drm/i915: Introduce enableddisabled helper
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 #define INTEL_RC6_ENABLE                        (1<<0)
56 #define INTEL_RC6p_ENABLE                       (1<<1)
57 #define INTEL_RC6pp_ENABLE                      (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         I915_WRITE(GEN8_CONFIG0,
66                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68         /* WaEnableChickenDCPR:skl,bxt,kbl */
69         I915_WRITE(GEN8_CHICKEN_DCPR_1,
70                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73         /* WaFbcWakeMemOn:skl,bxt,kbl */
74         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75                    DISP_FBC_WM_DIS |
76                    DISP_FBC_MEMORY_WAKE);
77
78         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80                    ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85         gen9_init_clock_gating(dev_priv);
86
87         /* WaDisableSDEUnitClockGating:bxt */
88         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91         /*
92          * FIXME:
93          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94          */
95         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98         /*
99          * Wa: Backlight PWM may stop in the asserted state, causing backlight
100          * to stay fully on.
101          */
102         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
103                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
104                            PWM1_GATING_DIS | PWM2_GATING_DIS);
105 }
106
107 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 {
109         u32 tmp;
110
111         tmp = I915_READ(CLKCFG);
112
113         switch (tmp & CLKCFG_FSB_MASK) {
114         case CLKCFG_FSB_533:
115                 dev_priv->fsb_freq = 533; /* 133*4 */
116                 break;
117         case CLKCFG_FSB_800:
118                 dev_priv->fsb_freq = 800; /* 200*4 */
119                 break;
120         case CLKCFG_FSB_667:
121                 dev_priv->fsb_freq =  667; /* 167*4 */
122                 break;
123         case CLKCFG_FSB_400:
124                 dev_priv->fsb_freq = 400; /* 100*4 */
125                 break;
126         }
127
128         switch (tmp & CLKCFG_MEM_MASK) {
129         case CLKCFG_MEM_533:
130                 dev_priv->mem_freq = 533;
131                 break;
132         case CLKCFG_MEM_667:
133                 dev_priv->mem_freq = 667;
134                 break;
135         case CLKCFG_MEM_800:
136                 dev_priv->mem_freq = 800;
137                 break;
138         }
139
140         /* detect pineview DDR3 setting */
141         tmp = I915_READ(CSHRDDR3CTL);
142         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
143 }
144
145 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 {
147         u16 ddrpll, csipll;
148
149         ddrpll = I915_READ16(DDRMPLL1);
150         csipll = I915_READ16(CSIPLL0);
151
152         switch (ddrpll & 0xff) {
153         case 0xc:
154                 dev_priv->mem_freq = 800;
155                 break;
156         case 0x10:
157                 dev_priv->mem_freq = 1066;
158                 break;
159         case 0x14:
160                 dev_priv->mem_freq = 1333;
161                 break;
162         case 0x18:
163                 dev_priv->mem_freq = 1600;
164                 break;
165         default:
166                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
167                                  ddrpll & 0xff);
168                 dev_priv->mem_freq = 0;
169                 break;
170         }
171
172         dev_priv->ips.r_t = dev_priv->mem_freq;
173
174         switch (csipll & 0x3ff) {
175         case 0x00c:
176                 dev_priv->fsb_freq = 3200;
177                 break;
178         case 0x00e:
179                 dev_priv->fsb_freq = 3733;
180                 break;
181         case 0x010:
182                 dev_priv->fsb_freq = 4266;
183                 break;
184         case 0x012:
185                 dev_priv->fsb_freq = 4800;
186                 break;
187         case 0x014:
188                 dev_priv->fsb_freq = 5333;
189                 break;
190         case 0x016:
191                 dev_priv->fsb_freq = 5866;
192                 break;
193         case 0x018:
194                 dev_priv->fsb_freq = 6400;
195                 break;
196         default:
197                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
198                                  csipll & 0x3ff);
199                 dev_priv->fsb_freq = 0;
200                 break;
201         }
202
203         if (dev_priv->fsb_freq == 3200) {
204                 dev_priv->ips.c_m = 0;
205         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206                 dev_priv->ips.c_m = 1;
207         } else {
208                 dev_priv->ips.c_m = 2;
209         }
210 }
211
212 static const struct cxsr_latency cxsr_latency_table[] = {
213         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
214         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
215         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
216         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
217         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
218
219         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
220         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
221         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
222         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
223         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
224
225         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
226         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
227         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
228         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
229         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
230
231         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
232         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
233         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
234         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
235         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
236
237         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
238         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
239         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
240         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
241         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
242
243         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
244         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
245         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
246         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
247         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
248 };
249
250 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
251                                                          bool is_ddr3,
252                                                          int fsb,
253                                                          int mem)
254 {
255         const struct cxsr_latency *latency;
256         int i;
257
258         if (fsb == 0 || mem == 0)
259                 return NULL;
260
261         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
262                 latency = &cxsr_latency_table[i];
263                 if (is_desktop == latency->is_desktop &&
264                     is_ddr3 == latency->is_ddr3 &&
265                     fsb == latency->fsb_freq && mem == latency->mem_freq)
266                         return latency;
267         }
268
269         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
270
271         return NULL;
272 }
273
274 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
275 {
276         u32 val;
277
278         mutex_lock(&dev_priv->rps.hw_lock);
279
280         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
281         if (enable)
282                 val &= ~FORCE_DDR_HIGH_FREQ;
283         else
284                 val |= FORCE_DDR_HIGH_FREQ;
285         val &= ~FORCE_DDR_LOW_FREQ;
286         val |= FORCE_DDR_FREQ_REQ_ACK;
287         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
288
289         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
290                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
291                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
292
293         mutex_unlock(&dev_priv->rps.hw_lock);
294 }
295
296 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
297 {
298         u32 val;
299
300         mutex_lock(&dev_priv->rps.hw_lock);
301
302         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
303         if (enable)
304                 val |= DSP_MAXFIFO_PM5_ENABLE;
305         else
306                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
307         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
308
309         mutex_unlock(&dev_priv->rps.hw_lock);
310 }
311
312 #define FW_WM(value, plane) \
313         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
314
315 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316 {
317         u32 val;
318
319         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321                 POSTING_READ(FW_BLC_SELF_VLV);
322                 dev_priv->wm.vlv.cxsr = enable;
323         } else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325                 POSTING_READ(FW_BLC_SELF);
326         } else if (IS_PINEVIEW(dev_priv)) {
327                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
328                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
329                 I915_WRITE(DSPFW3, val);
330                 POSTING_READ(DSPFW3);
331         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
333                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
334                 I915_WRITE(FW_BLC_SELF, val);
335                 POSTING_READ(FW_BLC_SELF);
336         } else if (IS_I915GM(dev_priv)) {
337                 /*
338                  * FIXME can't find a bit like this for 915G, and
339                  * and yet it does have the related watermark in
340                  * FW_BLC_SELF. What's going on?
341                  */
342                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
343                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
344                 I915_WRITE(INSTPM, val);
345                 POSTING_READ(INSTPM);
346         } else {
347                 return;
348         }
349
350         DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
351 }
352
353
354 /*
355  * Latency for FIFO fetches is dependent on several factors:
356  *   - memory configuration (speed, channels)
357  *   - chipset
358  *   - current MCH state
359  * It can be fairly high in some situations, so here we assume a fairly
360  * pessimal value.  It's a tradeoff between extra memory fetches (if we
361  * set this value too high, the FIFO will fetch frequently to stay full)
362  * and power consumption (set it too low to save power and we might see
363  * FIFO underruns and display "flicker").
364  *
365  * A value of 5us seems to be a good balance; safe for very low end
366  * platforms but not overly aggressive on lower latency configs.
367  */
368 static const int pessimal_latency_ns = 5000;
369
370 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
371         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
372
373 static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
374                               enum pipe pipe, int plane)
375 {
376         int sprite0_start, sprite1_start, size;
377
378         switch (pipe) {
379                 uint32_t dsparb, dsparb2, dsparb3;
380         case PIPE_A:
381                 dsparb = I915_READ(DSPARB);
382                 dsparb2 = I915_READ(DSPARB2);
383                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
384                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
385                 break;
386         case PIPE_B:
387                 dsparb = I915_READ(DSPARB);
388                 dsparb2 = I915_READ(DSPARB2);
389                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
390                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
391                 break;
392         case PIPE_C:
393                 dsparb2 = I915_READ(DSPARB2);
394                 dsparb3 = I915_READ(DSPARB3);
395                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
396                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
397                 break;
398         default:
399                 return 0;
400         }
401
402         switch (plane) {
403         case 0:
404                 size = sprite0_start;
405                 break;
406         case 1:
407                 size = sprite1_start - sprite0_start;
408                 break;
409         case 2:
410                 size = 512 - 1 - sprite1_start;
411                 break;
412         default:
413                 return 0;
414         }
415
416         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
417                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
418                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
419                       size);
420
421         return size;
422 }
423
424 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
425 {
426         uint32_t dsparb = I915_READ(DSPARB);
427         int size;
428
429         size = dsparb & 0x7f;
430         if (plane)
431                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
432
433         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
434                       plane ? "B" : "A", size);
435
436         return size;
437 }
438
439 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
440 {
441         uint32_t dsparb = I915_READ(DSPARB);
442         int size;
443
444         size = dsparb & 0x1ff;
445         if (plane)
446                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
447         size >>= 1; /* Convert to cachelines */
448
449         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
450                       plane ? "B" : "A", size);
451
452         return size;
453 }
454
455 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
456 {
457         uint32_t dsparb = I915_READ(DSPARB);
458         int size;
459
460         size = dsparb & 0x7f;
461         size >>= 2; /* Convert to cachelines */
462
463         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
464                       plane ? "B" : "A",
465                       size);
466
467         return size;
468 }
469
470 /* Pineview has different values for various configs */
471 static const struct intel_watermark_params pineview_display_wm = {
472         .fifo_size = PINEVIEW_DISPLAY_FIFO,
473         .max_wm = PINEVIEW_MAX_WM,
474         .default_wm = PINEVIEW_DFT_WM,
475         .guard_size = PINEVIEW_GUARD_WM,
476         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
477 };
478 static const struct intel_watermark_params pineview_display_hplloff_wm = {
479         .fifo_size = PINEVIEW_DISPLAY_FIFO,
480         .max_wm = PINEVIEW_MAX_WM,
481         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
482         .guard_size = PINEVIEW_GUARD_WM,
483         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 };
485 static const struct intel_watermark_params pineview_cursor_wm = {
486         .fifo_size = PINEVIEW_CURSOR_FIFO,
487         .max_wm = PINEVIEW_CURSOR_MAX_WM,
488         .default_wm = PINEVIEW_CURSOR_DFT_WM,
489         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
490         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 };
492 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
493         .fifo_size = PINEVIEW_CURSOR_FIFO,
494         .max_wm = PINEVIEW_CURSOR_MAX_WM,
495         .default_wm = PINEVIEW_CURSOR_DFT_WM,
496         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
497         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 };
499 static const struct intel_watermark_params g4x_wm_info = {
500         .fifo_size = G4X_FIFO_SIZE,
501         .max_wm = G4X_MAX_WM,
502         .default_wm = G4X_MAX_WM,
503         .guard_size = 2,
504         .cacheline_size = G4X_FIFO_LINE_SIZE,
505 };
506 static const struct intel_watermark_params g4x_cursor_wm_info = {
507         .fifo_size = I965_CURSOR_FIFO,
508         .max_wm = I965_CURSOR_MAX_WM,
509         .default_wm = I965_CURSOR_DFT_WM,
510         .guard_size = 2,
511         .cacheline_size = G4X_FIFO_LINE_SIZE,
512 };
513 static const struct intel_watermark_params i965_cursor_wm_info = {
514         .fifo_size = I965_CURSOR_FIFO,
515         .max_wm = I965_CURSOR_MAX_WM,
516         .default_wm = I965_CURSOR_DFT_WM,
517         .guard_size = 2,
518         .cacheline_size = I915_FIFO_LINE_SIZE,
519 };
520 static const struct intel_watermark_params i945_wm_info = {
521         .fifo_size = I945_FIFO_SIZE,
522         .max_wm = I915_MAX_WM,
523         .default_wm = 1,
524         .guard_size = 2,
525         .cacheline_size = I915_FIFO_LINE_SIZE,
526 };
527 static const struct intel_watermark_params i915_wm_info = {
528         .fifo_size = I915_FIFO_SIZE,
529         .max_wm = I915_MAX_WM,
530         .default_wm = 1,
531         .guard_size = 2,
532         .cacheline_size = I915_FIFO_LINE_SIZE,
533 };
534 static const struct intel_watermark_params i830_a_wm_info = {
535         .fifo_size = I855GM_FIFO_SIZE,
536         .max_wm = I915_MAX_WM,
537         .default_wm = 1,
538         .guard_size = 2,
539         .cacheline_size = I830_FIFO_LINE_SIZE,
540 };
541 static const struct intel_watermark_params i830_bc_wm_info = {
542         .fifo_size = I855GM_FIFO_SIZE,
543         .max_wm = I915_MAX_WM/2,
544         .default_wm = 1,
545         .guard_size = 2,
546         .cacheline_size = I830_FIFO_LINE_SIZE,
547 };
548 static const struct intel_watermark_params i845_wm_info = {
549         .fifo_size = I830_FIFO_SIZE,
550         .max_wm = I915_MAX_WM,
551         .default_wm = 1,
552         .guard_size = 2,
553         .cacheline_size = I830_FIFO_LINE_SIZE,
554 };
555
556 /**
557  * intel_calculate_wm - calculate watermark level
558  * @clock_in_khz: pixel clock
559  * @wm: chip FIFO params
560  * @cpp: bytes per pixel
561  * @latency_ns: memory latency for the platform
562  *
563  * Calculate the watermark level (the level at which the display plane will
564  * start fetching from memory again).  Each chip has a different display
565  * FIFO size and allocation, so the caller needs to figure that out and pass
566  * in the correct intel_watermark_params structure.
567  *
568  * As the pixel clock runs, the FIFO will be drained at a rate that depends
569  * on the pixel size.  When it reaches the watermark level, it'll start
570  * fetching FIFO line sized based chunks from memory until the FIFO fills
571  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
572  * will occur, and a display engine hang could result.
573  */
574 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
575                                         const struct intel_watermark_params *wm,
576                                         int fifo_size, int cpp,
577                                         unsigned long latency_ns)
578 {
579         long entries_required, wm_size;
580
581         /*
582          * Note: we need to make sure we don't overflow for various clock &
583          * latency values.
584          * clocks go from a few thousand to several hundred thousand.
585          * latency is usually a few thousand
586          */
587         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
588                 1000;
589         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
590
591         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
592
593         wm_size = fifo_size - (entries_required + wm->guard_size);
594
595         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
596
597         /* Don't promote wm_size to unsigned... */
598         if (wm_size > (long)wm->max_wm)
599                 wm_size = wm->max_wm;
600         if (wm_size <= 0)
601                 wm_size = wm->default_wm;
602
603         /*
604          * Bspec seems to indicate that the value shouldn't be lower than
605          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
606          * Lets go for 8 which is the burst size since certain platforms
607          * already use a hardcoded 8 (which is what the spec says should be
608          * done).
609          */
610         if (wm_size <= 8)
611                 wm_size = 8;
612
613         return wm_size;
614 }
615
616 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617 {
618         struct intel_crtc *crtc, *enabled = NULL;
619
620         for_each_intel_crtc(&dev_priv->drm, crtc) {
621                 if (intel_crtc_active(crtc)) {
622                         if (enabled)
623                                 return NULL;
624                         enabled = crtc;
625                 }
626         }
627
628         return enabled;
629 }
630
631 static void pineview_update_wm(struct intel_crtc *unused_crtc)
632 {
633         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
634         struct intel_crtc *crtc;
635         const struct cxsr_latency *latency;
636         u32 reg;
637         unsigned long wm;
638
639         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
640                                          dev_priv->is_ddr3,
641                                          dev_priv->fsb_freq,
642                                          dev_priv->mem_freq);
643         if (!latency) {
644                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645                 intel_set_memory_cxsr(dev_priv, false);
646                 return;
647         }
648
649         crtc = single_enabled_crtc(dev_priv);
650         if (crtc) {
651                 const struct drm_display_mode *adjusted_mode =
652                         &crtc->config->base.adjusted_mode;
653                 const struct drm_framebuffer *fb =
654                         crtc->base.primary->state->fb;
655                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
656                 int clock = adjusted_mode->crtc_clock;
657
658                 /* Display SR */
659                 wm = intel_calculate_wm(clock, &pineview_display_wm,
660                                         pineview_display_wm.fifo_size,
661                                         cpp, latency->display_sr);
662                 reg = I915_READ(DSPFW1);
663                 reg &= ~DSPFW_SR_MASK;
664                 reg |= FW_WM(wm, SR);
665                 I915_WRITE(DSPFW1, reg);
666                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
667
668                 /* cursor SR */
669                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
670                                         pineview_display_wm.fifo_size,
671                                         cpp, latency->cursor_sr);
672                 reg = I915_READ(DSPFW3);
673                 reg &= ~DSPFW_CURSOR_SR_MASK;
674                 reg |= FW_WM(wm, CURSOR_SR);
675                 I915_WRITE(DSPFW3, reg);
676
677                 /* Display HPLL off SR */
678                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
679                                         pineview_display_hplloff_wm.fifo_size,
680                                         cpp, latency->display_hpll_disable);
681                 reg = I915_READ(DSPFW3);
682                 reg &= ~DSPFW_HPLL_SR_MASK;
683                 reg |= FW_WM(wm, HPLL_SR);
684                 I915_WRITE(DSPFW3, reg);
685
686                 /* cursor HPLL off SR */
687                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
688                                         pineview_display_hplloff_wm.fifo_size,
689                                         cpp, latency->cursor_hpll_disable);
690                 reg = I915_READ(DSPFW3);
691                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
692                 reg |= FW_WM(wm, HPLL_CURSOR);
693                 I915_WRITE(DSPFW3, reg);
694                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
695
696                 intel_set_memory_cxsr(dev_priv, true);
697         } else {
698                 intel_set_memory_cxsr(dev_priv, false);
699         }
700 }
701
702 static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
703                             int plane,
704                             const struct intel_watermark_params *display,
705                             int display_latency_ns,
706                             const struct intel_watermark_params *cursor,
707                             int cursor_latency_ns,
708                             int *plane_wm,
709                             int *cursor_wm)
710 {
711         struct intel_crtc *crtc;
712         const struct drm_display_mode *adjusted_mode;
713         const struct drm_framebuffer *fb;
714         int htotal, hdisplay, clock, cpp;
715         int line_time_us, line_count;
716         int entries, tlb_miss;
717
718         crtc = intel_get_crtc_for_plane(dev_priv, plane);
719         if (!intel_crtc_active(crtc)) {
720                 *cursor_wm = cursor->guard_size;
721                 *plane_wm = display->guard_size;
722                 return false;
723         }
724
725         adjusted_mode = &crtc->config->base.adjusted_mode;
726         fb = crtc->base.primary->state->fb;
727         clock = adjusted_mode->crtc_clock;
728         htotal = adjusted_mode->crtc_htotal;
729         hdisplay = crtc->config->pipe_src_w;
730         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
731
732         /* Use the small buffer method to calculate plane watermark */
733         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735         if (tlb_miss > 0)
736                 entries += tlb_miss;
737         entries = DIV_ROUND_UP(entries, display->cacheline_size);
738         *plane_wm = entries + display->guard_size;
739         if (*plane_wm > (int)display->max_wm)
740                 *plane_wm = display->max_wm;
741
742         /* Use the large buffer method to calculate cursor watermark */
743         line_time_us = max(htotal * 1000 / clock, 1);
744         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745         entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
746         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747         if (tlb_miss > 0)
748                 entries += tlb_miss;
749         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750         *cursor_wm = entries + cursor->guard_size;
751         if (*cursor_wm > (int)cursor->max_wm)
752                 *cursor_wm = (int)cursor->max_wm;
753
754         return true;
755 }
756
757 /*
758  * Check the wm result.
759  *
760  * If any calculated watermark values is larger than the maximum value that
761  * can be programmed into the associated watermark register, that watermark
762  * must be disabled.
763  */
764 static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
765                            int display_wm, int cursor_wm,
766                            const struct intel_watermark_params *display,
767                            const struct intel_watermark_params *cursor)
768 {
769         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770                       display_wm, cursor_wm);
771
772         if (display_wm > display->max_wm) {
773                 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
774                               display_wm, display->max_wm);
775                 return false;
776         }
777
778         if (cursor_wm > cursor->max_wm) {
779                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
780                               cursor_wm, cursor->max_wm);
781                 return false;
782         }
783
784         if (!(display_wm || cursor_wm)) {
785                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786                 return false;
787         }
788
789         return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
793                              int plane,
794                              int latency_ns,
795                              const struct intel_watermark_params *display,
796                              const struct intel_watermark_params *cursor,
797                              int *display_wm, int *cursor_wm)
798 {
799         struct intel_crtc *crtc;
800         const struct drm_display_mode *adjusted_mode;
801         const struct drm_framebuffer *fb;
802         int hdisplay, htotal, cpp, clock;
803         unsigned long line_time_us;
804         int line_count, line_size;
805         int small, large;
806         int entries;
807
808         if (!latency_ns) {
809                 *display_wm = *cursor_wm = 0;
810                 return false;
811         }
812
813         crtc = intel_get_crtc_for_plane(dev_priv, plane);
814         adjusted_mode = &crtc->config->base.adjusted_mode;
815         fb = crtc->base.primary->state->fb;
816         clock = adjusted_mode->crtc_clock;
817         htotal = adjusted_mode->crtc_htotal;
818         hdisplay = crtc->config->pipe_src_w;
819         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
820
821         line_time_us = max(htotal * 1000 / clock, 1);
822         line_count = (latency_ns / line_time_us + 1000) / 1000;
823         line_size = hdisplay * cpp;
824
825         /* Use the minimum of the small and large buffer method for primary */
826         small = ((clock * cpp / 1000) * latency_ns) / 1000;
827         large = line_count * line_size;
828
829         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
830         *display_wm = entries + display->guard_size;
831
832         /* calculate the self-refresh watermark for display cursor */
833         entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
834         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
835         *cursor_wm = entries + cursor->guard_size;
836
837         return g4x_check_srwm(dev_priv,
838                               *display_wm, *cursor_wm,
839                               display, cursor);
840 }
841
842 #define FW_WM_VLV(value, plane) \
843         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
844
845 static void vlv_write_wm_values(struct intel_crtc *crtc,
846                                 const struct vlv_wm_values *wm)
847 {
848         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
849         enum pipe pipe = crtc->pipe;
850
851         I915_WRITE(VLV_DDL(pipe),
852                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
853                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
854                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
855                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
856
857         I915_WRITE(DSPFW1,
858                    FW_WM(wm->sr.plane, SR) |
859                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
860                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
861                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
862         I915_WRITE(DSPFW2,
863                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
864                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
865                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
866         I915_WRITE(DSPFW3,
867                    FW_WM(wm->sr.cursor, CURSOR_SR));
868
869         if (IS_CHERRYVIEW(dev_priv)) {
870                 I915_WRITE(DSPFW7_CHV,
871                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
872                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873                 I915_WRITE(DSPFW8_CHV,
874                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
875                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
876                 I915_WRITE(DSPFW9_CHV,
877                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
878                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
879                 I915_WRITE(DSPHOWM,
880                            FW_WM(wm->sr.plane >> 9, SR_HI) |
881                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
882                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
883                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
884                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
885                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
886                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
887                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
888                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
889                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890         } else {
891                 I915_WRITE(DSPFW7,
892                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
893                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
894                 I915_WRITE(DSPHOWM,
895                            FW_WM(wm->sr.plane >> 9, SR_HI) |
896                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
897                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
898                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
899                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
900                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
901                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
902         }
903
904         /* zero (unused) WM1 watermarks */
905         I915_WRITE(DSPFW4, 0);
906         I915_WRITE(DSPFW5, 0);
907         I915_WRITE(DSPFW6, 0);
908         I915_WRITE(DSPHOWM1, 0);
909
910         POSTING_READ(DSPFW1);
911 }
912
913 #undef FW_WM_VLV
914
915 enum vlv_wm_level {
916         VLV_WM_LEVEL_PM2,
917         VLV_WM_LEVEL_PM5,
918         VLV_WM_LEVEL_DDR_DVFS,
919 };
920
921 /* latency must be in 0.1us units. */
922 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
923                                    unsigned int pipe_htotal,
924                                    unsigned int horiz_pixels,
925                                    unsigned int cpp,
926                                    unsigned int latency)
927 {
928         unsigned int ret;
929
930         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
931         ret = (ret + 1) * horiz_pixels * cpp;
932         ret = DIV_ROUND_UP(ret, 64);
933
934         return ret;
935 }
936
937 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
938 {
939         /* all latencies in usec */
940         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944         if (IS_CHERRYVIEW(dev_priv)) {
945                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949         }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953                                      struct intel_crtc *crtc,
954                                      const struct intel_plane_state *state,
955                                      int level)
956 {
957         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958         int clock, htotal, cpp, width, wm;
959
960         if (dev_priv->wm.pri_latency[level] == 0)
961                 return USHRT_MAX;
962
963         if (!state->base.visible)
964                 return 0;
965
966         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967         clock = crtc->config->base.adjusted_mode.crtc_clock;
968         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969         width = crtc->config->pipe_src_w;
970         if (WARN_ON(htotal == 0))
971                 htotal = 1;
972
973         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974                 /*
975                  * FIXME the formula gives values that are
976                  * too big for the cursor FIFO, and hence we
977                  * would never be able to use cursors. For
978                  * now just hardcode the watermark.
979                  */
980                 wm = 63;
981         } else {
982                 wm = vlv_wm_method2(clock, htotal, width, cpp,
983                                     dev_priv->wm.pri_latency[level] * 10);
984         }
985
986         return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991         struct drm_device *dev = crtc->base.dev;
992         struct vlv_wm_state *wm_state = &crtc->wm_state;
993         struct intel_plane *plane;
994         unsigned int total_rate = 0;
995         const int fifo_size = 512 - 1;
996         int fifo_extra, fifo_left = fifo_size;
997
998         for_each_intel_plane_on_crtc(dev, crtc, plane) {
999                 struct intel_plane_state *state =
1000                         to_intel_plane_state(plane->base.state);
1001
1002                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003                         continue;
1004
1005                 if (state->base.visible) {
1006                         wm_state->num_active_planes++;
1007                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008                 }
1009         }
1010
1011         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012                 struct intel_plane_state *state =
1013                         to_intel_plane_state(plane->base.state);
1014                 unsigned int rate;
1015
1016                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017                         plane->wm.fifo_size = 63;
1018                         continue;
1019                 }
1020
1021                 if (!state->base.visible) {
1022                         plane->wm.fifo_size = 0;
1023                         continue;
1024                 }
1025
1026                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028                 fifo_left -= plane->wm.fifo_size;
1029         }
1030
1031         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033         /* spread the remainder evenly */
1034         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035                 int plane_extra;
1036
1037                 if (fifo_left == 0)
1038                         break;
1039
1040                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041                         continue;
1042
1043                 /* give it all to the first plane if none are active */
1044                 if (plane->wm.fifo_size == 0 &&
1045                     wm_state->num_active_planes)
1046                         continue;
1047
1048                 plane_extra = min(fifo_extra, fifo_left);
1049                 plane->wm.fifo_size += plane_extra;
1050                 fifo_left -= plane_extra;
1051         }
1052
1053         WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058         struct vlv_wm_state *wm_state = &crtc->wm_state;
1059         int level;
1060
1061         for (level = 0; level < wm_state->num_levels; level++) {
1062                 struct drm_device *dev = crtc->base.dev;
1063                 const int sr_fifo_size =
1064                         INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1065                 struct intel_plane *plane;
1066
1067                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1068                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1069
1070                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1071                         switch (plane->base.type) {
1072                                 int sprite;
1073                         case DRM_PLANE_TYPE_CURSOR:
1074                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1075                                         wm_state->wm[level].cursor;
1076                                 break;
1077                         case DRM_PLANE_TYPE_PRIMARY:
1078                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1079                                         wm_state->wm[level].primary;
1080                                 break;
1081                         case DRM_PLANE_TYPE_OVERLAY:
1082                                 sprite = plane->plane;
1083                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1084                                         wm_state->wm[level].sprite[sprite];
1085                                 break;
1086                         }
1087                 }
1088         }
1089 }
1090
1091 static void vlv_compute_wm(struct intel_crtc *crtc)
1092 {
1093         struct drm_device *dev = crtc->base.dev;
1094         struct drm_i915_private *dev_priv = to_i915(dev);
1095         struct vlv_wm_state *wm_state = &crtc->wm_state;
1096         struct intel_plane *plane;
1097         int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1098         int level;
1099
1100         memset(wm_state, 0, sizeof(*wm_state));
1101
1102         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1103         wm_state->num_levels = dev_priv->wm.max_level + 1;
1104
1105         wm_state->num_active_planes = 0;
1106
1107         vlv_compute_fifo(crtc);
1108
1109         if (wm_state->num_active_planes != 1)
1110                 wm_state->cxsr = false;
1111
1112         if (wm_state->cxsr) {
1113                 for (level = 0; level < wm_state->num_levels; level++) {
1114                         wm_state->sr[level].plane = sr_fifo_size;
1115                         wm_state->sr[level].cursor = 63;
1116                 }
1117         }
1118
1119         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1120                 struct intel_plane_state *state =
1121                         to_intel_plane_state(plane->base.state);
1122
1123                 if (!state->base.visible)
1124                         continue;
1125
1126                 /* normal watermarks */
1127                 for (level = 0; level < wm_state->num_levels; level++) {
1128                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1129                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1130
1131                         /* hack */
1132                         if (WARN_ON(level == 0 && wm > max_wm))
1133                                 wm = max_wm;
1134
1135                         if (wm > plane->wm.fifo_size)
1136                                 break;
1137
1138                         switch (plane->base.type) {
1139                                 int sprite;
1140                         case DRM_PLANE_TYPE_CURSOR:
1141                                 wm_state->wm[level].cursor = wm;
1142                                 break;
1143                         case DRM_PLANE_TYPE_PRIMARY:
1144                                 wm_state->wm[level].primary = wm;
1145                                 break;
1146                         case DRM_PLANE_TYPE_OVERLAY:
1147                                 sprite = plane->plane;
1148                                 wm_state->wm[level].sprite[sprite] = wm;
1149                                 break;
1150                         }
1151                 }
1152
1153                 wm_state->num_levels = level;
1154
1155                 if (!wm_state->cxsr)
1156                         continue;
1157
1158                 /* maxfifo watermarks */
1159                 switch (plane->base.type) {
1160                         int sprite, level;
1161                 case DRM_PLANE_TYPE_CURSOR:
1162                         for (level = 0; level < wm_state->num_levels; level++)
1163                                 wm_state->sr[level].cursor =
1164                                         wm_state->wm[level].cursor;
1165                         break;
1166                 case DRM_PLANE_TYPE_PRIMARY:
1167                         for (level = 0; level < wm_state->num_levels; level++)
1168                                 wm_state->sr[level].plane =
1169                                         min(wm_state->sr[level].plane,
1170                                             wm_state->wm[level].primary);
1171                         break;
1172                 case DRM_PLANE_TYPE_OVERLAY:
1173                         sprite = plane->plane;
1174                         for (level = 0; level < wm_state->num_levels; level++)
1175                                 wm_state->sr[level].plane =
1176                                         min(wm_state->sr[level].plane,
1177                                             wm_state->wm[level].sprite[sprite]);
1178                         break;
1179                 }
1180         }
1181
1182         /* clear any (partially) filled invalid levels */
1183         for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1184                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1185                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1186         }
1187
1188         vlv_invert_wms(crtc);
1189 }
1190
1191 #define VLV_FIFO(plane, value) \
1192         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1193
1194 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1195 {
1196         struct drm_device *dev = crtc->base.dev;
1197         struct drm_i915_private *dev_priv = to_i915(dev);
1198         struct intel_plane *plane;
1199         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1200
1201         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1202                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1203                         WARN_ON(plane->wm.fifo_size != 63);
1204                         continue;
1205                 }
1206
1207                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1208                         sprite0_start = plane->wm.fifo_size;
1209                 else if (plane->plane == 0)
1210                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1211                 else
1212                         fifo_size = sprite1_start + plane->wm.fifo_size;
1213         }
1214
1215         WARN_ON(fifo_size != 512 - 1);
1216
1217         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1218                       pipe_name(crtc->pipe), sprite0_start,
1219                       sprite1_start, fifo_size);
1220
1221         switch (crtc->pipe) {
1222                 uint32_t dsparb, dsparb2, dsparb3;
1223         case PIPE_A:
1224                 dsparb = I915_READ(DSPARB);
1225                 dsparb2 = I915_READ(DSPARB2);
1226
1227                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1228                             VLV_FIFO(SPRITEB, 0xff));
1229                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1230                            VLV_FIFO(SPRITEB, sprite1_start));
1231
1232                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1233                              VLV_FIFO(SPRITEB_HI, 0x1));
1234                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1235                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1236
1237                 I915_WRITE(DSPARB, dsparb);
1238                 I915_WRITE(DSPARB2, dsparb2);
1239                 break;
1240         case PIPE_B:
1241                 dsparb = I915_READ(DSPARB);
1242                 dsparb2 = I915_READ(DSPARB2);
1243
1244                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1245                             VLV_FIFO(SPRITED, 0xff));
1246                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1247                            VLV_FIFO(SPRITED, sprite1_start));
1248
1249                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1250                              VLV_FIFO(SPRITED_HI, 0xff));
1251                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1252                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1253
1254                 I915_WRITE(DSPARB, dsparb);
1255                 I915_WRITE(DSPARB2, dsparb2);
1256                 break;
1257         case PIPE_C:
1258                 dsparb3 = I915_READ(DSPARB3);
1259                 dsparb2 = I915_READ(DSPARB2);
1260
1261                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1262                              VLV_FIFO(SPRITEF, 0xff));
1263                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1264                             VLV_FIFO(SPRITEF, sprite1_start));
1265
1266                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1267                              VLV_FIFO(SPRITEF_HI, 0xff));
1268                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1269                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1270
1271                 I915_WRITE(DSPARB3, dsparb3);
1272                 I915_WRITE(DSPARB2, dsparb2);
1273                 break;
1274         default:
1275                 break;
1276         }
1277 }
1278
1279 #undef VLV_FIFO
1280
1281 static void vlv_merge_wm(struct drm_device *dev,
1282                          struct vlv_wm_values *wm)
1283 {
1284         struct intel_crtc *crtc;
1285         int num_active_crtcs = 0;
1286
1287         wm->level = to_i915(dev)->wm.max_level;
1288         wm->cxsr = true;
1289
1290         for_each_intel_crtc(dev, crtc) {
1291                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1292
1293                 if (!crtc->active)
1294                         continue;
1295
1296                 if (!wm_state->cxsr)
1297                         wm->cxsr = false;
1298
1299                 num_active_crtcs++;
1300                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1301         }
1302
1303         if (num_active_crtcs != 1)
1304                 wm->cxsr = false;
1305
1306         if (num_active_crtcs > 1)
1307                 wm->level = VLV_WM_LEVEL_PM2;
1308
1309         for_each_intel_crtc(dev, crtc) {
1310                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1311                 enum pipe pipe = crtc->pipe;
1312
1313                 if (!crtc->active)
1314                         continue;
1315
1316                 wm->pipe[pipe] = wm_state->wm[wm->level];
1317                 if (wm->cxsr)
1318                         wm->sr = wm_state->sr[wm->level];
1319
1320                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1321                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1322                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1323                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1324         }
1325 }
1326
1327 static void vlv_update_wm(struct intel_crtc *crtc)
1328 {
1329         struct drm_device *dev = crtc->base.dev;
1330         struct drm_i915_private *dev_priv = to_i915(dev);
1331         enum pipe pipe = crtc->pipe;
1332         struct vlv_wm_values wm = {};
1333
1334         vlv_compute_wm(crtc);
1335         vlv_merge_wm(dev, &wm);
1336
1337         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1338                 /* FIXME should be part of crtc atomic commit */
1339                 vlv_pipe_set_fifo_size(crtc);
1340                 return;
1341         }
1342
1343         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1344             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1345                 chv_set_memory_dvfs(dev_priv, false);
1346
1347         if (wm.level < VLV_WM_LEVEL_PM5 &&
1348             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1349                 chv_set_memory_pm5(dev_priv, false);
1350
1351         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1352                 intel_set_memory_cxsr(dev_priv, false);
1353
1354         /* FIXME should be part of crtc atomic commit */
1355         vlv_pipe_set_fifo_size(crtc);
1356
1357         vlv_write_wm_values(crtc, &wm);
1358
1359         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1360                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1361                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1362                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1363                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1364
1365         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1366                 intel_set_memory_cxsr(dev_priv, true);
1367
1368         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1369             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1370                 chv_set_memory_pm5(dev_priv, true);
1371
1372         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1373             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1374                 chv_set_memory_dvfs(dev_priv, true);
1375
1376         dev_priv->wm.vlv = wm;
1377 }
1378
1379 #define single_plane_enabled(mask) is_power_of_2(mask)
1380
1381 static void g4x_update_wm(struct intel_crtc *crtc)
1382 {
1383         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1384         static const int sr_latency_ns = 12000;
1385         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386         int plane_sr, cursor_sr;
1387         unsigned int enabled = 0;
1388         bool cxsr_enabled;
1389
1390         if (g4x_compute_wm0(dev_priv, PIPE_A,
1391                             &g4x_wm_info, pessimal_latency_ns,
1392                             &g4x_cursor_wm_info, pessimal_latency_ns,
1393                             &planea_wm, &cursora_wm))
1394                 enabled |= 1 << PIPE_A;
1395
1396         if (g4x_compute_wm0(dev_priv, PIPE_B,
1397                             &g4x_wm_info, pessimal_latency_ns,
1398                             &g4x_cursor_wm_info, pessimal_latency_ns,
1399                             &planeb_wm, &cursorb_wm))
1400                 enabled |= 1 << PIPE_B;
1401
1402         if (single_plane_enabled(enabled) &&
1403             g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1404                              sr_latency_ns,
1405                              &g4x_wm_info,
1406                              &g4x_cursor_wm_info,
1407                              &plane_sr, &cursor_sr)) {
1408                 cxsr_enabled = true;
1409         } else {
1410                 cxsr_enabled = false;
1411                 intel_set_memory_cxsr(dev_priv, false);
1412                 plane_sr = cursor_sr = 0;
1413         }
1414
1415         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417                       planea_wm, cursora_wm,
1418                       planeb_wm, cursorb_wm,
1419                       plane_sr, cursor_sr);
1420
1421         I915_WRITE(DSPFW1,
1422                    FW_WM(plane_sr, SR) |
1423                    FW_WM(cursorb_wm, CURSORB) |
1424                    FW_WM(planeb_wm, PLANEB) |
1425                    FW_WM(planea_wm, PLANEA));
1426         I915_WRITE(DSPFW2,
1427                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428                    FW_WM(cursora_wm, CURSORA));
1429         /* HPLL off in SR has some issues on G4x... disable it */
1430         I915_WRITE(DSPFW3,
1431                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432                    FW_WM(cursor_sr, CURSOR_SR));
1433
1434         if (cxsr_enabled)
1435                 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct intel_crtc *unused_crtc)
1439 {
1440         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1441         struct intel_crtc *crtc;
1442         int srwm = 1;
1443         int cursor_sr = 16;
1444         bool cxsr_enabled;
1445
1446         /* Calc sr entries for one plane configs */
1447         crtc = single_enabled_crtc(dev_priv);
1448         if (crtc) {
1449                 /* self-refresh has much higher latency */
1450                 static const int sr_latency_ns = 12000;
1451                 const struct drm_display_mode *adjusted_mode =
1452                         &crtc->config->base.adjusted_mode;
1453                 const struct drm_framebuffer *fb =
1454                         crtc->base.primary->state->fb;
1455                 int clock = adjusted_mode->crtc_clock;
1456                 int htotal = adjusted_mode->crtc_htotal;
1457                 int hdisplay = crtc->config->pipe_src_w;
1458                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1459                 unsigned long line_time_us;
1460                 int entries;
1461
1462                 line_time_us = max(htotal * 1000 / clock, 1);
1463
1464                 /* Use ns/us then divide to preserve precision */
1465                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1466                         cpp * hdisplay;
1467                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1468                 srwm = I965_FIFO_SIZE - entries;
1469                 if (srwm < 0)
1470                         srwm = 1;
1471                 srwm &= 0x1ff;
1472                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1473                               entries, srwm);
1474
1475                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1476                         cpp * crtc->base.cursor->state->crtc_w;
1477                 entries = DIV_ROUND_UP(entries,
1478                                           i965_cursor_wm_info.cacheline_size);
1479                 cursor_sr = i965_cursor_wm_info.fifo_size -
1480                         (entries + i965_cursor_wm_info.guard_size);
1481
1482                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1483                         cursor_sr = i965_cursor_wm_info.max_wm;
1484
1485                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1486                               "cursor %d\n", srwm, cursor_sr);
1487
1488                 cxsr_enabled = true;
1489         } else {
1490                 cxsr_enabled = false;
1491                 /* Turn off self refresh if both pipes are enabled */
1492                 intel_set_memory_cxsr(dev_priv, false);
1493         }
1494
1495         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1496                       srwm);
1497
1498         /* 965 has limitations... */
1499         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1500                    FW_WM(8, CURSORB) |
1501                    FW_WM(8, PLANEB) |
1502                    FW_WM(8, PLANEA));
1503         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1504                    FW_WM(8, PLANEC_OLD));
1505         /* update cursor SR watermark */
1506         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1507
1508         if (cxsr_enabled)
1509                 intel_set_memory_cxsr(dev_priv, true);
1510 }
1511
1512 #undef FW_WM
1513
1514 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1515 {
1516         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1517         const struct intel_watermark_params *wm_info;
1518         uint32_t fwater_lo;
1519         uint32_t fwater_hi;
1520         int cwm, srwm = 1;
1521         int fifo_size;
1522         int planea_wm, planeb_wm;
1523         struct intel_crtc *crtc, *enabled = NULL;
1524
1525         if (IS_I945GM(dev_priv))
1526                 wm_info = &i945_wm_info;
1527         else if (!IS_GEN2(dev_priv))
1528                 wm_info = &i915_wm_info;
1529         else
1530                 wm_info = &i830_a_wm_info;
1531
1532         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1533         crtc = intel_get_crtc_for_plane(dev_priv, 0);
1534         if (intel_crtc_active(crtc)) {
1535                 const struct drm_display_mode *adjusted_mode =
1536                         &crtc->config->base.adjusted_mode;
1537                 const struct drm_framebuffer *fb =
1538                         crtc->base.primary->state->fb;
1539                 int cpp;
1540
1541                 if (IS_GEN2(dev_priv))
1542                         cpp = 4;
1543                 else
1544                         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1545
1546                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547                                                wm_info, fifo_size, cpp,
1548                                                pessimal_latency_ns);
1549                 enabled = crtc;
1550         } else {
1551                 planea_wm = fifo_size - wm_info->guard_size;
1552                 if (planea_wm > (long)wm_info->max_wm)
1553                         planea_wm = wm_info->max_wm;
1554         }
1555
1556         if (IS_GEN2(dev_priv))
1557                 wm_info = &i830_bc_wm_info;
1558
1559         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1560         crtc = intel_get_crtc_for_plane(dev_priv, 1);
1561         if (intel_crtc_active(crtc)) {
1562                 const struct drm_display_mode *adjusted_mode =
1563                         &crtc->config->base.adjusted_mode;
1564                 const struct drm_framebuffer *fb =
1565                         crtc->base.primary->state->fb;
1566                 int cpp;
1567
1568                 if (IS_GEN2(dev_priv))
1569                         cpp = 4;
1570                 else
1571                         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1572
1573                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574                                                wm_info, fifo_size, cpp,
1575                                                pessimal_latency_ns);
1576                 if (enabled == NULL)
1577                         enabled = crtc;
1578                 else
1579                         enabled = NULL;
1580         } else {
1581                 planeb_wm = fifo_size - wm_info->guard_size;
1582                 if (planeb_wm > (long)wm_info->max_wm)
1583                         planeb_wm = wm_info->max_wm;
1584         }
1585
1586         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1587
1588         if (IS_I915GM(dev_priv) && enabled) {
1589                 struct drm_i915_gem_object *obj;
1590
1591                 obj = intel_fb_obj(enabled->base.primary->state->fb);
1592
1593                 /* self-refresh seems busted with untiled */
1594                 if (!i915_gem_object_is_tiled(obj))
1595                         enabled = NULL;
1596         }
1597
1598         /*
1599          * Overlay gets an aggressive default since video jitter is bad.
1600          */
1601         cwm = 2;
1602
1603         /* Play safe and disable self-refresh before adjusting watermarks. */
1604         intel_set_memory_cxsr(dev_priv, false);
1605
1606         /* Calc sr entries for one plane configs */
1607         if (HAS_FW_BLC(dev_priv) && enabled) {
1608                 /* self-refresh has much higher latency */
1609                 static const int sr_latency_ns = 6000;
1610                 const struct drm_display_mode *adjusted_mode =
1611                         &enabled->config->base.adjusted_mode;
1612                 const struct drm_framebuffer *fb =
1613                         enabled->base.primary->state->fb;
1614                 int clock = adjusted_mode->crtc_clock;
1615                 int htotal = adjusted_mode->crtc_htotal;
1616                 int hdisplay = enabled->config->pipe_src_w;
1617                 int cpp;
1618                 unsigned long line_time_us;
1619                 int entries;
1620
1621                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1622                         cpp = 4;
1623                 else
1624                         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1625
1626                 line_time_us = max(htotal * 1000 / clock, 1);
1627
1628                 /* Use ns/us then divide to preserve precision */
1629                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1630                         cpp * hdisplay;
1631                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1632                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1633                 srwm = wm_info->fifo_size - entries;
1634                 if (srwm < 0)
1635                         srwm = 1;
1636
1637                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1638                         I915_WRITE(FW_BLC_SELF,
1639                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1640                 else
1641                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1642         }
1643
1644         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1645                       planea_wm, planeb_wm, cwm, srwm);
1646
1647         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1648         fwater_hi = (cwm & 0x1f);
1649
1650         /* Set request length to 8 cachelines per fetch */
1651         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1652         fwater_hi = fwater_hi | (1 << 8);
1653
1654         I915_WRITE(FW_BLC, fwater_lo);
1655         I915_WRITE(FW_BLC2, fwater_hi);
1656
1657         if (enabled)
1658                 intel_set_memory_cxsr(dev_priv, true);
1659 }
1660
1661 static void i845_update_wm(struct intel_crtc *unused_crtc)
1662 {
1663         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1664         struct intel_crtc *crtc;
1665         const struct drm_display_mode *adjusted_mode;
1666         uint32_t fwater_lo;
1667         int planea_wm;
1668
1669         crtc = single_enabled_crtc(dev_priv);
1670         if (crtc == NULL)
1671                 return;
1672
1673         adjusted_mode = &crtc->config->base.adjusted_mode;
1674         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1675                                        &i845_wm_info,
1676                                        dev_priv->display.get_fifo_size(dev_priv, 0),
1677                                        4, pessimal_latency_ns);
1678         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1679         fwater_lo |= (3<<8) | planea_wm;
1680
1681         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1682
1683         I915_WRITE(FW_BLC, fwater_lo);
1684 }
1685
1686 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1687 {
1688         uint32_t pixel_rate;
1689
1690         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1691
1692         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1693          * adjust the pixel_rate here. */
1694
1695         if (pipe_config->pch_pfit.enabled) {
1696                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1697                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1698
1699                 pipe_w = pipe_config->pipe_src_w;
1700                 pipe_h = pipe_config->pipe_src_h;
1701
1702                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1703                 pfit_h = pfit_size & 0xFFFF;
1704                 if (pipe_w < pfit_w)
1705                         pipe_w = pfit_w;
1706                 if (pipe_h < pfit_h)
1707                         pipe_h = pfit_h;
1708
1709                 if (WARN_ON(!pfit_w || !pfit_h))
1710                         return pixel_rate;
1711
1712                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1713                                      pfit_w * pfit_h);
1714         }
1715
1716         return pixel_rate;
1717 }
1718
1719 /* latency must be in 0.1us units. */
1720 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1721 {
1722         uint64_t ret;
1723
1724         if (WARN(latency == 0, "Latency value missing\n"))
1725                 return UINT_MAX;
1726
1727         ret = (uint64_t) pixel_rate * cpp * latency;
1728         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1729
1730         return ret;
1731 }
1732
1733 /* latency must be in 0.1us units. */
1734 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1735                                uint32_t horiz_pixels, uint8_t cpp,
1736                                uint32_t latency)
1737 {
1738         uint32_t ret;
1739
1740         if (WARN(latency == 0, "Latency value missing\n"))
1741                 return UINT_MAX;
1742         if (WARN_ON(!pipe_htotal))
1743                 return UINT_MAX;
1744
1745         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1746         ret = (ret + 1) * horiz_pixels * cpp;
1747         ret = DIV_ROUND_UP(ret, 64) + 2;
1748         return ret;
1749 }
1750
1751 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1752                            uint8_t cpp)
1753 {
1754         /*
1755          * Neither of these should be possible since this function shouldn't be
1756          * called if the CRTC is off or the plane is invisible.  But let's be
1757          * extra paranoid to avoid a potential divide-by-zero if we screw up
1758          * elsewhere in the driver.
1759          */
1760         if (WARN_ON(!cpp))
1761                 return 0;
1762         if (WARN_ON(!horiz_pixels))
1763                 return 0;
1764
1765         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1766 }
1767
1768 struct ilk_wm_maximums {
1769         uint16_t pri;
1770         uint16_t spr;
1771         uint16_t cur;
1772         uint16_t fbc;
1773 };
1774
1775 /*
1776  * For both WM_PIPE and WM_LP.
1777  * mem_value must be in 0.1us units.
1778  */
1779 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1780                                    const struct intel_plane_state *pstate,
1781                                    uint32_t mem_value,
1782                                    bool is_lp)
1783 {
1784         int cpp = pstate->base.fb ?
1785                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1786         uint32_t method1, method2;
1787
1788         if (!cstate->base.active || !pstate->base.visible)
1789                 return 0;
1790
1791         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1792
1793         if (!is_lp)
1794                 return method1;
1795
1796         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1797                                  cstate->base.adjusted_mode.crtc_htotal,
1798                                  drm_rect_width(&pstate->base.dst),
1799                                  cpp, mem_value);
1800
1801         return min(method1, method2);
1802 }
1803
1804 /*
1805  * For both WM_PIPE and WM_LP.
1806  * mem_value must be in 0.1us units.
1807  */
1808 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1809                                    const struct intel_plane_state *pstate,
1810                                    uint32_t mem_value)
1811 {
1812         int cpp = pstate->base.fb ?
1813                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1814         uint32_t method1, method2;
1815
1816         if (!cstate->base.active || !pstate->base.visible)
1817                 return 0;
1818
1819         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1820         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1821                                  cstate->base.adjusted_mode.crtc_htotal,
1822                                  drm_rect_width(&pstate->base.dst),
1823                                  cpp, mem_value);
1824         return min(method1, method2);
1825 }
1826
1827 /*
1828  * For both WM_PIPE and WM_LP.
1829  * mem_value must be in 0.1us units.
1830  */
1831 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1832                                    const struct intel_plane_state *pstate,
1833                                    uint32_t mem_value)
1834 {
1835         /*
1836          * We treat the cursor plane as always-on for the purposes of watermark
1837          * calculation.  Until we have two-stage watermark programming merged,
1838          * this is necessary to avoid flickering.
1839          */
1840         int cpp = 4;
1841         int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1842
1843         if (!cstate->base.active)
1844                 return 0;
1845
1846         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1847                               cstate->base.adjusted_mode.crtc_htotal,
1848                               width, cpp, mem_value);
1849 }
1850
1851 /* Only for WM_LP. */
1852 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1853                                    const struct intel_plane_state *pstate,
1854                                    uint32_t pri_val)
1855 {
1856         int cpp = pstate->base.fb ?
1857                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1858
1859         if (!cstate->base.active || !pstate->base.visible)
1860                 return 0;
1861
1862         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1863 }
1864
1865 static unsigned int
1866 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1867 {
1868         if (INTEL_GEN(dev_priv) >= 8)
1869                 return 3072;
1870         else if (INTEL_GEN(dev_priv) >= 7)
1871                 return 768;
1872         else
1873                 return 512;
1874 }
1875
1876 static unsigned int
1877 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
1878                      int level, bool is_sprite)
1879 {
1880         if (INTEL_GEN(dev_priv) >= 8)
1881                 /* BDW primary/sprite plane watermarks */
1882                 return level == 0 ? 255 : 2047;
1883         else if (INTEL_GEN(dev_priv) >= 7)
1884                 /* IVB/HSW primary/sprite plane watermarks */
1885                 return level == 0 ? 127 : 1023;
1886         else if (!is_sprite)
1887                 /* ILK/SNB primary plane watermarks */
1888                 return level == 0 ? 127 : 511;
1889         else
1890                 /* ILK/SNB sprite plane watermarks */
1891                 return level == 0 ? 63 : 255;
1892 }
1893
1894 static unsigned int
1895 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1896 {
1897         if (INTEL_GEN(dev_priv) >= 7)
1898                 return level == 0 ? 63 : 255;
1899         else
1900                 return level == 0 ? 31 : 63;
1901 }
1902
1903 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1904 {
1905         if (INTEL_GEN(dev_priv) >= 8)
1906                 return 31;
1907         else
1908                 return 15;
1909 }
1910
1911 /* Calculate the maximum primary/sprite plane watermark */
1912 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1913                                      int level,
1914                                      const struct intel_wm_config *config,
1915                                      enum intel_ddb_partitioning ddb_partitioning,
1916                                      bool is_sprite)
1917 {
1918         struct drm_i915_private *dev_priv = to_i915(dev);
1919         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1920
1921         /* if sprites aren't enabled, sprites get nothing */
1922         if (is_sprite && !config->sprites_enabled)
1923                 return 0;
1924
1925         /* HSW allows LP1+ watermarks even with multiple pipes */
1926         if (level == 0 || config->num_pipes_active > 1) {
1927                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1928
1929                 /*
1930                  * For some reason the non self refresh
1931                  * FIFO size is only half of the self
1932                  * refresh FIFO size on ILK/SNB.
1933                  */
1934                 if (INTEL_GEN(dev_priv) <= 6)
1935                         fifo_size /= 2;
1936         }
1937
1938         if (config->sprites_enabled) {
1939                 /* level 0 is always calculated with 1:1 split */
1940                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1941                         if (is_sprite)
1942                                 fifo_size *= 5;
1943                         fifo_size /= 6;
1944                 } else {
1945                         fifo_size /= 2;
1946                 }
1947         }
1948
1949         /* clamp to max that the registers can hold */
1950         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1951 }
1952
1953 /* Calculate the maximum cursor plane watermark */
1954 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1955                                       int level,
1956                                       const struct intel_wm_config *config)
1957 {
1958         /* HSW LP1+ watermarks w/ multiple pipes */
1959         if (level > 0 && config->num_pipes_active > 1)
1960                 return 64;
1961
1962         /* otherwise just report max that registers can hold */
1963         return ilk_cursor_wm_reg_max(to_i915(dev), level);
1964 }
1965
1966 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1967                                     int level,
1968                                     const struct intel_wm_config *config,
1969                                     enum intel_ddb_partitioning ddb_partitioning,
1970                                     struct ilk_wm_maximums *max)
1971 {
1972         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1973         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1974         max->cur = ilk_cursor_wm_max(dev, level, config);
1975         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1976 }
1977
1978 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1979                                         int level,
1980                                         struct ilk_wm_maximums *max)
1981 {
1982         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
1983         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
1984         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
1985         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1986 }
1987
1988 static bool ilk_validate_wm_level(int level,
1989                                   const struct ilk_wm_maximums *max,
1990                                   struct intel_wm_level *result)
1991 {
1992         bool ret;
1993
1994         /* already determined to be invalid? */
1995         if (!result->enable)
1996                 return false;
1997
1998         result->enable = result->pri_val <= max->pri &&
1999                          result->spr_val <= max->spr &&
2000                          result->cur_val <= max->cur;
2001
2002         ret = result->enable;
2003
2004         /*
2005          * HACK until we can pre-compute everything,
2006          * and thus fail gracefully if LP0 watermarks
2007          * are exceeded...
2008          */
2009         if (level == 0 && !result->enable) {
2010                 if (result->pri_val > max->pri)
2011                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2012                                       level, result->pri_val, max->pri);
2013                 if (result->spr_val > max->spr)
2014                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2015                                       level, result->spr_val, max->spr);
2016                 if (result->cur_val > max->cur)
2017                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2018                                       level, result->cur_val, max->cur);
2019
2020                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2021                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2022                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2023                 result->enable = true;
2024         }
2025
2026         return ret;
2027 }
2028
2029 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2030                                  const struct intel_crtc *intel_crtc,
2031                                  int level,
2032                                  struct intel_crtc_state *cstate,
2033                                  struct intel_plane_state *pristate,
2034                                  struct intel_plane_state *sprstate,
2035                                  struct intel_plane_state *curstate,
2036                                  struct intel_wm_level *result)
2037 {
2038         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2039         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2040         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2041
2042         /* WM1+ latency values stored in 0.5us units */
2043         if (level > 0) {
2044                 pri_latency *= 5;
2045                 spr_latency *= 5;
2046                 cur_latency *= 5;
2047         }
2048
2049         if (pristate) {
2050                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2051                                                      pri_latency, level);
2052                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2053         }
2054
2055         if (sprstate)
2056                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2057
2058         if (curstate)
2059                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2060
2061         result->enable = true;
2062 }
2063
2064 static uint32_t
2065 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2066 {
2067         const struct intel_atomic_state *intel_state =
2068                 to_intel_atomic_state(cstate->base.state);
2069         const struct drm_display_mode *adjusted_mode =
2070                 &cstate->base.adjusted_mode;
2071         u32 linetime, ips_linetime;
2072
2073         if (!cstate->base.active)
2074                 return 0;
2075         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2076                 return 0;
2077         if (WARN_ON(intel_state->cdclk == 0))
2078                 return 0;
2079
2080         /* The WM are computed with base on how long it takes to fill a single
2081          * row at the given clock rate, multiplied by 8.
2082          * */
2083         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2084                                      adjusted_mode->crtc_clock);
2085         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2086                                          intel_state->cdclk);
2087
2088         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2089                PIPE_WM_LINETIME_TIME(linetime);
2090 }
2091
2092 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2093                                   uint16_t wm[8])
2094 {
2095         if (IS_GEN9(dev_priv)) {
2096                 uint32_t val;
2097                 int ret, i;
2098                 int level, max_level = ilk_wm_max_level(dev_priv);
2099
2100                 /* read the first set of memory latencies[0:3] */
2101                 val = 0; /* data0 to be programmed to 0 for first set */
2102                 mutex_lock(&dev_priv->rps.hw_lock);
2103                 ret = sandybridge_pcode_read(dev_priv,
2104                                              GEN9_PCODE_READ_MEM_LATENCY,
2105                                              &val);
2106                 mutex_unlock(&dev_priv->rps.hw_lock);
2107
2108                 if (ret) {
2109                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110                         return;
2111                 }
2112
2113                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2118                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121                 /* read the second set of memory latencies[4:7] */
2122                 val = 1; /* data0 to be programmed to 1 for second set */
2123                 mutex_lock(&dev_priv->rps.hw_lock);
2124                 ret = sandybridge_pcode_read(dev_priv,
2125                                              GEN9_PCODE_READ_MEM_LATENCY,
2126                                              &val);
2127                 mutex_unlock(&dev_priv->rps.hw_lock);
2128                 if (ret) {
2129                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2130                         return;
2131                 }
2132
2133                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2134                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2135                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2136                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2137                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2138                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2139                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2140
2141                 /*
2142                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2143                  * need to be disabled. We make sure to sanitize the values out
2144                  * of the punit to satisfy this requirement.
2145                  */
2146                 for (level = 1; level <= max_level; level++) {
2147                         if (wm[level] == 0) {
2148                                 for (i = level + 1; i <= max_level; i++)
2149                                         wm[i] = 0;
2150                                 break;
2151                         }
2152                 }
2153
2154                 /*
2155                  * WaWmMemoryReadLatency:skl
2156                  *
2157                  * punit doesn't take into account the read latency so we need
2158                  * to add 2us to the various latency levels we retrieve from the
2159                  * punit when level 0 response data us 0us.
2160                  */
2161                 if (wm[0] == 0) {
2162                         wm[0] += 2;
2163                         for (level = 1; level <= max_level; level++) {
2164                                 if (wm[level] == 0)
2165                                         break;
2166                                 wm[level] += 2;
2167                         }
2168                 }
2169
2170         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2171                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2172
2173                 wm[0] = (sskpd >> 56) & 0xFF;
2174                 if (wm[0] == 0)
2175                         wm[0] = sskpd & 0xF;
2176                 wm[1] = (sskpd >> 4) & 0xFF;
2177                 wm[2] = (sskpd >> 12) & 0xFF;
2178                 wm[3] = (sskpd >> 20) & 0x1FF;
2179                 wm[4] = (sskpd >> 32) & 0x1FF;
2180         } else if (INTEL_GEN(dev_priv) >= 6) {
2181                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2182
2183                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2184                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2185                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2186                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2187         } else if (INTEL_GEN(dev_priv) >= 5) {
2188                 uint32_t mltr = I915_READ(MLTR_ILK);
2189
2190                 /* ILK primary LP0 latency is 700 ns */
2191                 wm[0] = 7;
2192                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2193                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2194         }
2195 }
2196
2197 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2198                                        uint16_t wm[5])
2199 {
2200         /* ILK sprite LP0 latency is 1300 ns */
2201         if (IS_GEN5(dev_priv))
2202                 wm[0] = 13;
2203 }
2204
2205 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2206                                        uint16_t wm[5])
2207 {
2208         /* ILK cursor LP0 latency is 1300 ns */
2209         if (IS_GEN5(dev_priv))
2210                 wm[0] = 13;
2211
2212         /* WaDoubleCursorLP3Latency:ivb */
2213         if (IS_IVYBRIDGE(dev_priv))
2214                 wm[3] *= 2;
2215 }
2216
2217 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2218 {
2219         /* how many WM levels are we expecting */
2220         if (INTEL_GEN(dev_priv) >= 9)
2221                 return 7;
2222         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2223                 return 4;
2224         else if (INTEL_GEN(dev_priv) >= 6)
2225                 return 3;
2226         else
2227                 return 2;
2228 }
2229
2230 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2231                                    const char *name,
2232                                    const uint16_t wm[8])
2233 {
2234         int level, max_level = ilk_wm_max_level(dev_priv);
2235
2236         for (level = 0; level <= max_level; level++) {
2237                 unsigned int latency = wm[level];
2238
2239                 if (latency == 0) {
2240                         DRM_ERROR("%s WM%d latency not provided\n",
2241                                   name, level);
2242                         continue;
2243                 }
2244
2245                 /*
2246                  * - latencies are in us on gen9.
2247                  * - before then, WM1+ latency values are in 0.5us units
2248                  */
2249                 if (IS_GEN9(dev_priv))
2250                         latency *= 10;
2251                 else if (level > 0)
2252                         latency *= 5;
2253
2254                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2255                               name, level, wm[level],
2256                               latency / 10, latency % 10);
2257         }
2258 }
2259
2260 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2261                                     uint16_t wm[5], uint16_t min)
2262 {
2263         int level, max_level = ilk_wm_max_level(dev_priv);
2264
2265         if (wm[0] >= min)
2266                 return false;
2267
2268         wm[0] = max(wm[0], min);
2269         for (level = 1; level <= max_level; level++)
2270                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2271
2272         return true;
2273 }
2274
2275 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2276 {
2277         bool changed;
2278
2279         /*
2280          * The BIOS provided WM memory latency values are often
2281          * inadequate for high resolution displays. Adjust them.
2282          */
2283         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2284                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2285                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2286
2287         if (!changed)
2288                 return;
2289
2290         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2291         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2292         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2293         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2294 }
2295
2296 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2297 {
2298         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2299
2300         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2301                sizeof(dev_priv->wm.pri_latency));
2302         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2303                sizeof(dev_priv->wm.pri_latency));
2304
2305         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2306         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2307
2308         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2309         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2310         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2311
2312         if (IS_GEN6(dev_priv))
2313                 snb_wm_latency_quirk(dev_priv);
2314 }
2315
2316 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2317 {
2318         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2319         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2320 }
2321
2322 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2323                                  struct intel_pipe_wm *pipe_wm)
2324 {
2325         /* LP0 watermark maximums depend on this pipe alone */
2326         const struct intel_wm_config config = {
2327                 .num_pipes_active = 1,
2328                 .sprites_enabled = pipe_wm->sprites_enabled,
2329                 .sprites_scaled = pipe_wm->sprites_scaled,
2330         };
2331         struct ilk_wm_maximums max;
2332
2333         /* LP0 watermarks always use 1/2 DDB partitioning */
2334         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2335
2336         /* At least LP0 must be valid */
2337         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2338                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2339                 return false;
2340         }
2341
2342         return true;
2343 }
2344
2345 /* Compute new watermarks for the pipe */
2346 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2347 {
2348         struct drm_atomic_state *state = cstate->base.state;
2349         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2350         struct intel_pipe_wm *pipe_wm;
2351         struct drm_device *dev = state->dev;
2352         const struct drm_i915_private *dev_priv = to_i915(dev);
2353         struct intel_plane *intel_plane;
2354         struct intel_plane_state *pristate = NULL;
2355         struct intel_plane_state *sprstate = NULL;
2356         struct intel_plane_state *curstate = NULL;
2357         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2358         struct ilk_wm_maximums max;
2359
2360         pipe_wm = &cstate->wm.ilk.optimal;
2361
2362         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2363                 struct intel_plane_state *ps;
2364
2365                 ps = intel_atomic_get_existing_plane_state(state,
2366                                                            intel_plane);
2367                 if (!ps)
2368                         continue;
2369
2370                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2371                         pristate = ps;
2372                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2373                         sprstate = ps;
2374                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2375                         curstate = ps;
2376         }
2377
2378         pipe_wm->pipe_enabled = cstate->base.active;
2379         if (sprstate) {
2380                 pipe_wm->sprites_enabled = sprstate->base.visible;
2381                 pipe_wm->sprites_scaled = sprstate->base.visible &&
2382                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2383                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2384         }
2385
2386         usable_level = max_level;
2387
2388         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2389         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2390                 usable_level = 1;
2391
2392         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2393         if (pipe_wm->sprites_scaled)
2394                 usable_level = 0;
2395
2396         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2397                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2398
2399         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2400         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2401
2402         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2403                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2404
2405         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2406                 return -EINVAL;
2407
2408         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2409
2410         for (level = 1; level <= max_level; level++) {
2411                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2412
2413                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2414                                      pristate, sprstate, curstate, wm);
2415
2416                 /*
2417                  * Disable any watermark level that exceeds the
2418                  * register maximums since such watermarks are
2419                  * always invalid.
2420                  */
2421                 if (level > usable_level)
2422                         continue;
2423
2424                 if (ilk_validate_wm_level(level, &max, wm))
2425                         pipe_wm->wm[level] = *wm;
2426                 else
2427                         usable_level = level;
2428         }
2429
2430         return 0;
2431 }
2432
2433 /*
2434  * Build a set of 'intermediate' watermark values that satisfy both the old
2435  * state and the new state.  These can be programmed to the hardware
2436  * immediately.
2437  */
2438 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2439                                        struct intel_crtc *intel_crtc,
2440                                        struct intel_crtc_state *newstate)
2441 {
2442         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2443         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2444         int level, max_level = ilk_wm_max_level(to_i915(dev));
2445
2446         /*
2447          * Start with the final, target watermarks, then combine with the
2448          * currently active watermarks to get values that are safe both before
2449          * and after the vblank.
2450          */
2451         *a = newstate->wm.ilk.optimal;
2452         a->pipe_enabled |= b->pipe_enabled;
2453         a->sprites_enabled |= b->sprites_enabled;
2454         a->sprites_scaled |= b->sprites_scaled;
2455
2456         for (level = 0; level <= max_level; level++) {
2457                 struct intel_wm_level *a_wm = &a->wm[level];
2458                 const struct intel_wm_level *b_wm = &b->wm[level];
2459
2460                 a_wm->enable &= b_wm->enable;
2461                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2462                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2463                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2464                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2465         }
2466
2467         /*
2468          * We need to make sure that these merged watermark values are
2469          * actually a valid configuration themselves.  If they're not,
2470          * there's no safe way to transition from the old state to
2471          * the new state, so we need to fail the atomic transaction.
2472          */
2473         if (!ilk_validate_pipe_wm(dev, a))
2474                 return -EINVAL;
2475
2476         /*
2477          * If our intermediate WM are identical to the final WM, then we can
2478          * omit the post-vblank programming; only update if it's different.
2479          */
2480         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2481                 newstate->wm.need_postvbl_update = false;
2482
2483         return 0;
2484 }
2485
2486 /*
2487  * Merge the watermarks from all active pipes for a specific level.
2488  */
2489 static void ilk_merge_wm_level(struct drm_device *dev,
2490                                int level,
2491                                struct intel_wm_level *ret_wm)
2492 {
2493         const struct intel_crtc *intel_crtc;
2494
2495         ret_wm->enable = true;
2496
2497         for_each_intel_crtc(dev, intel_crtc) {
2498                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2499                 const struct intel_wm_level *wm = &active->wm[level];
2500
2501                 if (!active->pipe_enabled)
2502                         continue;
2503
2504                 /*
2505                  * The watermark values may have been used in the past,
2506                  * so we must maintain them in the registers for some
2507                  * time even if the level is now disabled.
2508                  */
2509                 if (!wm->enable)
2510                         ret_wm->enable = false;
2511
2512                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2513                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2514                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2515                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2516         }
2517 }
2518
2519 /*
2520  * Merge all low power watermarks for all active pipes.
2521  */
2522 static void ilk_wm_merge(struct drm_device *dev,
2523                          const struct intel_wm_config *config,
2524                          const struct ilk_wm_maximums *max,
2525                          struct intel_pipe_wm *merged)
2526 {
2527         struct drm_i915_private *dev_priv = to_i915(dev);
2528         int level, max_level = ilk_wm_max_level(dev_priv);
2529         int last_enabled_level = max_level;
2530
2531         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2532         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2533             config->num_pipes_active > 1)
2534                 last_enabled_level = 0;
2535
2536         /* ILK: FBC WM must be disabled always */
2537         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2538
2539         /* merge each WM1+ level */
2540         for (level = 1; level <= max_level; level++) {
2541                 struct intel_wm_level *wm = &merged->wm[level];
2542
2543                 ilk_merge_wm_level(dev, level, wm);
2544
2545                 if (level > last_enabled_level)
2546                         wm->enable = false;
2547                 else if (!ilk_validate_wm_level(level, max, wm))
2548                         /* make sure all following levels get disabled */
2549                         last_enabled_level = level - 1;
2550
2551                 /*
2552                  * The spec says it is preferred to disable
2553                  * FBC WMs instead of disabling a WM level.
2554                  */
2555                 if (wm->fbc_val > max->fbc) {
2556                         if (wm->enable)
2557                                 merged->fbc_wm_enabled = false;
2558                         wm->fbc_val = 0;
2559                 }
2560         }
2561
2562         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2563         /*
2564          * FIXME this is racy. FBC might get enabled later.
2565          * What we should check here is whether FBC can be
2566          * enabled sometime later.
2567          */
2568         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2569             intel_fbc_is_active(dev_priv)) {
2570                 for (level = 2; level <= max_level; level++) {
2571                         struct intel_wm_level *wm = &merged->wm[level];
2572
2573                         wm->enable = false;
2574                 }
2575         }
2576 }
2577
2578 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2579 {
2580         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2581         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2582 }
2583
2584 /* The value we need to program into the WM_LPx latency field */
2585 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2586 {
2587         struct drm_i915_private *dev_priv = to_i915(dev);
2588
2589         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2590                 return 2 * level;
2591         else
2592                 return dev_priv->wm.pri_latency[level];
2593 }
2594
2595 static void ilk_compute_wm_results(struct drm_device *dev,
2596                                    const struct intel_pipe_wm *merged,
2597                                    enum intel_ddb_partitioning partitioning,
2598                                    struct ilk_wm_values *results)
2599 {
2600         struct drm_i915_private *dev_priv = to_i915(dev);
2601         struct intel_crtc *intel_crtc;
2602         int level, wm_lp;
2603
2604         results->enable_fbc_wm = merged->fbc_wm_enabled;
2605         results->partitioning = partitioning;
2606
2607         /* LP1+ register values */
2608         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2609                 const struct intel_wm_level *r;
2610
2611                 level = ilk_wm_lp_to_level(wm_lp, merged);
2612
2613                 r = &merged->wm[level];
2614
2615                 /*
2616                  * Maintain the watermark values even if the level is
2617                  * disabled. Doing otherwise could cause underruns.
2618                  */
2619                 results->wm_lp[wm_lp - 1] =
2620                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2621                         (r->pri_val << WM1_LP_SR_SHIFT) |
2622                         r->cur_val;
2623
2624                 if (r->enable)
2625                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2626
2627                 if (INTEL_GEN(dev_priv) >= 8)
2628                         results->wm_lp[wm_lp - 1] |=
2629                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2630                 else
2631                         results->wm_lp[wm_lp - 1] |=
2632                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2633
2634                 /*
2635                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2636                  * level is disabled. Doing otherwise could cause underruns.
2637                  */
2638                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2639                         WARN_ON(wm_lp != 1);
2640                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2641                 } else
2642                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2643         }
2644
2645         /* LP0 register values */
2646         for_each_intel_crtc(dev, intel_crtc) {
2647                 enum pipe pipe = intel_crtc->pipe;
2648                 const struct intel_wm_level *r =
2649                         &intel_crtc->wm.active.ilk.wm[0];
2650
2651                 if (WARN_ON(!r->enable))
2652                         continue;
2653
2654                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2655
2656                 results->wm_pipe[pipe] =
2657                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2658                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2659                         r->cur_val;
2660         }
2661 }
2662
2663 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2664  * case both are at the same level. Prefer r1 in case they're the same. */
2665 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2666                                                   struct intel_pipe_wm *r1,
2667                                                   struct intel_pipe_wm *r2)
2668 {
2669         int level, max_level = ilk_wm_max_level(to_i915(dev));
2670         int level1 = 0, level2 = 0;
2671
2672         for (level = 1; level <= max_level; level++) {
2673                 if (r1->wm[level].enable)
2674                         level1 = level;
2675                 if (r2->wm[level].enable)
2676                         level2 = level;
2677         }
2678
2679         if (level1 == level2) {
2680                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2681                         return r2;
2682                 else
2683                         return r1;
2684         } else if (level1 > level2) {
2685                 return r1;
2686         } else {
2687                 return r2;
2688         }
2689 }
2690
2691 /* dirty bits used to track which watermarks need changes */
2692 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2693 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2694 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2695 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2696 #define WM_DIRTY_FBC (1 << 24)
2697 #define WM_DIRTY_DDB (1 << 25)
2698
2699 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2700                                          const struct ilk_wm_values *old,
2701                                          const struct ilk_wm_values *new)
2702 {
2703         unsigned int dirty = 0;
2704         enum pipe pipe;
2705         int wm_lp;
2706
2707         for_each_pipe(dev_priv, pipe) {
2708                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2709                         dirty |= WM_DIRTY_LINETIME(pipe);
2710                         /* Must disable LP1+ watermarks too */
2711                         dirty |= WM_DIRTY_LP_ALL;
2712                 }
2713
2714                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2715                         dirty |= WM_DIRTY_PIPE(pipe);
2716                         /* Must disable LP1+ watermarks too */
2717                         dirty |= WM_DIRTY_LP_ALL;
2718                 }
2719         }
2720
2721         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2722                 dirty |= WM_DIRTY_FBC;
2723                 /* Must disable LP1+ watermarks too */
2724                 dirty |= WM_DIRTY_LP_ALL;
2725         }
2726
2727         if (old->partitioning != new->partitioning) {
2728                 dirty |= WM_DIRTY_DDB;
2729                 /* Must disable LP1+ watermarks too */
2730                 dirty |= WM_DIRTY_LP_ALL;
2731         }
2732
2733         /* LP1+ watermarks already deemed dirty, no need to continue */
2734         if (dirty & WM_DIRTY_LP_ALL)
2735                 return dirty;
2736
2737         /* Find the lowest numbered LP1+ watermark in need of an update... */
2738         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2739                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2740                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2741                         break;
2742         }
2743
2744         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2745         for (; wm_lp <= 3; wm_lp++)
2746                 dirty |= WM_DIRTY_LP(wm_lp);
2747
2748         return dirty;
2749 }
2750
2751 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2752                                unsigned int dirty)
2753 {
2754         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2755         bool changed = false;
2756
2757         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2758                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2759                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2760                 changed = true;
2761         }
2762         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2763                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2764                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2765                 changed = true;
2766         }
2767         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2768                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2769                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2770                 changed = true;
2771         }
2772
2773         /*
2774          * Don't touch WM1S_LP_EN here.
2775          * Doing so could cause underruns.
2776          */
2777
2778         return changed;
2779 }
2780
2781 /*
2782  * The spec says we shouldn't write when we don't need, because every write
2783  * causes WMs to be re-evaluated, expending some power.
2784  */
2785 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2786                                 struct ilk_wm_values *results)
2787 {
2788         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2789         unsigned int dirty;
2790         uint32_t val;
2791
2792         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2793         if (!dirty)
2794                 return;
2795
2796         _ilk_disable_lp_wm(dev_priv, dirty);
2797
2798         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2799                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2800         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2801                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2802         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2803                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2804
2805         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2806                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2807         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2808                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2809         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2810                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2811
2812         if (dirty & WM_DIRTY_DDB) {
2813                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2814                         val = I915_READ(WM_MISC);
2815                         if (results->partitioning == INTEL_DDB_PART_1_2)
2816                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2817                         else
2818                                 val |= WM_MISC_DATA_PARTITION_5_6;
2819                         I915_WRITE(WM_MISC, val);
2820                 } else {
2821                         val = I915_READ(DISP_ARB_CTL2);
2822                         if (results->partitioning == INTEL_DDB_PART_1_2)
2823                                 val &= ~DISP_DATA_PARTITION_5_6;
2824                         else
2825                                 val |= DISP_DATA_PARTITION_5_6;
2826                         I915_WRITE(DISP_ARB_CTL2, val);
2827                 }
2828         }
2829
2830         if (dirty & WM_DIRTY_FBC) {
2831                 val = I915_READ(DISP_ARB_CTL);
2832                 if (results->enable_fbc_wm)
2833                         val &= ~DISP_FBC_WM_DIS;
2834                 else
2835                         val |= DISP_FBC_WM_DIS;
2836                 I915_WRITE(DISP_ARB_CTL, val);
2837         }
2838
2839         if (dirty & WM_DIRTY_LP(1) &&
2840             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2841                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2842
2843         if (INTEL_GEN(dev_priv) >= 7) {
2844                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2845                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2846                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2847                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2848         }
2849
2850         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2851                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2852         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2853                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2854         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2855                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2856
2857         dev_priv->wm.hw = *results;
2858 }
2859
2860 bool ilk_disable_lp_wm(struct drm_device *dev)
2861 {
2862         struct drm_i915_private *dev_priv = to_i915(dev);
2863
2864         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2865 }
2866
2867 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
2868
2869 /*
2870  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2871  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2872  * other universal planes are in indices 1..n.  Note that this may leave unused
2873  * indices between the top "sprite" plane and the cursor.
2874  */
2875 static int
2876 skl_wm_plane_id(const struct intel_plane *plane)
2877 {
2878         switch (plane->base.type) {
2879         case DRM_PLANE_TYPE_PRIMARY:
2880                 return 0;
2881         case DRM_PLANE_TYPE_CURSOR:
2882                 return PLANE_CURSOR;
2883         case DRM_PLANE_TYPE_OVERLAY:
2884                 return plane->plane + 1;
2885         default:
2886                 MISSING_CASE(plane->base.type);
2887                 return plane->plane;
2888         }
2889 }
2890
2891 /*
2892  * FIXME: We still don't have the proper code detect if we need to apply the WA,
2893  * so assume we'll always need it in order to avoid underruns.
2894  */
2895 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2896 {
2897         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2898
2899         if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2900             IS_KABYLAKE(dev_priv))
2901                 return true;
2902
2903         return false;
2904 }
2905
2906 static bool
2907 intel_has_sagv(struct drm_i915_private *dev_priv)
2908 {
2909         if (IS_KABYLAKE(dev_priv))
2910                 return true;
2911
2912         if (IS_SKYLAKE(dev_priv) &&
2913             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2914                 return true;
2915
2916         return false;
2917 }
2918
2919 /*
2920  * SAGV dynamically adjusts the system agent voltage and clock frequencies
2921  * depending on power and performance requirements. The display engine access
2922  * to system memory is blocked during the adjustment time. Because of the
2923  * blocking time, having this enabled can cause full system hangs and/or pipe
2924  * underruns if we don't meet all of the following requirements:
2925  *
2926  *  - <= 1 pipe enabled
2927  *  - All planes can enable watermarks for latencies >= SAGV engine block time
2928  *  - We're not using an interlaced display configuration
2929  */
2930 int
2931 intel_enable_sagv(struct drm_i915_private *dev_priv)
2932 {
2933         int ret;
2934
2935         if (!intel_has_sagv(dev_priv))
2936                 return 0;
2937
2938         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2939                 return 0;
2940
2941         DRM_DEBUG_KMS("Enabling the SAGV\n");
2942         mutex_lock(&dev_priv->rps.hw_lock);
2943
2944         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2945                                       GEN9_SAGV_ENABLE);
2946
2947         /* We don't need to wait for the SAGV when enabling */
2948         mutex_unlock(&dev_priv->rps.hw_lock);
2949
2950         /*
2951          * Some skl systems, pre-release machines in particular,
2952          * don't actually have an SAGV.
2953          */
2954         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2955                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2956                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2957                 return 0;
2958         } else if (ret < 0) {
2959                 DRM_ERROR("Failed to enable the SAGV\n");
2960                 return ret;
2961         }
2962
2963         dev_priv->sagv_status = I915_SAGV_ENABLED;
2964         return 0;
2965 }
2966
2967 static int
2968 intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2969 {
2970         int ret;
2971         uint32_t temp = GEN9_SAGV_DISABLE;
2972
2973         ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2974                                      &temp);
2975         if (ret)
2976                 return ret;
2977         else
2978                 return temp & GEN9_SAGV_IS_DISABLED;
2979 }
2980
2981 int
2982 intel_disable_sagv(struct drm_i915_private *dev_priv)
2983 {
2984         int ret, result;
2985
2986         if (!intel_has_sagv(dev_priv))
2987                 return 0;
2988
2989         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2990                 return 0;
2991
2992         DRM_DEBUG_KMS("Disabling the SAGV\n");
2993         mutex_lock(&dev_priv->rps.hw_lock);
2994
2995         /* bspec says to keep retrying for at least 1 ms */
2996         ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2997         mutex_unlock(&dev_priv->rps.hw_lock);
2998
2999         if (ret == -ETIMEDOUT) {
3000                 DRM_ERROR("Request to disable SAGV timed out\n");
3001                 return -ETIMEDOUT;
3002         }
3003
3004         /*
3005          * Some skl systems, pre-release machines in particular,
3006          * don't actually have an SAGV.
3007          */
3008         if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3009                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3010                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3011                 return 0;
3012         } else if (result < 0) {
3013                 DRM_ERROR("Failed to disable the SAGV\n");
3014                 return result;
3015         }
3016
3017         dev_priv->sagv_status = I915_SAGV_DISABLED;
3018         return 0;
3019 }
3020
3021 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3022 {
3023         struct drm_device *dev = state->dev;
3024         struct drm_i915_private *dev_priv = to_i915(dev);
3025         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3026         struct intel_crtc *crtc;
3027         struct intel_plane *plane;
3028         struct intel_crtc_state *cstate;
3029         struct skl_plane_wm *wm;
3030         enum pipe pipe;
3031         int level, latency;
3032
3033         if (!intel_has_sagv(dev_priv))
3034                 return false;
3035
3036         /*
3037          * SKL workaround: bspec recommends we disable the SAGV when we have
3038          * more then one pipe enabled
3039          *
3040          * If there are no active CRTCs, no additional checks need be performed
3041          */
3042         if (hweight32(intel_state->active_crtcs) == 0)
3043                 return true;
3044         else if (hweight32(intel_state->active_crtcs) > 1)
3045                 return false;
3046
3047         /* Since we're now guaranteed to only have one active CRTC... */
3048         pipe = ffs(intel_state->active_crtcs) - 1;
3049         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3050         cstate = to_intel_crtc_state(crtc->base.state);
3051
3052         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3053                 return false;
3054
3055         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3056                 wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3057
3058                 /* Skip this plane if it's not enabled */
3059                 if (!wm->wm[0].plane_en)
3060                         continue;
3061
3062                 /* Find the highest enabled wm level for this plane */
3063                 for (level = ilk_wm_max_level(dev_priv);
3064                      !wm->wm[level].plane_en; --level)
3065                      { }
3066
3067                 latency = dev_priv->wm.skl_latency[level];
3068
3069                 if (skl_needs_memory_bw_wa(intel_state) &&
3070                     plane->base.state->fb->modifier[0] ==
3071                     I915_FORMAT_MOD_X_TILED)
3072                         latency += 15;
3073
3074                 /*
3075                  * If any of the planes on this pipe don't enable wm levels
3076                  * that incur memory latencies higher then 30µs we can't enable
3077                  * the SAGV
3078                  */
3079                 if (latency < SKL_SAGV_BLOCK_TIME)
3080                         return false;
3081         }
3082
3083         return true;
3084 }
3085
3086 static void
3087 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3088                                    const struct intel_crtc_state *cstate,
3089                                    struct skl_ddb_entry *alloc, /* out */
3090                                    int *num_active /* out */)
3091 {
3092         struct drm_atomic_state *state = cstate->base.state;
3093         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3094         struct drm_i915_private *dev_priv = to_i915(dev);
3095         struct drm_crtc *for_crtc = cstate->base.crtc;
3096         unsigned int pipe_size, ddb_size;
3097         int nth_active_pipe;
3098
3099         if (WARN_ON(!state) || !cstate->base.active) {
3100                 alloc->start = 0;
3101                 alloc->end = 0;
3102                 *num_active = hweight32(dev_priv->active_crtcs);
3103                 return;
3104         }
3105
3106         if (intel_state->active_pipe_changes)
3107                 *num_active = hweight32(intel_state->active_crtcs);
3108         else
3109                 *num_active = hweight32(dev_priv->active_crtcs);
3110
3111         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3112         WARN_ON(ddb_size == 0);
3113
3114         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3115
3116         /*
3117          * If the state doesn't change the active CRTC's, then there's
3118          * no need to recalculate; the existing pipe allocation limits
3119          * should remain unchanged.  Note that we're safe from racing
3120          * commits since any racing commit that changes the active CRTC
3121          * list would need to grab _all_ crtc locks, including the one
3122          * we currently hold.
3123          */
3124         if (!intel_state->active_pipe_changes) {
3125                 /*
3126                  * alloc may be cleared by clear_intel_crtc_state,
3127                  * copy from old state to be sure
3128                  */
3129                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3130                 return;
3131         }
3132
3133         nth_active_pipe = hweight32(intel_state->active_crtcs &
3134                                     (drm_crtc_mask(for_crtc) - 1));
3135         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3136         alloc->start = nth_active_pipe * ddb_size / *num_active;
3137         alloc->end = alloc->start + pipe_size;
3138 }
3139
3140 static unsigned int skl_cursor_allocation(int num_active)
3141 {
3142         if (num_active == 1)
3143                 return 32;
3144
3145         return 8;
3146 }
3147
3148 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3149 {
3150         entry->start = reg & 0x3ff;
3151         entry->end = (reg >> 16) & 0x3ff;
3152         if (entry->end)
3153                 entry->end += 1;
3154 }
3155
3156 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3157                           struct skl_ddb_allocation *ddb /* out */)
3158 {
3159         enum pipe pipe;
3160         int plane;
3161         u32 val;
3162
3163         memset(ddb, 0, sizeof(*ddb));
3164
3165         for_each_pipe(dev_priv, pipe) {
3166                 enum intel_display_power_domain power_domain;
3167
3168                 power_domain = POWER_DOMAIN_PIPE(pipe);
3169                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3170                         continue;
3171
3172                 for_each_universal_plane(dev_priv, pipe, plane) {
3173                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3174                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3175                                                    val);
3176                 }
3177
3178                 val = I915_READ(CUR_BUF_CFG(pipe));
3179                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3180                                            val);
3181
3182                 intel_display_power_put(dev_priv, power_domain);
3183         }
3184 }
3185
3186 /*
3187  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3188  * The bspec defines downscale amount as:
3189  *
3190  * """
3191  * Horizontal down scale amount = maximum[1, Horizontal source size /
3192  *                                           Horizontal destination size]
3193  * Vertical down scale amount = maximum[1, Vertical source size /
3194  *                                         Vertical destination size]
3195  * Total down scale amount = Horizontal down scale amount *
3196  *                           Vertical down scale amount
3197  * """
3198  *
3199  * Return value is provided in 16.16 fixed point form to retain fractional part.
3200  * Caller should take care of dividing & rounding off the value.
3201  */
3202 static uint32_t
3203 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3204 {
3205         uint32_t downscale_h, downscale_w;
3206         uint32_t src_w, src_h, dst_w, dst_h;
3207
3208         if (WARN_ON(!pstate->base.visible))
3209                 return DRM_PLANE_HELPER_NO_SCALING;
3210
3211         /* n.b., src is 16.16 fixed point, dst is whole integer */
3212         src_w = drm_rect_width(&pstate->base.src);
3213         src_h = drm_rect_height(&pstate->base.src);
3214         dst_w = drm_rect_width(&pstate->base.dst);
3215         dst_h = drm_rect_height(&pstate->base.dst);
3216         if (drm_rotation_90_or_270(pstate->base.rotation))
3217                 swap(dst_w, dst_h);
3218
3219         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3220         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3221
3222         /* Provide result in 16.16 fixed point */
3223         return (uint64_t)downscale_w * downscale_h >> 16;
3224 }
3225
3226 static unsigned int
3227 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3228                              const struct drm_plane_state *pstate,
3229                              int y)
3230 {
3231         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3232         struct drm_framebuffer *fb = pstate->fb;
3233         uint32_t down_scale_amount, data_rate;
3234         uint32_t width = 0, height = 0;
3235         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3236
3237         if (!intel_pstate->base.visible)
3238                 return 0;
3239         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3240                 return 0;
3241         if (y && format != DRM_FORMAT_NV12)
3242                 return 0;
3243
3244         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3245         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3246
3247         if (drm_rotation_90_or_270(pstate->rotation))
3248                 swap(width, height);
3249
3250         /* for planar format */
3251         if (format == DRM_FORMAT_NV12) {
3252                 if (y)  /* y-plane data rate */
3253                         data_rate = width * height *
3254                                 drm_format_plane_cpp(format, 0);
3255                 else    /* uv-plane data rate */
3256                         data_rate = (width / 2) * (height / 2) *
3257                                 drm_format_plane_cpp(format, 1);
3258         } else {
3259                 /* for packed formats */
3260                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3261         }
3262
3263         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3264
3265         return (uint64_t)data_rate * down_scale_amount >> 16;
3266 }
3267
3268 /*
3269  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3270  * a 8192x4096@32bpp framebuffer:
3271  *   3 * 4096 * 8192  * 4 < 2^32
3272  */
3273 static unsigned int
3274 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3275                                  unsigned *plane_data_rate,
3276                                  unsigned *plane_y_data_rate)
3277 {
3278         struct drm_crtc_state *cstate = &intel_cstate->base;
3279         struct drm_atomic_state *state = cstate->state;
3280         struct drm_plane *plane;
3281         const struct intel_plane *intel_plane;
3282         const struct drm_plane_state *pstate;
3283         unsigned int rate, total_data_rate = 0;
3284         int id;
3285
3286         if (WARN_ON(!state))
3287                 return 0;
3288
3289         /* Calculate and cache data rate for each plane */
3290         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3291                 id = skl_wm_plane_id(to_intel_plane(plane));
3292                 intel_plane = to_intel_plane(plane);
3293
3294                 /* packed/uv */
3295                 rate = skl_plane_relative_data_rate(intel_cstate,
3296                                                     pstate, 0);
3297                 plane_data_rate[id] = rate;
3298
3299                 total_data_rate += rate;
3300
3301                 /* y-plane */
3302                 rate = skl_plane_relative_data_rate(intel_cstate,
3303                                                     pstate, 1);
3304                 plane_y_data_rate[id] = rate;
3305
3306                 total_data_rate += rate;
3307         }
3308
3309         return total_data_rate;
3310 }
3311
3312 static uint16_t
3313 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3314                   const int y)
3315 {
3316         struct drm_framebuffer *fb = pstate->fb;
3317         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3318         uint32_t src_w, src_h;
3319         uint32_t min_scanlines = 8;
3320         uint8_t plane_bpp;
3321
3322         if (WARN_ON(!fb))
3323                 return 0;
3324
3325         /* For packed formats, no y-plane, return 0 */
3326         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3327                 return 0;
3328
3329         /* For Non Y-tile return 8-blocks */
3330         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3331             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3332                 return 8;
3333
3334         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3335         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3336
3337         if (drm_rotation_90_or_270(pstate->rotation))
3338                 swap(src_w, src_h);
3339
3340         /* Halve UV plane width and height for NV12 */
3341         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3342                 src_w /= 2;
3343                 src_h /= 2;
3344         }
3345
3346         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3347                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3348         else
3349                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3350
3351         if (drm_rotation_90_or_270(pstate->rotation)) {
3352                 switch (plane_bpp) {
3353                 case 1:
3354                         min_scanlines = 32;
3355                         break;
3356                 case 2:
3357                         min_scanlines = 16;
3358                         break;
3359                 case 4:
3360                         min_scanlines = 8;
3361                         break;
3362                 case 8:
3363                         min_scanlines = 4;
3364                         break;
3365                 default:
3366                         WARN(1, "Unsupported pixel depth %u for rotation",
3367                              plane_bpp);
3368                         min_scanlines = 32;
3369                 }
3370         }
3371
3372         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3373 }
3374
3375 static void
3376 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3377                  uint16_t *minimum, uint16_t *y_minimum)
3378 {
3379         const struct drm_plane_state *pstate;
3380         struct drm_plane *plane;
3381
3382         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3383                 struct intel_plane *intel_plane = to_intel_plane(plane);
3384                 int id = skl_wm_plane_id(intel_plane);
3385
3386                 if (id == PLANE_CURSOR)
3387                         continue;
3388
3389                 if (!pstate->visible)
3390                         continue;
3391
3392                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3393                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3394         }
3395
3396         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3397 }
3398
3399 static int
3400 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3401                       struct skl_ddb_allocation *ddb /* out */)
3402 {
3403         struct drm_atomic_state *state = cstate->base.state;
3404         struct drm_crtc *crtc = cstate->base.crtc;
3405         struct drm_device *dev = crtc->dev;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         enum pipe pipe = intel_crtc->pipe;
3408         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3409         uint16_t alloc_size, start;
3410         uint16_t minimum[I915_MAX_PLANES] = {};
3411         uint16_t y_minimum[I915_MAX_PLANES] = {};
3412         unsigned int total_data_rate;
3413         int num_active;
3414         int id, i;
3415         unsigned plane_data_rate[I915_MAX_PLANES] = {};
3416         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3417
3418         /* Clear the partitioning for disabled planes. */
3419         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3420         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3421
3422         if (WARN_ON(!state))
3423                 return 0;
3424
3425         if (!cstate->base.active) {
3426                 alloc->start = alloc->end = 0;
3427                 return 0;
3428         }
3429
3430         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3431         alloc_size = skl_ddb_entry_size(alloc);
3432         if (alloc_size == 0) {
3433                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3434                 return 0;
3435         }
3436
3437         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3438
3439         /*
3440          * 1. Allocate the mininum required blocks for each active plane
3441          * and allocate the cursor, it doesn't require extra allocation
3442          * proportional to the data rate.
3443          */
3444
3445         for (i = 0; i < I915_MAX_PLANES; i++) {
3446                 alloc_size -= minimum[i];
3447                 alloc_size -= y_minimum[i];
3448         }
3449
3450         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3451         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3452
3453         /*
3454          * 2. Distribute the remaining space in proportion to the amount of
3455          * data each plane needs to fetch from memory.
3456          *
3457          * FIXME: we may not allocate every single block here.
3458          */
3459         total_data_rate = skl_get_total_relative_data_rate(cstate,
3460                                                            plane_data_rate,
3461                                                            plane_y_data_rate);
3462         if (total_data_rate == 0)
3463                 return 0;
3464
3465         start = alloc->start;
3466         for (id = 0; id < I915_MAX_PLANES; id++) {
3467                 unsigned int data_rate, y_data_rate;
3468                 uint16_t plane_blocks, y_plane_blocks = 0;
3469
3470                 if (id == PLANE_CURSOR)
3471                         continue;
3472
3473                 data_rate = plane_data_rate[id];
3474
3475                 /*
3476                  * allocation for (packed formats) or (uv-plane part of planar format):
3477                  * promote the expression to 64 bits to avoid overflowing, the
3478                  * result is < available as data_rate / total_data_rate < 1
3479                  */
3480                 plane_blocks = minimum[id];
3481                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3482                                         total_data_rate);
3483
3484                 /* Leave disabled planes at (0,0) */
3485                 if (data_rate) {
3486                         ddb->plane[pipe][id].start = start;
3487                         ddb->plane[pipe][id].end = start + plane_blocks;
3488                 }
3489
3490                 start += plane_blocks;
3491
3492                 /*
3493                  * allocation for y_plane part of planar format:
3494                  */
3495                 y_data_rate = plane_y_data_rate[id];
3496
3497                 y_plane_blocks = y_minimum[id];
3498                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3499                                         total_data_rate);
3500
3501                 if (y_data_rate) {
3502                         ddb->y_plane[pipe][id].start = start;
3503                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3504                 }
3505
3506                 start += y_plane_blocks;
3507         }
3508
3509         return 0;
3510 }
3511
3512 /*
3513  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3514  * for the read latency) and cpp should always be <= 8, so that
3515  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3516  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3517 */
3518 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3519 {
3520         uint32_t wm_intermediate_val, ret;
3521
3522         if (latency == 0)
3523                 return UINT_MAX;
3524
3525         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3526         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3527
3528         return ret;
3529 }
3530
3531 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3532                                uint32_t latency, uint32_t plane_blocks_per_line)
3533 {
3534         uint32_t ret;
3535         uint32_t wm_intermediate_val;
3536
3537         if (latency == 0)
3538                 return UINT_MAX;
3539
3540         wm_intermediate_val = latency * pixel_rate;
3541         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3542                                 plane_blocks_per_line;
3543
3544         return ret;
3545 }
3546
3547 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3548                                               struct intel_plane_state *pstate)
3549 {
3550         uint64_t adjusted_pixel_rate;
3551         uint64_t downscale_amount;
3552         uint64_t pixel_rate;
3553
3554         /* Shouldn't reach here on disabled planes... */
3555         if (WARN_ON(!pstate->base.visible))
3556                 return 0;
3557
3558         /*
3559          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3560          * with additional adjustments for plane-specific scaling.
3561          */
3562         adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3563         downscale_amount = skl_plane_downscale_amount(pstate);
3564
3565         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3566         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3567
3568         return pixel_rate;
3569 }
3570
3571 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3572                                 struct intel_crtc_state *cstate,
3573                                 struct intel_plane_state *intel_pstate,
3574                                 uint16_t ddb_allocation,
3575                                 int level,
3576                                 uint16_t *out_blocks, /* out */
3577                                 uint8_t *out_lines, /* out */
3578                                 bool *enabled /* out */)
3579 {
3580         struct drm_plane_state *pstate = &intel_pstate->base;
3581         struct drm_framebuffer *fb = pstate->fb;
3582         uint32_t latency = dev_priv->wm.skl_latency[level];
3583         uint32_t method1, method2;
3584         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3585         uint32_t res_blocks, res_lines;
3586         uint32_t selected_result;
3587         uint8_t cpp;
3588         uint32_t width = 0, height = 0;
3589         uint32_t plane_pixel_rate;
3590         uint32_t y_tile_minimum, y_min_scanlines;
3591         struct intel_atomic_state *state =
3592                 to_intel_atomic_state(cstate->base.state);
3593         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3594
3595         if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3596                 *enabled = false;
3597                 return 0;
3598         }
3599
3600         if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3601                 latency += 15;
3602
3603         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3604         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3605
3606         if (drm_rotation_90_or_270(pstate->rotation))
3607                 swap(width, height);
3608
3609         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3610         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3611
3612         if (drm_rotation_90_or_270(pstate->rotation)) {
3613                 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3614                         drm_format_plane_cpp(fb->pixel_format, 1) :
3615                         drm_format_plane_cpp(fb->pixel_format, 0);
3616
3617                 switch (cpp) {
3618                 case 1:
3619                         y_min_scanlines = 16;
3620                         break;
3621                 case 2:
3622                         y_min_scanlines = 8;
3623                         break;
3624                 case 4:
3625                         y_min_scanlines = 4;
3626                         break;
3627                 default:
3628                         MISSING_CASE(cpp);
3629                         return -EINVAL;
3630                 }
3631         } else {
3632                 y_min_scanlines = 4;
3633         }
3634
3635         if (apply_memory_bw_wa)
3636                 y_min_scanlines *= 2;
3637
3638         plane_bytes_per_line = width * cpp;
3639         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3640             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3641                 plane_blocks_per_line =
3642                       DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3643                 plane_blocks_per_line /= y_min_scanlines;
3644         } else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
3645                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3646                                         + 1;
3647         } else {
3648                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3649         }
3650
3651         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3652         method2 = skl_wm_method2(plane_pixel_rate,
3653                                  cstate->base.adjusted_mode.crtc_htotal,
3654                                  latency,
3655                                  plane_blocks_per_line);
3656
3657         y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3658
3659         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3660             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3661                 selected_result = max(method2, y_tile_minimum);
3662         } else {
3663                 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3664                     (plane_bytes_per_line / 512 < 1))
3665                         selected_result = method2;
3666                 else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3667                         selected_result = min(method1, method2);
3668                 else
3669                         selected_result = method1;
3670         }
3671
3672         res_blocks = selected_result + 1;
3673         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3674
3675         if (level >= 1 && level <= 7) {
3676                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3677                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3678                         res_blocks += y_tile_minimum;
3679                         res_lines += y_min_scanlines;
3680                 } else {
3681                         res_blocks++;
3682                 }
3683         }
3684
3685         if (res_blocks >= ddb_allocation || res_lines > 31) {
3686                 *enabled = false;
3687
3688                 /*
3689                  * If there are no valid level 0 watermarks, then we can't
3690                  * support this display configuration.
3691                  */
3692                 if (level) {
3693                         return 0;
3694                 } else {
3695                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3696                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3697                                       to_intel_crtc(cstate->base.crtc)->pipe,
3698                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3699                                       res_blocks, ddb_allocation, res_lines);
3700
3701                         return -EINVAL;
3702                 }
3703         }
3704
3705         *out_blocks = res_blocks;
3706         *out_lines = res_lines;
3707         *enabled = true;
3708
3709         return 0;
3710 }
3711
3712 static int
3713 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3714                      struct skl_ddb_allocation *ddb,
3715                      struct intel_crtc_state *cstate,
3716                      struct intel_plane *intel_plane,
3717                      int level,
3718                      struct skl_wm_level *result)
3719 {
3720         struct drm_atomic_state *state = cstate->base.state;
3721         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3722         struct drm_plane *plane = &intel_plane->base;
3723         struct intel_plane_state *intel_pstate = NULL;
3724         uint16_t ddb_blocks;
3725         enum pipe pipe = intel_crtc->pipe;
3726         int ret;
3727         int i = skl_wm_plane_id(intel_plane);
3728
3729         if (state)
3730                 intel_pstate =
3731                         intel_atomic_get_existing_plane_state(state,
3732                                                               intel_plane);
3733
3734         /*
3735          * Note: If we start supporting multiple pending atomic commits against
3736          * the same planes/CRTC's in the future, plane->state will no longer be
3737          * the correct pre-state to use for the calculations here and we'll
3738          * need to change where we get the 'unchanged' plane data from.
3739          *
3740          * For now this is fine because we only allow one queued commit against
3741          * a CRTC.  Even if the plane isn't modified by this transaction and we
3742          * don't have a plane lock, we still have the CRTC's lock, so we know
3743          * that no other transactions are racing with us to update it.
3744          */
3745         if (!intel_pstate)
3746                 intel_pstate = to_intel_plane_state(plane->state);
3747
3748         WARN_ON(!intel_pstate->base.fb);
3749
3750         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3751
3752         ret = skl_compute_plane_wm(dev_priv,
3753                                    cstate,
3754                                    intel_pstate,
3755                                    ddb_blocks,
3756                                    level,
3757                                    &result->plane_res_b,
3758                                    &result->plane_res_l,
3759                                    &result->plane_en);
3760         if (ret)
3761                 return ret;
3762
3763         return 0;
3764 }
3765
3766 static uint32_t
3767 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3768 {
3769         uint32_t pixel_rate;
3770
3771         if (!cstate->base.active)
3772                 return 0;
3773
3774         pixel_rate = ilk_pipe_pixel_rate(cstate);
3775
3776         if (WARN_ON(pixel_rate == 0))
3777                 return 0;
3778
3779         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3780                             pixel_rate);
3781 }
3782
3783 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3784                                       struct skl_wm_level *trans_wm /* out */)
3785 {
3786         if (!cstate->base.active)
3787                 return;
3788
3789         /* Until we know more, just disable transition WMs */
3790         trans_wm->plane_en = false;
3791 }
3792
3793 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3794                              struct skl_ddb_allocation *ddb,
3795                              struct skl_pipe_wm *pipe_wm)
3796 {
3797         struct drm_device *dev = cstate->base.crtc->dev;
3798         const struct drm_i915_private *dev_priv = to_i915(dev);
3799         struct intel_plane *intel_plane;
3800         struct skl_plane_wm *wm;
3801         int level, max_level = ilk_wm_max_level(dev_priv);
3802         int ret;
3803
3804         /*
3805          * We'll only calculate watermarks for planes that are actually
3806          * enabled, so make sure all other planes are set as disabled.
3807          */
3808         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
3809
3810         for_each_intel_plane_mask(&dev_priv->drm,
3811                                   intel_plane,
3812                                   cstate->base.plane_mask) {
3813                 wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];
3814
3815                 for (level = 0; level <= max_level; level++) {
3816                         ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3817                                                    intel_plane, level,
3818                                                    &wm->wm[level]);
3819                         if (ret)
3820                                 return ret;
3821                 }
3822                 skl_compute_transition_wm(cstate, &wm->trans_wm);
3823         }
3824         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3825
3826         return 0;
3827 }
3828
3829 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3830                                 i915_reg_t reg,
3831                                 const struct skl_ddb_entry *entry)
3832 {
3833         if (entry->end)
3834                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3835         else
3836                 I915_WRITE(reg, 0);
3837 }
3838
3839 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
3840                                i915_reg_t reg,
3841                                const struct skl_wm_level *level)
3842 {
3843         uint32_t val = 0;
3844
3845         if (level->plane_en) {
3846                 val |= PLANE_WM_EN;
3847                 val |= level->plane_res_b;
3848                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
3849         }
3850
3851         I915_WRITE(reg, val);
3852 }
3853
3854 void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3855                         const struct skl_plane_wm *wm,
3856                         const struct skl_ddb_allocation *ddb,
3857                         int plane)
3858 {
3859         struct drm_crtc *crtc = &intel_crtc->base;
3860         struct drm_device *dev = crtc->dev;
3861         struct drm_i915_private *dev_priv = to_i915(dev);
3862         int level, max_level = ilk_wm_max_level(dev_priv);
3863         enum pipe pipe = intel_crtc->pipe;
3864
3865         for (level = 0; level <= max_level; level++) {
3866                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
3867                                    &wm->wm[level]);
3868         }
3869         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
3870                            &wm->trans_wm);
3871
3872         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3873                             &ddb->plane[pipe][plane]);
3874         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3875                             &ddb->y_plane[pipe][plane]);
3876 }
3877
3878 void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3879                          const struct skl_plane_wm *wm,
3880                          const struct skl_ddb_allocation *ddb)
3881 {
3882         struct drm_crtc *crtc = &intel_crtc->base;
3883         struct drm_device *dev = crtc->dev;
3884         struct drm_i915_private *dev_priv = to_i915(dev);
3885         int level, max_level = ilk_wm_max_level(dev_priv);
3886         enum pipe pipe = intel_crtc->pipe;
3887
3888         for (level = 0; level <= max_level; level++) {
3889                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
3890                                    &wm->wm[level]);
3891         }
3892         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3893
3894         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3895                             &ddb->plane[pipe][PLANE_CURSOR]);
3896 }
3897
3898 bool skl_wm_level_equals(const struct skl_wm_level *l1,
3899                          const struct skl_wm_level *l2)
3900 {
3901         if (l1->plane_en != l2->plane_en)
3902                 return false;
3903
3904         /* If both planes aren't enabled, the rest shouldn't matter */
3905         if (!l1->plane_en)
3906                 return true;
3907
3908         return (l1->plane_res_l == l2->plane_res_l &&
3909                 l1->plane_res_b == l2->plane_res_b);
3910 }
3911
3912 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3913                                            const struct skl_ddb_entry *b)
3914 {
3915         return a->start < b->end && b->start < a->end;
3916 }
3917
3918 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
3919                                  const struct skl_ddb_entry *ddb,
3920                                  int ignore)
3921 {
3922         int i;
3923
3924         for (i = 0; i < I915_MAX_PIPES; i++)
3925                 if (i != ignore && entries[i] &&
3926                     skl_ddb_entries_overlap(ddb, entries[i]))
3927                         return true;
3928
3929         return false;
3930 }
3931
3932 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3933                               const struct skl_pipe_wm *old_pipe_wm,
3934                               struct skl_pipe_wm *pipe_wm, /* out */
3935                               struct skl_ddb_allocation *ddb, /* out */
3936                               bool *changed /* out */)
3937 {
3938         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3939         int ret;
3940
3941         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3942         if (ret)
3943                 return ret;
3944
3945         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3946                 *changed = false;
3947         else
3948                 *changed = true;
3949
3950         return 0;
3951 }
3952
3953 static uint32_t
3954 pipes_modified(struct drm_atomic_state *state)
3955 {
3956         struct drm_crtc *crtc;
3957         struct drm_crtc_state *cstate;
3958         uint32_t i, ret = 0;
3959
3960         for_each_crtc_in_state(state, crtc, cstate, i)
3961                 ret |= drm_crtc_mask(crtc);
3962
3963         return ret;
3964 }
3965
3966 static int
3967 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3968 {
3969         struct drm_atomic_state *state = cstate->base.state;
3970         struct drm_device *dev = state->dev;
3971         struct drm_crtc *crtc = cstate->base.crtc;
3972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3973         struct drm_i915_private *dev_priv = to_i915(dev);
3974         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3975         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3976         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3977         struct drm_plane_state *plane_state;
3978         struct drm_plane *plane;
3979         enum pipe pipe = intel_crtc->pipe;
3980         int id;
3981
3982         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3983
3984         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3985                 id = skl_wm_plane_id(to_intel_plane(plane));
3986
3987                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
3988                                         &new_ddb->plane[pipe][id]) &&
3989                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
3990                                         &new_ddb->y_plane[pipe][id]))
3991                         continue;
3992
3993                 plane_state = drm_atomic_get_plane_state(state, plane);
3994                 if (IS_ERR(plane_state))
3995                         return PTR_ERR(plane_state);
3996         }
3997
3998         return 0;
3999 }
4000
4001 static int
4002 skl_compute_ddb(struct drm_atomic_state *state)
4003 {
4004         struct drm_device *dev = state->dev;
4005         struct drm_i915_private *dev_priv = to_i915(dev);
4006         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4007         struct intel_crtc *intel_crtc;
4008         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4009         uint32_t realloc_pipes = pipes_modified(state);
4010         int ret;
4011
4012         /*
4013          * If this is our first atomic update following hardware readout,
4014          * we can't trust the DDB that the BIOS programmed for us.  Let's
4015          * pretend that all pipes switched active status so that we'll
4016          * ensure a full DDB recompute.
4017          */
4018         if (dev_priv->wm.distrust_bios_wm) {
4019                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4020                                        state->acquire_ctx);
4021                 if (ret)
4022                         return ret;
4023
4024                 intel_state->active_pipe_changes = ~0;
4025
4026                 /*
4027                  * We usually only initialize intel_state->active_crtcs if we
4028                  * we're doing a modeset; make sure this field is always
4029                  * initialized during the sanitization process that happens
4030                  * on the first commit too.
4031                  */
4032                 if (!intel_state->modeset)
4033                         intel_state->active_crtcs = dev_priv->active_crtcs;
4034         }
4035
4036         /*
4037          * If the modeset changes which CRTC's are active, we need to
4038          * recompute the DDB allocation for *all* active pipes, even
4039          * those that weren't otherwise being modified in any way by this
4040          * atomic commit.  Due to the shrinking of the per-pipe allocations
4041          * when new active CRTC's are added, it's possible for a pipe that
4042          * we were already using and aren't changing at all here to suddenly
4043          * become invalid if its DDB needs exceeds its new allocation.
4044          *
4045          * Note that if we wind up doing a full DDB recompute, we can't let
4046          * any other display updates race with this transaction, so we need
4047          * to grab the lock on *all* CRTC's.
4048          */
4049         if (intel_state->active_pipe_changes) {
4050                 realloc_pipes = ~0;
4051                 intel_state->wm_results.dirty_pipes = ~0;
4052         }
4053
4054         /*
4055          * We're not recomputing for the pipes not included in the commit, so
4056          * make sure we start with the current state.
4057          */
4058         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4059
4060         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4061                 struct intel_crtc_state *cstate;
4062
4063                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4064                 if (IS_ERR(cstate))
4065                         return PTR_ERR(cstate);
4066
4067                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4068                 if (ret)
4069                         return ret;
4070
4071                 ret = skl_ddb_add_affected_planes(cstate);
4072                 if (ret)
4073                         return ret;
4074         }
4075
4076         return 0;
4077 }
4078
4079 static void
4080 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4081                      struct skl_wm_values *src,
4082                      enum pipe pipe)
4083 {
4084         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4085                sizeof(dst->ddb.y_plane[pipe]));
4086         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4087                sizeof(dst->ddb.plane[pipe]));
4088 }
4089
4090 static void
4091 skl_print_wm_changes(const struct drm_atomic_state *state)
4092 {
4093         const struct drm_device *dev = state->dev;
4094         const struct drm_i915_private *dev_priv = to_i915(dev);
4095         const struct intel_atomic_state *intel_state =
4096                 to_intel_atomic_state(state);
4097         const struct drm_crtc *crtc;
4098         const struct drm_crtc_state *cstate;
4099         const struct intel_plane *intel_plane;
4100         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4101         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4102         int id;
4103         int i;
4104
4105         for_each_crtc_in_state(state, crtc, cstate, i) {
4106                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4107                 enum pipe pipe = intel_crtc->pipe;
4108
4109                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4110                         const struct skl_ddb_entry *old, *new;
4111
4112                         id = skl_wm_plane_id(intel_plane);
4113                         old = &old_ddb->plane[pipe][id];
4114                         new = &new_ddb->plane[pipe][id];
4115
4116                         if (skl_ddb_entry_equal(old, new))
4117                                 continue;
4118
4119                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4120                                          intel_plane->base.base.id,
4121                                          intel_plane->base.name,
4122                                          old->start, old->end,
4123                                          new->start, new->end);
4124                 }
4125         }
4126 }
4127
4128 static int
4129 skl_compute_wm(struct drm_atomic_state *state)
4130 {
4131         struct drm_crtc *crtc;
4132         struct drm_crtc_state *cstate;
4133         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4134         struct skl_wm_values *results = &intel_state->wm_results;
4135         struct skl_pipe_wm *pipe_wm;
4136         bool changed = false;
4137         int ret, i;
4138
4139         /*
4140          * If this transaction isn't actually touching any CRTC's, don't
4141          * bother with watermark calculation.  Note that if we pass this
4142          * test, we're guaranteed to hold at least one CRTC state mutex,
4143          * which means we can safely use values like dev_priv->active_crtcs
4144          * since any racing commits that want to update them would need to
4145          * hold _all_ CRTC state mutexes.
4146          */
4147         for_each_crtc_in_state(state, crtc, cstate, i)
4148                 changed = true;
4149         if (!changed)
4150                 return 0;
4151
4152         /* Clear all dirty flags */
4153         results->dirty_pipes = 0;
4154
4155         ret = skl_compute_ddb(state);
4156         if (ret)
4157                 return ret;
4158
4159         /*
4160          * Calculate WM's for all pipes that are part of this transaction.
4161          * Note that the DDB allocation above may have added more CRTC's that
4162          * weren't otherwise being modified (and set bits in dirty_pipes) if
4163          * pipe allocations had to change.
4164          *
4165          * FIXME:  Now that we're doing this in the atomic check phase, we
4166          * should allow skl_update_pipe_wm() to return failure in cases where
4167          * no suitable watermark values can be found.
4168          */
4169         for_each_crtc_in_state(state, crtc, cstate, i) {
4170                 struct intel_crtc_state *intel_cstate =
4171                         to_intel_crtc_state(cstate);
4172                 const struct skl_pipe_wm *old_pipe_wm =
4173                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4174
4175                 pipe_wm = &intel_cstate->wm.skl.optimal;
4176                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4177                                          &results->ddb, &changed);
4178                 if (ret)
4179                         return ret;
4180
4181                 if (changed)
4182                         results->dirty_pipes |= drm_crtc_mask(crtc);
4183
4184                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4185                         /* This pipe's WM's did not change */
4186                         continue;
4187
4188                 intel_cstate->update_wm_pre = true;
4189         }
4190
4191         skl_print_wm_changes(state);
4192
4193         return 0;
4194 }
4195
4196 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4197                                       struct intel_crtc_state *cstate)
4198 {
4199         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4200         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4201         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4202         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4203         enum pipe pipe = crtc->pipe;
4204         int plane;
4205
4206         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4207                 return;
4208
4209         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4210
4211         for_each_universal_plane(dev_priv, pipe, plane)
4212                 skl_write_plane_wm(crtc, &pipe_wm->planes[plane], ddb, plane);
4213
4214         skl_write_cursor_wm(crtc, &pipe_wm->planes[PLANE_CURSOR], ddb);
4215 }
4216
4217 static void skl_initial_wm(struct intel_atomic_state *state,
4218                            struct intel_crtc_state *cstate)
4219 {
4220         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4221         struct drm_device *dev = intel_crtc->base.dev;
4222         struct drm_i915_private *dev_priv = to_i915(dev);
4223         struct skl_wm_values *results = &state->wm_results;
4224         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4225         enum pipe pipe = intel_crtc->pipe;
4226
4227         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4228                 return;
4229
4230         mutex_lock(&dev_priv->wm.wm_mutex);
4231
4232         if (cstate->base.active_changed)
4233                 skl_atomic_update_crtc_wm(state, cstate);
4234
4235         skl_copy_wm_for_pipe(hw_vals, results, pipe);
4236
4237         mutex_unlock(&dev_priv->wm.wm_mutex);
4238 }
4239
4240 static void ilk_compute_wm_config(struct drm_device *dev,
4241                                   struct intel_wm_config *config)
4242 {
4243         struct intel_crtc *crtc;
4244
4245         /* Compute the currently _active_ config */
4246         for_each_intel_crtc(dev, crtc) {
4247                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4248
4249                 if (!wm->pipe_enabled)
4250                         continue;
4251
4252                 config->sprites_enabled |= wm->sprites_enabled;
4253                 config->sprites_scaled |= wm->sprites_scaled;
4254                 config->num_pipes_active++;
4255         }
4256 }
4257
4258 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4259 {
4260         struct drm_device *dev = &dev_priv->drm;
4261         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4262         struct ilk_wm_maximums max;
4263         struct intel_wm_config config = {};
4264         struct ilk_wm_values results = {};
4265         enum intel_ddb_partitioning partitioning;
4266
4267         ilk_compute_wm_config(dev, &config);
4268
4269         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4270         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4271
4272         /* 5/6 split only in single pipe config on IVB+ */
4273         if (INTEL_GEN(dev_priv) >= 7 &&
4274             config.num_pipes_active == 1 && config.sprites_enabled) {
4275                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4276                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4277
4278                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4279         } else {
4280                 best_lp_wm = &lp_wm_1_2;
4281         }
4282
4283         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4284                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4285
4286         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4287
4288         ilk_write_wm_values(dev_priv, &results);
4289 }
4290
4291 static void ilk_initial_watermarks(struct intel_atomic_state *state,
4292                                    struct intel_crtc_state *cstate)
4293 {
4294         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4295         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4296
4297         mutex_lock(&dev_priv->wm.wm_mutex);
4298         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4299         ilk_program_watermarks(dev_priv);
4300         mutex_unlock(&dev_priv->wm.wm_mutex);
4301 }
4302
4303 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4304                                     struct intel_crtc_state *cstate)
4305 {
4306         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4307         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4308
4309         mutex_lock(&dev_priv->wm.wm_mutex);
4310         if (cstate->wm.need_postvbl_update) {
4311                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4312                 ilk_program_watermarks(dev_priv);
4313         }
4314         mutex_unlock(&dev_priv->wm.wm_mutex);
4315 }
4316
4317 static inline void skl_wm_level_from_reg_val(uint32_t val,
4318                                              struct skl_wm_level *level)
4319 {
4320         level->plane_en = val & PLANE_WM_EN;
4321         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4322         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4323                 PLANE_WM_LINES_MASK;
4324 }
4325
4326 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4327                               struct skl_pipe_wm *out)
4328 {
4329         struct drm_device *dev = crtc->dev;
4330         struct drm_i915_private *dev_priv = to_i915(dev);
4331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4332         struct intel_plane *intel_plane;
4333         struct skl_plane_wm *wm;
4334         enum pipe pipe = intel_crtc->pipe;
4335         int level, id, max_level;
4336         uint32_t val;
4337
4338         max_level = ilk_wm_max_level(dev_priv);
4339
4340         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4341                 id = skl_wm_plane_id(intel_plane);
4342                 wm = &out->planes[id];
4343
4344                 for (level = 0; level <= max_level; level++) {
4345                         if (id != PLANE_CURSOR)
4346                                 val = I915_READ(PLANE_WM(pipe, id, level));
4347                         else
4348                                 val = I915_READ(CUR_WM(pipe, level));
4349
4350                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
4351                 }
4352
4353                 if (id != PLANE_CURSOR)
4354                         val = I915_READ(PLANE_WM_TRANS(pipe, id));
4355                 else
4356                         val = I915_READ(CUR_WM_TRANS(pipe));
4357
4358                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
4359         }
4360
4361         if (!intel_crtc->active)
4362                 return;
4363
4364         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4365 }
4366
4367 void skl_wm_get_hw_state(struct drm_device *dev)
4368 {
4369         struct drm_i915_private *dev_priv = to_i915(dev);
4370         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4371         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4372         struct drm_crtc *crtc;
4373         struct intel_crtc *intel_crtc;
4374         struct intel_crtc_state *cstate;
4375
4376         skl_ddb_get_hw_state(dev_priv, ddb);
4377         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4378                 intel_crtc = to_intel_crtc(crtc);
4379                 cstate = to_intel_crtc_state(crtc->state);
4380
4381                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4382
4383                 if (intel_crtc->active)
4384                         hw->dirty_pipes |= drm_crtc_mask(crtc);
4385         }
4386
4387         if (dev_priv->active_crtcs) {
4388                 /* Fully recompute DDB on first atomic commit */
4389                 dev_priv->wm.distrust_bios_wm = true;
4390         } else {
4391                 /* Easy/common case; just sanitize DDB now if everything off */
4392                 memset(ddb, 0, sizeof(*ddb));
4393         }
4394 }
4395
4396 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4397 {
4398         struct drm_device *dev = crtc->dev;
4399         struct drm_i915_private *dev_priv = to_i915(dev);
4400         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4402         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4403         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4404         enum pipe pipe = intel_crtc->pipe;
4405         static const i915_reg_t wm0_pipe_reg[] = {
4406                 [PIPE_A] = WM0_PIPEA_ILK,
4407                 [PIPE_B] = WM0_PIPEB_ILK,
4408                 [PIPE_C] = WM0_PIPEC_IVB,
4409         };
4410
4411         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4412         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4413                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4414
4415         memset(active, 0, sizeof(*active));
4416
4417         active->pipe_enabled = intel_crtc->active;
4418
4419         if (active->pipe_enabled) {
4420                 u32 tmp = hw->wm_pipe[pipe];
4421
4422                 /*
4423                  * For active pipes LP0 watermark is marked as
4424                  * enabled, and LP1+ watermaks as disabled since
4425                  * we can't really reverse compute them in case
4426                  * multiple pipes are active.
4427                  */
4428                 active->wm[0].enable = true;
4429                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4430                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4431                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4432                 active->linetime = hw->wm_linetime[pipe];
4433         } else {
4434                 int level, max_level = ilk_wm_max_level(dev_priv);
4435
4436                 /*
4437                  * For inactive pipes, all watermark levels
4438                  * should be marked as enabled but zeroed,
4439                  * which is what we'd compute them to.
4440                  */
4441                 for (level = 0; level <= max_level; level++)
4442                         active->wm[level].enable = true;
4443         }
4444
4445         intel_crtc->wm.active.ilk = *active;
4446 }
4447
4448 #define _FW_WM(value, plane) \
4449         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4450 #define _FW_WM_VLV(value, plane) \
4451         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4452
4453 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4454                                struct vlv_wm_values *wm)
4455 {
4456         enum pipe pipe;
4457         uint32_t tmp;
4458
4459         for_each_pipe(dev_priv, pipe) {
4460                 tmp = I915_READ(VLV_DDL(pipe));
4461
4462                 wm->ddl[pipe].primary =
4463                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4464                 wm->ddl[pipe].cursor =
4465                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4466                 wm->ddl[pipe].sprite[0] =
4467                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4468                 wm->ddl[pipe].sprite[1] =
4469                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4470         }
4471
4472         tmp = I915_READ(DSPFW1);
4473         wm->sr.plane = _FW_WM(tmp, SR);
4474         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4475         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4476         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4477
4478         tmp = I915_READ(DSPFW2);
4479         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4480         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4481         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4482
4483         tmp = I915_READ(DSPFW3);
4484         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4485
4486         if (IS_CHERRYVIEW(dev_priv)) {
4487                 tmp = I915_READ(DSPFW7_CHV);
4488                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4489                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4490
4491                 tmp = I915_READ(DSPFW8_CHV);
4492                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4493                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4494
4495                 tmp = I915_READ(DSPFW9_CHV);
4496                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4497                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4498
4499                 tmp = I915_READ(DSPHOWM);
4500                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4501                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4502                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4503                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4504                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4505                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4506                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4507                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4508                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4509                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4510         } else {
4511                 tmp = I915_READ(DSPFW7);
4512                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4513                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4514
4515                 tmp = I915_READ(DSPHOWM);
4516                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4517                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4518                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4519                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4520                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4521                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4522                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4523         }
4524 }
4525
4526 #undef _FW_WM
4527 #undef _FW_WM_VLV
4528
4529 void vlv_wm_get_hw_state(struct drm_device *dev)
4530 {
4531         struct drm_i915_private *dev_priv = to_i915(dev);
4532         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4533         struct intel_plane *plane;
4534         enum pipe pipe;
4535         u32 val;
4536
4537         vlv_read_wm_values(dev_priv, wm);
4538
4539         for_each_intel_plane(dev, plane) {
4540                 switch (plane->base.type) {
4541                         int sprite;
4542                 case DRM_PLANE_TYPE_CURSOR:
4543                         plane->wm.fifo_size = 63;
4544                         break;
4545                 case DRM_PLANE_TYPE_PRIMARY:
4546                         plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4547                         break;
4548                 case DRM_PLANE_TYPE_OVERLAY:
4549                         sprite = plane->plane;
4550                         plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4551                         break;
4552                 }
4553         }
4554
4555         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4556         wm->level = VLV_WM_LEVEL_PM2;
4557
4558         if (IS_CHERRYVIEW(dev_priv)) {
4559                 mutex_lock(&dev_priv->rps.hw_lock);
4560
4561                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4562                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4563                         wm->level = VLV_WM_LEVEL_PM5;
4564
4565                 /*
4566                  * If DDR DVFS is disabled in the BIOS, Punit
4567                  * will never ack the request. So if that happens
4568                  * assume we don't have to enable/disable DDR DVFS
4569                  * dynamically. To test that just set the REQ_ACK
4570                  * bit to poke the Punit, but don't change the
4571                  * HIGH/LOW bits so that we don't actually change
4572                  * the current state.
4573                  */
4574                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4575                 val |= FORCE_DDR_FREQ_REQ_ACK;
4576                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4577
4578                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4579                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4580                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4581                                       "assuming DDR DVFS is disabled\n");
4582                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4583                 } else {
4584                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4585                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4586                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4587                 }
4588
4589                 mutex_unlock(&dev_priv->rps.hw_lock);
4590         }
4591
4592         for_each_pipe(dev_priv, pipe)
4593                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4594                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4595                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4596
4597         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4598                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4599 }
4600
4601 void ilk_wm_get_hw_state(struct drm_device *dev)
4602 {
4603         struct drm_i915_private *dev_priv = to_i915(dev);
4604         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4605         struct drm_crtc *crtc;
4606
4607         for_each_crtc(dev, crtc)
4608                 ilk_pipe_wm_get_hw_state(crtc);
4609
4610         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4611         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4612         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4613
4614         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4615         if (INTEL_GEN(dev_priv) >= 7) {
4616                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4617                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4618         }
4619
4620         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4621                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4622                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4623         else if (IS_IVYBRIDGE(dev_priv))
4624                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4625                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4626
4627         hw->enable_fbc_wm =
4628                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4629 }
4630
4631 /**
4632  * intel_update_watermarks - update FIFO watermark values based on current modes
4633  *
4634  * Calculate watermark values for the various WM regs based on current mode
4635  * and plane configuration.
4636  *
4637  * There are several cases to deal with here:
4638  *   - normal (i.e. non-self-refresh)
4639  *   - self-refresh (SR) mode
4640  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4641  *   - lines are small relative to FIFO size (buffer can hold more than 2
4642  *     lines), so need to account for TLB latency
4643  *
4644  *   The normal calculation is:
4645  *     watermark = dotclock * bytes per pixel * latency
4646  *   where latency is platform & configuration dependent (we assume pessimal
4647  *   values here).
4648  *
4649  *   The SR calculation is:
4650  *     watermark = (trunc(latency/line time)+1) * surface width *
4651  *       bytes per pixel
4652  *   where
4653  *     line time = htotal / dotclock
4654  *     surface width = hdisplay for normal plane and 64 for cursor
4655  *   and latency is assumed to be high, as above.
4656  *
4657  * The final value programmed to the register should always be rounded up,
4658  * and include an extra 2 entries to account for clock crossings.
4659  *
4660  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4661  * to set the non-SR watermarks to 8.
4662  */
4663 void intel_update_watermarks(struct intel_crtc *crtc)
4664 {
4665         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4666
4667         if (dev_priv->display.update_wm)
4668                 dev_priv->display.update_wm(crtc);
4669 }
4670
4671 /*
4672  * Lock protecting IPS related data structures
4673  */
4674 DEFINE_SPINLOCK(mchdev_lock);
4675
4676 /* Global for IPS driver to get at the current i915 device. Protected by
4677  * mchdev_lock. */
4678 static struct drm_i915_private *i915_mch_dev;
4679
4680 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4681 {
4682         u16 rgvswctl;
4683
4684         assert_spin_locked(&mchdev_lock);
4685
4686         rgvswctl = I915_READ16(MEMSWCTL);
4687         if (rgvswctl & MEMCTL_CMD_STS) {
4688                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4689                 return false; /* still busy with another command */
4690         }
4691
4692         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4693                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4694         I915_WRITE16(MEMSWCTL, rgvswctl);
4695         POSTING_READ16(MEMSWCTL);
4696
4697         rgvswctl |= MEMCTL_CMD_STS;
4698         I915_WRITE16(MEMSWCTL, rgvswctl);
4699
4700         return true;
4701 }
4702
4703 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4704 {
4705         u32 rgvmodectl;
4706         u8 fmax, fmin, fstart, vstart;
4707
4708         spin_lock_irq(&mchdev_lock);
4709
4710         rgvmodectl = I915_READ(MEMMODECTL);
4711
4712         /* Enable temp reporting */
4713         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4714         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4715
4716         /* 100ms RC evaluation intervals */
4717         I915_WRITE(RCUPEI, 100000);
4718         I915_WRITE(RCDNEI, 100000);
4719
4720         /* Set max/min thresholds to 90ms and 80ms respectively */
4721         I915_WRITE(RCBMAXAVG, 90000);
4722         I915_WRITE(RCBMINAVG, 80000);
4723
4724         I915_WRITE(MEMIHYST, 1);
4725
4726         /* Set up min, max, and cur for interrupt handling */
4727         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4728         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4729         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4730                 MEMMODE_FSTART_SHIFT;
4731
4732         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4733                 PXVFREQ_PX_SHIFT;
4734
4735         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4736         dev_priv->ips.fstart = fstart;
4737
4738         dev_priv->ips.max_delay = fstart;
4739         dev_priv->ips.min_delay = fmin;
4740         dev_priv->ips.cur_delay = fstart;
4741
4742         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4743                          fmax, fmin, fstart);
4744
4745         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4746
4747         /*
4748          * Interrupts will be enabled in ironlake_irq_postinstall
4749          */
4750
4751         I915_WRITE(VIDSTART, vstart);
4752         POSTING_READ(VIDSTART);
4753
4754         rgvmodectl |= MEMMODE_SWMODE_EN;
4755         I915_WRITE(MEMMODECTL, rgvmodectl);
4756
4757         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4758                 DRM_ERROR("stuck trying to change perf mode\n");
4759         mdelay(1);
4760
4761         ironlake_set_drps(dev_priv, fstart);
4762
4763         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4764                 I915_READ(DDREC) + I915_READ(CSIEC);
4765         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4766         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4767         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4768
4769         spin_unlock_irq(&mchdev_lock);
4770 }
4771
4772 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4773 {
4774         u16 rgvswctl;
4775
4776         spin_lock_irq(&mchdev_lock);
4777
4778         rgvswctl = I915_READ16(MEMSWCTL);
4779
4780         /* Ack interrupts, disable EFC interrupt */
4781         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4782         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4783         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4784         I915_WRITE(DEIIR, DE_PCU_EVENT);
4785         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4786
4787         /* Go back to the starting frequency */
4788         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4789         mdelay(1);
4790         rgvswctl |= MEMCTL_CMD_STS;
4791         I915_WRITE(MEMSWCTL, rgvswctl);
4792         mdelay(1);
4793
4794         spin_unlock_irq(&mchdev_lock);
4795 }
4796
4797 /* There's a funny hw issue where the hw returns all 0 when reading from
4798  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4799  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4800  * all limits and the gpu stuck at whatever frequency it is at atm).
4801  */
4802 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4803 {
4804         u32 limits;
4805
4806         /* Only set the down limit when we've reached the lowest level to avoid
4807          * getting more interrupts, otherwise leave this clear. This prevents a
4808          * race in the hw when coming out of rc6: There's a tiny window where
4809          * the hw runs at the minimal clock before selecting the desired
4810          * frequency, if the down threshold expires in that window we will not
4811          * receive a down interrupt. */
4812         if (IS_GEN9(dev_priv)) {
4813                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4814                 if (val <= dev_priv->rps.min_freq_softlimit)
4815                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4816         } else {
4817                 limits = dev_priv->rps.max_freq_softlimit << 24;
4818                 if (val <= dev_priv->rps.min_freq_softlimit)
4819                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4820         }
4821
4822         return limits;
4823 }
4824
4825 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4826 {
4827         int new_power;
4828         u32 threshold_up = 0, threshold_down = 0; /* in % */
4829         u32 ei_up = 0, ei_down = 0;
4830
4831         new_power = dev_priv->rps.power;
4832         switch (dev_priv->rps.power) {
4833         case LOW_POWER:
4834                 if (val > dev_priv->rps.efficient_freq + 1 &&
4835                     val > dev_priv->rps.cur_freq)
4836                         new_power = BETWEEN;
4837                 break;
4838
4839         case BETWEEN:
4840                 if (val <= dev_priv->rps.efficient_freq &&
4841                     val < dev_priv->rps.cur_freq)
4842                         new_power = LOW_POWER;
4843                 else if (val >= dev_priv->rps.rp0_freq &&
4844                          val > dev_priv->rps.cur_freq)
4845                         new_power = HIGH_POWER;
4846                 break;
4847
4848         case HIGH_POWER:
4849                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4850                     val < dev_priv->rps.cur_freq)
4851                         new_power = BETWEEN;
4852                 break;
4853         }
4854         /* Max/min bins are special */
4855         if (val <= dev_priv->rps.min_freq_softlimit)
4856                 new_power = LOW_POWER;
4857         if (val >= dev_priv->rps.max_freq_softlimit)
4858                 new_power = HIGH_POWER;
4859         if (new_power == dev_priv->rps.power)
4860                 return;
4861
4862         /* Note the units here are not exactly 1us, but 1280ns. */
4863         switch (new_power) {
4864         case LOW_POWER:
4865                 /* Upclock if more than 95% busy over 16ms */
4866                 ei_up = 16000;
4867                 threshold_up = 95;
4868
4869                 /* Downclock if less than 85% busy over 32ms */
4870                 ei_down = 32000;
4871                 threshold_down = 85;
4872                 break;
4873
4874         case BETWEEN:
4875                 /* Upclock if more than 90% busy over 13ms */
4876                 ei_up = 13000;
4877                 threshold_up = 90;
4878
4879                 /* Downclock if less than 75% busy over 32ms */
4880                 ei_down = 32000;
4881                 threshold_down = 75;
4882                 break;
4883
4884         case HIGH_POWER:
4885                 /* Upclock if more than 85% busy over 10ms */
4886                 ei_up = 10000;
4887                 threshold_up = 85;
4888
4889                 /* Downclock if less than 60% busy over 32ms */
4890                 ei_down = 32000;
4891                 threshold_down = 60;
4892                 break;
4893         }
4894
4895         I915_WRITE(GEN6_RP_UP_EI,
4896                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4897         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4898                    GT_INTERVAL_FROM_US(dev_priv,
4899                                        ei_up * threshold_up / 100));
4900
4901         I915_WRITE(GEN6_RP_DOWN_EI,
4902                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4903         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4904                    GT_INTERVAL_FROM_US(dev_priv,
4905                                        ei_down * threshold_down / 100));
4906
4907         I915_WRITE(GEN6_RP_CONTROL,
4908                    GEN6_RP_MEDIA_TURBO |
4909                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4910                    GEN6_RP_MEDIA_IS_GFX |
4911                    GEN6_RP_ENABLE |
4912                    GEN6_RP_UP_BUSY_AVG |
4913                    GEN6_RP_DOWN_IDLE_AVG);
4914
4915         dev_priv->rps.power = new_power;
4916         dev_priv->rps.up_threshold = threshold_up;
4917         dev_priv->rps.down_threshold = threshold_down;
4918         dev_priv->rps.last_adj = 0;
4919 }
4920
4921 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4922 {
4923         u32 mask = 0;
4924
4925         if (val > dev_priv->rps.min_freq_softlimit)
4926                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4927         if (val < dev_priv->rps.max_freq_softlimit)
4928                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4929
4930         mask &= dev_priv->pm_rps_events;
4931
4932         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4933 }
4934
4935 /* gen6_set_rps is called to update the frequency request, but should also be
4936  * called when the range (min_delay and max_delay) is modified so that we can
4937  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4938 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4939 {
4940         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4941         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4942                 return;
4943
4944         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4945         WARN_ON(val > dev_priv->rps.max_freq);
4946         WARN_ON(val < dev_priv->rps.min_freq);
4947
4948         /* min/max delay may still have been modified so be sure to
4949          * write the limits value.
4950          */
4951         if (val != dev_priv->rps.cur_freq) {
4952                 gen6_set_rps_thresholds(dev_priv, val);
4953
4954                 if (IS_GEN9(dev_priv))
4955                         I915_WRITE(GEN6_RPNSWREQ,
4956                                    GEN9_FREQUENCY(val));
4957                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4958                         I915_WRITE(GEN6_RPNSWREQ,
4959                                    HSW_FREQUENCY(val));
4960                 else
4961                         I915_WRITE(GEN6_RPNSWREQ,
4962                                    GEN6_FREQUENCY(val) |
4963                                    GEN6_OFFSET(0) |
4964                                    GEN6_AGGRESSIVE_TURBO);
4965         }
4966
4967         /* Make sure we continue to get interrupts
4968          * until we hit the minimum or maximum frequencies.
4969          */
4970         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4971         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4972
4973         POSTING_READ(GEN6_RPNSWREQ);
4974
4975         dev_priv->rps.cur_freq = val;
4976         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4977 }
4978
4979 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4980 {
4981         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4982         WARN_ON(val > dev_priv->rps.max_freq);
4983         WARN_ON(val < dev_priv->rps.min_freq);
4984
4985         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4986                       "Odd GPU freq value\n"))
4987                 val &= ~1;
4988
4989         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4990
4991         if (val != dev_priv->rps.cur_freq) {
4992                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4993                 if (!IS_CHERRYVIEW(dev_priv))
4994                         gen6_set_rps_thresholds(dev_priv, val);
4995         }
4996
4997         dev_priv->rps.cur_freq = val;
4998         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4999 }
5000
5001 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5002  *
5003  * * If Gfx is Idle, then
5004  * 1. Forcewake Media well.
5005  * 2. Request idle freq.
5006  * 3. Release Forcewake of Media well.
5007 */
5008 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5009 {
5010         u32 val = dev_priv->rps.idle_freq;
5011
5012         if (dev_priv->rps.cur_freq <= val)
5013                 return;
5014
5015         /* Wake up the media well, as that takes a lot less
5016          * power than the Render well. */
5017         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5018         valleyview_set_rps(dev_priv, val);
5019         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5020 }
5021
5022 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5023 {
5024         mutex_lock(&dev_priv->rps.hw_lock);
5025         if (dev_priv->rps.enabled) {
5026                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
5027                         gen6_rps_reset_ei(dev_priv);
5028                 I915_WRITE(GEN6_PMINTRMSK,
5029                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5030
5031                 gen6_enable_rps_interrupts(dev_priv);
5032
5033                 /* Ensure we start at the user's desired frequency */
5034                 intel_set_rps(dev_priv,
5035                               clamp(dev_priv->rps.cur_freq,
5036                                     dev_priv->rps.min_freq_softlimit,
5037                                     dev_priv->rps.max_freq_softlimit));
5038         }
5039         mutex_unlock(&dev_priv->rps.hw_lock);
5040 }
5041
5042 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5043 {
5044         /* Flush our bottom-half so that it does not race with us
5045          * setting the idle frequency and so that it is bounded by
5046          * our rpm wakeref. And then disable the interrupts to stop any
5047          * futher RPS reclocking whilst we are asleep.
5048          */
5049         gen6_disable_rps_interrupts(dev_priv);
5050
5051         mutex_lock(&dev_priv->rps.hw_lock);
5052         if (dev_priv->rps.enabled) {
5053                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5054                         vlv_set_rps_idle(dev_priv);
5055                 else
5056                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5057                 dev_priv->rps.last_adj = 0;
5058                 I915_WRITE(GEN6_PMINTRMSK,
5059                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5060         }
5061         mutex_unlock(&dev_priv->rps.hw_lock);
5062
5063         spin_lock(&dev_priv->rps.client_lock);
5064         while (!list_empty(&dev_priv->rps.clients))
5065                 list_del_init(dev_priv->rps.clients.next);
5066         spin_unlock(&dev_priv->rps.client_lock);
5067 }
5068
5069 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5070                     struct intel_rps_client *rps,
5071                     unsigned long submitted)
5072 {
5073         /* This is intentionally racy! We peek at the state here, then
5074          * validate inside the RPS worker.
5075          */
5076         if (!(dev_priv->gt.awake &&
5077               dev_priv->rps.enabled &&
5078               dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5079                 return;
5080
5081         /* Force a RPS boost (and don't count it against the client) if
5082          * the GPU is severely congested.
5083          */
5084         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5085                 rps = NULL;
5086
5087         spin_lock(&dev_priv->rps.client_lock);
5088         if (rps == NULL || list_empty(&rps->link)) {
5089                 spin_lock_irq(&dev_priv->irq_lock);
5090                 if (dev_priv->rps.interrupts_enabled) {
5091                         dev_priv->rps.client_boost = true;
5092                         schedule_work(&dev_priv->rps.work);
5093                 }
5094                 spin_unlock_irq(&dev_priv->irq_lock);
5095
5096                 if (rps != NULL) {
5097                         list_add(&rps->link, &dev_priv->rps.clients);
5098                         rps->boosts++;
5099                 } else
5100                         dev_priv->rps.boosts++;
5101         }
5102         spin_unlock(&dev_priv->rps.client_lock);
5103 }
5104
5105 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5106 {
5107         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5108                 valleyview_set_rps(dev_priv, val);
5109         else
5110                 gen6_set_rps(dev_priv, val);
5111 }
5112
5113 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5114 {
5115         I915_WRITE(GEN6_RC_CONTROL, 0);
5116         I915_WRITE(GEN9_PG_ENABLE, 0);
5117 }
5118
5119 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5120 {
5121         I915_WRITE(GEN6_RP_CONTROL, 0);
5122 }
5123
5124 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5125 {
5126         I915_WRITE(GEN6_RC_CONTROL, 0);
5127         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5128         I915_WRITE(GEN6_RP_CONTROL, 0);
5129 }
5130
5131 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5132 {
5133         I915_WRITE(GEN6_RC_CONTROL, 0);
5134 }
5135
5136 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5137 {
5138         /* we're doing forcewake before Disabling RC6,
5139          * This what the BIOS expects when going into suspend */
5140         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5141
5142         I915_WRITE(GEN6_RC_CONTROL, 0);
5143
5144         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5145 }
5146
5147 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5148 {
5149         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5150                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5151                         mode = GEN6_RC_CTL_RC6_ENABLE;
5152                 else
5153                         mode = 0;
5154         }
5155         if (HAS_RC6p(dev_priv))
5156                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5157                                  "RC6 %s RC6p %s RC6pp %s\n",
5158                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5159                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5160                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5161
5162         else
5163                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5164                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5165 }
5166
5167 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5168 {
5169         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5170         bool enable_rc6 = true;
5171         unsigned long rc6_ctx_base;
5172         u32 rc_ctl;
5173         int rc_sw_target;
5174
5175         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5176         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5177                        RC_SW_TARGET_STATE_SHIFT;
5178         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5179                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5180                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5181                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5182                          rc_sw_target);
5183
5184         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5185                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5186                 enable_rc6 = false;
5187         }
5188
5189         /*
5190          * The exact context size is not known for BXT, so assume a page size
5191          * for this check.
5192          */
5193         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5194         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5195               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5196                                         ggtt->stolen_reserved_size))) {
5197                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5198                 enable_rc6 = false;
5199         }
5200
5201         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5202               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5203               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5204               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5205                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5206                 enable_rc6 = false;
5207         }
5208
5209         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5210             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5211             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5212                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5213                 enable_rc6 = false;
5214         }
5215
5216         if (!I915_READ(GEN6_GFXPAUSE)) {
5217                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5218                 enable_rc6 = false;
5219         }
5220
5221         if (!I915_READ(GEN8_MISC_CTRL0)) {
5222                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5223                 enable_rc6 = false;
5224         }
5225
5226         return enable_rc6;
5227 }
5228
5229 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5230 {
5231         /* No RC6 before Ironlake and code is gone for ilk. */
5232         if (INTEL_INFO(dev_priv)->gen < 6)
5233                 return 0;
5234
5235         if (!enable_rc6)
5236                 return 0;
5237
5238         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5239                 DRM_INFO("RC6 disabled by BIOS\n");
5240                 return 0;
5241         }
5242
5243         /* Respect the kernel parameter if it is set */
5244         if (enable_rc6 >= 0) {
5245                 int mask;
5246
5247                 if (HAS_RC6p(dev_priv))
5248                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5249                                INTEL_RC6pp_ENABLE;
5250                 else
5251                         mask = INTEL_RC6_ENABLE;
5252
5253                 if ((enable_rc6 & mask) != enable_rc6)
5254                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5255                                          "(requested %d, valid %d)\n",
5256                                          enable_rc6 & mask, enable_rc6, mask);
5257
5258                 return enable_rc6 & mask;
5259         }
5260
5261         if (IS_IVYBRIDGE(dev_priv))
5262                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5263
5264         return INTEL_RC6_ENABLE;
5265 }
5266
5267 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5268 {
5269         /* All of these values are in units of 50MHz */
5270
5271         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5272         if (IS_BROXTON(dev_priv)) {
5273                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5274                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5275                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5276                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5277         } else {
5278                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5279                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5280                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5281                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5282         }
5283         /* hw_max = RP0 until we check for overclocking */
5284         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5285
5286         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5287         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5288             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5289                 u32 ddcc_status = 0;
5290
5291                 if (sandybridge_pcode_read(dev_priv,
5292                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5293                                            &ddcc_status) == 0)
5294                         dev_priv->rps.efficient_freq =
5295                                 clamp_t(u8,
5296                                         ((ddcc_status >> 8) & 0xff),
5297                                         dev_priv->rps.min_freq,
5298                                         dev_priv->rps.max_freq);
5299         }
5300
5301         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5302                 /* Store the frequency values in 16.66 MHZ units, which is
5303                  * the natural hardware unit for SKL
5304                  */
5305                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5306                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5307                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5308                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5309                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5310         }
5311 }
5312
5313 static void reset_rps(struct drm_i915_private *dev_priv,
5314                       void (*set)(struct drm_i915_private *, u8))
5315 {
5316         u8 freq = dev_priv->rps.cur_freq;
5317
5318         /* force a reset */
5319         dev_priv->rps.power = -1;
5320         dev_priv->rps.cur_freq = -1;
5321
5322         set(dev_priv, freq);
5323 }
5324
5325 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5326 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5327 {
5328         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5329
5330         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5331         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5332                 /*
5333                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5334                  * clear out the Control register just to avoid inconsitency
5335                  * with debugfs interface, which will show  Turbo as enabled
5336                  * only and that is not expected by the User after adding the
5337                  * WaGsvDisableTurbo. Apart from this there is no problem even
5338                  * if the Turbo is left enabled in the Control register, as the
5339                  * Up/Down interrupts would remain masked.
5340                  */
5341                 gen9_disable_rps(dev_priv);
5342                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5343                 return;
5344         }
5345
5346         /* Program defaults and thresholds for RPS*/
5347         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5348                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5349
5350         /* 1 second timeout*/
5351         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5352                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5353
5354         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5355
5356         /* Leaning on the below call to gen6_set_rps to program/setup the
5357          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5358          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5359         reset_rps(dev_priv, gen6_set_rps);
5360
5361         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5362 }
5363
5364 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5365 {
5366         struct intel_engine_cs *engine;
5367         enum intel_engine_id id;
5368         uint32_t rc6_mask = 0;
5369
5370         /* 1a: Software RC state - RC0 */
5371         I915_WRITE(GEN6_RC_STATE, 0);
5372
5373         /* 1b: Get forcewake during program sequence. Although the driver
5374          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5375         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5376
5377         /* 2a: Disable RC states. */
5378         I915_WRITE(GEN6_RC_CONTROL, 0);
5379
5380         /* 2b: Program RC6 thresholds.*/
5381
5382         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5383         if (IS_SKYLAKE(dev_priv))
5384                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5385         else
5386                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5387         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5388         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5389         for_each_engine(engine, dev_priv, id)
5390                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5391
5392         if (HAS_GUC(dev_priv))
5393                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5394
5395         I915_WRITE(GEN6_RC_SLEEP, 0);
5396
5397         /* 2c: Program Coarse Power Gating Policies. */
5398         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5399         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5400
5401         /* 3a: Enable RC6 */
5402         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5403                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5404         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5405         /* WaRsUseTimeoutMode:bxt */
5406         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5407                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5408                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5409                            GEN7_RC_CTL_TO_MODE |
5410                            rc6_mask);
5411         } else {
5412                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5413                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5414                            GEN6_RC_CTL_EI_MODE(1) |
5415                            rc6_mask);
5416         }
5417
5418         /*
5419          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5420          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5421          */
5422         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5423                 I915_WRITE(GEN9_PG_ENABLE, 0);
5424         else
5425                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5426                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5427
5428         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5429 }
5430
5431 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5432 {
5433         struct intel_engine_cs *engine;
5434         enum intel_engine_id id;
5435         uint32_t rc6_mask = 0;
5436
5437         /* 1a: Software RC state - RC0 */
5438         I915_WRITE(GEN6_RC_STATE, 0);
5439
5440         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5441          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5442         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5443
5444         /* 2a: Disable RC states. */
5445         I915_WRITE(GEN6_RC_CONTROL, 0);
5446
5447         /* 2b: Program RC6 thresholds.*/
5448         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5449         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5450         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5451         for_each_engine(engine, dev_priv, id)
5452                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5453         I915_WRITE(GEN6_RC_SLEEP, 0);
5454         if (IS_BROADWELL(dev_priv))
5455                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5456         else
5457                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5458
5459         /* 3: Enable RC6 */
5460         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5461                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5462         intel_print_rc6_info(dev_priv, rc6_mask);
5463         if (IS_BROADWELL(dev_priv))
5464                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5465                                 GEN7_RC_CTL_TO_MODE |
5466                                 rc6_mask);
5467         else
5468                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5469                                 GEN6_RC_CTL_EI_MODE(1) |
5470                                 rc6_mask);
5471
5472         /* 4 Program defaults and thresholds for RPS*/
5473         I915_WRITE(GEN6_RPNSWREQ,
5474                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5475         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5476                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5477         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5478         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5479
5480         /* Docs recommend 900MHz, and 300 MHz respectively */
5481         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5482                    dev_priv->rps.max_freq_softlimit << 24 |
5483                    dev_priv->rps.min_freq_softlimit << 16);
5484
5485         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5486         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5487         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5488         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5489
5490         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5491
5492         /* 5: Enable RPS */
5493         I915_WRITE(GEN6_RP_CONTROL,
5494                    GEN6_RP_MEDIA_TURBO |
5495                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5496                    GEN6_RP_MEDIA_IS_GFX |
5497                    GEN6_RP_ENABLE |
5498                    GEN6_RP_UP_BUSY_AVG |
5499                    GEN6_RP_DOWN_IDLE_AVG);
5500
5501         /* 6: Ring frequency + overclocking (our driver does this later */
5502
5503         reset_rps(dev_priv, gen6_set_rps);
5504
5505         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5506 }
5507
5508 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5509 {
5510         struct intel_engine_cs *engine;
5511         enum intel_engine_id id;
5512         u32 rc6vids, rc6_mask = 0;
5513         u32 gtfifodbg;
5514         int rc6_mode;
5515         int ret;
5516
5517         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5518
5519         /* Here begins a magic sequence of register writes to enable
5520          * auto-downclocking.
5521          *
5522          * Perhaps there might be some value in exposing these to
5523          * userspace...
5524          */
5525         I915_WRITE(GEN6_RC_STATE, 0);
5526
5527         /* Clear the DBG now so we don't confuse earlier errors */
5528         gtfifodbg = I915_READ(GTFIFODBG);
5529         if (gtfifodbg) {
5530                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5531                 I915_WRITE(GTFIFODBG, gtfifodbg);
5532         }
5533
5534         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5535
5536         /* disable the counters and set deterministic thresholds */
5537         I915_WRITE(GEN6_RC_CONTROL, 0);
5538
5539         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5540         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5541         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5542         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5543         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5544
5545         for_each_engine(engine, dev_priv, id)
5546                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5547
5548         I915_WRITE(GEN6_RC_SLEEP, 0);
5549         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5550         if (IS_IVYBRIDGE(dev_priv))
5551                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5552         else
5553                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5554         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5555         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5556
5557         /* Check if we are enabling RC6 */
5558         rc6_mode = intel_enable_rc6();
5559         if (rc6_mode & INTEL_RC6_ENABLE)
5560                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5561
5562         /* We don't use those on Haswell */
5563         if (!IS_HASWELL(dev_priv)) {
5564                 if (rc6_mode & INTEL_RC6p_ENABLE)
5565                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5566
5567                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5568                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5569         }
5570
5571         intel_print_rc6_info(dev_priv, rc6_mask);
5572
5573         I915_WRITE(GEN6_RC_CONTROL,
5574                    rc6_mask |
5575                    GEN6_RC_CTL_EI_MODE(1) |
5576                    GEN6_RC_CTL_HW_ENABLE);
5577
5578         /* Power down if completely idle for over 50ms */
5579         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5580         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5581
5582         reset_rps(dev_priv, gen6_set_rps);
5583
5584         rc6vids = 0;
5585         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5586         if (IS_GEN6(dev_priv) && ret) {
5587                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5588         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5589                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5590                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5591                 rc6vids &= 0xffff00;
5592                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5593                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5594                 if (ret)
5595                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5596         }
5597
5598         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5599 }
5600
5601 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5602 {
5603         int min_freq = 15;
5604         unsigned int gpu_freq;
5605         unsigned int max_ia_freq, min_ring_freq;
5606         unsigned int max_gpu_freq, min_gpu_freq;
5607         int scaling_factor = 180;
5608         struct cpufreq_policy *policy;
5609
5610         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5611
5612         policy = cpufreq_cpu_get(0);
5613         if (policy) {
5614                 max_ia_freq = policy->cpuinfo.max_freq;
5615                 cpufreq_cpu_put(policy);
5616         } else {
5617                 /*
5618                  * Default to measured freq if none found, PCU will ensure we
5619                  * don't go over
5620                  */
5621                 max_ia_freq = tsc_khz;
5622         }
5623
5624         /* Convert from kHz to MHz */
5625         max_ia_freq /= 1000;
5626
5627         min_ring_freq = I915_READ(DCLK) & 0xf;
5628         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5629         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5630
5631         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5632                 /* Convert GT frequency to 50 HZ units */
5633                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5634                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5635         } else {
5636                 min_gpu_freq = dev_priv->rps.min_freq;
5637                 max_gpu_freq = dev_priv->rps.max_freq;
5638         }
5639
5640         /*
5641          * For each potential GPU frequency, load a ring frequency we'd like
5642          * to use for memory access.  We do this by specifying the IA frequency
5643          * the PCU should use as a reference to determine the ring frequency.
5644          */
5645         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5646                 int diff = max_gpu_freq - gpu_freq;
5647                 unsigned int ia_freq = 0, ring_freq = 0;
5648
5649                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5650                         /*
5651                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5652                          * No floor required for ring frequency on SKL.
5653                          */
5654                         ring_freq = gpu_freq;
5655                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5656                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5657                         ring_freq = max(min_ring_freq, gpu_freq);
5658                 } else if (IS_HASWELL(dev_priv)) {
5659                         ring_freq = mult_frac(gpu_freq, 5, 4);
5660                         ring_freq = max(min_ring_freq, ring_freq);
5661                         /* leave ia_freq as the default, chosen by cpufreq */
5662                 } else {
5663                         /* On older processors, there is no separate ring
5664                          * clock domain, so in order to boost the bandwidth
5665                          * of the ring, we need to upclock the CPU (ia_freq).
5666                          *
5667                          * For GPU frequencies less than 750MHz,
5668                          * just use the lowest ring freq.
5669                          */
5670                         if (gpu_freq < min_freq)
5671                                 ia_freq = 800;
5672                         else
5673                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5674                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5675                 }
5676
5677                 sandybridge_pcode_write(dev_priv,
5678                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5679                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5680                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5681                                         gpu_freq);
5682         }
5683 }
5684
5685 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5686 {
5687         u32 val, rp0;
5688
5689         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5690
5691         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5692         case 8:
5693                 /* (2 * 4) config */
5694                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5695                 break;
5696         case 12:
5697                 /* (2 * 6) config */
5698                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5699                 break;
5700         case 16:
5701                 /* (2 * 8) config */
5702         default:
5703                 /* Setting (2 * 8) Min RP0 for any other combination */
5704                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5705                 break;
5706         }
5707
5708         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5709
5710         return rp0;
5711 }
5712
5713 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5714 {
5715         u32 val, rpe;
5716
5717         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5718         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5719
5720         return rpe;
5721 }
5722
5723 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5724 {
5725         u32 val, rp1;
5726
5727         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5728         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5729
5730         return rp1;
5731 }
5732
5733 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5734 {
5735         u32 val, rp1;
5736
5737         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5738
5739         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5740
5741         return rp1;
5742 }
5743
5744 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5745 {
5746         u32 val, rp0;
5747
5748         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5749
5750         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5751         /* Clamp to max */
5752         rp0 = min_t(u32, rp0, 0xea);
5753
5754         return rp0;
5755 }
5756
5757 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5758 {
5759         u32 val, rpe;
5760
5761         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5762         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5763         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5764         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5765
5766         return rpe;
5767 }
5768
5769 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5770 {
5771         u32 val;
5772
5773         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5774         /*
5775          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5776          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5777          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5778          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5779          * to make sure it matches what Punit accepts.
5780          */
5781         return max_t(u32, val, 0xc0);
5782 }
5783
5784 /* Check that the pctx buffer wasn't move under us. */
5785 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5786 {
5787         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5788
5789         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5790                              dev_priv->vlv_pctx->stolen->start);
5791 }
5792
5793
5794 /* Check that the pcbr address is not empty. */
5795 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5796 {
5797         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5798
5799         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5800 }
5801
5802 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5803 {
5804         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5805         unsigned long pctx_paddr, paddr;
5806         u32 pcbr;
5807         int pctx_size = 32*1024;
5808
5809         pcbr = I915_READ(VLV_PCBR);
5810         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5811                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5812                 paddr = (dev_priv->mm.stolen_base +
5813                          (ggtt->stolen_size - pctx_size));
5814
5815                 pctx_paddr = (paddr & (~4095));
5816                 I915_WRITE(VLV_PCBR, pctx_paddr);
5817         }
5818
5819         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5820 }
5821
5822 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5823 {
5824         struct drm_i915_gem_object *pctx;
5825         unsigned long pctx_paddr;
5826         u32 pcbr;
5827         int pctx_size = 24*1024;
5828
5829         pcbr = I915_READ(VLV_PCBR);
5830         if (pcbr) {
5831                 /* BIOS set it up already, grab the pre-alloc'd space */
5832                 int pcbr_offset;
5833
5834                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5835                 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5836                                                                       pcbr_offset,
5837                                                                       I915_GTT_OFFSET_NONE,
5838                                                                       pctx_size);
5839                 goto out;
5840         }
5841
5842         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5843
5844         /*
5845          * From the Gunit register HAS:
5846          * The Gfx driver is expected to program this register and ensure
5847          * proper allocation within Gfx stolen memory.  For example, this
5848          * register should be programmed such than the PCBR range does not
5849          * overlap with other ranges, such as the frame buffer, protected
5850          * memory, or any other relevant ranges.
5851          */
5852         pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5853         if (!pctx) {
5854                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5855                 goto out;
5856         }
5857
5858         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5859         I915_WRITE(VLV_PCBR, pctx_paddr);
5860
5861 out:
5862         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5863         dev_priv->vlv_pctx = pctx;
5864 }
5865
5866 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5867 {
5868         if (WARN_ON(!dev_priv->vlv_pctx))
5869                 return;
5870
5871         i915_gem_object_put(dev_priv->vlv_pctx);
5872         dev_priv->vlv_pctx = NULL;
5873 }
5874
5875 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5876 {
5877         dev_priv->rps.gpll_ref_freq =
5878                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5879                                   CCK_GPLL_CLOCK_CONTROL,
5880                                   dev_priv->czclk_freq);
5881
5882         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5883                          dev_priv->rps.gpll_ref_freq);
5884 }
5885
5886 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5887 {
5888         u32 val;
5889
5890         valleyview_setup_pctx(dev_priv);
5891
5892         vlv_init_gpll_ref_freq(dev_priv);
5893
5894         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5895         switch ((val >> 6) & 3) {
5896         case 0:
5897         case 1:
5898                 dev_priv->mem_freq = 800;
5899                 break;
5900         case 2:
5901                 dev_priv->mem_freq = 1066;
5902                 break;
5903         case 3:
5904                 dev_priv->mem_freq = 1333;
5905                 break;
5906         }
5907         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5908
5909         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5910         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5911         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5912                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5913                          dev_priv->rps.max_freq);
5914
5915         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5916         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5917                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5918                          dev_priv->rps.efficient_freq);
5919
5920         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5921         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5922                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5923                          dev_priv->rps.rp1_freq);
5924
5925         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5926         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5927                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5928                          dev_priv->rps.min_freq);
5929 }
5930
5931 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5932 {
5933         u32 val;
5934
5935         cherryview_setup_pctx(dev_priv);
5936
5937         vlv_init_gpll_ref_freq(dev_priv);
5938
5939         mutex_lock(&dev_priv->sb_lock);
5940         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5941         mutex_unlock(&dev_priv->sb_lock);
5942
5943         switch ((val >> 2) & 0x7) {
5944         case 3:
5945                 dev_priv->mem_freq = 2000;
5946                 break;
5947         default:
5948                 dev_priv->mem_freq = 1600;
5949                 break;
5950         }
5951         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5952
5953         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5954         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5955         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5956                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5957                          dev_priv->rps.max_freq);
5958
5959         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5960         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5961                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5962                          dev_priv->rps.efficient_freq);
5963
5964         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5965         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5966                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5967                          dev_priv->rps.rp1_freq);
5968
5969         /* PUnit validated range is only [RPe, RP0] */
5970         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5971         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5972                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5973                          dev_priv->rps.min_freq);
5974
5975         WARN_ONCE((dev_priv->rps.max_freq |
5976                    dev_priv->rps.efficient_freq |
5977                    dev_priv->rps.rp1_freq |
5978                    dev_priv->rps.min_freq) & 1,
5979                   "Odd GPU freq values\n");
5980 }
5981
5982 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5983 {
5984         valleyview_cleanup_pctx(dev_priv);
5985 }
5986
5987 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5988 {
5989         struct intel_engine_cs *engine;
5990         enum intel_engine_id id;
5991         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5992
5993         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5994
5995         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5996                                              GT_FIFO_FREE_ENTRIES_CHV);
5997         if (gtfifodbg) {
5998                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5999                                  gtfifodbg);
6000                 I915_WRITE(GTFIFODBG, gtfifodbg);
6001         }
6002
6003         cherryview_check_pctx(dev_priv);
6004
6005         /* 1a & 1b: Get forcewake during program sequence. Although the driver
6006          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6007         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6008
6009         /*  Disable RC states. */
6010         I915_WRITE(GEN6_RC_CONTROL, 0);
6011
6012         /* 2a: Program RC6 thresholds.*/
6013         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6014         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6015         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6016
6017         for_each_engine(engine, dev_priv, id)
6018                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6019         I915_WRITE(GEN6_RC_SLEEP, 0);
6020
6021         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6022         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6023
6024         /* allows RC6 residency counter to work */
6025         I915_WRITE(VLV_COUNTER_CONTROL,
6026                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6027                                       VLV_MEDIA_RC6_COUNT_EN |
6028                                       VLV_RENDER_RC6_COUNT_EN));
6029
6030         /* For now we assume BIOS is allocating and populating the PCBR  */
6031         pcbr = I915_READ(VLV_PCBR);
6032
6033         /* 3: Enable RC6 */
6034         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6035             (pcbr >> VLV_PCBR_ADDR_SHIFT))
6036                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6037
6038         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6039
6040         /* 4 Program defaults and thresholds for RPS*/
6041         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6042         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6043         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6044         I915_WRITE(GEN6_RP_UP_EI, 66000);
6045         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6046
6047         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6048
6049         /* 5: Enable RPS */
6050         I915_WRITE(GEN6_RP_CONTROL,
6051                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6052                    GEN6_RP_MEDIA_IS_GFX |
6053                    GEN6_RP_ENABLE |
6054                    GEN6_RP_UP_BUSY_AVG |
6055                    GEN6_RP_DOWN_IDLE_AVG);
6056
6057         /* Setting Fixed Bias */
6058         val = VLV_OVERRIDE_EN |
6059                   VLV_SOC_TDP_EN |
6060                   CHV_BIAS_CPU_50_SOC_50;
6061         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6062
6063         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6064
6065         /* RPS code assumes GPLL is used */
6066         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6067
6068         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6069         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6070
6071         reset_rps(dev_priv, valleyview_set_rps);
6072
6073         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6074 }
6075
6076 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6077 {
6078         struct intel_engine_cs *engine;
6079         enum intel_engine_id id;
6080         u32 gtfifodbg, val, rc6_mode = 0;
6081
6082         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6083
6084         valleyview_check_pctx(dev_priv);
6085
6086         gtfifodbg = I915_READ(GTFIFODBG);
6087         if (gtfifodbg) {
6088                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6089                                  gtfifodbg);
6090                 I915_WRITE(GTFIFODBG, gtfifodbg);
6091         }
6092
6093         /* If VLV, Forcewake all wells, else re-direct to regular path */
6094         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6095
6096         /*  Disable RC states. */
6097         I915_WRITE(GEN6_RC_CONTROL, 0);
6098
6099         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6100         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6101         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6102         I915_WRITE(GEN6_RP_UP_EI, 66000);
6103         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6104
6105         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6106
6107         I915_WRITE(GEN6_RP_CONTROL,
6108                    GEN6_RP_MEDIA_TURBO |
6109                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6110                    GEN6_RP_MEDIA_IS_GFX |
6111                    GEN6_RP_ENABLE |
6112                    GEN6_RP_UP_BUSY_AVG |
6113                    GEN6_RP_DOWN_IDLE_CONT);
6114
6115         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6116         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6117         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6118
6119         for_each_engine(engine, dev_priv, id)
6120                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6121
6122         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6123
6124         /* allows RC6 residency counter to work */
6125         I915_WRITE(VLV_COUNTER_CONTROL,
6126                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6127                                       VLV_RENDER_RC0_COUNT_EN |
6128                                       VLV_MEDIA_RC6_COUNT_EN |
6129                                       VLV_RENDER_RC6_COUNT_EN));
6130
6131         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6132                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6133
6134         intel_print_rc6_info(dev_priv, rc6_mode);
6135
6136         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6137
6138         /* Setting Fixed Bias */
6139         val = VLV_OVERRIDE_EN |
6140                   VLV_SOC_TDP_EN |
6141                   VLV_BIAS_CPU_125_SOC_875;
6142         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6143
6144         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6145
6146         /* RPS code assumes GPLL is used */
6147         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6148
6149         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6150         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6151
6152         reset_rps(dev_priv, valleyview_set_rps);
6153
6154         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6155 }
6156
6157 static unsigned long intel_pxfreq(u32 vidfreq)
6158 {
6159         unsigned long freq;
6160         int div = (vidfreq & 0x3f0000) >> 16;
6161         int post = (vidfreq & 0x3000) >> 12;
6162         int pre = (vidfreq & 0x7);
6163
6164         if (!pre)
6165                 return 0;
6166
6167         freq = ((div * 133333) / ((1<<post) * pre));
6168
6169         return freq;
6170 }
6171
6172 static const struct cparams {
6173         u16 i;
6174         u16 t;
6175         u16 m;
6176         u16 c;
6177 } cparams[] = {
6178         { 1, 1333, 301, 28664 },
6179         { 1, 1066, 294, 24460 },
6180         { 1, 800, 294, 25192 },
6181         { 0, 1333, 276, 27605 },
6182         { 0, 1066, 276, 27605 },
6183         { 0, 800, 231, 23784 },
6184 };
6185
6186 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6187 {
6188         u64 total_count, diff, ret;
6189         u32 count1, count2, count3, m = 0, c = 0;
6190         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6191         int i;
6192
6193         assert_spin_locked(&mchdev_lock);
6194
6195         diff1 = now - dev_priv->ips.last_time1;
6196
6197         /* Prevent division-by-zero if we are asking too fast.
6198          * Also, we don't get interesting results if we are polling
6199          * faster than once in 10ms, so just return the saved value
6200          * in such cases.
6201          */
6202         if (diff1 <= 10)
6203                 return dev_priv->ips.chipset_power;
6204
6205         count1 = I915_READ(DMIEC);
6206         count2 = I915_READ(DDREC);
6207         count3 = I915_READ(CSIEC);
6208
6209         total_count = count1 + count2 + count3;
6210
6211         /* FIXME: handle per-counter overflow */
6212         if (total_count < dev_priv->ips.last_count1) {
6213                 diff = ~0UL - dev_priv->ips.last_count1;
6214                 diff += total_count;
6215         } else {
6216                 diff = total_count - dev_priv->ips.last_count1;
6217         }
6218
6219         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6220                 if (cparams[i].i == dev_priv->ips.c_m &&
6221                     cparams[i].t == dev_priv->ips.r_t) {
6222                         m = cparams[i].m;
6223                         c = cparams[i].c;
6224                         break;
6225                 }
6226         }
6227
6228         diff = div_u64(diff, diff1);
6229         ret = ((m * diff) + c);
6230         ret = div_u64(ret, 10);
6231
6232         dev_priv->ips.last_count1 = total_count;
6233         dev_priv->ips.last_time1 = now;
6234
6235         dev_priv->ips.chipset_power = ret;
6236
6237         return ret;
6238 }
6239
6240 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6241 {
6242         unsigned long val;
6243
6244         if (INTEL_INFO(dev_priv)->gen != 5)
6245                 return 0;
6246
6247         spin_lock_irq(&mchdev_lock);
6248
6249         val = __i915_chipset_val(dev_priv);
6250
6251         spin_unlock_irq(&mchdev_lock);
6252
6253         return val;
6254 }
6255
6256 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6257 {
6258         unsigned long m, x, b;
6259         u32 tsfs;
6260
6261         tsfs = I915_READ(TSFS);
6262
6263         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6264         x = I915_READ8(TR1);
6265
6266         b = tsfs & TSFS_INTR_MASK;
6267
6268         return ((m * x) / 127) - b;
6269 }
6270
6271 static int _pxvid_to_vd(u8 pxvid)
6272 {
6273         if (pxvid == 0)
6274                 return 0;
6275
6276         if (pxvid >= 8 && pxvid < 31)
6277                 pxvid = 31;
6278
6279         return (pxvid + 2) * 125;
6280 }
6281
6282 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6283 {
6284         const int vd = _pxvid_to_vd(pxvid);
6285         const int vm = vd - 1125;
6286
6287         if (INTEL_INFO(dev_priv)->is_mobile)
6288                 return vm > 0 ? vm : 0;
6289
6290         return vd;
6291 }
6292
6293 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6294 {
6295         u64 now, diff, diffms;
6296         u32 count;
6297
6298         assert_spin_locked(&mchdev_lock);
6299
6300         now = ktime_get_raw_ns();
6301         diffms = now - dev_priv->ips.last_time2;
6302         do_div(diffms, NSEC_PER_MSEC);
6303
6304         /* Don't divide by 0 */
6305         if (!diffms)
6306                 return;
6307
6308         count = I915_READ(GFXEC);
6309
6310         if (count < dev_priv->ips.last_count2) {
6311                 diff = ~0UL - dev_priv->ips.last_count2;
6312                 diff += count;
6313         } else {
6314                 diff = count - dev_priv->ips.last_count2;
6315         }
6316
6317         dev_priv->ips.last_count2 = count;
6318         dev_priv->ips.last_time2 = now;
6319
6320         /* More magic constants... */
6321         diff = diff * 1181;
6322         diff = div_u64(diff, diffms * 10);
6323         dev_priv->ips.gfx_power = diff;
6324 }
6325
6326 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6327 {
6328         if (INTEL_INFO(dev_priv)->gen != 5)
6329                 return;
6330
6331         spin_lock_irq(&mchdev_lock);
6332
6333         __i915_update_gfx_val(dev_priv);
6334
6335         spin_unlock_irq(&mchdev_lock);
6336 }
6337
6338 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6339 {
6340         unsigned long t, corr, state1, corr2, state2;
6341         u32 pxvid, ext_v;
6342
6343         assert_spin_locked(&mchdev_lock);
6344
6345         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6346         pxvid = (pxvid >> 24) & 0x7f;
6347         ext_v = pvid_to_extvid(dev_priv, pxvid);
6348
6349         state1 = ext_v;
6350
6351         t = i915_mch_val(dev_priv);
6352
6353         /* Revel in the empirically derived constants */
6354
6355         /* Correction factor in 1/100000 units */
6356         if (t > 80)
6357                 corr = ((t * 2349) + 135940);
6358         else if (t >= 50)
6359                 corr = ((t * 964) + 29317);
6360         else /* < 50 */
6361                 corr = ((t * 301) + 1004);
6362
6363         corr = corr * ((150142 * state1) / 10000 - 78642);
6364         corr /= 100000;
6365         corr2 = (corr * dev_priv->ips.corr);
6366
6367         state2 = (corr2 * state1) / 10000;
6368         state2 /= 100; /* convert to mW */
6369
6370         __i915_update_gfx_val(dev_priv);
6371
6372         return dev_priv->ips.gfx_power + state2;
6373 }
6374
6375 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6376 {
6377         unsigned long val;
6378
6379         if (INTEL_INFO(dev_priv)->gen != 5)
6380                 return 0;
6381
6382         spin_lock_irq(&mchdev_lock);
6383
6384         val = __i915_gfx_val(dev_priv);
6385
6386         spin_unlock_irq(&mchdev_lock);
6387
6388         return val;
6389 }
6390
6391 /**
6392  * i915_read_mch_val - return value for IPS use
6393  *
6394  * Calculate and return a value for the IPS driver to use when deciding whether
6395  * we have thermal and power headroom to increase CPU or GPU power budget.
6396  */
6397 unsigned long i915_read_mch_val(void)
6398 {
6399         struct drm_i915_private *dev_priv;
6400         unsigned long chipset_val, graphics_val, ret = 0;
6401
6402         spin_lock_irq(&mchdev_lock);
6403         if (!i915_mch_dev)
6404                 goto out_unlock;
6405         dev_priv = i915_mch_dev;
6406
6407         chipset_val = __i915_chipset_val(dev_priv);
6408         graphics_val = __i915_gfx_val(dev_priv);
6409
6410         ret = chipset_val + graphics_val;
6411
6412 out_unlock:
6413         spin_unlock_irq(&mchdev_lock);
6414
6415         return ret;
6416 }
6417 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6418
6419 /**
6420  * i915_gpu_raise - raise GPU frequency limit
6421  *
6422  * Raise the limit; IPS indicates we have thermal headroom.
6423  */
6424 bool i915_gpu_raise(void)
6425 {
6426         struct drm_i915_private *dev_priv;
6427         bool ret = true;
6428
6429         spin_lock_irq(&mchdev_lock);
6430         if (!i915_mch_dev) {
6431                 ret = false;
6432                 goto out_unlock;
6433         }
6434         dev_priv = i915_mch_dev;
6435
6436         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6437                 dev_priv->ips.max_delay--;
6438
6439 out_unlock:
6440         spin_unlock_irq(&mchdev_lock);
6441
6442         return ret;
6443 }
6444 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6445
6446 /**
6447  * i915_gpu_lower - lower GPU frequency limit
6448  *
6449  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6450  * frequency maximum.
6451  */
6452 bool i915_gpu_lower(void)
6453 {
6454         struct drm_i915_private *dev_priv;
6455         bool ret = true;
6456
6457         spin_lock_irq(&mchdev_lock);
6458         if (!i915_mch_dev) {
6459                 ret = false;
6460                 goto out_unlock;
6461         }
6462         dev_priv = i915_mch_dev;
6463
6464         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6465                 dev_priv->ips.max_delay++;
6466
6467 out_unlock:
6468         spin_unlock_irq(&mchdev_lock);
6469
6470         return ret;
6471 }
6472 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6473
6474 /**
6475  * i915_gpu_busy - indicate GPU business to IPS
6476  *
6477  * Tell the IPS driver whether or not the GPU is busy.
6478  */
6479 bool i915_gpu_busy(void)
6480 {
6481         bool ret = false;
6482
6483         spin_lock_irq(&mchdev_lock);
6484         if (i915_mch_dev)
6485                 ret = i915_mch_dev->gt.awake;
6486         spin_unlock_irq(&mchdev_lock);
6487
6488         return ret;
6489 }
6490 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6491
6492 /**
6493  * i915_gpu_turbo_disable - disable graphics turbo
6494  *
6495  * Disable graphics turbo by resetting the max frequency and setting the
6496  * current frequency to the default.
6497  */
6498 bool i915_gpu_turbo_disable(void)
6499 {
6500         struct drm_i915_private *dev_priv;
6501         bool ret = true;
6502
6503         spin_lock_irq(&mchdev_lock);
6504         if (!i915_mch_dev) {
6505                 ret = false;
6506                 goto out_unlock;
6507         }
6508         dev_priv = i915_mch_dev;
6509
6510         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6511
6512         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6513                 ret = false;
6514
6515 out_unlock:
6516         spin_unlock_irq(&mchdev_lock);
6517
6518         return ret;
6519 }
6520 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6521
6522 /**
6523  * Tells the intel_ips driver that the i915 driver is now loaded, if
6524  * IPS got loaded first.
6525  *
6526  * This awkward dance is so that neither module has to depend on the
6527  * other in order for IPS to do the appropriate communication of
6528  * GPU turbo limits to i915.
6529  */
6530 static void
6531 ips_ping_for_i915_load(void)
6532 {
6533         void (*link)(void);
6534
6535         link = symbol_get(ips_link_to_i915_driver);
6536         if (link) {
6537                 link();
6538                 symbol_put(ips_link_to_i915_driver);
6539         }
6540 }
6541
6542 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6543 {
6544         /* We only register the i915 ips part with intel-ips once everything is
6545          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6546         spin_lock_irq(&mchdev_lock);
6547         i915_mch_dev = dev_priv;
6548         spin_unlock_irq(&mchdev_lock);
6549
6550         ips_ping_for_i915_load();
6551 }
6552
6553 void intel_gpu_ips_teardown(void)
6554 {
6555         spin_lock_irq(&mchdev_lock);
6556         i915_mch_dev = NULL;
6557         spin_unlock_irq(&mchdev_lock);
6558 }
6559
6560 static void intel_init_emon(struct drm_i915_private *dev_priv)
6561 {
6562         u32 lcfuse;
6563         u8 pxw[16];
6564         int i;
6565
6566         /* Disable to program */
6567         I915_WRITE(ECR, 0);
6568         POSTING_READ(ECR);
6569
6570         /* Program energy weights for various events */
6571         I915_WRITE(SDEW, 0x15040d00);
6572         I915_WRITE(CSIEW0, 0x007f0000);
6573         I915_WRITE(CSIEW1, 0x1e220004);
6574         I915_WRITE(CSIEW2, 0x04000004);
6575
6576         for (i = 0; i < 5; i++)
6577                 I915_WRITE(PEW(i), 0);
6578         for (i = 0; i < 3; i++)
6579                 I915_WRITE(DEW(i), 0);
6580
6581         /* Program P-state weights to account for frequency power adjustment */
6582         for (i = 0; i < 16; i++) {
6583                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6584                 unsigned long freq = intel_pxfreq(pxvidfreq);
6585                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6586                         PXVFREQ_PX_SHIFT;
6587                 unsigned long val;
6588
6589                 val = vid * vid;
6590                 val *= (freq / 1000);
6591                 val *= 255;
6592                 val /= (127*127*900);
6593                 if (val > 0xff)
6594                         DRM_ERROR("bad pxval: %ld\n", val);
6595                 pxw[i] = val;
6596         }
6597         /* Render standby states get 0 weight */
6598         pxw[14] = 0;
6599         pxw[15] = 0;
6600
6601         for (i = 0; i < 4; i++) {
6602                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6603                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6604                 I915_WRITE(PXW(i), val);
6605         }
6606
6607         /* Adjust magic regs to magic values (more experimental results) */
6608         I915_WRITE(OGW0, 0);
6609         I915_WRITE(OGW1, 0);
6610         I915_WRITE(EG0, 0x00007f00);
6611         I915_WRITE(EG1, 0x0000000e);
6612         I915_WRITE(EG2, 0x000e0000);
6613         I915_WRITE(EG3, 0x68000300);
6614         I915_WRITE(EG4, 0x42000000);
6615         I915_WRITE(EG5, 0x00140031);
6616         I915_WRITE(EG6, 0);
6617         I915_WRITE(EG7, 0);
6618
6619         for (i = 0; i < 8; i++)
6620                 I915_WRITE(PXWL(i), 0);
6621
6622         /* Enable PMON + select events */
6623         I915_WRITE(ECR, 0x80000019);
6624
6625         lcfuse = I915_READ(LCFUSE02);
6626
6627         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6628 }
6629
6630 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6631 {
6632         /*
6633          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6634          * requirement.
6635          */
6636         if (!i915.enable_rc6) {
6637                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6638                 intel_runtime_pm_get(dev_priv);
6639         }
6640
6641         mutex_lock(&dev_priv->drm.struct_mutex);
6642         mutex_lock(&dev_priv->rps.hw_lock);
6643
6644         /* Initialize RPS limits (for userspace) */
6645         if (IS_CHERRYVIEW(dev_priv))
6646                 cherryview_init_gt_powersave(dev_priv);
6647         else if (IS_VALLEYVIEW(dev_priv))
6648                 valleyview_init_gt_powersave(dev_priv);
6649         else if (INTEL_GEN(dev_priv) >= 6)
6650                 gen6_init_rps_frequencies(dev_priv);
6651
6652         /* Derive initial user preferences/limits from the hardware limits */
6653         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6654         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6655
6656         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6657         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6658
6659         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6660                 dev_priv->rps.min_freq_softlimit =
6661                         max_t(int,
6662                               dev_priv->rps.efficient_freq,
6663                               intel_freq_opcode(dev_priv, 450));
6664
6665         /* After setting max-softlimit, find the overclock max freq */
6666         if (IS_GEN6(dev_priv) ||
6667             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6668                 u32 params = 0;
6669
6670                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6671                 if (params & BIT(31)) { /* OC supported */
6672                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6673                                          (dev_priv->rps.max_freq & 0xff) * 50,
6674                                          (params & 0xff) * 50);
6675                         dev_priv->rps.max_freq = params & 0xff;
6676                 }
6677         }
6678
6679         /* Finally allow us to boost to max by default */
6680         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6681
6682         mutex_unlock(&dev_priv->rps.hw_lock);
6683         mutex_unlock(&dev_priv->drm.struct_mutex);
6684
6685         intel_autoenable_gt_powersave(dev_priv);
6686 }
6687
6688 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6689 {
6690         if (IS_VALLEYVIEW(dev_priv))
6691                 valleyview_cleanup_gt_powersave(dev_priv);
6692
6693         if (!i915.enable_rc6)
6694                 intel_runtime_pm_put(dev_priv);
6695 }
6696
6697 /**
6698  * intel_suspend_gt_powersave - suspend PM work and helper threads
6699  * @dev_priv: i915 device
6700  *
6701  * We don't want to disable RC6 or other features here, we just want
6702  * to make sure any work we've queued has finished and won't bother
6703  * us while we're suspended.
6704  */
6705 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6706 {
6707         if (INTEL_GEN(dev_priv) < 6)
6708                 return;
6709
6710         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6711                 intel_runtime_pm_put(dev_priv);
6712
6713         /* gen6_rps_idle() will be called later to disable interrupts */
6714 }
6715
6716 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6717 {
6718         dev_priv->rps.enabled = true; /* force disabling */
6719         intel_disable_gt_powersave(dev_priv);
6720
6721         gen6_reset_rps_interrupts(dev_priv);
6722 }
6723
6724 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6725 {
6726         if (!READ_ONCE(dev_priv->rps.enabled))
6727                 return;
6728
6729         mutex_lock(&dev_priv->rps.hw_lock);
6730
6731         if (INTEL_GEN(dev_priv) >= 9) {
6732                 gen9_disable_rc6(dev_priv);
6733                 gen9_disable_rps(dev_priv);
6734         } else if (IS_CHERRYVIEW(dev_priv)) {
6735                 cherryview_disable_rps(dev_priv);
6736         } else if (IS_VALLEYVIEW(dev_priv)) {
6737                 valleyview_disable_rps(dev_priv);
6738         } else if (INTEL_GEN(dev_priv) >= 6) {
6739                 gen6_disable_rps(dev_priv);
6740         }  else if (IS_IRONLAKE_M(dev_priv)) {
6741                 ironlake_disable_drps(dev_priv);
6742         }
6743
6744         dev_priv->rps.enabled = false;
6745         mutex_unlock(&dev_priv->rps.hw_lock);
6746 }
6747
6748 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6749 {
6750         /* We shouldn't be disabling as we submit, so this should be less
6751          * racy than it appears!
6752          */
6753         if (READ_ONCE(dev_priv->rps.enabled))
6754                 return;
6755
6756         /* Powersaving is controlled by the host when inside a VM */
6757         if (intel_vgpu_active(dev_priv))
6758                 return;
6759
6760         mutex_lock(&dev_priv->rps.hw_lock);
6761
6762         if (IS_CHERRYVIEW(dev_priv)) {
6763                 cherryview_enable_rps(dev_priv);
6764         } else if (IS_VALLEYVIEW(dev_priv)) {
6765                 valleyview_enable_rps(dev_priv);
6766         } else if (INTEL_GEN(dev_priv) >= 9) {
6767                 gen9_enable_rc6(dev_priv);
6768                 gen9_enable_rps(dev_priv);
6769                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6770                         gen6_update_ring_freq(dev_priv);
6771         } else if (IS_BROADWELL(dev_priv)) {
6772                 gen8_enable_rps(dev_priv);
6773                 gen6_update_ring_freq(dev_priv);
6774         } else if (INTEL_GEN(dev_priv) >= 6) {
6775                 gen6_enable_rps(dev_priv);
6776                 gen6_update_ring_freq(dev_priv);
6777         } else if (IS_IRONLAKE_M(dev_priv)) {
6778                 ironlake_enable_drps(dev_priv);
6779                 intel_init_emon(dev_priv);
6780         }
6781
6782         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6783         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6784
6785         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6786         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6787
6788         dev_priv->rps.enabled = true;
6789         mutex_unlock(&dev_priv->rps.hw_lock);
6790 }
6791
6792 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6793 {
6794         struct drm_i915_private *dev_priv =
6795                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6796         struct intel_engine_cs *rcs;
6797         struct drm_i915_gem_request *req;
6798
6799         if (READ_ONCE(dev_priv->rps.enabled))
6800                 goto out;
6801
6802         rcs = dev_priv->engine[RCS];
6803         if (rcs->last_context)
6804                 goto out;
6805
6806         if (!rcs->init_context)
6807                 goto out;
6808
6809         mutex_lock(&dev_priv->drm.struct_mutex);
6810
6811         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6812         if (IS_ERR(req))
6813                 goto unlock;
6814
6815         if (!i915.enable_execlists && i915_switch_context(req) == 0)
6816                 rcs->init_context(req);
6817
6818         /* Mark the device busy, calling intel_enable_gt_powersave() */
6819         i915_add_request_no_flush(req);
6820
6821 unlock:
6822         mutex_unlock(&dev_priv->drm.struct_mutex);
6823 out:
6824         intel_runtime_pm_put(dev_priv);
6825 }
6826
6827 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6828 {
6829         if (READ_ONCE(dev_priv->rps.enabled))
6830                 return;
6831
6832         if (IS_IRONLAKE_M(dev_priv)) {
6833                 ironlake_enable_drps(dev_priv);
6834                 intel_init_emon(dev_priv);
6835         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6836                 /*
6837                  * PCU communication is slow and this doesn't need to be
6838                  * done at any specific time, so do this out of our fast path
6839                  * to make resume and init faster.
6840                  *
6841                  * We depend on the HW RC6 power context save/restore
6842                  * mechanism when entering D3 through runtime PM suspend. So
6843                  * disable RPM until RPS/RC6 is properly setup. We can only
6844                  * get here via the driver load/system resume/runtime resume
6845                  * paths, so the _noresume version is enough (and in case of
6846                  * runtime resume it's necessary).
6847                  */
6848                 if (queue_delayed_work(dev_priv->wq,
6849                                        &dev_priv->rps.autoenable_work,
6850                                        round_jiffies_up_relative(HZ)))
6851                         intel_runtime_pm_get_noresume(dev_priv);
6852         }
6853 }
6854
6855 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6856 {
6857         /*
6858          * On Ibex Peak and Cougar Point, we need to disable clock
6859          * gating for the panel power sequencer or it will fail to
6860          * start up when no ports are active.
6861          */
6862         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6863 }
6864
6865 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6866 {
6867         enum pipe pipe;
6868
6869         for_each_pipe(dev_priv, pipe) {
6870                 I915_WRITE(DSPCNTR(pipe),
6871                            I915_READ(DSPCNTR(pipe)) |
6872                            DISPPLANE_TRICKLE_FEED_DISABLE);
6873
6874                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6875                 POSTING_READ(DSPSURF(pipe));
6876         }
6877 }
6878
6879 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6880 {
6881         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6882         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6883         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6884
6885         /*
6886          * Don't touch WM1S_LP_EN here.
6887          * Doing so could cause underruns.
6888          */
6889 }
6890
6891 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6892 {
6893         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6894
6895         /*
6896          * Required for FBC
6897          * WaFbcDisableDpfcClockGating:ilk
6898          */
6899         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6900                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6901                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6902
6903         I915_WRITE(PCH_3DCGDIS0,
6904                    MARIUNIT_CLOCK_GATE_DISABLE |
6905                    SVSMUNIT_CLOCK_GATE_DISABLE);
6906         I915_WRITE(PCH_3DCGDIS1,
6907                    VFMUNIT_CLOCK_GATE_DISABLE);
6908
6909         /*
6910          * According to the spec the following bits should be set in
6911          * order to enable memory self-refresh
6912          * The bit 22/21 of 0x42004
6913          * The bit 5 of 0x42020
6914          * The bit 15 of 0x45000
6915          */
6916         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6917                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6918                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6919         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6920         I915_WRITE(DISP_ARB_CTL,
6921                    (I915_READ(DISP_ARB_CTL) |
6922                     DISP_FBC_WM_DIS));
6923
6924         ilk_init_lp_watermarks(dev_priv);
6925
6926         /*
6927          * Based on the document from hardware guys the following bits
6928          * should be set unconditionally in order to enable FBC.
6929          * The bit 22 of 0x42000
6930          * The bit 22 of 0x42004
6931          * The bit 7,8,9 of 0x42020.
6932          */
6933         if (IS_IRONLAKE_M(dev_priv)) {
6934                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6935                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6936                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6937                            ILK_FBCQ_DIS);
6938                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6939                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6940                            ILK_DPARB_GATE);
6941         }
6942
6943         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6944
6945         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6946                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6947                    ILK_ELPIN_409_SELECT);
6948         I915_WRITE(_3D_CHICKEN2,
6949                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6950                    _3D_CHICKEN2_WM_READ_PIPELINED);
6951
6952         /* WaDisableRenderCachePipelinedFlush:ilk */
6953         I915_WRITE(CACHE_MODE_0,
6954                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6955
6956         /* WaDisable_RenderCache_OperationalFlush:ilk */
6957         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6958
6959         g4x_disable_trickle_feed(dev_priv);
6960
6961         ibx_init_clock_gating(dev_priv);
6962 }
6963
6964 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6965 {
6966         int pipe;
6967         uint32_t val;
6968
6969         /*
6970          * On Ibex Peak and Cougar Point, we need to disable clock
6971          * gating for the panel power sequencer or it will fail to
6972          * start up when no ports are active.
6973          */
6974         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6975                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6976                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6977         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6978                    DPLS_EDP_PPS_FIX_DIS);
6979         /* The below fixes the weird display corruption, a few pixels shifted
6980          * downward, on (only) LVDS of some HP laptops with IVY.
6981          */
6982         for_each_pipe(dev_priv, pipe) {
6983                 val = I915_READ(TRANS_CHICKEN2(pipe));
6984                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6985                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6986                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6987                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6988                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6989                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6990                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6991                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6992         }
6993         /* WADP0ClockGatingDisable */
6994         for_each_pipe(dev_priv, pipe) {
6995                 I915_WRITE(TRANS_CHICKEN1(pipe),
6996                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6997         }
6998 }
6999
7000 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7001 {
7002         uint32_t tmp;
7003
7004         tmp = I915_READ(MCH_SSKPD);
7005         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7006                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7007                               tmp);
7008 }
7009
7010 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7011 {
7012         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7013
7014         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7015
7016         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7017                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7018                    ILK_ELPIN_409_SELECT);
7019
7020         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7021         I915_WRITE(_3D_CHICKEN,
7022                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7023
7024         /* WaDisable_RenderCache_OperationalFlush:snb */
7025         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7026
7027         /*
7028          * BSpec recoomends 8x4 when MSAA is used,
7029          * however in practice 16x4 seems fastest.
7030          *
7031          * Note that PS/WM thread counts depend on the WIZ hashing
7032          * disable bit, which we don't touch here, but it's good
7033          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7034          */
7035         I915_WRITE(GEN6_GT_MODE,
7036                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7037
7038         ilk_init_lp_watermarks(dev_priv);
7039
7040         I915_WRITE(CACHE_MODE_0,
7041                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7042
7043         I915_WRITE(GEN6_UCGCTL1,
7044                    I915_READ(GEN6_UCGCTL1) |
7045                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7046                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7047
7048         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7049          * gating disable must be set.  Failure to set it results in
7050          * flickering pixels due to Z write ordering failures after
7051          * some amount of runtime in the Mesa "fire" demo, and Unigine
7052          * Sanctuary and Tropics, and apparently anything else with
7053          * alpha test or pixel discard.
7054          *
7055          * According to the spec, bit 11 (RCCUNIT) must also be set,
7056          * but we didn't debug actual testcases to find it out.
7057          *
7058          * WaDisableRCCUnitClockGating:snb
7059          * WaDisableRCPBUnitClockGating:snb
7060          */
7061         I915_WRITE(GEN6_UCGCTL2,
7062                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7063                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7064
7065         /* WaStripsFansDisableFastClipPerformanceFix:snb */
7066         I915_WRITE(_3D_CHICKEN3,
7067                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7068
7069         /*
7070          * Bspec says:
7071          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7072          * 3DSTATE_SF number of SF output attributes is more than 16."
7073          */
7074         I915_WRITE(_3D_CHICKEN3,
7075                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7076
7077         /*
7078          * According to the spec the following bits should be
7079          * set in order to enable memory self-refresh and fbc:
7080          * The bit21 and bit22 of 0x42000
7081          * The bit21 and bit22 of 0x42004
7082          * The bit5 and bit7 of 0x42020
7083          * The bit14 of 0x70180
7084          * The bit14 of 0x71180
7085          *
7086          * WaFbcAsynchFlipDisableFbcQueue:snb
7087          */
7088         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7089                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7090                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7091         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7092                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7093                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7094         I915_WRITE(ILK_DSPCLK_GATE_D,
7095                    I915_READ(ILK_DSPCLK_GATE_D) |
7096                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7097                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7098
7099         g4x_disable_trickle_feed(dev_priv);
7100
7101         cpt_init_clock_gating(dev_priv);
7102
7103         gen6_check_mch_setup(dev_priv);
7104 }
7105
7106 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7107 {
7108         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7109
7110         /*
7111          * WaVSThreadDispatchOverride:ivb,vlv
7112          *
7113          * This actually overrides the dispatch
7114          * mode for all thread types.
7115          */
7116         reg &= ~GEN7_FF_SCHED_MASK;
7117         reg |= GEN7_FF_TS_SCHED_HW;
7118         reg |= GEN7_FF_VS_SCHED_HW;
7119         reg |= GEN7_FF_DS_SCHED_HW;
7120
7121         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7122 }
7123
7124 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7125 {
7126         /*
7127          * TODO: this bit should only be enabled when really needed, then
7128          * disabled when not needed anymore in order to save power.
7129          */
7130         if (HAS_PCH_LPT_LP(dev_priv))
7131                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7132                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7133                            PCH_LP_PARTITION_LEVEL_DISABLE);
7134
7135         /* WADPOClockGatingDisable:hsw */
7136         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7137                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7138                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7139 }
7140
7141 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7142 {
7143         if (HAS_PCH_LPT_LP(dev_priv)) {
7144                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7145
7146                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7147                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7148         }
7149 }
7150
7151 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7152                                    int general_prio_credits,
7153                                    int high_prio_credits)
7154 {
7155         u32 misccpctl;
7156
7157         /* WaTempDisableDOPClkGating:bdw */
7158         misccpctl = I915_READ(GEN7_MISCCPCTL);
7159         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7160
7161         I915_WRITE(GEN8_L3SQCREG1,
7162                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7163                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7164
7165         /*
7166          * Wait at least 100 clocks before re-enabling clock gating.
7167          * See the definition of L3SQCREG1 in BSpec.
7168          */
7169         POSTING_READ(GEN8_L3SQCREG1);
7170         udelay(1);
7171         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7172 }
7173
7174 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7175 {
7176         gen9_init_clock_gating(dev_priv);
7177
7178         /* WaDisableSDEUnitClockGating:kbl */
7179         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7180                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7181                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7182
7183         /* WaDisableGamClockGating:kbl */
7184         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7185                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7186                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7187
7188         /* WaFbcNukeOnHostModify:kbl */
7189         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7190                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7191 }
7192
7193 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7194 {
7195         gen9_init_clock_gating(dev_priv);
7196
7197         /* WAC6entrylatency:skl */
7198         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7199                    FBC_LLC_FULLY_OPEN);
7200
7201         /* WaFbcNukeOnHostModify:skl */
7202         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7203                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7204 }
7205
7206 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7207 {
7208         enum pipe pipe;
7209
7210         ilk_init_lp_watermarks(dev_priv);
7211
7212         /* WaSwitchSolVfFArbitrationPriority:bdw */
7213         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7214
7215         /* WaPsrDPAMaskVBlankInSRD:bdw */
7216         I915_WRITE(CHICKEN_PAR1_1,
7217                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7218
7219         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7220         for_each_pipe(dev_priv, pipe) {
7221                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7222                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7223                            BDW_DPRS_MASK_VBLANK_SRD);
7224         }
7225
7226         /* WaVSRefCountFullforceMissDisable:bdw */
7227         /* WaDSRefCountFullforceMissDisable:bdw */
7228         I915_WRITE(GEN7_FF_THREAD_MODE,
7229                    I915_READ(GEN7_FF_THREAD_MODE) &
7230                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7231
7232         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7233                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7234
7235         /* WaDisableSDEUnitClockGating:bdw */
7236         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7237                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7238
7239         /* WaProgramL3SqcReg1Default:bdw */
7240         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7241
7242         /*
7243          * WaGttCachingOffByDefault:bdw
7244          * GTT cache may not work with big pages, so if those
7245          * are ever enabled GTT cache may need to be disabled.
7246          */
7247         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7248
7249         /* WaKVMNotificationOnConfigChange:bdw */
7250         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7251                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7252
7253         lpt_init_clock_gating(dev_priv);
7254 }
7255
7256 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7257 {
7258         ilk_init_lp_watermarks(dev_priv);
7259
7260         /* L3 caching of data atomics doesn't work -- disable it. */
7261         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7262         I915_WRITE(HSW_ROW_CHICKEN3,
7263                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7264
7265         /* This is required by WaCatErrorRejectionIssue:hsw */
7266         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7267                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7268                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7269
7270         /* WaVSRefCountFullforceMissDisable:hsw */
7271         I915_WRITE(GEN7_FF_THREAD_MODE,
7272                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7273
7274         /* WaDisable_RenderCache_OperationalFlush:hsw */
7275         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7276
7277         /* enable HiZ Raw Stall Optimization */
7278         I915_WRITE(CACHE_MODE_0_GEN7,
7279                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7280
7281         /* WaDisable4x2SubspanOptimization:hsw */
7282         I915_WRITE(CACHE_MODE_1,
7283                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7284
7285         /*
7286          * BSpec recommends 8x4 when MSAA is used,
7287          * however in practice 16x4 seems fastest.
7288          *
7289          * Note that PS/WM thread counts depend on the WIZ hashing
7290          * disable bit, which we don't touch here, but it's good
7291          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7292          */
7293         I915_WRITE(GEN7_GT_MODE,
7294                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7295
7296         /* WaSampleCChickenBitEnable:hsw */
7297         I915_WRITE(HALF_SLICE_CHICKEN3,
7298                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7299
7300         /* WaSwitchSolVfFArbitrationPriority:hsw */
7301         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7302
7303         /* WaRsPkgCStateDisplayPMReq:hsw */
7304         I915_WRITE(CHICKEN_PAR1_1,
7305                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7306
7307         lpt_init_clock_gating(dev_priv);
7308 }
7309
7310 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7311 {
7312         uint32_t snpcr;
7313
7314         ilk_init_lp_watermarks(dev_priv);
7315
7316         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7317
7318         /* WaDisableEarlyCull:ivb */
7319         I915_WRITE(_3D_CHICKEN3,
7320                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7321
7322         /* WaDisableBackToBackFlipFix:ivb */
7323         I915_WRITE(IVB_CHICKEN3,
7324                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7325                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7326
7327         /* WaDisablePSDDualDispatchEnable:ivb */
7328         if (IS_IVB_GT1(dev_priv))
7329                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7330                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7331
7332         /* WaDisable_RenderCache_OperationalFlush:ivb */
7333         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7334
7335         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7336         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7337                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7338
7339         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7340         I915_WRITE(GEN7_L3CNTLREG1,
7341                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7342         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7343                    GEN7_WA_L3_CHICKEN_MODE);
7344         if (IS_IVB_GT1(dev_priv))
7345                 I915_WRITE(GEN7_ROW_CHICKEN2,
7346                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7347         else {
7348                 /* must write both registers */
7349                 I915_WRITE(GEN7_ROW_CHICKEN2,
7350                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7351                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7352                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7353         }
7354
7355         /* WaForceL3Serialization:ivb */
7356         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7357                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7358
7359         /*
7360          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7361          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7362          */
7363         I915_WRITE(GEN6_UCGCTL2,
7364                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7365
7366         /* This is required by WaCatErrorRejectionIssue:ivb */
7367         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7368                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7369                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7370
7371         g4x_disable_trickle_feed(dev_priv);
7372
7373         gen7_setup_fixed_func_scheduler(dev_priv);
7374
7375         if (0) { /* causes HiZ corruption on ivb:gt1 */
7376                 /* enable HiZ Raw Stall Optimization */
7377                 I915_WRITE(CACHE_MODE_0_GEN7,
7378                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7379         }
7380
7381         /* WaDisable4x2SubspanOptimization:ivb */
7382         I915_WRITE(CACHE_MODE_1,
7383                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7384
7385         /*
7386          * BSpec recommends 8x4 when MSAA is used,
7387          * however in practice 16x4 seems fastest.
7388          *
7389          * Note that PS/WM thread counts depend on the WIZ hashing
7390          * disable bit, which we don't touch here, but it's good
7391          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7392          */
7393         I915_WRITE(GEN7_GT_MODE,
7394                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7395
7396         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7397         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7398         snpcr |= GEN6_MBC_SNPCR_MED;
7399         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7400
7401         if (!HAS_PCH_NOP(dev_priv))
7402                 cpt_init_clock_gating(dev_priv);
7403
7404         gen6_check_mch_setup(dev_priv);
7405 }
7406
7407 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7408 {
7409         /* WaDisableEarlyCull:vlv */
7410         I915_WRITE(_3D_CHICKEN3,
7411                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7412
7413         /* WaDisableBackToBackFlipFix:vlv */
7414         I915_WRITE(IVB_CHICKEN3,
7415                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7416                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7417
7418         /* WaPsdDispatchEnable:vlv */
7419         /* WaDisablePSDDualDispatchEnable:vlv */
7420         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7421                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7422                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7423
7424         /* WaDisable_RenderCache_OperationalFlush:vlv */
7425         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7426
7427         /* WaForceL3Serialization:vlv */
7428         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7429                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7430
7431         /* WaDisableDopClockGating:vlv */
7432         I915_WRITE(GEN7_ROW_CHICKEN2,
7433                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7434
7435         /* This is required by WaCatErrorRejectionIssue:vlv */
7436         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7437                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7438                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7439
7440         gen7_setup_fixed_func_scheduler(dev_priv);
7441
7442         /*
7443          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7444          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7445          */
7446         I915_WRITE(GEN6_UCGCTL2,
7447                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7448
7449         /* WaDisableL3Bank2xClockGate:vlv
7450          * Disabling L3 clock gating- MMIO 940c[25] = 1
7451          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7452         I915_WRITE(GEN7_UCGCTL4,
7453                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7454
7455         /*
7456          * BSpec says this must be set, even though
7457          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7458          */
7459         I915_WRITE(CACHE_MODE_1,
7460                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7461
7462         /*
7463          * BSpec recommends 8x4 when MSAA is used,
7464          * however in practice 16x4 seems fastest.
7465          *
7466          * Note that PS/WM thread counts depend on the WIZ hashing
7467          * disable bit, which we don't touch here, but it's good
7468          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7469          */
7470         I915_WRITE(GEN7_GT_MODE,
7471                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7472
7473         /*
7474          * WaIncreaseL3CreditsForVLVB0:vlv
7475          * This is the hardware default actually.
7476          */
7477         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7478
7479         /*
7480          * WaDisableVLVClockGating_VBIIssue:vlv
7481          * Disable clock gating on th GCFG unit to prevent a delay
7482          * in the reporting of vblank events.
7483          */
7484         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7485 }
7486
7487 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7488 {
7489         /* WaVSRefCountFullforceMissDisable:chv */
7490         /* WaDSRefCountFullforceMissDisable:chv */
7491         I915_WRITE(GEN7_FF_THREAD_MODE,
7492                    I915_READ(GEN7_FF_THREAD_MODE) &
7493                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7494
7495         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7496         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7497                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7498
7499         /* WaDisableCSUnitClockGating:chv */
7500         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7501                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7502
7503         /* WaDisableSDEUnitClockGating:chv */
7504         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7505                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7506
7507         /*
7508          * WaProgramL3SqcReg1Default:chv
7509          * See gfxspecs/Related Documents/Performance Guide/
7510          * LSQC Setting Recommendations.
7511          */
7512         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7513
7514         /*
7515          * GTT cache may not work with big pages, so if those
7516          * are ever enabled GTT cache may need to be disabled.
7517          */
7518         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7519 }
7520
7521 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7522 {
7523         uint32_t dspclk_gate;
7524
7525         I915_WRITE(RENCLK_GATE_D1, 0);
7526         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7527                    GS_UNIT_CLOCK_GATE_DISABLE |
7528                    CL_UNIT_CLOCK_GATE_DISABLE);
7529         I915_WRITE(RAMCLK_GATE_D, 0);
7530         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7531                 OVRUNIT_CLOCK_GATE_DISABLE |
7532                 OVCUNIT_CLOCK_GATE_DISABLE;
7533         if (IS_GM45(dev_priv))
7534                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7535         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7536
7537         /* WaDisableRenderCachePipelinedFlush */
7538         I915_WRITE(CACHE_MODE_0,
7539                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7540
7541         /* WaDisable_RenderCache_OperationalFlush:g4x */
7542         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7543
7544         g4x_disable_trickle_feed(dev_priv);
7545 }
7546
7547 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7548 {
7549         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7550         I915_WRITE(RENCLK_GATE_D2, 0);
7551         I915_WRITE(DSPCLK_GATE_D, 0);
7552         I915_WRITE(RAMCLK_GATE_D, 0);
7553         I915_WRITE16(DEUC, 0);
7554         I915_WRITE(MI_ARB_STATE,
7555                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7556
7557         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7558         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7559 }
7560
7561 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7562 {
7563         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7564                    I965_RCC_CLOCK_GATE_DISABLE |
7565                    I965_RCPB_CLOCK_GATE_DISABLE |
7566                    I965_ISC_CLOCK_GATE_DISABLE |
7567                    I965_FBC_CLOCK_GATE_DISABLE);
7568         I915_WRITE(RENCLK_GATE_D2, 0);
7569         I915_WRITE(MI_ARB_STATE,
7570                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7571
7572         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7573         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7574 }
7575
7576 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7577 {
7578         u32 dstate = I915_READ(D_STATE);
7579
7580         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7581                 DSTATE_DOT_CLOCK_GATING;
7582         I915_WRITE(D_STATE, dstate);
7583
7584         if (IS_PINEVIEW(dev_priv))
7585                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7586
7587         /* IIR "flip pending" means done if this bit is set */
7588         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7589
7590         /* interrupts should cause a wake up from C3 */
7591         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7592
7593         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7594         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7595
7596         I915_WRITE(MI_ARB_STATE,
7597                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7598 }
7599
7600 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7601 {
7602         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7603
7604         /* interrupts should cause a wake up from C3 */
7605         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7606                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7607
7608         I915_WRITE(MEM_MODE,
7609                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7610 }
7611
7612 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7613 {
7614         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7615
7616         I915_WRITE(MEM_MODE,
7617                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7618                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7619 }
7620
7621 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7622 {
7623         dev_priv->display.init_clock_gating(dev_priv);
7624 }
7625
7626 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7627 {
7628         if (HAS_PCH_LPT(dev_priv))
7629                 lpt_suspend_hw(dev_priv);
7630 }
7631
7632 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7633 {
7634         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7635 }
7636
7637 /**
7638  * intel_init_clock_gating_hooks - setup the clock gating hooks
7639  * @dev_priv: device private
7640  *
7641  * Setup the hooks that configure which clocks of a given platform can be
7642  * gated and also apply various GT and display specific workarounds for these
7643  * platforms. Note that some GT specific workarounds are applied separately
7644  * when GPU contexts or batchbuffers start their execution.
7645  */
7646 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7647 {
7648         if (IS_SKYLAKE(dev_priv))
7649                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7650         else if (IS_KABYLAKE(dev_priv))
7651                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7652         else if (IS_BROXTON(dev_priv))
7653                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7654         else if (IS_BROADWELL(dev_priv))
7655                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7656         else if (IS_CHERRYVIEW(dev_priv))
7657                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7658         else if (IS_HASWELL(dev_priv))
7659                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7660         else if (IS_IVYBRIDGE(dev_priv))
7661                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7662         else if (IS_VALLEYVIEW(dev_priv))
7663                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7664         else if (IS_GEN6(dev_priv))
7665                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7666         else if (IS_GEN5(dev_priv))
7667                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7668         else if (IS_G4X(dev_priv))
7669                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7670         else if (IS_CRESTLINE(dev_priv))
7671                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7672         else if (IS_BROADWATER(dev_priv))
7673                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7674         else if (IS_GEN3(dev_priv))
7675                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7676         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7677                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7678         else if (IS_GEN2(dev_priv))
7679                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7680         else {
7681                 MISSING_CASE(INTEL_DEVID(dev_priv));
7682                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7683         }
7684 }
7685
7686 /* Set up chip specific power management-related functions */
7687 void intel_init_pm(struct drm_i915_private *dev_priv)
7688 {
7689         intel_fbc_init(dev_priv);
7690
7691         /* For cxsr */
7692         if (IS_PINEVIEW(dev_priv))
7693                 i915_pineview_get_mem_freq(dev_priv);
7694         else if (IS_GEN5(dev_priv))
7695                 i915_ironlake_get_mem_freq(dev_priv);
7696
7697         /* For FIFO watermark updates */
7698         if (INTEL_GEN(dev_priv) >= 9) {
7699                 skl_setup_wm_latency(dev_priv);
7700                 dev_priv->display.initial_watermarks = skl_initial_wm;
7701                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7702                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7703         } else if (HAS_PCH_SPLIT(dev_priv)) {
7704                 ilk_setup_wm_latency(dev_priv);
7705
7706                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7707                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7708                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7709                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7710                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7711                         dev_priv->display.compute_intermediate_wm =
7712                                 ilk_compute_intermediate_wm;
7713                         dev_priv->display.initial_watermarks =
7714                                 ilk_initial_watermarks;
7715                         dev_priv->display.optimize_watermarks =
7716                                 ilk_optimize_watermarks;
7717                 } else {
7718                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7719                                       "Disable CxSR\n");
7720                 }
7721         } else if (IS_CHERRYVIEW(dev_priv)) {
7722                 vlv_setup_wm_latency(dev_priv);
7723                 dev_priv->display.update_wm = vlv_update_wm;
7724         } else if (IS_VALLEYVIEW(dev_priv)) {
7725                 vlv_setup_wm_latency(dev_priv);
7726                 dev_priv->display.update_wm = vlv_update_wm;
7727         } else if (IS_PINEVIEW(dev_priv)) {
7728                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7729                                             dev_priv->is_ddr3,
7730                                             dev_priv->fsb_freq,
7731                                             dev_priv->mem_freq)) {
7732                         DRM_INFO("failed to find known CxSR latency "
7733                                  "(found ddr%s fsb freq %d, mem freq %d), "
7734                                  "disabling CxSR\n",
7735                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7736                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7737                         /* Disable CxSR and never update its watermark again */
7738                         intel_set_memory_cxsr(dev_priv, false);
7739                         dev_priv->display.update_wm = NULL;
7740                 } else
7741                         dev_priv->display.update_wm = pineview_update_wm;
7742         } else if (IS_G4X(dev_priv)) {
7743                 dev_priv->display.update_wm = g4x_update_wm;
7744         } else if (IS_GEN4(dev_priv)) {
7745                 dev_priv->display.update_wm = i965_update_wm;
7746         } else if (IS_GEN3(dev_priv)) {
7747                 dev_priv->display.update_wm = i9xx_update_wm;
7748                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7749         } else if (IS_GEN2(dev_priv)) {
7750                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7751                         dev_priv->display.update_wm = i845_update_wm;
7752                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7753                 } else {
7754                         dev_priv->display.update_wm = i9xx_update_wm;
7755                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7756                 }
7757         } else {
7758                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7759         }
7760 }
7761
7762 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7763 {
7764         uint32_t flags =
7765                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7766
7767         switch (flags) {
7768         case GEN6_PCODE_SUCCESS:
7769                 return 0;
7770         case GEN6_PCODE_UNIMPLEMENTED_CMD:
7771         case GEN6_PCODE_ILLEGAL_CMD:
7772                 return -ENXIO;
7773         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7774         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7775                 return -EOVERFLOW;
7776         case GEN6_PCODE_TIMEOUT:
7777                 return -ETIMEDOUT;
7778         default:
7779                 MISSING_CASE(flags)
7780                 return 0;
7781         }
7782 }
7783
7784 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7785 {
7786         uint32_t flags =
7787                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7788
7789         switch (flags) {
7790         case GEN6_PCODE_SUCCESS:
7791                 return 0;
7792         case GEN6_PCODE_ILLEGAL_CMD:
7793                 return -ENXIO;
7794         case GEN7_PCODE_TIMEOUT:
7795                 return -ETIMEDOUT;
7796         case GEN7_PCODE_ILLEGAL_DATA:
7797                 return -EINVAL;
7798         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7799                 return -EOVERFLOW;
7800         default:
7801                 MISSING_CASE(flags);
7802                 return 0;
7803         }
7804 }
7805
7806 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7807 {
7808         int status;
7809
7810         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7811
7812         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7813          * use te fw I915_READ variants to reduce the amount of work
7814          * required when reading/writing.
7815          */
7816
7817         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7818                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7819                 return -EAGAIN;
7820         }
7821
7822         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7823         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7824         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7825
7826         if (intel_wait_for_register_fw(dev_priv,
7827                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7828                                        500)) {
7829                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7830                 return -ETIMEDOUT;
7831         }
7832
7833         *val = I915_READ_FW(GEN6_PCODE_DATA);
7834         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7835
7836         if (INTEL_GEN(dev_priv) > 6)
7837                 status = gen7_check_mailbox_status(dev_priv);
7838         else
7839                 status = gen6_check_mailbox_status(dev_priv);
7840
7841         if (status) {
7842                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7843                                  status);
7844                 return status;
7845         }
7846
7847         return 0;
7848 }
7849
7850 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7851                             u32 mbox, u32 val)
7852 {
7853         int status;
7854
7855         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7856
7857         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7858          * use te fw I915_READ variants to reduce the amount of work
7859          * required when reading/writing.
7860          */
7861
7862         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7863                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7864                 return -EAGAIN;
7865         }
7866
7867         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7868         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7869
7870         if (intel_wait_for_register_fw(dev_priv,
7871                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7872                                        500)) {
7873                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7874                 return -ETIMEDOUT;
7875         }
7876
7877         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7878
7879         if (INTEL_GEN(dev_priv) > 6)
7880                 status = gen7_check_mailbox_status(dev_priv);
7881         else
7882                 status = gen6_check_mailbox_status(dev_priv);
7883
7884         if (status) {
7885                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7886                                  status);
7887                 return status;
7888         }
7889
7890         return 0;
7891 }
7892
7893 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7894 {
7895         /*
7896          * N = val - 0xb7
7897          * Slow = Fast = GPLL ref * N
7898          */
7899         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7900 }
7901
7902 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7903 {
7904         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7905 }
7906
7907 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7908 {
7909         /*
7910          * N = val / 2
7911          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7912          */
7913         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7914 }
7915
7916 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7917 {
7918         /* CHV needs even values */
7919         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7920 }
7921
7922 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7923 {
7924         if (IS_GEN9(dev_priv))
7925                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7926                                          GEN9_FREQ_SCALER);
7927         else if (IS_CHERRYVIEW(dev_priv))
7928                 return chv_gpu_freq(dev_priv, val);
7929         else if (IS_VALLEYVIEW(dev_priv))
7930                 return byt_gpu_freq(dev_priv, val);
7931         else
7932                 return val * GT_FREQUENCY_MULTIPLIER;
7933 }
7934
7935 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7936 {
7937         if (IS_GEN9(dev_priv))
7938                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7939                                          GT_FREQUENCY_MULTIPLIER);
7940         else if (IS_CHERRYVIEW(dev_priv))
7941                 return chv_freq_opcode(dev_priv, val);
7942         else if (IS_VALLEYVIEW(dev_priv))
7943                 return byt_freq_opcode(dev_priv, val);
7944         else
7945                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7946 }
7947
7948 struct request_boost {
7949         struct work_struct work;
7950         struct drm_i915_gem_request *req;
7951 };
7952
7953 static void __intel_rps_boost_work(struct work_struct *work)
7954 {
7955         struct request_boost *boost = container_of(work, struct request_boost, work);
7956         struct drm_i915_gem_request *req = boost->req;
7957
7958         if (!i915_gem_request_completed(req))
7959                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7960
7961         i915_gem_request_put(req);
7962         kfree(boost);
7963 }
7964
7965 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7966 {
7967         struct request_boost *boost;
7968
7969         if (req == NULL || INTEL_GEN(req->i915) < 6)
7970                 return;
7971
7972         if (i915_gem_request_completed(req))
7973                 return;
7974
7975         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7976         if (boost == NULL)
7977                 return;
7978
7979         boost->req = i915_gem_request_get(req);
7980
7981         INIT_WORK(&boost->work, __intel_rps_boost_work);
7982         queue_work(req->i915->wq, &boost->work);
7983 }
7984
7985 void intel_pm_setup(struct drm_device *dev)
7986 {
7987         struct drm_i915_private *dev_priv = to_i915(dev);
7988
7989         mutex_init(&dev_priv->rps.hw_lock);
7990         spin_lock_init(&dev_priv->rps.client_lock);
7991
7992         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
7993                           __intel_autoenable_gt_powersave);
7994         INIT_LIST_HEAD(&dev_priv->rps.clients);
7995
7996         dev_priv->pm.suspended = false;
7997         atomic_set(&dev_priv->pm.wakeref_count, 0);
7998 }