  * copy from old state to be sure
4006                  */
4007                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4008                 return;
4009         }
4010
4011         /*
4012          * Get allowed DBuf slices for correspondent pipe and platform.
4013          */
4014         dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
4015
4016         DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
4017                       dbuf_slice_mask,
4018                       pipe_name(for_pipe), active_pipes);
4019
4020         /*
4021          * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
4022          * and slice size is 1024, the offset would be 1024
4023          */
4024         offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
4025                                                  slice_size, ddb_size);
4026
4027         /*
4028          * Figure out total size of allowed DBuf slices, which is basically
4029          * a number of allowed slices for that pipe multiplied by slice size.
4030          * Inside of this
4031          * range ddb entries are still allocated in proportion to display width.
4032          */
4033         ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
4034
4035         /*
4036          * Watermark/ddb requirement highly depends upon width of the
4037          * framebuffer, So instead of allocating DDB equally among pipes
4038          * distribute DDB based on resolution/width of the display.
4039          */
4040         total_slice_mask = dbuf_slice_mask;
4041         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
4042                 const struct drm_display_mode *adjusted_mode =
4043                         &crtc_state->hw.adjusted_mode;
4044                 enum pipe pipe = crtc->pipe;
4045                 int hdisplay, vdisplay;
4046                 u32 pipe_dbuf_slice_mask;
4047
4048                 if (!crtc_state->hw.active)
4049                         continue;
4050
4051                 pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
4052                                                                active_pipes);
4053
4054                 /*
4055                  * According to BSpec pipe can share one dbuf slice with another
4056                  * pipes or pipe can use multiple dbufs, in both cases we
4057                  * account for other pipes only if they have exactly same mask.
4058                  * However we need to account how many slices we should enable
4059                  * in total.
4060                  */
4061                 total_slice_mask |= pipe_dbuf_slice_mask;
4062
4063                 /*
4064                  * Do not account pipes using other slice sets
4065                  * luckily as of current BSpec slice sets do not partially
4066                  * intersect(pipes share either same one slice or same slice set
4067                  * i.e no partial intersection), so it is enough to check for
4068                  * equality for now.
4069                  */
4070                 if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4071                         continue;
4072
4073                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4074
4075                 total_width_in_range += hdisplay;
4076
4077                 if (pipe < for_pipe)
4078                         width_before_pipe_in_range += hdisplay;
4079                 else if (pipe == for_pipe)
4080                         pipe_width = hdisplay;
4081         }
4082
4083         /*
4084          * FIXME: For now we always enable slice S1 as per
4085          * the Bspec display initialization sequence.
4086          */
4087         intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);
4088
4089         start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
4090         end = ddb_range_size *
4091                 (width_before_pipe_in_range + pipe_width) / total_width_in_range;
4092
4093         alloc->start = offset + start;
4094         alloc->end = offset + end;
4095
4096         DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
4097                       alloc->start, alloc->end);
4098         DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
4099                       intel_state->enabled_dbuf_slices_mask,
4100                       INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4101 }
4102
4103 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4104                                  int width, const struct drm_format_info *format,
4105                                  u64 modifier, unsigned int rotation,
4106                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
4107                                  int color_plane);
4108 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4109                                  int level,
4110                                  unsigned int latency,
4111                                  const struct skl_wm_params *wp,
4112                                  const struct skl_wm_level *result_prev,
4113                                  struct skl_wm_level *result /* out */);
4114
4115 static unsigned int
4116 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4117                       int num_active)
4118 {
4119         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4120         int level, max_level = ilk_wm_max_level(dev_priv);
4121         struct skl_wm_level wm = {};
4122         int ret, min_ddb_alloc = 0;
4123         struct skl_wm_params wp;
4124
4125         ret = skl_compute_wm_params(crtc_state, 256,
4126                                     drm_format_info(DRM_FORMAT_ARGB8888),
4127                                     DRM_FORMAT_MOD_LINEAR,
4128                                     DRM_MODE_ROTATE_0,
4129                                     crtc_state->pixel_rate, &wp, 0);
4130         drm_WARN_ON(&dev_priv->drm, ret);
4131
4132         for (level = 0; level <= max_level; level++) {
4133                 unsigned int latency = dev_priv->wm.skl_latency[level];
4134
4135                 skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4136                 if (wm.min_ddb_alloc == U16_MAX)
4137                         break;
4138
4139                 min_ddb_alloc = wm.min_ddb_alloc;
4140         }
4141
4142         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4143 }
4144
4145 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4146                                        struct skl_ddb_entry *entry, u32 reg)
4147 {
4148
4149         entry->start = reg & DDB_ENTRY_MASK;
4150         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4151
4152         if (entry->end)
4153                 entry->end += 1;
4154 }
4155
4156 static void
4157 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4158                            const enum pipe pipe,
4159                            const enum plane_id plane_id,
4160                            struct skl_ddb_entry *ddb_y,
4161                            struct skl_ddb_entry *ddb_uv)
4162 {
4163         u32 val, val2;
4164         u32 fourcc = 0;
4165
4166         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4167         if (plane_id == PLANE_CURSOR) {
4168                 val = I915_READ(CUR_BUF_CFG(pipe));
4169                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4170                 return;
4171         }
4172
4173         val = I915_READ(PLANE_CTL(pipe, plane_id));
4174
4175         /* No DDB allocated for disabled planes */
4176         if (val & PLANE_CTL_ENABLE)
4177                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4178                                               val & PLANE_CTL_ORDER_RGBX,
4179                                               val & PLANE_CTL_ALPHA_MASK);
4180
4181         if (INTEL_GEN(dev_priv) >= 11) {
4182                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4183                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4184         } else {
4185                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4186                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4187
4188                 if (fourcc &&
4189                     drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4190                         swap(val, val2);
4191
4192                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4193                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4194         }
4195 }
4196
4197 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4198                                struct skl_ddb_entry *ddb_y,
4199                                struct skl_ddb_entry *ddb_uv)
4200 {
4201         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4202         enum intel_display_power_domain power_domain;
4203         enum pipe pipe = crtc->pipe;
4204         intel_wakeref_t wakeref;
4205         enum plane_id plane_id;
4206
4207         power_domain = POWER_DOMAIN_PIPE(pipe);
4208         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4209         if (!wakeref)
4210                 return;
4211
4212         for_each_plane_id_on_crtc(crtc, plane_id)
4213                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4214                                            plane_id,
4215                                            &ddb_y[plane_id],
4216                                            &ddb_uv[plane_id]);
4217
4218         intel_display_power_put(dev_priv, power_domain, wakeref);
4219 }
4220
4221 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4222 {
4223         dev_priv->enabled_dbuf_slices_mask =
4224                                 intel_enabled_dbuf_slices_mask(dev_priv);
4225 }
4226
4227 /*
4228  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4229  * The bspec defines downscale amount as:
4230  *
4231  * """
4232  * Horizontal down scale amount = maximum[1, Horizontal source size /
4233  *                                           Horizontal destination size]
4234  * Vertical down scale amount = maximum[1, Vertical source size /
4235  *                                         Vertical destination size]
4236  * Total down scale amount = Horizontal down scale amount *
4237  *                           Vertical down scale amount
4238  * """
4239  *
4240  * Return value is provided in 16.16 fixed point form to retain fractional part.
4241  * Caller should take care of dividing & rounding off the value.
4242  */
4243 static uint_fixed_16_16_t
4244 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4245                            const struct intel_plane_state *plane_state)
4246 {
4247         u32 src_w, src_h, dst_w, dst_h;
4248         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4249         uint_fixed_16_16_t downscale_h, downscale_w;
4250
4251         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4252                 return u32_to_fixed16(0);
4253
4254         /*
4255          * Src coordinates are already rotated by 270 degrees for
4256          * the 90/270 degree plane rotation cases (to match the
4257          * GTT mapping), hence no need to account for rotation here.
4258          *
4259          * n.b., src is 16.16 fixed point, dst is whole integer.
4260          */
4261         src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4262         src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4263         dst_w = drm_rect_width(&plane_state->uapi.dst);
4264         dst_h = drm_rect_height(&plane_state->uapi.dst);
4265
4266         fp_w_ratio = div_fixed16(src_w, dst_w);
4267         fp_h_ratio = div_fixed16(src_h, dst_h);
4268         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4269         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4270
4271         return mul_fixed16(downscale_w, downscale_h);
4272 }
4273
4274 struct dbuf_slice_conf_entry {
4275         u8 active_pipes;
4276         u8 dbuf_mask[I915_MAX_PIPES];
4277 };
4278
4279 /*
4280  * Table taken from Bspec 12716
4281  * Pipes do have some preferred DBuf slice affinity,
4282  * plus there are some hardcoded requirements on how
4283  * those should be distributed for multipipe scenarios.
4284  * For more DBuf slices algorithm can get even more messy
4285  * and less readable, so decided to use a table almost
4286  * as is from BSpec itself - that way it is at least easier
4287  * to compare, change and check.
4288  */
4289 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4290 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4291 {
4292         {
4293                 .active_pipes = BIT(PIPE_A),
4294                 .dbuf_mask = {
4295                         [PIPE_A] = BIT(DBUF_S1),
4296                 },
4297         },
4298         {
4299                 .active_pipes = BIT(PIPE_B),
4300                 .dbuf_mask = {
4301                         [PIPE_B] = BIT(DBUF_S1),
4302                 },
4303         },
4304         {
4305                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4306                 .dbuf_mask = {
4307                         [PIPE_A] = BIT(DBUF_S1),
4308                         [PIPE_B] = BIT(DBUF_S2),
4309                 },
4310         },
4311         {
4312                 .active_pipes = BIT(PIPE_C),
4313                 .dbuf_mask = {
4314                         [PIPE_C] = BIT(DBUF_S2),
4315                 },
4316         },
4317         {
4318                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4319                 .dbuf_mask = {
4320                         [PIPE_A] = BIT(DBUF_S1),
4321                         [PIPE_C] = BIT(DBUF_S2),
4322                 },
4323         },
4324         {
4325                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4326                 .dbuf_mask = {
4327                         [PIPE_B] = BIT(DBUF_S1),
4328                         [PIPE_C] = BIT(DBUF_S2),
4329                 },
4330         },
4331         {
4332                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4333                 .dbuf_mask = {
4334                         [PIPE_A] = BIT(DBUF_S1),
4335                         [PIPE_B] = BIT(DBUF_S1),
4336                         [PIPE_C] = BIT(DBUF_S2),
4337                 },
4338         },
4339         {}
4340 };
4341
4342 /*
4343  * Table taken from Bspec 49255
4344  * Pipes do have some preferred DBuf slice affinity,
4345  * plus there are some hardcoded requirements on how
4346  * those should be distributed for multipipe scenarios.
4347  * For more DBuf slices algorithm can get even more messy
4348  * and less readable, so decided to use a table almost
4349  * as is from BSpec itself - that way it is at least easier
4350  * to compare, change and check.
4351  */
4352 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4353 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4354 {
4355         {
4356                 .active_pipes = BIT(PIPE_A),
4357                 .dbuf_mask = {
4358                         [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4359                 },
4360         },
4361         {
4362                 .active_pipes = BIT(PIPE_B),
4363                 .dbuf_mask = {
4364                         [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4365                 },
4366         },
4367         {
4368                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4369                 .dbuf_mask = {
4370                         [PIPE_A] = BIT(DBUF_S2),
4371                         [PIPE_B] = BIT(DBUF_S1),
4372                 },
4373         },
4374         {
4375                 .active_pipes = BIT(PIPE_C),
4376                 .dbuf_mask = {
4377                         [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4378                 },
4379         },
4380         {
4381                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4382                 .dbuf_mask = {
4383                         [PIPE_A] = BIT(DBUF_S1),
4384                         [PIPE_C] = BIT(DBUF_S2),
4385                 },
4386         },
4387         {
4388                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4389                 .dbuf_mask = {
4390                         [PIPE_B] = BIT(DBUF_S1),
4391                         [PIPE_C] = BIT(DBUF_S2),
4392                 },
4393         },
4394         {
4395                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4396                 .dbuf_mask = {
4397                         [PIPE_A] = BIT(DBUF_S1),
4398                         [PIPE_B] = BIT(DBUF_S1),
4399                         [PIPE_C] = BIT(DBUF_S2),
4400                 },
4401         },
4402         {
4403                 .active_pipes = BIT(PIPE_D),
4404                 .dbuf_mask = {
4405                         [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4406                 },
4407         },
4408         {
4409                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4410                 .dbuf_mask = {
4411                         [PIPE_A] = BIT(DBUF_S1),
4412                         [PIPE_D] = BIT(DBUF_S2),
4413                 },
4414         },
4415         {
4416                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4417                 .dbuf_mask = {
4418                         [PIPE_B] = BIT(DBUF_S1),
4419                         [PIPE_D] = BIT(DBUF_S2),
4420                 },
4421         },
4422         {
4423                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4424                 .dbuf_mask = {
4425                         [PIPE_A] = BIT(DBUF_S1),
4426                         [PIPE_B] = BIT(DBUF_S1),
4427                         [PIPE_D] = BIT(DBUF_S2),
4428                 },
4429         },
4430         {
4431                 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4432                 .dbuf_mask = {
4433                         [PIPE_C] = BIT(DBUF_S1),
4434                         [PIPE_D] = BIT(DBUF_S2),
4435                 },
4436         },
4437         {
4438                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4439                 .dbuf_mask = {
4440                         [PIPE_A] = BIT(DBUF_S1),
4441                         [PIPE_C] = BIT(DBUF_S2),
4442                         [PIPE_D] = BIT(DBUF_S2),
4443                 },
4444         },
4445         {
4446                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4447                 .dbuf_mask = {
4448                         [PIPE_B] = BIT(DBUF_S1),
4449                         [PIPE_C] = BIT(DBUF_S2),
4450                         [PIPE_D] = BIT(DBUF_S2),
4451                 },
4452         },
4453         {
4454                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4455                 .dbuf_mask = {
4456                         [PIPE_A] = BIT(DBUF_S1),
4457                         [PIPE_B] = BIT(DBUF_S1),
4458                         [PIPE_C] = BIT(DBUF_S2),
4459                         [PIPE_D] = BIT(DBUF_S2),
4460                 },
4461         },
4462         {}
4463 };
4464
4465 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4466                               const struct dbuf_slice_conf_entry *dbuf_slices)
4467 {
4468         int i;
4469
4470         for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4471                 if (dbuf_slices[i].active_pipes == active_pipes)
4472                         return dbuf_slices[i].dbuf_mask[pipe];
4473         }
4474         return 0;
4475 }
4476
4477 /*
4478  * This function finds an entry with same enabled pipe configuration and
4479  * returns correspondent DBuf slice mask as stated in BSpec for particular
4480  * platform.
4481  */
4482 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4483 {
4484         /*
4485          * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4486          * required calculating "pipe ratio" in order to determine
4487          * if one or two slices can be used for single pipe configurations
4488          * as additional constraint to the existing table.
4489          * However based on recent info, it should be not "pipe ratio"
4490          * but rather ratio between pixel_rate and cdclk with additional
4491          * constants, so for now we are using only table until this is
4492          * clarified. Also this is the reason why crtc_state param is
4493          * still here - we will need it once those additional constraints
4494          * pop up.
4495          */
4496         return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4497 }
4498
4499 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4500 {
4501         return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4502 }
4503
4504 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4505                                   u8 active_pipes)
4506 {
4507         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4508         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4509         enum pipe pipe = crtc->pipe;
4510
4511         if (IS_GEN(dev_priv, 12))
4512                 return tgl_compute_dbuf_slices(pipe, active_pipes);
4513         else if (IS_GEN(dev_priv, 11))
4514                 return icl_compute_dbuf_slices(pipe, active_pipes);
4515         /*
4516          * For anything else just return one slice yet.
4517          * Should be extended for other platforms.
4518          */
4519         return BIT(DBUF_S1);
4520 }
4521
4522 static u64
4523 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4524                              const struct intel_plane_state *plane_state,
4525                              int color_plane)
4526 {
4527         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4528         const struct drm_framebuffer *fb = plane_state->hw.fb;
4529         u32 data_rate;
4530         u32 width = 0, height = 0;
4531         uint_fixed_16_16_t down_scale_amount;
4532         u64 rate;
4533
4534         if (!plane_state->uapi.visible)
4535                 return 0;
4536
4537         if (plane->id == PLANE_CURSOR)
4538                 return 0;
4539
4540         if (color_plane == 1 &&
4541             !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4542                 return 0;
4543
4544         /*
4545          * Src coordinates are already rotated by 270 degrees for
4546          * the 90/270 degree plane rotation cases (to match the
4547          * GTT mapping), hence no need to account for rotation here.
4548          */
4549         width = drm_rect_width(&plane_state->uapi.src) >> 16;
4550         height = drm_rect_height(&plane_state->uapi.src) >> 16;
4551
4552         /* UV plane does 1/2 pixel sub-sampling */
4553         if (color_plane == 1) {
4554                 width /= 2;
4555                 height /= 2;
4556         }
4557
4558         data_rate = width * height;
4559
4560         down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4561
4562         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4563
4564         rate *= fb->format->cpp[color_plane];
4565         return rate;
4566 }
4567
4568 static u64
4569 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4570                                  u64 *plane_data_rate,
4571                                  u64 *uv_plane_data_rate)
4572 {
4573         struct intel_plane *plane;
4574         const struct intel_plane_state *plane_state;
4575         u64 total_data_rate = 0;
4576
4577         /* Calculate and cache data rate for each plane */
4578         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4579                 enum plane_id plane_id = plane->id;
4580                 u64 rate;
4581
4582                 /* packed/y */
4583                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4584                 plane_data_rate[plane_id] = rate;
4585                 total_data_rate += rate;
4586
4587                 /* uv-plane */
4588                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4589                 uv_plane_data_rate[plane_id] = rate;
4590                 total_data_rate += rate;
4591         }
4592
4593         return total_data_rate;
4594 }
4595
4596 static u64
4597 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4598                                  u64 *plane_data_rate)
4599 {
4600         struct intel_plane *plane;
4601         const struct intel_plane_state *plane_state;
4602         u64 total_data_rate = 0;
4603
4604         /* Calculate and cache data rate for each plane */
4605         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4606                 enum plane_id plane_id = plane->id;
4607                 u64 rate;
4608
4609                 if (!plane_state->planar_linked_plane) {
4610                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4611                         plane_data_rate[plane_id] = rate;
4612                         total_data_rate += rate;
4613                 } else {
4614                         enum plane_id y_plane_id;
4615
4616                         /*
4617                          * The slave plane might not iterate in
4618                          * intel_atomic_crtc_state_for_each_plane_state(),
4619                          * and needs the master plane state which may be
4620                          * NULL if we try get_new_plane_state(), so we
4621                          * always calculate from the master.
4622                          */
4623                         if (plane_state->planar_slave)
4624                                 continue;
4625
4626                         /* Y plane rate is calculated on the slave */
4627                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4628                         y_plane_id = plane_state->planar_linked_plane->id;
4629                         plane_data_rate[y_plane_id] = rate;
4630                         total_data_rate += rate;
4631
4632                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4633                         plane_data_rate[plane_id] = rate;
4634                         total_data_rate += rate;
4635                 }
4636         }
4637
4638         return total_data_rate;
4639 }
4640
4641 static const struct skl_wm_level *
4642 skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
4643                    enum plane_id plane_id,
4644                    int level)
4645 {
4646         const struct skl_plane_wm *wm =
4647                 &crtc_state->wm.skl.optimal.planes[plane_id];
4648
4649         return &wm->wm[level];
4650 }
4651
4652 static int
4653 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4654 {
4655         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4656         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4657         struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4658         u16 alloc_size, start = 0;
4659         u16 total[I915_MAX_PLANES] = {};
4660         u16 uv_total[I915_MAX_PLANES] = {};
4661         u64 total_data_rate;
4662         enum plane_id plane_id;
4663         int num_active;
4664         u64 plane_data_rate[I915_MAX_PLANES] = {};
4665         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4666         u32 blocks;
4667         int level;
4668
4669         /* Clear the partitioning for disabled planes. */
4670         memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4671         memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4672
4673         if (!crtc_state->hw.active) {
4674                 alloc->start = alloc->end = 0;
4675                 return 0;
4676         }
4677
4678         if (INTEL_GEN(dev_priv) >= 11)
4679                 total_data_rate =
4680                         icl_get_total_relative_data_rate(crtc_state,
4681                                                          plane_data_rate);
4682         else
4683                 total_data_rate =
4684                         skl_get_total_relative_data_rate(crtc_state,
4685                                                          plane_data_rate,
4686                                                          uv_plane_data_rate);
4687
4688
4689         skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4690                                            alloc, &num_active);
4691         alloc_size = skl_ddb_entry_size(alloc);
4692         if (alloc_size == 0)
4693                 return 0;
4694
4695         /* Allocate fixed number of blocks for cursor. */
4696         total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4697         alloc_size -= total[PLANE_CURSOR];
4698         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4699                 alloc->end - total[PLANE_CURSOR];
4700         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4701
4702         if (total_data_rate == 0)
4703                 return 0;
4704
4705         /*
4706          * Find the highest watermark level for which we can satisfy the block
4707          * requirement of active planes.
4708          */
4709         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4710                 blocks = 0;
4711                 for_each_plane_id_on_crtc(crtc, plane_id) {
4712                         const struct skl_plane_wm *wm =
4713                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4714
4715                         if (plane_id == PLANE_CURSOR) {
4716                                 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4717                                         drm_WARN_ON(&dev_priv->drm,
4718                                                     wm->wm[level].min_ddb_alloc != U16_MAX);
4719                                         blocks = U32_MAX;
4720                                         break;
4721                                 }
4722                                 continue;
4723                         }
4724
4725                         blocks += wm->wm[level].min_ddb_alloc;
4726                         blocks += wm->uv_wm[level].min_ddb_alloc;
4727                 }
4728
4729                 if (blocks <= alloc_size) {
4730                         alloc_size -= blocks;
4731                         break;
4732                 }
4733         }
4734
4735         if (level < 0) {
4736                 drm_dbg_kms(&dev_priv->drm,
4737                             "Requested display configuration exceeds system DDB limitations");
4738                 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4739                             blocks, alloc_size);
4740                 return -EINVAL;
4741         }
4742
4743         /*
4744          * Grant each plane the blocks it requires at the highest achievable
4745          * watermark level, plus an extra share of the leftover blocks
4746          * proportional to its relative data rate.
4747          */
4748         for_each_plane_id_on_crtc(crtc, plane_id) {
4749                 const struct skl_plane_wm *wm =
4750                         &crtc_state->wm.skl.optimal.planes[plane_id];
4751                 u64 rate;
4752                 u16 extra;
4753
4754                 if (plane_id == PLANE_CURSOR)
4755                         continue;
4756
4757                 /*
4758                  * We've accounted for all active planes; remaining planes are
4759                  * all disabled.
4760                  */
4761                 if (total_data_rate == 0)
4762                         break;
4763
4764                 rate = plane_data_rate[plane_id];
4765                 extra = min_t(u16, alloc_size,
4766                               DIV64_U64_ROUND_UP(alloc_size * rate,
4767                                                  total_data_rate));
4768                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4769                 alloc_size -= extra;
4770                 total_data_rate -= rate;
4771
4772                 if (total_data_rate == 0)
4773                         break;
4774
4775                 rate = uv_plane_data_rate[plane_id];
4776                 extra = min_t(u16, alloc_size,
4777                               DIV64_U64_ROUND_UP(alloc_size * rate,
4778                                                  total_data_rate));
4779                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4780                 alloc_size -= extra;
4781                 total_data_rate -= rate;
4782         }
4783         drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4784
4785         /* Set the actual DDB start/end points for each plane */
4786         start = alloc->start;
4787         for_each_plane_id_on_crtc(crtc, plane_id) {
4788                 struct skl_ddb_entry *plane_alloc =
4789                         &crtc_state->wm.skl.plane_ddb_y[plane_id];
4790                 struct skl_ddb_entry *uv_plane_alloc =
4791                         &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4792
4793                 if (plane_id == PLANE_CURSOR)
4794                         continue;
4795
4796                 /* Gen11+ uses a separate plane for UV watermarks */
4797                 drm_WARN_ON(&dev_priv->drm,
4798                             INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4799
4800                 /* Leave disabled planes at (0,0) */
4801                 if (total[plane_id]) {
4802                         plane_alloc->start = start;
4803                         start += total[plane_id];
4804                         plane_alloc->end = start;
4805                 }
4806
4807                 if (uv_total[plane_id]) {
4808                         uv_plane_alloc->start = start;
4809                         start += uv_total[plane_id];
4810                         uv_plane_alloc->end = start;
4811                 }
4812         }
4813
4814         /*
4815          * When we calculated watermark values we didn't know how high
4816          * of a level we'd actually be able to hit, so we just marked
4817          * all levels as "enabled."  Go back now and disable the ones
4818          * that aren't actually possible.
4819          */
4820         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4821                 for_each_plane_id_on_crtc(crtc, plane_id) {
4822                         struct skl_plane_wm *wm =
4823                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4824
4825                         /*
4826                          * We only disable the watermarks for each plane if
4827                          * they exceed the ddb allocation of said plane. This
4828                          * is done so that we don't end up touching cursor
4829                          * watermarks needlessly when some other plane reduces
4830                          * our max possible watermark level.
4831                          *
4832                          * Bspec has this to say about the PLANE_WM enable bit:
4833                          * "All the watermarks at this level for all enabled
4834                          *  planes must be enabled before the level will be used."
4835                          * So this is actually safe to do.
4836                          */
4837                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4838                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4839                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4840
4841                         /*
4842                          * Wa_1408961008:icl, ehl
4843                          * Underruns with WM1+ disabled
4844                          */
4845                         if (IS_GEN(dev_priv, 11) &&
4846                             level == 1 && wm->wm[0].plane_en) {
4847                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4848                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4849                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4850                         }
4851                 }
4852         }
4853
4854         /*
4855          * Go back and disable the transition watermark if it turns out we
4856          * don't have enough DDB blocks for it.
4857          */
4858         for_each_plane_id_on_crtc(crtc, plane_id) {
4859                 struct skl_plane_wm *wm =
4860                         &crtc_state->wm.skl.optimal.planes[plane_id];
4861
4862                 if (wm->trans_wm.plane_res_b >= total[plane_id])
4863                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4864         }
4865
4866         return 0;
4867 }
4868
4869 /*
4870  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4871  * for the read latency) and cpp should always be <= 8, so that
4872  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4873  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4874 */
4875 static uint_fixed_16_16_t
4876 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4877                u8 cpp, u32 latency, u32 dbuf_block_size)
4878 {
4879         u32 wm_intermediate_val;
4880         uint_fixed_16_16_t ret;
4881
4882         if (latency == 0)
4883                 return FP_16_16_MAX;
4884
4885         wm_intermediate_val = latency * pixel_rate * cpp;
4886         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4887
4888         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4889                 ret = add_fixed16_u32(ret, 1);
4890
4891         return ret;
4892 }
4893
4894 static uint_fixed_16_16_t
4895 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4896                uint_fixed_16_16_t plane_blocks_per_line)
4897 {
4898         u32 wm_intermediate_val;
4899         uint_fixed_16_16_t ret;
4900
4901         if (latency == 0)
4902                 return FP_16_16_MAX;
4903
4904         wm_intermediate_val = latency * pixel_rate;
4905         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4906                                            pipe_htotal * 1000);
4907         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4908         return ret;
4909 }
4910
4911 static uint_fixed_16_16_t
4912 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4913 {
4914         u32 pixel_rate;
4915         u32 crtc_htotal;
4916         uint_fixed_16_16_t linetime_us;
4917
4918         if (!crtc_state->hw.active)
4919                 return u32_to_fixed16(0);
4920
4921         pixel_rate = crtc_state->pixel_rate;
4922
4923         if (WARN_ON(pixel_rate == 0))
4924                 return u32_to_fixed16(0);
4925
4926         crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4927         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4928
4929         return linetime_us;
4930 }
4931
4932 static u32
4933 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4934                               const struct intel_plane_state *plane_state)
4935 {
4936         u64 adjusted_pixel_rate;
4937         uint_fixed_16_16_t downscale_amount;
4938
4939         /* Shouldn't reach here on disabled planes... */
4940         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4941                 return 0;
4942
4943         /*
4944          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4945          * with additional adjustments for plane-specific scaling.
4946          */
4947         adjusted_pixel_rate = crtc_state->pixel_rate;
4948         downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4949
4950         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4951                                             downscale_amount);
4952 }
4953
4954 static int
4955 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4956                       int width, const struct drm_format_info *format,
4957                       u64 modifier, unsigned int rotation,
4958                       u32 plane_pixel_rate, struct skl_wm_params *wp,
4959                       int color_plane)
4960 {
4961         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4962         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4963         u32 interm_pbpl;
4964
4965         /* only planar format has two planes */
4966         if (color_plane == 1 &&
4967             !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4968                 drm_dbg_kms(&dev_priv->drm,
4969                             "Non planar format have single plane\n");
4970                 return -EINVAL;
4971         }
4972
4973         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4974                       modifier == I915_FORMAT_MOD_Yf_TILED ||
4975                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4976                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4977         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4978         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4979                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4980         wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4981
4982         wp->width = width;
4983         if (color_plane == 1 && wp->is_planar)
4984                 wp->width /= 2;
4985
4986         wp->cpp = format->cpp[color_plane];
4987         wp->plane_pixel_rate = plane_pixel_rate;
4988
4989         if (INTEL_GEN(dev_priv) >= 11 &&
4990             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4991                 wp->dbuf_block_size = 256;
4992         else
4993                 wp->dbuf_block_size = 512;
4994
4995         if (drm_rotation_90_or_270(rotation)) {
4996                 switch (wp->cpp) {
4997                 case 1:
4998                         wp->y_min_scanlines = 16;
4999                         break;
5000                 case 2:
5001                         wp->y_min_scanlines = 8;
5002                         break;
5003                 case 4:
5004                         wp->y_min_scanlines = 4;
5005                         break;
5006                 default:
5007                         MISSING_CASE(wp->cpp);
5008                         return -EINVAL;
5009                 }
5010         } else {
5011                 wp->y_min_scanlines = 4;
5012         }
5013
5014         if (skl_needs_memory_bw_wa(dev_priv))
5015                 wp->y_min_scanlines *= 2;
5016
5017         wp->plane_bytes_per_line = wp->width * wp->cpp;
5018         if (wp->y_tiled) {
5019                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5020                                            wp->y_min_scanlines,
5021                                            wp->dbuf_block_size);
5022
5023                 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5024                         interm_pbpl++;
5025
5026                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5027                                                         wp->y_min_scanlines);
5028         } else {
5029                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5030                                            wp->dbuf_block_size);
5031
5032                 if (!wp->x_tiled ||
5033                     INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5034                         interm_pbpl++;
5035
5036                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5037         }
5038
5039         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5040                                              wp->plane_blocks_per_line);
5041
5042         wp->linetime_us = fixed16_to_u32_round_up(
5043                                         intel_get_linetime_us(crtc_state));
5044
5045         return 0;
5046 }
5047
5048 static int
5049 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5050                             const struct intel_plane_state *plane_state,
5051                             struct skl_wm_params *wp, int color_plane)
5052 {
5053         const struct drm_framebuffer *fb = plane_state->hw.fb;
5054         int width;
5055
5056         /*
5057          * Src coordinates are already rotated by 270 degrees for
5058          * the 90/270 degree plane rotation cases (to match the
5059          * GTT mapping), hence no need to account for rotation here.
5060          */
5061         width = drm_rect_width(&plane_state->uapi.src) >> 16;
5062
5063         return skl_compute_wm_params(crtc_state, width,
5064                                      fb->format, fb->modifier,
5065                                      plane_state->hw.rotation,
5066                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
5067                                      wp, color_plane);
5068 }
5069
5070 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5071 {
5072         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5073                 return true;
5074
5075         /* The number of lines are ignored for the level 0 watermark. */
5076         return level > 0;
5077 }
5078
5079 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5080                                  int level,
5081                                  unsigned int latency,
5082                                  const struct skl_wm_params *wp,
5083                                  const struct skl_wm_level *result_prev,
5084                                  struct skl_wm_level *result /* out */)
5085 {
5086         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5087         uint_fixed_16_16_t method1, method2;
5088         uint_fixed_16_16_t selected_result;
5089         u32 res_blocks, res_lines, min_ddb_alloc = 0;
5090
5091         if (latency == 0) {
5092                 /* reject it */
5093                 result->min_ddb_alloc = U16_MAX;
5094                 return;
5095         }
5096
5097         /*
5098          * WaIncreaseLatencyIPCEnabled: kbl,cfl
5099          * Display WA #1141: kbl,cfl
5100          */
5101         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
5102             dev_priv->ipc_enabled)
5103                 latency += 4;
5104
5105         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5106                 latency += 15;
5107
5108         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5109                                  wp->cpp, latency, wp->dbuf_block_size);
5110         method2 = skl_wm_method2(wp->plane_pixel_rate,
5111                                  crtc_state->hw.adjusted_mode.crtc_htotal,
5112                                  latency,
5113                                  wp->plane_blocks_per_line);
5114
5115         if (wp->y_tiled) {
5116                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5117         } else {
5118                 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5119                      wp->dbuf_block_size < 1) &&
5120                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5121                         selected_result = method2;
5122                 } else if (latency >= wp->linetime_us) {
5123                         if (IS_GEN(dev_priv, 9) &&
5124                             !IS_GEMINILAKE(dev_priv))
5125                                 selected_result = min_fixed16(method1, method2);
5126                         else
5127                                 selected_result = method2;
5128                 } else {
5129                         selected_result = method1;
5130                 }
5131         }
5132
5133         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5134         res_lines = div_round_up_fixed16(selected_result,
5135                                          wp->plane_blocks_per_line);
5136
5137         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5138                 /* Display WA #1125: skl,bxt,kbl */
5139                 if (level == 0 && wp->rc_surface)
5140                         res_blocks +=
5141                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
5142
5143                 /* Display WA #1126: skl,bxt,kbl */
5144                 if (level >= 1 && level <= 7) {
5145                         if (wp->y_tiled) {
5146                                 res_blocks +=
5147                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
5148                                 res_lines += wp->y_min_scanlines;
5149                         } else {
5150                                 res_blocks++;
5151                         }
5152
5153                         /*
5154                          * Make sure result blocks for higher latency levels are
5155                          * atleast as high as level below the current level.
5156                          * Assumption in DDB algorithm optimization for special
5157                          * cases. Also covers Display WA #1125 for RC.
5158                          */
5159                         if (result_prev->plane_res_b > res_blocks)
5160                                 res_blocks = result_prev->plane_res_b;
5161                 }
5162         }
5163
5164         if (INTEL_GEN(dev_priv) >= 11) {
5165                 if (wp->y_tiled) {
5166                         int extra_lines;
5167
5168                         if (res_lines % wp->y_min_scanlines == 0)
5169                                 extra_lines = wp->y_min_scanlines;
5170                         else
5171                                 extra_lines = wp->y_min_scanlines * 2 -
5172                                         res_lines % wp->y_min_scanlines;
5173
5174                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5175                                                                  wp->plane_blocks_per_line);
5176                 } else {
5177                         min_ddb_alloc = res_blocks +
5178                                 DIV_ROUND_UP(res_blocks, 10);
5179                 }
5180         }
5181
5182         if (!skl_wm_has_lines(dev_priv, level))
5183                 res_lines = 0;
5184
5185         if (res_lines > 31) {
5186                 /* reject it */
5187                 result->min_ddb_alloc = U16_MAX;
5188                 return;
5189         }
5190
5191         /*
5192          * If res_lines is valid, assume we can use this watermark level
5193          * for now.  We'll come back and disable it after we calculate the
5194          * DDB allocation if it turns out we don't actually have enough
5195          * blocks to satisfy it.
5196          */
5197         result->plane_res_b = res_blocks;
5198         result->plane_res_l = res_lines;
5199         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5200         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5201         result->plane_en = true;
5202 }
5203
5204 static void
5205 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5206                       const struct skl_wm_params *wm_params,
5207                       struct skl_wm_level *levels)
5208 {
5209         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5210         int level, max_level = ilk_wm_max_level(dev_priv);
5211         struct skl_wm_level *result_prev = &levels[0];
5212
5213         for (level = 0; level <= max_level; level++) {
5214                 struct skl_wm_level *result = &levels[level];
5215                 unsigned int latency = dev_priv->wm.skl_latency[level];
5216
5217                 skl_compute_plane_wm(crtc_state, level, latency,
5218                                      wm_params, result_prev, result);
5219
5220                 result_prev = result;
5221         }
5222 }
5223
5224 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5225                                       const struct skl_wm_params *wp,
5226                                       struct skl_plane_wm *wm)
5227 {
5228         struct drm_device *dev = crtc_state->uapi.crtc->dev;
5229         const struct drm_i915_private *dev_priv = to_i915(dev);
5230         u16 trans_min, trans_amount, trans_y_tile_min;
5231         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5232
5233         /* Transition WM don't make any sense if ipc is disabled */
5234         if (!dev_priv->ipc_enabled)
5235                 return;
5236
5237         /*
5238          * WaDisableTWM:skl,kbl,cfl,bxt
5239          * Transition WM are not recommended by HW team for GEN9
5240          */
5241         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5242                 return;
5243
5244         if (INTEL_GEN(dev_priv) >= 11)
5245                 trans_min = 4;
5246         else
5247                 trans_min = 14;
5248
5249         /* Display WA #1140: glk,cnl */
5250         if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5251                 trans_amount = 0;
5252         else
5253                 trans_amount = 10; /* This is configurable amount */
5254
5255         trans_offset_b = trans_min + trans_amount;
5256
5257         /*
5258          * The spec asks for Selected Result Blocks for wm0 (the real value),
5259          * not Result Blocks (the integer value). Pay attention to the capital
5260          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5261          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5262          * and since we later will have to get the ceiling of the sum in the
5263          * transition watermarks calculation, we can just pretend Selected
5264          * Result Blocks is Result Blocks minus 1 and it should work for the
5265          * current platforms.
5266          */
5267         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5268
5269         if (wp->y_tiled) {
5270                 trans_y_tile_min =
5271                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5272                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5273                                 trans_offset_b;
5274         } else {
5275                 res_blocks = wm0_sel_res_b + trans_offset_b;
5276         }
5277
5278         /*
5279          * Just assume we can enable the transition watermark.  After
5280          * computing the DDB we'll come back and disable it if that
5281          * assumption turns out to be false.
5282          */
5283         wm->trans_wm.plane_res_b = res_blocks + 1;
5284         wm->trans_wm.plane_en = true;
5285 }
5286
5287 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5288                                      const struct intel_plane_state *plane_state,
5289                                      enum plane_id plane_id, int color_plane)
5290 {
5291         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5292         struct skl_wm_params wm_params;
5293         int ret;
5294
5295         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5296                                           &wm_params, color_plane);
5297         if (ret)
5298                 return ret;
5299
5300         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5301         skl_compute_transition_wm(crtc_state, &wm_params, wm);
5302
5303         return 0;
5304 }
5305
5306 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5307                                  const struct intel_plane_state *plane_state,
5308                                  enum plane_id plane_id)
5309 {
5310         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5311         struct skl_wm_params wm_params;
5312         int ret;
5313
5314         wm->is_planar = true;
5315
5316         /* uv plane watermarks must also be validated for NV12/Planar */
5317         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5318                                           &wm_params, 1);
5319         if (ret)
5320                 return ret;
5321
5322         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5323
5324         return 0;
5325 }
5326
5327 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5328                               const struct intel_plane_state *plane_state)
5329 {
5330         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5331         const struct drm_framebuffer *fb = plane_state->hw.fb;
5332         enum plane_id plane_id = plane->id;
5333         int ret;
5334
5335         if (!intel_wm_plane_visible(crtc_state, plane_state))
5336                 return 0;
5337
5338         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5339                                         plane_id, 0);
5340         if (ret)
5341                 return ret;
5342
5343         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5344                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5345                                             plane_id);
5346                 if (ret)
5347                         return ret;
5348         }
5349
5350         return 0;
5351 }
5352
5353 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5354                               const struct intel_plane_state *plane_state)
5355 {
5356         enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5357         int ret;
5358
5359         /* Watermarks calculated in master */
5360         if (plane_state->planar_slave)
5361                 return 0;
5362
5363         if (plane_state->planar_linked_plane) {
5364                 const struct drm_framebuffer *fb = plane_state->hw.fb;
5365                 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5366
5367                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5368                 WARN_ON(!fb->format->is_yuv ||
5369                         fb->format->num_planes == 1);
5370
5371                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5372                                                 y_plane_id, 0);
5373                 if (ret)
5374                         return ret;
5375
5376                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5377                                                 plane_id, 1);
5378                 if (ret)
5379                         return ret;
5380         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5381                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5382                                                 plane_id, 0);
5383                 if (ret)
5384                         return ret;
5385         }
5386
5387         return 0;
5388 }
5389
5390 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5391 {
5392         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5393         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5394         struct intel_plane *plane;
5395         const struct intel_plane_state *plane_state;
5396         int ret;
5397
5398         /*
5399          * We'll only calculate watermarks for planes that are actually
5400          * enabled, so make sure all other planes are set as disabled.
5401          */
5402         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5403
5404         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5405                                                      crtc_state) {
5406
5407                 if (INTEL_GEN(dev_priv) >= 11)
5408                         ret = icl_build_plane_wm(crtc_state, plane_state);
5409                 else
5410                         ret = skl_build_plane_wm(crtc_state, plane_state);
5411                 if (ret)
5412                         return ret;
5413         }
5414
5415         return 0;
5416 }
5417
5418 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5419                                 i915_reg_t reg,
5420                                 const struct skl_ddb_entry *entry)
5421 {
5422         if (entry->end)
5423                 intel_de_write_fw(dev_priv, reg,
5424                                   (entry->end - 1) << 16 | entry->start);
5425         else
5426                 intel_de_write_fw(dev_priv, reg, 0);
5427 }
5428
5429 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5430                                i915_reg_t reg,
5431                                const struct skl_wm_level *level)
5432 {
5433         u32 val = 0;
5434
5435         if (level->plane_en)
5436                 val |= PLANE_WM_EN;
5437         if (level->ignore_lines)
5438                 val |= PLANE_WM_IGNORE_LINES;
5439         val |= level->plane_res_b;
5440         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5441
5442         intel_de_write_fw(dev_priv, reg, val);
5443 }
5444
5445 void skl_write_plane_wm(struct intel_plane *plane,
5446                         const struct intel_crtc_state *crtc_state)
5447 {
5448         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5449         int level, max_level = ilk_wm_max_level(dev_priv);
5450         enum plane_id plane_id = plane->id;
5451         enum pipe pipe = plane->pipe;
5452         const struct skl_plane_wm *wm =
5453                 &crtc_state->wm.skl.optimal.planes[plane_id];
5454         const struct skl_ddb_entry *ddb_y =
5455                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5456         const struct skl_ddb_entry *ddb_uv =
5457                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5458
5459         for (level = 0; level <= max_level; level++) {
5460                 const struct skl_wm_level *wm_level;
5461
5462                 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5463
5464                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5465                                    wm_level);
5466         }
5467         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5468                            &wm->trans_wm);
5469
5470         if (INTEL_GEN(dev_priv) >= 11) {
5471                 skl_ddb_entry_write(dev_priv,
5472                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5473                 return;
5474         }
5475
5476         if (wm->is_planar)
5477                 swap(ddb_y, ddb_uv);
5478
5479         skl_ddb_entry_write(dev_priv,
5480                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5481         skl_ddb_entry_write(dev_priv,
5482                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5483 }
5484
5485 void skl_write_cursor_wm(struct intel_plane *plane,
5486                          const struct intel_crtc_state *crtc_state)
5487 {
5488         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5489         int level, max_level = ilk_wm_max_level(dev_priv);
5490         enum plane_id plane_id = plane->id;
5491         enum pipe pipe = plane->pipe;
5492         const struct skl_plane_wm *wm =
5493                 &crtc_state->wm.skl.optimal.planes[plane_id];
5494         const struct skl_ddb_entry *ddb =
5495                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5496
5497         for (level = 0; level <= max_level; level++) {
5498                 const struct skl_wm_level *wm_level;
5499
5500                 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5501
5502                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5503                                    wm_level);
5504         }
5505         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5506
5507         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5508 }
5509
5510 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5511                          const struct skl_wm_level *l2)
5512 {
5513         return l1->plane_en == l2->plane_en &&
5514                 l1->ignore_lines == l2->ignore_lines &&
5515                 l1->plane_res_l == l2->plane_res_l &&
5516                 l1->plane_res_b == l2->plane_res_b;
5517 }
5518
5519 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5520                                 const struct skl_plane_wm *wm1,
5521                                 const struct skl_plane_wm *wm2)
5522 {
5523         int level, max_level = ilk_wm_max_level(dev_priv);
5524
5525         for (level = 0; level <= max_level; level++) {
5526                 /*
5527                  * We don't check uv_wm as the hardware doesn't actually
5528                  * use it. It only gets used for calculating the required
5529                  * ddb allocation.
5530                  */
5531                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5532                         return false;
5533         }
5534
5535         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5536 }
5537
5538 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5539                                     const struct skl_ddb_entry *b)
5540 {
5541         return a->start < b->end && b->start < a->end;
5542 }
5543
5544 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5545                                  const struct skl_ddb_entry *entries,
5546                                  int num_entries, int ignore_idx)
5547 {
5548         int i;
5549
5550         for (i = 0; i < num_entries; i++) {
5551                 if (i != ignore_idx &&
5552                     skl_ddb_entries_overlap(ddb, &entries[i]))
5553                         return true;
5554         }
5555
5556         return false;
5557 }
5558
5559 static int
5560 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5561                             struct intel_crtc_state *new_crtc_state)
5562 {
5563         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5564         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5565         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5566         struct intel_plane *plane;
5567
5568         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5569                 struct intel_plane_state *plane_state;
5570                 enum plane_id plane_id = plane->id;
5571
5572                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5573                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5574                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5575                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5576                         continue;
5577
5578                 plane_state = intel_atomic_get_plane_state(state, plane);
5579                 if (IS_ERR(plane_state))
5580                         return PTR_ERR(plane_state);
5581
5582                 new_crtc_state->update_planes |= BIT(plane_id);
5583         }
5584
5585         return 0;
5586 }
5587
5588 static int
5589 skl_compute_ddb(struct intel_atomic_state *state)
5590 {
5591         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5592         struct intel_crtc_state *old_crtc_state;
5593         struct intel_crtc_state *new_crtc_state;
5594         struct intel_crtc *crtc;
5595         int ret, i;
5596
5597         state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5598
5599         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5600                                             new_crtc_state, i) {
5601                 ret = skl_allocate_pipe_ddb(new_crtc_state);
5602                 if (ret)
5603                         return ret;
5604
5605                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5606                                                   new_crtc_state);
5607                 if (ret)
5608                         return ret;
5609         }
5610
5611         return 0;
5612 }
5613
5614 static char enast(bool enable)
5615 {
5616         return enable ? '*' : ' ';
5617 }
5618
5619 static void
5620 skl_print_wm_changes(struct intel_atomic_state *state)
5621 {
5622         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5623         const struct intel_crtc_state *old_crtc_state;
5624         const struct intel_crtc_state *new_crtc_state;
5625         struct intel_plane *plane;
5626         struct intel_crtc *crtc;
5627         int i;
5628
5629         if (!drm_debug_enabled(DRM_UT_KMS))
5630                 return;
5631
5632         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5633                                             new_crtc_state, i) {
5634                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5635
5636                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5637                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5638
5639                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5640                         enum plane_id plane_id = plane->id;
5641                         const struct skl_ddb_entry *old, *new;
5642
5643                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5644                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5645
5646                         if (skl_ddb_entry_equal(old, new))
5647                                 continue;
5648
5649                         drm_dbg_kms(&dev_priv->drm,
5650                                     "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5651                                     plane->base.base.id, plane->base.name,
5652                                     old->start, old->end, new->start, new->end,
5653                                     skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5654                 }
5655
5656                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5657                         enum plane_id plane_id = plane->id;
5658                         const struct skl_plane_wm *old_wm, *new_wm;
5659
5660                         old_wm = &old_pipe_wm->planes[plane_id];
5661                         new_wm = &new_pipe_wm->planes[plane_id];
5662
5663                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5664                                 continue;
5665
5666                         drm_dbg_kms(&dev_priv->drm,
5667                                     "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5668                                     " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5669                                     plane->base.base.id, plane->base.name,
5670                                     enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5671                                     enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5672                                     enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5673                                     enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5674                                     enast(old_wm->trans_wm.plane_en),
5675                                     enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5676                                     enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5677                                     enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5678                                     enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5679                                     enast(new_wm->trans_wm.plane_en));
5680
5681                         drm_dbg_kms(&dev_priv->drm,
5682                                     "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5683                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5684                                     plane->base.base.id, plane->base.name,
5685                                     enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5686                                     enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5687                                     enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5688                                     enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5689                                     enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5690                                     enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5691                                     enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5692                                     enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5693                                     enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5694
5695                                     enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5696                                     enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5697                                     enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5698                                     enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5699                                     enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5700                                     enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5701                                     enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5702                                     enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5703                                     enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5704
5705                         drm_dbg_kms(&dev_priv->drm,
5706                                     "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5707                                     " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5708                                     plane->base.base.id, plane->base.name,
5709                                     old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5710                                     old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5711                                     old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5712                                     old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5713                                     old_wm->trans_wm.plane_res_b,
5714                                     new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5715                                     new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5716                                     new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5717                                     new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5718                                     new_wm->trans_wm.plane_res_b);
5719
5720                         drm_dbg_kms(&dev_priv->drm,
5721                                     "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5722                                     " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5723                                     plane->base.base.id, plane->base.name,
5724                                     old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5725                                     old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5726                                     old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5727                                     old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5728                                     old_wm->trans_wm.min_ddb_alloc,
5729                                     new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5730                                     new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5731                                     new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5732                                     new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5733                                     new_wm->trans_wm.min_ddb_alloc);
5734                 }
5735         }
5736 }
5737
5738 static int intel_add_all_pipes(struct intel_atomic_state *state)
5739 {
5740         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5741         struct intel_crtc *crtc;
5742
5743         for_each_intel_crtc(&dev_priv->drm, crtc) {
5744                 struct intel_crtc_state *crtc_state;
5745
5746                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5747                 if (IS_ERR(crtc_state))
5748                         return PTR_ERR(crtc_state);
5749         }
5750
5751         return 0;
5752 }
5753
5754 static int
5755 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5756 {
5757         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5758         int ret;
5759
5760         /*
5761          * If this is our first atomic update following hardware readout,
5762          * we can't trust the DDB that the BIOS programmed for us.  Let's
5763          * pretend that all pipes switched active status so that we'll
5764          * ensure a full DDB recompute.
5765          */
5766         if (dev_priv->wm.distrust_bios_wm) {
5767                 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5768                                        state->base.acquire_ctx);
5769                 if (ret)
5770                         return ret;
5771
5772                 state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5773
5774                 /*
5775                  * We usually only initialize state->active_pipes if we
5776                  * we're doing a modeset; make sure this field is always
5777                  * initialized during the sanitization process that happens
5778                  * on the first commit too.
5779                  */
5780                 if (!state->modeset)
5781                         state->active_pipes = dev_priv->active_pipes;
5782         }
5783
5784         /*
5785          * If the modeset changes which CRTC's are active, we need to
5786          * recompute the DDB allocation for *all* active pipes, even
5787          * those that weren't otherwise being modified in any way by this
5788          * atomic commit.  Due to the shrinking of the per-pipe allocations
5789          * when new active CRTC's are added, it's possible for a pipe that
5790          * we were already using and aren't changing at all here to suddenly
5791          * become invalid if its DDB needs exceeds its new allocation.
5792          *
5793          * Note that if we wind up doing a full DDB recompute, we can't let
5794          * any other display updates race with this transaction, so we need
5795          * to grab the lock on *all* CRTC's.
5796          */
5797         if (state->active_pipe_changes || state->modeset) {
5798                 ret = intel_add_all_pipes(state);
5799                 if (ret)
5800                         return ret;
5801         }
5802
5803         return 0;
5804 }
5805
5806 /*
5807  * To make sure the cursor watermark registers are always consistent
5808  * with our computed state the following scenario needs special
5809  * treatment:
5810  *
5811  * 1. enable cursor
5812  * 2. move cursor entirely offscreen
5813  * 3. disable cursor
5814  *
5815  * Step 2. does call .disable_plane() but does not zero the watermarks
5816  * (since we consider an offscreen cursor still active for the purposes
5817  * of watermarks). Step 3. would not normally call .disable_plane()
5818  * because the actual plane visibility isn't changing, and we don't
5819  * deallocate the cursor ddb until the pipe gets disabled. So we must
5820  * force step 3. to call .disable_plane() to update the watermark
5821  * registers properly.
5822  *
5823  * Other planes do not suffer from this issues as their watermarks are
5824  * calculated based on the actual plane visibility. The only time this
5825  * can trigger for the other planes is during the initial readout as the
5826  * default value of the watermarks registers is not zero.
5827  */
5828 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5829                                       struct intel_crtc *crtc)
5830 {
5831         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5832         const struct intel_crtc_state *old_crtc_state =
5833                 intel_atomic_get_old_crtc_state(state, crtc);
5834         struct intel_crtc_state *new_crtc_state =
5835                 intel_atomic_get_new_crtc_state(state, crtc);
5836         struct intel_plane *plane;
5837
5838         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5839                 struct intel_plane_state *plane_state;
5840                 enum plane_id plane_id = plane->id;
5841
5842                 /*
5843                  * Force a full wm update for every plane on modeset.
5844                  * Required because the reset value of the wm registers
5845                  * is non-zero, whereas we want all disabled planes to
5846                  * have zero watermarks. So if we turn off the relevant
5847                  * power well the hardware state will go out of sync
5848                  * with the software state.
5849                  */
5850                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5851                     skl_plane_wm_equals(dev_priv,
5852                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5853                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5854                         continue;
5855
5856                 plane_state = intel_atomic_get_plane_state(state, plane);
5857                 if (IS_ERR(plane_state))
5858                         return PTR_ERR(plane_state);
5859
5860                 new_crtc_state->update_planes |= BIT(plane_id);
5861         }
5862
5863         return 0;
5864 }
5865
5866 static int
5867 skl_compute_wm(struct intel_atomic_state *state)
5868 {
5869         struct intel_crtc *crtc;
5870         struct intel_crtc_state *new_crtc_state;
5871         struct intel_crtc_state *old_crtc_state;
5872         int ret, i;
5873
5874         ret = skl_ddb_add_affected_pipes(state);
5875         if (ret)
5876                 return ret;
5877
5878         /*
5879          * Calculate WM's for all pipes that are part of this transaction.
5880          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5881          * weren't otherwise being modified if pipe allocations had to change.
5882          */
5883         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5884                                             new_crtc_state, i) {
5885                 ret = skl_build_pipe_wm(new_crtc_state);
5886                 if (ret)
5887                         return ret;
5888         }
5889
5890         ret = skl_compute_ddb(state);
5891         if (ret)
5892                 return ret;
5893
5894         ret = intel_compute_sagv_mask(state);
5895         if (ret)
5896                 return ret;
5897
5898         /*
5899          * skl_compute_ddb() will have adjusted the final watermarks
5900          * based on how much ddb is available. Now we can actually
5901          * check if the final watermarks changed.
5902          */
5903         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5904                                             new_crtc_state, i) {
5905                 ret = skl_wm_add_affected_planes(state, crtc);
5906                 if (ret)
5907                         return ret;
5908         }
5909
5910         skl_print_wm_changes(state);
5911
5912         return 0;
5913 }
5914
5915 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5916                                   struct intel_wm_config *config)
5917 {
5918         struct intel_crtc *crtc;
5919
5920         /* Compute the currently _active_ config */
5921         for_each_intel_crtc(&dev_priv->drm, crtc) {
5922                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5923
5924                 if (!wm->pipe_enabled)
5925                         continue;
5926
5927                 config->sprites_enabled |= wm->sprites_enabled;
5928                 config->sprites_scaled |= wm->sprites_scaled;
5929                 config->num_pipes_active++;
5930         }
5931 }
5932
5933 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5934 {
5935         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5936         struct ilk_wm_maximums max;
5937         struct intel_wm_config config = {};
5938         struct ilk_wm_values results = {};
5939         enum intel_ddb_partitioning partitioning;
5940
5941         ilk_compute_wm_config(dev_priv, &config);
5942
5943         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5944         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5945
5946         /* 5/6 split only in single pipe config on IVB+ */
5947         if (INTEL_GEN(dev_priv) >= 7 &&
5948             config.num_pipes_active == 1 && config.sprites_enabled) {
5949                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5950                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5951
5952                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5953         } else {
5954                 best_lp_wm = &lp_wm_1_2;
5955         }
5956
5957         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5958                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5959
5960         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5961
5962         ilk_write_wm_values(dev_priv, &results);
5963 }
5964
5965 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5966                                    struct intel_crtc *crtc)
5967 {
5968         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5969         const struct intel_crtc_state *crtc_state =
5970                 intel_atomic_get_new_crtc_state(state, crtc);
5971
5972         mutex_lock(&dev_priv->wm.wm_mutex);
5973         crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5974         ilk_program_watermarks(dev_priv);
5975         mutex_unlock(&dev_priv->wm.wm_mutex);
5976 }
5977
5978 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5979                                     struct intel_crtc *crtc)
5980 {
5981         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5982         const struct intel_crtc_state *crtc_state =
5983                 intel_atomic_get_new_crtc_state(state, crtc);
5984
5985         if (!crtc_state->wm.need_postvbl_update)
5986                 return;
5987
5988         mutex_lock(&dev_priv->wm.wm_mutex);
5989         crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5990         ilk_program_watermarks(dev_priv);
5991         mutex_unlock(&dev_priv->wm.wm_mutex);
5992 }
5993
5994 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
5995 {
5996         level->plane_en = val & PLANE_WM_EN;
5997         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5998         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5999         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
6000                 PLANE_WM_LINES_MASK;
6001 }
6002
6003 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6004                               struct skl_pipe_wm *out)
6005 {
6006         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6007         enum pipe pipe = crtc->pipe;
6008         int level, max_level;
6009         enum plane_id plane_id;
6010         u32 val;
6011
6012         max_level = ilk_wm_max_level(dev_priv);
6013
6014         for_each_plane_id_on_crtc(crtc, plane_id) {
6015                 struct skl_plane_wm *wm = &out->planes[plane_id];
6016
6017                 for (level = 0; level <= max_level; level++) {
6018                         if (plane_id != PLANE_CURSOR)
6019                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
6020                         else
6021                                 val = I915_READ(CUR_WM(pipe, level));
6022
6023                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
6024                 }
6025
6026                 if (plane_id != PLANE_CURSOR)
6027                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6028                 else
6029                         val = I915_READ(CUR_WM_TRANS(pipe));
6030
6031                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
6032         }
6033
6034         if (!crtc->active)
6035                 return;
6036 }
6037
6038 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6039 {
6040         struct intel_crtc *crtc;
6041         struct intel_crtc_state *crtc_state;
6042
6043         skl_ddb_get_hw_state(dev_priv);
6044         for_each_intel_crtc(&dev_priv->drm, crtc) {
6045                 crtc_state = to_intel_crtc_state(crtc->base.state);
6046
6047                 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6048         }
6049
6050         if (dev_priv->active_pipes) {
6051                 /* Fully recompute DDB on first atomic commit */
6052                 dev_priv->wm.distrust_bios_wm = true;
6053         }
6054 }
6055
6056 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6057 {
6058         struct drm_device *dev = crtc->base.dev;
6059         struct drm_i915_private *dev_priv = to_i915(dev);
6060         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6061         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6062         struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6063         enum pipe pipe = crtc->pipe;
6064         static const i915_reg_t wm0_pipe_reg[] = {
6065                 [PIPE_A] = WM0_PIPEA_ILK,
6066                 [PIPE_B] = WM0_PIPEB_ILK,
6067                 [PIPE_C] = WM0_PIPEC_IVB,
6068         };
6069
6070         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
6071
6072         memset(active, 0, sizeof(*active));
6073
6074         active->pipe_enabled = crtc->active;
6075
6076         if (active->pipe_enabled) {
6077                 u32 tmp = hw->wm_pipe[pipe];
6078
6079                 /*
6080                  * For active pipes LP0 watermark is marked as
6081                  * enabled, and LP1+ watermaks as disabled since
6082                  * we can't really reverse compute them in case
6083                  * multiple pipes are active.
6084                  */
6085                 active->wm[0].enable = true;
6086                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6087                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6088                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6089         } else {
6090                 int level, max_level = ilk_wm_max_level(dev_priv);
6091
6092                 /*
6093                  * For inactive pipes, all watermark levels
6094                  * should be marked as enabled but zeroed,
6095                  * which is what we'd compute them to.
6096                  */
6097                 for (level = 0; level <= max_level; level++)
6098                         active->wm[level].enable = true;
6099         }
6100
6101         crtc->wm.active.ilk = *active;
6102 }
6103
6104 #define _FW_WM(value, plane) \
6105         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6106 #define _FW_WM_VLV(value, plane) \
6107         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6108
6109 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6110                                struct g4x_wm_values *wm)
6111 {
6112         u32 tmp;
6113
6114         tmp = I915_READ(DSPFW1);
6115         wm->sr.plane = _FW_WM(tmp, SR);
6116         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6117         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6118         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6119
6120         tmp = I915_READ(DSPFW2);
6121         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6122         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6123         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6124         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6125         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6126         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6127
6128         tmp = I915_READ(DSPFW3);
6129         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6130         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6131         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6132         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6133 }
6134
6135 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6136                                struct vlv_wm_values *wm)
6137 {
6138         enum pipe pipe;
6139         u32 tmp;
6140
6141         for_each_pipe(dev_priv, pipe) {
6142                 tmp = I915_READ(VLV_DDL(pipe));
6143
6144                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6145                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6146                 wm->ddl[pipe].plane[PLANE_CURSOR] =
6147                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6148                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6149                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6150                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6151                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6152         }
6153
6154         tmp = I915_READ(DSPFW1);
6155         wm->sr.plane = _FW_WM(tmp, SR);
6156         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6157         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6158         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6159
6160         tmp = I915_READ(DSPFW2);
6161         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6162         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6163         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6164
6165         tmp = I915_READ(DSPFW3);
6166         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6167
6168         if (IS_CHERRYVIEW(dev_priv)) {
6169                 tmp = I915_READ(DSPFW7_CHV);
6170                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6171                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6172
6173                 tmp = I915_READ(DSPFW8_CHV);
6174                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6175                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6176
6177                 tmp = I915_READ(DSPFW9_CHV);
6178                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6179                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6180
6181                 tmp = I915_READ(DSPHOWM);
6182                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6183                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6184                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6185                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6186                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6187                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6188                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6189                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6190                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6191                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6192         } else {
6193                 tmp = I915_READ(DSPFW7);
6194                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6195                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6196
6197                 tmp = I915_READ(DSPHOWM);
6198                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6199                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6200                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6201                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6202                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6203                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6204                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6205         }
6206 }
6207
6208 #undef _FW_WM
6209 #undef _FW_WM_VLV
6210
6211 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6212 {
6213         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6214         struct intel_crtc *crtc;
6215
6216         g4x_read_wm_values(dev_priv, wm);
6217
6218         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6219
6220         for_each_intel_crtc(&dev_priv->drm, crtc) {
6221                 struct intel_crtc_state *crtc_state =
6222                         to_intel_crtc_state(crtc->base.state);
6223                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6224                 struct g4x_pipe_wm *raw;
6225                 enum pipe pipe = crtc->pipe;
6226                 enum plane_id plane_id;
6227                 int level, max_level;
6228
6229                 active->cxsr = wm->cxsr;
6230                 active->hpll_en = wm->hpll_en;
6231                 active->fbc_en = wm->fbc_en;
6232
6233                 active->sr = wm->sr;
6234                 active->hpll = wm->hpll;
6235
6236                 for_each_plane_id_on_crtc(crtc, plane_id) {
6237                         active->wm.plane[plane_id] =
6238                                 wm->pipe[pipe].plane[plane_id];
6239                 }
6240
6241                 if (wm->cxsr && wm->hpll_en)
6242                         max_level = G4X_WM_LEVEL_HPLL;
6243                 else if (wm->cxsr)
6244                         max_level = G4X_WM_LEVEL_SR;
6245                 else
6246                         max_level = G4X_WM_LEVEL_NORMAL;
6247
6248                 level = G4X_WM_LEVEL_NORMAL;
6249                 raw = &crtc_state->wm.g4x.raw[level];
6250                 for_each_plane_id_on_crtc(crtc, plane_id)
6251                         raw->plane[plane_id] = active->wm.plane[plane_id];
6252
6253                 if (++level > max_level)
6254                         goto out;
6255
6256                 raw = &crtc_state->wm.g4x.raw[level];
6257                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6258                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6259                 raw->plane[PLANE_SPRITE0] = 0;
6260                 raw->fbc = active->sr.fbc;
6261
6262                 if (++level > max_level)
6263                         goto out;
6264
6265                 raw = &crtc_state->wm.g4x.raw[level];
6266                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6267                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6268                 raw->plane[PLANE_SPRITE0] = 0;
6269                 raw->fbc = active->hpll.fbc;
6270
6271         out:
6272                 for_each_plane_id_on_crtc(crtc, plane_id)
6273                         g4x_raw_plane_wm_set(crtc_state, level,
6274                                              plane_id, USHRT_MAX);
6275                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6276
6277                 crtc_state->wm.g4x.optimal = *active;
6278                 crtc_state->wm.g4x.intermediate = *active;
6279
6280                 drm_dbg_kms(&dev_priv->drm,
6281                             "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6282                             pipe_name(pipe),
6283                             wm->pipe[pipe].plane[PLANE_PRIMARY],
6284                             wm->pipe[pipe].plane[PLANE_CURSOR],
6285                             wm->pipe[pipe].plane[PLANE_SPRITE0]);
6286         }
6287
6288         drm_dbg_kms(&dev_priv->drm,
6289                     "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6290                     wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6291         drm_dbg_kms(&dev_priv->drm,
6292                     "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6293                     wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6294         drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6295                     yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6296 }
6297
6298 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6299 {
6300         struct intel_plane *plane;
6301         struct intel_crtc *crtc;
6302
6303         mutex_lock(&dev_priv->wm.wm_mutex);
6304
6305         for_each_intel_plane(&dev_priv->drm, plane) {
6306                 struct intel_crtc *crtc =
6307                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6308                 struct intel_crtc_state *crtc_state =
6309                         to_intel_crtc_state(crtc->base.state);
6310                 struct intel_plane_state *plane_state =
6311                         to_intel_plane_state(plane->base.state);
6312                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6313                 enum plane_id plane_id = plane->id;
6314                 int level;
6315
6316                 if (plane_state->uapi.visible)
6317                         continue;
6318
6319                 for (level = 0; level < 3; level++) {
6320                         struct g4x_pipe_wm *raw =
6321                                 &crtc_state->wm.g4x.raw[level];
6322
6323                         raw->plane[plane_id] = 0;
6324                         wm_state->wm.plane[plane_id] = 0;
6325                 }
6326
6327                 if (plane_id == PLANE_PRIMARY) {
6328                         for (level = 0; level < 3; level++) {
6329                                 struct g4x_pipe_wm *raw =
6330                                         &crtc_state->wm.g4x.raw[level];
6331                                 raw->fbc = 0;
6332                         }
6333
6334                         wm_state->sr.fbc = 0;
6335                         wm_state->hpll.fbc = 0;
6336                         wm_state->fbc_en = false;
6337                 }
6338         }
6339
6340         for_each_intel_crtc(&dev_priv->drm, crtc) {
6341                 struct intel_crtc_state *crtc_state =
6342                         to_intel_crtc_state(crtc->base.state);
6343
6344                 crtc_state->wm.g4x.intermediate =
6345                         crtc_state->wm.g4x.optimal;
6346                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6347         }
6348
6349         g4x_program_watermarks(dev_priv);
6350
6351         mutex_unlock(&dev_priv->wm.wm_mutex);
6352 }
6353
6354 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6355 {
6356         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6357         struct intel_crtc *crtc;
6358         u32 val;
6359
6360         vlv_read_wm_values(dev_priv, wm);
6361
6362         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6363         wm->level = VLV_WM_LEVEL_PM2;
6364
6365         if (IS_CHERRYVIEW(dev_priv)) {
6366                 vlv_punit_get(dev_priv);
6367
6368                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6369                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6370                         wm->level = VLV_WM_LEVEL_PM5;
6371
6372                 /*
6373                  * If DDR DVFS is disabled in the BIOS, Punit
6374                  * will never ack the request. So if that happens
6375                  * assume we don't have to enable/disable DDR DVFS
6376                  * dynamically. To test that just set the REQ_ACK
6377                  * bit to poke the Punit, but don't change the
6378                  * HIGH/LOW bits so that we don't actually change
6379                  * the current state.
6380                  */
6381                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6382                 val |= FORCE_DDR_FREQ_REQ_ACK;
6383                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6384
6385                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6386                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6387                         drm_dbg_kms(&dev_priv->drm,
6388                                     "Punit not acking DDR DVFS request, "
6389                                     "assuming DDR DVFS is disabled\n");
6390                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6391                 } else {
6392                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6393                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6394                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6395                 }
6396
6397                 vlv_punit_put(dev_priv);
6398         }
6399
6400         for_each_intel_crtc(&dev_priv->drm, crtc) {
6401                 struct intel_crtc_state *crtc_state =
6402                         to_intel_crtc_state(crtc->base.state);
6403                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6404                 const struct vlv_fifo_state *fifo_state =
6405                         &crtc_state->wm.vlv.fifo_state;
6406                 enum pipe pipe = crtc->pipe;
6407                 enum plane_id plane_id;
6408                 int level;
6409
6410                 vlv_get_fifo_size(crtc_state);
6411
6412                 active->num_levels = wm->level + 1;
6413                 active->cxsr = wm->cxsr;
6414
6415                 for (level = 0; level < active->num_levels; level++) {
6416                         struct g4x_pipe_wm *raw =
6417                                 &crtc_state->wm.vlv.raw[level];
6418
6419                         active->sr[level].plane = wm->sr.plane;
6420                         active->sr[level].cursor = wm->sr.cursor;
6421
6422                         for_each_plane_id_on_crtc(crtc, plane_id) {
6423                                 active->wm[level].plane[plane_id] =
6424                                         wm->pipe[pipe].plane[plane_id];
6425
6426                                 raw->plane[plane_id] =
6427                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6428                                                             fifo_state->plane[plane_id]);
6429                         }
6430                 }
6431
6432                 for_each_plane_id_on_crtc(crtc, plane_id)
6433                         vlv_raw_plane_wm_set(crtc_state, level,
6434                                              plane_id, USHRT_MAX);
6435                 vlv_invalidate_wms(crtc, active, level);
6436
6437                 crtc_state->wm.vlv.optimal = *active;
6438                 crtc_state->wm.vlv.intermediate = *active;
6439
6440                 drm_dbg_kms(&dev_priv->drm,
6441                             "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6442                             pipe_name(pipe),
6443                             wm->pipe[pipe].plane[PLANE_PRIMARY],
6444                             wm->pipe[pipe].plane[PLANE_CURSOR],
6445                             wm->pipe[pipe].plane[PLANE_SPRITE0],
6446                             wm->pipe[pipe].plane[PLANE_SPRITE1]);
6447         }
6448
6449         drm_dbg_kms(&dev_priv->drm,
6450                     "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6451                     wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6452 }
6453
6454 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6455 {
6456         struct intel_plane *plane;
6457         struct intel_crtc *crtc;
6458
6459         mutex_lock(&dev_priv->wm.wm_mutex);
6460
6461         for_each_intel_plane(&dev_priv->drm, plane) {
6462                 struct intel_crtc *crtc =
6463                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6464                 struct intel_crtc_state *crtc_state =
6465                         to_intel_crtc_state(crtc->base.state);
6466                 struct intel_plane_state *plane_state =
6467                         to_intel_plane_state(plane->base.state);
6468                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6469                 const struct vlv_fifo_state *fifo_state =
6470                         &crtc_state->wm.vlv.fifo_state;
6471                 enum plane_id plane_id = plane->id;
6472                 int level;
6473
6474                 if (plane_state->uapi.visible)
6475                         continue;
6476
6477                 for (level = 0; level < wm_state->num_levels; level++) {
6478                         struct g4x_pipe_wm *raw =
6479                                 &crtc_state->wm.vlv.raw[level];
6480
6481                         raw->plane[plane_id] = 0;
6482
6483                         wm_state->wm[level].plane[plane_id] =
6484                                 vlv_invert_wm_value(raw->plane[plane_id],
6485                                                     fifo_state->plane[plane_id]);
6486                 }
6487         }
6488
6489         for_each_intel_crtc(&dev_priv->drm, crtc) {
6490                 struct intel_crtc_state *crtc_state =
6491                         to_intel_crtc_state(crtc->base.state);
6492
6493                 crtc_state->wm.vlv.intermediate =
6494                         crtc_state->wm.vlv.optimal;
6495                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6496         }
6497
6498         vlv_program_watermarks(dev_priv);
6499
6500         mutex_unlock(&dev_priv->wm.wm_mutex);
6501 }
6502
6503 /*
6504  * FIXME should probably kill this and improve
6505  * the real watermark readout/sanitation instead
6506  */
6507 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6508 {
6509         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6510         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6511         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6512
6513         /*
6514          * Don't touch WM1S_LP_EN here.
6515          * Doing so could cause underruns.
6516          */
6517 }
6518
6519 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6520 {
6521         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6522         struct intel_crtc *crtc;
6523
6524         ilk_init_lp_watermarks(dev_priv);
6525
6526         for_each_intel_crtc(&dev_priv->drm, crtc)
6527                 ilk_pipe_wm_get_hw_state(crtc);
6528
6529         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6530         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6531         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6532
6533         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6534         if (INTEL_GEN(dev_priv) >= 7) {
6535                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6536                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6537         }
6538
6539         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6540                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6541                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6542         else if (IS_IVYBRIDGE(dev_priv))
6543                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6544                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6545
6546         hw->enable_fbc_wm =
6547                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6548 }
6549
6550 /**
6551  * intel_update_watermarks - update FIFO watermark values based on current modes
6552  * @crtc: the #intel_crtc on which to compute the WM
6553  *
6554  * Calculate watermark values for the various WM regs based on current mode
6555  * and plane configuration.
6556  *
6557  * There are several cases to deal with here:
6558  *   - normal (i.e. non-self-refresh)
6559  *   - self-refresh (SR) mode
6560  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6561  *   - lines are small relative to FIFO size (buffer can hold more than 2
6562  *     lines), so need to account for TLB latency
6563  *
6564  *   The normal calculation is:
6565  *     watermark = dotclock * bytes per pixel * latency
6566  *   where latency is platform & configuration dependent (we assume pessimal
6567  *   values here).
6568  *
6569  *   The SR calculation is:
6570  *     watermark = (trunc(latency/line time)+1) * surface width *
6571  *       bytes per pixel
6572  *   where
6573  *     line time = htotal / dotclock
6574  *     surface width = hdisplay for normal plane and 64 for cursor
6575  *   and latency is assumed to be high, as above.
6576  *
6577  * The final value programmed to the register should always be rounded up,
6578  * and include an extra 2 entries to account for clock crossings.
6579  *
6580  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6581  * to set the non-SR watermarks to 8.
6582  */
6583 void intel_update_watermarks(struct intel_crtc *crtc)
6584 {
6585         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6586
6587         if (dev_priv->display.update_wm)
6588                 dev_priv->display.update_wm(crtc);
6589 }
6590
6591 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6592 {
6593         u32 val;
6594
6595         if (!HAS_IPC(dev_priv))
6596                 return;
6597
6598         val = I915_READ(DISP_ARB_CTL2);
6599
6600         if (dev_priv->ipc_enabled)
6601                 val |= DISP_IPC_ENABLE;
6602         else
6603                 val &= ~DISP_IPC_ENABLE;
6604
6605         I915_WRITE(DISP_ARB_CTL2, val);
6606 }
6607
6608 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6609 {
6610         /* Display WA #0477 WaDisableIPC: skl */
6611         if (IS_SKYLAKE(dev_priv))
6612                 return false;
6613
6614         /* Display WA #1141: SKL:all KBL:all CFL */
6615         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6616                 return dev_priv->dram_info.symmetric_memory;
6617
6618         return true;
6619 }
6620
6621 void intel_init_ipc(struct drm_i915_private *dev_priv)
6622 {
6623         if (!HAS_IPC(dev_priv))
6624                 return;
6625
6626         dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6627
6628         intel_enable_ipc(dev_priv);
6629 }
6630
6631 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6632 {
6633         /*
6634          * On Ibex Peak and Cougar Point, we need to disable clock
6635          * gating for the panel power sequencer or it will fail to
6636          * start up when no ports are active.
6637          */
6638         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6639 }
6640
6641 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6642 {
6643         enum pipe pipe;
6644
6645         for_each_pipe(dev_priv, pipe) {
6646                 I915_WRITE(DSPCNTR(pipe),
6647                            I915_READ(DSPCNTR(pipe)) |
6648                            DISPPLANE_TRICKLE_FEED_DISABLE);
6649
6650                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6651                 POSTING_READ(DSPSURF(pipe));
6652         }
6653 }
6654
6655 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6656 {
6657         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6658
6659         /*
6660          * Required for FBC
6661          * WaFbcDisableDpfcClockGating:ilk
6662          */
6663         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6664                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6665                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6666
6667         I915_WRITE(PCH_3DCGDIS0,
6668                    MARIUNIT_CLOCK_GATE_DISABLE |
6669                    SVSMUNIT_CLOCK_GATE_DISABLE);
6670         I915_WRITE(PCH_3DCGDIS1,
6671                    VFMUNIT_CLOCK_GATE_DISABLE);
6672
6673         /*
6674          * According to the spec the following bits should be set in
6675          * order to enable memory self-refresh
6676          * The bit 22/21 of 0x42004
6677          * The bit 5 of 0x42020
6678          * The bit 15 of 0x45000
6679          */
6680         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6681                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6682                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6683         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6684         I915_WRITE(DISP_ARB_CTL,
6685                    (I915_READ(DISP_ARB_CTL) |
6686                     DISP_FBC_WM_DIS));
6687
6688         /*
6689          * Based on the document from hardware guys the following bits
6690          * should be set unconditionally in order to enable FBC.
6691          * The bit 22 of 0x42000
6692          * The bit 22 of 0x42004
6693          * The bit 7,8,9 of 0x42020.
6694          */
6695         if (IS_IRONLAKE_M(dev_priv)) {
6696                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6697                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6698                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6699                            ILK_FBCQ_DIS);
6700                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6701                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6702                            ILK_DPARB_GATE);
6703         }
6704
6705         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6706
6707         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6708                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6709                    ILK_ELPIN_409_SELECT);
6710         I915_WRITE(_3D_CHICKEN2,
6711                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6712                    _3D_CHICKEN2_WM_READ_PIPELINED);
6713
6714         /* WaDisableRenderCachePipelinedFlush:ilk */
6715         I915_WRITE(CACHE_MODE_0,
6716                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6717
6718         /* WaDisable_RenderCache_OperationalFlush:ilk */
6719         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6720
6721         g4x_disable_trickle_feed(dev_priv);
6722
6723         ibx_init_clock_gating(dev_priv);
6724 }
6725
6726 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6727 {
6728         enum pipe pipe;
6729         u32 val;
6730
6731         /*
6732          * On Ibex Peak and Cougar Point, we need to disable clock
6733          * gating for the panel power sequencer or it will fail to
6734          * start up when no ports are active.
6735          */
6736         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6737                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6738                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6739         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6740                    DPLS_EDP_PPS_FIX_DIS);
6741         /* The below fixes the weird display corruption, a few pixels shifted
6742          * downward, on (only) LVDS of some HP laptops with IVY.
6743          */
6744         for_each_pipe(dev_priv, pipe) {
6745                 val = I915_READ(TRANS_CHICKEN2(pipe));
6746                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6747                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6748                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6749                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6750                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6751                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6752                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6753         }
6754         /* WADP0ClockGatingDisable */
6755         for_each_pipe(dev_priv, pipe) {
6756                 I915_WRITE(TRANS_CHICKEN1(pipe),
6757                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6758         }
6759 }
6760
6761 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6762 {
6763         u32 tmp;
6764
6765         tmp = I915_READ(MCH_SSKPD);
6766         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6767                 drm_dbg_kms(&dev_priv->drm,
6768                             "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6769                             tmp);
6770 }
6771
6772 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6773 {
6774         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6775
6776         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6777
6778         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6779                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6780                    ILK_ELPIN_409_SELECT);
6781
6782         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6783         I915_WRITE(_3D_CHICKEN,
6784                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6785
6786         /* WaDisable_RenderCache_OperationalFlush:snb */
6787         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6788
6789         /*
6790          * BSpec recoomends 8x4 when MSAA is used,
6791          * however in practice 16x4 seems fastest.
6792          *
6793          * Note that PS/WM thread counts depend on the WIZ hashing
6794          * disable bit, which we don't touch here, but it's good
6795          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6796          */
6797         I915_WRITE(GEN6_GT_MODE,
6798                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6799
6800         I915_WRITE(CACHE_MODE_0,
6801                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6802
6803         I915_WRITE(GEN6_UCGCTL1,
6804                    I915_READ(GEN6_UCGCTL1) |
6805                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6806                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6807
6808         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6809          * gating disable must be set.  Failure to set it results in
6810          * flickering pixels due to Z write ordering failures after
6811          * some amount of runtime in the Mesa "fire" demo, and Unigine
6812          * Sanctuary and Tropics, and apparently anything else with
6813          * alpha test or pixel discard.
6814          *
6815          * According to the spec, bit 11 (RCCUNIT) must also be set,
6816          * but we didn't debug actual testcases to find it out.
6817          *
6818          * WaDisableRCCUnitClockGating:snb
6819          * WaDisableRCPBUnitClockGating:snb
6820          */
6821         I915_WRITE(GEN6_UCGCTL2,
6822                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6823                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6824
6825         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6826         I915_WRITE(_3D_CHICKEN3,
6827                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6828
6829         /*
6830          * Bspec says:
6831          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6832          * 3DSTATE_SF number of SF output attributes is more than 16."
6833          */
6834         I915_WRITE(_3D_CHICKEN3,
6835                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6836
6837         /*
6838          * According to the spec the following bits should be
6839          * set in order to enable memory self-refresh and fbc:
6840          * The bit21 and bit22 of 0x42000
6841          * The bit21 and bit22 of 0x42004
6842          * The bit5 and bit7 of 0x42020
6843          * The bit14 of 0x70180
6844          * The bit14 of 0x71180
6845          *
6846          * WaFbcAsynchFlipDisableFbcQueue:snb
6847          */
6848         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6849                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6850                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6851         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6852                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6853                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6854         I915_WRITE(ILK_DSPCLK_GATE_D,
6855                    I915_READ(ILK_DSPCLK_GATE_D) |
6856                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6857                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6858
6859         g4x_disable_trickle_feed(dev_priv);
6860
6861         cpt_init_clock_gating(dev_priv);
6862
6863         gen6_check_mch_setup(dev_priv);
6864 }
6865
6866 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6867 {
6868         u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6869
6870         /*
6871          * WaVSThreadDispatchOverride:ivb,vlv
6872          *
6873          * This actually overrides the dispatch
6874          * mode for all thread types.
6875          */
6876         reg &= ~GEN7_FF_SCHED_MASK;
6877         reg |= GEN7_FF_TS_SCHED_HW;
6878         reg |= GEN7_FF_VS_SCHED_HW;
6879         reg |= GEN7_FF_DS_SCHED_HW;
6880
6881         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6882 }
6883
6884 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6885 {
6886         /*
6887          * TODO: this bit should only be enabled when really needed, then
6888          * disabled when not needed anymore in order to save power.
6889          */
6890         if (HAS_PCH_LPT_LP(dev_priv))
6891                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6892                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6893                            PCH_LP_PARTITION_LEVEL_DISABLE);
6894
6895         /* WADPOClockGatingDisable:hsw */
6896         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6897                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6898                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6899 }
6900
6901 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6902 {
6903         if (HAS_PCH_LPT_LP(dev_priv)) {
6904                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6905
6906                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6907                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6908         }
6909 }
6910
6911 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6912                                    int general_prio_credits,
6913                                    int high_prio_credits)
6914 {
6915         u32 misccpctl;
6916         u32 val;
6917
6918         /* WaTempDisableDOPClkGating:bdw */
6919         misccpctl = I915_READ(GEN7_MISCCPCTL);
6920         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6921
6922         val = I915_READ(GEN8_L3SQCREG1);
6923         val &= ~L3_PRIO_CREDITS_MASK;
6924         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
6925         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
6926         I915_WRITE(GEN8_L3SQCREG1, val);
6927
6928         /*
6929          * Wait at least 100 clocks before re-enabling clock gating.
6930          * See the definition of L3SQCREG1 in BSpec.
6931          */
6932         POSTING_READ(GEN8_L3SQCREG1);
6933         udelay(1);
6934         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6935 }
6936
6937 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
6938 {
6939         /* This is not an Wa. Enable to reduce Sampler power */
6940         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
6941                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6942
6943         /*Wa_14010594013:icl, ehl */
6944         intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
6945                          0, CNL_DELAY_PMRSP);
6946 }
6947
6948 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
6949 {
6950         u32 vd_pg_enable = 0;
6951         unsigned int i;
6952
6953         /* This is not a WA. Enable VD HCP & MFX_ENC powergate */
6954         for (i = 0; i < I915_MAX_VCS; i++) {
6955                 if (HAS_ENGINE(dev_priv, _VCS(i)))
6956                         vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
6957                                         VDN_MFX_POWERGATE_ENABLE(i);
6958         }
6959
6960         I915_WRITE(POWERGATE_ENABLE,
6961                    I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6962
6963         /* Wa_1409825376:tgl (pre-prod)*/
6964         if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
6965                 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
6966                            TGL_VRH_GATING_DIS);
6967
6968         /* Wa_14011059788:tgl */
6969         intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
6970                          0, DFR_DISABLE);
6971 }
6972
6973 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
6974 {
6975         if (!HAS_PCH_CNP(dev_priv))
6976                 return;
6977
6978         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6979         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
6980                    CNP_PWM_CGE_GATING_DISABLE);
6981 }
6982
6983 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6984 {
6985         u32 val;
6986         cnp_init_clock_gating(dev_priv);
6987
6988         /* This is not an Wa. Enable for better image quality */
6989         I915_WRITE(_3D_CHICKEN3,
6990                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
6991
6992         /* WaEnableChickenDCPR:cnl */
6993         I915_WRITE(GEN8_CHICKEN_DCPR_1,
6994                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
6995
6996         /* WaFbcWakeMemOn:cnl */
6997         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
6998                    DISP_FBC_MEMORY_WAKE);
6999
7000         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
7001         /* ReadHitWriteOnlyDisable:cnl */
7002         val |= RCCUNIT_CLKGATE_DIS;
7003         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7004
7005         /* Wa_2201832410:cnl */
7006         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
7007         val |= GWUNIT_CLKGATE_DIS;
7008         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
7009
7010         /* WaDisableVFclkgate:cnl */
7011         /* WaVFUnitClockGatingDisable:cnl */
7012         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
7013         val |= VFUNIT_CLKGATE_DIS;
7014         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7015 }
7016
7017 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7018 {
7019         cnp_init_clock_gating(dev_priv);
7020         gen9_init_clock_gating(dev_priv);
7021
7022         /* WaFbcNukeOnHostModify:cfl */
7023         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7024                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7025 }
7026
7027 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7028 {
7029         gen9_init_clock_gating(dev_priv);
7030
7031         /* WaDisableSDEUnitClockGating:kbl */
7032         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7033                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7034                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7035
7036         /* WaDisableGamClockGating:kbl */
7037         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7038                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7039                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7040
7041         /* WaFbcNukeOnHostModify:kbl */
7042         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7043                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7044 }
7045
7046 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7047 {
7048         gen9_init_clock_gating(dev_priv);
7049
7050         /* WAC6entrylatency:skl */
7051         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7052                    FBC_LLC_FULLY_OPEN);
7053
7054         /* WaFbcNukeOnHostModify:skl */
7055         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7056                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7057 }
7058
7059 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7060 {
7061         enum pipe pipe;
7062
7063         /* WaSwitchSolVfFArbitrationPriority:bdw */
7064         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7065
7066         /* WaPsrDPAMaskVBlankInSRD:bdw */
7067         I915_WRITE(CHICKEN_PAR1_1,
7068                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7069
7070         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7071         for_each_pipe(dev_priv, pipe) {
7072                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7073                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7074                            BDW_DPRS_MASK_VBLANK_SRD);
7075         }
7076
7077         /* WaVSRefCountFullforceMissDisable:bdw */
7078         /* WaDSRefCountFullforceMissDisable:bdw */
7079         I915_WRITE(GEN7_FF_THREAD_MODE,
7080                    I915_READ(GEN7_FF_THREAD_MODE) &
7081                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7082
7083         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7084                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7085
7086         /* WaDisableSDEUnitClockGating:bdw */
7087         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7088                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7089
7090         /* WaProgramL3SqcReg1Default:bdw */
7091         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7092
7093         /* WaKVMNotificationOnConfigChange:bdw */
7094         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7095                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7096
7097         lpt_init_clock_gating(dev_priv);
7098
7099         /* WaDisableDopClockGating:bdw
7100          *
7101          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7102          * clock gating.
7103          */
7104         I915_WRITE(GEN6_UCGCTL1,
7105                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7106 }
7107
7108 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7109 {
7110         /* L3 caching of data atomics doesn't work -- disable it. */
7111         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7112         I915_WRITE(HSW_ROW_CHICKEN3,
7113                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7114
7115         /* This is required by WaCatErrorRejectionIssue:hsw */
7116         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7117                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7118                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7119
7120         /* WaVSRefCountFullforceMissDisable:hsw */
7121         I915_WRITE(GEN7_FF_THREAD_MODE,
7122                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7123
7124         /* WaDisable_RenderCache_OperationalFlush:hsw */
7125         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7126
7127         /* enable HiZ Raw Stall Optimization */
7128         I915_WRITE(CACHE_MODE_0_GEN7,
7129                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7130
7131         /* WaDisable4x2SubspanOptimization:hsw */
7132         I915_WRITE(CACHE_MODE_1,
7133                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7134
7135         /*
7136          * BSpec recommends 8x4 when MSAA is used,
7137          * however in practice 16x4 seems fastest.
7138          *
7139          * Note that PS/WM thread counts depend on the WIZ hashing
7140          * disable bit, which we don't touch here, but it's good
7141          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7142          */
7143         I915_WRITE(GEN7_GT_MODE,
7144                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7145
7146         /* WaSampleCChickenBitEnable:hsw */
7147         I915_WRITE(HALF_SLICE_CHICKEN3,
7148                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7149
7150         /* WaSwitchSolVfFArbitrationPriority:hsw */
7151         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7152
7153         lpt_init_clock_gating(dev_priv);
7154 }
7155
7156 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7157 {
7158         u32 snpcr;
7159
7160         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7161
7162         /* WaDisableEarlyCull:ivb */
7163         I915_WRITE(_3D_CHICKEN3,
7164                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7165
7166         /* WaDisableBackToBackFlipFix:ivb */
7167         I915_WRITE(IVB_CHICKEN3,
7168                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7169                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7170
7171         /* WaDisablePSDDualDispatchEnable:ivb */
7172         if (IS_IVB_GT1(dev_priv))
7173                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7174                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7175
7176         /* WaDisable_RenderCache_OperationalFlush:ivb */
7177         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7178
7179         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7180         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7181                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7182
7183         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7184         I915_WRITE(GEN7_L3CNTLREG1,
7185                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7186         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7187                    GEN7_WA_L3_CHICKEN_MODE);
7188         if (IS_IVB_GT1(dev_priv))
7189                 I915_WRITE(GEN7_ROW_CHICKEN2,
7190                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7191         else {
7192                 /* must write both registers */
7193                 I915_WRITE(GEN7_ROW_CHICKEN2,
7194                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7195                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7196                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7197         }
7198
7199         /* WaForceL3Serialization:ivb */
7200         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7201                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7202
7203         /*
7204          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7205          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7206          */
7207         I915_WRITE(GEN6_UCGCTL2,
7208                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7209
7210         /* This is required by WaCatErrorRejectionIssue:ivb */
7211         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7212                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7213                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7214
7215         g4x_disable_trickle_feed(dev_priv);
7216
7217         gen7_setup_fixed_func_scheduler(dev_priv);
7218
7219         if (0) { /* causes HiZ corruption on ivb:gt1 */
7220                 /* enable HiZ Raw Stall Optimization */
7221                 I915_WRITE(CACHE_MODE_0_GEN7,
7222                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7223         }
7224
7225         /* WaDisable4x2SubspanOptimization:ivb */
7226         I915_WRITE(CACHE_MODE_1,
7227                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7228
7229         /*
7230          * BSpec recommends 8x4 when MSAA is used,
7231          * however in practice 16x4 seems fastest.
7232          *
7233          * Note that PS/WM thread counts depend on the WIZ hashing
7234          * disable bit, which we don't touch here, but it's good
7235          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7236          */
7237         I915_WRITE(GEN7_GT_MODE,
7238                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7239
7240         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7241         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7242         snpcr |= GEN6_MBC_SNPCR_MED;
7243         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7244
7245         if (!HAS_PCH_NOP(dev_priv))
7246                 cpt_init_clock_gating(dev_priv);
7247
7248         gen6_check_mch_setup(dev_priv);
7249 }
7250
7251 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7252 {
7253         /* WaDisableEarlyCull:vlv */
7254         I915_WRITE(_3D_CHICKEN3,
7255                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7256
7257         /* WaDisableBackToBackFlipFix:vlv */
7258         I915_WRITE(IVB_CHICKEN3,
7259                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7260                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7261
7262         /* WaPsdDispatchEnable:vlv */
7263         /* WaDisablePSDDualDispatchEnable:vlv */
7264         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7265                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7266                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7267
7268         /* WaDisable_RenderCache_OperationalFlush:vlv */
7269         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7270
7271         /* WaForceL3Serialization:vlv */
7272         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7273                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7274
7275         /* WaDisableDopClockGating:vlv */
7276         I915_WRITE(GEN7_ROW_CHICKEN2,
7277                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7278
7279         /* This is required by WaCatErrorRejectionIssue:vlv */
7280         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7281                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7282                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7283
7284         gen7_setup_fixed_func_scheduler(dev_priv);
7285
7286         /*
7287          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7288          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7289          */
7290         I915_WRITE(GEN6_UCGCTL2,
7291                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7292
7293         /* WaDisableL3Bank2xClockGate:vlv
7294          * Disabling L3 clock gating- MMIO 940c[25] = 1
7295          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7296         I915_WRITE(GEN7_UCGCTL4,
7297                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7298
7299         /*
7300          * BSpec says this must be set, even though
7301          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7302          */
7303         I915_WRITE(CACHE_MODE_1,
7304                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7305
7306         /*
7307          * BSpec recommends 8x4 when MSAA is used,
7308          * however in practice 16x4 seems fastest.
7309          *
7310          * Note that PS/WM thread counts depend on the WIZ hashing
7311          * disable bit, which we don't touch here, but it's good
7312          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7313          */
7314         I915_WRITE(GEN7_GT_MODE,
7315                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7316
7317         /*
7318          * WaIncreaseL3CreditsForVLVB0:vlv
7319          * This is the hardware default actually.
7320          */
7321         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7322
7323         /*
7324          * WaDisableVLVClockGating_VBIIssue:vlv
7325          * Disable clock gating on th GCFG unit to prevent a delay
7326          * in the reporting of vblank events.
7327          */
7328         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7329 }
7330
7331 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7332 {
7333         /* WaVSRefCountFullforceMissDisable:chv */
7334         /* WaDSRefCountFullforceMissDisable:chv */
7335         I915_WRITE(GEN7_FF_THREAD_MODE,
7336                    I915_READ(GEN7_FF_THREAD_MODE) &
7337                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7338
7339         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7340         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7341                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7342
7343         /* WaDisableCSUnitClockGating:chv */
7344         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7345                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7346
7347         /* WaDisableSDEUnitClockGating:chv */
7348         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7349                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7350
7351         /*
7352          * WaProgramL3SqcReg1Default:chv
7353          * See gfxspecs/Related Documents/Performance Guide/
7354          * LSQC Setting Recommendations.
7355          */
7356         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7357 }
7358
7359 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7360 {
7361         u32 dspclk_gate;
7362
7363         I915_WRITE(RENCLK_GATE_D1, 0);
7364         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7365                    GS_UNIT_CLOCK_GATE_DISABLE |
7366                    CL_UNIT_CLOCK_GATE_DISABLE);
7367         I915_WRITE(RAMCLK_GATE_D, 0);
7368         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7369                 OVRUNIT_CLOCK_GATE_DISABLE |
7370                 OVCUNIT_CLOCK_GATE_DISABLE;
7371         if (IS_GM45(dev_priv))
7372                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7373         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7374
7375         /* WaDisableRenderCachePipelinedFlush */
7376         I915_WRITE(CACHE_MODE_0,
7377                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7378
7379         /* WaDisable_RenderCache_OperationalFlush:g4x */
7380         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7381
7382         g4x_disable_trickle_feed(dev_priv);
7383 }
7384
7385 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7386 {
7387         struct intel_uncore *uncore = &dev_priv->uncore;
7388
7389         intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7390         intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7391         intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7392         intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7393         intel_uncore_write16(uncore, DEUC, 0);
7394         intel_uncore_write(uncore,
7395                            MI_ARB_STATE,
7396                            _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7397
7398         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7399         intel_uncore_write(uncore,
7400                            CACHE_MODE_0,
7401                            _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7402 }
7403
7404 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7405 {
7406         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7407                    I965_RCC_CLOCK_GATE_DISABLE |
7408                    I965_RCPB_CLOCK_GATE_DISABLE |
7409                    I965_ISC_CLOCK_GATE_DISABLE |
7410                    I965_FBC_CLOCK_GATE_DISABLE);
7411         I915_WRITE(RENCLK_GATE_D2, 0);
7412         I915_WRITE(MI_ARB_STATE,
7413                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7414
7415         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7416         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7417 }
7418
7419 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7420 {
7421         u32 dstate = I915_READ(D_STATE);
7422
7423         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7424                 DSTATE_DOT_CLOCK_GATING;
7425         I915_WRITE(D_STATE, dstate);
7426
7427         if (IS_PINEVIEW(dev_priv))
7428                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7429
7430         /* IIR "flip pending" means done if this bit is set */
7431         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7432
7433         /* interrupts should cause a wake up from C3 */
7434         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7435
7436         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7437         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7438
7439         I915_WRITE(MI_ARB_STATE,
7440                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7441 }
7442
7443 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7444 {
7445         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7446
7447         /* interrupts should cause a wake up from C3 */
7448         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7449                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7450
7451         I915_WRITE(MEM_MODE,
7452                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7453 }
7454
7455 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7456 {
7457         I915_WRITE(MEM_MODE,
7458                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7459                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7460 }
7461
7462 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7463 {
7464         dev_priv->display.init_clock_gating(dev_priv);
7465 }
7466
7467 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7468 {
7469         if (HAS_PCH_LPT(dev_priv))
7470                 lpt_suspend_hw(dev_priv);
7471 }
7472
7473 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7474 {
7475         drm_dbg_kms(&dev_priv->drm,
7476                     "No clock gating settings or workarounds applied.\n");
7477 }
7478
7479 /**
7480  * intel_init_clock_gating_hooks - setup the clock gating hooks
7481  * @dev_priv: device private
7482  *
7483  * Setup the hooks that configure which clocks of a given platform can be
7484  * gated and also apply various GT and display specific workarounds for these
7485  * platforms. Note that some GT specific workarounds are applied separately
7486  * when GPU contexts or batchbuffers start their execution.
7487  */
7488 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7489 {
7490         if (IS_GEN(dev_priv, 12))
7491                 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7492         else if (IS_GEN(dev_priv, 11))
7493                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7494         else if (IS_CANNONLAKE(dev_priv))
7495                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7496         else if (IS_COFFEELAKE(dev_priv))
7497                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7498         else if (IS_SKYLAKE(dev_priv))
7499                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7500         else if (IS_KABYLAKE(dev_priv))
7501                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7502         else if (IS_BROXTON(dev_priv))
7503                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7504         else if (IS_GEMINILAKE(dev_priv))
7505                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7506         else if (IS_BROADWELL(dev_priv))
7507                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7508         else if (IS_CHERRYVIEW(dev_priv))
7509                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7510         else if (IS_HASWELL(dev_priv))
7511                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7512         else if (IS_IVYBRIDGE(dev_priv))
7513                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7514         else if (IS_VALLEYVIEW(dev_priv))
7515                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7516         else if (IS_GEN(dev_priv, 6))
7517                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7518         else if (IS_GEN(dev_priv, 5))
7519                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7520         else if (IS_G4X(dev_priv))
7521                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7522         else if (IS_I965GM(dev_priv))
7523                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7524         else if (IS_I965G(dev_priv))
7525                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7526         else if (IS_GEN(dev_priv, 3))
7527                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7528         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7529                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7530         else if (IS_GEN(dev_priv, 2))
7531                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7532         else {
7533                 MISSING_CASE(INTEL_DEVID(dev_priv));
7534                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7535         }
7536 }
7537
7538 /* Set up chip specific power management-related functions */
7539 void intel_init_pm(struct drm_i915_private *dev_priv)
7540 {
7541         /* For cxsr */
7542         if (IS_PINEVIEW(dev_priv))
7543                 pnv_get_mem_freq(dev_priv);
7544         else if (IS_GEN(dev_priv, 5))
7545                 ilk_get_mem_freq(dev_priv);
7546
7547         if (intel_has_sagv(dev_priv))
7548                 skl_setup_sagv_block_time(dev_priv);
7549
7550         /* For FIFO watermark updates */
7551         if (INTEL_GEN(dev_priv) >= 9) {
7552                 skl_setup_wm_latency(dev_priv);
7553                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7554         } else if (HAS_PCH_SPLIT(dev_priv)) {
7555                 ilk_setup_wm_latency(dev_priv);
7556
7557                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7558                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7559                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7560                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7561                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7562                         dev_priv->display.compute_intermediate_wm =
7563                                 ilk_compute_intermediate_wm;
7564                         dev_priv->display.initial_watermarks =
7565                                 ilk_initial_watermarks;
7566                         dev_priv->display.optimize_watermarks =
7567                                 ilk_optimize_watermarks;
7568                 } else {
7569                         drm_dbg_kms(&dev_priv->drm,
7570                                     "Failed to read display plane latency. "
7571                                     "Disable CxSR\n");
7572                 }
7573         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7574                 vlv_setup_wm_latency(dev_priv);
7575                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7576                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7577                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7578                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7579                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7580         } else if (IS_G4X(dev_priv)) {
7581                 g4x_setup_wm_latency(dev_priv);
7582                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7583                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7584                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7585                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7586         } else if (IS_PINEVIEW(dev_priv)) {
7587                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7588                                             dev_priv->is_ddr3,
7589                                             dev_priv->fsb_freq,
7590                                             dev_priv->mem_freq)) {
7591                         drm_info(&dev_priv->drm,
7592                                  "failed to find known CxSR latency "
7593                                  "(found ddr%s fsb freq %d, mem freq %d), "
7594                                  "disabling CxSR\n",
7595                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7596                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7597                         /* Disable CxSR and never update its watermark again */
7598                         intel_set_memory_cxsr(dev_priv, false);
7599                         dev_priv->display.update_wm = NULL;
7600                 } else
7601                         dev_priv->display.update_wm = pnv_update_wm;
7602         } else if (IS_GEN(dev_priv, 4)) {
7603                 dev_priv->display.update_wm = i965_update_wm;
7604         } else if (IS_GEN(dev_priv, 3)) {
7605                 dev_priv->display.update_wm = i9xx_update_wm;
7606                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7607         } else if (IS_GEN(dev_priv, 2)) {
7608                 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7609                         dev_priv->display.update_wm = i845_update_wm;
7610                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7611                 } else {
7612                         dev_priv->display.update_wm = i9xx_update_wm;
7613                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7614                 }
7615         } else {
7616                 drm_err(&dev_priv->drm,
7617                         "unexpected fall-through in %s\n", __func__);
7618         }
7619 }
7620
7621 void intel_pm_setup(struct drm_i915_private *dev_priv)
7622 {
7623         dev_priv->runtime_pm.suspended = false;
7624         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7625 }