drm/i915/skl+: unify cpp value in WM calculation
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 #define INTEL_RC6_ENABLE                        (1<<0)
56 #define INTEL_RC6p_ENABLE                       (1<<1)
57 #define INTEL_RC6pp_ENABLE                      (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
62         I915_WRITE(CHICKEN_PAR1_1,
63                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65         I915_WRITE(GEN8_CONFIG0,
66                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69         I915_WRITE(GEN8_CHICKEN_DCPR_1,
70                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
73         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75                    DISP_FBC_WM_DIS |
76                    DISP_FBC_MEMORY_WAKE);
77
78         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80                    ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85         gen9_init_clock_gating(dev_priv);
86
87         /* WaDisableSDEUnitClockGating:bxt */
88         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91         /*
92          * FIXME:
93          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94          */
95         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98         /*
99          * Wa: Backlight PWM may stop in the asserted state, causing backlight
100          * to stay fully on.
101          */
102         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
103                    PWM1_GATING_DIS | PWM2_GATING_DIS);
104 }
105
106 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
107 {
108         gen9_init_clock_gating(dev_priv);
109
110         /*
111          * WaDisablePWMClockGating:glk
112          * Backlight PWM may stop in the asserted state, causing backlight
113          * to stay fully on.
114          */
115         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116                    PWM1_GATING_DIS | PWM2_GATING_DIS);
117
118         /* WaDDIIOTimeout:glk */
119         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
120                 u32 val = I915_READ(CHICKEN_MISC_2);
121                 val &= ~(GLK_CL0_PWR_DOWN |
122                          GLK_CL1_PWR_DOWN |
123                          GLK_CL2_PWR_DOWN);
124                 I915_WRITE(CHICKEN_MISC_2, val);
125         }
126
127 }
128
129 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 {
131         u32 tmp;
132
133         tmp = I915_READ(CLKCFG);
134
135         switch (tmp & CLKCFG_FSB_MASK) {
136         case CLKCFG_FSB_533:
137                 dev_priv->fsb_freq = 533; /* 133*4 */
138                 break;
139         case CLKCFG_FSB_800:
140                 dev_priv->fsb_freq = 800; /* 200*4 */
141                 break;
142         case CLKCFG_FSB_667:
143                 dev_priv->fsb_freq =  667; /* 167*4 */
144                 break;
145         case CLKCFG_FSB_400:
146                 dev_priv->fsb_freq = 400; /* 100*4 */
147                 break;
148         }
149
150         switch (tmp & CLKCFG_MEM_MASK) {
151         case CLKCFG_MEM_533:
152                 dev_priv->mem_freq = 533;
153                 break;
154         case CLKCFG_MEM_667:
155                 dev_priv->mem_freq = 667;
156                 break;
157         case CLKCFG_MEM_800:
158                 dev_priv->mem_freq = 800;
159                 break;
160         }
161
162         /* detect pineview DDR3 setting */
163         tmp = I915_READ(CSHRDDR3CTL);
164         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165 }
166
167 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 {
169         u16 ddrpll, csipll;
170
171         ddrpll = I915_READ16(DDRMPLL1);
172         csipll = I915_READ16(CSIPLL0);
173
174         switch (ddrpll & 0xff) {
175         case 0xc:
176                 dev_priv->mem_freq = 800;
177                 break;
178         case 0x10:
179                 dev_priv->mem_freq = 1066;
180                 break;
181         case 0x14:
182                 dev_priv->mem_freq = 1333;
183                 break;
184         case 0x18:
185                 dev_priv->mem_freq = 1600;
186                 break;
187         default:
188                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
189                                  ddrpll & 0xff);
190                 dev_priv->mem_freq = 0;
191                 break;
192         }
193
194         dev_priv->ips.r_t = dev_priv->mem_freq;
195
196         switch (csipll & 0x3ff) {
197         case 0x00c:
198                 dev_priv->fsb_freq = 3200;
199                 break;
200         case 0x00e:
201                 dev_priv->fsb_freq = 3733;
202                 break;
203         case 0x010:
204                 dev_priv->fsb_freq = 4266;
205                 break;
206         case 0x012:
207                 dev_priv->fsb_freq = 4800;
208                 break;
209         case 0x014:
210                 dev_priv->fsb_freq = 5333;
211                 break;
212         case 0x016:
213                 dev_priv->fsb_freq = 5866;
214                 break;
215         case 0x018:
216                 dev_priv->fsb_freq = 6400;
217                 break;
218         default:
219                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
220                                  csipll & 0x3ff);
221                 dev_priv->fsb_freq = 0;
222                 break;
223         }
224
225         if (dev_priv->fsb_freq == 3200) {
226                 dev_priv->ips.c_m = 0;
227         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228                 dev_priv->ips.c_m = 1;
229         } else {
230                 dev_priv->ips.c_m = 2;
231         }
232 }
233
234 static const struct cxsr_latency cxsr_latency_table[] = {
235         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
236         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
237         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
238         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
239         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
240
241         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
242         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
243         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
244         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
245         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
246
247         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
248         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
249         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
250         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
251         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
252
253         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
254         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
255         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
256         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
257         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
258
259         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
260         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
261         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
262         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
263         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
264
265         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
266         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
267         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
268         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
269         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
270 };
271
272 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
273                                                          bool is_ddr3,
274                                                          int fsb,
275                                                          int mem)
276 {
277         const struct cxsr_latency *latency;
278         int i;
279
280         if (fsb == 0 || mem == 0)
281                 return NULL;
282
283         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
284                 latency = &cxsr_latency_table[i];
285                 if (is_desktop == latency->is_desktop &&
286                     is_ddr3 == latency->is_ddr3 &&
287                     fsb == latency->fsb_freq && mem == latency->mem_freq)
288                         return latency;
289         }
290
291         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
292
293         return NULL;
294 }
295
296 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
297 {
298         u32 val;
299
300         mutex_lock(&dev_priv->rps.hw_lock);
301
302         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
303         if (enable)
304                 val &= ~FORCE_DDR_HIGH_FREQ;
305         else
306                 val |= FORCE_DDR_HIGH_FREQ;
307         val &= ~FORCE_DDR_LOW_FREQ;
308         val |= FORCE_DDR_FREQ_REQ_ACK;
309         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
310
311         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
312                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
313                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
314
315         mutex_unlock(&dev_priv->rps.hw_lock);
316 }
317
318 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
319 {
320         u32 val;
321
322         mutex_lock(&dev_priv->rps.hw_lock);
323
324         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
325         if (enable)
326                 val |= DSP_MAXFIFO_PM5_ENABLE;
327         else
328                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
329         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
330
331         mutex_unlock(&dev_priv->rps.hw_lock);
332 }
333
334 #define FW_WM(value, plane) \
335         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
336
337 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338 {
339         bool was_enabled;
340         u32 val;
341
342         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345                 POSTING_READ(FW_BLC_SELF_VLV);
346         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349                 POSTING_READ(FW_BLC_SELF);
350         } else if (IS_PINEVIEW(dev_priv)) {
351                 val = I915_READ(DSPFW3);
352                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
353                 if (enable)
354                         val |= PINEVIEW_SELF_REFRESH_EN;
355                 else
356                         val &= ~PINEVIEW_SELF_REFRESH_EN;
357                 I915_WRITE(DSPFW3, val);
358                 POSTING_READ(DSPFW3);
359         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
362                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
363                 I915_WRITE(FW_BLC_SELF, val);
364                 POSTING_READ(FW_BLC_SELF);
365         } else if (IS_I915GM(dev_priv)) {
366                 /*
367                  * FIXME can't find a bit like this for 915G, and
368                  * and yet it does have the related watermark in
369                  * FW_BLC_SELF. What's going on?
370                  */
371                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
373                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
374                 I915_WRITE(INSTPM, val);
375                 POSTING_READ(INSTPM);
376         } else {
377                 return false;
378         }
379
380         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
381
382         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
383                       enableddisabled(enable),
384                       enableddisabled(was_enabled));
385
386         return was_enabled;
387 }
388
389 /**
390  * intel_set_memory_cxsr - Configure CxSR state
391  * @dev_priv: i915 device
392  * @enable: Allow vs. disallow CxSR
393  *
394  * Allow or disallow the system to enter a special CxSR
395  * (C-state self refresh) state. What typically happens in CxSR mode
396  * is that several display FIFOs may get combined into a single larger
397  * FIFO for a particular plane (so called max FIFO mode) to allow the
398  * system to defer memory fetches longer, and the memory will enter
399  * self refresh.
400  *
401  * Note that enabling CxSR does not guarantee that the system enter
402  * this special mode, nor does it guarantee that the system stays
403  * in that mode once entered. So this just allows/disallows the system
404  * to autonomously utilize the CxSR mode. Other factors such as core
405  * C-states will affect when/if the system actually enters/exits the
406  * CxSR mode.
407  *
408  * Note that on VLV/CHV this actually only controls the max FIFO mode,
409  * and the system is free to enter/exit memory self refresh at any time
410  * even when the use of CxSR has been disallowed.
411  *
412  * While the system is actually in the CxSR/max FIFO mode, some plane
413  * control registers will not get latched on vblank. Thus in order to
414  * guarantee the system will respond to changes in the plane registers
415  * we must always disallow CxSR prior to making changes to those registers.
416  * Unfortunately the system will re-evaluate the CxSR conditions at
417  * frame start which happens after vblank start (which is when the plane
418  * registers would get latched), so we can't proceed with the plane update
419  * during the same frame where we disallowed CxSR.
420  *
421  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
422  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
423  * the hardware w.r.t. HPLL SR when writing to plane registers.
424  * Disallowing just CxSR is sufficient.
425  */
426 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427 {
428         bool ret;
429
430         mutex_lock(&dev_priv->wm.wm_mutex);
431         ret = _intel_set_memory_cxsr(dev_priv, enable);
432         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
433                 dev_priv->wm.vlv.cxsr = enable;
434         else if (IS_G4X(dev_priv))
435                 dev_priv->wm.g4x.cxsr = enable;
436         mutex_unlock(&dev_priv->wm.wm_mutex);
437
438         return ret;
439 }
440
441 /*
442  * Latency for FIFO fetches is dependent on several factors:
443  *   - memory configuration (speed, channels)
444  *   - chipset
445  *   - current MCH state
446  * It can be fairly high in some situations, so here we assume a fairly
447  * pessimal value.  It's a tradeoff between extra memory fetches (if we
448  * set this value too high, the FIFO will fetch frequently to stay full)
449  * and power consumption (set it too low to save power and we might see
450  * FIFO underruns and display "flicker").
451  *
452  * A value of 5us seems to be a good balance; safe for very low end
453  * platforms but not overly aggressive on lower latency configs.
454  */
455 static const int pessimal_latency_ns = 5000;
456
457 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
458         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
459
460 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
461 {
462         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
463         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
464         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
465         enum pipe pipe = crtc->pipe;
466         int sprite0_start, sprite1_start;
467
468         switch (pipe) {
469                 uint32_t dsparb, dsparb2, dsparb3;
470         case PIPE_A:
471                 dsparb = I915_READ(DSPARB);
472                 dsparb2 = I915_READ(DSPARB2);
473                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
474                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
475                 break;
476         case PIPE_B:
477                 dsparb = I915_READ(DSPARB);
478                 dsparb2 = I915_READ(DSPARB2);
479                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
480                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
481                 break;
482         case PIPE_C:
483                 dsparb2 = I915_READ(DSPARB2);
484                 dsparb3 = I915_READ(DSPARB3);
485                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
486                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
487                 break;
488         default:
489                 MISSING_CASE(pipe);
490                 return;
491         }
492
493         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
494         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
495         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
496         fifo_state->plane[PLANE_CURSOR] = 63;
497 }
498
499 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
500 {
501         uint32_t dsparb = I915_READ(DSPARB);
502         int size;
503
504         size = dsparb & 0x7f;
505         if (plane)
506                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
507
508         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
509                       plane ? "B" : "A", size);
510
511         return size;
512 }
513
514 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
515 {
516         uint32_t dsparb = I915_READ(DSPARB);
517         int size;
518
519         size = dsparb & 0x1ff;
520         if (plane)
521                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
522         size >>= 1; /* Convert to cachelines */
523
524         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
525                       plane ? "B" : "A", size);
526
527         return size;
528 }
529
530 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
531 {
532         uint32_t dsparb = I915_READ(DSPARB);
533         int size;
534
535         size = dsparb & 0x7f;
536         size >>= 2; /* Convert to cachelines */
537
538         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
539                       plane ? "B" : "A",
540                       size);
541
542         return size;
543 }
544
545 /* Pineview has different values for various configs */
546 static const struct intel_watermark_params pineview_display_wm = {
547         .fifo_size = PINEVIEW_DISPLAY_FIFO,
548         .max_wm = PINEVIEW_MAX_WM,
549         .default_wm = PINEVIEW_DFT_WM,
550         .guard_size = PINEVIEW_GUARD_WM,
551         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
552 };
553 static const struct intel_watermark_params pineview_display_hplloff_wm = {
554         .fifo_size = PINEVIEW_DISPLAY_FIFO,
555         .max_wm = PINEVIEW_MAX_WM,
556         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
557         .guard_size = PINEVIEW_GUARD_WM,
558         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 };
560 static const struct intel_watermark_params pineview_cursor_wm = {
561         .fifo_size = PINEVIEW_CURSOR_FIFO,
562         .max_wm = PINEVIEW_CURSOR_MAX_WM,
563         .default_wm = PINEVIEW_CURSOR_DFT_WM,
564         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
565         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 };
567 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
568         .fifo_size = PINEVIEW_CURSOR_FIFO,
569         .max_wm = PINEVIEW_CURSOR_MAX_WM,
570         .default_wm = PINEVIEW_CURSOR_DFT_WM,
571         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
572         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 };
574 static const struct intel_watermark_params i965_cursor_wm_info = {
575         .fifo_size = I965_CURSOR_FIFO,
576         .max_wm = I965_CURSOR_MAX_WM,
577         .default_wm = I965_CURSOR_DFT_WM,
578         .guard_size = 2,
579         .cacheline_size = I915_FIFO_LINE_SIZE,
580 };
581 static const struct intel_watermark_params i945_wm_info = {
582         .fifo_size = I945_FIFO_SIZE,
583         .max_wm = I915_MAX_WM,
584         .default_wm = 1,
585         .guard_size = 2,
586         .cacheline_size = I915_FIFO_LINE_SIZE,
587 };
588 static const struct intel_watermark_params i915_wm_info = {
589         .fifo_size = I915_FIFO_SIZE,
590         .max_wm = I915_MAX_WM,
591         .default_wm = 1,
592         .guard_size = 2,
593         .cacheline_size = I915_FIFO_LINE_SIZE,
594 };
595 static const struct intel_watermark_params i830_a_wm_info = {
596         .fifo_size = I855GM_FIFO_SIZE,
597         .max_wm = I915_MAX_WM,
598         .default_wm = 1,
599         .guard_size = 2,
600         .cacheline_size = I830_FIFO_LINE_SIZE,
601 };
602 static const struct intel_watermark_params i830_bc_wm_info = {
603         .fifo_size = I855GM_FIFO_SIZE,
604         .max_wm = I915_MAX_WM/2,
605         .default_wm = 1,
606         .guard_size = 2,
607         .cacheline_size = I830_FIFO_LINE_SIZE,
608 };
609 static const struct intel_watermark_params i845_wm_info = {
610         .fifo_size = I830_FIFO_SIZE,
611         .max_wm = I915_MAX_WM,
612         .default_wm = 1,
613         .guard_size = 2,
614         .cacheline_size = I830_FIFO_LINE_SIZE,
615 };
616
617 /**
618  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
619  * @pixel_rate: Pipe pixel rate in kHz
620  * @cpp: Plane bytes per pixel
621  * @latency: Memory wakeup latency in 0.1us units
622  *
623  * Compute the watermark using the method 1 or "small buffer"
624  * formula. The caller may additonally add extra cachelines
625  * to account for TLB misses and clock crossings.
626  *
627  * This method is concerned with the short term drain rate
628  * of the FIFO, ie. it does not account for blanking periods
629  * which would effectively reduce the average drain rate across
630  * a longer period. The name "small" refers to the fact the
631  * FIFO is relatively small compared to the amount of data
632  * fetched.
633  *
634  * The FIFO level vs. time graph might look something like:
635  *
636  *   |\   |\
637  *   | \  | \
638  * __---__---__ (- plane active, _ blanking)
639  * -> time
640  *
641  * or perhaps like this:
642  *
643  *   |\|\  |\|\
644  * __----__----__ (- plane active, _ blanking)
645  * -> time
646  *
647  * Returns:
648  * The watermark in bytes
649  */
650 static unsigned int intel_wm_method1(unsigned int pixel_rate,
651                                      unsigned int cpp,
652                                      unsigned int latency)
653 {
654         uint64_t ret;
655
656         ret = (uint64_t) pixel_rate * cpp * latency;
657         ret = DIV_ROUND_UP_ULL(ret, 10000);
658
659         return ret;
660 }
661
662 /**
663  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
664  * @pixel_rate: Pipe pixel rate in kHz
665  * @htotal: Pipe horizontal total
666  * @width: Plane width in pixels
667  * @cpp: Plane bytes per pixel
668  * @latency: Memory wakeup latency in 0.1us units
669  *
670  * Compute the watermark using the method 2 or "large buffer"
671  * formula. The caller may additonally add extra cachelines
672  * to account for TLB misses and clock crossings.
673  *
674  * This method is concerned with the long term drain rate
675  * of the FIFO, ie. it does account for blanking periods
676  * which effectively reduce the average drain rate across
677  * a longer period. The name "large" refers to the fact the
678  * FIFO is relatively large compared to the amount of data
679  * fetched.
680  *
681  * The FIFO level vs. time graph might look something like:
682  *
683  *    |\___       |\___
684  *    |    \___   |    \___
685  *    |        \  |        \
686  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
687  * -> time
688  *
689  * Returns:
690  * The watermark in bytes
691  */
692 static unsigned int intel_wm_method2(unsigned int pixel_rate,
693                                      unsigned int htotal,
694                                      unsigned int width,
695                                      unsigned int cpp,
696                                      unsigned int latency)
697 {
698         unsigned int ret;
699
700         /*
701          * FIXME remove once all users are computing
702          * watermarks in the correct place.
703          */
704         if (WARN_ON_ONCE(htotal == 0))
705                 htotal = 1;
706
707         ret = (latency * pixel_rate) / (htotal * 10000);
708         ret = (ret + 1) * width * cpp;
709
710         return ret;
711 }
712
713 /**
714  * intel_calculate_wm - calculate watermark level
715  * @pixel_rate: pixel clock
716  * @wm: chip FIFO params
717  * @cpp: bytes per pixel
718  * @latency_ns: memory latency for the platform
719  *
720  * Calculate the watermark level (the level at which the display plane will
721  * start fetching from memory again).  Each chip has a different display
722  * FIFO size and allocation, so the caller needs to figure that out and pass
723  * in the correct intel_watermark_params structure.
724  *
725  * As the pixel clock runs, the FIFO will be drained at a rate that depends
726  * on the pixel size.  When it reaches the watermark level, it'll start
727  * fetching FIFO line sized based chunks from memory until the FIFO fills
728  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
729  * will occur, and a display engine hang could result.
730  */
731 static unsigned int intel_calculate_wm(int pixel_rate,
732                                        const struct intel_watermark_params *wm,
733                                        int fifo_size, int cpp,
734                                        unsigned int latency_ns)
735 {
736         int entries, wm_size;
737
738         /*
739          * Note: we need to make sure we don't overflow for various clock &
740          * latency values.
741          * clocks go from a few thousand to several hundred thousand.
742          * latency is usually a few thousand
743          */
744         entries = intel_wm_method1(pixel_rate, cpp,
745                                    latency_ns / 100);
746         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
747                 wm->guard_size;
748         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
749
750         wm_size = fifo_size - entries;
751         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
752
753         /* Don't promote wm_size to unsigned... */
754         if (wm_size > wm->max_wm)
755                 wm_size = wm->max_wm;
756         if (wm_size <= 0)
757                 wm_size = wm->default_wm;
758
759         /*
760          * Bspec seems to indicate that the value shouldn't be lower than
761          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
762          * Lets go for 8 which is the burst size since certain platforms
763          * already use a hardcoded 8 (which is what the spec says should be
764          * done).
765          */
766         if (wm_size <= 8)
767                 wm_size = 8;
768
769         return wm_size;
770 }
771
772 static bool is_disabling(int old, int new, int threshold)
773 {
774         return old >= threshold && new < threshold;
775 }
776
777 static bool is_enabling(int old, int new, int threshold)
778 {
779         return old < threshold && new >= threshold;
780 }
781
782 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
783 {
784         return dev_priv->wm.max_level + 1;
785 }
786
787 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
788                                    const struct intel_plane_state *plane_state)
789 {
790         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
791
792         /* FIXME check the 'enable' instead */
793         if (!crtc_state->base.active)
794                 return false;
795
796         /*
797          * Treat cursor with fb as always visible since cursor updates
798          * can happen faster than the vrefresh rate, and the current
799          * watermark code doesn't handle that correctly. Cursor updates
800          * which set/clear the fb or change the cursor size are going
801          * to get throttled by intel_legacy_cursor_update() to work
802          * around this problem with the watermark code.
803          */
804         if (plane->id == PLANE_CURSOR)
805                 return plane_state->base.fb != NULL;
806         else
807                 return plane_state->base.visible;
808 }
809
810 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
811 {
812         struct intel_crtc *crtc, *enabled = NULL;
813
814         for_each_intel_crtc(&dev_priv->drm, crtc) {
815                 if (intel_crtc_active(crtc)) {
816                         if (enabled)
817                                 return NULL;
818                         enabled = crtc;
819                 }
820         }
821
822         return enabled;
823 }
824
825 static void pineview_update_wm(struct intel_crtc *unused_crtc)
826 {
827         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
828         struct intel_crtc *crtc;
829         const struct cxsr_latency *latency;
830         u32 reg;
831         unsigned int wm;
832
833         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
834                                          dev_priv->is_ddr3,
835                                          dev_priv->fsb_freq,
836                                          dev_priv->mem_freq);
837         if (!latency) {
838                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
839                 intel_set_memory_cxsr(dev_priv, false);
840                 return;
841         }
842
843         crtc = single_enabled_crtc(dev_priv);
844         if (crtc) {
845                 const struct drm_display_mode *adjusted_mode =
846                         &crtc->config->base.adjusted_mode;
847                 const struct drm_framebuffer *fb =
848                         crtc->base.primary->state->fb;
849                 int cpp = fb->format->cpp[0];
850                 int clock = adjusted_mode->crtc_clock;
851
852                 /* Display SR */
853                 wm = intel_calculate_wm(clock, &pineview_display_wm,
854                                         pineview_display_wm.fifo_size,
855                                         cpp, latency->display_sr);
856                 reg = I915_READ(DSPFW1);
857                 reg &= ~DSPFW_SR_MASK;
858                 reg |= FW_WM(wm, SR);
859                 I915_WRITE(DSPFW1, reg);
860                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
861
862                 /* cursor SR */
863                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
864                                         pineview_display_wm.fifo_size,
865                                         4, latency->cursor_sr);
866                 reg = I915_READ(DSPFW3);
867                 reg &= ~DSPFW_CURSOR_SR_MASK;
868                 reg |= FW_WM(wm, CURSOR_SR);
869                 I915_WRITE(DSPFW3, reg);
870
871                 /* Display HPLL off SR */
872                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
873                                         pineview_display_hplloff_wm.fifo_size,
874                                         cpp, latency->display_hpll_disable);
875                 reg = I915_READ(DSPFW3);
876                 reg &= ~DSPFW_HPLL_SR_MASK;
877                 reg |= FW_WM(wm, HPLL_SR);
878                 I915_WRITE(DSPFW3, reg);
879
880                 /* cursor HPLL off SR */
881                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
882                                         pineview_display_hplloff_wm.fifo_size,
883                                         4, latency->cursor_hpll_disable);
884                 reg = I915_READ(DSPFW3);
885                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
886                 reg |= FW_WM(wm, HPLL_CURSOR);
887                 I915_WRITE(DSPFW3, reg);
888                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
889
890                 intel_set_memory_cxsr(dev_priv, true);
891         } else {
892                 intel_set_memory_cxsr(dev_priv, false);
893         }
894 }
895
896 /*
897  * Documentation says:
898  * "If the line size is small, the TLB fetches can get in the way of the
899  *  data fetches, causing some lag in the pixel data return which is not
900  *  accounted for in the above formulas. The following adjustment only
901  *  needs to be applied if eight whole lines fit in the buffer at once.
902  *  The WM is adjusted upwards by the difference between the FIFO size
903  *  and the size of 8 whole lines. This adjustment is always performed
904  *  in the actual pixel depth regardless of whether FBC is enabled or not."
905  */
906 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
907 {
908         int tlb_miss = fifo_size * 64 - width * cpp * 8;
909
910         return max(0, tlb_miss);
911 }
912
913 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
914                                 const struct g4x_wm_values *wm)
915 {
916         enum pipe pipe;
917
918         for_each_pipe(dev_priv, pipe)
919                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
920
921         I915_WRITE(DSPFW1,
922                    FW_WM(wm->sr.plane, SR) |
923                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
924                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
925                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
926         I915_WRITE(DSPFW2,
927                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
928                    FW_WM(wm->sr.fbc, FBC_SR) |
929                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
930                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
931                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
932                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
933         I915_WRITE(DSPFW3,
934                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
935                    FW_WM(wm->sr.cursor, CURSOR_SR) |
936                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
937                    FW_WM(wm->hpll.plane, HPLL_SR));
938
939         POSTING_READ(DSPFW1);
940 }
941
942 #define FW_WM_VLV(value, plane) \
943         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
944
945 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
946                                 const struct vlv_wm_values *wm)
947 {
948         enum pipe pipe;
949
950         for_each_pipe(dev_priv, pipe) {
951                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
952
953                 I915_WRITE(VLV_DDL(pipe),
954                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
955                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
956                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
957                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
958         }
959
960         /*
961          * Zero the (unused) WM1 watermarks, and also clear all the
962          * high order bits so that there are no out of bounds values
963          * present in the registers during the reprogramming.
964          */
965         I915_WRITE(DSPHOWM, 0);
966         I915_WRITE(DSPHOWM1, 0);
967         I915_WRITE(DSPFW4, 0);
968         I915_WRITE(DSPFW5, 0);
969         I915_WRITE(DSPFW6, 0);
970
971         I915_WRITE(DSPFW1,
972                    FW_WM(wm->sr.plane, SR) |
973                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
974                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
975                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
976         I915_WRITE(DSPFW2,
977                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
978                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
979                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
980         I915_WRITE(DSPFW3,
981                    FW_WM(wm->sr.cursor, CURSOR_SR));
982
983         if (IS_CHERRYVIEW(dev_priv)) {
984                 I915_WRITE(DSPFW7_CHV,
985                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
986                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
987                 I915_WRITE(DSPFW8_CHV,
988                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
989                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
990                 I915_WRITE(DSPFW9_CHV,
991                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
992                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
993                 I915_WRITE(DSPHOWM,
994                            FW_WM(wm->sr.plane >> 9, SR_HI) |
995                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
996                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
997                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
998                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
999                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1000                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1001                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1002                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1003                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1004         } else {
1005                 I915_WRITE(DSPFW7,
1006                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1007                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1008                 I915_WRITE(DSPHOWM,
1009                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1010                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1011                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1012                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1013                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1014                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1015                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1016         }
1017
1018         POSTING_READ(DSPFW1);
1019 }
1020
1021 #undef FW_WM_VLV
1022
1023 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1024 {
1025         /* all latencies in usec */
1026         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1027         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1028         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1029
1030         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1031 }
1032
1033 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1034 {
1035         /*
1036          * DSPCNTR[13] supposedly controls whether the
1037          * primary plane can use the FIFO space otherwise
1038          * reserved for the sprite plane. It's not 100% clear
1039          * what the actual FIFO size is, but it looks like we
1040          * can happily set both primary and sprite watermarks
1041          * up to 127 cachelines. So that would seem to mean
1042          * that either DSPCNTR[13] doesn't do anything, or that
1043          * the total FIFO is >= 256 cachelines in size. Either
1044          * way, we don't seem to have to worry about this
1045          * repartitioning as the maximum watermark value the
1046          * register can hold for each plane is lower than the
1047          * minimum FIFO size.
1048          */
1049         switch (plane_id) {
1050         case PLANE_CURSOR:
1051                 return 63;
1052         case PLANE_PRIMARY:
1053                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1054         case PLANE_SPRITE0:
1055                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1056         default:
1057                 MISSING_CASE(plane_id);
1058                 return 0;
1059         }
1060 }
1061
1062 static int g4x_fbc_fifo_size(int level)
1063 {
1064         switch (level) {
1065         case G4X_WM_LEVEL_SR:
1066                 return 7;
1067         case G4X_WM_LEVEL_HPLL:
1068                 return 15;
1069         default:
1070                 MISSING_CASE(level);
1071                 return 0;
1072         }
1073 }
1074
1075 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1076                                const struct intel_plane_state *plane_state,
1077                                int level)
1078 {
1079         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1080         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1081         const struct drm_display_mode *adjusted_mode =
1082                 &crtc_state->base.adjusted_mode;
1083         int clock, htotal, cpp, width, wm;
1084         int latency = dev_priv->wm.pri_latency[level] * 10;
1085
1086         if (latency == 0)
1087                 return USHRT_MAX;
1088
1089         if (!intel_wm_plane_visible(crtc_state, plane_state))
1090                 return 0;
1091
1092         /*
1093          * Not 100% sure which way ELK should go here as the
1094          * spec only says CL/CTG should assume 32bpp and BW
1095          * doesn't need to. But as these things followed the
1096          * mobile vs. desktop lines on gen3 as well, let's
1097          * assume ELK doesn't need this.
1098          *
1099          * The spec also fails to list such a restriction for
1100          * the HPLL watermark, which seems a little strange.
1101          * Let's use 32bpp for the HPLL watermark as well.
1102          */
1103         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1104             level != G4X_WM_LEVEL_NORMAL)
1105                 cpp = 4;
1106         else
1107                 cpp = plane_state->base.fb->format->cpp[0];
1108
1109         clock = adjusted_mode->crtc_clock;
1110         htotal = adjusted_mode->crtc_htotal;
1111
1112         if (plane->id == PLANE_CURSOR)
1113                 width = plane_state->base.crtc_w;
1114         else
1115                 width = drm_rect_width(&plane_state->base.dst);
1116
1117         if (plane->id == PLANE_CURSOR) {
1118                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1119         } else if (plane->id == PLANE_PRIMARY &&
1120                    level == G4X_WM_LEVEL_NORMAL) {
1121                 wm = intel_wm_method1(clock, cpp, latency);
1122         } else {
1123                 int small, large;
1124
1125                 small = intel_wm_method1(clock, cpp, latency);
1126                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1127
1128                 wm = min(small, large);
1129         }
1130
1131         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1132                               width, cpp);
1133
1134         wm = DIV_ROUND_UP(wm, 64) + 2;
1135
1136         return min_t(int, wm, USHRT_MAX);
1137 }
1138
1139 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1140                                  int level, enum plane_id plane_id, u16 value)
1141 {
1142         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1143         bool dirty = false;
1144
1145         for (; level < intel_wm_num_levels(dev_priv); level++) {
1146                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1147
1148                 dirty |= raw->plane[plane_id] != value;
1149                 raw->plane[plane_id] = value;
1150         }
1151
1152         return dirty;
1153 }
1154
1155 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1156                                int level, u16 value)
1157 {
1158         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159         bool dirty = false;
1160
1161         /* NORMAL level doesn't have an FBC watermark */
1162         level = max(level, G4X_WM_LEVEL_SR);
1163
1164         for (; level < intel_wm_num_levels(dev_priv); level++) {
1165                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1166
1167                 dirty |= raw->fbc != value;
1168                 raw->fbc = value;
1169         }
1170
1171         return dirty;
1172 }
1173
1174 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1175                                    const struct intel_plane_state *pstate,
1176                                    uint32_t pri_val);
1177
1178 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1179                                      const struct intel_plane_state *plane_state)
1180 {
1181         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1182         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1183         enum plane_id plane_id = plane->id;
1184         bool dirty = false;
1185         int level;
1186
1187         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1188                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1189                 if (plane_id == PLANE_PRIMARY)
1190                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1191                 goto out;
1192         }
1193
1194         for (level = 0; level < num_levels; level++) {
1195                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1196                 int wm, max_wm;
1197
1198                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1199                 max_wm = g4x_plane_fifo_size(plane_id, level);
1200
1201                 if (wm > max_wm)
1202                         break;
1203
1204                 dirty |= raw->plane[plane_id] != wm;
1205                 raw->plane[plane_id] = wm;
1206
1207                 if (plane_id != PLANE_PRIMARY ||
1208                     level == G4X_WM_LEVEL_NORMAL)
1209                         continue;
1210
1211                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1212                                         raw->plane[plane_id]);
1213                 max_wm = g4x_fbc_fifo_size(level);
1214
1215                 /*
1216                  * FBC wm is not mandatory as we
1217                  * can always just disable its use.
1218                  */
1219                 if (wm > max_wm)
1220                         wm = USHRT_MAX;
1221
1222                 dirty |= raw->fbc != wm;
1223                 raw->fbc = wm;
1224         }
1225
1226         /* mark watermarks as invalid */
1227         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1228
1229         if (plane_id == PLANE_PRIMARY)
1230                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1231
1232  out:
1233         if (dirty) {
1234                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1235                               plane->base.name,
1236                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1237                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1238                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1239
1240                 if (plane_id == PLANE_PRIMARY)
1241                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1242                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1243                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1244         }
1245
1246         return dirty;
1247 }
1248
1249 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1250                                       enum plane_id plane_id, int level)
1251 {
1252         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1253
1254         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1255 }
1256
1257 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1258                                      int level)
1259 {
1260         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1261
1262         if (level > dev_priv->wm.max_level)
1263                 return false;
1264
1265         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1266                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1267                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1268 }
1269
1270 /* mark all levels starting from 'level' as invalid */
1271 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1272                                struct g4x_wm_state *wm_state, int level)
1273 {
1274         if (level <= G4X_WM_LEVEL_NORMAL) {
1275                 enum plane_id plane_id;
1276
1277                 for_each_plane_id_on_crtc(crtc, plane_id)
1278                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1279         }
1280
1281         if (level <= G4X_WM_LEVEL_SR) {
1282                 wm_state->cxsr = false;
1283                 wm_state->sr.cursor = USHRT_MAX;
1284                 wm_state->sr.plane = USHRT_MAX;
1285                 wm_state->sr.fbc = USHRT_MAX;
1286         }
1287
1288         if (level <= G4X_WM_LEVEL_HPLL) {
1289                 wm_state->hpll_en = false;
1290                 wm_state->hpll.cursor = USHRT_MAX;
1291                 wm_state->hpll.plane = USHRT_MAX;
1292                 wm_state->hpll.fbc = USHRT_MAX;
1293         }
1294 }
1295
1296 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1297 {
1298         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1299         struct intel_atomic_state *state =
1300                 to_intel_atomic_state(crtc_state->base.state);
1301         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1302         int num_active_planes = hweight32(crtc_state->active_planes &
1303                                           ~BIT(PLANE_CURSOR));
1304         const struct g4x_pipe_wm *raw;
1305         struct intel_plane_state *plane_state;
1306         struct intel_plane *plane;
1307         enum plane_id plane_id;
1308         int i, level;
1309         unsigned int dirty = 0;
1310
1311         for_each_intel_plane_in_state(state, plane, plane_state, i) {
1312                 const struct intel_plane_state *old_plane_state =
1313                         to_intel_plane_state(plane->base.state);
1314
1315                 if (plane_state->base.crtc != &crtc->base &&
1316                     old_plane_state->base.crtc != &crtc->base)
1317                         continue;
1318
1319                 if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
1320                         dirty |= BIT(plane->id);
1321         }
1322
1323         if (!dirty)
1324                 return 0;
1325
1326         level = G4X_WM_LEVEL_NORMAL;
1327         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1328                 goto out;
1329
1330         raw = &crtc_state->wm.g4x.raw[level];
1331         for_each_plane_id_on_crtc(crtc, plane_id)
1332                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1333
1334         level = G4X_WM_LEVEL_SR;
1335
1336         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1337                 goto out;
1338
1339         raw = &crtc_state->wm.g4x.raw[level];
1340         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1341         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1342         wm_state->sr.fbc = raw->fbc;
1343
1344         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1345
1346         level = G4X_WM_LEVEL_HPLL;
1347
1348         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1349                 goto out;
1350
1351         raw = &crtc_state->wm.g4x.raw[level];
1352         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1353         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1354         wm_state->hpll.fbc = raw->fbc;
1355
1356         wm_state->hpll_en = wm_state->cxsr;
1357
1358         level++;
1359
1360  out:
1361         if (level == G4X_WM_LEVEL_NORMAL)
1362                 return -EINVAL;
1363
1364         /* invalidate the higher levels */
1365         g4x_invalidate_wms(crtc, wm_state, level);
1366
1367         /*
1368          * Determine if the FBC watermark(s) can be used. IF
1369          * this isn't the case we prefer to disable the FBC
1370          ( watermark(s) rather than disable the SR/HPLL
1371          * level(s) entirely.
1372          */
1373         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1374
1375         if (level >= G4X_WM_LEVEL_SR &&
1376             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1377                 wm_state->fbc_en = false;
1378         else if (level >= G4X_WM_LEVEL_HPLL &&
1379                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1380                 wm_state->fbc_en = false;
1381
1382         return 0;
1383 }
1384
1385 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1386                                        struct intel_crtc *crtc,
1387                                        struct intel_crtc_state *crtc_state)
1388 {
1389         struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1390         const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1391         const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1392         enum plane_id plane_id;
1393
1394         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1395                 !crtc_state->disable_cxsr;
1396         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1397                 !crtc_state->disable_cxsr;
1398         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1399
1400         for_each_plane_id_on_crtc(crtc, plane_id) {
1401                 intermediate->wm.plane[plane_id] =
1402                         max(optimal->wm.plane[plane_id],
1403                             active->wm.plane[plane_id]);
1404
1405                 WARN_ON(intermediate->wm.plane[plane_id] >
1406                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1407         }
1408
1409         intermediate->sr.plane = max(optimal->sr.plane,
1410                                      active->sr.plane);
1411         intermediate->sr.cursor = max(optimal->sr.cursor,
1412                                       active->sr.cursor);
1413         intermediate->sr.fbc = max(optimal->sr.fbc,
1414                                    active->sr.fbc);
1415
1416         intermediate->hpll.plane = max(optimal->hpll.plane,
1417                                        active->hpll.plane);
1418         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1419                                         active->hpll.cursor);
1420         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1421                                      active->hpll.fbc);
1422
1423         WARN_ON((intermediate->sr.plane >
1424                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1425                  intermediate->sr.cursor >
1426                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1427                 intermediate->cxsr);
1428         WARN_ON((intermediate->sr.plane >
1429                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1430                  intermediate->sr.cursor >
1431                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1432                 intermediate->hpll_en);
1433
1434         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1435                 intermediate->fbc_en && intermediate->cxsr);
1436         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1437                 intermediate->fbc_en && intermediate->hpll_en);
1438
1439         /*
1440          * If our intermediate WM are identical to the final WM, then we can
1441          * omit the post-vblank programming; only update if it's different.
1442          */
1443         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1444                 crtc_state->wm.need_postvbl_update = true;
1445
1446         return 0;
1447 }
1448
1449 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1450                          struct g4x_wm_values *wm)
1451 {
1452         struct intel_crtc *crtc;
1453         int num_active_crtcs = 0;
1454
1455         wm->cxsr = true;
1456         wm->hpll_en = true;
1457         wm->fbc_en = true;
1458
1459         for_each_intel_crtc(&dev_priv->drm, crtc) {
1460                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1461
1462                 if (!crtc->active)
1463                         continue;
1464
1465                 if (!wm_state->cxsr)
1466                         wm->cxsr = false;
1467                 if (!wm_state->hpll_en)
1468                         wm->hpll_en = false;
1469                 if (!wm_state->fbc_en)
1470                         wm->fbc_en = false;
1471
1472                 num_active_crtcs++;
1473         }
1474
1475         if (num_active_crtcs != 1) {
1476                 wm->cxsr = false;
1477                 wm->hpll_en = false;
1478                 wm->fbc_en = false;
1479         }
1480
1481         for_each_intel_crtc(&dev_priv->drm, crtc) {
1482                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1483                 enum pipe pipe = crtc->pipe;
1484
1485                 wm->pipe[pipe] = wm_state->wm;
1486                 if (crtc->active && wm->cxsr)
1487                         wm->sr = wm_state->sr;
1488                 if (crtc->active && wm->hpll_en)
1489                         wm->hpll = wm_state->hpll;
1490         }
1491 }
1492
1493 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1494 {
1495         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1496         struct g4x_wm_values new_wm = {};
1497
1498         g4x_merge_wm(dev_priv, &new_wm);
1499
1500         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1501                 return;
1502
1503         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1504                 _intel_set_memory_cxsr(dev_priv, false);
1505
1506         g4x_write_wm_values(dev_priv, &new_wm);
1507
1508         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1509                 _intel_set_memory_cxsr(dev_priv, true);
1510
1511         *old_wm = new_wm;
1512 }
1513
1514 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1515                                    struct intel_crtc_state *crtc_state)
1516 {
1517         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1518         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1519
1520         mutex_lock(&dev_priv->wm.wm_mutex);
1521         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1522         g4x_program_watermarks(dev_priv);
1523         mutex_unlock(&dev_priv->wm.wm_mutex);
1524 }
1525
1526 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1527                                     struct intel_crtc_state *crtc_state)
1528 {
1529         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1531
1532         if (!crtc_state->wm.need_postvbl_update)
1533                 return;
1534
1535         mutex_lock(&dev_priv->wm.wm_mutex);
1536         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1537         g4x_program_watermarks(dev_priv);
1538         mutex_unlock(&dev_priv->wm.wm_mutex);
1539 }
1540
1541 /* latency must be in 0.1us units. */
1542 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1543                                    unsigned int htotal,
1544                                    unsigned int width,
1545                                    unsigned int cpp,
1546                                    unsigned int latency)
1547 {
1548         unsigned int ret;
1549
1550         ret = intel_wm_method2(pixel_rate, htotal,
1551                                width, cpp, latency);
1552         ret = DIV_ROUND_UP(ret, 64);
1553
1554         return ret;
1555 }
1556
1557 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1558 {
1559         /* all latencies in usec */
1560         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1561
1562         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1563
1564         if (IS_CHERRYVIEW(dev_priv)) {
1565                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1566                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1567
1568                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1569         }
1570 }
1571
1572 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1573                                      const struct intel_plane_state *plane_state,
1574                                      int level)
1575 {
1576         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1577         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1578         const struct drm_display_mode *adjusted_mode =
1579                 &crtc_state->base.adjusted_mode;
1580         int clock, htotal, cpp, width, wm;
1581
1582         if (dev_priv->wm.pri_latency[level] == 0)
1583                 return USHRT_MAX;
1584
1585         if (!intel_wm_plane_visible(crtc_state, plane_state))
1586                 return 0;
1587
1588         cpp = plane_state->base.fb->format->cpp[0];
1589         clock = adjusted_mode->crtc_clock;
1590         htotal = adjusted_mode->crtc_htotal;
1591         width = crtc_state->pipe_src_w;
1592
1593         if (plane->id == PLANE_CURSOR) {
1594                 /*
1595                  * FIXME the formula gives values that are
1596                  * too big for the cursor FIFO, and hence we
1597                  * would never be able to use cursors. For
1598                  * now just hardcode the watermark.
1599                  */
1600                 wm = 63;
1601         } else {
1602                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1603                                     dev_priv->wm.pri_latency[level] * 10);
1604         }
1605
1606         return min_t(int, wm, USHRT_MAX);
1607 }
1608
1609 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1610 {
1611         return (active_planes & (BIT(PLANE_SPRITE0) |
1612                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1613 }
1614
1615 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1616 {
1617         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1618         const struct g4x_pipe_wm *raw =
1619                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1620         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1621         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1622         int num_active_planes = hweight32(active_planes);
1623         const int fifo_size = 511;
1624         int fifo_extra, fifo_left = fifo_size;
1625         int sprite0_fifo_extra = 0;
1626         unsigned int total_rate;
1627         enum plane_id plane_id;
1628
1629         /*
1630          * When enabling sprite0 after sprite1 has already been enabled
1631          * we tend to get an underrun unless sprite0 already has some
1632          * FIFO space allcoated. Hence we always allocate at least one
1633          * cacheline for sprite0 whenever sprite1 is enabled.
1634          *
1635          * All other plane enable sequences appear immune to this problem.
1636          */
1637         if (vlv_need_sprite0_fifo_workaround(active_planes))
1638                 sprite0_fifo_extra = 1;
1639
1640         total_rate = raw->plane[PLANE_PRIMARY] +
1641                 raw->plane[PLANE_SPRITE0] +
1642                 raw->plane[PLANE_SPRITE1] +
1643                 sprite0_fifo_extra;
1644
1645         if (total_rate > fifo_size)
1646                 return -EINVAL;
1647
1648         if (total_rate == 0)
1649                 total_rate = 1;
1650
1651         for_each_plane_id_on_crtc(crtc, plane_id) {
1652                 unsigned int rate;
1653
1654                 if ((active_planes & BIT(plane_id)) == 0) {
1655                         fifo_state->plane[plane_id] = 0;
1656                         continue;
1657                 }
1658
1659                 rate = raw->plane[plane_id];
1660                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1661                 fifo_left -= fifo_state->plane[plane_id];
1662         }
1663
1664         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1665         fifo_left -= sprite0_fifo_extra;
1666
1667         fifo_state->plane[PLANE_CURSOR] = 63;
1668
1669         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1670
1671         /* spread the remainder evenly */
1672         for_each_plane_id_on_crtc(crtc, plane_id) {
1673                 int plane_extra;
1674
1675                 if (fifo_left == 0)
1676                         break;
1677
1678                 if ((active_planes & BIT(plane_id)) == 0)
1679                         continue;
1680
1681                 plane_extra = min(fifo_extra, fifo_left);
1682                 fifo_state->plane[plane_id] += plane_extra;
1683                 fifo_left -= plane_extra;
1684         }
1685
1686         WARN_ON(active_planes != 0 && fifo_left != 0);
1687
1688         /* give it all to the first plane if none are active */
1689         if (active_planes == 0) {
1690                 WARN_ON(fifo_left != fifo_size);
1691                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1692         }
1693
1694         return 0;
1695 }
1696
1697 /* mark all levels starting from 'level' as invalid */
1698 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1699                                struct vlv_wm_state *wm_state, int level)
1700 {
1701         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1702
1703         for (; level < intel_wm_num_levels(dev_priv); level++) {
1704                 enum plane_id plane_id;
1705
1706                 for_each_plane_id_on_crtc(crtc, plane_id)
1707                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1708
1709                 wm_state->sr[level].cursor = USHRT_MAX;
1710                 wm_state->sr[level].plane = USHRT_MAX;
1711         }
1712 }
1713
1714 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1715 {
1716         if (wm > fifo_size)
1717                 return USHRT_MAX;
1718         else
1719                 return fifo_size - wm;
1720 }
1721
1722 /*
1723  * Starting from 'level' set all higher
1724  * levels to 'value' in the "raw" watermarks.
1725  */
1726 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1727                                  int level, enum plane_id plane_id, u16 value)
1728 {
1729         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1730         int num_levels = intel_wm_num_levels(dev_priv);
1731         bool dirty = false;
1732
1733         for (; level < num_levels; level++) {
1734                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1735
1736                 dirty |= raw->plane[plane_id] != value;
1737                 raw->plane[plane_id] = value;
1738         }
1739
1740         return dirty;
1741 }
1742
1743 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1744                                      const struct intel_plane_state *plane_state)
1745 {
1746         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1747         enum plane_id plane_id = plane->id;
1748         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1749         int level;
1750         bool dirty = false;
1751
1752         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1753                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1754                 goto out;
1755         }
1756
1757         for (level = 0; level < num_levels; level++) {
1758                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1759                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1760                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1761
1762                 if (wm > max_wm)
1763                         break;
1764
1765                 dirty |= raw->plane[plane_id] != wm;
1766                 raw->plane[plane_id] = wm;
1767         }
1768
1769         /* mark all higher levels as invalid */
1770         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1771
1772 out:
1773         if (dirty)
1774                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1775                               plane->base.name,
1776                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1777                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1778                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1779
1780         return dirty;
1781 }
1782
1783 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1784                                       enum plane_id plane_id, int level)
1785 {
1786         const struct g4x_pipe_wm *raw =
1787                 &crtc_state->wm.vlv.raw[level];
1788         const struct vlv_fifo_state *fifo_state =
1789                 &crtc_state->wm.vlv.fifo_state;
1790
1791         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1792 }
1793
1794 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1795 {
1796         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1797                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1798                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1799                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1800 }
1801
1802 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1803 {
1804         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1805         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1806         struct intel_atomic_state *state =
1807                 to_intel_atomic_state(crtc_state->base.state);
1808         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1809         const struct vlv_fifo_state *fifo_state =
1810                 &crtc_state->wm.vlv.fifo_state;
1811         int num_active_planes = hweight32(crtc_state->active_planes &
1812                                           ~BIT(PLANE_CURSOR));
1813         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1814         struct intel_plane_state *plane_state;
1815         struct intel_plane *plane;
1816         enum plane_id plane_id;
1817         int level, ret, i;
1818         unsigned int dirty = 0;
1819
1820         for_each_intel_plane_in_state(state, plane, plane_state, i) {
1821                 const struct intel_plane_state *old_plane_state =
1822                         to_intel_plane_state(plane->base.state);
1823
1824                 if (plane_state->base.crtc != &crtc->base &&
1825                     old_plane_state->base.crtc != &crtc->base)
1826                         continue;
1827
1828                 if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1829                         dirty |= BIT(plane->id);
1830         }
1831
1832         /*
1833          * DSPARB registers may have been reset due to the
1834          * power well being turned off. Make sure we restore
1835          * them to a consistent state even if no primary/sprite
1836          * planes are initially active.
1837          */
1838         if (needs_modeset)
1839                 crtc_state->fifo_changed = true;
1840
1841         if (!dirty)
1842                 return 0;
1843
1844         /* cursor changes don't warrant a FIFO recompute */
1845         if (dirty & ~BIT(PLANE_CURSOR)) {
1846                 const struct intel_crtc_state *old_crtc_state =
1847                         to_intel_crtc_state(crtc->base.state);
1848                 const struct vlv_fifo_state *old_fifo_state =
1849                         &old_crtc_state->wm.vlv.fifo_state;
1850
1851                 ret = vlv_compute_fifo(crtc_state);
1852                 if (ret)
1853                         return ret;
1854
1855                 if (needs_modeset ||
1856                     memcmp(old_fifo_state, fifo_state,
1857                            sizeof(*fifo_state)) != 0)
1858                         crtc_state->fifo_changed = true;
1859         }
1860
1861         /* initially allow all levels */
1862         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1863         /*
1864          * Note that enabling cxsr with no primary/sprite planes
1865          * enabled can wedge the pipe. Hence we only allow cxsr
1866          * with exactly one enabled primary/sprite plane.
1867          */
1868         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1869
1870         for (level = 0; level < wm_state->num_levels; level++) {
1871                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1872                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1873
1874                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1875                         break;
1876
1877                 for_each_plane_id_on_crtc(crtc, plane_id) {
1878                         wm_state->wm[level].plane[plane_id] =
1879                                 vlv_invert_wm_value(raw->plane[plane_id],
1880                                                     fifo_state->plane[plane_id]);
1881                 }
1882
1883                 wm_state->sr[level].plane =
1884                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1885                                                  raw->plane[PLANE_SPRITE0],
1886                                                  raw->plane[PLANE_SPRITE1]),
1887                                             sr_fifo_size);
1888
1889                 wm_state->sr[level].cursor =
1890                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1891                                             63);
1892         }
1893
1894         if (level == 0)
1895                 return -EINVAL;
1896
1897         /* limit to only levels we can actually handle */
1898         wm_state->num_levels = level;
1899
1900         /* invalidate the higher levels */
1901         vlv_invalidate_wms(crtc, wm_state, level);
1902
1903         return 0;
1904 }
1905
1906 #define VLV_FIFO(plane, value) \
1907         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1908
1909 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1910                                    struct intel_crtc_state *crtc_state)
1911 {
1912         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1913         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1914         const struct vlv_fifo_state *fifo_state =
1915                 &crtc_state->wm.vlv.fifo_state;
1916         int sprite0_start, sprite1_start, fifo_size;
1917
1918         if (!crtc_state->fifo_changed)
1919                 return;
1920
1921         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1922         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1923         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1924
1925         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1926         WARN_ON(fifo_size != 511);
1927
1928         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1929
1930         /*
1931          * uncore.lock serves a double purpose here. It allows us to
1932          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1933          * it protects the DSPARB registers from getting clobbered by
1934          * parallel updates from multiple pipes.
1935          *
1936          * intel_pipe_update_start() has already disabled interrupts
1937          * for us, so a plain spin_lock() is sufficient here.
1938          */
1939         spin_lock(&dev_priv->uncore.lock);
1940
1941         switch (crtc->pipe) {
1942                 uint32_t dsparb, dsparb2, dsparb3;
1943         case PIPE_A:
1944                 dsparb = I915_READ_FW(DSPARB);
1945                 dsparb2 = I915_READ_FW(DSPARB2);
1946
1947                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1948                             VLV_FIFO(SPRITEB, 0xff));
1949                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1950                            VLV_FIFO(SPRITEB, sprite1_start));
1951
1952                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1953                              VLV_FIFO(SPRITEB_HI, 0x1));
1954                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1955                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1956
1957                 I915_WRITE_FW(DSPARB, dsparb);
1958                 I915_WRITE_FW(DSPARB2, dsparb2);
1959                 break;
1960         case PIPE_B:
1961                 dsparb = I915_READ_FW(DSPARB);
1962                 dsparb2 = I915_READ_FW(DSPARB2);
1963
1964                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1965                             VLV_FIFO(SPRITED, 0xff));
1966                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1967                            VLV_FIFO(SPRITED, sprite1_start));
1968
1969                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1970                              VLV_FIFO(SPRITED_HI, 0xff));
1971                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1972                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1973
1974                 I915_WRITE_FW(DSPARB, dsparb);
1975                 I915_WRITE_FW(DSPARB2, dsparb2);
1976                 break;
1977         case PIPE_C:
1978                 dsparb3 = I915_READ_FW(DSPARB3);
1979                 dsparb2 = I915_READ_FW(DSPARB2);
1980
1981                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1982                              VLV_FIFO(SPRITEF, 0xff));
1983                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1984                             VLV_FIFO(SPRITEF, sprite1_start));
1985
1986                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1987                              VLV_FIFO(SPRITEF_HI, 0xff));
1988                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1989                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1990
1991                 I915_WRITE_FW(DSPARB3, dsparb3);
1992                 I915_WRITE_FW(DSPARB2, dsparb2);
1993                 break;
1994         default:
1995                 break;
1996         }
1997
1998         POSTING_READ_FW(DSPARB);
1999
2000         spin_unlock(&dev_priv->uncore.lock);
2001 }
2002
2003 #undef VLV_FIFO
2004
2005 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2006                                        struct intel_crtc *crtc,
2007                                        struct intel_crtc_state *crtc_state)
2008 {
2009         struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2010         const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2011         const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2012         int level;
2013
2014         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2015         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2016                 !crtc_state->disable_cxsr;
2017
2018         for (level = 0; level < intermediate->num_levels; level++) {
2019                 enum plane_id plane_id;
2020
2021                 for_each_plane_id_on_crtc(crtc, plane_id) {
2022                         intermediate->wm[level].plane[plane_id] =
2023                                 min(optimal->wm[level].plane[plane_id],
2024                                     active->wm[level].plane[plane_id]);
2025                 }
2026
2027                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2028                                                     active->sr[level].plane);
2029                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2030                                                      active->sr[level].cursor);
2031         }
2032
2033         vlv_invalidate_wms(crtc, intermediate, level);
2034
2035         /*
2036          * If our intermediate WM are identical to the final WM, then we can
2037          * omit the post-vblank programming; only update if it's different.
2038          */
2039         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2040                 crtc_state->wm.need_postvbl_update = true;
2041
2042         return 0;
2043 }
2044
2045 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2046                          struct vlv_wm_values *wm)
2047 {
2048         struct intel_crtc *crtc;
2049         int num_active_crtcs = 0;
2050
2051         wm->level = dev_priv->wm.max_level;
2052         wm->cxsr = true;
2053
2054         for_each_intel_crtc(&dev_priv->drm, crtc) {
2055                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2056
2057                 if (!crtc->active)
2058                         continue;
2059
2060                 if (!wm_state->cxsr)
2061                         wm->cxsr = false;
2062
2063                 num_active_crtcs++;
2064                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2065         }
2066
2067         if (num_active_crtcs != 1)
2068                 wm->cxsr = false;
2069
2070         if (num_active_crtcs > 1)
2071                 wm->level = VLV_WM_LEVEL_PM2;
2072
2073         for_each_intel_crtc(&dev_priv->drm, crtc) {
2074                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075                 enum pipe pipe = crtc->pipe;
2076
2077                 wm->pipe[pipe] = wm_state->wm[wm->level];
2078                 if (crtc->active && wm->cxsr)
2079                         wm->sr = wm_state->sr[wm->level];
2080
2081                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2082                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2083                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2084                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2085         }
2086 }
2087
2088 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2089 {
2090         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2091         struct vlv_wm_values new_wm = {};
2092
2093         vlv_merge_wm(dev_priv, &new_wm);
2094
2095         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2096                 return;
2097
2098         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2099                 chv_set_memory_dvfs(dev_priv, false);
2100
2101         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2102                 chv_set_memory_pm5(dev_priv, false);
2103
2104         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2105                 _intel_set_memory_cxsr(dev_priv, false);
2106
2107         vlv_write_wm_values(dev_priv, &new_wm);
2108
2109         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2110                 _intel_set_memory_cxsr(dev_priv, true);
2111
2112         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2113                 chv_set_memory_pm5(dev_priv, true);
2114
2115         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2116                 chv_set_memory_dvfs(dev_priv, true);
2117
2118         *old_wm = new_wm;
2119 }
2120
2121 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2122                                    struct intel_crtc_state *crtc_state)
2123 {
2124         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2125         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2126
2127         mutex_lock(&dev_priv->wm.wm_mutex);
2128         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2129         vlv_program_watermarks(dev_priv);
2130         mutex_unlock(&dev_priv->wm.wm_mutex);
2131 }
2132
2133 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2134                                     struct intel_crtc_state *crtc_state)
2135 {
2136         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2138
2139         if (!crtc_state->wm.need_postvbl_update)
2140                 return;
2141
2142         mutex_lock(&dev_priv->wm.wm_mutex);
2143         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2144         vlv_program_watermarks(dev_priv);
2145         mutex_unlock(&dev_priv->wm.wm_mutex);
2146 }
2147
2148 static void i965_update_wm(struct intel_crtc *unused_crtc)
2149 {
2150         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2151         struct intel_crtc *crtc;
2152         int srwm = 1;
2153         int cursor_sr = 16;
2154         bool cxsr_enabled;
2155
2156         /* Calc sr entries for one plane configs */
2157         crtc = single_enabled_crtc(dev_priv);
2158         if (crtc) {
2159                 /* self-refresh has much higher latency */
2160                 static const int sr_latency_ns = 12000;
2161                 const struct drm_display_mode *adjusted_mode =
2162                         &crtc->config->base.adjusted_mode;
2163                 const struct drm_framebuffer *fb =
2164                         crtc->base.primary->state->fb;
2165                 int clock = adjusted_mode->crtc_clock;
2166                 int htotal = adjusted_mode->crtc_htotal;
2167                 int hdisplay = crtc->config->pipe_src_w;
2168                 int cpp = fb->format->cpp[0];
2169                 int entries;
2170
2171                 entries = intel_wm_method2(clock, htotal,
2172                                            hdisplay, cpp, sr_latency_ns / 100);
2173                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2174                 srwm = I965_FIFO_SIZE - entries;
2175                 if (srwm < 0)
2176                         srwm = 1;
2177                 srwm &= 0x1ff;
2178                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2179                               entries, srwm);
2180
2181                 entries = intel_wm_method2(clock, htotal,
2182                                            crtc->base.cursor->state->crtc_w, 4,
2183                                            sr_latency_ns / 100);
2184                 entries = DIV_ROUND_UP(entries,
2185                                        i965_cursor_wm_info.cacheline_size) +
2186                         i965_cursor_wm_info.guard_size;
2187
2188                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2189                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2190                         cursor_sr = i965_cursor_wm_info.max_wm;
2191
2192                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2193                               "cursor %d\n", srwm, cursor_sr);
2194
2195                 cxsr_enabled = true;
2196         } else {
2197                 cxsr_enabled = false;
2198                 /* Turn off self refresh if both pipes are enabled */
2199                 intel_set_memory_cxsr(dev_priv, false);
2200         }
2201
2202         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2203                       srwm);
2204
2205         /* 965 has limitations... */
2206         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2207                    FW_WM(8, CURSORB) |
2208                    FW_WM(8, PLANEB) |
2209                    FW_WM(8, PLANEA));
2210         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2211                    FW_WM(8, PLANEC_OLD));
2212         /* update cursor SR watermark */
2213         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2214
2215         if (cxsr_enabled)
2216                 intel_set_memory_cxsr(dev_priv, true);
2217 }
2218
2219 #undef FW_WM
2220
2221 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2222 {
2223         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2224         const struct intel_watermark_params *wm_info;
2225         uint32_t fwater_lo;
2226         uint32_t fwater_hi;
2227         int cwm, srwm = 1;
2228         int fifo_size;
2229         int planea_wm, planeb_wm;
2230         struct intel_crtc *crtc, *enabled = NULL;
2231
2232         if (IS_I945GM(dev_priv))
2233                 wm_info = &i945_wm_info;
2234         else if (!IS_GEN2(dev_priv))
2235                 wm_info = &i915_wm_info;
2236         else
2237                 wm_info = &i830_a_wm_info;
2238
2239         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2240         crtc = intel_get_crtc_for_plane(dev_priv, 0);
2241         if (intel_crtc_active(crtc)) {
2242                 const struct drm_display_mode *adjusted_mode =
2243                         &crtc->config->base.adjusted_mode;
2244                 const struct drm_framebuffer *fb =
2245                         crtc->base.primary->state->fb;
2246                 int cpp;
2247
2248                 if (IS_GEN2(dev_priv))
2249                         cpp = 4;
2250                 else
2251                         cpp = fb->format->cpp[0];
2252
2253                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2254                                                wm_info, fifo_size, cpp,
2255                                                pessimal_latency_ns);
2256                 enabled = crtc;
2257         } else {
2258                 planea_wm = fifo_size - wm_info->guard_size;
2259                 if (planea_wm > (long)wm_info->max_wm)
2260                         planea_wm = wm_info->max_wm;
2261         }
2262
2263         if (IS_GEN2(dev_priv))
2264                 wm_info = &i830_bc_wm_info;
2265
2266         fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2267         crtc = intel_get_crtc_for_plane(dev_priv, 1);
2268         if (intel_crtc_active(crtc)) {
2269                 const struct drm_display_mode *adjusted_mode =
2270                         &crtc->config->base.adjusted_mode;
2271                 const struct drm_framebuffer *fb =
2272                         crtc->base.primary->state->fb;
2273                 int cpp;
2274
2275                 if (IS_GEN2(dev_priv))
2276                         cpp = 4;
2277                 else
2278                         cpp = fb->format->cpp[0];
2279
2280                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2281                                                wm_info, fifo_size, cpp,
2282                                                pessimal_latency_ns);
2283                 if (enabled == NULL)
2284                         enabled = crtc;
2285                 else
2286                         enabled = NULL;
2287         } else {
2288                 planeb_wm = fifo_size - wm_info->guard_size;
2289                 if (planeb_wm > (long)wm_info->max_wm)
2290                         planeb_wm = wm_info->max_wm;
2291         }
2292
2293         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2294
2295         if (IS_I915GM(dev_priv) && enabled) {
2296                 struct drm_i915_gem_object *obj;
2297
2298                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2299
2300                 /* self-refresh seems busted with untiled */
2301                 if (!i915_gem_object_is_tiled(obj))
2302                         enabled = NULL;
2303         }
2304
2305         /*
2306          * Overlay gets an aggressive default since video jitter is bad.
2307          */
2308         cwm = 2;
2309
2310         /* Play safe and disable self-refresh before adjusting watermarks. */
2311         intel_set_memory_cxsr(dev_priv, false);
2312
2313         /* Calc sr entries for one plane configs */
2314         if (HAS_FW_BLC(dev_priv) && enabled) {
2315                 /* self-refresh has much higher latency */
2316                 static const int sr_latency_ns = 6000;
2317                 const struct drm_display_mode *adjusted_mode =
2318                         &enabled->config->base.adjusted_mode;
2319                 const struct drm_framebuffer *fb =
2320                         enabled->base.primary->state->fb;
2321                 int clock = adjusted_mode->crtc_clock;
2322                 int htotal = adjusted_mode->crtc_htotal;
2323                 int hdisplay = enabled->config->pipe_src_w;
2324                 int cpp;
2325                 int entries;
2326
2327                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2328                         cpp = 4;
2329                 else
2330                         cpp = fb->format->cpp[0];
2331
2332                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2333                                            sr_latency_ns / 100);
2334                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2335                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2336                 srwm = wm_info->fifo_size - entries;
2337                 if (srwm < 0)
2338                         srwm = 1;
2339
2340                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2341                         I915_WRITE(FW_BLC_SELF,
2342                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2343                 else
2344                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2345         }
2346
2347         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2348                       planea_wm, planeb_wm, cwm, srwm);
2349
2350         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2351         fwater_hi = (cwm & 0x1f);
2352
2353         /* Set request length to 8 cachelines per fetch */
2354         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2355         fwater_hi = fwater_hi | (1 << 8);
2356
2357         I915_WRITE(FW_BLC, fwater_lo);
2358         I915_WRITE(FW_BLC2, fwater_hi);
2359
2360         if (enabled)
2361                 intel_set_memory_cxsr(dev_priv, true);
2362 }
2363
2364 static void i845_update_wm(struct intel_crtc *unused_crtc)
2365 {
2366         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2367         struct intel_crtc *crtc;
2368         const struct drm_display_mode *adjusted_mode;
2369         uint32_t fwater_lo;
2370         int planea_wm;
2371
2372         crtc = single_enabled_crtc(dev_priv);
2373         if (crtc == NULL)
2374                 return;
2375
2376         adjusted_mode = &crtc->config->base.adjusted_mode;
2377         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2378                                        &i845_wm_info,
2379                                        dev_priv->display.get_fifo_size(dev_priv, 0),
2380                                        4, pessimal_latency_ns);
2381         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2382         fwater_lo |= (3<<8) | planea_wm;
2383
2384         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2385
2386         I915_WRITE(FW_BLC, fwater_lo);
2387 }
2388
2389 /* latency must be in 0.1us units. */
2390 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2391                                    unsigned int cpp,
2392                                    unsigned int latency)
2393 {
2394         unsigned int ret;
2395
2396         ret = intel_wm_method1(pixel_rate, cpp, latency);
2397         ret = DIV_ROUND_UP(ret, 64) + 2;
2398
2399         return ret;
2400 }
2401
2402 /* latency must be in 0.1us units. */
2403 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2404                                    unsigned int htotal,
2405                                    unsigned int width,
2406                                    unsigned int cpp,
2407                                    unsigned int latency)
2408 {
2409         unsigned int ret;
2410
2411         ret = intel_wm_method2(pixel_rate, htotal,
2412                                width, cpp, latency);
2413         ret = DIV_ROUND_UP(ret, 64) + 2;
2414
2415         return ret;
2416 }
2417
2418 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2419                            uint8_t cpp)
2420 {
2421         /*
2422          * Neither of these should be possible since this function shouldn't be
2423          * called if the CRTC is off or the plane is invisible.  But let's be
2424          * extra paranoid to avoid a potential divide-by-zero if we screw up
2425          * elsewhere in the driver.
2426          */
2427         if (WARN_ON(!cpp))
2428                 return 0;
2429         if (WARN_ON(!horiz_pixels))
2430                 return 0;
2431
2432         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2433 }
2434
2435 struct ilk_wm_maximums {
2436         uint16_t pri;
2437         uint16_t spr;
2438         uint16_t cur;
2439         uint16_t fbc;
2440 };
2441
2442 /*
2443  * For both WM_PIPE and WM_LP.
2444  * mem_value must be in 0.1us units.
2445  */
2446 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2447                                    const struct intel_plane_state *pstate,
2448                                    uint32_t mem_value,
2449                                    bool is_lp)
2450 {
2451         uint32_t method1, method2;
2452         int cpp;
2453
2454         if (!intel_wm_plane_visible(cstate, pstate))
2455                 return 0;
2456
2457         cpp = pstate->base.fb->format->cpp[0];
2458
2459         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2460
2461         if (!is_lp)
2462                 return method1;
2463
2464         method2 = ilk_wm_method2(cstate->pixel_rate,
2465                                  cstate->base.adjusted_mode.crtc_htotal,
2466                                  drm_rect_width(&pstate->base.dst),
2467                                  cpp, mem_value);
2468
2469         return min(method1, method2);
2470 }
2471
2472 /*
2473  * For both WM_PIPE and WM_LP.
2474  * mem_value must be in 0.1us units.
2475  */
2476 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2477                                    const struct intel_plane_state *pstate,
2478                                    uint32_t mem_value)
2479 {
2480         uint32_t method1, method2;
2481         int cpp;
2482
2483         if (!intel_wm_plane_visible(cstate, pstate))
2484                 return 0;
2485
2486         cpp = pstate->base.fb->format->cpp[0];
2487
2488         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2489         method2 = ilk_wm_method2(cstate->pixel_rate,
2490                                  cstate->base.adjusted_mode.crtc_htotal,
2491                                  drm_rect_width(&pstate->base.dst),
2492                                  cpp, mem_value);
2493         return min(method1, method2);
2494 }
2495
2496 /*
2497  * For both WM_PIPE and WM_LP.
2498  * mem_value must be in 0.1us units.
2499  */
2500 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2501                                    const struct intel_plane_state *pstate,
2502                                    uint32_t mem_value)
2503 {
2504         int cpp;
2505
2506         if (!intel_wm_plane_visible(cstate, pstate))
2507                 return 0;
2508
2509         cpp = pstate->base.fb->format->cpp[0];
2510
2511         return ilk_wm_method2(cstate->pixel_rate,
2512                               cstate->base.adjusted_mode.crtc_htotal,
2513                               pstate->base.crtc_w, cpp, mem_value);
2514 }
2515
2516 /* Only for WM_LP. */
2517 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2518                                    const struct intel_plane_state *pstate,
2519                                    uint32_t pri_val)
2520 {
2521         int cpp;
2522
2523         if (!intel_wm_plane_visible(cstate, pstate))
2524                 return 0;
2525
2526         cpp = pstate->base.fb->format->cpp[0];
2527
2528         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2529 }
2530
2531 static unsigned int
2532 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2533 {
2534         if (INTEL_GEN(dev_priv) >= 8)
2535                 return 3072;
2536         else if (INTEL_GEN(dev_priv) >= 7)
2537                 return 768;
2538         else
2539                 return 512;
2540 }
2541
2542 static unsigned int
2543 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2544                      int level, bool is_sprite)
2545 {
2546         if (INTEL_GEN(dev_priv) >= 8)
2547                 /* BDW primary/sprite plane watermarks */
2548                 return level == 0 ? 255 : 2047;
2549         else if (INTEL_GEN(dev_priv) >= 7)
2550                 /* IVB/HSW primary/sprite plane watermarks */
2551                 return level == 0 ? 127 : 1023;
2552         else if (!is_sprite)
2553                 /* ILK/SNB primary plane watermarks */
2554                 return level == 0 ? 127 : 511;
2555         else
2556                 /* ILK/SNB sprite plane watermarks */
2557                 return level == 0 ? 63 : 255;
2558 }
2559
2560 static unsigned int
2561 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2562 {
2563         if (INTEL_GEN(dev_priv) >= 7)
2564                 return level == 0 ? 63 : 255;
2565         else
2566                 return level == 0 ? 31 : 63;
2567 }
2568
2569 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2570 {
2571         if (INTEL_GEN(dev_priv) >= 8)
2572                 return 31;
2573         else
2574                 return 15;
2575 }
2576
2577 /* Calculate the maximum primary/sprite plane watermark */
2578 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2579                                      int level,
2580                                      const struct intel_wm_config *config,
2581                                      enum intel_ddb_partitioning ddb_partitioning,
2582                                      bool is_sprite)
2583 {
2584         struct drm_i915_private *dev_priv = to_i915(dev);
2585         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2586
2587         /* if sprites aren't enabled, sprites get nothing */
2588         if (is_sprite && !config->sprites_enabled)
2589                 return 0;
2590
2591         /* HSW allows LP1+ watermarks even with multiple pipes */
2592         if (level == 0 || config->num_pipes_active > 1) {
2593                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2594
2595                 /*
2596                  * For some reason the non self refresh
2597                  * FIFO size is only half of the self
2598                  * refresh FIFO size on ILK/SNB.
2599                  */
2600                 if (INTEL_GEN(dev_priv) <= 6)
2601                         fifo_size /= 2;
2602         }
2603
2604         if (config->sprites_enabled) {
2605                 /* level 0 is always calculated with 1:1 split */
2606                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2607                         if (is_sprite)
2608                                 fifo_size *= 5;
2609                         fifo_size /= 6;
2610                 } else {
2611                         fifo_size /= 2;
2612                 }
2613         }
2614
2615         /* clamp to max that the registers can hold */
2616         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2617 }
2618
2619 /* Calculate the maximum cursor plane watermark */
2620 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2621                                       int level,
2622                                       const struct intel_wm_config *config)
2623 {
2624         /* HSW LP1+ watermarks w/ multiple pipes */
2625         if (level > 0 && config->num_pipes_active > 1)
2626                 return 64;
2627
2628         /* otherwise just report max that registers can hold */
2629         return ilk_cursor_wm_reg_max(to_i915(dev), level);
2630 }
2631
2632 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2633                                     int level,
2634                                     const struct intel_wm_config *config,
2635                                     enum intel_ddb_partitioning ddb_partitioning,
2636                                     struct ilk_wm_maximums *max)
2637 {
2638         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2639         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2640         max->cur = ilk_cursor_wm_max(dev, level, config);
2641         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2642 }
2643
2644 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2645                                         int level,
2646                                         struct ilk_wm_maximums *max)
2647 {
2648         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2649         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2650         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2651         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2652 }
2653
2654 static bool ilk_validate_wm_level(int level,
2655                                   const struct ilk_wm_maximums *max,
2656                                   struct intel_wm_level *result)
2657 {
2658         bool ret;
2659
2660         /* already determined to be invalid? */
2661         if (!result->enable)
2662                 return false;
2663
2664         result->enable = result->pri_val <= max->pri &&
2665                          result->spr_val <= max->spr &&
2666                          result->cur_val <= max->cur;
2667
2668         ret = result->enable;
2669
2670         /*
2671          * HACK until we can pre-compute everything,
2672          * and thus fail gracefully if LP0 watermarks
2673          * are exceeded...
2674          */
2675         if (level == 0 && !result->enable) {
2676                 if (result->pri_val > max->pri)
2677                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2678                                       level, result->pri_val, max->pri);
2679                 if (result->spr_val > max->spr)
2680                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2681                                       level, result->spr_val, max->spr);
2682                 if (result->cur_val > max->cur)
2683                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2684                                       level, result->cur_val, max->cur);
2685
2686                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2687                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2688                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2689                 result->enable = true;
2690         }
2691
2692         return ret;
2693 }
2694
2695 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2696                                  const struct intel_crtc *intel_crtc,
2697                                  int level,
2698                                  struct intel_crtc_state *cstate,
2699                                  struct intel_plane_state *pristate,
2700                                  struct intel_plane_state *sprstate,
2701                                  struct intel_plane_state *curstate,
2702                                  struct intel_wm_level *result)
2703 {
2704         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2705         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2706         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2707
2708         /* WM1+ latency values stored in 0.5us units */
2709         if (level > 0) {
2710                 pri_latency *= 5;
2711                 spr_latency *= 5;
2712                 cur_latency *= 5;
2713         }
2714
2715         if (pristate) {
2716                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2717                                                      pri_latency, level);
2718                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2719         }
2720
2721         if (sprstate)
2722                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2723
2724         if (curstate)
2725                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2726
2727         result->enable = true;
2728 }
2729
2730 static uint32_t
2731 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2732 {
2733         const struct intel_atomic_state *intel_state =
2734                 to_intel_atomic_state(cstate->base.state);
2735         const struct drm_display_mode *adjusted_mode =
2736                 &cstate->base.adjusted_mode;
2737         u32 linetime, ips_linetime;
2738
2739         if (!cstate->base.active)
2740                 return 0;
2741         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2742                 return 0;
2743         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2744                 return 0;
2745
2746         /* The WM are computed with base on how long it takes to fill a single
2747          * row at the given clock rate, multiplied by 8.
2748          * */
2749         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2750                                      adjusted_mode->crtc_clock);
2751         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2752                                          intel_state->cdclk.logical.cdclk);
2753
2754         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2755                PIPE_WM_LINETIME_TIME(linetime);
2756 }
2757
2758 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2759                                   uint16_t wm[8])
2760 {
2761         if (IS_GEN9(dev_priv)) {
2762                 uint32_t val;
2763                 int ret, i;
2764                 int level, max_level = ilk_wm_max_level(dev_priv);
2765
2766                 /* read the first set of memory latencies[0:3] */
2767                 val = 0; /* data0 to be programmed to 0 for first set */
2768                 mutex_lock(&dev_priv->rps.hw_lock);
2769                 ret = sandybridge_pcode_read(dev_priv,
2770                                              GEN9_PCODE_READ_MEM_LATENCY,
2771                                              &val);
2772                 mutex_unlock(&dev_priv->rps.hw_lock);
2773
2774                 if (ret) {
2775                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2776                         return;
2777                 }
2778
2779                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2780                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2781                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2782                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2783                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2784                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2785                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2786
2787                 /* read the second set of memory latencies[4:7] */
2788                 val = 1; /* data0 to be programmed to 1 for second set */
2789                 mutex_lock(&dev_priv->rps.hw_lock);
2790                 ret = sandybridge_pcode_read(dev_priv,
2791                                              GEN9_PCODE_READ_MEM_LATENCY,
2792                                              &val);
2793                 mutex_unlock(&dev_priv->rps.hw_lock);
2794                 if (ret) {
2795                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2796                         return;
2797                 }
2798
2799                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2800                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2801                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2802                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2803                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2804                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2805                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2806
2807                 /*
2808                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2809                  * need to be disabled. We make sure to sanitize the values out
2810                  * of the punit to satisfy this requirement.
2811                  */
2812                 for (level = 1; level <= max_level; level++) {
2813                         if (wm[level] == 0) {
2814                                 for (i = level + 1; i <= max_level; i++)
2815                                         wm[i] = 0;
2816                                 break;
2817                         }
2818                 }
2819
2820                 /*
2821                  * WaWmMemoryReadLatency:skl,glk
2822                  *
2823                  * punit doesn't take into account the read latency so we need
2824                  * to add 2us to the various latency levels we retrieve from the
2825                  * punit when level 0 response data us 0us.
2826                  */
2827                 if (wm[0] == 0) {
2828                         wm[0] += 2;
2829                         for (level = 1; level <= max_level; level++) {
2830                                 if (wm[level] == 0)
2831                                         break;
2832                                 wm[level] += 2;
2833                         }
2834                 }
2835
2836         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2837                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2838
2839                 wm[0] = (sskpd >> 56) & 0xFF;
2840                 if (wm[0] == 0)
2841                         wm[0] = sskpd & 0xF;
2842                 wm[1] = (sskpd >> 4) & 0xFF;
2843                 wm[2] = (sskpd >> 12) & 0xFF;
2844                 wm[3] = (sskpd >> 20) & 0x1FF;
2845                 wm[4] = (sskpd >> 32) & 0x1FF;
2846         } else if (INTEL_GEN(dev_priv) >= 6) {
2847                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2848
2849                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2850                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2851                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2852                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2853         } else if (INTEL_GEN(dev_priv) >= 5) {
2854                 uint32_t mltr = I915_READ(MLTR_ILK);
2855
2856                 /* ILK primary LP0 latency is 700 ns */
2857                 wm[0] = 7;
2858                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2859                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2860         }
2861 }
2862
2863 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2864                                        uint16_t wm[5])
2865 {
2866         /* ILK sprite LP0 latency is 1300 ns */
2867         if (IS_GEN5(dev_priv))
2868                 wm[0] = 13;
2869 }
2870
2871 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2872                                        uint16_t wm[5])
2873 {
2874         /* ILK cursor LP0 latency is 1300 ns */
2875         if (IS_GEN5(dev_priv))
2876                 wm[0] = 13;
2877
2878         /* WaDoubleCursorLP3Latency:ivb */
2879         if (IS_IVYBRIDGE(dev_priv))
2880                 wm[3] *= 2;
2881 }
2882
2883 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2884 {
2885         /* how many WM levels are we expecting */
2886         if (INTEL_GEN(dev_priv) >= 9)
2887                 return 7;
2888         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2889                 return 4;
2890         else if (INTEL_GEN(dev_priv) >= 6)
2891                 return 3;
2892         else
2893                 return 2;
2894 }
2895
2896 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2897                                    const char *name,
2898                                    const uint16_t wm[8])
2899 {
2900         int level, max_level = ilk_wm_max_level(dev_priv);
2901
2902         for (level = 0; level <= max_level; level++) {
2903                 unsigned int latency = wm[level];
2904
2905                 if (latency == 0) {
2906                         DRM_ERROR("%s WM%d latency not provided\n",
2907                                   name, level);
2908                         continue;
2909                 }
2910
2911                 /*
2912                  * - latencies are in us on gen9.
2913                  * - before then, WM1+ latency values are in 0.5us units
2914                  */
2915                 if (IS_GEN9(dev_priv))
2916                         latency *= 10;
2917                 else if (level > 0)
2918                         latency *= 5;
2919
2920                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2921                               name, level, wm[level],
2922                               latency / 10, latency % 10);
2923         }
2924 }
2925
2926 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2927                                     uint16_t wm[5], uint16_t min)
2928 {
2929         int level, max_level = ilk_wm_max_level(dev_priv);
2930
2931         if (wm[0] >= min)
2932                 return false;
2933
2934         wm[0] = max(wm[0], min);
2935         for (level = 1; level <= max_level; level++)
2936                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2937
2938         return true;
2939 }
2940
2941 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2942 {
2943         bool changed;
2944
2945         /*
2946          * The BIOS provided WM memory latency values are often
2947          * inadequate for high resolution displays. Adjust them.
2948          */
2949         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2950                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2951                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2952
2953         if (!changed)
2954                 return;
2955
2956         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2957         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2958         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2959         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2960 }
2961
2962 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2963 {
2964         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2965
2966         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2967                sizeof(dev_priv->wm.pri_latency));
2968         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2969                sizeof(dev_priv->wm.pri_latency));
2970
2971         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2972         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2973
2974         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2975         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2976         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2977
2978         if (IS_GEN6(dev_priv))
2979                 snb_wm_latency_quirk(dev_priv);
2980 }
2981
2982 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2983 {
2984         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2985         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2986 }
2987
2988 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2989                                  struct intel_pipe_wm *pipe_wm)
2990 {
2991         /* LP0 watermark maximums depend on this pipe alone */
2992         const struct intel_wm_config config = {
2993                 .num_pipes_active = 1,
2994                 .sprites_enabled = pipe_wm->sprites_enabled,
2995                 .sprites_scaled = pipe_wm->sprites_scaled,
2996         };
2997         struct ilk_wm_maximums max;
2998
2999         /* LP0 watermarks always use 1/2 DDB partitioning */
3000         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3001
3002         /* At least LP0 must be valid */
3003         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3004                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3005                 return false;
3006         }
3007
3008         return true;
3009 }
3010
3011 /* Compute new watermarks for the pipe */
3012 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3013 {
3014         struct drm_atomic_state *state = cstate->base.state;
3015         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3016         struct intel_pipe_wm *pipe_wm;
3017         struct drm_device *dev = state->dev;
3018         const struct drm_i915_private *dev_priv = to_i915(dev);
3019         struct intel_plane *intel_plane;
3020         struct intel_plane_state *pristate = NULL;
3021         struct intel_plane_state *sprstate = NULL;
3022         struct intel_plane_state *curstate = NULL;
3023         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3024         struct ilk_wm_maximums max;
3025
3026         pipe_wm = &cstate->wm.ilk.optimal;
3027
3028         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3029                 struct intel_plane_state *ps;
3030
3031                 ps = intel_atomic_get_existing_plane_state(state,
3032                                                            intel_plane);
3033                 if (!ps)
3034                         continue;
3035
3036                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3037                         pristate = ps;
3038                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3039                         sprstate = ps;
3040                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3041                         curstate = ps;
3042         }
3043
3044         pipe_wm->pipe_enabled = cstate->base.active;
3045         if (sprstate) {
3046                 pipe_wm->sprites_enabled = sprstate->base.visible;
3047                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3048                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3049                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3050         }
3051
3052         usable_level = max_level;
3053
3054         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3055         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3056                 usable_level = 1;
3057
3058         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3059         if (pipe_wm->sprites_scaled)
3060                 usable_level = 0;
3061
3062         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3063                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
3064
3065         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3066         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3067
3068         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3069                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3070
3071         if (!ilk_validate_pipe_wm(dev, pipe_wm))
3072                 return -EINVAL;
3073
3074         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3075
3076         for (level = 1; level <= max_level; level++) {
3077                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3078
3079                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3080                                      pristate, sprstate, curstate, wm);
3081
3082                 /*
3083                  * Disable any watermark level that exceeds the
3084                  * register maximums since such watermarks are
3085                  * always invalid.
3086                  */
3087                 if (level > usable_level)
3088                         continue;
3089
3090                 if (ilk_validate_wm_level(level, &max, wm))
3091                         pipe_wm->wm[level] = *wm;
3092                 else
3093                         usable_level = level;
3094         }
3095
3096         return 0;
3097 }
3098
3099 /*
3100  * Build a set of 'intermediate' watermark values that satisfy both the old
3101  * state and the new state.  These can be programmed to the hardware
3102  * immediately.
3103  */
3104 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3105                                        struct intel_crtc *intel_crtc,
3106                                        struct intel_crtc_state *newstate)
3107 {
3108         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3109         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3110         int level, max_level = ilk_wm_max_level(to_i915(dev));
3111
3112         /*
3113          * Start with the final, target watermarks, then combine with the
3114          * currently active watermarks to get values that are safe both before
3115          * and after the vblank.
3116          */
3117         *a = newstate->wm.ilk.optimal;
3118         a->pipe_enabled |= b->pipe_enabled;
3119         a->sprites_enabled |= b->sprites_enabled;
3120         a->sprites_scaled |= b->sprites_scaled;
3121
3122         for (level = 0; level <= max_level; level++) {
3123                 struct intel_wm_level *a_wm = &a->wm[level];
3124                 const struct intel_wm_level *b_wm = &b->wm[level];
3125
3126                 a_wm->enable &= b_wm->enable;
3127                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3128                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3129                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3130                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3131         }
3132
3133         /*
3134          * We need to make sure that these merged watermark values are
3135          * actually a valid configuration themselves.  If they're not,
3136          * there's no safe way to transition from the old state to
3137          * the new state, so we need to fail the atomic transaction.
3138          */
3139         if (!ilk_validate_pipe_wm(dev, a))
3140                 return -EINVAL;
3141
3142         /*
3143          * If our intermediate WM are identical to the final WM, then we can
3144          * omit the post-vblank programming; only update if it's different.
3145          */
3146         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3147                 newstate->wm.need_postvbl_update = true;
3148
3149         return 0;
3150 }
3151
3152 /*
3153  * Merge the watermarks from all active pipes for a specific level.
3154  */
3155 static void ilk_merge_wm_level(struct drm_device *dev,
3156                                int level,
3157                                struct intel_wm_level *ret_wm)
3158 {
3159         const struct intel_crtc *intel_crtc;
3160
3161         ret_wm->enable = true;
3162
3163         for_each_intel_crtc(dev, intel_crtc) {
3164                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3165                 const struct intel_wm_level *wm = &active->wm[level];
3166
3167                 if (!active->pipe_enabled)
3168                         continue;
3169
3170                 /*
3171                  * The watermark values may have been used in the past,
3172                  * so we must maintain them in the registers for some
3173                  * time even if the level is now disabled.
3174                  */
3175                 if (!wm->enable)
3176                         ret_wm->enable = false;
3177
3178                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3179                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3180                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3181                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3182         }
3183 }
3184
3185 /*
3186  * Merge all low power watermarks for all active pipes.
3187  */
3188 static void ilk_wm_merge(struct drm_device *dev,
3189                          const struct intel_wm_config *config,
3190                          const struct ilk_wm_maximums *max,
3191                          struct intel_pipe_wm *merged)
3192 {
3193         struct drm_i915_private *dev_priv = to_i915(dev);
3194         int level, max_level = ilk_wm_max_level(dev_priv);
3195         int last_enabled_level = max_level;
3196
3197         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3198         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3199             config->num_pipes_active > 1)
3200                 last_enabled_level = 0;
3201
3202         /* ILK: FBC WM must be disabled always */
3203         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3204
3205         /* merge each WM1+ level */
3206         for (level = 1; level <= max_level; level++) {
3207                 struct intel_wm_level *wm = &merged->wm[level];
3208
3209                 ilk_merge_wm_level(dev, level, wm);
3210
3211                 if (level > last_enabled_level)
3212                         wm->enable = false;
3213                 else if (!ilk_validate_wm_level(level, max, wm))
3214                         /* make sure all following levels get disabled */
3215                         last_enabled_level = level - 1;
3216
3217                 /*
3218                  * The spec says it is preferred to disable
3219                  * FBC WMs instead of disabling a WM level.
3220                  */
3221                 if (wm->fbc_val > max->fbc) {
3222                         if (wm->enable)
3223                                 merged->fbc_wm_enabled = false;
3224                         wm->fbc_val = 0;
3225                 }
3226         }
3227
3228         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3229         /*
3230          * FIXME this is racy. FBC might get enabled later.
3231          * What we should check here is whether FBC can be
3232          * enabled sometime later.
3233          */
3234         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3235             intel_fbc_is_active(dev_priv)) {
3236                 for (level = 2; level <= max_level; level++) {
3237                         struct intel_wm_level *wm = &merged->wm[level];
3238
3239                         wm->enable = false;
3240                 }
3241         }
3242 }
3243
3244 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3245 {
3246         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3247         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3248 }
3249
3250 /* The value we need to program into the WM_LPx latency field */
3251 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3252 {
3253         struct drm_i915_private *dev_priv = to_i915(dev);
3254
3255         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3256                 return 2 * level;
3257         else
3258                 return dev_priv->wm.pri_latency[level];
3259 }
3260
3261 static void ilk_compute_wm_results(struct drm_device *dev,
3262                                    const struct intel_pipe_wm *merged,
3263                                    enum intel_ddb_partitioning partitioning,
3264                                    struct ilk_wm_values *results)
3265 {
3266         struct drm_i915_private *dev_priv = to_i915(dev);
3267         struct intel_crtc *intel_crtc;
3268         int level, wm_lp;
3269
3270         results->enable_fbc_wm = merged->fbc_wm_enabled;
3271         results->partitioning = partitioning;
3272
3273         /* LP1+ register values */
3274         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3275                 const struct intel_wm_level *r;
3276
3277                 level = ilk_wm_lp_to_level(wm_lp, merged);
3278
3279                 r = &merged->wm[level];
3280
3281                 /*
3282                  * Maintain the watermark values even if the level is
3283                  * disabled. Doing otherwise could cause underruns.
3284                  */
3285                 results->wm_lp[wm_lp - 1] =
3286                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3287                         (r->pri_val << WM1_LP_SR_SHIFT) |
3288                         r->cur_val;
3289
3290                 if (r->enable)
3291                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3292
3293                 if (INTEL_GEN(dev_priv) >= 8)
3294                         results->wm_lp[wm_lp - 1] |=
3295                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3296                 else
3297                         results->wm_lp[wm_lp - 1] |=
3298                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3299
3300                 /*
3301                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3302                  * level is disabled. Doing otherwise could cause underruns.
3303                  */
3304                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3305                         WARN_ON(wm_lp != 1);
3306                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3307                 } else
3308                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3309         }
3310
3311         /* LP0 register values */
3312         for_each_intel_crtc(dev, intel_crtc) {
3313                 enum pipe pipe = intel_crtc->pipe;
3314                 const struct intel_wm_level *r =
3315                         &intel_crtc->wm.active.ilk.wm[0];
3316
3317                 if (WARN_ON(!r->enable))
3318                         continue;
3319
3320                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3321
3322                 results->wm_pipe[pipe] =
3323                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3324                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3325                         r->cur_val;
3326         }
3327 }
3328
3329 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3330  * case both are at the same level. Prefer r1 in case they're the same. */
3331 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3332                                                   struct intel_pipe_wm *r1,
3333                                                   struct intel_pipe_wm *r2)
3334 {
3335         int level, max_level = ilk_wm_max_level(to_i915(dev));
3336         int level1 = 0, level2 = 0;
3337
3338         for (level = 1; level <= max_level; level++) {
3339                 if (r1->wm[level].enable)
3340                         level1 = level;
3341                 if (r2->wm[level].enable)
3342                         level2 = level;
3343         }
3344
3345         if (level1 == level2) {
3346                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3347                         return r2;
3348                 else
3349                         return r1;
3350         } else if (level1 > level2) {
3351                 return r1;
3352         } else {
3353                 return r2;
3354         }
3355 }
3356
3357 /* dirty bits used to track which watermarks need changes */
3358 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3359 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3360 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3361 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3362 #define WM_DIRTY_FBC (1 << 24)
3363 #define WM_DIRTY_DDB (1 << 25)
3364
3365 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3366                                          const struct ilk_wm_values *old,
3367                                          const struct ilk_wm_values *new)
3368 {
3369         unsigned int dirty = 0;
3370         enum pipe pipe;
3371         int wm_lp;
3372
3373         for_each_pipe(dev_priv, pipe) {
3374                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3375                         dirty |= WM_DIRTY_LINETIME(pipe);
3376                         /* Must disable LP1+ watermarks too */
3377                         dirty |= WM_DIRTY_LP_ALL;
3378                 }
3379
3380                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3381                         dirty |= WM_DIRTY_PIPE(pipe);
3382                         /* Must disable LP1+ watermarks too */
3383                         dirty |= WM_DIRTY_LP_ALL;
3384                 }
3385         }
3386
3387         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3388                 dirty |= WM_DIRTY_FBC;
3389                 /* Must disable LP1+ watermarks too */
3390                 dirty |= WM_DIRTY_LP_ALL;
3391         }
3392
3393         if (old->partitioning != new->partitioning) {
3394                 dirty |= WM_DIRTY_DDB;
3395                 /* Must disable LP1+ watermarks too */
3396                 dirty |= WM_DIRTY_LP_ALL;
3397         }
3398
3399         /* LP1+ watermarks already deemed dirty, no need to continue */
3400         if (dirty & WM_DIRTY_LP_ALL)
3401                 return dirty;
3402
3403         /* Find the lowest numbered LP1+ watermark in need of an update... */
3404         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3405                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3406                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3407                         break;
3408         }
3409
3410         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3411         for (; wm_lp <= 3; wm_lp++)
3412                 dirty |= WM_DIRTY_LP(wm_lp);
3413
3414         return dirty;
3415 }
3416
3417 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3418                                unsigned int dirty)
3419 {
3420         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3421         bool changed = false;
3422
3423         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3424                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3425                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3426                 changed = true;
3427         }
3428         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3429                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3430                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3431                 changed = true;
3432         }
3433         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3434                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3435                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3436                 changed = true;
3437         }
3438
3439         /*
3440          * Don't touch WM1S_LP_EN here.
3441          * Doing so could cause underruns.
3442          */
3443
3444         return changed;
3445 }
3446
3447 /*
3448  * The spec says we shouldn't write when we don't need, because every write
3449  * causes WMs to be re-evaluated, expending some power.
3450  */
3451 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3452                                 struct ilk_wm_values *results)
3453 {
3454         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3455         unsigned int dirty;
3456         uint32_t val;
3457
3458         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3459         if (!dirty)
3460                 return;
3461
3462         _ilk_disable_lp_wm(dev_priv, dirty);
3463
3464         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3465                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3466         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3467                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3468         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3469                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3470
3471         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3472                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3473         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3474                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3475         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3476                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3477
3478         if (dirty & WM_DIRTY_DDB) {
3479                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3480                         val = I915_READ(WM_MISC);
3481                         if (results->partitioning == INTEL_DDB_PART_1_2)
3482                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3483                         else
3484                                 val |= WM_MISC_DATA_PARTITION_5_6;
3485                         I915_WRITE(WM_MISC, val);
3486                 } else {
3487                         val = I915_READ(DISP_ARB_CTL2);
3488                         if (results->partitioning == INTEL_DDB_PART_1_2)
3489                                 val &= ~DISP_DATA_PARTITION_5_6;
3490                         else
3491                                 val |= DISP_DATA_PARTITION_5_6;
3492                         I915_WRITE(DISP_ARB_CTL2, val);
3493                 }
3494         }
3495
3496         if (dirty & WM_DIRTY_FBC) {
3497                 val = I915_READ(DISP_ARB_CTL);
3498                 if (results->enable_fbc_wm)
3499                         val &= ~DISP_FBC_WM_DIS;
3500                 else
3501                         val |= DISP_FBC_WM_DIS;
3502                 I915_WRITE(DISP_ARB_CTL, val);
3503         }
3504
3505         if (dirty & WM_DIRTY_LP(1) &&
3506             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3507                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3508
3509         if (INTEL_GEN(dev_priv) >= 7) {
3510                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3511                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3512                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3513                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3514         }
3515
3516         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3517                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3518         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3519                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3520         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3521                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3522
3523         dev_priv->wm.hw = *results;
3524 }
3525
3526 bool ilk_disable_lp_wm(struct drm_device *dev)
3527 {
3528         struct drm_i915_private *dev_priv = to_i915(dev);
3529
3530         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3531 }
3532
3533 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
3534
3535 /*
3536  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3537  * so assume we'll always need it in order to avoid underruns.
3538  */
3539 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3540 {
3541         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3542
3543         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3544                 return true;
3545
3546         return false;
3547 }
3548
3549 static bool
3550 intel_has_sagv(struct drm_i915_private *dev_priv)
3551 {
3552         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
3553                 return true;
3554
3555         if (IS_SKYLAKE(dev_priv) &&
3556             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3557                 return true;
3558
3559         return false;
3560 }
3561
3562 /*
3563  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3564  * depending on power and performance requirements. The display engine access
3565  * to system memory is blocked during the adjustment time. Because of the
3566  * blocking time, having this enabled can cause full system hangs and/or pipe
3567  * underruns if we don't meet all of the following requirements:
3568  *
3569  *  - <= 1 pipe enabled
3570  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3571  *  - We're not using an interlaced display configuration
3572  */
3573 int
3574 intel_enable_sagv(struct drm_i915_private *dev_priv)
3575 {
3576         int ret;
3577
3578         if (!intel_has_sagv(dev_priv))
3579                 return 0;
3580
3581         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3582                 return 0;
3583
3584         DRM_DEBUG_KMS("Enabling the SAGV\n");
3585         mutex_lock(&dev_priv->rps.hw_lock);
3586
3587         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3588                                       GEN9_SAGV_ENABLE);
3589
3590         /* We don't need to wait for the SAGV when enabling */
3591         mutex_unlock(&dev_priv->rps.hw_lock);
3592
3593         /*
3594          * Some skl systems, pre-release machines in particular,
3595          * don't actually have an SAGV.
3596          */
3597         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3598                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3599                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3600                 return 0;
3601         } else if (ret < 0) {
3602                 DRM_ERROR("Failed to enable the SAGV\n");
3603                 return ret;
3604         }
3605
3606         dev_priv->sagv_status = I915_SAGV_ENABLED;
3607         return 0;
3608 }
3609
3610 int
3611 intel_disable_sagv(struct drm_i915_private *dev_priv)
3612 {
3613         int ret;
3614
3615         if (!intel_has_sagv(dev_priv))
3616                 return 0;
3617
3618         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3619                 return 0;
3620
3621         DRM_DEBUG_KMS("Disabling the SAGV\n");
3622         mutex_lock(&dev_priv->rps.hw_lock);
3623
3624         /* bspec says to keep retrying for at least 1 ms */
3625         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3626                                 GEN9_SAGV_DISABLE,
3627                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3628                                 1);
3629         mutex_unlock(&dev_priv->rps.hw_lock);
3630
3631         /*
3632          * Some skl systems, pre-release machines in particular,
3633          * don't actually have an SAGV.
3634          */
3635         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3636                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3637                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3638                 return 0;
3639         } else if (ret < 0) {
3640                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3641                 return ret;
3642         }
3643
3644         dev_priv->sagv_status = I915_SAGV_DISABLED;
3645         return 0;
3646 }
3647
3648 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3649 {
3650         struct drm_device *dev = state->dev;
3651         struct drm_i915_private *dev_priv = to_i915(dev);
3652         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3653         struct intel_crtc *crtc;
3654         struct intel_plane *plane;
3655         struct intel_crtc_state *cstate;
3656         enum pipe pipe;
3657         int level, latency;
3658
3659         if (!intel_has_sagv(dev_priv))
3660                 return false;
3661
3662         /*
3663          * SKL workaround: bspec recommends we disable the SAGV when we have
3664          * more then one pipe enabled
3665          *
3666          * If there are no active CRTCs, no additional checks need be performed
3667          */
3668         if (hweight32(intel_state->active_crtcs) == 0)
3669                 return true;
3670         else if (hweight32(intel_state->active_crtcs) > 1)
3671                 return false;
3672
3673         /* Since we're now guaranteed to only have one active CRTC... */
3674         pipe = ffs(intel_state->active_crtcs) - 1;
3675         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3676         cstate = to_intel_crtc_state(crtc->base.state);
3677
3678         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3679                 return false;
3680
3681         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3682                 struct skl_plane_wm *wm =
3683                         &cstate->wm.skl.optimal.planes[plane->id];
3684
3685                 /* Skip this plane if it's not enabled */
3686                 if (!wm->wm[0].plane_en)
3687                         continue;
3688
3689                 /* Find the highest enabled wm level for this plane */
3690                 for (level = ilk_wm_max_level(dev_priv);
3691                      !wm->wm[level].plane_en; --level)
3692                      { }
3693
3694                 latency = dev_priv->wm.skl_latency[level];
3695
3696                 if (skl_needs_memory_bw_wa(intel_state) &&
3697                     plane->base.state->fb->modifier ==
3698                     I915_FORMAT_MOD_X_TILED)
3699                         latency += 15;
3700
3701                 /*
3702                  * If any of the planes on this pipe don't enable wm levels
3703                  * that incur memory latencies higher then 30µs we can't enable
3704                  * the SAGV
3705                  */
3706                 if (latency < SKL_SAGV_BLOCK_TIME)
3707                         return false;
3708         }
3709
3710         return true;
3711 }
3712
3713 static void
3714 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3715                                    const struct intel_crtc_state *cstate,
3716                                    struct skl_ddb_entry *alloc, /* out */
3717                                    int *num_active /* out */)
3718 {
3719         struct drm_atomic_state *state = cstate->base.state;
3720         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3721         struct drm_i915_private *dev_priv = to_i915(dev);
3722         struct drm_crtc *for_crtc = cstate->base.crtc;
3723         unsigned int pipe_size, ddb_size;
3724         int nth_active_pipe;
3725
3726         if (WARN_ON(!state) || !cstate->base.active) {
3727                 alloc->start = 0;
3728                 alloc->end = 0;
3729                 *num_active = hweight32(dev_priv->active_crtcs);
3730                 return;
3731         }
3732
3733         if (intel_state->active_pipe_changes)
3734                 *num_active = hweight32(intel_state->active_crtcs);
3735         else
3736                 *num_active = hweight32(dev_priv->active_crtcs);
3737
3738         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3739         WARN_ON(ddb_size == 0);
3740
3741         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3742
3743         /*
3744          * If the state doesn't change the active CRTC's, then there's
3745          * no need to recalculate; the existing pipe allocation limits
3746          * should remain unchanged.  Note that we're safe from racing
3747          * commits since any racing commit that changes the active CRTC
3748          * list would need to grab _all_ crtc locks, including the one
3749          * we currently hold.
3750          */
3751         if (!intel_state->active_pipe_changes) {
3752                 /*
3753                  * alloc may be cleared by clear_intel_crtc_state,
3754                  * copy from old state to be sure
3755                  */
3756                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3757                 return;
3758         }
3759
3760         nth_active_pipe = hweight32(intel_state->active_crtcs &
3761                                     (drm_crtc_mask(for_crtc) - 1));
3762         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3763         alloc->start = nth_active_pipe * ddb_size / *num_active;
3764         alloc->end = alloc->start + pipe_size;
3765 }
3766
3767 static unsigned int skl_cursor_allocation(int num_active)
3768 {
3769         if (num_active == 1)
3770                 return 32;
3771
3772         return 8;
3773 }
3774
3775 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3776 {
3777         entry->start = reg & 0x3ff;
3778         entry->end = (reg >> 16) & 0x3ff;
3779         if (entry->end)
3780                 entry->end += 1;
3781 }
3782
3783 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3784                           struct skl_ddb_allocation *ddb /* out */)
3785 {
3786         struct intel_crtc *crtc;
3787
3788         memset(ddb, 0, sizeof(*ddb));
3789
3790         for_each_intel_crtc(&dev_priv->drm, crtc) {
3791                 enum intel_display_power_domain power_domain;
3792                 enum plane_id plane_id;
3793                 enum pipe pipe = crtc->pipe;
3794
3795                 power_domain = POWER_DOMAIN_PIPE(pipe);
3796                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3797                         continue;
3798
3799                 for_each_plane_id_on_crtc(crtc, plane_id) {
3800                         u32 val;
3801
3802                         if (plane_id != PLANE_CURSOR)
3803                                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3804                         else
3805                                 val = I915_READ(CUR_BUF_CFG(pipe));
3806
3807                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3808                 }
3809
3810                 intel_display_power_put(dev_priv, power_domain);
3811         }
3812 }
3813
3814 /*
3815  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3816  * The bspec defines downscale amount as:
3817  *
3818  * """
3819  * Horizontal down scale amount = maximum[1, Horizontal source size /
3820  *                                           Horizontal destination size]
3821  * Vertical down scale amount = maximum[1, Vertical source size /
3822  *                                         Vertical destination size]
3823  * Total down scale amount = Horizontal down scale amount *
3824  *                           Vertical down scale amount
3825  * """
3826  *
3827  * Return value is provided in 16.16 fixed point form to retain fractional part.
3828  * Caller should take care of dividing & rounding off the value.
3829  */
3830 static uint_fixed_16_16_t
3831 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3832                            const struct intel_plane_state *pstate)
3833 {
3834         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3835         uint32_t src_w, src_h, dst_w, dst_h;
3836         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3837         uint_fixed_16_16_t downscale_h, downscale_w;
3838
3839         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3840                 return u32_to_fixed16(0);
3841
3842         /* n.b., src is 16.16 fixed point, dst is whole integer */
3843         if (plane->id == PLANE_CURSOR) {
3844                 /*
3845                  * Cursors only support 0/180 degree rotation,
3846                  * hence no need to account for rotation here.
3847                  */
3848                 src_w = pstate->base.src_w >> 16;
3849                 src_h = pstate->base.src_h >> 16;
3850                 dst_w = pstate->base.crtc_w;
3851                 dst_h = pstate->base.crtc_h;
3852         } else {
3853                 /*
3854                  * Src coordinates are already rotated by 270 degrees for
3855                  * the 90/270 degree plane rotation cases (to match the
3856                  * GTT mapping), hence no need to account for rotation here.
3857                  */
3858                 src_w = drm_rect_width(&pstate->base.src) >> 16;
3859                 src_h = drm_rect_height(&pstate->base.src) >> 16;
3860                 dst_w = drm_rect_width(&pstate->base.dst);
3861                 dst_h = drm_rect_height(&pstate->base.dst);
3862         }
3863
3864         fp_w_ratio = div_fixed16(src_w, dst_w);
3865         fp_h_ratio = div_fixed16(src_h, dst_h);
3866         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3867         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3868
3869         return mul_fixed16(downscale_w, downscale_h);
3870 }
3871
3872 static uint_fixed_16_16_t
3873 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3874 {
3875         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3876
3877         if (!crtc_state->base.enable)
3878                 return pipe_downscale;
3879
3880         if (crtc_state->pch_pfit.enabled) {
3881                 uint32_t src_w, src_h, dst_w, dst_h;
3882                 uint32_t pfit_size = crtc_state->pch_pfit.size;
3883                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3884                 uint_fixed_16_16_t downscale_h, downscale_w;
3885
3886                 src_w = crtc_state->pipe_src_w;
3887                 src_h = crtc_state->pipe_src_h;
3888                 dst_w = pfit_size >> 16;
3889                 dst_h = pfit_size & 0xffff;
3890
3891                 if (!dst_w || !dst_h)
3892                         return pipe_downscale;
3893
3894                 fp_w_ratio = div_fixed16(src_w, dst_w);
3895                 fp_h_ratio = div_fixed16(src_h, dst_h);
3896                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3897                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3898
3899                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3900         }
3901
3902         return pipe_downscale;
3903 }
3904
3905 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3906                                   struct intel_crtc_state *cstate)
3907 {
3908         struct drm_crtc_state *crtc_state = &cstate->base;
3909         struct drm_atomic_state *state = crtc_state->state;
3910         struct drm_plane *plane;
3911         const struct drm_plane_state *pstate;
3912         struct intel_plane_state *intel_pstate;
3913         int crtc_clock, dotclk;
3914         uint32_t pipe_max_pixel_rate;
3915         uint_fixed_16_16_t pipe_downscale;
3916         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3917
3918         if (!cstate->base.enable)
3919                 return 0;
3920
3921         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3922                 uint_fixed_16_16_t plane_downscale;
3923                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3924                 int bpp;
3925
3926                 if (!intel_wm_plane_visible(cstate,
3927                                             to_intel_plane_state(pstate)))
3928                         continue;
3929
3930                 if (WARN_ON(!pstate->fb))
3931                         return -EINVAL;
3932
3933                 intel_pstate = to_intel_plane_state(pstate);
3934                 plane_downscale = skl_plane_downscale_amount(cstate,
3935                                                              intel_pstate);
3936                 bpp = pstate->fb->format->cpp[0] * 8;
3937                 if (bpp == 64)
3938                         plane_downscale = mul_fixed16(plane_downscale,
3939                                                       fp_9_div_8);
3940
3941                 max_downscale = max_fixed16(plane_downscale, max_downscale);
3942         }
3943         pipe_downscale = skl_pipe_downscale_amount(cstate);
3944
3945         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3946
3947         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3948         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3949
3950         if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3951                 dotclk *= 2;
3952
3953         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3954
3955         if (pipe_max_pixel_rate < crtc_clock) {
3956                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3957                 return -EINVAL;
3958         }
3959
3960         return 0;
3961 }
3962
3963 static unsigned int
3964 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3965                              const struct drm_plane_state *pstate,
3966                              int y)
3967 {
3968         struct intel_plane *plane = to_intel_plane(pstate->plane);
3969         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3970         uint32_t data_rate;
3971         uint32_t width = 0, height = 0;
3972         struct drm_framebuffer *fb;
3973         u32 format;
3974         uint_fixed_16_16_t down_scale_amount;
3975
3976         if (!intel_pstate->base.visible)
3977                 return 0;
3978
3979         fb = pstate->fb;
3980         format = fb->format->format;
3981
3982         if (plane->id == PLANE_CURSOR)
3983                 return 0;
3984         if (y && format != DRM_FORMAT_NV12)
3985                 return 0;
3986
3987         /*
3988          * Src coordinates are already rotated by 270 degrees for
3989          * the 90/270 degree plane rotation cases (to match the
3990          * GTT mapping), hence no need to account for rotation here.
3991          */
3992         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3993         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3994
3995         /* for planar format */
3996         if (format == DRM_FORMAT_NV12) {
3997                 if (y)  /* y-plane data rate */
3998                         data_rate = width * height *
3999                                 fb->format->cpp[0];
4000                 else    /* uv-plane data rate */
4001                         data_rate = (width / 2) * (height / 2) *
4002                                 fb->format->cpp[1];
4003         } else {
4004                 /* for packed formats */
4005                 data_rate = width * height * fb->format->cpp[0];
4006         }
4007
4008         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4009
4010         return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4011 }
4012
4013 /*
4014  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4015  * a 8192x4096@32bpp framebuffer:
4016  *   3 * 4096 * 8192  * 4 < 2^32
4017  */
4018 static unsigned int
4019 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4020                                  unsigned *plane_data_rate,
4021                                  unsigned *plane_y_data_rate)
4022 {
4023         struct drm_crtc_state *cstate = &intel_cstate->base;
4024         struct drm_atomic_state *state = cstate->state;
4025         struct drm_plane *plane;
4026         const struct drm_plane_state *pstate;
4027         unsigned int total_data_rate = 0;
4028
4029         if (WARN_ON(!state))
4030                 return 0;
4031
4032         /* Calculate and cache data rate for each plane */
4033         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4034                 enum plane_id plane_id = to_intel_plane(plane)->id;
4035                 unsigned int rate;
4036
4037                 /* packed/uv */
4038                 rate = skl_plane_relative_data_rate(intel_cstate,
4039                                                     pstate, 0);
4040                 plane_data_rate[plane_id] = rate;
4041
4042                 total_data_rate += rate;
4043
4044                 /* y-plane */
4045                 rate = skl_plane_relative_data_rate(intel_cstate,
4046                                                     pstate, 1);
4047                 plane_y_data_rate[plane_id] = rate;
4048
4049                 total_data_rate += rate;
4050         }
4051
4052         return total_data_rate;
4053 }
4054
4055 static uint16_t
4056 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4057                   const int y)
4058 {
4059         struct drm_framebuffer *fb = pstate->fb;
4060         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4061         uint32_t src_w, src_h;
4062         uint32_t min_scanlines = 8;
4063         uint8_t plane_bpp;
4064
4065         if (WARN_ON(!fb))
4066                 return 0;
4067
4068         /* For packed formats, no y-plane, return 0 */
4069         if (y && fb->format->format != DRM_FORMAT_NV12)
4070                 return 0;
4071
4072         /* For Non Y-tile return 8-blocks */
4073         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4074             fb->modifier != I915_FORMAT_MOD_Yf_TILED)
4075                 return 8;
4076
4077         /*
4078          * Src coordinates are already rotated by 270 degrees for
4079          * the 90/270 degree plane rotation cases (to match the
4080          * GTT mapping), hence no need to account for rotation here.
4081          */
4082         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4083         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4084
4085         /* Halve UV plane width and height for NV12 */
4086         if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4087                 src_w /= 2;
4088                 src_h /= 2;
4089         }
4090
4091         if (fb->format->format == DRM_FORMAT_NV12 && !y)
4092                 plane_bpp = fb->format->cpp[1];
4093         else
4094                 plane_bpp = fb->format->cpp[0];
4095
4096         if (drm_rotation_90_or_270(pstate->rotation)) {
4097                 switch (plane_bpp) {
4098                 case 1:
4099                         min_scanlines = 32;
4100                         break;
4101                 case 2:
4102                         min_scanlines = 16;
4103                         break;
4104                 case 4:
4105                         min_scanlines = 8;
4106                         break;
4107                 case 8:
4108                         min_scanlines = 4;
4109                         break;
4110                 default:
4111                         WARN(1, "Unsupported pixel depth %u for rotation",
4112                              plane_bpp);
4113                         min_scanlines = 32;
4114                 }
4115         }
4116
4117         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4118 }
4119
4120 static void
4121 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4122                  uint16_t *minimum, uint16_t *y_minimum)
4123 {
4124         const struct drm_plane_state *pstate;
4125         struct drm_plane *plane;
4126
4127         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4128                 enum plane_id plane_id = to_intel_plane(plane)->id;
4129
4130                 if (plane_id == PLANE_CURSOR)
4131                         continue;
4132
4133                 if (!pstate->visible)
4134                         continue;
4135
4136                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4137                 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4138         }
4139
4140         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4141 }
4142
4143 static int
4144 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4145                       struct skl_ddb_allocation *ddb /* out */)
4146 {
4147         struct drm_atomic_state *state = cstate->base.state;
4148         struct drm_crtc *crtc = cstate->base.crtc;
4149         struct drm_device *dev = crtc->dev;
4150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151         enum pipe pipe = intel_crtc->pipe;
4152         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4153         uint16_t alloc_size, start;
4154         uint16_t minimum[I915_MAX_PLANES] = {};
4155         uint16_t y_minimum[I915_MAX_PLANES] = {};
4156         unsigned int total_data_rate;
4157         enum plane_id plane_id;
4158         int num_active;
4159         unsigned plane_data_rate[I915_MAX_PLANES] = {};
4160         unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4161         uint16_t total_min_blocks = 0;
4162
4163         /* Clear the partitioning for disabled planes. */
4164         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4165         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4166
4167         if (WARN_ON(!state))
4168                 return 0;
4169
4170         if (!cstate->base.active) {
4171                 alloc->start = alloc->end = 0;
4172                 return 0;
4173         }
4174
4175         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4176         alloc_size = skl_ddb_entry_size(alloc);
4177         if (alloc_size == 0)
4178                 return 0;
4179
4180         skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4181
4182         /*
4183          * 1. Allocate the mininum required blocks for each active plane
4184          * and allocate the cursor, it doesn't require extra allocation
4185          * proportional to the data rate.
4186          */
4187
4188         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4189                 total_min_blocks += minimum[plane_id];
4190                 total_min_blocks += y_minimum[plane_id];
4191         }
4192
4193         if (total_min_blocks > alloc_size) {
4194                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4195                 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4196                                                         alloc_size);
4197                 return -EINVAL;
4198         }
4199
4200         alloc_size -= total_min_blocks;
4201         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4202         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4203
4204         /*
4205          * 2. Distribute the remaining space in proportion to the amount of
4206          * data each plane needs to fetch from memory.
4207          *
4208          * FIXME: we may not allocate every single block here.
4209          */
4210         total_data_rate = skl_get_total_relative_data_rate(cstate,
4211                                                            plane_data_rate,
4212                                                            plane_y_data_rate);
4213         if (total_data_rate == 0)
4214                 return 0;
4215
4216         start = alloc->start;
4217         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4218                 unsigned int data_rate, y_data_rate;
4219                 uint16_t plane_blocks, y_plane_blocks = 0;
4220
4221                 if (plane_id == PLANE_CURSOR)
4222                         continue;
4223
4224                 data_rate = plane_data_rate[plane_id];
4225
4226                 /*
4227                  * allocation for (packed formats) or (uv-plane part of planar format):
4228                  * promote the expression to 64 bits to avoid overflowing, the
4229                  * result is < available as data_rate / total_data_rate < 1
4230                  */
4231                 plane_blocks = minimum[plane_id];
4232                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4233                                         total_data_rate);
4234
4235                 /* Leave disabled planes at (0,0) */
4236                 if (data_rate) {
4237                         ddb->plane[pipe][plane_id].start = start;
4238                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
4239                 }
4240
4241                 start += plane_blocks;
4242
4243                 /*
4244                  * allocation for y_plane part of planar format:
4245                  */
4246                 y_data_rate = plane_y_data_rate[plane_id];
4247
4248                 y_plane_blocks = y_minimum[plane_id];
4249                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4250                                         total_data_rate);
4251
4252                 if (y_data_rate) {
4253                         ddb->y_plane[pipe][plane_id].start = start;
4254                         ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4255                 }
4256
4257                 start += y_plane_blocks;
4258         }
4259
4260         return 0;
4261 }
4262
4263 /*
4264  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4265  * for the read latency) and cpp should always be <= 8, so that
4266  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4267  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4268 */
4269 static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
4270                                          uint32_t latency)
4271 {
4272         uint32_t wm_intermediate_val;
4273         uint_fixed_16_16_t ret;
4274
4275         if (latency == 0)
4276                 return FP_16_16_MAX;
4277
4278         wm_intermediate_val = latency * pixel_rate * cpp;
4279         ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4280         return ret;
4281 }
4282
4283 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4284                         uint32_t pipe_htotal,
4285                         uint32_t latency,
4286                         uint_fixed_16_16_t plane_blocks_per_line)
4287 {
4288         uint32_t wm_intermediate_val;
4289         uint_fixed_16_16_t ret;
4290
4291         if (latency == 0)
4292                 return FP_16_16_MAX;
4293
4294         wm_intermediate_val = latency * pixel_rate;
4295         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4296                                            pipe_htotal * 1000);
4297         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4298         return ret;
4299 }
4300
4301 static uint_fixed_16_16_t
4302 intel_get_linetime_us(struct intel_crtc_state *cstate)
4303 {
4304         uint32_t pixel_rate;
4305         uint32_t crtc_htotal;
4306         uint_fixed_16_16_t linetime_us;
4307
4308         if (!cstate->base.active)
4309                 return u32_to_fixed16(0);
4310
4311         pixel_rate = cstate->pixel_rate;
4312
4313         if (WARN_ON(pixel_rate == 0))
4314                 return u32_to_fixed16(0);
4315
4316         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4317         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4318
4319         return linetime_us;
4320 }
4321
4322 static uint32_t
4323 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4324                               const struct intel_plane_state *pstate)
4325 {
4326         uint64_t adjusted_pixel_rate;
4327         uint_fixed_16_16_t downscale_amount;
4328
4329         /* Shouldn't reach here on disabled planes... */
4330         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4331                 return 0;
4332
4333         /*
4334          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4335          * with additional adjustments for plane-specific scaling.
4336          */
4337         adjusted_pixel_rate = cstate->pixel_rate;
4338         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4339
4340         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4341                                             downscale_amount);
4342 }
4343
4344 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4345                                 struct intel_crtc_state *cstate,
4346                                 const struct intel_plane_state *intel_pstate,
4347                                 uint16_t ddb_allocation,
4348                                 int level,
4349                                 uint16_t *out_blocks, /* out */
4350                                 uint8_t *out_lines, /* out */
4351                                 bool *enabled /* out */)
4352 {
4353         struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4354         const struct drm_plane_state *pstate = &intel_pstate->base;
4355         const struct drm_framebuffer *fb = pstate->fb;
4356         uint32_t latency = dev_priv->wm.skl_latency[level];
4357         uint_fixed_16_16_t method1, method2;
4358         uint_fixed_16_16_t plane_blocks_per_line;
4359         uint_fixed_16_16_t selected_result;
4360         uint32_t interm_pbpl;
4361         uint32_t plane_bytes_per_line;
4362         uint32_t res_blocks, res_lines;
4363         uint8_t cpp;
4364         uint32_t width = 0;
4365         uint32_t plane_pixel_rate;
4366         uint_fixed_16_16_t y_tile_minimum;
4367         uint32_t y_min_scanlines;
4368         struct intel_atomic_state *state =
4369                 to_intel_atomic_state(cstate->base.state);
4370         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4371         bool y_tiled, x_tiled;
4372
4373         if (latency == 0 ||
4374             !intel_wm_plane_visible(cstate, intel_pstate)) {
4375                 *enabled = false;
4376                 return 0;
4377         }
4378
4379         y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4380                   fb->modifier == I915_FORMAT_MOD_Yf_TILED;
4381         x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4382
4383         /* Display WA #1141: kbl,cfl */
4384         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4385             dev_priv->ipc_enabled)
4386                 latency += 4;
4387
4388         if (apply_memory_bw_wa && x_tiled)
4389                 latency += 15;
4390
4391         if (plane->id == PLANE_CURSOR) {
4392                 width = intel_pstate->base.crtc_w;
4393         } else {
4394                 /*
4395                  * Src coordinates are already rotated by 270 degrees for
4396                  * the 90/270 degree plane rotation cases (to match the
4397                  * GTT mapping), hence no need to account for rotation here.
4398                  */
4399                 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4400         }
4401
4402         cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4403                                                         fb->format->cpp[0];
4404         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
4405
4406         if (drm_rotation_90_or_270(pstate->rotation)) {
4407
4408                 switch (cpp) {
4409                 case 1:
4410                         y_min_scanlines = 16;
4411                         break;
4412                 case 2:
4413                         y_min_scanlines = 8;
4414                         break;
4415                 case 4:
4416                         y_min_scanlines = 4;
4417                         break;
4418                 default:
4419                         MISSING_CASE(cpp);
4420                         return -EINVAL;
4421                 }
4422         } else {
4423                 y_min_scanlines = 4;
4424         }
4425
4426         if (apply_memory_bw_wa)
4427                 y_min_scanlines *= 2;
4428
4429         plane_bytes_per_line = width * cpp;
4430         if (y_tiled) {
4431                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
4432                                            y_min_scanlines, 512);
4433                 plane_blocks_per_line = div_fixed16(interm_pbpl,
4434                                                         y_min_scanlines);
4435         } else if (x_tiled) {
4436                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4437                 plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4438         } else {
4439                 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4440                 plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4441         }
4442
4443         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
4444         method2 = skl_wm_method2(plane_pixel_rate,
4445                                  cstate->base.adjusted_mode.crtc_htotal,
4446                                  latency,
4447                                  plane_blocks_per_line);
4448
4449         y_tile_minimum = mul_u32_fixed16(y_min_scanlines,
4450                                          plane_blocks_per_line);
4451
4452         if (y_tiled) {
4453                 selected_result = max_fixed16(method2, y_tile_minimum);
4454         } else {
4455                 uint32_t linetime_us;
4456
4457                 linetime_us = fixed16_to_u32_round_up(
4458                                 intel_get_linetime_us(cstate));
4459                 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
4460                     (plane_bytes_per_line / 512 < 1))
4461                         selected_result = method2;
4462                 else if ((ddb_allocation && ddb_allocation /
4463                         fixed16_to_u32_round_up(plane_blocks_per_line)) >= 1)
4464                         selected_result = min_fixed16(method1, method2);
4465                 else if (latency >= linetime_us)
4466                         selected_result = min_fixed16(method1, method2);
4467                 else
4468                         selected_result = method1;
4469         }
4470
4471         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4472         res_lines = div_round_up_fixed16(selected_result,
4473                                          plane_blocks_per_line);
4474
4475         if (level >= 1 && level <= 7) {
4476                 if (y_tiled) {
4477                         res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
4478                         res_lines += y_min_scanlines;
4479                 } else {
4480                         res_blocks++;
4481                 }
4482         }
4483
4484         if (res_blocks >= ddb_allocation || res_lines > 31) {
4485                 *enabled = false;
4486
4487                 /*
4488                  * If there are no valid level 0 watermarks, then we can't
4489                  * support this display configuration.
4490                  */
4491                 if (level) {
4492                         return 0;
4493                 } else {
4494                         struct drm_plane *plane = pstate->plane;
4495
4496                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4497                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4498                                       plane->base.id, plane->name,
4499                                       res_blocks, ddb_allocation, res_lines);
4500                         return -EINVAL;
4501                 }
4502         }
4503
4504         *out_blocks = res_blocks;
4505         *out_lines = res_lines;
4506         *enabled = true;
4507
4508         return 0;
4509 }
4510
4511 static int
4512 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4513                       struct skl_ddb_allocation *ddb,
4514                       struct intel_crtc_state *cstate,
4515                       const struct intel_plane_state *intel_pstate,
4516                       struct skl_plane_wm *wm)
4517 {
4518         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4519         struct drm_plane *plane = intel_pstate->base.plane;
4520         struct intel_plane *intel_plane = to_intel_plane(plane);
4521         uint16_t ddb_blocks;
4522         enum pipe pipe = intel_crtc->pipe;
4523         int level, max_level = ilk_wm_max_level(dev_priv);
4524         int ret;
4525
4526         if (WARN_ON(!intel_pstate->base.fb))
4527                 return -EINVAL;
4528
4529         ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4530
4531         for (level = 0; level <= max_level; level++) {
4532                 struct skl_wm_level *result = &wm->wm[level];
4533
4534                 ret = skl_compute_plane_wm(dev_priv,
4535                                            cstate,
4536                                            intel_pstate,
4537                                            ddb_blocks,
4538                                            level,
4539                                            &result->plane_res_b,
4540                                            &result->plane_res_l,
4541                                            &result->plane_en);
4542                 if (ret)
4543                         return ret;
4544         }
4545
4546         return 0;
4547 }
4548
4549 static uint32_t
4550 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4551 {
4552         struct drm_atomic_state *state = cstate->base.state;
4553         struct drm_i915_private *dev_priv = to_i915(state->dev);
4554         uint_fixed_16_16_t linetime_us;
4555         uint32_t linetime_wm;
4556
4557         linetime_us = intel_get_linetime_us(cstate);
4558
4559         if (is_fixed16_zero(linetime_us))
4560                 return 0;
4561
4562         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4563
4564         /* Display WA #1135: bxt. */
4565         if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
4566                 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
4567
4568         return linetime_wm;
4569 }
4570
4571 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4572                                       struct skl_wm_level *trans_wm /* out */)
4573 {
4574         if (!cstate->base.active)
4575                 return;
4576
4577         /* Until we know more, just disable transition WMs */
4578         trans_wm->plane_en = false;
4579 }
4580
4581 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4582                              struct skl_ddb_allocation *ddb,
4583                              struct skl_pipe_wm *pipe_wm)
4584 {
4585         struct drm_device *dev = cstate->base.crtc->dev;
4586         struct drm_crtc_state *crtc_state = &cstate->base;
4587         const struct drm_i915_private *dev_priv = to_i915(dev);
4588         struct drm_plane *plane;
4589         const struct drm_plane_state *pstate;
4590         struct skl_plane_wm *wm;
4591         int ret;
4592
4593         /*
4594          * We'll only calculate watermarks for planes that are actually
4595          * enabled, so make sure all other planes are set as disabled.
4596          */
4597         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4598
4599         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4600                 const struct intel_plane_state *intel_pstate =
4601                                                 to_intel_plane_state(pstate);
4602                 enum plane_id plane_id = to_intel_plane(plane)->id;
4603
4604                 wm = &pipe_wm->planes[plane_id];
4605
4606                 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4607                                             intel_pstate, wm);
4608                 if (ret)
4609                         return ret;
4610                 skl_compute_transition_wm(cstate, &wm->trans_wm);
4611         }
4612         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4613
4614         return 0;
4615 }
4616
4617 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4618                                 i915_reg_t reg,
4619                                 const struct skl_ddb_entry *entry)
4620 {
4621         if (entry->end)
4622                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4623         else
4624                 I915_WRITE(reg, 0);
4625 }
4626
4627 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4628                                i915_reg_t reg,
4629                                const struct skl_wm_level *level)
4630 {
4631         uint32_t val = 0;
4632
4633         if (level->plane_en) {
4634                 val |= PLANE_WM_EN;
4635                 val |= level->plane_res_b;
4636                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4637         }
4638
4639         I915_WRITE(reg, val);
4640 }
4641
4642 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4643                                const struct skl_plane_wm *wm,
4644                                const struct skl_ddb_allocation *ddb,
4645                                enum plane_id plane_id)
4646 {
4647         struct drm_crtc *crtc = &intel_crtc->base;
4648         struct drm_device *dev = crtc->dev;
4649         struct drm_i915_private *dev_priv = to_i915(dev);
4650         int level, max_level = ilk_wm_max_level(dev_priv);
4651         enum pipe pipe = intel_crtc->pipe;
4652
4653         for (level = 0; level <= max_level; level++) {
4654                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4655                                    &wm->wm[level]);
4656         }
4657         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4658                            &wm->trans_wm);
4659
4660         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4661                             &ddb->plane[pipe][plane_id]);
4662         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4663                             &ddb->y_plane[pipe][plane_id]);
4664 }
4665
4666 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4667                                 const struct skl_plane_wm *wm,
4668                                 const struct skl_ddb_allocation *ddb)
4669 {
4670         struct drm_crtc *crtc = &intel_crtc->base;
4671         struct drm_device *dev = crtc->dev;
4672         struct drm_i915_private *dev_priv = to_i915(dev);
4673         int level, max_level = ilk_wm_max_level(dev_priv);
4674         enum pipe pipe = intel_crtc->pipe;
4675
4676         for (level = 0; level <= max_level; level++) {
4677                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4678                                    &wm->wm[level]);
4679         }
4680         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4681
4682         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4683                             &ddb->plane[pipe][PLANE_CURSOR]);
4684 }
4685
4686 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4687                          const struct skl_wm_level *l2)
4688 {
4689         if (l1->plane_en != l2->plane_en)
4690                 return false;
4691
4692         /* If both planes aren't enabled, the rest shouldn't matter */
4693         if (!l1->plane_en)
4694                 return true;
4695
4696         return (l1->plane_res_l == l2->plane_res_l &&
4697                 l1->plane_res_b == l2->plane_res_b);
4698 }
4699
4700 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4701                                            const struct skl_ddb_entry *b)
4702 {
4703         return a->start < b->end && b->start < a->end;
4704 }
4705
4706 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4707                                  const struct skl_ddb_entry *ddb,
4708                                  int ignore)
4709 {
4710         int i;
4711
4712         for (i = 0; i < I915_MAX_PIPES; i++)
4713                 if (i != ignore && entries[i] &&
4714                     skl_ddb_entries_overlap(ddb, entries[i]))
4715                         return true;
4716
4717         return false;
4718 }
4719
4720 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4721                               const struct skl_pipe_wm *old_pipe_wm,
4722                               struct skl_pipe_wm *pipe_wm, /* out */
4723                               struct skl_ddb_allocation *ddb, /* out */
4724                               bool *changed /* out */)
4725 {
4726         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4727         int ret;
4728
4729         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4730         if (ret)
4731                 return ret;
4732
4733         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4734                 *changed = false;
4735         else
4736                 *changed = true;
4737
4738         return 0;
4739 }
4740
4741 static uint32_t
4742 pipes_modified(struct drm_atomic_state *state)
4743 {
4744         struct drm_crtc *crtc;
4745         struct drm_crtc_state *cstate;
4746         uint32_t i, ret = 0;
4747
4748         for_each_new_crtc_in_state(state, crtc, cstate, i)
4749                 ret |= drm_crtc_mask(crtc);
4750
4751         return ret;
4752 }
4753
4754 static int
4755 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4756 {
4757         struct drm_atomic_state *state = cstate->base.state;
4758         struct drm_device *dev = state->dev;
4759         struct drm_crtc *crtc = cstate->base.crtc;
4760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4761         struct drm_i915_private *dev_priv = to_i915(dev);
4762         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4763         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4764         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4765         struct drm_plane_state *plane_state;
4766         struct drm_plane *plane;
4767         enum pipe pipe = intel_crtc->pipe;
4768
4769         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4770
4771         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4772                 enum plane_id plane_id = to_intel_plane(plane)->id;
4773
4774                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4775                                         &new_ddb->plane[pipe][plane_id]) &&
4776                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4777                                         &new_ddb->y_plane[pipe][plane_id]))
4778                         continue;
4779
4780                 plane_state = drm_atomic_get_plane_state(state, plane);
4781                 if (IS_ERR(plane_state))
4782                         return PTR_ERR(plane_state);
4783         }
4784
4785         return 0;
4786 }
4787
4788 static int
4789 skl_compute_ddb(struct drm_atomic_state *state)
4790 {
4791         struct drm_device *dev = state->dev;
4792         struct drm_i915_private *dev_priv = to_i915(dev);
4793         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4794         struct intel_crtc *intel_crtc;
4795         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4796         uint32_t realloc_pipes = pipes_modified(state);
4797         int ret;
4798
4799         /*
4800          * If this is our first atomic update following hardware readout,
4801          * we can't trust the DDB that the BIOS programmed for us.  Let's
4802          * pretend that all pipes switched active status so that we'll
4803          * ensure a full DDB recompute.
4804          */
4805         if (dev_priv->wm.distrust_bios_wm) {
4806                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4807                                        state->acquire_ctx);
4808                 if (ret)
4809                         return ret;
4810
4811                 intel_state->active_pipe_changes = ~0;
4812
4813                 /*
4814                  * We usually only initialize intel_state->active_crtcs if we
4815                  * we're doing a modeset; make sure this field is always
4816                  * initialized during the sanitization process that happens
4817                  * on the first commit too.
4818                  */
4819                 if (!intel_state->modeset)
4820                         intel_state->active_crtcs = dev_priv->active_crtcs;
4821         }
4822
4823         /*
4824          * If the modeset changes which CRTC's are active, we need to
4825          * recompute the DDB allocation for *all* active pipes, even
4826          * those that weren't otherwise being modified in any way by this
4827          * atomic commit.  Due to the shrinking of the per-pipe allocations
4828          * when new active CRTC's are added, it's possible for a pipe that
4829          * we were already using and aren't changing at all here to suddenly
4830          * become invalid if its DDB needs exceeds its new allocation.
4831          *
4832          * Note that if we wind up doing a full DDB recompute, we can't let
4833          * any other display updates race with this transaction, so we need
4834          * to grab the lock on *all* CRTC's.
4835          */
4836         if (intel_state->active_pipe_changes) {
4837                 realloc_pipes = ~0;
4838                 intel_state->wm_results.dirty_pipes = ~0;
4839         }
4840
4841         /*
4842          * We're not recomputing for the pipes not included in the commit, so
4843          * make sure we start with the current state.
4844          */
4845         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4846
4847         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4848                 struct intel_crtc_state *cstate;
4849
4850                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4851                 if (IS_ERR(cstate))
4852                         return PTR_ERR(cstate);
4853
4854                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4855                 if (ret)
4856                         return ret;
4857
4858                 ret = skl_ddb_add_affected_planes(cstate);
4859                 if (ret)
4860                         return ret;
4861         }
4862
4863         return 0;
4864 }
4865
4866 static void
4867 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4868                      struct skl_wm_values *src,
4869                      enum pipe pipe)
4870 {
4871         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4872                sizeof(dst->ddb.y_plane[pipe]));
4873         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4874                sizeof(dst->ddb.plane[pipe]));
4875 }
4876
4877 static void
4878 skl_print_wm_changes(const struct drm_atomic_state *state)
4879 {
4880         const struct drm_device *dev = state->dev;
4881         const struct drm_i915_private *dev_priv = to_i915(dev);
4882         const struct intel_atomic_state *intel_state =
4883                 to_intel_atomic_state(state);
4884         const struct drm_crtc *crtc;
4885         const struct drm_crtc_state *cstate;
4886         const struct intel_plane *intel_plane;
4887         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4888         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4889         int i;
4890
4891         for_each_new_crtc_in_state(state, crtc, cstate, i) {
4892                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4893                 enum pipe pipe = intel_crtc->pipe;
4894
4895                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4896                         enum plane_id plane_id = intel_plane->id;
4897                         const struct skl_ddb_entry *old, *new;
4898
4899                         old = &old_ddb->plane[pipe][plane_id];
4900                         new = &new_ddb->plane[pipe][plane_id];
4901
4902                         if (skl_ddb_entry_equal(old, new))
4903                                 continue;
4904
4905                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4906                                          intel_plane->base.base.id,
4907                                          intel_plane->base.name,
4908                                          old->start, old->end,
4909                                          new->start, new->end);
4910                 }
4911         }
4912 }
4913
4914 static int
4915 skl_compute_wm(struct drm_atomic_state *state)
4916 {
4917         struct drm_crtc *crtc;
4918         struct drm_crtc_state *cstate;
4919         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4920         struct skl_wm_values *results = &intel_state->wm_results;
4921         struct drm_device *dev = state->dev;
4922         struct skl_pipe_wm *pipe_wm;
4923         bool changed = false;
4924         int ret, i;
4925
4926         /*
4927          * When we distrust bios wm we always need to recompute to set the
4928          * expected DDB allocations for each CRTC.
4929          */
4930         if (to_i915(dev)->wm.distrust_bios_wm)
4931                 changed = true;
4932
4933         /*
4934          * If this transaction isn't actually touching any CRTC's, don't
4935          * bother with watermark calculation.  Note that if we pass this
4936          * test, we're guaranteed to hold at least one CRTC state mutex,
4937          * which means we can safely use values like dev_priv->active_crtcs
4938          * since any racing commits that want to update them would need to
4939          * hold _all_ CRTC state mutexes.
4940          */
4941         for_each_new_crtc_in_state(state, crtc, cstate, i)
4942                 changed = true;
4943
4944         if (!changed)
4945                 return 0;
4946
4947         /* Clear all dirty flags */
4948         results->dirty_pipes = 0;
4949
4950         ret = skl_compute_ddb(state);
4951         if (ret)
4952                 return ret;
4953
4954         /*
4955          * Calculate WM's for all pipes that are part of this transaction.
4956          * Note that the DDB allocation above may have added more CRTC's that
4957          * weren't otherwise being modified (and set bits in dirty_pipes) if
4958          * pipe allocations had to change.
4959          *
4960          * FIXME:  Now that we're doing this in the atomic check phase, we
4961          * should allow skl_update_pipe_wm() to return failure in cases where
4962          * no suitable watermark values can be found.
4963          */
4964         for_each_new_crtc_in_state(state, crtc, cstate, i) {
4965                 struct intel_crtc_state *intel_cstate =
4966                         to_intel_crtc_state(cstate);
4967                 const struct skl_pipe_wm *old_pipe_wm =
4968                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4969
4970                 pipe_wm = &intel_cstate->wm.skl.optimal;
4971                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4972                                          &results->ddb, &changed);
4973                 if (ret)
4974                         return ret;
4975
4976                 if (changed)
4977                         results->dirty_pipes |= drm_crtc_mask(crtc);
4978
4979                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4980                         /* This pipe's WM's did not change */
4981                         continue;
4982
4983                 intel_cstate->update_wm_pre = true;
4984         }
4985
4986         skl_print_wm_changes(state);
4987
4988         return 0;
4989 }
4990
4991 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4992                                       struct intel_crtc_state *cstate)
4993 {
4994         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4995         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4996         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4997         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4998         enum pipe pipe = crtc->pipe;
4999         enum plane_id plane_id;
5000
5001         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5002                 return;
5003
5004         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5005
5006         for_each_plane_id_on_crtc(crtc, plane_id) {
5007                 if (plane_id != PLANE_CURSOR)
5008                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5009                                            ddb, plane_id);
5010                 else
5011                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5012                                             ddb);
5013         }
5014 }
5015
5016 static void skl_initial_wm(struct intel_atomic_state *state,
5017                            struct intel_crtc_state *cstate)
5018 {
5019         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5020         struct drm_device *dev = intel_crtc->base.dev;
5021         struct drm_i915_private *dev_priv = to_i915(dev);
5022         struct skl_wm_values *results = &state->wm_results;
5023         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5024         enum pipe pipe = intel_crtc->pipe;
5025
5026         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5027                 return;
5028
5029         mutex_lock(&dev_priv->wm.wm_mutex);
5030
5031         if (cstate->base.active_changed)
5032                 skl_atomic_update_crtc_wm(state, cstate);
5033
5034         skl_copy_wm_for_pipe(hw_vals, results, pipe);
5035
5036         mutex_unlock(&dev_priv->wm.wm_mutex);
5037 }
5038
5039 static void ilk_compute_wm_config(struct drm_device *dev,
5040                                   struct intel_wm_config *config)
5041 {
5042         struct intel_crtc *crtc;
5043
5044         /* Compute the currently _active_ config */
5045         for_each_intel_crtc(dev, crtc) {
5046                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5047
5048                 if (!wm->pipe_enabled)
5049                         continue;
5050
5051                 config->sprites_enabled |= wm->sprites_enabled;
5052                 config->sprites_scaled |= wm->sprites_scaled;
5053                 config->num_pipes_active++;
5054         }
5055 }
5056
5057 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5058 {
5059         struct drm_device *dev = &dev_priv->drm;
5060         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5061         struct ilk_wm_maximums max;
5062         struct intel_wm_config config = {};
5063         struct ilk_wm_values results = {};
5064         enum intel_ddb_partitioning partitioning;
5065
5066         ilk_compute_wm_config(dev, &config);
5067
5068         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5069         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5070
5071         /* 5/6 split only in single pipe config on IVB+ */
5072         if (INTEL_GEN(dev_priv) >= 7 &&
5073             config.num_pipes_active == 1 && config.sprites_enabled) {
5074                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5075                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5076
5077                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5078         } else {
5079                 best_lp_wm = &lp_wm_1_2;
5080         }
5081
5082         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5083                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5084
5085         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5086
5087         ilk_write_wm_values(dev_priv, &results);
5088 }
5089
5090 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5091                                    struct intel_crtc_state *cstate)
5092 {
5093         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5094         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5095
5096         mutex_lock(&dev_priv->wm.wm_mutex);
5097         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5098         ilk_program_watermarks(dev_priv);
5099         mutex_unlock(&dev_priv->wm.wm_mutex);
5100 }
5101
5102 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5103                                     struct intel_crtc_state *cstate)
5104 {
5105         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5106         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5107
5108         mutex_lock(&dev_priv->wm.wm_mutex);
5109         if (cstate->wm.need_postvbl_update) {
5110                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5111                 ilk_program_watermarks(dev_priv);
5112         }
5113         mutex_unlock(&dev_priv->wm.wm_mutex);
5114 }
5115
5116 static inline void skl_wm_level_from_reg_val(uint32_t val,
5117                                              struct skl_wm_level *level)
5118 {
5119         level->plane_en = val & PLANE_WM_EN;
5120         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5121         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5122                 PLANE_WM_LINES_MASK;
5123 }
5124
5125 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5126                               struct skl_pipe_wm *out)
5127 {
5128         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5130         enum pipe pipe = intel_crtc->pipe;
5131         int level, max_level;
5132         enum plane_id plane_id;
5133         uint32_t val;
5134
5135         max_level = ilk_wm_max_level(dev_priv);
5136
5137         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5138                 struct skl_plane_wm *wm = &out->planes[plane_id];
5139
5140                 for (level = 0; level <= max_level; level++) {
5141                         if (plane_id != PLANE_CURSOR)
5142                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5143                         else
5144                                 val = I915_READ(CUR_WM(pipe, level));
5145
5146                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5147                 }
5148
5149                 if (plane_id != PLANE_CURSOR)
5150                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5151                 else
5152                         val = I915_READ(CUR_WM_TRANS(pipe));
5153
5154                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5155         }
5156
5157         if (!intel_crtc->active)
5158                 return;
5159
5160         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5161 }
5162
5163 void skl_wm_get_hw_state(struct drm_device *dev)
5164 {
5165         struct drm_i915_private *dev_priv = to_i915(dev);
5166         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5167         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5168         struct drm_crtc *crtc;
5169         struct intel_crtc *intel_crtc;
5170         struct intel_crtc_state *cstate;
5171
5172         skl_ddb_get_hw_state(dev_priv, ddb);
5173         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5174                 intel_crtc = to_intel_crtc(crtc);
5175                 cstate = to_intel_crtc_state(crtc->state);
5176
5177                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5178
5179                 if (intel_crtc->active)
5180                         hw->dirty_pipes |= drm_crtc_mask(crtc);
5181         }
5182
5183         if (dev_priv->active_crtcs) {
5184                 /* Fully recompute DDB on first atomic commit */
5185                 dev_priv->wm.distrust_bios_wm = true;
5186         } else {
5187                 /* Easy/common case; just sanitize DDB now if everything off */
5188                 memset(ddb, 0, sizeof(*ddb));
5189         }
5190 }
5191
5192 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5193 {
5194         struct drm_device *dev = crtc->dev;
5195         struct drm_i915_private *dev_priv = to_i915(dev);
5196         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5198         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5199         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5200         enum pipe pipe = intel_crtc->pipe;
5201         static const i915_reg_t wm0_pipe_reg[] = {
5202                 [PIPE_A] = WM0_PIPEA_ILK,
5203                 [PIPE_B] = WM0_PIPEB_ILK,
5204                 [PIPE_C] = WM0_PIPEC_IVB,
5205         };
5206
5207         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5208         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5209                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5210
5211         memset(active, 0, sizeof(*active));
5212
5213         active->pipe_enabled = intel_crtc->active;
5214
5215         if (active->pipe_enabled) {
5216                 u32 tmp = hw->wm_pipe[pipe];
5217
5218                 /*
5219                  * For active pipes LP0 watermark is marked as
5220                  * enabled, and LP1+ watermaks as disabled since
5221                  * we can't really reverse compute them in case
5222                  * multiple pipes are active.
5223                  */
5224                 active->wm[0].enable = true;
5225                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5226                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5227                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5228                 active->linetime = hw->wm_linetime[pipe];
5229         } else {
5230                 int level, max_level = ilk_wm_max_level(dev_priv);
5231
5232                 /*
5233                  * For inactive pipes, all watermark levels
5234                  * should be marked as enabled but zeroed,
5235                  * which is what we'd compute them to.
5236                  */
5237                 for (level = 0; level <= max_level; level++)
5238                         active->wm[level].enable = true;
5239         }
5240
5241         intel_crtc->wm.active.ilk = *active;
5242 }
5243
5244 #define _FW_WM(value, plane) \
5245         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5246 #define _FW_WM_VLV(value, plane) \
5247         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5248
5249 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5250                                struct g4x_wm_values *wm)
5251 {
5252         uint32_t tmp;
5253
5254         tmp = I915_READ(DSPFW1);
5255         wm->sr.plane = _FW_WM(tmp, SR);
5256         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5257         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5258         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5259
5260         tmp = I915_READ(DSPFW2);
5261         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5262         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5263         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5264         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5265         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5266         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5267
5268         tmp = I915_READ(DSPFW3);
5269         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5270         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5271         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5272         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5273 }
5274
5275 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5276                                struct vlv_wm_values *wm)
5277 {
5278         enum pipe pipe;
5279         uint32_t tmp;
5280
5281         for_each_pipe(dev_priv, pipe) {
5282                 tmp = I915_READ(VLV_DDL(pipe));
5283
5284                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5285                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5286                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5287                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5288                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5289                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5290                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5291                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5292         }
5293
5294         tmp = I915_READ(DSPFW1);
5295         wm->sr.plane = _FW_WM(tmp, SR);
5296         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5297         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5298         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5299
5300         tmp = I915_READ(DSPFW2);
5301         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5302         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5303         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5304
5305         tmp = I915_READ(DSPFW3);
5306         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5307
5308         if (IS_CHERRYVIEW(dev_priv)) {
5309                 tmp = I915_READ(DSPFW7_CHV);
5310                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5311                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5312
5313                 tmp = I915_READ(DSPFW8_CHV);
5314                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5315                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5316
5317                 tmp = I915_READ(DSPFW9_CHV);
5318                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5319                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5320
5321                 tmp = I915_READ(DSPHOWM);
5322                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5323                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5324                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5325                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5326                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5327                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5328                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5329                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5330                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5331                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5332         } else {
5333                 tmp = I915_READ(DSPFW7);
5334                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5335                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5336
5337                 tmp = I915_READ(DSPHOWM);
5338                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5339                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5340                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5341                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5342                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5343                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5344                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5345         }
5346 }
5347
5348 #undef _FW_WM
5349 #undef _FW_WM_VLV
5350
5351 void g4x_wm_get_hw_state(struct drm_device *dev)
5352 {
5353         struct drm_i915_private *dev_priv = to_i915(dev);
5354         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5355         struct intel_crtc *crtc;
5356
5357         g4x_read_wm_values(dev_priv, wm);
5358
5359         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5360
5361         for_each_intel_crtc(dev, crtc) {
5362                 struct intel_crtc_state *crtc_state =
5363                         to_intel_crtc_state(crtc->base.state);
5364                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5365                 struct g4x_pipe_wm *raw;
5366                 enum pipe pipe = crtc->pipe;
5367                 enum plane_id plane_id;
5368                 int level, max_level;
5369
5370                 active->cxsr = wm->cxsr;
5371                 active->hpll_en = wm->hpll_en;
5372                 active->fbc_en = wm->fbc_en;
5373
5374                 active->sr = wm->sr;
5375                 active->hpll = wm->hpll;
5376
5377                 for_each_plane_id_on_crtc(crtc, plane_id) {
5378                         active->wm.plane[plane_id] =
5379                                 wm->pipe[pipe].plane[plane_id];
5380                 }
5381
5382                 if (wm->cxsr && wm->hpll_en)
5383                         max_level = G4X_WM_LEVEL_HPLL;
5384                 else if (wm->cxsr)
5385                         max_level = G4X_WM_LEVEL_SR;
5386                 else
5387                         max_level = G4X_WM_LEVEL_NORMAL;
5388
5389                 level = G4X_WM_LEVEL_NORMAL;
5390                 raw = &crtc_state->wm.g4x.raw[level];
5391                 for_each_plane_id_on_crtc(crtc, plane_id)
5392                         raw->plane[plane_id] = active->wm.plane[plane_id];
5393
5394                 if (++level > max_level)
5395                         goto out;
5396
5397                 raw = &crtc_state->wm.g4x.raw[level];
5398                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5399                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5400                 raw->plane[PLANE_SPRITE0] = 0;
5401                 raw->fbc = active->sr.fbc;
5402
5403                 if (++level > max_level)
5404                         goto out;
5405
5406                 raw = &crtc_state->wm.g4x.raw[level];
5407                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5408                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5409                 raw->plane[PLANE_SPRITE0] = 0;
5410                 raw->fbc = active->hpll.fbc;
5411
5412         out:
5413                 for_each_plane_id_on_crtc(crtc, plane_id)
5414                         g4x_raw_plane_wm_set(crtc_state, level,
5415                                              plane_id, USHRT_MAX);
5416                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5417
5418                 crtc_state->wm.g4x.optimal = *active;
5419                 crtc_state->wm.g4x.intermediate = *active;
5420
5421                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5422                               pipe_name(pipe),
5423                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5424                               wm->pipe[pipe].plane[PLANE_CURSOR],
5425                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
5426         }
5427
5428         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5429                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5430         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5431                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5432         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5433                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5434 }
5435
5436 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5437 {
5438         struct intel_plane *plane;
5439         struct intel_crtc *crtc;
5440
5441         mutex_lock(&dev_priv->wm.wm_mutex);
5442
5443         for_each_intel_plane(&dev_priv->drm, plane) {
5444                 struct intel_crtc *crtc =
5445                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5446                 struct intel_crtc_state *crtc_state =
5447                         to_intel_crtc_state(crtc->base.state);
5448                 struct intel_plane_state *plane_state =
5449                         to_intel_plane_state(plane->base.state);
5450                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5451                 enum plane_id plane_id = plane->id;
5452                 int level;
5453
5454                 if (plane_state->base.visible)
5455                         continue;
5456
5457                 for (level = 0; level < 3; level++) {
5458                         struct g4x_pipe_wm *raw =
5459                                 &crtc_state->wm.g4x.raw[level];
5460
5461                         raw->plane[plane_id] = 0;
5462                         wm_state->wm.plane[plane_id] = 0;
5463                 }
5464
5465                 if (plane_id == PLANE_PRIMARY) {
5466                         for (level = 0; level < 3; level++) {
5467                                 struct g4x_pipe_wm *raw =
5468                                         &crtc_state->wm.g4x.raw[level];
5469                                 raw->fbc = 0;
5470                         }
5471
5472                         wm_state->sr.fbc = 0;
5473                         wm_state->hpll.fbc = 0;
5474                         wm_state->fbc_en = false;
5475                 }
5476         }
5477
5478         for_each_intel_crtc(&dev_priv->drm, crtc) {
5479                 struct intel_crtc_state *crtc_state =
5480                         to_intel_crtc_state(crtc->base.state);
5481
5482                 crtc_state->wm.g4x.intermediate =
5483                         crtc_state->wm.g4x.optimal;
5484                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5485         }
5486
5487         g4x_program_watermarks(dev_priv);
5488
5489         mutex_unlock(&dev_priv->wm.wm_mutex);
5490 }
5491
5492 void vlv_wm_get_hw_state(struct drm_device *dev)
5493 {
5494         struct drm_i915_private *dev_priv = to_i915(dev);
5495         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5496         struct intel_crtc *crtc;
5497         u32 val;
5498
5499         vlv_read_wm_values(dev_priv, wm);
5500
5501         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5502         wm->level = VLV_WM_LEVEL_PM2;
5503
5504         if (IS_CHERRYVIEW(dev_priv)) {
5505                 mutex_lock(&dev_priv->rps.hw_lock);
5506
5507                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5508                 if (val & DSP_MAXFIFO_PM5_ENABLE)
5509                         wm->level = VLV_WM_LEVEL_PM5;
5510
5511                 /*
5512                  * If DDR DVFS is disabled in the BIOS, Punit
5513                  * will never ack the request. So if that happens
5514                  * assume we don't have to enable/disable DDR DVFS
5515                  * dynamically. To test that just set the REQ_ACK
5516                  * bit to poke the Punit, but don't change the
5517                  * HIGH/LOW bits so that we don't actually change
5518                  * the current state.
5519                  */
5520                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5521                 val |= FORCE_DDR_FREQ_REQ_ACK;
5522                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5523
5524                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5525                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5526                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5527                                       "assuming DDR DVFS is disabled\n");
5528                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5529                 } else {
5530                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5531                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5532                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5533                 }
5534
5535                 mutex_unlock(&dev_priv->rps.hw_lock);
5536         }
5537
5538         for_each_intel_crtc(dev, crtc) {
5539                 struct intel_crtc_state *crtc_state =
5540                         to_intel_crtc_state(crtc->base.state);
5541                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5542                 const struct vlv_fifo_state *fifo_state =
5543                         &crtc_state->wm.vlv.fifo_state;
5544                 enum pipe pipe = crtc->pipe;
5545                 enum plane_id plane_id;
5546                 int level;
5547
5548                 vlv_get_fifo_size(crtc_state);
5549
5550                 active->num_levels = wm->level + 1;
5551                 active->cxsr = wm->cxsr;
5552
5553                 for (level = 0; level < active->num_levels; level++) {
5554                         struct g4x_pipe_wm *raw =
5555                                 &crtc_state->wm.vlv.raw[level];
5556
5557                         active->sr[level].plane = wm->sr.plane;
5558                         active->sr[level].cursor = wm->sr.cursor;
5559
5560                         for_each_plane_id_on_crtc(crtc, plane_id) {
5561                                 active->wm[level].plane[plane_id] =
5562                                         wm->pipe[pipe].plane[plane_id];
5563
5564                                 raw->plane[plane_id] =
5565                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
5566                                                             fifo_state->plane[plane_id]);
5567                         }
5568                 }
5569
5570                 for_each_plane_id_on_crtc(crtc, plane_id)
5571                         vlv_raw_plane_wm_set(crtc_state, level,
5572                                              plane_id, USHRT_MAX);
5573                 vlv_invalidate_wms(crtc, active, level);
5574
5575                 crtc_state->wm.vlv.optimal = *active;
5576                 crtc_state->wm.vlv.intermediate = *active;
5577
5578                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5579                               pipe_name(pipe),
5580                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5581                               wm->pipe[pipe].plane[PLANE_CURSOR],
5582                               wm->pipe[pipe].plane[PLANE_SPRITE0],
5583                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
5584         }
5585
5586         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5587                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5588 }
5589
5590 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5591 {
5592         struct intel_plane *plane;
5593         struct intel_crtc *crtc;
5594
5595         mutex_lock(&dev_priv->wm.wm_mutex);
5596
5597         for_each_intel_plane(&dev_priv->drm, plane) {
5598                 struct intel_crtc *crtc =
5599                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5600                 struct intel_crtc_state *crtc_state =
5601                         to_intel_crtc_state(crtc->base.state);
5602                 struct intel_plane_state *plane_state =
5603                         to_intel_plane_state(plane->base.state);
5604                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5605                 const struct vlv_fifo_state *fifo_state =
5606                         &crtc_state->wm.vlv.fifo_state;
5607                 enum plane_id plane_id = plane->id;
5608                 int level;
5609
5610                 if (plane_state->base.visible)
5611                         continue;
5612
5613                 for (level = 0; level < wm_state->num_levels; level++) {
5614                         struct g4x_pipe_wm *raw =
5615                                 &crtc_state->wm.vlv.raw[level];
5616
5617                         raw->plane[plane_id] = 0;
5618
5619                         wm_state->wm[level].plane[plane_id] =
5620                                 vlv_invert_wm_value(raw->plane[plane_id],
5621                                                     fifo_state->plane[plane_id]);
5622                 }
5623         }
5624
5625         for_each_intel_crtc(&dev_priv->drm, crtc) {
5626                 struct intel_crtc_state *crtc_state =
5627                         to_intel_crtc_state(crtc->base.state);
5628
5629                 crtc_state->wm.vlv.intermediate =
5630                         crtc_state->wm.vlv.optimal;
5631                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5632         }
5633
5634         vlv_program_watermarks(dev_priv);
5635
5636         mutex_unlock(&dev_priv->wm.wm_mutex);
5637 }
5638
5639 void ilk_wm_get_hw_state(struct drm_device *dev)
5640 {
5641         struct drm_i915_private *dev_priv = to_i915(dev);
5642         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5643         struct drm_crtc *crtc;
5644
5645         for_each_crtc(dev, crtc)
5646                 ilk_pipe_wm_get_hw_state(crtc);
5647
5648         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5649         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5650         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5651
5652         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5653         if (INTEL_GEN(dev_priv) >= 7) {
5654                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5655                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5656         }
5657
5658         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5659                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5660                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5661         else if (IS_IVYBRIDGE(dev_priv))
5662                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5663                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5664
5665         hw->enable_fbc_wm =
5666                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5667 }
5668
5669 /**
5670  * intel_update_watermarks - update FIFO watermark values based on current modes
5671  *
5672  * Calculate watermark values for the various WM regs based on current mode
5673  * and plane configuration.
5674  *
5675  * There are several cases to deal with here:
5676  *   - normal (i.e. non-self-refresh)
5677  *   - self-refresh (SR) mode
5678  *   - lines are large relative to FIFO size (buffer can hold up to 2)
5679  *   - lines are small relative to FIFO size (buffer can hold more than 2
5680  *     lines), so need to account for TLB latency
5681  *
5682  *   The normal calculation is:
5683  *     watermark = dotclock * bytes per pixel * latency
5684  *   where latency is platform & configuration dependent (we assume pessimal
5685  *   values here).
5686  *
5687  *   The SR calculation is:
5688  *     watermark = (trunc(latency/line time)+1) * surface width *
5689  *       bytes per pixel
5690  *   where
5691  *     line time = htotal / dotclock
5692  *     surface width = hdisplay for normal plane and 64 for cursor
5693  *   and latency is assumed to be high, as above.
5694  *
5695  * The final value programmed to the register should always be rounded up,
5696  * and include an extra 2 entries to account for clock crossings.
5697  *
5698  * We don't use the sprite, so we can ignore that.  And on Crestline we have
5699  * to set the non-SR watermarks to 8.
5700  */
5701 void intel_update_watermarks(struct intel_crtc *crtc)
5702 {
5703         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5704
5705         if (dev_priv->display.update_wm)
5706                 dev_priv->display.update_wm(crtc);
5707 }
5708
5709 /*
5710  * Lock protecting IPS related data structures
5711  */
5712 DEFINE_SPINLOCK(mchdev_lock);
5713
5714 /* Global for IPS driver to get at the current i915 device. Protected by
5715  * mchdev_lock. */
5716 static struct drm_i915_private *i915_mch_dev;
5717
5718 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5719 {
5720         u16 rgvswctl;
5721
5722         lockdep_assert_held(&mchdev_lock);
5723
5724         rgvswctl = I915_READ16(MEMSWCTL);
5725         if (rgvswctl & MEMCTL_CMD_STS) {
5726                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5727                 return false; /* still busy with another command */
5728         }
5729
5730         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5731                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5732         I915_WRITE16(MEMSWCTL, rgvswctl);
5733         POSTING_READ16(MEMSWCTL);
5734
5735         rgvswctl |= MEMCTL_CMD_STS;
5736         I915_WRITE16(MEMSWCTL, rgvswctl);
5737
5738         return true;
5739 }
5740
5741 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5742 {
5743         u32 rgvmodectl;
5744         u8 fmax, fmin, fstart, vstart;
5745
5746         spin_lock_irq(&mchdev_lock);
5747
5748         rgvmodectl = I915_READ(MEMMODECTL);
5749
5750         /* Enable temp reporting */
5751         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5752         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5753
5754         /* 100ms RC evaluation intervals */
5755         I915_WRITE(RCUPEI, 100000);
5756         I915_WRITE(RCDNEI, 100000);
5757
5758         /* Set max/min thresholds to 90ms and 80ms respectively */
5759         I915_WRITE(RCBMAXAVG, 90000);
5760         I915_WRITE(RCBMINAVG, 80000);
5761
5762         I915_WRITE(MEMIHYST, 1);
5763
5764         /* Set up min, max, and cur for interrupt handling */
5765         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5766         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5767         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5768                 MEMMODE_FSTART_SHIFT;
5769
5770         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5771                 PXVFREQ_PX_SHIFT;
5772
5773         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5774         dev_priv->ips.fstart = fstart;
5775
5776         dev_priv->ips.max_delay = fstart;
5777         dev_priv->ips.min_delay = fmin;
5778         dev_priv->ips.cur_delay = fstart;
5779
5780         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5781                          fmax, fmin, fstart);
5782
5783         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5784
5785         /*
5786          * Interrupts will be enabled in ironlake_irq_postinstall
5787          */
5788
5789         I915_WRITE(VIDSTART, vstart);
5790         POSTING_READ(VIDSTART);
5791
5792         rgvmodectl |= MEMMODE_SWMODE_EN;
5793         I915_WRITE(MEMMODECTL, rgvmodectl);
5794
5795         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5796                 DRM_ERROR("stuck trying to change perf mode\n");
5797         mdelay(1);
5798
5799         ironlake_set_drps(dev_priv, fstart);
5800
5801         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5802                 I915_READ(DDREC) + I915_READ(CSIEC);
5803         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5804         dev_priv->ips.last_count2 = I915_READ(GFXEC);
5805         dev_priv->ips.last_time2 = ktime_get_raw_ns();
5806
5807         spin_unlock_irq(&mchdev_lock);
5808 }
5809
5810 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5811 {
5812         u16 rgvswctl;
5813
5814         spin_lock_irq(&mchdev_lock);
5815
5816         rgvswctl = I915_READ16(MEMSWCTL);
5817
5818         /* Ack interrupts, disable EFC interrupt */
5819         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5820         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5821         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5822         I915_WRITE(DEIIR, DE_PCU_EVENT);
5823         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5824
5825         /* Go back to the starting frequency */
5826         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5827         mdelay(1);
5828         rgvswctl |= MEMCTL_CMD_STS;
5829         I915_WRITE(MEMSWCTL, rgvswctl);
5830         mdelay(1);
5831
5832         spin_unlock_irq(&mchdev_lock);
5833 }
5834
5835 /* There's a funny hw issue where the hw returns all 0 when reading from
5836  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5837  * ourselves, instead of doing a rmw cycle (which might result in us clearing
5838  * all limits and the gpu stuck at whatever frequency it is at atm).
5839  */
5840 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5841 {
5842         u32 limits;
5843
5844         /* Only set the down limit when we've reached the lowest level to avoid
5845          * getting more interrupts, otherwise leave this clear. This prevents a
5846          * race in the hw when coming out of rc6: There's a tiny window where
5847          * the hw runs at the minimal clock before selecting the desired
5848          * frequency, if the down threshold expires in that window we will not
5849          * receive a down interrupt. */
5850         if (INTEL_GEN(dev_priv) >= 9) {
5851                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
5852                 if (val <= dev_priv->rps.min_freq_softlimit)
5853                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5854         } else {
5855                 limits = dev_priv->rps.max_freq_softlimit << 24;
5856                 if (val <= dev_priv->rps.min_freq_softlimit)
5857                         limits |= dev_priv->rps.min_freq_softlimit << 16;
5858         }
5859
5860         return limits;
5861 }
5862
5863 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5864 {
5865         int new_power;
5866         u32 threshold_up = 0, threshold_down = 0; /* in % */
5867         u32 ei_up = 0, ei_down = 0;
5868
5869         new_power = dev_priv->rps.power;
5870         switch (dev_priv->rps.power) {
5871         case LOW_POWER:
5872                 if (val > dev_priv->rps.efficient_freq + 1 &&
5873                     val > dev_priv->rps.cur_freq)
5874                         new_power = BETWEEN;
5875                 break;
5876
5877         case BETWEEN:
5878                 if (val <= dev_priv->rps.efficient_freq &&
5879                     val < dev_priv->rps.cur_freq)
5880                         new_power = LOW_POWER;
5881                 else if (val >= dev_priv->rps.rp0_freq &&
5882                          val > dev_priv->rps.cur_freq)
5883                         new_power = HIGH_POWER;
5884                 break;
5885
5886         case HIGH_POWER:
5887                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5888                     val < dev_priv->rps.cur_freq)
5889                         new_power = BETWEEN;
5890                 break;
5891         }
5892         /* Max/min bins are special */
5893         if (val <= dev_priv->rps.min_freq_softlimit)
5894                 new_power = LOW_POWER;
5895         if (val >= dev_priv->rps.max_freq_softlimit)
5896                 new_power = HIGH_POWER;
5897         if (new_power == dev_priv->rps.power)
5898                 return;
5899
5900         /* Note the units here are not exactly 1us, but 1280ns. */
5901         switch (new_power) {
5902         case LOW_POWER:
5903                 /* Upclock if more than 95% busy over 16ms */
5904                 ei_up = 16000;
5905                 threshold_up = 95;
5906
5907                 /* Downclock if less than 85% busy over 32ms */
5908                 ei_down = 32000;
5909                 threshold_down = 85;
5910                 break;
5911
5912         case BETWEEN:
5913                 /* Upclock if more than 90% busy over 13ms */
5914                 ei_up = 13000;
5915                 threshold_up = 90;
5916
5917                 /* Downclock if less than 75% busy over 32ms */
5918                 ei_down = 32000;
5919                 threshold_down = 75;
5920                 break;
5921
5922         case HIGH_POWER:
5923                 /* Upclock if more than 85% busy over 10ms */
5924                 ei_up = 10000;
5925                 threshold_up = 85;
5926
5927                 /* Downclock if less than 60% busy over 32ms */
5928                 ei_down = 32000;
5929                 threshold_down = 60;
5930                 break;
5931         }
5932
5933         /* When byt can survive without system hang with dynamic
5934          * sw freq adjustments, this restriction can be lifted.
5935          */
5936         if (IS_VALLEYVIEW(dev_priv))
5937                 goto skip_hw_write;
5938
5939         I915_WRITE(GEN6_RP_UP_EI,
5940                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
5941         I915_WRITE(GEN6_RP_UP_THRESHOLD,
5942                    GT_INTERVAL_FROM_US(dev_priv,
5943                                        ei_up * threshold_up / 100));
5944
5945         I915_WRITE(GEN6_RP_DOWN_EI,
5946                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
5947         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5948                    GT_INTERVAL_FROM_US(dev_priv,
5949                                        ei_down * threshold_down / 100));
5950
5951         I915_WRITE(GEN6_RP_CONTROL,
5952                    GEN6_RP_MEDIA_TURBO |
5953                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5954                    GEN6_RP_MEDIA_IS_GFX |
5955                    GEN6_RP_ENABLE |
5956                    GEN6_RP_UP_BUSY_AVG |
5957                    GEN6_RP_DOWN_IDLE_AVG);
5958
5959 skip_hw_write:
5960         dev_priv->rps.power = new_power;
5961         dev_priv->rps.up_threshold = threshold_up;
5962         dev_priv->rps.down_threshold = threshold_down;
5963         dev_priv->rps.last_adj = 0;
5964 }
5965
5966 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
5967 {
5968         u32 mask = 0;
5969
5970         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5971         if (val > dev_priv->rps.min_freq_softlimit)
5972                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5973         if (val < dev_priv->rps.max_freq_softlimit)
5974                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5975
5976         mask &= dev_priv->pm_rps_events;
5977
5978         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5979 }
5980
5981 /* gen6_set_rps is called to update the frequency request, but should also be
5982  * called when the range (min_delay and max_delay) is modified so that we can
5983  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5984 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5985 {
5986         /* min/max delay may still have been modified so be sure to
5987          * write the limits value.
5988          */
5989         if (val != dev_priv->rps.cur_freq) {
5990                 gen6_set_rps_thresholds(dev_priv, val);
5991
5992                 if (INTEL_GEN(dev_priv) >= 9)
5993                         I915_WRITE(GEN6_RPNSWREQ,
5994                                    GEN9_FREQUENCY(val));
5995                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5996                         I915_WRITE(GEN6_RPNSWREQ,
5997                                    HSW_FREQUENCY(val));
5998                 else
5999                         I915_WRITE(GEN6_RPNSWREQ,
6000                                    GEN6_FREQUENCY(val) |
6001                                    GEN6_OFFSET(0) |
6002                                    GEN6_AGGRESSIVE_TURBO);
6003         }
6004
6005         /* Make sure we continue to get interrupts
6006          * until we hit the minimum or maximum frequencies.
6007          */
6008         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6009         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6010
6011         dev_priv->rps.cur_freq = val;
6012         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6013
6014         return 0;
6015 }
6016
6017 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6018 {
6019         int err;
6020
6021         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6022                       "Odd GPU freq value\n"))
6023                 val &= ~1;
6024
6025         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6026
6027         if (val != dev_priv->rps.cur_freq) {
6028                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6029                 if (err)
6030                         return err;
6031
6032                 gen6_set_rps_thresholds(dev_priv, val);
6033         }
6034
6035         dev_priv->rps.cur_freq = val;
6036         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6037
6038         return 0;
6039 }
6040
6041 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6042  *
6043  * * If Gfx is Idle, then
6044  * 1. Forcewake Media well.
6045  * 2. Request idle freq.
6046  * 3. Release Forcewake of Media well.
6047 */
6048 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6049 {
6050         u32 val = dev_priv->rps.idle_freq;
6051         int err;
6052
6053         if (dev_priv->rps.cur_freq <= val)
6054                 return;
6055
6056         /* The punit delays the write of the frequency and voltage until it
6057          * determines the GPU is awake. During normal usage we don't want to
6058          * waste power changing the frequency if the GPU is sleeping (rc6).
6059          * However, the GPU and driver is now idle and we do not want to delay
6060          * switching to minimum voltage (reducing power whilst idle) as we do
6061          * not expect to be woken in the near future and so must flush the
6062          * change by waking the device.
6063          *
6064          * We choose to take the media powerwell (either would do to trick the
6065          * punit into committing the voltage change) as that takes a lot less
6066          * power than the render powerwell.
6067          */
6068         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6069         err = valleyview_set_rps(dev_priv, val);
6070         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6071
6072         if (err)
6073                 DRM_ERROR("Failed to set RPS for idle\n");
6074 }
6075
6076 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6077 {
6078         mutex_lock(&dev_priv->rps.hw_lock);
6079         if (dev_priv->rps.enabled) {
6080                 u8 freq;
6081
6082                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6083                         gen6_rps_reset_ei(dev_priv);
6084                 I915_WRITE(GEN6_PMINTRMSK,
6085                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6086
6087                 gen6_enable_rps_interrupts(dev_priv);
6088
6089                 /* Use the user's desired frequency as a guide, but for better
6090                  * performance, jump directly to RPe as our starting frequency.
6091                  */
6092                 freq = max(dev_priv->rps.cur_freq,
6093                            dev_priv->rps.efficient_freq);
6094
6095                 if (intel_set_rps(dev_priv,
6096                                   clamp(freq,
6097                                         dev_priv->rps.min_freq_softlimit,
6098                                         dev_priv->rps.max_freq_softlimit)))
6099                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6100         }
6101         mutex_unlock(&dev_priv->rps.hw_lock);
6102 }
6103
6104 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6105 {
6106         /* Flush our bottom-half so that it does not race with us
6107          * setting the idle frequency and so that it is bounded by
6108          * our rpm wakeref. And then disable the interrupts to stop any
6109          * futher RPS reclocking whilst we are asleep.
6110          */
6111         gen6_disable_rps_interrupts(dev_priv);
6112
6113         mutex_lock(&dev_priv->rps.hw_lock);
6114         if (dev_priv->rps.enabled) {
6115                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6116                         vlv_set_rps_idle(dev_priv);
6117                 else
6118                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6119                 dev_priv->rps.last_adj = 0;
6120                 I915_WRITE(GEN6_PMINTRMSK,
6121                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6122         }
6123         mutex_unlock(&dev_priv->rps.hw_lock);
6124 }
6125
6126 void gen6_rps_boost(struct drm_i915_gem_request *rq,
6127                     struct intel_rps_client *rps)
6128 {
6129         struct drm_i915_private *i915 = rq->i915;
6130         bool boost;
6131
6132         /* This is intentionally racy! We peek at the state here, then
6133          * validate inside the RPS worker.
6134          */
6135         if (!i915->rps.enabled)
6136                 return;
6137
6138         boost = false;
6139         spin_lock_irq(&rq->lock);
6140         if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6141                 atomic_inc(&i915->rps.num_waiters);
6142                 rq->waitboost = true;
6143                 boost = true;
6144         }
6145         spin_unlock_irq(&rq->lock);
6146         if (!boost)
6147                 return;
6148
6149         if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
6150                 schedule_work(&i915->rps.work);
6151
6152         atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
6153 }
6154
6155 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6156 {
6157         int err;
6158
6159         lockdep_assert_held(&dev_priv->rps.hw_lock);
6160         GEM_BUG_ON(val > dev_priv->rps.max_freq);
6161         GEM_BUG_ON(val < dev_priv->rps.min_freq);
6162
6163         if (!dev_priv->rps.enabled) {
6164                 dev_priv->rps.cur_freq = val;
6165                 return 0;
6166         }
6167
6168         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6169                 err = valleyview_set_rps(dev_priv, val);
6170         else
6171                 err = gen6_set_rps(dev_priv, val);
6172
6173         return err;
6174 }
6175
6176 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6177 {
6178         I915_WRITE(GEN6_RC_CONTROL, 0);
6179         I915_WRITE(GEN9_PG_ENABLE, 0);
6180 }
6181
6182 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6183 {
6184         I915_WRITE(GEN6_RP_CONTROL, 0);
6185 }
6186
6187 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6188 {
6189         I915_WRITE(GEN6_RC_CONTROL, 0);
6190         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6191         I915_WRITE(GEN6_RP_CONTROL, 0);
6192 }
6193
6194 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6195 {
6196         I915_WRITE(GEN6_RC_CONTROL, 0);
6197 }
6198
6199 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6200 {
6201         /* we're doing forcewake before Disabling RC6,
6202          * This what the BIOS expects when going into suspend */
6203         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6204
6205         I915_WRITE(GEN6_RC_CONTROL, 0);
6206
6207         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6208 }
6209
6210 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6211 {
6212         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6213                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6214                         mode = GEN6_RC_CTL_RC6_ENABLE;
6215                 else
6216                         mode = 0;
6217         }
6218         if (HAS_RC6p(dev_priv))
6219                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6220                                  "RC6 %s RC6p %s RC6pp %s\n",
6221                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6222                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6223                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6224
6225         else
6226                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6227                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6228 }
6229
6230 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6231 {
6232         struct i915_ggtt *ggtt = &dev_priv->ggtt;
6233         bool enable_rc6 = true;
6234         unsigned long rc6_ctx_base;
6235         u32 rc_ctl;
6236         int rc_sw_target;
6237
6238         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6239         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6240                        RC_SW_TARGET_STATE_SHIFT;
6241         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6242                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6243                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6244                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6245                          rc_sw_target);
6246
6247         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6248                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6249                 enable_rc6 = false;
6250         }
6251
6252         /*
6253          * The exact context size is not known for BXT, so assume a page size
6254          * for this check.
6255          */
6256         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6257         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6258               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6259                                         ggtt->stolen_reserved_size))) {
6260                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6261                 enable_rc6 = false;
6262         }
6263
6264         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6265               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6266               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6267               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6268                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6269                 enable_rc6 = false;
6270         }
6271
6272         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6273             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6274             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6275                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6276                 enable_rc6 = false;
6277         }
6278
6279         if (!I915_READ(GEN6_GFXPAUSE)) {
6280                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6281                 enable_rc6 = false;
6282         }
6283
6284         if (!I915_READ(GEN8_MISC_CTRL0)) {
6285                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6286                 enable_rc6 = false;
6287         }
6288
6289         return enable_rc6;
6290 }
6291
6292 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6293 {
6294         /* No RC6 before Ironlake and code is gone for ilk. */
6295         if (INTEL_INFO(dev_priv)->gen < 6)
6296                 return 0;
6297
6298         if (!enable_rc6)
6299                 return 0;
6300
6301         if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6302                 DRM_INFO("RC6 disabled by BIOS\n");
6303                 return 0;
6304         }
6305
6306         /* Respect the kernel parameter if it is set */
6307         if (enable_rc6 >= 0) {
6308                 int mask;
6309
6310                 if (HAS_RC6p(dev_priv))
6311                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6312                                INTEL_RC6pp_ENABLE;
6313                 else
6314                         mask = INTEL_RC6_ENABLE;
6315
6316                 if ((enable_rc6 & mask) != enable_rc6)
6317                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6318                                          "(requested %d, valid %d)\n",
6319                                          enable_rc6 & mask, enable_rc6, mask);
6320
6321                 return enable_rc6 & mask;
6322         }
6323
6324         if (IS_IVYBRIDGE(dev_priv))
6325                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6326
6327         return INTEL_RC6_ENABLE;
6328 }
6329
6330 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6331 {
6332         /* All of these values are in units of 50MHz */
6333
6334         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6335         if (IS_GEN9_LP(dev_priv)) {
6336                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6337                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
6338                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
6339                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
6340         } else {
6341                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6342                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
6343                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
6344                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
6345         }
6346         /* hw_max = RP0 until we check for overclocking */
6347         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6348
6349         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6350         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6351             IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6352                 u32 ddcc_status = 0;
6353
6354                 if (sandybridge_pcode_read(dev_priv,
6355                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6356                                            &ddcc_status) == 0)
6357                         dev_priv->rps.efficient_freq =
6358                                 clamp_t(u8,
6359                                         ((ddcc_status >> 8) & 0xff),
6360                                         dev_priv->rps.min_freq,
6361                                         dev_priv->rps.max_freq);
6362         }
6363
6364         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6365                 /* Store the frequency values in 16.66 MHZ units, which is
6366                  * the natural hardware unit for SKL
6367                  */
6368                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
6369                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
6370                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
6371                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
6372                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
6373         }
6374 }
6375
6376 static void reset_rps(struct drm_i915_private *dev_priv,
6377                       int (*set)(struct drm_i915_private *, u8))
6378 {
6379         u8 freq = dev_priv->rps.cur_freq;
6380
6381         /* force a reset */
6382         dev_priv->rps.power = -1;
6383         dev_priv->rps.cur_freq = -1;
6384
6385         if (set(dev_priv, freq))
6386                 DRM_ERROR("Failed to reset RPS to initial values\n");
6387 }
6388
6389 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6390 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6391 {
6392         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6393
6394         /* Program defaults and thresholds for RPS*/
6395         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6396                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
6397
6398         /* 1 second timeout*/
6399         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6400                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6401
6402         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6403
6404         /* Leaning on the below call to gen6_set_rps to program/setup the
6405          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6406          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6407         reset_rps(dev_priv, gen6_set_rps);
6408
6409         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6410 }
6411
6412 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6413 {
6414         struct intel_engine_cs *engine;
6415         enum intel_engine_id id;
6416         uint32_t rc6_mask = 0;
6417
6418         /* 1a: Software RC state - RC0 */
6419         I915_WRITE(GEN6_RC_STATE, 0);
6420
6421         /* 1b: Get forcewake during program sequence. Although the driver
6422          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6423         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6424
6425         /* 2a: Disable RC states. */
6426         I915_WRITE(GEN6_RC_CONTROL, 0);
6427
6428         /* 2b: Program RC6 thresholds.*/
6429
6430         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6431         if (IS_SKYLAKE(dev_priv))
6432                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6433         else
6434                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6435         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6436         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6437         for_each_engine(engine, dev_priv, id)
6438                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6439
6440         if (HAS_GUC(dev_priv))
6441                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6442
6443         I915_WRITE(GEN6_RC_SLEEP, 0);
6444
6445         /* 2c: Program Coarse Power Gating Policies. */
6446         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6447         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6448
6449         /* 3a: Enable RC6 */
6450         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6451                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6452         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6453         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6454         I915_WRITE(GEN6_RC_CONTROL,
6455                    GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
6456
6457         /*
6458          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6459          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6460          */
6461         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6462                 I915_WRITE(GEN9_PG_ENABLE, 0);
6463         else
6464                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6465                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6466
6467         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6468 }
6469
6470 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6471 {
6472         struct intel_engine_cs *engine;
6473         enum intel_engine_id id;
6474         uint32_t rc6_mask = 0;
6475
6476         /* 1a: Software RC state - RC0 */
6477         I915_WRITE(GEN6_RC_STATE, 0);
6478
6479         /* 1c & 1d: Get forcewake during program sequence. Although the driver
6480          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6481         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6482
6483         /* 2a: Disable RC states. */
6484         I915_WRITE(GEN6_RC_CONTROL, 0);
6485
6486         /* 2b: Program RC6 thresholds.*/
6487         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6488         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6489         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6490         for_each_engine(engine, dev_priv, id)
6491                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6492         I915_WRITE(GEN6_RC_SLEEP, 0);
6493         if (IS_BROADWELL(dev_priv))
6494                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6495         else
6496                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6497
6498         /* 3: Enable RC6 */
6499         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6500                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6501         intel_print_rc6_info(dev_priv, rc6_mask);
6502         if (IS_BROADWELL(dev_priv))
6503                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6504                                 GEN7_RC_CTL_TO_MODE |
6505                                 rc6_mask);
6506         else
6507                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6508                                 GEN6_RC_CTL_EI_MODE(1) |
6509                                 rc6_mask);
6510
6511         /* 4 Program defaults and thresholds for RPS*/
6512         I915_WRITE(GEN6_RPNSWREQ,
6513                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6514         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6515                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6516         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6517         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6518
6519         /* Docs recommend 900MHz, and 300 MHz respectively */
6520         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6521                    dev_priv->rps.max_freq_softlimit << 24 |
6522                    dev_priv->rps.min_freq_softlimit << 16);
6523
6524         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6525         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6526         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6527         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6528
6529         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6530
6531         /* 5: Enable RPS */
6532         I915_WRITE(GEN6_RP_CONTROL,
6533                    GEN6_RP_MEDIA_TURBO |
6534                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6535                    GEN6_RP_MEDIA_IS_GFX |
6536                    GEN6_RP_ENABLE |
6537                    GEN6_RP_UP_BUSY_AVG |
6538                    GEN6_RP_DOWN_IDLE_AVG);
6539
6540         /* 6: Ring frequency + overclocking (our driver does this later */
6541
6542         reset_rps(dev_priv, gen6_set_rps);
6543
6544         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6545 }
6546
6547 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6548 {
6549         struct intel_engine_cs *engine;
6550         enum intel_engine_id id;
6551         u32 rc6vids, rc6_mask = 0;
6552         u32 gtfifodbg;
6553         int rc6_mode;
6554         int ret;
6555
6556         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6557
6558         /* Here begins a magic sequence of register writes to enable
6559          * auto-downclocking.
6560          *
6561          * Perhaps there might be some value in exposing these to
6562          * userspace...
6563          */
6564         I915_WRITE(GEN6_RC_STATE, 0);
6565
6566         /* Clear the DBG now so we don't confuse earlier errors */
6567         gtfifodbg = I915_READ(GTFIFODBG);
6568         if (gtfifodbg) {
6569                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6570                 I915_WRITE(GTFIFODBG, gtfifodbg);
6571         }
6572
6573         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6574
6575         /* disable the counters and set deterministic thresholds */
6576         I915_WRITE(GEN6_RC_CONTROL, 0);
6577
6578         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6579         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6580         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6581         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6582         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6583
6584         for_each_engine(engine, dev_priv, id)
6585                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6586
6587         I915_WRITE(GEN6_RC_SLEEP, 0);
6588         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6589         if (IS_IVYBRIDGE(dev_priv))
6590                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6591         else
6592                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6593         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6594         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6595
6596         /* Check if we are enabling RC6 */
6597         rc6_mode = intel_enable_rc6();
6598         if (rc6_mode & INTEL_RC6_ENABLE)
6599                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6600
6601         /* We don't use those on Haswell */
6602         if (!IS_HASWELL(dev_priv)) {
6603                 if (rc6_mode & INTEL_RC6p_ENABLE)
6604                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6605
6606                 if (rc6_mode & INTEL_RC6pp_ENABLE)
6607                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6608         }
6609
6610         intel_print_rc6_info(dev_priv, rc6_mask);
6611
6612         I915_WRITE(GEN6_RC_CONTROL,
6613                    rc6_mask |
6614                    GEN6_RC_CTL_EI_MODE(1) |
6615                    GEN6_RC_CTL_HW_ENABLE);
6616
6617         /* Power down if completely idle for over 50ms */
6618         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6619         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6620
6621         reset_rps(dev_priv, gen6_set_rps);
6622
6623         rc6vids = 0;
6624         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6625         if (IS_GEN6(dev_priv) && ret) {
6626                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6627         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6628                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6629                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6630                 rc6vids &= 0xffff00;
6631                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6632                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6633                 if (ret)
6634                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6635         }
6636
6637         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6638 }
6639
6640 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6641 {
6642         int min_freq = 15;
6643         unsigned int gpu_freq;
6644         unsigned int max_ia_freq, min_ring_freq;
6645         unsigned int max_gpu_freq, min_gpu_freq;
6646         int scaling_factor = 180;
6647         struct cpufreq_policy *policy;
6648
6649         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6650
6651         policy = cpufreq_cpu_get(0);
6652         if (policy) {
6653                 max_ia_freq = policy->cpuinfo.max_freq;
6654                 cpufreq_cpu_put(policy);
6655         } else {
6656                 /*
6657                  * Default to measured freq if none found, PCU will ensure we
6658                  * don't go over
6659                  */
6660                 max_ia_freq = tsc_khz;
6661         }
6662
6663         /* Convert from kHz to MHz */
6664         max_ia_freq /= 1000;
6665
6666         min_ring_freq = I915_READ(DCLK) & 0xf;
6667         /* convert DDR frequency from units of 266.6MHz to bandwidth */
6668         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6669
6670         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6671                 /* Convert GT frequency to 50 HZ units */
6672                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
6673                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
6674         } else {
6675                 min_gpu_freq = dev_priv->rps.min_freq;
6676                 max_gpu_freq = dev_priv->rps.max_freq;
6677         }
6678
6679         /*
6680          * For each potential GPU frequency, load a ring frequency we'd like
6681          * to use for memory access.  We do this by specifying the IA frequency
6682          * the PCU should use as a reference to determine the ring frequency.
6683          */
6684         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6685                 int diff = max_gpu_freq - gpu_freq;
6686                 unsigned int ia_freq = 0, ring_freq = 0;
6687
6688                 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6689                         /*
6690                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
6691                          * No floor required for ring frequency on SKL.
6692                          */
6693                         ring_freq = gpu_freq;
6694                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6695                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
6696                         ring_freq = max(min_ring_freq, gpu_freq);
6697                 } else if (IS_HASWELL(dev_priv)) {
6698                         ring_freq = mult_frac(gpu_freq, 5, 4);
6699                         ring_freq = max(min_ring_freq, ring_freq);
6700                         /* leave ia_freq as the default, chosen by cpufreq */
6701                 } else {
6702                         /* On older processors, there is no separate ring
6703                          * clock domain, so in order to boost the bandwidth
6704                          * of the ring, we need to upclock the CPU (ia_freq).
6705                          *
6706                          * For GPU frequencies less than 750MHz,
6707                          * just use the lowest ring freq.
6708                          */
6709                         if (gpu_freq < min_freq)
6710                                 ia_freq = 800;
6711                         else
6712                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6713                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6714                 }
6715
6716                 sandybridge_pcode_write(dev_priv,
6717                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6718                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6719                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6720                                         gpu_freq);
6721         }
6722 }
6723
6724 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6725 {
6726         u32 val, rp0;
6727
6728         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6729
6730         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6731         case 8:
6732                 /* (2 * 4) config */
6733                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6734                 break;
6735         case 12:
6736                 /* (2 * 6) config */
6737                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6738                 break;
6739         case 16:
6740                 /* (2 * 8) config */
6741         default:
6742                 /* Setting (2 * 8) Min RP0 for any other combination */
6743                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6744                 break;
6745         }
6746
6747         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6748
6749         return rp0;
6750 }
6751
6752 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6753 {
6754         u32 val, rpe;
6755
6756         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6757         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6758
6759         return rpe;
6760 }
6761
6762 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6763 {
6764         u32 val, rp1;
6765
6766         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6767         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6768
6769         return rp1;
6770 }
6771
6772 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6773 {
6774         u32 val, rpn;
6775
6776         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6777         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6778                        FB_GFX_FREQ_FUSE_MASK);
6779
6780         return rpn;
6781 }
6782
6783 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6784 {
6785         u32 val, rp1;
6786
6787         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6788
6789         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6790
6791         return rp1;
6792 }
6793
6794 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6795 {
6796         u32 val, rp0;
6797
6798         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6799
6800         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6801         /* Clamp to max */
6802         rp0 = min_t(u32, rp0, 0xea);
6803
6804         return rp0;
6805 }
6806
6807 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6808 {
6809         u32 val, rpe;
6810
6811         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6812         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6813         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6814         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6815
6816         return rpe;
6817 }
6818
6819 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6820 {
6821         u32 val;
6822
6823         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6824         /*
6825          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6826          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6827          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6828          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6829          * to make sure it matches what Punit accepts.
6830          */
6831         return max_t(u32, val, 0xc0);
6832 }
6833
6834 /* Check that the pctx buffer wasn't move under us. */
6835 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6836 {
6837         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6838
6839         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6840                              dev_priv->vlv_pctx->stolen->start);
6841 }
6842
6843
6844 /* Check that the pcbr address is not empty. */
6845 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6846 {
6847         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6848
6849         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6850 }
6851
6852 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6853 {
6854         struct i915_ggtt *ggtt = &dev_priv->ggtt;
6855         unsigned long pctx_paddr, paddr;
6856         u32 pcbr;
6857         int pctx_size = 32*1024;
6858
6859         pcbr = I915_READ(VLV_PCBR);
6860         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6861                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6862                 paddr = (dev_priv->mm.stolen_base +
6863                          (ggtt->stolen_size - pctx_size));
6864
6865                 pctx_paddr = (paddr & (~4095));
6866                 I915_WRITE(VLV_PCBR, pctx_paddr);
6867         }
6868
6869         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6870 }
6871
6872 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6873 {
6874         struct drm_i915_gem_object *pctx;
6875         unsigned long pctx_paddr;
6876         u32 pcbr;
6877         int pctx_size = 24*1024;
6878
6879         pcbr = I915_READ(VLV_PCBR);
6880         if (pcbr) {
6881                 /* BIOS set it up already, grab the pre-alloc'd space */
6882                 int pcbr_offset;
6883
6884                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6885                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6886                                                                       pcbr_offset,
6887                                                                       I915_GTT_OFFSET_NONE,
6888                                                                       pctx_size);
6889                 goto out;
6890         }
6891
6892         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6893
6894         /*
6895          * From the Gunit register HAS:
6896          * The Gfx driver is expected to program this register and ensure
6897          * proper allocation within Gfx stolen memory.  For example, this
6898          * register should be programmed such than the PCBR range does not
6899          * overlap with other ranges, such as the frame buffer, protected
6900          * memory, or any other relevant ranges.
6901          */
6902         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6903         if (!pctx) {
6904                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6905                 goto out;
6906         }
6907
6908         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6909         I915_WRITE(VLV_PCBR, pctx_paddr);
6910
6911 out:
6912         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6913         dev_priv->vlv_pctx = pctx;
6914 }
6915
6916 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6917 {
6918         if (WARN_ON(!dev_priv->vlv_pctx))
6919                 return;
6920
6921         i915_gem_object_put(dev_priv->vlv_pctx);
6922         dev_priv->vlv_pctx = NULL;
6923 }
6924
6925 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6926 {
6927         dev_priv->rps.gpll_ref_freq =
6928                 vlv_get_cck_clock(dev_priv, "GPLL ref",
6929                                   CCK_GPLL_CLOCK_CONTROL,
6930                                   dev_priv->czclk_freq);
6931
6932         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6933                          dev_priv->rps.gpll_ref_freq);
6934 }
6935
6936 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6937 {
6938         u32 val;
6939
6940         valleyview_setup_pctx(dev_priv);
6941
6942         vlv_init_gpll_ref_freq(dev_priv);
6943
6944         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6945         switch ((val >> 6) & 3) {
6946         case 0:
6947         case 1:
6948                 dev_priv->mem_freq = 800;
6949                 break;
6950         case 2:
6951                 dev_priv->mem_freq = 1066;
6952                 break;
6953         case 3:
6954                 dev_priv->mem_freq = 1333;
6955                 break;
6956         }
6957         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6958
6959         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6960         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6961         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6962                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6963                          dev_priv->rps.max_freq);
6964
6965         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6966         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6967                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6968                          dev_priv->rps.efficient_freq);
6969
6970         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
6971         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6972                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6973                          dev_priv->rps.rp1_freq);
6974
6975         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
6976         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6977                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6978                          dev_priv->rps.min_freq);
6979 }
6980
6981 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6982 {
6983         u32 val;
6984
6985         cherryview_setup_pctx(dev_priv);
6986
6987         vlv_init_gpll_ref_freq(dev_priv);
6988
6989         mutex_lock(&dev_priv->sb_lock);
6990         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6991         mutex_unlock(&dev_priv->sb_lock);
6992
6993         switch ((val >> 2) & 0x7) {
6994         case 3:
6995                 dev_priv->mem_freq = 2000;
6996                 break;
6997         default:
6998                 dev_priv->mem_freq = 1600;
6999                 break;
7000         }
7001         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7002
7003         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
7004         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
7005         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7006                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7007                          dev_priv->rps.max_freq);
7008
7009         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7010         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7011                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7012                          dev_priv->rps.efficient_freq);
7013
7014         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
7015         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7016                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7017                          dev_priv->rps.rp1_freq);
7018
7019         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7020         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7021                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7022                          dev_priv->rps.min_freq);
7023
7024         WARN_ONCE((dev_priv->rps.max_freq |
7025                    dev_priv->rps.efficient_freq |
7026                    dev_priv->rps.rp1_freq |
7027                    dev_priv->rps.min_freq) & 1,
7028                   "Odd GPU freq values\n");
7029 }
7030
7031 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7032 {
7033         valleyview_cleanup_pctx(dev_priv);
7034 }
7035
7036 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7037 {
7038         struct intel_engine_cs *engine;
7039         enum intel_engine_id id;
7040         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7041
7042         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7043
7044         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7045                                              GT_FIFO_FREE_ENTRIES_CHV);
7046         if (gtfifodbg) {
7047                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7048                                  gtfifodbg);
7049                 I915_WRITE(GTFIFODBG, gtfifodbg);
7050         }
7051
7052         cherryview_check_pctx(dev_priv);
7053
7054         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7055          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7056         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7057
7058         /*  Disable RC states. */
7059         I915_WRITE(GEN6_RC_CONTROL, 0);
7060
7061         /* 2a: Program RC6 thresholds.*/
7062         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7063         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7064         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7065
7066         for_each_engine(engine, dev_priv, id)
7067                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7068         I915_WRITE(GEN6_RC_SLEEP, 0);
7069
7070         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7071         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7072
7073         /* allows RC6 residency counter to work */
7074         I915_WRITE(VLV_COUNTER_CONTROL,
7075                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7076                                       VLV_MEDIA_RC6_COUNT_EN |
7077                                       VLV_RENDER_RC6_COUNT_EN));
7078
7079         /* For now we assume BIOS is allocating and populating the PCBR  */
7080         pcbr = I915_READ(VLV_PCBR);
7081
7082         /* 3: Enable RC6 */
7083         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
7084             (pcbr >> VLV_PCBR_ADDR_SHIFT))
7085                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7086
7087         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7088
7089         /* 4 Program defaults and thresholds for RPS*/
7090         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7091         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7092         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7093         I915_WRITE(GEN6_RP_UP_EI, 66000);
7094         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7095
7096         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7097
7098         /* 5: Enable RPS */
7099         I915_WRITE(GEN6_RP_CONTROL,
7100                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7101                    GEN6_RP_MEDIA_IS_GFX |
7102                    GEN6_RP_ENABLE |
7103                    GEN6_RP_UP_BUSY_AVG |
7104                    GEN6_RP_DOWN_IDLE_AVG);
7105
7106         /* Setting Fixed Bias */
7107         val = VLV_OVERRIDE_EN |
7108                   VLV_SOC_TDP_EN |
7109                   CHV_BIAS_CPU_50_SOC_50;
7110         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7111
7112         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7113
7114         /* RPS code assumes GPLL is used */
7115         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7116
7117         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7118         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7119
7120         reset_rps(dev_priv, valleyview_set_rps);
7121
7122         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7123 }
7124
7125 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7126 {
7127         struct intel_engine_cs *engine;
7128         enum intel_engine_id id;
7129         u32 gtfifodbg, val, rc6_mode = 0;
7130
7131         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7132
7133         valleyview_check_pctx(dev_priv);
7134
7135         gtfifodbg = I915_READ(GTFIFODBG);
7136         if (gtfifodbg) {
7137                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7138                                  gtfifodbg);
7139                 I915_WRITE(GTFIFODBG, gtfifodbg);
7140         }
7141
7142         /* If VLV, Forcewake all wells, else re-direct to regular path */
7143         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7144
7145         /*  Disable RC states. */
7146         I915_WRITE(GEN6_RC_CONTROL, 0);
7147
7148         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7149         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7150         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7151         I915_WRITE(GEN6_RP_UP_EI, 66000);
7152         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7153
7154         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7155
7156         I915_WRITE(GEN6_RP_CONTROL,
7157                    GEN6_RP_MEDIA_TURBO |
7158                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7159                    GEN6_RP_MEDIA_IS_GFX |
7160                    GEN6_RP_ENABLE |
7161                    GEN6_RP_UP_BUSY_AVG |
7162                    GEN6_RP_DOWN_IDLE_CONT);
7163
7164         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7165         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7166         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7167
7168         for_each_engine(engine, dev_priv, id)
7169                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7170
7171         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7172
7173         /* allows RC6 residency counter to work */
7174         I915_WRITE(VLV_COUNTER_CONTROL,
7175                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7176                                       VLV_MEDIA_RC0_COUNT_EN |
7177                                       VLV_RENDER_RC0_COUNT_EN |
7178                                       VLV_MEDIA_RC6_COUNT_EN |
7179                                       VLV_RENDER_RC6_COUNT_EN));
7180
7181         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7182                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7183
7184         intel_print_rc6_info(dev_priv, rc6_mode);
7185
7186         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7187
7188         /* Setting Fixed Bias */
7189         val = VLV_OVERRIDE_EN |
7190                   VLV_SOC_TDP_EN |
7191                   VLV_BIAS_CPU_125_SOC_875;
7192         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7193
7194         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7195
7196         /* RPS code assumes GPLL is used */
7197         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7198
7199         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7200         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7201
7202         reset_rps(dev_priv, valleyview_set_rps);
7203
7204         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7205 }
7206
7207 static unsigned long intel_pxfreq(u32 vidfreq)
7208 {
7209         unsigned long freq;
7210         int div = (vidfreq & 0x3f0000) >> 16;
7211         int post = (vidfreq & 0x3000) >> 12;
7212         int pre = (vidfreq & 0x7);
7213
7214         if (!pre)
7215                 return 0;
7216
7217         freq = ((div * 133333) / ((1<<post) * pre));
7218
7219         return freq;
7220 }
7221
7222 static const struct cparams {
7223         u16 i;
7224         u16 t;
7225         u16 m;
7226         u16 c;
7227 } cparams[] = {
7228         { 1, 1333, 301, 28664 },
7229         { 1, 1066, 294, 24460 },
7230         { 1, 800, 294, 25192 },
7231         { 0, 1333, 276, 27605 },
7232         { 0, 1066, 276, 27605 },
7233         { 0, 800, 231, 23784 },
7234 };
7235
7236 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7237 {
7238         u64 total_count, diff, ret;
7239         u32 count1, count2, count3, m = 0, c = 0;
7240         unsigned long now = jiffies_to_msecs(jiffies), diff1;
7241         int i;
7242
7243         lockdep_assert_held(&mchdev_lock);
7244
7245         diff1 = now - dev_priv->ips.last_time1;
7246
7247         /* Prevent division-by-zero if we are asking too fast.
7248          * Also, we don't get interesting results if we are polling
7249          * faster than once in 10ms, so just return the saved value
7250          * in such cases.
7251          */
7252         if (diff1 <= 10)
7253                 return dev_priv->ips.chipset_power;
7254
7255         count1 = I915_READ(DMIEC);
7256         count2 = I915_READ(DDREC);
7257         count3 = I915_READ(CSIEC);
7258
7259         total_count = count1 + count2 + count3;
7260
7261         /* FIXME: handle per-counter overflow */
7262         if (total_count < dev_priv->ips.last_count1) {
7263                 diff = ~0UL - dev_priv->ips.last_count1;
7264                 diff += total_count;
7265         } else {
7266                 diff = total_count - dev_priv->ips.last_count1;
7267         }
7268
7269         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7270                 if (cparams[i].i == dev_priv->ips.c_m &&
7271                     cparams[i].t == dev_priv->ips.r_t) {
7272                         m = cparams[i].m;
7273                         c = cparams[i].c;
7274                         break;
7275                 }
7276         }
7277
7278         diff = div_u64(diff, diff1);
7279         ret = ((m * diff) + c);
7280         ret = div_u64(ret, 10);
7281
7282         dev_priv->ips.last_count1 = total_count;
7283         dev_priv->ips.last_time1 = now;
7284
7285         dev_priv->ips.chipset_power = ret;
7286
7287         return ret;
7288 }
7289
7290 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7291 {
7292         unsigned long val;
7293
7294         if (INTEL_INFO(dev_priv)->gen != 5)
7295                 return 0;
7296
7297         spin_lock_irq(&mchdev_lock);
7298
7299         val = __i915_chipset_val(dev_priv);
7300
7301         spin_unlock_irq(&mchdev_lock);
7302
7303         return val;
7304 }
7305
7306 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7307 {
7308         unsigned long m, x, b;
7309         u32 tsfs;
7310
7311         tsfs = I915_READ(TSFS);
7312
7313         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7314         x = I915_READ8(TR1);
7315
7316         b = tsfs & TSFS_INTR_MASK;
7317
7318         return ((m * x) / 127) - b;
7319 }
7320
7321 static int _pxvid_to_vd(u8 pxvid)
7322 {
7323         if (pxvid == 0)
7324                 return 0;
7325
7326         if (pxvid >= 8 && pxvid < 31)
7327                 pxvid = 31;
7328
7329         return (pxvid + 2) * 125;
7330 }
7331
7332 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7333 {
7334         const int vd = _pxvid_to_vd(pxvid);
7335         const int vm = vd - 1125;
7336
7337         if (INTEL_INFO(dev_priv)->is_mobile)
7338                 return vm > 0 ? vm : 0;
7339
7340         return vd;
7341 }
7342
7343 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7344 {
7345         u64 now, diff, diffms;
7346         u32 count;
7347
7348         lockdep_assert_held(&mchdev_lock);
7349
7350         now = ktime_get_raw_ns();
7351         diffms = now - dev_priv->ips.last_time2;
7352         do_div(diffms, NSEC_PER_MSEC);
7353
7354         /* Don't divide by 0 */
7355         if (!diffms)
7356                 return;
7357
7358         count = I915_READ(GFXEC);
7359
7360         if (count < dev_priv->ips.last_count2) {
7361                 diff = ~0UL - dev_priv->ips.last_count2;
7362                 diff += count;
7363         } else {
7364                 diff = count - dev_priv->ips.last_count2;
7365         }
7366
7367         dev_priv->ips.last_count2 = count;
7368         dev_priv->ips.last_time2 = now;
7369
7370         /* More magic constants... */
7371         diff = diff * 1181;
7372         diff = div_u64(diff, diffms * 10);
7373         dev_priv->ips.gfx_power = diff;
7374 }
7375
7376 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7377 {
7378         if (INTEL_INFO(dev_priv)->gen != 5)
7379                 return;
7380
7381         spin_lock_irq(&mchdev_lock);
7382
7383         __i915_update_gfx_val(dev_priv);
7384
7385         spin_unlock_irq(&mchdev_lock);
7386 }
7387
7388 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7389 {
7390         unsigned long t, corr, state1, corr2, state2;
7391         u32 pxvid, ext_v;
7392
7393         lockdep_assert_held(&mchdev_lock);
7394
7395         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7396         pxvid = (pxvid >> 24) & 0x7f;
7397         ext_v = pvid_to_extvid(dev_priv, pxvid);
7398
7399         state1 = ext_v;
7400
7401         t = i915_mch_val(dev_priv);
7402
7403         /* Revel in the empirically derived constants */
7404
7405         /* Correction factor in 1/100000 units */
7406         if (t > 80)
7407                 corr = ((t * 2349) + 135940);
7408         else if (t >= 50)
7409                 corr = ((t * 964) + 29317);
7410         else /* < 50 */
7411                 corr = ((t * 301) + 1004);
7412
7413         corr = corr * ((150142 * state1) / 10000 - 78642);
7414         corr /= 100000;
7415         corr2 = (corr * dev_priv->ips.corr);
7416
7417         state2 = (corr2 * state1) / 10000;
7418         state2 /= 100; /* convert to mW */
7419
7420         __i915_update_gfx_val(dev_priv);
7421
7422         return dev_priv->ips.gfx_power + state2;
7423 }
7424
7425 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7426 {
7427         unsigned long val;
7428
7429         if (INTEL_INFO(dev_priv)->gen != 5)
7430                 return 0;
7431
7432         spin_lock_irq(&mchdev_lock);
7433
7434         val = __i915_gfx_val(dev_priv);
7435
7436         spin_unlock_irq(&mchdev_lock);
7437
7438         return val;
7439 }
7440
7441 /**
7442  * i915_read_mch_val - return value for IPS use
7443  *
7444  * Calculate and return a value for the IPS driver to use when deciding whether
7445  * we have thermal and power headroom to increase CPU or GPU power budget.
7446  */
7447 unsigned long i915_read_mch_val(void)
7448 {
7449         struct drm_i915_private *dev_priv;
7450         unsigned long chipset_val, graphics_val, ret = 0;
7451
7452         spin_lock_irq(&mchdev_lock);
7453         if (!i915_mch_dev)
7454                 goto out_unlock;
7455         dev_priv = i915_mch_dev;
7456
7457         chipset_val = __i915_chipset_val(dev_priv);
7458         graphics_val = __i915_gfx_val(dev_priv);
7459
7460         ret = chipset_val + graphics_val;
7461
7462 out_unlock:
7463         spin_unlock_irq(&mchdev_lock);
7464
7465         return ret;
7466 }
7467 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7468
7469 /**
7470  * i915_gpu_raise - raise GPU frequency limit
7471  *
7472  * Raise the limit; IPS indicates we have thermal headroom.
7473  */
7474 bool i915_gpu_raise(void)
7475 {
7476         struct drm_i915_private *dev_priv;
7477         bool ret = true;
7478
7479         spin_lock_irq(&mchdev_lock);
7480         if (!i915_mch_dev) {
7481                 ret = false;
7482                 goto out_unlock;
7483         }
7484         dev_priv = i915_mch_dev;
7485
7486         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7487                 dev_priv->ips.max_delay--;
7488
7489 out_unlock:
7490         spin_unlock_irq(&mchdev_lock);
7491
7492         return ret;
7493 }
7494 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7495
7496 /**
7497  * i915_gpu_lower - lower GPU frequency limit
7498  *
7499  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7500  * frequency maximum.
7501  */
7502 bool i915_gpu_lower(void)
7503 {
7504         struct drm_i915_private *dev_priv;
7505         bool ret = true;
7506
7507         spin_lock_irq(&mchdev_lock);
7508         if (!i915_mch_dev) {
7509                 ret = false;
7510                 goto out_unlock;
7511         }
7512         dev_priv = i915_mch_dev;
7513
7514         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7515                 dev_priv->ips.max_delay++;
7516
7517 out_unlock:
7518         spin_unlock_irq(&mchdev_lock);
7519
7520         return ret;
7521 }
7522 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7523
7524 /**
7525  * i915_gpu_busy - indicate GPU business to IPS
7526  *
7527  * Tell the IPS driver whether or not the GPU is busy.
7528  */
7529 bool i915_gpu_busy(void)
7530 {
7531         bool ret = false;
7532
7533         spin_lock_irq(&mchdev_lock);
7534         if (i915_mch_dev)
7535                 ret = i915_mch_dev->gt.awake;
7536         spin_unlock_irq(&mchdev_lock);
7537
7538         return ret;
7539 }
7540 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7541
7542 /**
7543  * i915_gpu_turbo_disable - disable graphics turbo
7544  *
7545  * Disable graphics turbo by resetting the max frequency and setting the
7546  * current frequency to the default.
7547  */
7548 bool i915_gpu_turbo_disable(void)
7549 {
7550         struct drm_i915_private *dev_priv;
7551         bool ret = true;
7552
7553         spin_lock_irq(&mchdev_lock);
7554         if (!i915_mch_dev) {
7555                 ret = false;
7556                 goto out_unlock;
7557         }
7558         dev_priv = i915_mch_dev;
7559
7560         dev_priv->ips.max_delay = dev_priv->ips.fstart;
7561
7562         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7563                 ret = false;
7564
7565 out_unlock:
7566         spin_unlock_irq(&mchdev_lock);
7567
7568         return ret;
7569 }
7570 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7571
7572 /**
7573  * Tells the intel_ips driver that the i915 driver is now loaded, if
7574  * IPS got loaded first.
7575  *
7576  * This awkward dance is so that neither module has to depend on the
7577  * other in order for IPS to do the appropriate communication of
7578  * GPU turbo limits to i915.
7579  */
7580 static void
7581 ips_ping_for_i915_load(void)
7582 {
7583         void (*link)(void);
7584
7585         link = symbol_get(ips_link_to_i915_driver);
7586         if (link) {
7587                 link();
7588                 symbol_put(ips_link_to_i915_driver);
7589         }
7590 }
7591
7592 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7593 {
7594         /* We only register the i915 ips part with intel-ips once everything is
7595          * set up, to avoid intel-ips sneaking in and reading bogus values. */
7596         spin_lock_irq(&mchdev_lock);
7597         i915_mch_dev = dev_priv;
7598         spin_unlock_irq(&mchdev_lock);
7599
7600         ips_ping_for_i915_load();
7601 }
7602
7603 void intel_gpu_ips_teardown(void)
7604 {
7605         spin_lock_irq(&mchdev_lock);
7606         i915_mch_dev = NULL;
7607         spin_unlock_irq(&mchdev_lock);
7608 }
7609
7610 static void intel_init_emon(struct drm_i915_private *dev_priv)
7611 {
7612         u32 lcfuse;
7613         u8 pxw[16];
7614         int i;
7615
7616         /* Disable to program */
7617         I915_WRITE(ECR, 0);
7618         POSTING_READ(ECR);
7619
7620         /* Program energy weights for various events */
7621         I915_WRITE(SDEW, 0x15040d00);
7622         I915_WRITE(CSIEW0, 0x007f0000);
7623         I915_WRITE(CSIEW1, 0x1e220004);
7624         I915_WRITE(CSIEW2, 0x04000004);
7625
7626         for (i = 0; i < 5; i++)
7627                 I915_WRITE(PEW(i), 0);
7628         for (i = 0; i < 3; i++)
7629                 I915_WRITE(DEW(i), 0);
7630
7631         /* Program P-state weights to account for frequency power adjustment */
7632         for (i = 0; i < 16; i++) {
7633                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7634                 unsigned long freq = intel_pxfreq(pxvidfreq);
7635                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7636                         PXVFREQ_PX_SHIFT;
7637                 unsigned long val;
7638
7639                 val = vid * vid;
7640                 val *= (freq / 1000);
7641                 val *= 255;
7642                 val /= (127*127*900);
7643                 if (val > 0xff)
7644                         DRM_ERROR("bad pxval: %ld\n", val);
7645                 pxw[i] = val;
7646         }
7647         /* Render standby states get 0 weight */
7648         pxw[14] = 0;
7649         pxw[15] = 0;
7650
7651         for (i = 0; i < 4; i++) {
7652                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7653                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7654                 I915_WRITE(PXW(i), val);
7655         }
7656
7657         /* Adjust magic regs to magic values (more experimental results) */
7658         I915_WRITE(OGW0, 0);
7659         I915_WRITE(OGW1, 0);
7660         I915_WRITE(EG0, 0x00007f00);
7661         I915_WRITE(EG1, 0x0000000e);
7662         I915_WRITE(EG2, 0x000e0000);
7663         I915_WRITE(EG3, 0x68000300);
7664         I915_WRITE(EG4, 0x42000000);
7665         I915_WRITE(EG5, 0x00140031);
7666         I915_WRITE(EG6, 0);
7667         I915_WRITE(EG7, 0);
7668
7669         for (i = 0; i < 8; i++)
7670                 I915_WRITE(PXWL(i), 0);
7671
7672         /* Enable PMON + select events */
7673         I915_WRITE(ECR, 0x80000019);
7674
7675         lcfuse = I915_READ(LCFUSE02);
7676
7677         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7678 }
7679
7680 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7681 {
7682         /*
7683          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7684          * requirement.
7685          */
7686         if (!i915.enable_rc6) {
7687                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7688                 intel_runtime_pm_get(dev_priv);
7689         }
7690
7691         mutex_lock(&dev_priv->drm.struct_mutex);
7692         mutex_lock(&dev_priv->rps.hw_lock);
7693
7694         /* Initialize RPS limits (for userspace) */
7695         if (IS_CHERRYVIEW(dev_priv))
7696                 cherryview_init_gt_powersave(dev_priv);
7697         else if (IS_VALLEYVIEW(dev_priv))
7698                 valleyview_init_gt_powersave(dev_priv);
7699         else if (INTEL_GEN(dev_priv) >= 6)
7700                 gen6_init_rps_frequencies(dev_priv);
7701
7702         /* Derive initial user preferences/limits from the hardware limits */
7703         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
7704         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
7705
7706         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
7707         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
7708
7709         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7710                 dev_priv->rps.min_freq_softlimit =
7711                         max_t(int,
7712                               dev_priv->rps.efficient_freq,
7713                               intel_freq_opcode(dev_priv, 450));
7714
7715         /* After setting max-softlimit, find the overclock max freq */
7716         if (IS_GEN6(dev_priv) ||
7717             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7718                 u32 params = 0;
7719
7720                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7721                 if (params & BIT(31)) { /* OC supported */
7722                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7723                                          (dev_priv->rps.max_freq & 0xff) * 50,
7724                                          (params & 0xff) * 50);
7725                         dev_priv->rps.max_freq = params & 0xff;
7726                 }
7727         }
7728
7729         /* Finally allow us to boost to max by default */
7730         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7731
7732         mutex_unlock(&dev_priv->rps.hw_lock);
7733         mutex_unlock(&dev_priv->drm.struct_mutex);
7734
7735         intel_autoenable_gt_powersave(dev_priv);
7736 }
7737
7738 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7739 {
7740         if (IS_VALLEYVIEW(dev_priv))
7741                 valleyview_cleanup_gt_powersave(dev_priv);
7742
7743         if (!i915.enable_rc6)
7744                 intel_runtime_pm_put(dev_priv);
7745 }
7746
7747 /**
7748  * intel_suspend_gt_powersave - suspend PM work and helper threads
7749  * @dev_priv: i915 device
7750  *
7751  * We don't want to disable RC6 or other features here, we just want
7752  * to make sure any work we've queued has finished and won't bother
7753  * us while we're suspended.
7754  */
7755 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7756 {
7757         if (INTEL_GEN(dev_priv) < 6)
7758                 return;
7759
7760         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7761                 intel_runtime_pm_put(dev_priv);
7762
7763         /* gen6_rps_idle() will be called later to disable interrupts */
7764 }
7765
7766 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7767 {
7768         dev_priv->rps.enabled = true; /* force disabling */
7769         intel_disable_gt_powersave(dev_priv);
7770
7771         gen6_reset_rps_interrupts(dev_priv);
7772 }
7773
7774 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7775 {
7776         if (!READ_ONCE(dev_priv->rps.enabled))
7777                 return;
7778
7779         mutex_lock(&dev_priv->rps.hw_lock);
7780
7781         if (INTEL_GEN(dev_priv) >= 9) {
7782                 gen9_disable_rc6(dev_priv);
7783                 gen9_disable_rps(dev_priv);
7784         } else if (IS_CHERRYVIEW(dev_priv)) {
7785                 cherryview_disable_rps(dev_priv);
7786         } else if (IS_VALLEYVIEW(dev_priv)) {
7787                 valleyview_disable_rps(dev_priv);
7788         } else if (INTEL_GEN(dev_priv) >= 6) {
7789                 gen6_disable_rps(dev_priv);
7790         }  else if (IS_IRONLAKE_M(dev_priv)) {
7791                 ironlake_disable_drps(dev_priv);
7792         }
7793
7794         dev_priv->rps.enabled = false;
7795         mutex_unlock(&dev_priv->rps.hw_lock);
7796 }
7797
7798 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7799 {
7800         /* We shouldn't be disabling as we submit, so this should be less
7801          * racy than it appears!
7802          */
7803         if (READ_ONCE(dev_priv->rps.enabled))
7804                 return;
7805
7806         /* Powersaving is controlled by the host when inside a VM */
7807         if (intel_vgpu_active(dev_priv))
7808                 return;
7809
7810         mutex_lock(&dev_priv->rps.hw_lock);
7811
7812         if (IS_CHERRYVIEW(dev_priv)) {
7813                 cherryview_enable_rps(dev_priv);
7814         } else if (IS_VALLEYVIEW(dev_priv)) {
7815                 valleyview_enable_rps(dev_priv);
7816         } else if (INTEL_GEN(dev_priv) >= 9) {
7817                 gen9_enable_rc6(dev_priv);
7818                 gen9_enable_rps(dev_priv);
7819                 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
7820                         gen6_update_ring_freq(dev_priv);
7821         } else if (IS_BROADWELL(dev_priv)) {
7822                 gen8_enable_rps(dev_priv);
7823                 gen6_update_ring_freq(dev_priv);
7824         } else if (INTEL_GEN(dev_priv) >= 6) {
7825                 gen6_enable_rps(dev_priv);
7826                 gen6_update_ring_freq(dev_priv);
7827         } else if (IS_IRONLAKE_M(dev_priv)) {
7828                 ironlake_enable_drps(dev_priv);
7829                 intel_init_emon(dev_priv);
7830         }
7831
7832         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7833         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7834
7835         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7836         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7837
7838         dev_priv->rps.enabled = true;
7839         mutex_unlock(&dev_priv->rps.hw_lock);
7840 }
7841
7842 static void __intel_autoenable_gt_powersave(struct work_struct *work)
7843 {
7844         struct drm_i915_private *dev_priv =
7845                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7846         struct intel_engine_cs *rcs;
7847         struct drm_i915_gem_request *req;
7848
7849         if (READ_ONCE(dev_priv->rps.enabled))
7850                 goto out;
7851
7852         rcs = dev_priv->engine[RCS];
7853         if (rcs->last_retired_context)
7854                 goto out;
7855
7856         if (!rcs->init_context)
7857                 goto out;
7858
7859         mutex_lock(&dev_priv->drm.struct_mutex);
7860
7861         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7862         if (IS_ERR(req))
7863                 goto unlock;
7864
7865         if (!i915.enable_execlists && i915_switch_context(req) == 0)
7866                 rcs->init_context(req);
7867
7868         /* Mark the device busy, calling intel_enable_gt_powersave() */
7869         i915_add_request(req);
7870
7871 unlock:
7872         mutex_unlock(&dev_priv->drm.struct_mutex);
7873 out:
7874         intel_runtime_pm_put(dev_priv);
7875 }
7876
7877 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7878 {
7879         if (READ_ONCE(dev_priv->rps.enabled))
7880                 return;
7881
7882         if (IS_IRONLAKE_M(dev_priv)) {
7883                 ironlake_enable_drps(dev_priv);
7884                 intel_init_emon(dev_priv);
7885         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7886                 /*
7887                  * PCU communication is slow and this doesn't need to be
7888                  * done at any specific time, so do this out of our fast path
7889                  * to make resume and init faster.
7890                  *
7891                  * We depend on the HW RC6 power context save/restore
7892                  * mechanism when entering D3 through runtime PM suspend. So
7893                  * disable RPM until RPS/RC6 is properly setup. We can only
7894                  * get here via the driver load/system resume/runtime resume
7895                  * paths, so the _noresume version is enough (and in case of
7896                  * runtime resume it's necessary).
7897                  */
7898                 if (queue_delayed_work(dev_priv->wq,
7899                                        &dev_priv->rps.autoenable_work,
7900                                        round_jiffies_up_relative(HZ)))
7901                         intel_runtime_pm_get_noresume(dev_priv);
7902         }
7903 }
7904
7905 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7906 {
7907         /*
7908          * On Ibex Peak and Cougar Point, we need to disable clock
7909          * gating for the panel power sequencer or it will fail to
7910          * start up when no ports are active.
7911          */
7912         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7913 }
7914
7915 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7916 {
7917         enum pipe pipe;
7918
7919         for_each_pipe(dev_priv, pipe) {
7920                 I915_WRITE(DSPCNTR(pipe),
7921                            I915_READ(DSPCNTR(pipe)) |
7922                            DISPPLANE_TRICKLE_FEED_DISABLE);
7923
7924                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7925                 POSTING_READ(DSPSURF(pipe));
7926         }
7927 }
7928
7929 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7930 {
7931         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7932         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7933         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7934
7935         /*
7936          * Don't touch WM1S_LP_EN here.
7937          * Doing so could cause underruns.
7938          */
7939 }
7940
7941 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7942 {
7943         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7944
7945         /*
7946          * Required for FBC
7947          * WaFbcDisableDpfcClockGating:ilk
7948          */
7949         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7950                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7951                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7952
7953         I915_WRITE(PCH_3DCGDIS0,
7954                    MARIUNIT_CLOCK_GATE_DISABLE |
7955                    SVSMUNIT_CLOCK_GATE_DISABLE);
7956         I915_WRITE(PCH_3DCGDIS1,
7957                    VFMUNIT_CLOCK_GATE_DISABLE);
7958
7959         /*
7960          * According to the spec the following bits should be set in
7961          * order to enable memory self-refresh
7962          * The bit 22/21 of 0x42004
7963          * The bit 5 of 0x42020
7964          * The bit 15 of 0x45000
7965          */
7966         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7967                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
7968                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7969         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7970         I915_WRITE(DISP_ARB_CTL,
7971                    (I915_READ(DISP_ARB_CTL) |
7972                     DISP_FBC_WM_DIS));
7973
7974         ilk_init_lp_watermarks(dev_priv);
7975
7976         /*
7977          * Based on the document from hardware guys the following bits
7978          * should be set unconditionally in order to enable FBC.
7979          * The bit 22 of 0x42000
7980          * The bit 22 of 0x42004
7981          * The bit 7,8,9 of 0x42020.
7982          */
7983         if (IS_IRONLAKE_M(dev_priv)) {
7984                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7985                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7986                            I915_READ(ILK_DISPLAY_CHICKEN1) |
7987                            ILK_FBCQ_DIS);
7988                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7989                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7990                            ILK_DPARB_GATE);
7991         }
7992
7993         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7994
7995         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7996                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7997                    ILK_ELPIN_409_SELECT);
7998         I915_WRITE(_3D_CHICKEN2,
7999                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8000                    _3D_CHICKEN2_WM_READ_PIPELINED);
8001
8002         /* WaDisableRenderCachePipelinedFlush:ilk */
8003         I915_WRITE(CACHE_MODE_0,
8004                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8005
8006         /* WaDisable_RenderCache_OperationalFlush:ilk */
8007         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8008
8009         g4x_disable_trickle_feed(dev_priv);
8010
8011         ibx_init_clock_gating(dev_priv);
8012 }
8013
8014 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8015 {
8016         int pipe;
8017         uint32_t val;
8018
8019         /*
8020          * On Ibex Peak and Cougar Point, we need to disable clock
8021          * gating for the panel power sequencer or it will fail to
8022          * start up when no ports are active.
8023          */
8024         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8025                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8026                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8027         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8028                    DPLS_EDP_PPS_FIX_DIS);
8029         /* The below fixes the weird display corruption, a few pixels shifted
8030          * downward, on (only) LVDS of some HP laptops with IVY.
8031          */
8032         for_each_pipe(dev_priv, pipe) {
8033                 val = I915_READ(TRANS_CHICKEN2(pipe));
8034                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8035                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8036                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8037                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8038                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8039                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8040                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8041                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8042         }
8043         /* WADP0ClockGatingDisable */
8044         for_each_pipe(dev_priv, pipe) {
8045                 I915_WRITE(TRANS_CHICKEN1(pipe),
8046                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8047         }
8048 }
8049
8050 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8051 {
8052         uint32_t tmp;
8053
8054         tmp = I915_READ(MCH_SSKPD);
8055         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8056                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8057                               tmp);
8058 }
8059
8060 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8061 {
8062         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8063
8064         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8065
8066         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8067                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8068                    ILK_ELPIN_409_SELECT);
8069
8070         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8071         I915_WRITE(_3D_CHICKEN,
8072                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8073
8074         /* WaDisable_RenderCache_OperationalFlush:snb */
8075         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8076
8077         /*
8078          * BSpec recoomends 8x4 when MSAA is used,
8079          * however in practice 16x4 seems fastest.
8080          *
8081          * Note that PS/WM thread counts depend on the WIZ hashing
8082          * disable bit, which we don't touch here, but it's good
8083          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8084          */
8085         I915_WRITE(GEN6_GT_MODE,
8086                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8087
8088         ilk_init_lp_watermarks(dev_priv);
8089
8090         I915_WRITE(CACHE_MODE_0,
8091                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8092
8093         I915_WRITE(GEN6_UCGCTL1,
8094                    I915_READ(GEN6_UCGCTL1) |
8095                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8096                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8097
8098         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8099          * gating disable must be set.  Failure to set it results in
8100          * flickering pixels due to Z write ordering failures after
8101          * some amount of runtime in the Mesa "fire" demo, and Unigine
8102          * Sanctuary and Tropics, and apparently anything else with
8103          * alpha test or pixel discard.
8104          *
8105          * According to the spec, bit 11 (RCCUNIT) must also be set,
8106          * but we didn't debug actual testcases to find it out.
8107          *
8108          * WaDisableRCCUnitClockGating:snb
8109          * WaDisableRCPBUnitClockGating:snb
8110          */
8111         I915_WRITE(GEN6_UCGCTL2,
8112                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8113                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8114
8115         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8116         I915_WRITE(_3D_CHICKEN3,
8117                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8118
8119         /*
8120          * Bspec says:
8121          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8122          * 3DSTATE_SF number of SF output attributes is more than 16."
8123          */
8124         I915_WRITE(_3D_CHICKEN3,
8125                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8126
8127         /*
8128          * According to the spec the following bits should be
8129          * set in order to enable memory self-refresh and fbc:
8130          * The bit21 and bit22 of 0x42000
8131          * The bit21 and bit22 of 0x42004
8132          * The bit5 and bit7 of 0x42020
8133          * The bit14 of 0x70180
8134          * The bit14 of 0x71180
8135          *
8136          * WaFbcAsynchFlipDisableFbcQueue:snb
8137          */
8138         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8139                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8140                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8141         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8142                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8143                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8144         I915_WRITE(ILK_DSPCLK_GATE_D,
8145                    I915_READ(ILK_DSPCLK_GATE_D) |
8146                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8147                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8148
8149         g4x_disable_trickle_feed(dev_priv);
8150
8151         cpt_init_clock_gating(dev_priv);
8152
8153         gen6_check_mch_setup(dev_priv);
8154 }
8155
8156 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8157 {
8158         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8159
8160         /*
8161          * WaVSThreadDispatchOverride:ivb,vlv
8162          *
8163          * This actually overrides the dispatch
8164          * mode for all thread types.
8165          */
8166         reg &= ~GEN7_FF_SCHED_MASK;
8167         reg |= GEN7_FF_TS_SCHED_HW;
8168         reg |= GEN7_FF_VS_SCHED_HW;
8169         reg |= GEN7_FF_DS_SCHED_HW;
8170
8171         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8172 }
8173
8174 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8175 {
8176         /*
8177          * TODO: this bit should only be enabled when really needed, then
8178          * disabled when not needed anymore in order to save power.
8179          */
8180         if (HAS_PCH_LPT_LP(dev_priv))
8181                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8182                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8183                            PCH_LP_PARTITION_LEVEL_DISABLE);
8184
8185         /* WADPOClockGatingDisable:hsw */
8186         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8187                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8188                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8189 }
8190
8191 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8192 {
8193         if (HAS_PCH_LPT_LP(dev_priv)) {
8194                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8195
8196                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8197                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8198         }
8199 }
8200
8201 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8202                                    int general_prio_credits,
8203                                    int high_prio_credits)
8204 {
8205         u32 misccpctl;
8206
8207         /* WaTempDisableDOPClkGating:bdw */
8208         misccpctl = I915_READ(GEN7_MISCCPCTL);
8209         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8210
8211         I915_WRITE(GEN8_L3SQCREG1,
8212                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
8213                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
8214
8215         /*
8216          * Wait at least 100 clocks before re-enabling clock gating.
8217          * See the definition of L3SQCREG1 in BSpec.
8218          */
8219         POSTING_READ(GEN8_L3SQCREG1);
8220         udelay(1);
8221         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8222 }
8223
8224 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8225 {
8226         gen9_init_clock_gating(dev_priv);
8227
8228         /* WaDisableSDEUnitClockGating:kbl */
8229         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8230                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8231                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8232
8233         /* WaDisableGamClockGating:kbl */
8234         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8235                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8236                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8237
8238         /* WaFbcNukeOnHostModify:kbl,cfl */
8239         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8240                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8241 }
8242
8243 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8244 {
8245         gen9_init_clock_gating(dev_priv);
8246
8247         /* WAC6entrylatency:skl */
8248         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8249                    FBC_LLC_FULLY_OPEN);
8250
8251         /* WaFbcNukeOnHostModify:skl */
8252         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8253                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8254 }
8255
8256 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
8257 {
8258         enum pipe pipe;
8259
8260         ilk_init_lp_watermarks(dev_priv);
8261
8262         /* WaSwitchSolVfFArbitrationPriority:bdw */
8263         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8264
8265         /* WaPsrDPAMaskVBlankInSRD:bdw */
8266         I915_WRITE(CHICKEN_PAR1_1,
8267                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8268
8269         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8270         for_each_pipe(dev_priv, pipe) {
8271                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8272                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
8273                            BDW_DPRS_MASK_VBLANK_SRD);
8274         }
8275
8276         /* WaVSRefCountFullforceMissDisable:bdw */
8277         /* WaDSRefCountFullforceMissDisable:bdw */
8278         I915_WRITE(GEN7_FF_THREAD_MODE,
8279                    I915_READ(GEN7_FF_THREAD_MODE) &
8280                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8281
8282         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8283                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8284
8285         /* WaDisableSDEUnitClockGating:bdw */
8286         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8287                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8288
8289         /* WaProgramL3SqcReg1Default:bdw */
8290         gen8_set_l3sqc_credits(dev_priv, 30, 2);
8291
8292         /*
8293          * WaGttCachingOffByDefault:bdw
8294          * GTT cache may not work with big pages, so if those
8295          * are ever enabled GTT cache may need to be disabled.
8296          */
8297         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8298
8299         /* WaKVMNotificationOnConfigChange:bdw */
8300         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8301                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8302
8303         lpt_init_clock_gating(dev_priv);
8304
8305         /* WaDisableDopClockGating:bdw
8306          *
8307          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8308          * clock gating.
8309          */
8310         I915_WRITE(GEN6_UCGCTL1,
8311                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8312 }
8313
8314 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8315 {
8316         ilk_init_lp_watermarks(dev_priv);
8317
8318         /* L3 caching of data atomics doesn't work -- disable it. */
8319         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8320         I915_WRITE(HSW_ROW_CHICKEN3,
8321                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8322
8323         /* This is required by WaCatErrorRejectionIssue:hsw */
8324         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8325                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8326                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8327
8328         /* WaVSRefCountFullforceMissDisable:hsw */
8329         I915_WRITE(GEN7_FF_THREAD_MODE,
8330                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8331
8332         /* WaDisable_RenderCache_OperationalFlush:hsw */
8333         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8334
8335         /* enable HiZ Raw Stall Optimization */
8336         I915_WRITE(CACHE_MODE_0_GEN7,
8337                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8338
8339         /* WaDisable4x2SubspanOptimization:hsw */
8340         I915_WRITE(CACHE_MODE_1,
8341                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8342
8343         /*
8344          * BSpec recommends 8x4 when MSAA is used,
8345          * however in practice 16x4 seems fastest.
8346          *
8347          * Note that PS/WM thread counts depend on the WIZ hashing
8348          * disable bit, which we don't touch here, but it's good
8349          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8350          */
8351         I915_WRITE(GEN7_GT_MODE,
8352                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8353
8354         /* WaSampleCChickenBitEnable:hsw */
8355         I915_WRITE(HALF_SLICE_CHICKEN3,
8356                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8357
8358         /* WaSwitchSolVfFArbitrationPriority:hsw */
8359         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8360
8361         /* WaRsPkgCStateDisplayPMReq:hsw */
8362         I915_WRITE(CHICKEN_PAR1_1,
8363                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8364
8365         lpt_init_clock_gating(dev_priv);
8366 }
8367
8368 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8369 {
8370         uint32_t snpcr;
8371
8372         ilk_init_lp_watermarks(dev_priv);
8373
8374         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8375
8376         /* WaDisableEarlyCull:ivb */
8377         I915_WRITE(_3D_CHICKEN3,
8378                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8379
8380         /* WaDisableBackToBackFlipFix:ivb */
8381         I915_WRITE(IVB_CHICKEN3,
8382                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8383                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8384
8385         /* WaDisablePSDDualDispatchEnable:ivb */
8386         if (IS_IVB_GT1(dev_priv))
8387                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8388                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8389
8390         /* WaDisable_RenderCache_OperationalFlush:ivb */
8391         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8392
8393         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8394         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8395                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8396
8397         /* WaApplyL3ControlAndL3ChickenMode:ivb */
8398         I915_WRITE(GEN7_L3CNTLREG1,
8399                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8400         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8401                    GEN7_WA_L3_CHICKEN_MODE);
8402         if (IS_IVB_GT1(dev_priv))
8403                 I915_WRITE(GEN7_ROW_CHICKEN2,
8404                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8405         else {
8406                 /* must write both registers */
8407                 I915_WRITE(GEN7_ROW_CHICKEN2,
8408                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8409                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8410                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8411         }
8412
8413         /* WaForceL3Serialization:ivb */
8414         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8415                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8416
8417         /*
8418          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8419          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8420          */
8421         I915_WRITE(GEN6_UCGCTL2,
8422                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8423
8424         /* This is required by WaCatErrorRejectionIssue:ivb */
8425         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8426                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8427                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8428
8429         g4x_disable_trickle_feed(dev_priv);
8430
8431         gen7_setup_fixed_func_scheduler(dev_priv);
8432
8433         if (0) { /* causes HiZ corruption on ivb:gt1 */
8434                 /* enable HiZ Raw Stall Optimization */
8435                 I915_WRITE(CACHE_MODE_0_GEN7,
8436                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8437         }
8438
8439         /* WaDisable4x2SubspanOptimization:ivb */
8440         I915_WRITE(CACHE_MODE_1,
8441                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8442
8443         /*
8444          * BSpec recommends 8x4 when MSAA is used,
8445          * however in practice 16x4 seems fastest.
8446          *
8447          * Note that PS/WM thread counts depend on the WIZ hashing
8448          * disable bit, which we don't touch here, but it's good
8449          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8450          */
8451         I915_WRITE(GEN7_GT_MODE,
8452                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8453
8454         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8455         snpcr &= ~GEN6_MBC_SNPCR_MASK;
8456         snpcr |= GEN6_MBC_SNPCR_MED;
8457         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8458
8459         if (!HAS_PCH_NOP(dev_priv))
8460                 cpt_init_clock_gating(dev_priv);
8461
8462         gen6_check_mch_setup(dev_priv);
8463 }
8464
8465 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8466 {
8467         /* WaDisableEarlyCull:vlv */
8468         I915_WRITE(_3D_CHICKEN3,
8469                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8470
8471         /* WaDisableBackToBackFlipFix:vlv */
8472         I915_WRITE(IVB_CHICKEN3,
8473                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8474                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8475
8476         /* WaPsdDispatchEnable:vlv */
8477         /* WaDisablePSDDualDispatchEnable:vlv */
8478         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8479                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8480                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8481
8482         /* WaDisable_RenderCache_OperationalFlush:vlv */
8483         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8484
8485         /* WaForceL3Serialization:vlv */
8486         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8487                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8488
8489         /* WaDisableDopClockGating:vlv */
8490         I915_WRITE(GEN7_ROW_CHICKEN2,
8491                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8492
8493         /* This is required by WaCatErrorRejectionIssue:vlv */
8494         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8495                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8496                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8497
8498         gen7_setup_fixed_func_scheduler(dev_priv);
8499
8500         /*
8501          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8502          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8503          */
8504         I915_WRITE(GEN6_UCGCTL2,
8505                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8506
8507         /* WaDisableL3Bank2xClockGate:vlv
8508          * Disabling L3 clock gating- MMIO 940c[25] = 1
8509          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8510         I915_WRITE(GEN7_UCGCTL4,
8511                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8512
8513         /*
8514          * BSpec says this must be set, even though
8515          * WaDisable4x2SubspanOptimization isn't listed for VLV.
8516          */
8517         I915_WRITE(CACHE_MODE_1,
8518                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8519
8520         /*
8521          * BSpec recommends 8x4 when MSAA is used,
8522          * however in practice 16x4 seems fastest.
8523          *
8524          * Note that PS/WM thread counts depend on the WIZ hashing
8525          * disable bit, which we don't touch here, but it's good
8526          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8527          */
8528         I915_WRITE(GEN7_GT_MODE,
8529                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8530
8531         /*
8532          * WaIncreaseL3CreditsForVLVB0:vlv
8533          * This is the hardware default actually.
8534          */
8535         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8536
8537         /*
8538          * WaDisableVLVClockGating_VBIIssue:vlv
8539          * Disable clock gating on th GCFG unit to prevent a delay
8540          * in the reporting of vblank events.
8541          */
8542         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8543 }
8544
8545 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8546 {
8547         /* WaVSRefCountFullforceMissDisable:chv */
8548         /* WaDSRefCountFullforceMissDisable:chv */
8549         I915_WRITE(GEN7_FF_THREAD_MODE,
8550                    I915_READ(GEN7_FF_THREAD_MODE) &
8551                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8552
8553         /* WaDisableSemaphoreAndSyncFlipWait:chv */
8554         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8555                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8556
8557         /* WaDisableCSUnitClockGating:chv */
8558         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8559                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8560
8561         /* WaDisableSDEUnitClockGating:chv */
8562         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8563                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8564
8565         /*
8566          * WaProgramL3SqcReg1Default:chv
8567          * See gfxspecs/Related Documents/Performance Guide/
8568          * LSQC Setting Recommendations.
8569          */
8570         gen8_set_l3sqc_credits(dev_priv, 38, 2);
8571
8572         /*
8573          * GTT cache may not work with big pages, so if those
8574          * are ever enabled GTT cache may need to be disabled.
8575          */
8576         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8577 }
8578
8579 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8580 {
8581         uint32_t dspclk_gate;
8582
8583         I915_WRITE(RENCLK_GATE_D1, 0);
8584         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8585                    GS_UNIT_CLOCK_GATE_DISABLE |
8586                    CL_UNIT_CLOCK_GATE_DISABLE);
8587         I915_WRITE(RAMCLK_GATE_D, 0);
8588         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8589                 OVRUNIT_CLOCK_GATE_DISABLE |
8590                 OVCUNIT_CLOCK_GATE_DISABLE;
8591         if (IS_GM45(dev_priv))
8592                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8593         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8594
8595         /* WaDisableRenderCachePipelinedFlush */
8596         I915_WRITE(CACHE_MODE_0,
8597                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8598
8599         /* WaDisable_RenderCache_OperationalFlush:g4x */
8600         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8601
8602         g4x_disable_trickle_feed(dev_priv);
8603 }
8604
8605 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8606 {
8607         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8608         I915_WRITE(RENCLK_GATE_D2, 0);
8609         I915_WRITE(DSPCLK_GATE_D, 0);
8610         I915_WRITE(RAMCLK_GATE_D, 0);
8611         I915_WRITE16(DEUC, 0);
8612         I915_WRITE(MI_ARB_STATE,
8613                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8614
8615         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8616         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8617 }
8618
8619 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8620 {
8621         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8622                    I965_RCC_CLOCK_GATE_DISABLE |
8623                    I965_RCPB_CLOCK_GATE_DISABLE |
8624                    I965_ISC_CLOCK_GATE_DISABLE |
8625                    I965_FBC_CLOCK_GATE_DISABLE);
8626         I915_WRITE(RENCLK_GATE_D2, 0);
8627         I915_WRITE(MI_ARB_STATE,
8628                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8629
8630         /* WaDisable_RenderCache_OperationalFlush:gen4 */
8631         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8632 }
8633
8634 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8635 {
8636         u32 dstate = I915_READ(D_STATE);
8637
8638         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8639                 DSTATE_DOT_CLOCK_GATING;
8640         I915_WRITE(D_STATE, dstate);
8641
8642         if (IS_PINEVIEW(dev_priv))
8643                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8644
8645         /* IIR "flip pending" means done if this bit is set */
8646         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8647
8648         /* interrupts should cause a wake up from C3 */
8649         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8650
8651         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8652         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8653
8654         I915_WRITE(MI_ARB_STATE,
8655                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8656 }
8657
8658 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8659 {
8660         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8661
8662         /* interrupts should cause a wake up from C3 */
8663         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8664                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8665
8666         I915_WRITE(MEM_MODE,
8667                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8668 }
8669
8670 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8671 {
8672         I915_WRITE(MEM_MODE,
8673                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8674                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8675 }
8676
8677 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8678 {
8679         dev_priv->display.init_clock_gating(dev_priv);
8680 }
8681
8682 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8683 {
8684         if (HAS_PCH_LPT(dev_priv))
8685                 lpt_suspend_hw(dev_priv);
8686 }
8687
8688 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8689 {
8690         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
8691 }
8692
8693 /**
8694  * intel_init_clock_gating_hooks - setup the clock gating hooks
8695  * @dev_priv: device private
8696  *
8697  * Setup the hooks that configure which clocks of a given platform can be
8698  * gated and also apply various GT and display specific workarounds for these
8699  * platforms. Note that some GT specific workarounds are applied separately
8700  * when GPU contexts or batchbuffers start their execution.
8701  */
8702 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
8703 {
8704         if (IS_SKYLAKE(dev_priv))
8705                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8706         else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8707                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8708         else if (IS_BROXTON(dev_priv))
8709                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8710         else if (IS_GEMINILAKE(dev_priv))
8711                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
8712         else if (IS_BROADWELL(dev_priv))
8713                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
8714         else if (IS_CHERRYVIEW(dev_priv))
8715                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
8716         else if (IS_HASWELL(dev_priv))
8717                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
8718         else if (IS_IVYBRIDGE(dev_priv))
8719                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8720         else if (IS_VALLEYVIEW(dev_priv))
8721                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
8722         else if (IS_GEN6(dev_priv))
8723                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8724         else if (IS_GEN5(dev_priv))
8725                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8726         else if (IS_G4X(dev_priv))
8727                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8728         else if (IS_I965GM(dev_priv))
8729                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8730         else if (IS_I965G(dev_priv))
8731                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8732         else if (IS_GEN3(dev_priv))
8733                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8734         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8735                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8736         else if (IS_GEN2(dev_priv))
8737                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8738         else {
8739                 MISSING_CASE(INTEL_DEVID(dev_priv));
8740                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
8741         }
8742 }
8743
8744 /* Set up chip specific power management-related functions */
8745 void intel_init_pm(struct drm_i915_private *dev_priv)
8746 {
8747         intel_fbc_init(dev_priv);
8748
8749         /* For cxsr */
8750         if (IS_PINEVIEW(dev_priv))
8751                 i915_pineview_get_mem_freq(dev_priv);
8752         else if (IS_GEN5(dev_priv))
8753                 i915_ironlake_get_mem_freq(dev_priv);
8754
8755         /* For FIFO watermark updates */
8756         if (INTEL_GEN(dev_priv) >= 9) {
8757                 skl_setup_wm_latency(dev_priv);
8758                 dev_priv->display.initial_watermarks = skl_initial_wm;
8759                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8760                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
8761         } else if (HAS_PCH_SPLIT(dev_priv)) {
8762                 ilk_setup_wm_latency(dev_priv);
8763
8764                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8765                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8766                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8767                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8768                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8769                         dev_priv->display.compute_intermediate_wm =
8770                                 ilk_compute_intermediate_wm;
8771                         dev_priv->display.initial_watermarks =
8772                                 ilk_initial_watermarks;
8773                         dev_priv->display.optimize_watermarks =
8774                                 ilk_optimize_watermarks;
8775                 } else {
8776                         DRM_DEBUG_KMS("Failed to read display plane latency. "
8777                                       "Disable CxSR\n");
8778                 }
8779         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8780                 vlv_setup_wm_latency(dev_priv);
8781                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8782                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8783                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8784                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8785                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8786         } else if (IS_G4X(dev_priv)) {
8787                 g4x_setup_wm_latency(dev_priv);
8788                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8789                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8790                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8791                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8792         } else if (IS_PINEVIEW(dev_priv)) {
8793                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8794                                             dev_priv->is_ddr3,
8795                                             dev_priv->fsb_freq,
8796                                             dev_priv->mem_freq)) {
8797                         DRM_INFO("failed to find known CxSR latency "
8798                                  "(found ddr%s fsb freq %d, mem freq %d), "
8799                                  "disabling CxSR\n",
8800                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8801                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8802                         /* Disable CxSR and never update its watermark again */
8803                         intel_set_memory_cxsr(dev_priv, false);
8804                         dev_priv->display.update_wm = NULL;
8805                 } else
8806                         dev_priv->display.update_wm = pineview_update_wm;
8807         } else if (IS_GEN4(dev_priv)) {
8808                 dev_priv->display.update_wm = i965_update_wm;
8809         } else if (IS_GEN3(dev_priv)) {
8810                 dev_priv->display.update_wm = i9xx_update_wm;
8811                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8812         } else if (IS_GEN2(dev_priv)) {
8813                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8814                         dev_priv->display.update_wm = i845_update_wm;
8815                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8816                 } else {
8817                         dev_priv->display.update_wm = i9xx_update_wm;
8818                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8819                 }
8820         } else {
8821                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8822         }
8823 }
8824
8825 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8826 {
8827         uint32_t flags =
8828                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8829
8830         switch (flags) {
8831         case GEN6_PCODE_SUCCESS:
8832                 return 0;
8833         case GEN6_PCODE_UNIMPLEMENTED_CMD:
8834         case GEN6_PCODE_ILLEGAL_CMD:
8835                 return -ENXIO;
8836         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8837         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8838                 return -EOVERFLOW;
8839         case GEN6_PCODE_TIMEOUT:
8840                 return -ETIMEDOUT;
8841         default:
8842                 MISSING_CASE(flags);
8843                 return 0;
8844         }
8845 }
8846
8847 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8848 {
8849         uint32_t flags =
8850                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8851
8852         switch (flags) {
8853         case GEN6_PCODE_SUCCESS:
8854                 return 0;
8855         case GEN6_PCODE_ILLEGAL_CMD:
8856                 return -ENXIO;
8857         case GEN7_PCODE_TIMEOUT:
8858                 return -ETIMEDOUT;
8859         case GEN7_PCODE_ILLEGAL_DATA:
8860                 return -EINVAL;
8861         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8862                 return -EOVERFLOW;
8863         default:
8864                 MISSING_CASE(flags);
8865                 return 0;
8866         }
8867 }
8868
8869 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8870 {
8871         int status;
8872
8873         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8874
8875         /* GEN6_PCODE_* are outside of the forcewake domain, we can
8876          * use te fw I915_READ variants to reduce the amount of work
8877          * required when reading/writing.
8878          */
8879
8880         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8881                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
8882                 return -EAGAIN;
8883         }
8884
8885         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8886         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8887         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8888
8889         if (__intel_wait_for_register_fw(dev_priv,
8890                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8891                                          500, 0, NULL)) {
8892                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
8893                 return -ETIMEDOUT;
8894         }
8895
8896         *val = I915_READ_FW(GEN6_PCODE_DATA);
8897         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8898
8899         if (INTEL_GEN(dev_priv) > 6)
8900                 status = gen7_check_mailbox_status(dev_priv);
8901         else
8902                 status = gen6_check_mailbox_status(dev_priv);
8903
8904         if (status) {
8905                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
8906                                  status);
8907                 return status;
8908         }
8909
8910         return 0;
8911 }
8912
8913 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8914                             u32 mbox, u32 val)
8915 {
8916         int status;
8917
8918         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8919
8920         /* GEN6_PCODE_* are outside of the forcewake domain, we can
8921          * use te fw I915_READ variants to reduce the amount of work
8922          * required when reading/writing.
8923          */
8924
8925         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8926                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
8927                 return -EAGAIN;
8928         }
8929
8930         I915_WRITE_FW(GEN6_PCODE_DATA, val);
8931         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8932         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8933
8934         if (__intel_wait_for_register_fw(dev_priv,
8935                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8936                                          500, 0, NULL)) {
8937                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
8938                 return -ETIMEDOUT;
8939         }
8940
8941         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8942
8943         if (INTEL_GEN(dev_priv) > 6)
8944                 status = gen7_check_mailbox_status(dev_priv);
8945         else
8946                 status = gen6_check_mailbox_status(dev_priv);
8947
8948         if (status) {
8949                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
8950                                  status);
8951                 return status;
8952         }
8953
8954         return 0;
8955 }
8956
8957 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8958                                   u32 request, u32 reply_mask, u32 reply,
8959                                   u32 *status)
8960 {
8961         u32 val = request;
8962
8963         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
8964
8965         return *status || ((val & reply_mask) == reply);
8966 }
8967
8968 /**
8969  * skl_pcode_request - send PCODE request until acknowledgment
8970  * @dev_priv: device private
8971  * @mbox: PCODE mailbox ID the request is targeted for
8972  * @request: request ID
8973  * @reply_mask: mask used to check for request acknowledgment
8974  * @reply: value used to check for request acknowledgment
8975  * @timeout_base_ms: timeout for polling with preemption enabled
8976  *
8977  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8978  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8979  * The request is acknowledged once the PCODE reply dword equals @reply after
8980  * applying @reply_mask. Polling is first attempted with preemption enabled
8981  * for @timeout_base_ms and if this times out for another 50 ms with
8982  * preemption disabled.
8983  *
8984  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
8985  * other error as reported by PCODE.
8986  */
8987 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
8988                       u32 reply_mask, u32 reply, int timeout_base_ms)
8989 {
8990         u32 status;
8991         int ret;
8992
8993         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8994
8995 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
8996                                    &status)
8997
8998         /*
8999          * Prime the PCODE by doing a request first. Normally it guarantees
9000          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9001          * _wait_for() doesn't guarantee when its passed condition is evaluated
9002          * first, so send the first request explicitly.
9003          */
9004         if (COND) {
9005                 ret = 0;
9006                 goto out;
9007         }
9008         ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9009         if (!ret)
9010                 goto out;
9011
9012         /*
9013          * The above can time out if the number of requests was low (2 in the
9014          * worst case) _and_ PCODE was busy for some reason even after a
9015          * (queued) request and @timeout_base_ms delay. As a workaround retry
9016          * the poll with preemption disabled to maximize the number of
9017          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9018          * account for interrupts that could reduce the number of these
9019          * requests, and for any quirks of the PCODE firmware that delays
9020          * the request completion.
9021          */
9022         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9023         WARN_ON_ONCE(timeout_base_ms > 3);
9024         preempt_disable();
9025         ret = wait_for_atomic(COND, 50);
9026         preempt_enable();
9027
9028 out:
9029         return ret ? ret : status;
9030 #undef COND
9031 }
9032
9033 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9034 {
9035         /*
9036          * N = val - 0xb7
9037          * Slow = Fast = GPLL ref * N
9038          */
9039         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9040 }
9041
9042 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9043 {
9044         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9045 }
9046
9047 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9048 {
9049         /*
9050          * N = val / 2
9051          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9052          */
9053         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9054 }
9055
9056 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9057 {
9058         /* CHV needs even values */
9059         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9060 }
9061
9062 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9063 {
9064         if (INTEL_GEN(dev_priv) >= 9)
9065                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9066                                          GEN9_FREQ_SCALER);
9067         else if (IS_CHERRYVIEW(dev_priv))
9068                 return chv_gpu_freq(dev_priv, val);
9069         else if (IS_VALLEYVIEW(dev_priv))
9070                 return byt_gpu_freq(dev_priv, val);
9071         else
9072                 return val * GT_FREQUENCY_MULTIPLIER;
9073 }
9074
9075 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9076 {
9077         if (INTEL_GEN(dev_priv) >= 9)
9078                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9079                                          GT_FREQUENCY_MULTIPLIER);
9080         else if (IS_CHERRYVIEW(dev_priv))
9081                 return chv_freq_opcode(dev_priv, val);
9082         else if (IS_VALLEYVIEW(dev_priv))
9083                 return byt_freq_opcode(dev_priv, val);
9084         else
9085                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9086 }
9087
9088 struct request_boost {
9089         struct work_struct work;
9090         struct drm_i915_gem_request *req;
9091 };
9092
9093 static void __intel_rps_boost_work(struct work_struct *work)
9094 {
9095         struct request_boost *boost = container_of(work, struct request_boost, work);
9096         struct drm_i915_gem_request *req = boost->req;
9097
9098         if (!i915_gem_request_completed(req))
9099                 gen6_rps_boost(req, NULL);
9100
9101         i915_gem_request_put(req);
9102         kfree(boost);
9103 }
9104
9105 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
9106 {
9107         struct request_boost *boost;
9108
9109         if (req == NULL || INTEL_GEN(req->i915) < 6)
9110                 return;
9111
9112         if (i915_gem_request_completed(req))
9113                 return;
9114
9115         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
9116         if (boost == NULL)
9117                 return;
9118
9119         boost->req = i915_gem_request_get(req);
9120
9121         INIT_WORK(&boost->work, __intel_rps_boost_work);
9122         queue_work(req->i915->wq, &boost->work);
9123 }
9124
9125 void intel_pm_setup(struct drm_i915_private *dev_priv)
9126 {
9127         mutex_init(&dev_priv->rps.hw_lock);
9128
9129         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
9130                           __intel_autoenable_gt_powersave);
9131         atomic_set(&dev_priv->rps.num_waiters, 0);
9132
9133         dev_priv->pm.suspended = false;
9134         atomic_set(&dev_priv->pm.wakeref_count, 0);
9135 }
9136
9137 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9138                              const i915_reg_t reg)
9139 {
9140         u32 lower, upper, tmp;
9141         int loop = 2;
9142
9143         /* The register accessed do not need forcewake. We borrow
9144          * uncore lock to prevent concurrent access to range reg.
9145          */
9146         spin_lock_irq(&dev_priv->uncore.lock);
9147
9148         /* vlv and chv residency counters are 40 bits in width.
9149          * With a control bit, we can choose between upper or lower
9150          * 32bit window into this counter.
9151          *
9152          * Although we always use the counter in high-range mode elsewhere,
9153          * userspace may attempt to read the value before rc6 is initialised,
9154          * before we have set the default VLV_COUNTER_CONTROL value. So always
9155          * set the high bit to be safe.
9156          */
9157         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9158                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9159         upper = I915_READ_FW(reg);
9160         do {
9161                 tmp = upper;
9162
9163                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9164                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9165                 lower = I915_READ_FW(reg);
9166
9167                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9168                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9169                 upper = I915_READ_FW(reg);
9170         } while (upper != tmp && --loop);
9171
9172         /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9173          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9174          * now.
9175          */
9176
9177         spin_unlock_irq(&dev_priv->uncore.lock);
9178
9179         return lower | (u64)upper << 8;
9180 }
9181
9182 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9183                            const i915_reg_t reg)
9184 {
9185         u64 time_hw, units, div;
9186
9187         if (!intel_enable_rc6())
9188                 return 0;
9189
9190         intel_runtime_pm_get(dev_priv);
9191
9192         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9193         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9194                 units = 1000;
9195                 div = dev_priv->czclk_freq;
9196
9197                 time_hw = vlv_residency_raw(dev_priv, reg);
9198         } else if (IS_GEN9_LP(dev_priv)) {
9199                 units = 1000;
9200                 div = 1200;             /* 833.33ns */
9201
9202                 time_hw = I915_READ(reg);
9203         } else {
9204                 units = 128000; /* 1.28us */
9205                 div = 100000;
9206
9207                 time_hw = I915_READ(reg);
9208         }
9209
9210         intel_runtime_pm_put(dev_priv);
9211         return DIV_ROUND_UP_ULL(time_hw * units, div);
9212 }