Merge tag 'drm-intel-next-2019-05-24' of git://anongit.freedesktop.org/drm/drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/pm_runtime.h>
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35
36 #include "i915_drv.h"
37 #include "i915_irq.h"
38 #include "intel_atomic.h"
39 #include "intel_drv.h"
40 #include "intel_fbc.h"
41 #include "intel_pm.h"
42 #include "intel_sprite.h"
43 #include "intel_sideband.h"
44 #include "../../../platform/x86/intel_ips.h"
45
46 /**
47  * DOC: RC6
48  *
49  * RC6 is a special power stage which allows the GPU to enter an very
50  * low-voltage mode when idle, using down to 0V while at this stage.  This
51  * stage is entered automatically when the GPU is idle when RC6 support is
52  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
53  *
54  * There are different RC6 modes available in Intel GPU, which differentiate
55  * among each other with the latency required to enter and leave RC6 and
56  * voltage consumed by the GPU in different states.
57  *
58  * The combination of the following flags define which states GPU is allowed
59  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
60  * RC6pp is deepest RC6. Their support by hardware varies according to the
61  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
62  * which brings the most power savings; deeper states save more power, but
63  * require higher latency to switch to and wake up.
64  */
65
66 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
67 {
68         if (HAS_LLC(dev_priv)) {
69                 /*
70                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
71                  * Display WA #0390: skl,kbl
72                  *
73                  * Must match Sampler, Pixel Back End, and Media. See
74                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
75                  */
76                 I915_WRITE(CHICKEN_PAR1_1,
77                            I915_READ(CHICKEN_PAR1_1) |
78                            SKL_DE_COMPRESSED_HASH_MODE);
79         }
80
81         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
82         I915_WRITE(CHICKEN_PAR1_1,
83                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
84
85         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
86         I915_WRITE(GEN8_CHICKEN_DCPR_1,
87                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
88
89         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
90         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
91         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
92                    DISP_FBC_WM_DIS |
93                    DISP_FBC_MEMORY_WAKE);
94
95         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
96         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
97                    ILK_DPFC_DISABLE_DUMMY0);
98
99         if (IS_SKYLAKE(dev_priv)) {
100                 /* WaDisableDopClockGating */
101                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
102                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
103         }
104 }
105
106 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
107 {
108         gen9_init_clock_gating(dev_priv);
109
110         /* WaDisableSDEUnitClockGating:bxt */
111         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
112                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
113
114         /*
115          * FIXME:
116          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
117          */
118         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
119                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
120
121         /*
122          * Wa: Backlight PWM may stop in the asserted state, causing backlight
123          * to stay fully on.
124          */
125         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
126                    PWM1_GATING_DIS | PWM2_GATING_DIS);
127 }
128
129 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
130 {
131         gen9_init_clock_gating(dev_priv);
132
133         /*
134          * WaDisablePWMClockGating:glk
135          * Backlight PWM may stop in the asserted state, causing backlight
136          * to stay fully on.
137          */
138         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
139                    PWM1_GATING_DIS | PWM2_GATING_DIS);
140
141         /* WaDDIIOTimeout:glk */
142         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
143                 u32 val = I915_READ(CHICKEN_MISC_2);
144                 val &= ~(GLK_CL0_PWR_DOWN |
145                          GLK_CL1_PWR_DOWN |
146                          GLK_CL2_PWR_DOWN);
147                 I915_WRITE(CHICKEN_MISC_2, val);
148         }
149
150 }
151
152 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
153 {
154         u32 tmp;
155
156         tmp = I915_READ(CLKCFG);
157
158         switch (tmp & CLKCFG_FSB_MASK) {
159         case CLKCFG_FSB_533:
160                 dev_priv->fsb_freq = 533; /* 133*4 */
161                 break;
162         case CLKCFG_FSB_800:
163                 dev_priv->fsb_freq = 800; /* 200*4 */
164                 break;
165         case CLKCFG_FSB_667:
166                 dev_priv->fsb_freq =  667; /* 167*4 */
167                 break;
168         case CLKCFG_FSB_400:
169                 dev_priv->fsb_freq = 400; /* 100*4 */
170                 break;
171         }
172
173         switch (tmp & CLKCFG_MEM_MASK) {
174         case CLKCFG_MEM_533:
175                 dev_priv->mem_freq = 533;
176                 break;
177         case CLKCFG_MEM_667:
178                 dev_priv->mem_freq = 667;
179                 break;
180         case CLKCFG_MEM_800:
181                 dev_priv->mem_freq = 800;
182                 break;
183         }
184
185         /* detect pineview DDR3 setting */
186         tmp = I915_READ(CSHRDDR3CTL);
187         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
188 }
189
190 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
191 {
192         u16 ddrpll, csipll;
193
194         ddrpll = I915_READ16(DDRMPLL1);
195         csipll = I915_READ16(CSIPLL0);
196
197         switch (ddrpll & 0xff) {
198         case 0xc:
199                 dev_priv->mem_freq = 800;
200                 break;
201         case 0x10:
202                 dev_priv->mem_freq = 1066;
203                 break;
204         case 0x14:
205                 dev_priv->mem_freq = 1333;
206                 break;
207         case 0x18:
208                 dev_priv->mem_freq = 1600;
209                 break;
210         default:
211                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
212                                  ddrpll & 0xff);
213                 dev_priv->mem_freq = 0;
214                 break;
215         }
216
217         dev_priv->ips.r_t = dev_priv->mem_freq;
218
219         switch (csipll & 0x3ff) {
220         case 0x00c:
221                 dev_priv->fsb_freq = 3200;
222                 break;
223         case 0x00e:
224                 dev_priv->fsb_freq = 3733;
225                 break;
226         case 0x010:
227                 dev_priv->fsb_freq = 4266;
228                 break;
229         case 0x012:
230                 dev_priv->fsb_freq = 4800;
231                 break;
232         case 0x014:
233                 dev_priv->fsb_freq = 5333;
234                 break;
235         case 0x016:
236                 dev_priv->fsb_freq = 5866;
237                 break;
238         case 0x018:
239                 dev_priv->fsb_freq = 6400;
240                 break;
241         default:
242                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
243                                  csipll & 0x3ff);
244                 dev_priv->fsb_freq = 0;
245                 break;
246         }
247
248         if (dev_priv->fsb_freq == 3200) {
249                 dev_priv->ips.c_m = 0;
250         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
251                 dev_priv->ips.c_m = 1;
252         } else {
253                 dev_priv->ips.c_m = 2;
254         }
255 }
256
257 static const struct cxsr_latency cxsr_latency_table[] = {
258         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
259         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
260         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
261         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
262         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
263
264         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
265         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
266         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
267         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
268         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
269
270         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
271         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
272         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
273         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
274         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
275
276         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
277         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
278         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
279         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
280         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
281
282         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
283         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
284         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
285         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
286         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
287
288         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
289         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
290         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
291         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
292         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
293 };
294
295 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
296                                                          bool is_ddr3,
297                                                          int fsb,
298                                                          int mem)
299 {
300         const struct cxsr_latency *latency;
301         int i;
302
303         if (fsb == 0 || mem == 0)
304                 return NULL;
305
306         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
307                 latency = &cxsr_latency_table[i];
308                 if (is_desktop == latency->is_desktop &&
309                     is_ddr3 == latency->is_ddr3 &&
310                     fsb == latency->fsb_freq && mem == latency->mem_freq)
311                         return latency;
312         }
313
314         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
315
316         return NULL;
317 }
318
319 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
320 {
321         u32 val;
322
323         vlv_punit_get(dev_priv);
324
325         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
326         if (enable)
327                 val &= ~FORCE_DDR_HIGH_FREQ;
328         else
329                 val |= FORCE_DDR_HIGH_FREQ;
330         val &= ~FORCE_DDR_LOW_FREQ;
331         val |= FORCE_DDR_FREQ_REQ_ACK;
332         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
333
334         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
335                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
336                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
337
338         vlv_punit_put(dev_priv);
339 }
340
341 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
342 {
343         u32 val;
344
345         vlv_punit_get(dev_priv);
346
347         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
348         if (enable)
349                 val |= DSP_MAXFIFO_PM5_ENABLE;
350         else
351                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
352         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
353
354         vlv_punit_put(dev_priv);
355 }
356
357 #define FW_WM(value, plane) \
358         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
359
360 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
361 {
362         bool was_enabled;
363         u32 val;
364
365         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
366                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
367                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
368                 POSTING_READ(FW_BLC_SELF_VLV);
369         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
370                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
371                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
372                 POSTING_READ(FW_BLC_SELF);
373         } else if (IS_PINEVIEW(dev_priv)) {
374                 val = I915_READ(DSPFW3);
375                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
376                 if (enable)
377                         val |= PINEVIEW_SELF_REFRESH_EN;
378                 else
379                         val &= ~PINEVIEW_SELF_REFRESH_EN;
380                 I915_WRITE(DSPFW3, val);
381                 POSTING_READ(DSPFW3);
382         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
383                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
384                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
385                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
386                 I915_WRITE(FW_BLC_SELF, val);
387                 POSTING_READ(FW_BLC_SELF);
388         } else if (IS_I915GM(dev_priv)) {
389                 /*
390                  * FIXME can't find a bit like this for 915G, and
391                  * and yet it does have the related watermark in
392                  * FW_BLC_SELF. What's going on?
393                  */
394                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
395                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
396                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
397                 I915_WRITE(INSTPM, val);
398                 POSTING_READ(INSTPM);
399         } else {
400                 return false;
401         }
402
403         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
404
405         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
406                       enableddisabled(enable),
407                       enableddisabled(was_enabled));
408
409         return was_enabled;
410 }
411
412 /**
413  * intel_set_memory_cxsr - Configure CxSR state
414  * @dev_priv: i915 device
415  * @enable: Allow vs. disallow CxSR
416  *
417  * Allow or disallow the system to enter a special CxSR
418  * (C-state self refresh) state. What typically happens in CxSR mode
419  * is that several display FIFOs may get combined into a single larger
420  * FIFO for a particular plane (so called max FIFO mode) to allow the
421  * system to defer memory fetches longer, and the memory will enter
422  * self refresh.
423  *
424  * Note that enabling CxSR does not guarantee that the system enter
425  * this special mode, nor does it guarantee that the system stays
426  * in that mode once entered. So this just allows/disallows the system
427  * to autonomously utilize the CxSR mode. Other factors such as core
428  * C-states will affect when/if the system actually enters/exits the
429  * CxSR mode.
430  *
431  * Note that on VLV/CHV this actually only controls the max FIFO mode,
432  * and the system is free to enter/exit memory self refresh at any time
433  * even when the use of CxSR has been disallowed.
434  *
435  * While the system is actually in the CxSR/max FIFO mode, some plane
436  * control registers will not get latched on vblank. Thus in order to
437  * guarantee the system will respond to changes in the plane registers
438  * we must always disallow CxSR prior to making changes to those registers.
439  * Unfortunately the system will re-evaluate the CxSR conditions at
440  * frame start which happens after vblank start (which is when the plane
441  * registers would get latched), so we can't proceed with the plane update
442  * during the same frame where we disallowed CxSR.
443  *
444  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
445  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
446  * the hardware w.r.t. HPLL SR when writing to plane registers.
447  * Disallowing just CxSR is sufficient.
448  */
449 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
450 {
451         bool ret;
452
453         mutex_lock(&dev_priv->wm.wm_mutex);
454         ret = _intel_set_memory_cxsr(dev_priv, enable);
455         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
456                 dev_priv->wm.vlv.cxsr = enable;
457         else if (IS_G4X(dev_priv))
458                 dev_priv->wm.g4x.cxsr = enable;
459         mutex_unlock(&dev_priv->wm.wm_mutex);
460
461         return ret;
462 }
463
464 /*
465  * Latency for FIFO fetches is dependent on several factors:
466  *   - memory configuration (speed, channels)
467  *   - chipset
468  *   - current MCH state
469  * It can be fairly high in some situations, so here we assume a fairly
470  * pessimal value.  It's a tradeoff between extra memory fetches (if we
471  * set this value too high, the FIFO will fetch frequently to stay full)
472  * and power consumption (set it too low to save power and we might see
473  * FIFO underruns and display "flicker").
474  *
475  * A value of 5us seems to be a good balance; safe for very low end
476  * platforms but not overly aggressive on lower latency configs.
477  */
478 static const int pessimal_latency_ns = 5000;
479
480 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
481         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
482
483 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
484 {
485         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
486         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
487         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
488         enum pipe pipe = crtc->pipe;
489         int sprite0_start, sprite1_start;
490
491         switch (pipe) {
492                 u32 dsparb, dsparb2, dsparb3;
493         case PIPE_A:
494                 dsparb = I915_READ(DSPARB);
495                 dsparb2 = I915_READ(DSPARB2);
496                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
497                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
498                 break;
499         case PIPE_B:
500                 dsparb = I915_READ(DSPARB);
501                 dsparb2 = I915_READ(DSPARB2);
502                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
503                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
504                 break;
505         case PIPE_C:
506                 dsparb2 = I915_READ(DSPARB2);
507                 dsparb3 = I915_READ(DSPARB3);
508                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
509                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
510                 break;
511         default:
512                 MISSING_CASE(pipe);
513                 return;
514         }
515
516         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
517         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
518         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
519         fifo_state->plane[PLANE_CURSOR] = 63;
520 }
521
522 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
523                               enum i9xx_plane_id i9xx_plane)
524 {
525         u32 dsparb = I915_READ(DSPARB);
526         int size;
527
528         size = dsparb & 0x7f;
529         if (i9xx_plane == PLANE_B)
530                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
531
532         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
533                       dsparb, plane_name(i9xx_plane), size);
534
535         return size;
536 }
537
538 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
539                               enum i9xx_plane_id i9xx_plane)
540 {
541         u32 dsparb = I915_READ(DSPARB);
542         int size;
543
544         size = dsparb & 0x1ff;
545         if (i9xx_plane == PLANE_B)
546                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
547         size >>= 1; /* Convert to cachelines */
548
549         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
550                       dsparb, plane_name(i9xx_plane), size);
551
552         return size;
553 }
554
555 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
556                               enum i9xx_plane_id i9xx_plane)
557 {
558         u32 dsparb = I915_READ(DSPARB);
559         int size;
560
561         size = dsparb & 0x7f;
562         size >>= 2; /* Convert to cachelines */
563
564         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
565                       dsparb, plane_name(i9xx_plane), size);
566
567         return size;
568 }
569
570 /* Pineview has different values for various configs */
571 static const struct intel_watermark_params pineview_display_wm = {
572         .fifo_size = PINEVIEW_DISPLAY_FIFO,
573         .max_wm = PINEVIEW_MAX_WM,
574         .default_wm = PINEVIEW_DFT_WM,
575         .guard_size = PINEVIEW_GUARD_WM,
576         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 };
578 static const struct intel_watermark_params pineview_display_hplloff_wm = {
579         .fifo_size = PINEVIEW_DISPLAY_FIFO,
580         .max_wm = PINEVIEW_MAX_WM,
581         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
582         .guard_size = PINEVIEW_GUARD_WM,
583         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 };
585 static const struct intel_watermark_params pineview_cursor_wm = {
586         .fifo_size = PINEVIEW_CURSOR_FIFO,
587         .max_wm = PINEVIEW_CURSOR_MAX_WM,
588         .default_wm = PINEVIEW_CURSOR_DFT_WM,
589         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
590         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 };
592 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
593         .fifo_size = PINEVIEW_CURSOR_FIFO,
594         .max_wm = PINEVIEW_CURSOR_MAX_WM,
595         .default_wm = PINEVIEW_CURSOR_DFT_WM,
596         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
597         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 };
599 static const struct intel_watermark_params i965_cursor_wm_info = {
600         .fifo_size = I965_CURSOR_FIFO,
601         .max_wm = I965_CURSOR_MAX_WM,
602         .default_wm = I965_CURSOR_DFT_WM,
603         .guard_size = 2,
604         .cacheline_size = I915_FIFO_LINE_SIZE,
605 };
606 static const struct intel_watermark_params i945_wm_info = {
607         .fifo_size = I945_FIFO_SIZE,
608         .max_wm = I915_MAX_WM,
609         .default_wm = 1,
610         .guard_size = 2,
611         .cacheline_size = I915_FIFO_LINE_SIZE,
612 };
613 static const struct intel_watermark_params i915_wm_info = {
614         .fifo_size = I915_FIFO_SIZE,
615         .max_wm = I915_MAX_WM,
616         .default_wm = 1,
617         .guard_size = 2,
618         .cacheline_size = I915_FIFO_LINE_SIZE,
619 };
620 static const struct intel_watermark_params i830_a_wm_info = {
621         .fifo_size = I855GM_FIFO_SIZE,
622         .max_wm = I915_MAX_WM,
623         .default_wm = 1,
624         .guard_size = 2,
625         .cacheline_size = I830_FIFO_LINE_SIZE,
626 };
627 static const struct intel_watermark_params i830_bc_wm_info = {
628         .fifo_size = I855GM_FIFO_SIZE,
629         .max_wm = I915_MAX_WM/2,
630         .default_wm = 1,
631         .guard_size = 2,
632         .cacheline_size = I830_FIFO_LINE_SIZE,
633 };
634 static const struct intel_watermark_params i845_wm_info = {
635         .fifo_size = I830_FIFO_SIZE,
636         .max_wm = I915_MAX_WM,
637         .default_wm = 1,
638         .guard_size = 2,
639         .cacheline_size = I830_FIFO_LINE_SIZE,
640 };
641
642 /**
643  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
644  * @pixel_rate: Pipe pixel rate in kHz
645  * @cpp: Plane bytes per pixel
646  * @latency: Memory wakeup latency in 0.1us units
647  *
648  * Compute the watermark using the method 1 or "small buffer"
649  * formula. The caller may additonally add extra cachelines
650  * to account for TLB misses and clock crossings.
651  *
652  * This method is concerned with the short term drain rate
653  * of the FIFO, ie. it does not account for blanking periods
654  * which would effectively reduce the average drain rate across
655  * a longer period. The name "small" refers to the fact the
656  * FIFO is relatively small compared to the amount of data
657  * fetched.
658  *
659  * The FIFO level vs. time graph might look something like:
660  *
661  *   |\   |\
662  *   | \  | \
663  * __---__---__ (- plane active, _ blanking)
664  * -> time
665  *
666  * or perhaps like this:
667  *
668  *   |\|\  |\|\
669  * __----__----__ (- plane active, _ blanking)
670  * -> time
671  *
672  * Returns:
673  * The watermark in bytes
674  */
675 static unsigned int intel_wm_method1(unsigned int pixel_rate,
676                                      unsigned int cpp,
677                                      unsigned int latency)
678 {
679         u64 ret;
680
681         ret = mul_u32_u32(pixel_rate, cpp * latency);
682         ret = DIV_ROUND_UP_ULL(ret, 10000);
683
684         return ret;
685 }
686
687 /**
688  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
689  * @pixel_rate: Pipe pixel rate in kHz
690  * @htotal: Pipe horizontal total
691  * @width: Plane width in pixels
692  * @cpp: Plane bytes per pixel
693  * @latency: Memory wakeup latency in 0.1us units
694  *
695  * Compute the watermark using the method 2 or "large buffer"
696  * formula. The caller may additonally add extra cachelines
697  * to account for TLB misses and clock crossings.
698  *
699  * This method is concerned with the long term drain rate
700  * of the FIFO, ie. it does account for blanking periods
701  * which effectively reduce the average drain rate across
702  * a longer period. The name "large" refers to the fact the
703  * FIFO is relatively large compared to the amount of data
704  * fetched.
705  *
706  * The FIFO level vs. time graph might look something like:
707  *
708  *    |\___       |\___
709  *    |    \___   |    \___
710  *    |        \  |        \
711  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
712  * -> time
713  *
714  * Returns:
715  * The watermark in bytes
716  */
717 static unsigned int intel_wm_method2(unsigned int pixel_rate,
718                                      unsigned int htotal,
719                                      unsigned int width,
720                                      unsigned int cpp,
721                                      unsigned int latency)
722 {
723         unsigned int ret;
724
725         /*
726          * FIXME remove once all users are computing
727          * watermarks in the correct place.
728          */
729         if (WARN_ON_ONCE(htotal == 0))
730                 htotal = 1;
731
732         ret = (latency * pixel_rate) / (htotal * 10000);
733         ret = (ret + 1) * width * cpp;
734
735         return ret;
736 }
737
738 /**
739  * intel_calculate_wm - calculate watermark level
740  * @pixel_rate: pixel clock
741  * @wm: chip FIFO params
742  * @fifo_size: size of the FIFO buffer
743  * @cpp: bytes per pixel
744  * @latency_ns: memory latency for the platform
745  *
746  * Calculate the watermark level (the level at which the display plane will
747  * start fetching from memory again).  Each chip has a different display
748  * FIFO size and allocation, so the caller needs to figure that out and pass
749  * in the correct intel_watermark_params structure.
750  *
751  * As the pixel clock runs, the FIFO will be drained at a rate that depends
752  * on the pixel size.  When it reaches the watermark level, it'll start
753  * fetching FIFO line sized based chunks from memory until the FIFO fills
754  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
755  * will occur, and a display engine hang could result.
756  */
757 static unsigned int intel_calculate_wm(int pixel_rate,
758                                        const struct intel_watermark_params *wm,
759                                        int fifo_size, int cpp,
760                                        unsigned int latency_ns)
761 {
762         int entries, wm_size;
763
764         /*
765          * Note: we need to make sure we don't overflow for various clock &
766          * latency values.
767          * clocks go from a few thousand to several hundred thousand.
768          * latency is usually a few thousand
769          */
770         entries = intel_wm_method1(pixel_rate, cpp,
771                                    latency_ns / 100);
772         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
773                 wm->guard_size;
774         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
775
776         wm_size = fifo_size - entries;
777         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
778
779         /* Don't promote wm_size to unsigned... */
780         if (wm_size > wm->max_wm)
781                 wm_size = wm->max_wm;
782         if (wm_size <= 0)
783                 wm_size = wm->default_wm;
784
785         /*
786          * Bspec seems to indicate that the value shouldn't be lower than
787          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
788          * Lets go for 8 which is the burst size since certain platforms
789          * already use a hardcoded 8 (which is what the spec says should be
790          * done).
791          */
792         if (wm_size <= 8)
793                 wm_size = 8;
794
795         return wm_size;
796 }
797
798 static bool is_disabling(int old, int new, int threshold)
799 {
800         return old >= threshold && new < threshold;
801 }
802
803 static bool is_enabling(int old, int new, int threshold)
804 {
805         return old < threshold && new >= threshold;
806 }
807
808 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
809 {
810         return dev_priv->wm.max_level + 1;
811 }
812
813 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
814                                    const struct intel_plane_state *plane_state)
815 {
816         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
817
818         /* FIXME check the 'enable' instead */
819         if (!crtc_state->base.active)
820                 return false;
821
822         /*
823          * Treat cursor with fb as always visible since cursor updates
824          * can happen faster than the vrefresh rate, and the current
825          * watermark code doesn't handle that correctly. Cursor updates
826          * which set/clear the fb or change the cursor size are going
827          * to get throttled by intel_legacy_cursor_update() to work
828          * around this problem with the watermark code.
829          */
830         if (plane->id == PLANE_CURSOR)
831                 return plane_state->base.fb != NULL;
832         else
833                 return plane_state->base.visible;
834 }
835
836 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
837 {
838         struct intel_crtc *crtc, *enabled = NULL;
839
840         for_each_intel_crtc(&dev_priv->drm, crtc) {
841                 if (intel_crtc_active(crtc)) {
842                         if (enabled)
843                                 return NULL;
844                         enabled = crtc;
845                 }
846         }
847
848         return enabled;
849 }
850
851 static void pineview_update_wm(struct intel_crtc *unused_crtc)
852 {
853         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
854         struct intel_crtc *crtc;
855         const struct cxsr_latency *latency;
856         u32 reg;
857         unsigned int wm;
858
859         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
860                                          dev_priv->is_ddr3,
861                                          dev_priv->fsb_freq,
862                                          dev_priv->mem_freq);
863         if (!latency) {
864                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
865                 intel_set_memory_cxsr(dev_priv, false);
866                 return;
867         }
868
869         crtc = single_enabled_crtc(dev_priv);
870         if (crtc) {
871                 const struct drm_display_mode *adjusted_mode =
872                         &crtc->config->base.adjusted_mode;
873                 const struct drm_framebuffer *fb =
874                         crtc->base.primary->state->fb;
875                 int cpp = fb->format->cpp[0];
876                 int clock = adjusted_mode->crtc_clock;
877
878                 /* Display SR */
879                 wm = intel_calculate_wm(clock, &pineview_display_wm,
880                                         pineview_display_wm.fifo_size,
881                                         cpp, latency->display_sr);
882                 reg = I915_READ(DSPFW1);
883                 reg &= ~DSPFW_SR_MASK;
884                 reg |= FW_WM(wm, SR);
885                 I915_WRITE(DSPFW1, reg);
886                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
887
888                 /* cursor SR */
889                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
890                                         pineview_display_wm.fifo_size,
891                                         4, latency->cursor_sr);
892                 reg = I915_READ(DSPFW3);
893                 reg &= ~DSPFW_CURSOR_SR_MASK;
894                 reg |= FW_WM(wm, CURSOR_SR);
895                 I915_WRITE(DSPFW3, reg);
896
897                 /* Display HPLL off SR */
898                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
899                                         pineview_display_hplloff_wm.fifo_size,
900                                         cpp, latency->display_hpll_disable);
901                 reg = I915_READ(DSPFW3);
902                 reg &= ~DSPFW_HPLL_SR_MASK;
903                 reg |= FW_WM(wm, HPLL_SR);
904                 I915_WRITE(DSPFW3, reg);
905
906                 /* cursor HPLL off SR */
907                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
908                                         pineview_display_hplloff_wm.fifo_size,
909                                         4, latency->cursor_hpll_disable);
910                 reg = I915_READ(DSPFW3);
911                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
912                 reg |= FW_WM(wm, HPLL_CURSOR);
913                 I915_WRITE(DSPFW3, reg);
914                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
915
916                 intel_set_memory_cxsr(dev_priv, true);
917         } else {
918                 intel_set_memory_cxsr(dev_priv, false);
919         }
920 }
921
922 /*
923  * Documentation says:
924  * "If the line size is small, the TLB fetches can get in the way of the
925  *  data fetches, causing some lag in the pixel data return which is not
926  *  accounted for in the above formulas. The following adjustment only
927  *  needs to be applied if eight whole lines fit in the buffer at once.
928  *  The WM is adjusted upwards by the difference between the FIFO size
929  *  and the size of 8 whole lines. This adjustment is always performed
930  *  in the actual pixel depth regardless of whether FBC is enabled or not."
931  */
932 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
933 {
934         int tlb_miss = fifo_size * 64 - width * cpp * 8;
935
936         return max(0, tlb_miss);
937 }
938
939 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
940                                 const struct g4x_wm_values *wm)
941 {
942         enum pipe pipe;
943
944         for_each_pipe(dev_priv, pipe)
945                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
946
947         I915_WRITE(DSPFW1,
948                    FW_WM(wm->sr.plane, SR) |
949                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
950                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
951                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
952         I915_WRITE(DSPFW2,
953                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
954                    FW_WM(wm->sr.fbc, FBC_SR) |
955                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
956                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
957                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
958                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
959         I915_WRITE(DSPFW3,
960                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
961                    FW_WM(wm->sr.cursor, CURSOR_SR) |
962                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
963                    FW_WM(wm->hpll.plane, HPLL_SR));
964
965         POSTING_READ(DSPFW1);
966 }
967
968 #define FW_WM_VLV(value, plane) \
969         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
970
971 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
972                                 const struct vlv_wm_values *wm)
973 {
974         enum pipe pipe;
975
976         for_each_pipe(dev_priv, pipe) {
977                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
978
979                 I915_WRITE(VLV_DDL(pipe),
980                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
981                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
982                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
983                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
984         }
985
986         /*
987          * Zero the (unused) WM1 watermarks, and also clear all the
988          * high order bits so that there are no out of bounds values
989          * present in the registers during the reprogramming.
990          */
991         I915_WRITE(DSPHOWM, 0);
992         I915_WRITE(DSPHOWM1, 0);
993         I915_WRITE(DSPFW4, 0);
994         I915_WRITE(DSPFW5, 0);
995         I915_WRITE(DSPFW6, 0);
996
997         I915_WRITE(DSPFW1,
998                    FW_WM(wm->sr.plane, SR) |
999                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1000                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1001                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1002         I915_WRITE(DSPFW2,
1003                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1004                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1005                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1006         I915_WRITE(DSPFW3,
1007                    FW_WM(wm->sr.cursor, CURSOR_SR));
1008
1009         if (IS_CHERRYVIEW(dev_priv)) {
1010                 I915_WRITE(DSPFW7_CHV,
1011                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1012                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1013                 I915_WRITE(DSPFW8_CHV,
1014                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1015                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1016                 I915_WRITE(DSPFW9_CHV,
1017                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1018                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1019                 I915_WRITE(DSPHOWM,
1020                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1021                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1022                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1023                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1024                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1025                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1026                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1027                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1028                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1029                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1030         } else {
1031                 I915_WRITE(DSPFW7,
1032                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1033                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1034                 I915_WRITE(DSPHOWM,
1035                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1036                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1037                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1038                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1039                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1040                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1041                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1042         }
1043
1044         POSTING_READ(DSPFW1);
1045 }
1046
1047 #undef FW_WM_VLV
1048
1049 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1050 {
1051         /* all latencies in usec */
1052         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1053         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1054         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1055
1056         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1057 }
1058
1059 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1060 {
1061         /*
1062          * DSPCNTR[13] supposedly controls whether the
1063          * primary plane can use the FIFO space otherwise
1064          * reserved for the sprite plane. It's not 100% clear
1065          * what the actual FIFO size is, but it looks like we
1066          * can happily set both primary and sprite watermarks
1067          * up to 127 cachelines. So that would seem to mean
1068          * that either DSPCNTR[13] doesn't do anything, or that
1069          * the total FIFO is >= 256 cachelines in size. Either
1070          * way, we don't seem to have to worry about this
1071          * repartitioning as the maximum watermark value the
1072          * register can hold for each plane is lower than the
1073          * minimum FIFO size.
1074          */
1075         switch (plane_id) {
1076         case PLANE_CURSOR:
1077                 return 63;
1078         case PLANE_PRIMARY:
1079                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1080         case PLANE_SPRITE0:
1081                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1082         default:
1083                 MISSING_CASE(plane_id);
1084                 return 0;
1085         }
1086 }
1087
1088 static int g4x_fbc_fifo_size(int level)
1089 {
1090         switch (level) {
1091         case G4X_WM_LEVEL_SR:
1092                 return 7;
1093         case G4X_WM_LEVEL_HPLL:
1094                 return 15;
1095         default:
1096                 MISSING_CASE(level);
1097                 return 0;
1098         }
1099 }
1100
1101 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1102                           const struct intel_plane_state *plane_state,
1103                           int level)
1104 {
1105         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1106         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1107         const struct drm_display_mode *adjusted_mode =
1108                 &crtc_state->base.adjusted_mode;
1109         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1110         unsigned int clock, htotal, cpp, width, wm;
1111
1112         if (latency == 0)
1113                 return USHRT_MAX;
1114
1115         if (!intel_wm_plane_visible(crtc_state, plane_state))
1116                 return 0;
1117
1118         /*
1119          * Not 100% sure which way ELK should go here as the
1120          * spec only says CL/CTG should assume 32bpp and BW
1121          * doesn't need to. But as these things followed the
1122          * mobile vs. desktop lines on gen3 as well, let's
1123          * assume ELK doesn't need this.
1124          *
1125          * The spec also fails to list such a restriction for
1126          * the HPLL watermark, which seems a little strange.
1127          * Let's use 32bpp for the HPLL watermark as well.
1128          */
1129         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1130             level != G4X_WM_LEVEL_NORMAL)
1131                 cpp = 4;
1132         else
1133                 cpp = plane_state->base.fb->format->cpp[0];
1134
1135         clock = adjusted_mode->crtc_clock;
1136         htotal = adjusted_mode->crtc_htotal;
1137
1138         if (plane->id == PLANE_CURSOR)
1139                 width = plane_state->base.crtc_w;
1140         else
1141                 width = drm_rect_width(&plane_state->base.dst);
1142
1143         if (plane->id == PLANE_CURSOR) {
1144                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1145         } else if (plane->id == PLANE_PRIMARY &&
1146                    level == G4X_WM_LEVEL_NORMAL) {
1147                 wm = intel_wm_method1(clock, cpp, latency);
1148         } else {
1149                 unsigned int small, large;
1150
1151                 small = intel_wm_method1(clock, cpp, latency);
1152                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1153
1154                 wm = min(small, large);
1155         }
1156
1157         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1158                               width, cpp);
1159
1160         wm = DIV_ROUND_UP(wm, 64) + 2;
1161
1162         return min_t(unsigned int, wm, USHRT_MAX);
1163 }
1164
1165 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1166                                  int level, enum plane_id plane_id, u16 value)
1167 {
1168         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1169         bool dirty = false;
1170
1171         for (; level < intel_wm_num_levels(dev_priv); level++) {
1172                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1173
1174                 dirty |= raw->plane[plane_id] != value;
1175                 raw->plane[plane_id] = value;
1176         }
1177
1178         return dirty;
1179 }
1180
1181 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1182                                int level, u16 value)
1183 {
1184         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1185         bool dirty = false;
1186
1187         /* NORMAL level doesn't have an FBC watermark */
1188         level = max(level, G4X_WM_LEVEL_SR);
1189
1190         for (; level < intel_wm_num_levels(dev_priv); level++) {
1191                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1192
1193                 dirty |= raw->fbc != value;
1194                 raw->fbc = value;
1195         }
1196
1197         return dirty;
1198 }
1199
1200 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1201                               const struct intel_plane_state *pstate,
1202                               u32 pri_val);
1203
1204 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1205                                      const struct intel_plane_state *plane_state)
1206 {
1207         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1208         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1209         enum plane_id plane_id = plane->id;
1210         bool dirty = false;
1211         int level;
1212
1213         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1214                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1215                 if (plane_id == PLANE_PRIMARY)
1216                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1217                 goto out;
1218         }
1219
1220         for (level = 0; level < num_levels; level++) {
1221                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1222                 int wm, max_wm;
1223
1224                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1225                 max_wm = g4x_plane_fifo_size(plane_id, level);
1226
1227                 if (wm > max_wm)
1228                         break;
1229
1230                 dirty |= raw->plane[plane_id] != wm;
1231                 raw->plane[plane_id] = wm;
1232
1233                 if (plane_id != PLANE_PRIMARY ||
1234                     level == G4X_WM_LEVEL_NORMAL)
1235                         continue;
1236
1237                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1238                                         raw->plane[plane_id]);
1239                 max_wm = g4x_fbc_fifo_size(level);
1240
1241                 /*
1242                  * FBC wm is not mandatory as we
1243                  * can always just disable its use.
1244                  */
1245                 if (wm > max_wm)
1246                         wm = USHRT_MAX;
1247
1248                 dirty |= raw->fbc != wm;
1249                 raw->fbc = wm;
1250         }
1251
1252         /* mark watermarks as invalid */
1253         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1254
1255         if (plane_id == PLANE_PRIMARY)
1256                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1257
1258  out:
1259         if (dirty) {
1260                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1261                               plane->base.name,
1262                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1263                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1264                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1265
1266                 if (plane_id == PLANE_PRIMARY)
1267                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1268                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1269                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1270         }
1271
1272         return dirty;
1273 }
1274
1275 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1276                                       enum plane_id plane_id, int level)
1277 {
1278         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1279
1280         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1281 }
1282
1283 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1284                                      int level)
1285 {
1286         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1287
1288         if (level > dev_priv->wm.max_level)
1289                 return false;
1290
1291         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1292                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1293                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1294 }
1295
1296 /* mark all levels starting from 'level' as invalid */
1297 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1298                                struct g4x_wm_state *wm_state, int level)
1299 {
1300         if (level <= G4X_WM_LEVEL_NORMAL) {
1301                 enum plane_id plane_id;
1302
1303                 for_each_plane_id_on_crtc(crtc, plane_id)
1304                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1305         }
1306
1307         if (level <= G4X_WM_LEVEL_SR) {
1308                 wm_state->cxsr = false;
1309                 wm_state->sr.cursor = USHRT_MAX;
1310                 wm_state->sr.plane = USHRT_MAX;
1311                 wm_state->sr.fbc = USHRT_MAX;
1312         }
1313
1314         if (level <= G4X_WM_LEVEL_HPLL) {
1315                 wm_state->hpll_en = false;
1316                 wm_state->hpll.cursor = USHRT_MAX;
1317                 wm_state->hpll.plane = USHRT_MAX;
1318                 wm_state->hpll.fbc = USHRT_MAX;
1319         }
1320 }
1321
1322 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1323 {
1324         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1325         struct intel_atomic_state *state =
1326                 to_intel_atomic_state(crtc_state->base.state);
1327         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1328         int num_active_planes = hweight32(crtc_state->active_planes &
1329                                           ~BIT(PLANE_CURSOR));
1330         const struct g4x_pipe_wm *raw;
1331         const struct intel_plane_state *old_plane_state;
1332         const struct intel_plane_state *new_plane_state;
1333         struct intel_plane *plane;
1334         enum plane_id plane_id;
1335         int i, level;
1336         unsigned int dirty = 0;
1337
1338         for_each_oldnew_intel_plane_in_state(state, plane,
1339                                              old_plane_state,
1340                                              new_plane_state, i) {
1341                 if (new_plane_state->base.crtc != &crtc->base &&
1342                     old_plane_state->base.crtc != &crtc->base)
1343                         continue;
1344
1345                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1346                         dirty |= BIT(plane->id);
1347         }
1348
1349         if (!dirty)
1350                 return 0;
1351
1352         level = G4X_WM_LEVEL_NORMAL;
1353         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1354                 goto out;
1355
1356         raw = &crtc_state->wm.g4x.raw[level];
1357         for_each_plane_id_on_crtc(crtc, plane_id)
1358                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1359
1360         level = G4X_WM_LEVEL_SR;
1361
1362         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1363                 goto out;
1364
1365         raw = &crtc_state->wm.g4x.raw[level];
1366         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1367         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1368         wm_state->sr.fbc = raw->fbc;
1369
1370         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1371
1372         level = G4X_WM_LEVEL_HPLL;
1373
1374         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1375                 goto out;
1376
1377         raw = &crtc_state->wm.g4x.raw[level];
1378         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1379         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1380         wm_state->hpll.fbc = raw->fbc;
1381
1382         wm_state->hpll_en = wm_state->cxsr;
1383
1384         level++;
1385
1386  out:
1387         if (level == G4X_WM_LEVEL_NORMAL)
1388                 return -EINVAL;
1389
1390         /* invalidate the higher levels */
1391         g4x_invalidate_wms(crtc, wm_state, level);
1392
1393         /*
1394          * Determine if the FBC watermark(s) can be used. IF
1395          * this isn't the case we prefer to disable the FBC
1396          ( watermark(s) rather than disable the SR/HPLL
1397          * level(s) entirely.
1398          */
1399         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1400
1401         if (level >= G4X_WM_LEVEL_SR &&
1402             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1403                 wm_state->fbc_en = false;
1404         else if (level >= G4X_WM_LEVEL_HPLL &&
1405                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1406                 wm_state->fbc_en = false;
1407
1408         return 0;
1409 }
1410
1411 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1412 {
1413         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1414         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1415         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1416         struct intel_atomic_state *intel_state =
1417                 to_intel_atomic_state(new_crtc_state->base.state);
1418         const struct intel_crtc_state *old_crtc_state =
1419                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1420         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1421         enum plane_id plane_id;
1422
1423         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1424                 *intermediate = *optimal;
1425
1426                 intermediate->cxsr = false;
1427                 intermediate->hpll_en = false;
1428                 goto out;
1429         }
1430
1431         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1432                 !new_crtc_state->disable_cxsr;
1433         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1434                 !new_crtc_state->disable_cxsr;
1435         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1436
1437         for_each_plane_id_on_crtc(crtc, plane_id) {
1438                 intermediate->wm.plane[plane_id] =
1439                         max(optimal->wm.plane[plane_id],
1440                             active->wm.plane[plane_id]);
1441
1442                 WARN_ON(intermediate->wm.plane[plane_id] >
1443                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1444         }
1445
1446         intermediate->sr.plane = max(optimal->sr.plane,
1447                                      active->sr.plane);
1448         intermediate->sr.cursor = max(optimal->sr.cursor,
1449                                       active->sr.cursor);
1450         intermediate->sr.fbc = max(optimal->sr.fbc,
1451                                    active->sr.fbc);
1452
1453         intermediate->hpll.plane = max(optimal->hpll.plane,
1454                                        active->hpll.plane);
1455         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1456                                         active->hpll.cursor);
1457         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1458                                      active->hpll.fbc);
1459
1460         WARN_ON((intermediate->sr.plane >
1461                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1462                  intermediate->sr.cursor >
1463                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1464                 intermediate->cxsr);
1465         WARN_ON((intermediate->sr.plane >
1466                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1467                  intermediate->sr.cursor >
1468                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1469                 intermediate->hpll_en);
1470
1471         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1472                 intermediate->fbc_en && intermediate->cxsr);
1473         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1474                 intermediate->fbc_en && intermediate->hpll_en);
1475
1476 out:
1477         /*
1478          * If our intermediate WM are identical to the final WM, then we can
1479          * omit the post-vblank programming; only update if it's different.
1480          */
1481         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1482                 new_crtc_state->wm.need_postvbl_update = true;
1483
1484         return 0;
1485 }
1486
1487 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1488                          struct g4x_wm_values *wm)
1489 {
1490         struct intel_crtc *crtc;
1491         int num_active_crtcs = 0;
1492
1493         wm->cxsr = true;
1494         wm->hpll_en = true;
1495         wm->fbc_en = true;
1496
1497         for_each_intel_crtc(&dev_priv->drm, crtc) {
1498                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1499
1500                 if (!crtc->active)
1501                         continue;
1502
1503                 if (!wm_state->cxsr)
1504                         wm->cxsr = false;
1505                 if (!wm_state->hpll_en)
1506                         wm->hpll_en = false;
1507                 if (!wm_state->fbc_en)
1508                         wm->fbc_en = false;
1509
1510                 num_active_crtcs++;
1511         }
1512
1513         if (num_active_crtcs != 1) {
1514                 wm->cxsr = false;
1515                 wm->hpll_en = false;
1516                 wm->fbc_en = false;
1517         }
1518
1519         for_each_intel_crtc(&dev_priv->drm, crtc) {
1520                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1521                 enum pipe pipe = crtc->pipe;
1522
1523                 wm->pipe[pipe] = wm_state->wm;
1524                 if (crtc->active && wm->cxsr)
1525                         wm->sr = wm_state->sr;
1526                 if (crtc->active && wm->hpll_en)
1527                         wm->hpll = wm_state->hpll;
1528         }
1529 }
1530
1531 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1532 {
1533         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1534         struct g4x_wm_values new_wm = {};
1535
1536         g4x_merge_wm(dev_priv, &new_wm);
1537
1538         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1539                 return;
1540
1541         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1542                 _intel_set_memory_cxsr(dev_priv, false);
1543
1544         g4x_write_wm_values(dev_priv, &new_wm);
1545
1546         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1547                 _intel_set_memory_cxsr(dev_priv, true);
1548
1549         *old_wm = new_wm;
1550 }
1551
1552 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1553                                    struct intel_crtc_state *crtc_state)
1554 {
1555         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1556         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1557
1558         mutex_lock(&dev_priv->wm.wm_mutex);
1559         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1560         g4x_program_watermarks(dev_priv);
1561         mutex_unlock(&dev_priv->wm.wm_mutex);
1562 }
1563
1564 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1565                                     struct intel_crtc_state *crtc_state)
1566 {
1567         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1569
1570         if (!crtc_state->wm.need_postvbl_update)
1571                 return;
1572
1573         mutex_lock(&dev_priv->wm.wm_mutex);
1574         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1575         g4x_program_watermarks(dev_priv);
1576         mutex_unlock(&dev_priv->wm.wm_mutex);
1577 }
1578
1579 /* latency must be in 0.1us units. */
1580 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1581                                    unsigned int htotal,
1582                                    unsigned int width,
1583                                    unsigned int cpp,
1584                                    unsigned int latency)
1585 {
1586         unsigned int ret;
1587
1588         ret = intel_wm_method2(pixel_rate, htotal,
1589                                width, cpp, latency);
1590         ret = DIV_ROUND_UP(ret, 64);
1591
1592         return ret;
1593 }
1594
1595 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1596 {
1597         /* all latencies in usec */
1598         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1599
1600         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1601
1602         if (IS_CHERRYVIEW(dev_priv)) {
1603                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1604                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1605
1606                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1607         }
1608 }
1609
1610 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1611                                 const struct intel_plane_state *plane_state,
1612                                 int level)
1613 {
1614         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1615         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1616         const struct drm_display_mode *adjusted_mode =
1617                 &crtc_state->base.adjusted_mode;
1618         unsigned int clock, htotal, cpp, width, wm;
1619
1620         if (dev_priv->wm.pri_latency[level] == 0)
1621                 return USHRT_MAX;
1622
1623         if (!intel_wm_plane_visible(crtc_state, plane_state))
1624                 return 0;
1625
1626         cpp = plane_state->base.fb->format->cpp[0];
1627         clock = adjusted_mode->crtc_clock;
1628         htotal = adjusted_mode->crtc_htotal;
1629         width = crtc_state->pipe_src_w;
1630
1631         if (plane->id == PLANE_CURSOR) {
1632                 /*
1633                  * FIXME the formula gives values that are
1634                  * too big for the cursor FIFO, and hence we
1635                  * would never be able to use cursors. For
1636                  * now just hardcode the watermark.
1637                  */
1638                 wm = 63;
1639         } else {
1640                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1641                                     dev_priv->wm.pri_latency[level] * 10);
1642         }
1643
1644         return min_t(unsigned int, wm, USHRT_MAX);
1645 }
1646
1647 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1648 {
1649         return (active_planes & (BIT(PLANE_SPRITE0) |
1650                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1651 }
1652
1653 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1654 {
1655         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1656         const struct g4x_pipe_wm *raw =
1657                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1658         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1659         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1660         int num_active_planes = hweight32(active_planes);
1661         const int fifo_size = 511;
1662         int fifo_extra, fifo_left = fifo_size;
1663         int sprite0_fifo_extra = 0;
1664         unsigned int total_rate;
1665         enum plane_id plane_id;
1666
1667         /*
1668          * When enabling sprite0 after sprite1 has already been enabled
1669          * we tend to get an underrun unless sprite0 already has some
1670          * FIFO space allcoated. Hence we always allocate at least one
1671          * cacheline for sprite0 whenever sprite1 is enabled.
1672          *
1673          * All other plane enable sequences appear immune to this problem.
1674          */
1675         if (vlv_need_sprite0_fifo_workaround(active_planes))
1676                 sprite0_fifo_extra = 1;
1677
1678         total_rate = raw->plane[PLANE_PRIMARY] +
1679                 raw->plane[PLANE_SPRITE0] +
1680                 raw->plane[PLANE_SPRITE1] +
1681                 sprite0_fifo_extra;
1682
1683         if (total_rate > fifo_size)
1684                 return -EINVAL;
1685
1686         if (total_rate == 0)
1687                 total_rate = 1;
1688
1689         for_each_plane_id_on_crtc(crtc, plane_id) {
1690                 unsigned int rate;
1691
1692                 if ((active_planes & BIT(plane_id)) == 0) {
1693                         fifo_state->plane[plane_id] = 0;
1694                         continue;
1695                 }
1696
1697                 rate = raw->plane[plane_id];
1698                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1699                 fifo_left -= fifo_state->plane[plane_id];
1700         }
1701
1702         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1703         fifo_left -= sprite0_fifo_extra;
1704
1705         fifo_state->plane[PLANE_CURSOR] = 63;
1706
1707         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1708
1709         /* spread the remainder evenly */
1710         for_each_plane_id_on_crtc(crtc, plane_id) {
1711                 int plane_extra;
1712
1713                 if (fifo_left == 0)
1714                         break;
1715
1716                 if ((active_planes & BIT(plane_id)) == 0)
1717                         continue;
1718
1719                 plane_extra = min(fifo_extra, fifo_left);
1720                 fifo_state->plane[plane_id] += plane_extra;
1721                 fifo_left -= plane_extra;
1722         }
1723
1724         WARN_ON(active_planes != 0 && fifo_left != 0);
1725
1726         /* give it all to the first plane if none are active */
1727         if (active_planes == 0) {
1728                 WARN_ON(fifo_left != fifo_size);
1729                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1730         }
1731
1732         return 0;
1733 }
1734
1735 /* mark all levels starting from 'level' as invalid */
1736 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1737                                struct vlv_wm_state *wm_state, int level)
1738 {
1739         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1740
1741         for (; level < intel_wm_num_levels(dev_priv); level++) {
1742                 enum plane_id plane_id;
1743
1744                 for_each_plane_id_on_crtc(crtc, plane_id)
1745                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1746
1747                 wm_state->sr[level].cursor = USHRT_MAX;
1748                 wm_state->sr[level].plane = USHRT_MAX;
1749         }
1750 }
1751
1752 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1753 {
1754         if (wm > fifo_size)
1755                 return USHRT_MAX;
1756         else
1757                 return fifo_size - wm;
1758 }
1759
1760 /*
1761  * Starting from 'level' set all higher
1762  * levels to 'value' in the "raw" watermarks.
1763  */
1764 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1765                                  int level, enum plane_id plane_id, u16 value)
1766 {
1767         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1768         int num_levels = intel_wm_num_levels(dev_priv);
1769         bool dirty = false;
1770
1771         for (; level < num_levels; level++) {
1772                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1773
1774                 dirty |= raw->plane[plane_id] != value;
1775                 raw->plane[plane_id] = value;
1776         }
1777
1778         return dirty;
1779 }
1780
1781 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1782                                      const struct intel_plane_state *plane_state)
1783 {
1784         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1785         enum plane_id plane_id = plane->id;
1786         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1787         int level;
1788         bool dirty = false;
1789
1790         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1791                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1792                 goto out;
1793         }
1794
1795         for (level = 0; level < num_levels; level++) {
1796                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1797                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1798                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1799
1800                 if (wm > max_wm)
1801                         break;
1802
1803                 dirty |= raw->plane[plane_id] != wm;
1804                 raw->plane[plane_id] = wm;
1805         }
1806
1807         /* mark all higher levels as invalid */
1808         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1809
1810 out:
1811         if (dirty)
1812                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1813                               plane->base.name,
1814                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1815                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1816                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1817
1818         return dirty;
1819 }
1820
1821 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1822                                       enum plane_id plane_id, int level)
1823 {
1824         const struct g4x_pipe_wm *raw =
1825                 &crtc_state->wm.vlv.raw[level];
1826         const struct vlv_fifo_state *fifo_state =
1827                 &crtc_state->wm.vlv.fifo_state;
1828
1829         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1830 }
1831
1832 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1833 {
1834         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1835                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1836                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1837                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1838 }
1839
1840 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1841 {
1842         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1843         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1844         struct intel_atomic_state *state =
1845                 to_intel_atomic_state(crtc_state->base.state);
1846         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1847         const struct vlv_fifo_state *fifo_state =
1848                 &crtc_state->wm.vlv.fifo_state;
1849         int num_active_planes = hweight32(crtc_state->active_planes &
1850                                           ~BIT(PLANE_CURSOR));
1851         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1852         const struct intel_plane_state *old_plane_state;
1853         const struct intel_plane_state *new_plane_state;
1854         struct intel_plane *plane;
1855         enum plane_id plane_id;
1856         int level, ret, i;
1857         unsigned int dirty = 0;
1858
1859         for_each_oldnew_intel_plane_in_state(state, plane,
1860                                              old_plane_state,
1861                                              new_plane_state, i) {
1862                 if (new_plane_state->base.crtc != &crtc->base &&
1863                     old_plane_state->base.crtc != &crtc->base)
1864                         continue;
1865
1866                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1867                         dirty |= BIT(plane->id);
1868         }
1869
1870         /*
1871          * DSPARB registers may have been reset due to the
1872          * power well being turned off. Make sure we restore
1873          * them to a consistent state even if no primary/sprite
1874          * planes are initially active.
1875          */
1876         if (needs_modeset)
1877                 crtc_state->fifo_changed = true;
1878
1879         if (!dirty)
1880                 return 0;
1881
1882         /* cursor changes don't warrant a FIFO recompute */
1883         if (dirty & ~BIT(PLANE_CURSOR)) {
1884                 const struct intel_crtc_state *old_crtc_state =
1885                         intel_atomic_get_old_crtc_state(state, crtc);
1886                 const struct vlv_fifo_state *old_fifo_state =
1887                         &old_crtc_state->wm.vlv.fifo_state;
1888
1889                 ret = vlv_compute_fifo(crtc_state);
1890                 if (ret)
1891                         return ret;
1892
1893                 if (needs_modeset ||
1894                     memcmp(old_fifo_state, fifo_state,
1895                            sizeof(*fifo_state)) != 0)
1896                         crtc_state->fifo_changed = true;
1897         }
1898
1899         /* initially allow all levels */
1900         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1901         /*
1902          * Note that enabling cxsr with no primary/sprite planes
1903          * enabled can wedge the pipe. Hence we only allow cxsr
1904          * with exactly one enabled primary/sprite plane.
1905          */
1906         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1907
1908         for (level = 0; level < wm_state->num_levels; level++) {
1909                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1910                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1911
1912                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1913                         break;
1914
1915                 for_each_plane_id_on_crtc(crtc, plane_id) {
1916                         wm_state->wm[level].plane[plane_id] =
1917                                 vlv_invert_wm_value(raw->plane[plane_id],
1918                                                     fifo_state->plane[plane_id]);
1919                 }
1920
1921                 wm_state->sr[level].plane =
1922                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1923                                                  raw->plane[PLANE_SPRITE0],
1924                                                  raw->plane[PLANE_SPRITE1]),
1925                                             sr_fifo_size);
1926
1927                 wm_state->sr[level].cursor =
1928                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1929                                             63);
1930         }
1931
1932         if (level == 0)
1933                 return -EINVAL;
1934
1935         /* limit to only levels we can actually handle */
1936         wm_state->num_levels = level;
1937
1938         /* invalidate the higher levels */
1939         vlv_invalidate_wms(crtc, wm_state, level);
1940
1941         return 0;
1942 }
1943
1944 #define VLV_FIFO(plane, value) \
1945         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1946
1947 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1948                                    struct intel_crtc_state *crtc_state)
1949 {
1950         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1951         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1952         const struct vlv_fifo_state *fifo_state =
1953                 &crtc_state->wm.vlv.fifo_state;
1954         int sprite0_start, sprite1_start, fifo_size;
1955
1956         if (!crtc_state->fifo_changed)
1957                 return;
1958
1959         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1960         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1961         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1962
1963         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1964         WARN_ON(fifo_size != 511);
1965
1966         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1967
1968         /*
1969          * uncore.lock serves a double purpose here. It allows us to
1970          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1971          * it protects the DSPARB registers from getting clobbered by
1972          * parallel updates from multiple pipes.
1973          *
1974          * intel_pipe_update_start() has already disabled interrupts
1975          * for us, so a plain spin_lock() is sufficient here.
1976          */
1977         spin_lock(&dev_priv->uncore.lock);
1978
1979         switch (crtc->pipe) {
1980                 u32 dsparb, dsparb2, dsparb3;
1981         case PIPE_A:
1982                 dsparb = I915_READ_FW(DSPARB);
1983                 dsparb2 = I915_READ_FW(DSPARB2);
1984
1985                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1986                             VLV_FIFO(SPRITEB, 0xff));
1987                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1988                            VLV_FIFO(SPRITEB, sprite1_start));
1989
1990                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1991                              VLV_FIFO(SPRITEB_HI, 0x1));
1992                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1993                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1994
1995                 I915_WRITE_FW(DSPARB, dsparb);
1996                 I915_WRITE_FW(DSPARB2, dsparb2);
1997                 break;
1998         case PIPE_B:
1999                 dsparb = I915_READ_FW(DSPARB);
2000                 dsparb2 = I915_READ_FW(DSPARB2);
2001
2002                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2003                             VLV_FIFO(SPRITED, 0xff));
2004                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2005                            VLV_FIFO(SPRITED, sprite1_start));
2006
2007                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2008                              VLV_FIFO(SPRITED_HI, 0xff));
2009                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2010                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2011
2012                 I915_WRITE_FW(DSPARB, dsparb);
2013                 I915_WRITE_FW(DSPARB2, dsparb2);
2014                 break;
2015         case PIPE_C:
2016                 dsparb3 = I915_READ_FW(DSPARB3);
2017                 dsparb2 = I915_READ_FW(DSPARB2);
2018
2019                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2020                              VLV_FIFO(SPRITEF, 0xff));
2021                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2022                             VLV_FIFO(SPRITEF, sprite1_start));
2023
2024                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2025                              VLV_FIFO(SPRITEF_HI, 0xff));
2026                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2027                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2028
2029                 I915_WRITE_FW(DSPARB3, dsparb3);
2030                 I915_WRITE_FW(DSPARB2, dsparb2);
2031                 break;
2032         default:
2033                 break;
2034         }
2035
2036         POSTING_READ_FW(DSPARB);
2037
2038         spin_unlock(&dev_priv->uncore.lock);
2039 }
2040
2041 #undef VLV_FIFO
2042
2043 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2044 {
2045         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2046         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2047         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2048         struct intel_atomic_state *intel_state =
2049                 to_intel_atomic_state(new_crtc_state->base.state);
2050         const struct intel_crtc_state *old_crtc_state =
2051                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2052         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2053         int level;
2054
2055         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2056                 *intermediate = *optimal;
2057
2058                 intermediate->cxsr = false;
2059                 goto out;
2060         }
2061
2062         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2063         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2064                 !new_crtc_state->disable_cxsr;
2065
2066         for (level = 0; level < intermediate->num_levels; level++) {
2067                 enum plane_id plane_id;
2068
2069                 for_each_plane_id_on_crtc(crtc, plane_id) {
2070                         intermediate->wm[level].plane[plane_id] =
2071                                 min(optimal->wm[level].plane[plane_id],
2072                                     active->wm[level].plane[plane_id]);
2073                 }
2074
2075                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2076                                                     active->sr[level].plane);
2077                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2078                                                      active->sr[level].cursor);
2079         }
2080
2081         vlv_invalidate_wms(crtc, intermediate, level);
2082
2083 out:
2084         /*
2085          * If our intermediate WM are identical to the final WM, then we can
2086          * omit the post-vblank programming; only update if it's different.
2087          */
2088         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2089                 new_crtc_state->wm.need_postvbl_update = true;
2090
2091         return 0;
2092 }
2093
2094 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2095                          struct vlv_wm_values *wm)
2096 {
2097         struct intel_crtc *crtc;
2098         int num_active_crtcs = 0;
2099
2100         wm->level = dev_priv->wm.max_level;
2101         wm->cxsr = true;
2102
2103         for_each_intel_crtc(&dev_priv->drm, crtc) {
2104                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2105
2106                 if (!crtc->active)
2107                         continue;
2108
2109                 if (!wm_state->cxsr)
2110                         wm->cxsr = false;
2111
2112                 num_active_crtcs++;
2113                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2114         }
2115
2116         if (num_active_crtcs != 1)
2117                 wm->cxsr = false;
2118
2119         if (num_active_crtcs > 1)
2120                 wm->level = VLV_WM_LEVEL_PM2;
2121
2122         for_each_intel_crtc(&dev_priv->drm, crtc) {
2123                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2124                 enum pipe pipe = crtc->pipe;
2125
2126                 wm->pipe[pipe] = wm_state->wm[wm->level];
2127                 if (crtc->active && wm->cxsr)
2128                         wm->sr = wm_state->sr[wm->level];
2129
2130                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2131                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2132                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2133                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2134         }
2135 }
2136
2137 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2138 {
2139         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2140         struct vlv_wm_values new_wm = {};
2141
2142         vlv_merge_wm(dev_priv, &new_wm);
2143
2144         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2145                 return;
2146
2147         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2148                 chv_set_memory_dvfs(dev_priv, false);
2149
2150         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2151                 chv_set_memory_pm5(dev_priv, false);
2152
2153         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2154                 _intel_set_memory_cxsr(dev_priv, false);
2155
2156         vlv_write_wm_values(dev_priv, &new_wm);
2157
2158         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2159                 _intel_set_memory_cxsr(dev_priv, true);
2160
2161         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2162                 chv_set_memory_pm5(dev_priv, true);
2163
2164         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2165                 chv_set_memory_dvfs(dev_priv, true);
2166
2167         *old_wm = new_wm;
2168 }
2169
2170 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2171                                    struct intel_crtc_state *crtc_state)
2172 {
2173         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2174         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2175
2176         mutex_lock(&dev_priv->wm.wm_mutex);
2177         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2178         vlv_program_watermarks(dev_priv);
2179         mutex_unlock(&dev_priv->wm.wm_mutex);
2180 }
2181
2182 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2183                                     struct intel_crtc_state *crtc_state)
2184 {
2185         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2187
2188         if (!crtc_state->wm.need_postvbl_update)
2189                 return;
2190
2191         mutex_lock(&dev_priv->wm.wm_mutex);
2192         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2193         vlv_program_watermarks(dev_priv);
2194         mutex_unlock(&dev_priv->wm.wm_mutex);
2195 }
2196
2197 static void i965_update_wm(struct intel_crtc *unused_crtc)
2198 {
2199         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2200         struct intel_crtc *crtc;
2201         int srwm = 1;
2202         int cursor_sr = 16;
2203         bool cxsr_enabled;
2204
2205         /* Calc sr entries for one plane configs */
2206         crtc = single_enabled_crtc(dev_priv);
2207         if (crtc) {
2208                 /* self-refresh has much higher latency */
2209                 static const int sr_latency_ns = 12000;
2210                 const struct drm_display_mode *adjusted_mode =
2211                         &crtc->config->base.adjusted_mode;
2212                 const struct drm_framebuffer *fb =
2213                         crtc->base.primary->state->fb;
2214                 int clock = adjusted_mode->crtc_clock;
2215                 int htotal = adjusted_mode->crtc_htotal;
2216                 int hdisplay = crtc->config->pipe_src_w;
2217                 int cpp = fb->format->cpp[0];
2218                 int entries;
2219
2220                 entries = intel_wm_method2(clock, htotal,
2221                                            hdisplay, cpp, sr_latency_ns / 100);
2222                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2223                 srwm = I965_FIFO_SIZE - entries;
2224                 if (srwm < 0)
2225                         srwm = 1;
2226                 srwm &= 0x1ff;
2227                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2228                               entries, srwm);
2229
2230                 entries = intel_wm_method2(clock, htotal,
2231                                            crtc->base.cursor->state->crtc_w, 4,
2232                                            sr_latency_ns / 100);
2233                 entries = DIV_ROUND_UP(entries,
2234                                        i965_cursor_wm_info.cacheline_size) +
2235                         i965_cursor_wm_info.guard_size;
2236
2237                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2238                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2239                         cursor_sr = i965_cursor_wm_info.max_wm;
2240
2241                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2242                               "cursor %d\n", srwm, cursor_sr);
2243
2244                 cxsr_enabled = true;
2245         } else {
2246                 cxsr_enabled = false;
2247                 /* Turn off self refresh if both pipes are enabled */
2248                 intel_set_memory_cxsr(dev_priv, false);
2249         }
2250
2251         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2252                       srwm);
2253
2254         /* 965 has limitations... */
2255         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2256                    FW_WM(8, CURSORB) |
2257                    FW_WM(8, PLANEB) |
2258                    FW_WM(8, PLANEA));
2259         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2260                    FW_WM(8, PLANEC_OLD));
2261         /* update cursor SR watermark */
2262         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2263
2264         if (cxsr_enabled)
2265                 intel_set_memory_cxsr(dev_priv, true);
2266 }
2267
2268 #undef FW_WM
2269
2270 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2271 {
2272         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2273         const struct intel_watermark_params *wm_info;
2274         u32 fwater_lo;
2275         u32 fwater_hi;
2276         int cwm, srwm = 1;
2277         int fifo_size;
2278         int planea_wm, planeb_wm;
2279         struct intel_crtc *crtc, *enabled = NULL;
2280
2281         if (IS_I945GM(dev_priv))
2282                 wm_info = &i945_wm_info;
2283         else if (!IS_GEN(dev_priv, 2))
2284                 wm_info = &i915_wm_info;
2285         else
2286                 wm_info = &i830_a_wm_info;
2287
2288         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2289         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2290         if (intel_crtc_active(crtc)) {
2291                 const struct drm_display_mode *adjusted_mode =
2292                         &crtc->config->base.adjusted_mode;
2293                 const struct drm_framebuffer *fb =
2294                         crtc->base.primary->state->fb;
2295                 int cpp;
2296
2297                 if (IS_GEN(dev_priv, 2))
2298                         cpp = 4;
2299                 else
2300                         cpp = fb->format->cpp[0];
2301
2302                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2303                                                wm_info, fifo_size, cpp,
2304                                                pessimal_latency_ns);
2305                 enabled = crtc;
2306         } else {
2307                 planea_wm = fifo_size - wm_info->guard_size;
2308                 if (planea_wm > (long)wm_info->max_wm)
2309                         planea_wm = wm_info->max_wm;
2310         }
2311
2312         if (IS_GEN(dev_priv, 2))
2313                 wm_info = &i830_bc_wm_info;
2314
2315         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2316         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2317         if (intel_crtc_active(crtc)) {
2318                 const struct drm_display_mode *adjusted_mode =
2319                         &crtc->config->base.adjusted_mode;
2320                 const struct drm_framebuffer *fb =
2321                         crtc->base.primary->state->fb;
2322                 int cpp;
2323
2324                 if (IS_GEN(dev_priv, 2))
2325                         cpp = 4;
2326                 else
2327                         cpp = fb->format->cpp[0];
2328
2329                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2330                                                wm_info, fifo_size, cpp,
2331                                                pessimal_latency_ns);
2332                 if (enabled == NULL)
2333                         enabled = crtc;
2334                 else
2335                         enabled = NULL;
2336         } else {
2337                 planeb_wm = fifo_size - wm_info->guard_size;
2338                 if (planeb_wm > (long)wm_info->max_wm)
2339                         planeb_wm = wm_info->max_wm;
2340         }
2341
2342         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2343
2344         if (IS_I915GM(dev_priv) && enabled) {
2345                 struct drm_i915_gem_object *obj;
2346
2347                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2348
2349                 /* self-refresh seems busted with untiled */
2350                 if (!i915_gem_object_is_tiled(obj))
2351                         enabled = NULL;
2352         }
2353
2354         /*
2355          * Overlay gets an aggressive default since video jitter is bad.
2356          */
2357         cwm = 2;
2358
2359         /* Play safe and disable self-refresh before adjusting watermarks. */
2360         intel_set_memory_cxsr(dev_priv, false);
2361
2362         /* Calc sr entries for one plane configs */
2363         if (HAS_FW_BLC(dev_priv) && enabled) {
2364                 /* self-refresh has much higher latency */
2365                 static const int sr_latency_ns = 6000;
2366                 const struct drm_display_mode *adjusted_mode =
2367                         &enabled->config->base.adjusted_mode;
2368                 const struct drm_framebuffer *fb =
2369                         enabled->base.primary->state->fb;
2370                 int clock = adjusted_mode->crtc_clock;
2371                 int htotal = adjusted_mode->crtc_htotal;
2372                 int hdisplay = enabled->config->pipe_src_w;
2373                 int cpp;
2374                 int entries;
2375
2376                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2377                         cpp = 4;
2378                 else
2379                         cpp = fb->format->cpp[0];
2380
2381                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2382                                            sr_latency_ns / 100);
2383                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2384                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2385                 srwm = wm_info->fifo_size - entries;
2386                 if (srwm < 0)
2387                         srwm = 1;
2388
2389                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2390                         I915_WRITE(FW_BLC_SELF,
2391                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2392                 else
2393                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2394         }
2395
2396         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2397                       planea_wm, planeb_wm, cwm, srwm);
2398
2399         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2400         fwater_hi = (cwm & 0x1f);
2401
2402         /* Set request length to 8 cachelines per fetch */
2403         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2404         fwater_hi = fwater_hi | (1 << 8);
2405
2406         I915_WRITE(FW_BLC, fwater_lo);
2407         I915_WRITE(FW_BLC2, fwater_hi);
2408
2409         if (enabled)
2410                 intel_set_memory_cxsr(dev_priv, true);
2411 }
2412
2413 static void i845_update_wm(struct intel_crtc *unused_crtc)
2414 {
2415         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2416         struct intel_crtc *crtc;
2417         const struct drm_display_mode *adjusted_mode;
2418         u32 fwater_lo;
2419         int planea_wm;
2420
2421         crtc = single_enabled_crtc(dev_priv);
2422         if (crtc == NULL)
2423                 return;
2424
2425         adjusted_mode = &crtc->config->base.adjusted_mode;
2426         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2427                                        &i845_wm_info,
2428                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2429                                        4, pessimal_latency_ns);
2430         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2431         fwater_lo |= (3<<8) | planea_wm;
2432
2433         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2434
2435         I915_WRITE(FW_BLC, fwater_lo);
2436 }
2437
2438 /* latency must be in 0.1us units. */
2439 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2440                                    unsigned int cpp,
2441                                    unsigned int latency)
2442 {
2443         unsigned int ret;
2444
2445         ret = intel_wm_method1(pixel_rate, cpp, latency);
2446         ret = DIV_ROUND_UP(ret, 64) + 2;
2447
2448         return ret;
2449 }
2450
2451 /* latency must be in 0.1us units. */
2452 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2453                                    unsigned int htotal,
2454                                    unsigned int width,
2455                                    unsigned int cpp,
2456                                    unsigned int latency)
2457 {
2458         unsigned int ret;
2459
2460         ret = intel_wm_method2(pixel_rate, htotal,
2461                                width, cpp, latency);
2462         ret = DIV_ROUND_UP(ret, 64) + 2;
2463
2464         return ret;
2465 }
2466
2467 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2468 {
2469         /*
2470          * Neither of these should be possible since this function shouldn't be
2471          * called if the CRTC is off or the plane is invisible.  But let's be
2472          * extra paranoid to avoid a potential divide-by-zero if we screw up
2473          * elsewhere in the driver.
2474          */
2475         if (WARN_ON(!cpp))
2476                 return 0;
2477         if (WARN_ON(!horiz_pixels))
2478                 return 0;
2479
2480         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2481 }
2482
2483 struct ilk_wm_maximums {
2484         u16 pri;
2485         u16 spr;
2486         u16 cur;
2487         u16 fbc;
2488 };
2489
2490 /*
2491  * For both WM_PIPE and WM_LP.
2492  * mem_value must be in 0.1us units.
2493  */
2494 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2495                               const struct intel_plane_state *pstate,
2496                               u32 mem_value, bool is_lp)
2497 {
2498         u32 method1, method2;
2499         int cpp;
2500
2501         if (mem_value == 0)
2502                 return U32_MAX;
2503
2504         if (!intel_wm_plane_visible(cstate, pstate))
2505                 return 0;
2506
2507         cpp = pstate->base.fb->format->cpp[0];
2508
2509         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2510
2511         if (!is_lp)
2512                 return method1;
2513
2514         method2 = ilk_wm_method2(cstate->pixel_rate,
2515                                  cstate->base.adjusted_mode.crtc_htotal,
2516                                  drm_rect_width(&pstate->base.dst),
2517                                  cpp, mem_value);
2518
2519         return min(method1, method2);
2520 }
2521
2522 /*
2523  * For both WM_PIPE and WM_LP.
2524  * mem_value must be in 0.1us units.
2525  */
2526 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2527                               const struct intel_plane_state *pstate,
2528                               u32 mem_value)
2529 {
2530         u32 method1, method2;
2531         int cpp;
2532
2533         if (mem_value == 0)
2534                 return U32_MAX;
2535
2536         if (!intel_wm_plane_visible(cstate, pstate))
2537                 return 0;
2538
2539         cpp = pstate->base.fb->format->cpp[0];
2540
2541         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2542         method2 = ilk_wm_method2(cstate->pixel_rate,
2543                                  cstate->base.adjusted_mode.crtc_htotal,
2544                                  drm_rect_width(&pstate->base.dst),
2545                                  cpp, mem_value);
2546         return min(method1, method2);
2547 }
2548
2549 /*
2550  * For both WM_PIPE and WM_LP.
2551  * mem_value must be in 0.1us units.
2552  */
2553 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2554                               const struct intel_plane_state *pstate,
2555                               u32 mem_value)
2556 {
2557         int cpp;
2558
2559         if (mem_value == 0)
2560                 return U32_MAX;
2561
2562         if (!intel_wm_plane_visible(cstate, pstate))
2563                 return 0;
2564
2565         cpp = pstate->base.fb->format->cpp[0];
2566
2567         return ilk_wm_method2(cstate->pixel_rate,
2568                               cstate->base.adjusted_mode.crtc_htotal,
2569                               pstate->base.crtc_w, cpp, mem_value);
2570 }
2571
2572 /* Only for WM_LP. */
2573 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2574                               const struct intel_plane_state *pstate,
2575                               u32 pri_val)
2576 {
2577         int cpp;
2578
2579         if (!intel_wm_plane_visible(cstate, pstate))
2580                 return 0;
2581
2582         cpp = pstate->base.fb->format->cpp[0];
2583
2584         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2585 }
2586
2587 static unsigned int
2588 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2589 {
2590         if (INTEL_GEN(dev_priv) >= 8)
2591                 return 3072;
2592         else if (INTEL_GEN(dev_priv) >= 7)
2593                 return 768;
2594         else
2595                 return 512;
2596 }
2597
2598 static unsigned int
2599 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2600                      int level, bool is_sprite)
2601 {
2602         if (INTEL_GEN(dev_priv) >= 8)
2603                 /* BDW primary/sprite plane watermarks */
2604                 return level == 0 ? 255 : 2047;
2605         else if (INTEL_GEN(dev_priv) >= 7)
2606                 /* IVB/HSW primary/sprite plane watermarks */
2607                 return level == 0 ? 127 : 1023;
2608         else if (!is_sprite)
2609                 /* ILK/SNB primary plane watermarks */
2610                 return level == 0 ? 127 : 511;
2611         else
2612                 /* ILK/SNB sprite plane watermarks */
2613                 return level == 0 ? 63 : 255;
2614 }
2615
2616 static unsigned int
2617 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2618 {
2619         if (INTEL_GEN(dev_priv) >= 7)
2620                 return level == 0 ? 63 : 255;
2621         else
2622                 return level == 0 ? 31 : 63;
2623 }
2624
2625 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2626 {
2627         if (INTEL_GEN(dev_priv) >= 8)
2628                 return 31;
2629         else
2630                 return 15;
2631 }
2632
2633 /* Calculate the maximum primary/sprite plane watermark */
2634 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2635                                      int level,
2636                                      const struct intel_wm_config *config,
2637                                      enum intel_ddb_partitioning ddb_partitioning,
2638                                      bool is_sprite)
2639 {
2640         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2641
2642         /* if sprites aren't enabled, sprites get nothing */
2643         if (is_sprite && !config->sprites_enabled)
2644                 return 0;
2645
2646         /* HSW allows LP1+ watermarks even with multiple pipes */
2647         if (level == 0 || config->num_pipes_active > 1) {
2648                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2649
2650                 /*
2651                  * For some reason the non self refresh
2652                  * FIFO size is only half of the self
2653                  * refresh FIFO size on ILK/SNB.
2654                  */
2655                 if (INTEL_GEN(dev_priv) <= 6)
2656                         fifo_size /= 2;
2657         }
2658
2659         if (config->sprites_enabled) {
2660                 /* level 0 is always calculated with 1:1 split */
2661                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2662                         if (is_sprite)
2663                                 fifo_size *= 5;
2664                         fifo_size /= 6;
2665                 } else {
2666                         fifo_size /= 2;
2667                 }
2668         }
2669
2670         /* clamp to max that the registers can hold */
2671         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2672 }
2673
2674 /* Calculate the maximum cursor plane watermark */
2675 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2676                                       int level,
2677                                       const struct intel_wm_config *config)
2678 {
2679         /* HSW LP1+ watermarks w/ multiple pipes */
2680         if (level > 0 && config->num_pipes_active > 1)
2681                 return 64;
2682
2683         /* otherwise just report max that registers can hold */
2684         return ilk_cursor_wm_reg_max(dev_priv, level);
2685 }
2686
2687 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2688                                     int level,
2689                                     const struct intel_wm_config *config,
2690                                     enum intel_ddb_partitioning ddb_partitioning,
2691                                     struct ilk_wm_maximums *max)
2692 {
2693         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2694         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2695         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2696         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2697 }
2698
2699 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2700                                         int level,
2701                                         struct ilk_wm_maximums *max)
2702 {
2703         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2704         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2705         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2706         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2707 }
2708
2709 static bool ilk_validate_wm_level(int level,
2710                                   const struct ilk_wm_maximums *max,
2711                                   struct intel_wm_level *result)
2712 {
2713         bool ret;
2714
2715         /* already determined to be invalid? */
2716         if (!result->enable)
2717                 return false;
2718
2719         result->enable = result->pri_val <= max->pri &&
2720                          result->spr_val <= max->spr &&
2721                          result->cur_val <= max->cur;
2722
2723         ret = result->enable;
2724
2725         /*
2726          * HACK until we can pre-compute everything,
2727          * and thus fail gracefully if LP0 watermarks
2728          * are exceeded...
2729          */
2730         if (level == 0 && !result->enable) {
2731                 if (result->pri_val > max->pri)
2732                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2733                                       level, result->pri_val, max->pri);
2734                 if (result->spr_val > max->spr)
2735                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2736                                       level, result->spr_val, max->spr);
2737                 if (result->cur_val > max->cur)
2738                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2739                                       level, result->cur_val, max->cur);
2740
2741                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2742                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2743                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2744                 result->enable = true;
2745         }
2746
2747         return ret;
2748 }
2749
2750 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2751                                  const struct intel_crtc *intel_crtc,
2752                                  int level,
2753                                  struct intel_crtc_state *cstate,
2754                                  const struct intel_plane_state *pristate,
2755                                  const struct intel_plane_state *sprstate,
2756                                  const struct intel_plane_state *curstate,
2757                                  struct intel_wm_level *result)
2758 {
2759         u16 pri_latency = dev_priv->wm.pri_latency[level];
2760         u16 spr_latency = dev_priv->wm.spr_latency[level];
2761         u16 cur_latency = dev_priv->wm.cur_latency[level];
2762
2763         /* WM1+ latency values stored in 0.5us units */
2764         if (level > 0) {
2765                 pri_latency *= 5;
2766                 spr_latency *= 5;
2767                 cur_latency *= 5;
2768         }
2769
2770         if (pristate) {
2771                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2772                                                      pri_latency, level);
2773                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2774         }
2775
2776         if (sprstate)
2777                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2778
2779         if (curstate)
2780                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2781
2782         result->enable = true;
2783 }
2784
2785 static u32
2786 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2787 {
2788         const struct intel_atomic_state *intel_state =
2789                 to_intel_atomic_state(cstate->base.state);
2790         const struct drm_display_mode *adjusted_mode =
2791                 &cstate->base.adjusted_mode;
2792         u32 linetime, ips_linetime;
2793
2794         if (!cstate->base.active)
2795                 return 0;
2796         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2797                 return 0;
2798         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2799                 return 0;
2800
2801         /* The WM are computed with base on how long it takes to fill a single
2802          * row at the given clock rate, multiplied by 8.
2803          * */
2804         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2805                                      adjusted_mode->crtc_clock);
2806         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2807                                          intel_state->cdclk.logical.cdclk);
2808
2809         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2810                PIPE_WM_LINETIME_TIME(linetime);
2811 }
2812
2813 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2814                                   u16 wm[8])
2815 {
2816         if (INTEL_GEN(dev_priv) >= 9) {
2817                 u32 val;
2818                 int ret, i;
2819                 int level, max_level = ilk_wm_max_level(dev_priv);
2820
2821                 /* read the first set of memory latencies[0:3] */
2822                 val = 0; /* data0 to be programmed to 0 for first set */
2823                 ret = sandybridge_pcode_read(dev_priv,
2824                                              GEN9_PCODE_READ_MEM_LATENCY,
2825                                              &val);
2826
2827                 if (ret) {
2828                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2829                         return;
2830                 }
2831
2832                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2833                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2834                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2835                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2836                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2837                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2838                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2839
2840                 /* read the second set of memory latencies[4:7] */
2841                 val = 1; /* data0 to be programmed to 1 for second set */
2842                 ret = sandybridge_pcode_read(dev_priv,
2843                                              GEN9_PCODE_READ_MEM_LATENCY,
2844                                              &val);
2845                 if (ret) {
2846                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2847                         return;
2848                 }
2849
2850                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2851                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2852                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2853                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2854                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2855                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2856                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2857
2858                 /*
2859                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2860                  * need to be disabled. We make sure to sanitize the values out
2861                  * of the punit to satisfy this requirement.
2862                  */
2863                 for (level = 1; level <= max_level; level++) {
2864                         if (wm[level] == 0) {
2865                                 for (i = level + 1; i <= max_level; i++)
2866                                         wm[i] = 0;
2867                                 break;
2868                         }
2869                 }
2870
2871                 /*
2872                  * WaWmMemoryReadLatency:skl+,glk
2873                  *
2874                  * punit doesn't take into account the read latency so we need
2875                  * to add 2us to the various latency levels we retrieve from the
2876                  * punit when level 0 response data us 0us.
2877                  */
2878                 if (wm[0] == 0) {
2879                         wm[0] += 2;
2880                         for (level = 1; level <= max_level; level++) {
2881                                 if (wm[level] == 0)
2882                                         break;
2883                                 wm[level] += 2;
2884                         }
2885                 }
2886
2887                 /*
2888                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2889                  * If we could not get dimm info enable this WA to prevent from
2890                  * any underrun. If not able to get Dimm info assume 16GB dimm
2891                  * to avoid any underrun.
2892                  */
2893                 if (dev_priv->dram_info.is_16gb_dimm)
2894                         wm[0] += 1;
2895
2896         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2897                 u64 sskpd = I915_READ64(MCH_SSKPD);
2898
2899                 wm[0] = (sskpd >> 56) & 0xFF;
2900                 if (wm[0] == 0)
2901                         wm[0] = sskpd & 0xF;
2902                 wm[1] = (sskpd >> 4) & 0xFF;
2903                 wm[2] = (sskpd >> 12) & 0xFF;
2904                 wm[3] = (sskpd >> 20) & 0x1FF;
2905                 wm[4] = (sskpd >> 32) & 0x1FF;
2906         } else if (INTEL_GEN(dev_priv) >= 6) {
2907                 u32 sskpd = I915_READ(MCH_SSKPD);
2908
2909                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2910                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2911                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2912                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2913         } else if (INTEL_GEN(dev_priv) >= 5) {
2914                 u32 mltr = I915_READ(MLTR_ILK);
2915
2916                 /* ILK primary LP0 latency is 700 ns */
2917                 wm[0] = 7;
2918                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2919                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2920         } else {
2921                 MISSING_CASE(INTEL_DEVID(dev_priv));
2922         }
2923 }
2924
2925 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2926                                        u16 wm[5])
2927 {
2928         /* ILK sprite LP0 latency is 1300 ns */
2929         if (IS_GEN(dev_priv, 5))
2930                 wm[0] = 13;
2931 }
2932
2933 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2934                                        u16 wm[5])
2935 {
2936         /* ILK cursor LP0 latency is 1300 ns */
2937         if (IS_GEN(dev_priv, 5))
2938                 wm[0] = 13;
2939 }
2940
2941 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2942 {
2943         /* how many WM levels are we expecting */
2944         if (INTEL_GEN(dev_priv) >= 9)
2945                 return 7;
2946         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2947                 return 4;
2948         else if (INTEL_GEN(dev_priv) >= 6)
2949                 return 3;
2950         else
2951                 return 2;
2952 }
2953
2954 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2955                                    const char *name,
2956                                    const u16 wm[8])
2957 {
2958         int level, max_level = ilk_wm_max_level(dev_priv);
2959
2960         for (level = 0; level <= max_level; level++) {
2961                 unsigned int latency = wm[level];
2962
2963                 if (latency == 0) {
2964                         DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2965                                       name, level);
2966                         continue;
2967                 }
2968
2969                 /*
2970                  * - latencies are in us on gen9.
2971                  * - before then, WM1+ latency values are in 0.5us units
2972                  */
2973                 if (INTEL_GEN(dev_priv) >= 9)
2974                         latency *= 10;
2975                 else if (level > 0)
2976                         latency *= 5;
2977
2978                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2979                               name, level, wm[level],
2980                               latency / 10, latency % 10);
2981         }
2982 }
2983
2984 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2985                                     u16 wm[5], u16 min)
2986 {
2987         int level, max_level = ilk_wm_max_level(dev_priv);
2988
2989         if (wm[0] >= min)
2990                 return false;
2991
2992         wm[0] = max(wm[0], min);
2993         for (level = 1; level <= max_level; level++)
2994                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2995
2996         return true;
2997 }
2998
2999 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3000 {
3001         bool changed;
3002
3003         /*
3004          * The BIOS provided WM memory latency values are often
3005          * inadequate for high resolution displays. Adjust them.
3006          */
3007         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3008                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3009                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3010
3011         if (!changed)
3012                 return;
3013
3014         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3015         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3016         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3017         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3018 }
3019
3020 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3021 {
3022         /*
3023          * On some SNB machines (Thinkpad X220 Tablet at least)
3024          * LP3 usage can cause vblank interrupts to be lost.
3025          * The DEIIR bit will go high but it looks like the CPU
3026          * never gets interrupted.
3027          *
3028          * It's not clear whether other interrupt source could
3029          * be affected or if this is somehow limited to vblank
3030          * interrupts only. To play it safe we disable LP3
3031          * watermarks entirely.
3032          */
3033         if (dev_priv->wm.pri_latency[3] == 0 &&
3034             dev_priv->wm.spr_latency[3] == 0 &&
3035             dev_priv->wm.cur_latency[3] == 0)
3036                 return;
3037
3038         dev_priv->wm.pri_latency[3] = 0;
3039         dev_priv->wm.spr_latency[3] = 0;
3040         dev_priv->wm.cur_latency[3] = 0;
3041
3042         DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3043         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3044         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3045         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3046 }
3047
3048 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3049 {
3050         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3051
3052         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3053                sizeof(dev_priv->wm.pri_latency));
3054         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3055                sizeof(dev_priv->wm.pri_latency));
3056
3057         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3058         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3059
3060         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3061         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3062         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3063
3064         if (IS_GEN(dev_priv, 6)) {
3065                 snb_wm_latency_quirk(dev_priv);
3066                 snb_wm_lp3_irq_quirk(dev_priv);
3067         }
3068 }
3069
3070 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3071 {
3072         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3073         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3074 }
3075
3076 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3077                                  struct intel_pipe_wm *pipe_wm)
3078 {
3079         /* LP0 watermark maximums depend on this pipe alone */
3080         const struct intel_wm_config config = {
3081                 .num_pipes_active = 1,
3082                 .sprites_enabled = pipe_wm->sprites_enabled,
3083                 .sprites_scaled = pipe_wm->sprites_scaled,
3084         };
3085         struct ilk_wm_maximums max;
3086
3087         /* LP0 watermarks always use 1/2 DDB partitioning */
3088         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3089
3090         /* At least LP0 must be valid */
3091         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3092                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3093                 return false;
3094         }
3095
3096         return true;
3097 }
3098
3099 /* Compute new watermarks for the pipe */
3100 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3101 {
3102         struct drm_atomic_state *state = cstate->base.state;
3103         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3104         struct intel_pipe_wm *pipe_wm;
3105         struct drm_device *dev = state->dev;
3106         const struct drm_i915_private *dev_priv = to_i915(dev);
3107         struct drm_plane *plane;
3108         const struct drm_plane_state *plane_state;
3109         const struct intel_plane_state *pristate = NULL;
3110         const struct intel_plane_state *sprstate = NULL;
3111         const struct intel_plane_state *curstate = NULL;
3112         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3113         struct ilk_wm_maximums max;
3114
3115         pipe_wm = &cstate->wm.ilk.optimal;
3116
3117         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3118                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3119
3120                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3121                         pristate = ps;
3122                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3123                         sprstate = ps;
3124                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3125                         curstate = ps;
3126         }
3127
3128         pipe_wm->pipe_enabled = cstate->base.active;
3129         if (sprstate) {
3130                 pipe_wm->sprites_enabled = sprstate->base.visible;
3131                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3132                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3133                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3134         }
3135
3136         usable_level = max_level;
3137
3138         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3139         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3140                 usable_level = 1;
3141
3142         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3143         if (pipe_wm->sprites_scaled)
3144                 usable_level = 0;
3145
3146         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3147         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3148                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3149
3150         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3151                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3152
3153         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3154                 return -EINVAL;
3155
3156         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3157
3158         for (level = 1; level <= usable_level; level++) {
3159                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3160
3161                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3162                                      pristate, sprstate, curstate, wm);
3163
3164                 /*
3165                  * Disable any watermark level that exceeds the
3166                  * register maximums since such watermarks are
3167                  * always invalid.
3168                  */
3169                 if (!ilk_validate_wm_level(level, &max, wm)) {
3170                         memset(wm, 0, sizeof(*wm));
3171                         break;
3172                 }
3173         }
3174
3175         return 0;
3176 }
3177
3178 /*
3179  * Build a set of 'intermediate' watermark values that satisfy both the old
3180  * state and the new state.  These can be programmed to the hardware
3181  * immediately.
3182  */
3183 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3184 {
3185         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3186         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3187         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3188         struct intel_atomic_state *intel_state =
3189                 to_intel_atomic_state(newstate->base.state);
3190         const struct intel_crtc_state *oldstate =
3191                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3192         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3193         int level, max_level = ilk_wm_max_level(dev_priv);
3194
3195         /*
3196          * Start with the final, target watermarks, then combine with the
3197          * currently active watermarks to get values that are safe both before
3198          * and after the vblank.
3199          */
3200         *a = newstate->wm.ilk.optimal;
3201         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3202             intel_state->skip_intermediate_wm)
3203                 return 0;
3204
3205         a->pipe_enabled |= b->pipe_enabled;
3206         a->sprites_enabled |= b->sprites_enabled;
3207         a->sprites_scaled |= b->sprites_scaled;
3208
3209         for (level = 0; level <= max_level; level++) {
3210                 struct intel_wm_level *a_wm = &a->wm[level];
3211                 const struct intel_wm_level *b_wm = &b->wm[level];
3212
3213                 a_wm->enable &= b_wm->enable;
3214                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3215                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3216                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3217                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3218         }
3219
3220         /*
3221          * We need to make sure that these merged watermark values are
3222          * actually a valid configuration themselves.  If they're not,
3223          * there's no safe way to transition from the old state to
3224          * the new state, so we need to fail the atomic transaction.
3225          */
3226         if (!ilk_validate_pipe_wm(dev_priv, a))
3227                 return -EINVAL;
3228
3229         /*
3230          * If our intermediate WM are identical to the final WM, then we can
3231          * omit the post-vblank programming; only update if it's different.
3232          */
3233         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3234                 newstate->wm.need_postvbl_update = true;
3235
3236         return 0;
3237 }
3238
3239 /*
3240  * Merge the watermarks from all active pipes for a specific level.
3241  */
3242 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3243                                int level,
3244                                struct intel_wm_level *ret_wm)
3245 {
3246         const struct intel_crtc *intel_crtc;
3247
3248         ret_wm->enable = true;
3249
3250         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3251                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3252                 const struct intel_wm_level *wm = &active->wm[level];
3253
3254                 if (!active->pipe_enabled)
3255                         continue;
3256
3257                 /*
3258                  * The watermark values may have been used in the past,
3259                  * so we must maintain them in the registers for some
3260                  * time even if the level is now disabled.
3261                  */
3262                 if (!wm->enable)
3263                         ret_wm->enable = false;
3264
3265                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3266                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3267                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3268                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3269         }
3270 }
3271
3272 /*
3273  * Merge all low power watermarks for all active pipes.
3274  */
3275 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3276                          const struct intel_wm_config *config,
3277                          const struct ilk_wm_maximums *max,
3278                          struct intel_pipe_wm *merged)
3279 {
3280         int level, max_level = ilk_wm_max_level(dev_priv);
3281         int last_enabled_level = max_level;
3282
3283         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3284         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3285             config->num_pipes_active > 1)
3286                 last_enabled_level = 0;
3287
3288         /* ILK: FBC WM must be disabled always */
3289         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3290
3291         /* merge each WM1+ level */
3292         for (level = 1; level <= max_level; level++) {
3293                 struct intel_wm_level *wm = &merged->wm[level];
3294
3295                 ilk_merge_wm_level(dev_priv, level, wm);
3296
3297                 if (level > last_enabled_level)
3298                         wm->enable = false;
3299                 else if (!ilk_validate_wm_level(level, max, wm))
3300                         /* make sure all following levels get disabled */
3301                         last_enabled_level = level - 1;
3302
3303                 /*
3304                  * The spec says it is preferred to disable
3305                  * FBC WMs instead of disabling a WM level.
3306                  */
3307                 if (wm->fbc_val > max->fbc) {
3308                         if (wm->enable)
3309                                 merged->fbc_wm_enabled = false;
3310                         wm->fbc_val = 0;
3311                 }
3312         }
3313
3314         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3315         /*
3316          * FIXME this is racy. FBC might get enabled later.
3317          * What we should check here is whether FBC can be
3318          * enabled sometime later.
3319          */
3320         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3321             intel_fbc_is_active(dev_priv)) {
3322                 for (level = 2; level <= max_level; level++) {
3323                         struct intel_wm_level *wm = &merged->wm[level];
3324
3325                         wm->enable = false;
3326                 }
3327         }
3328 }
3329
3330 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3331 {
3332         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3333         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3334 }
3335
3336 /* The value we need to program into the WM_LPx latency field */
3337 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3338                                       int level)
3339 {
3340         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3341                 return 2 * level;
3342         else
3343                 return dev_priv->wm.pri_latency[level];
3344 }
3345
3346 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3347                                    const struct intel_pipe_wm *merged,
3348                                    enum intel_ddb_partitioning partitioning,
3349                                    struct ilk_wm_values *results)
3350 {
3351         struct intel_crtc *intel_crtc;
3352         int level, wm_lp;
3353
3354         results->enable_fbc_wm = merged->fbc_wm_enabled;
3355         results->partitioning = partitioning;
3356
3357         /* LP1+ register values */
3358         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3359                 const struct intel_wm_level *r;
3360
3361                 level = ilk_wm_lp_to_level(wm_lp, merged);
3362
3363                 r = &merged->wm[level];
3364
3365                 /*
3366                  * Maintain the watermark values even if the level is
3367                  * disabled. Doing otherwise could cause underruns.
3368                  */
3369                 results->wm_lp[wm_lp - 1] =
3370                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3371                         (r->pri_val << WM1_LP_SR_SHIFT) |
3372                         r->cur_val;
3373
3374                 if (r->enable)
3375                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3376
3377                 if (INTEL_GEN(dev_priv) >= 8)
3378                         results->wm_lp[wm_lp - 1] |=
3379                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3380                 else
3381                         results->wm_lp[wm_lp - 1] |=
3382                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3383
3384                 /*
3385                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3386                  * level is disabled. Doing otherwise could cause underruns.
3387                  */
3388                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3389                         WARN_ON(wm_lp != 1);
3390                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3391                 } else
3392                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3393         }
3394
3395         /* LP0 register values */
3396         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3397                 enum pipe pipe = intel_crtc->pipe;
3398                 const struct intel_wm_level *r =
3399                         &intel_crtc->wm.active.ilk.wm[0];
3400
3401                 if (WARN_ON(!r->enable))
3402                         continue;
3403
3404                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3405
3406                 results->wm_pipe[pipe] =
3407                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3408                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3409                         r->cur_val;
3410         }
3411 }
3412
3413 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3414  * case both are at the same level. Prefer r1 in case they're the same. */
3415 static struct intel_pipe_wm *
3416 ilk_find_best_result(struct drm_i915_private *dev_priv,
3417                      struct intel_pipe_wm *r1,
3418                      struct intel_pipe_wm *r2)
3419 {
3420         int level, max_level = ilk_wm_max_level(dev_priv);
3421         int level1 = 0, level2 = 0;
3422
3423         for (level = 1; level <= max_level; level++) {
3424                 if (r1->wm[level].enable)
3425                         level1 = level;
3426                 if (r2->wm[level].enable)
3427                         level2 = level;
3428         }
3429
3430         if (level1 == level2) {
3431                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3432                         return r2;
3433                 else
3434                         return r1;
3435         } else if (level1 > level2) {
3436                 return r1;
3437         } else {
3438                 return r2;
3439         }
3440 }
3441
3442 /* dirty bits used to track which watermarks need changes */
3443 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3444 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3445 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3446 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3447 #define WM_DIRTY_FBC (1 << 24)
3448 #define WM_DIRTY_DDB (1 << 25)
3449
3450 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3451                                          const struct ilk_wm_values *old,
3452                                          const struct ilk_wm_values *new)
3453 {
3454         unsigned int dirty = 0;
3455         enum pipe pipe;
3456         int wm_lp;
3457
3458         for_each_pipe(dev_priv, pipe) {
3459                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3460                         dirty |= WM_DIRTY_LINETIME(pipe);
3461                         /* Must disable LP1+ watermarks too */
3462                         dirty |= WM_DIRTY_LP_ALL;
3463                 }
3464
3465                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3466                         dirty |= WM_DIRTY_PIPE(pipe);
3467                         /* Must disable LP1+ watermarks too */
3468                         dirty |= WM_DIRTY_LP_ALL;
3469                 }
3470         }
3471
3472         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3473                 dirty |= WM_DIRTY_FBC;
3474                 /* Must disable LP1+ watermarks too */
3475                 dirty |= WM_DIRTY_LP_ALL;
3476         }
3477
3478         if (old->partitioning != new->partitioning) {
3479                 dirty |= WM_DIRTY_DDB;
3480                 /* Must disable LP1+ watermarks too */
3481                 dirty |= WM_DIRTY_LP_ALL;
3482         }
3483
3484         /* LP1+ watermarks already deemed dirty, no need to continue */
3485         if (dirty & WM_DIRTY_LP_ALL)
3486                 return dirty;
3487
3488         /* Find the lowest numbered LP1+ watermark in need of an update... */
3489         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3490                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3491                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3492                         break;
3493         }
3494
3495         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3496         for (; wm_lp <= 3; wm_lp++)
3497                 dirty |= WM_DIRTY_LP(wm_lp);
3498
3499         return dirty;
3500 }
3501
3502 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3503                                unsigned int dirty)
3504 {
3505         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3506         bool changed = false;
3507
3508         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3509                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3510                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3511                 changed = true;
3512         }
3513         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3514                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3515                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3516                 changed = true;
3517         }
3518         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3519                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3520                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3521                 changed = true;
3522         }
3523
3524         /*
3525          * Don't touch WM1S_LP_EN here.
3526          * Doing so could cause underruns.
3527          */
3528
3529         return changed;
3530 }
3531
3532 /*
3533  * The spec says we shouldn't write when we don't need, because every write
3534  * causes WMs to be re-evaluated, expending some power.
3535  */
3536 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3537                                 struct ilk_wm_values *results)
3538 {
3539         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3540         unsigned int dirty;
3541         u32 val;
3542
3543         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3544         if (!dirty)
3545                 return;
3546
3547         _ilk_disable_lp_wm(dev_priv, dirty);
3548
3549         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3550                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3551         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3552                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3553         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3554                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3555
3556         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3557                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3558         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3559                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3560         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3561                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3562
3563         if (dirty & WM_DIRTY_DDB) {
3564                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3565                         val = I915_READ(WM_MISC);
3566                         if (results->partitioning == INTEL_DDB_PART_1_2)
3567                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3568                         else
3569                                 val |= WM_MISC_DATA_PARTITION_5_6;
3570                         I915_WRITE(WM_MISC, val);
3571                 } else {
3572                         val = I915_READ(DISP_ARB_CTL2);
3573                         if (results->partitioning == INTEL_DDB_PART_1_2)
3574                                 val &= ~DISP_DATA_PARTITION_5_6;
3575                         else
3576                                 val |= DISP_DATA_PARTITION_5_6;
3577                         I915_WRITE(DISP_ARB_CTL2, val);
3578                 }
3579         }
3580
3581         if (dirty & WM_DIRTY_FBC) {
3582                 val = I915_READ(DISP_ARB_CTL);
3583                 if (results->enable_fbc_wm)
3584                         val &= ~DISP_FBC_WM_DIS;
3585                 else
3586                         val |= DISP_FBC_WM_DIS;
3587                 I915_WRITE(DISP_ARB_CTL, val);
3588         }
3589
3590         if (dirty & WM_DIRTY_LP(1) &&
3591             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3592                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3593
3594         if (INTEL_GEN(dev_priv) >= 7) {
3595                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3596                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3597                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3598                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3599         }
3600
3601         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3602                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3603         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3604                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3605         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3606                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3607
3608         dev_priv->wm.hw = *results;
3609 }
3610
3611 bool ilk_disable_lp_wm(struct drm_device *dev)
3612 {
3613         struct drm_i915_private *dev_priv = to_i915(dev);
3614
3615         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3616 }
3617
3618 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3619 {
3620         u8 enabled_slices;
3621
3622         /* Slice 1 will always be enabled */
3623         enabled_slices = 1;
3624
3625         /* Gen prior to GEN11 have only one DBuf slice */
3626         if (INTEL_GEN(dev_priv) < 11)
3627                 return enabled_slices;
3628
3629         /*
3630          * FIXME: for now we'll only ever use 1 slice; pretend that we have
3631          * only that 1 slice enabled until we have a proper way for on-demand
3632          * toggling of the second slice.
3633          */
3634         if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3635                 enabled_slices++;
3636
3637         return enabled_slices;
3638 }
3639
3640 /*
3641  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3642  * so assume we'll always need it in order to avoid underruns.
3643  */
3644 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3645 {
3646         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3647 }
3648
3649 static bool
3650 intel_has_sagv(struct drm_i915_private *dev_priv)
3651 {
3652         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3653                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3654 }
3655
3656 /*
3657  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3658  * depending on power and performance requirements. The display engine access
3659  * to system memory is blocked during the adjustment time. Because of the
3660  * blocking time, having this enabled can cause full system hangs and/or pipe
3661  * underruns if we don't meet all of the following requirements:
3662  *
3663  *  - <= 1 pipe enabled
3664  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3665  *  - We're not using an interlaced display configuration
3666  */
3667 int
3668 intel_enable_sagv(struct drm_i915_private *dev_priv)
3669 {
3670         int ret;
3671
3672         if (!intel_has_sagv(dev_priv))
3673                 return 0;
3674
3675         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3676                 return 0;
3677
3678         DRM_DEBUG_KMS("Enabling SAGV\n");
3679         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3680                                       GEN9_SAGV_ENABLE);
3681
3682         /* We don't need to wait for SAGV when enabling */
3683
3684         /*
3685          * Some skl systems, pre-release machines in particular,
3686          * don't actually have SAGV.
3687          */
3688         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691                 return 0;
3692         } else if (ret < 0) {
3693                 DRM_ERROR("Failed to enable SAGV\n");
3694                 return ret;
3695         }
3696
3697         dev_priv->sagv_status = I915_SAGV_ENABLED;
3698         return 0;
3699 }
3700
3701 int
3702 intel_disable_sagv(struct drm_i915_private *dev_priv)
3703 {
3704         int ret;
3705
3706         if (!intel_has_sagv(dev_priv))
3707                 return 0;
3708
3709         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3710                 return 0;
3711
3712         DRM_DEBUG_KMS("Disabling SAGV\n");
3713         /* bspec says to keep retrying for at least 1 ms */
3714         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3715                                 GEN9_SAGV_DISABLE,
3716                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3717                                 1);
3718         /*
3719          * Some skl systems, pre-release machines in particular,
3720          * don't actually have SAGV.
3721          */
3722         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3723                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3724                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3725                 return 0;
3726         } else if (ret < 0) {
3727                 DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3728                 return ret;
3729         }
3730
3731         dev_priv->sagv_status = I915_SAGV_DISABLED;
3732         return 0;
3733 }
3734
3735 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3736 {
3737         struct drm_device *dev = state->dev;
3738         struct drm_i915_private *dev_priv = to_i915(dev);
3739         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3740         struct intel_crtc *crtc;
3741         struct intel_plane *plane;
3742         struct intel_crtc_state *cstate;
3743         enum pipe pipe;
3744         int level, latency;
3745         int sagv_block_time_us;
3746
3747         if (!intel_has_sagv(dev_priv))
3748                 return false;
3749
3750         if (IS_GEN(dev_priv, 9))
3751                 sagv_block_time_us = 30;
3752         else if (IS_GEN(dev_priv, 10))
3753                 sagv_block_time_us = 20;
3754         else
3755                 sagv_block_time_us = 10;
3756
3757         /*
3758          * If there are no active CRTCs, no additional checks need be performed
3759          */
3760         if (hweight32(intel_state->active_crtcs) == 0)
3761                 return true;
3762
3763         /*
3764          * SKL+ workaround: bspec recommends we disable SAGV when we have
3765          * more then one pipe enabled
3766          */
3767         if (hweight32(intel_state->active_crtcs) > 1)
3768                 return false;
3769
3770         /* Since we're now guaranteed to only have one active CRTC... */
3771         pipe = ffs(intel_state->active_crtcs) - 1;
3772         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3773         cstate = to_intel_crtc_state(crtc->base.state);
3774
3775         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3776                 return false;
3777
3778         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3779                 struct skl_plane_wm *wm =
3780                         &cstate->wm.skl.optimal.planes[plane->id];
3781
3782                 /* Skip this plane if it's not enabled */
3783                 if (!wm->wm[0].plane_en)
3784                         continue;
3785
3786                 /* Find the highest enabled wm level for this plane */
3787                 for (level = ilk_wm_max_level(dev_priv);
3788                      !wm->wm[level].plane_en; --level)
3789                      { }
3790
3791                 latency = dev_priv->wm.skl_latency[level];
3792
3793                 if (skl_needs_memory_bw_wa(dev_priv) &&
3794                     plane->base.state->fb->modifier ==
3795                     I915_FORMAT_MOD_X_TILED)
3796                         latency += 15;
3797
3798                 /*
3799                  * If any of the planes on this pipe don't enable wm levels that
3800                  * incur memory latencies higher than sagv_block_time_us we
3801                  * can't enable SAGV.
3802                  */
3803                 if (latency < sagv_block_time_us)
3804                         return false;
3805         }
3806
3807         return true;
3808 }
3809
3810 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3811                               const struct intel_crtc_state *cstate,
3812                               const u64 total_data_rate,
3813                               const int num_active,
3814                               struct skl_ddb_allocation *ddb)
3815 {
3816         const struct drm_display_mode *adjusted_mode;
3817         u64 total_data_bw;
3818         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3819
3820         WARN_ON(ddb_size == 0);
3821
3822         if (INTEL_GEN(dev_priv) < 11)
3823                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3824
3825         adjusted_mode = &cstate->base.adjusted_mode;
3826         total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3827
3828         /*
3829          * 12GB/s is maximum BW supported by single DBuf slice.
3830          *
3831          * FIXME dbuf slice code is broken:
3832          * - must wait for planes to stop using the slice before powering it off
3833          * - plane straddling both slices is illegal in multi-pipe scenarios
3834          * - should validate we stay within the hw bandwidth limits
3835          */
3836         if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3837                 ddb->enabled_slices = 2;
3838         } else {
3839                 ddb->enabled_slices = 1;
3840                 ddb_size /= 2;
3841         }
3842
3843         return ddb_size;
3844 }
3845
3846 static void
3847 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3848                                    const struct intel_crtc_state *cstate,
3849                                    const u64 total_data_rate,
3850                                    struct skl_ddb_allocation *ddb,
3851                                    struct skl_ddb_entry *alloc, /* out */
3852                                    int *num_active /* out */)
3853 {
3854         struct drm_atomic_state *state = cstate->base.state;
3855         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3856         struct drm_crtc *for_crtc = cstate->base.crtc;
3857         const struct drm_crtc_state *crtc_state;
3858         const struct drm_crtc *crtc;
3859         u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3860         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3861         u16 ddb_size;
3862         u32 i;
3863
3864         if (WARN_ON(!state) || !cstate->base.active) {
3865                 alloc->start = 0;
3866                 alloc->end = 0;
3867                 *num_active = hweight32(dev_priv->active_crtcs);
3868                 return;
3869         }
3870
3871         if (intel_state->active_pipe_changes)
3872                 *num_active = hweight32(intel_state->active_crtcs);
3873         else
3874                 *num_active = hweight32(dev_priv->active_crtcs);
3875
3876         ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3877                                       *num_active, ddb);
3878
3879         /*
3880          * If the state doesn't change the active CRTC's or there is no
3881          * modeset request, then there's no need to recalculate;
3882          * the existing pipe allocation limits should remain unchanged.
3883          * Note that we're safe from racing commits since any racing commit
3884          * that changes the active CRTC list or do modeset would need to
3885          * grab _all_ crtc locks, including the one we currently hold.
3886          */
3887         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3888                 /*
3889                  * alloc may be cleared by clear_intel_crtc_state,
3890                  * copy from old state to be sure
3891                  */
3892                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3893                 return;
3894         }
3895
3896         /*
3897          * Watermark/ddb requirement highly depends upon width of the
3898          * framebuffer, So instead of allocating DDB equally among pipes
3899          * distribute DDB based on resolution/width of the display.
3900          */
3901         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3902                 const struct drm_display_mode *adjusted_mode;
3903                 int hdisplay, vdisplay;
3904                 enum pipe pipe;
3905
3906                 if (!crtc_state->enable)
3907                         continue;
3908
3909                 pipe = to_intel_crtc(crtc)->pipe;
3910                 adjusted_mode = &crtc_state->adjusted_mode;
3911                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3912                 total_width += hdisplay;
3913
3914                 if (pipe < for_pipe)
3915                         width_before_pipe += hdisplay;
3916                 else if (pipe == for_pipe)
3917                         pipe_width = hdisplay;
3918         }
3919
3920         alloc->start = ddb_size * width_before_pipe / total_width;
3921         alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3922 }
3923
3924 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3925                                  int width, const struct drm_format_info *format,
3926                                  u64 modifier, unsigned int rotation,
3927                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
3928                                  int color_plane);
3929 static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
3930                                  int level,
3931                                  const struct skl_wm_params *wp,
3932                                  const struct skl_wm_level *result_prev,
3933                                  struct skl_wm_level *result /* out */);
3934
3935 static unsigned int
3936 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3937                       int num_active)
3938 {
3939         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3940         int level, max_level = ilk_wm_max_level(dev_priv);
3941         struct skl_wm_level wm = {};
3942         int ret, min_ddb_alloc = 0;
3943         struct skl_wm_params wp;
3944
3945         ret = skl_compute_wm_params(crtc_state, 256,
3946                                     drm_format_info(DRM_FORMAT_ARGB8888),
3947                                     DRM_FORMAT_MOD_LINEAR,
3948                                     DRM_MODE_ROTATE_0,
3949                                     crtc_state->pixel_rate, &wp, 0);
3950         WARN_ON(ret);
3951
3952         for (level = 0; level <= max_level; level++) {
3953                 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3954                 if (wm.min_ddb_alloc == U16_MAX)
3955                         break;
3956
3957                 min_ddb_alloc = wm.min_ddb_alloc;
3958         }
3959
3960         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3961 }
3962
3963 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3964                                        struct skl_ddb_entry *entry, u32 reg)
3965 {
3966
3967         entry->start = reg & DDB_ENTRY_MASK;
3968         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3969
3970         if (entry->end)
3971                 entry->end += 1;
3972 }
3973
3974 static void
3975 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3976                            const enum pipe pipe,
3977                            const enum plane_id plane_id,
3978                            struct skl_ddb_entry *ddb_y,
3979                            struct skl_ddb_entry *ddb_uv)
3980 {
3981         u32 val, val2;
3982         u32 fourcc = 0;
3983
3984         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3985         if (plane_id == PLANE_CURSOR) {
3986                 val = I915_READ(CUR_BUF_CFG(pipe));
3987                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3988                 return;
3989         }
3990
3991         val = I915_READ(PLANE_CTL(pipe, plane_id));
3992
3993         /* No DDB allocated for disabled planes */
3994         if (val & PLANE_CTL_ENABLE)
3995                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
3996                                               val & PLANE_CTL_ORDER_RGBX,
3997                                               val & PLANE_CTL_ALPHA_MASK);
3998
3999         if (INTEL_GEN(dev_priv) >= 11) {
4000                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4001                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4002         } else {
4003                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4004                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4005
4006                 if (is_planar_yuv_format(fourcc))
4007                         swap(val, val2);
4008
4009                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4010                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4011         }
4012 }
4013
4014 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4015                                struct skl_ddb_entry *ddb_y,
4016                                struct skl_ddb_entry *ddb_uv)
4017 {
4018         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4019         enum intel_display_power_domain power_domain;
4020         enum pipe pipe = crtc->pipe;
4021         intel_wakeref_t wakeref;
4022         enum plane_id plane_id;
4023
4024         power_domain = POWER_DOMAIN_PIPE(pipe);
4025         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4026         if (!wakeref)
4027                 return;
4028
4029         for_each_plane_id_on_crtc(crtc, plane_id)
4030                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4031                                            plane_id,
4032                                            &ddb_y[plane_id],
4033                                            &ddb_uv[plane_id]);
4034
4035         intel_display_power_put(dev_priv, power_domain, wakeref);
4036 }
4037
4038 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4039                           struct skl_ddb_allocation *ddb /* out */)
4040 {
4041         ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4042 }
4043
4044 /*
4045  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4046  * The bspec defines downscale amount as:
4047  *
4048  * """
4049  * Horizontal down scale amount = maximum[1, Horizontal source size /
4050  *                                           Horizontal destination size]
4051  * Vertical down scale amount = maximum[1, Vertical source size /
4052  *                                         Vertical destination size]
4053  * Total down scale amount = Horizontal down scale amount *
4054  *                           Vertical down scale amount
4055  * """
4056  *
4057  * Return value is provided in 16.16 fixed point form to retain fractional part.
4058  * Caller should take care of dividing & rounding off the value.
4059  */
4060 static uint_fixed_16_16_t
4061 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4062                            const struct intel_plane_state *pstate)
4063 {
4064         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4065         u32 src_w, src_h, dst_w, dst_h;
4066         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4067         uint_fixed_16_16_t downscale_h, downscale_w;
4068
4069         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4070                 return u32_to_fixed16(0);
4071
4072         /* n.b., src is 16.16 fixed point, dst is whole integer */
4073         if (plane->id == PLANE_CURSOR) {
4074                 /*
4075                  * Cursors only support 0/180 degree rotation,
4076                  * hence no need to account for rotation here.
4077                  */
4078                 src_w = pstate->base.src_w >> 16;
4079                 src_h = pstate->base.src_h >> 16;
4080                 dst_w = pstate->base.crtc_w;
4081                 dst_h = pstate->base.crtc_h;
4082         } else {
4083                 /*
4084                  * Src coordinates are already rotated by 270 degrees for
4085                  * the 90/270 degree plane rotation cases (to match the
4086                  * GTT mapping), hence no need to account for rotation here.
4087                  */
4088                 src_w = drm_rect_width(&pstate->base.src) >> 16;
4089                 src_h = drm_rect_height(&pstate->base.src) >> 16;
4090                 dst_w = drm_rect_width(&pstate->base.dst);
4091                 dst_h = drm_rect_height(&pstate->base.dst);
4092         }
4093
4094         fp_w_ratio = div_fixed16(src_w, dst_w);
4095         fp_h_ratio = div_fixed16(src_h, dst_h);
4096         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4097         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4098
4099         return mul_fixed16(downscale_w, downscale_h);
4100 }
4101
4102 static uint_fixed_16_16_t
4103 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4104 {
4105         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4106
4107         if (!crtc_state->base.enable)
4108                 return pipe_downscale;
4109
4110         if (crtc_state->pch_pfit.enabled) {
4111                 u32 src_w, src_h, dst_w, dst_h;
4112                 u32 pfit_size = crtc_state->pch_pfit.size;
4113                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4114                 uint_fixed_16_16_t downscale_h, downscale_w;
4115
4116                 src_w = crtc_state->pipe_src_w;
4117                 src_h = crtc_state->pipe_src_h;
4118                 dst_w = pfit_size >> 16;
4119                 dst_h = pfit_size & 0xffff;
4120
4121                 if (!dst_w || !dst_h)
4122                         return pipe_downscale;
4123
4124                 fp_w_ratio = div_fixed16(src_w, dst_w);
4125                 fp_h_ratio = div_fixed16(src_h, dst_h);
4126                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4127                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4128
4129                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4130         }
4131
4132         return pipe_downscale;
4133 }
4134
4135 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4136                                   struct intel_crtc_state *cstate)
4137 {
4138         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4139         struct drm_crtc_state *crtc_state = &cstate->base;
4140         struct drm_atomic_state *state = crtc_state->state;
4141         struct drm_plane *plane;
4142         const struct drm_plane_state *pstate;
4143         struct intel_plane_state *intel_pstate;
4144         int crtc_clock, dotclk;
4145         u32 pipe_max_pixel_rate;
4146         uint_fixed_16_16_t pipe_downscale;
4147         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4148
4149         if (!cstate->base.enable)
4150                 return 0;
4151
4152         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4153                 uint_fixed_16_16_t plane_downscale;
4154                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4155                 int bpp;
4156
4157                 if (!intel_wm_plane_visible(cstate,
4158                                             to_intel_plane_state(pstate)))
4159                         continue;
4160
4161                 if (WARN_ON(!pstate->fb))
4162                         return -EINVAL;
4163
4164                 intel_pstate = to_intel_plane_state(pstate);
4165                 plane_downscale = skl_plane_downscale_amount(cstate,
4166                                                              intel_pstate);
4167                 bpp = pstate->fb->format->cpp[0] * 8;
4168                 if (bpp == 64)
4169                         plane_downscale = mul_fixed16(plane_downscale,
4170                                                       fp_9_div_8);
4171
4172                 max_downscale = max_fixed16(plane_downscale, max_downscale);
4173         }
4174         pipe_downscale = skl_pipe_downscale_amount(cstate);
4175
4176         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4177
4178         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4179         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4180
4181         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4182                 dotclk *= 2;
4183
4184         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4185
4186         if (pipe_max_pixel_rate < crtc_clock) {
4187                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4188                 return -EINVAL;
4189         }
4190
4191         return 0;
4192 }
4193
4194 static u64
4195 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4196                              const struct intel_plane_state *intel_pstate,
4197                              const int plane)
4198 {
4199         struct intel_plane *intel_plane =
4200                 to_intel_plane(intel_pstate->base.plane);
4201         u32 data_rate;
4202         u32 width = 0, height = 0;
4203         struct drm_framebuffer *fb;
4204         u32 format;
4205         uint_fixed_16_16_t down_scale_amount;
4206         u64 rate;
4207
4208         if (!intel_pstate->base.visible)
4209                 return 0;
4210
4211         fb = intel_pstate->base.fb;
4212         format = fb->format->format;
4213
4214         if (intel_plane->id == PLANE_CURSOR)
4215                 return 0;
4216         if (plane == 1 && !is_planar_yuv_format(format))
4217                 return 0;
4218
4219         /*
4220          * Src coordinates are already rotated by 270 degrees for
4221          * the 90/270 degree plane rotation cases (to match the
4222          * GTT mapping), hence no need to account for rotation here.
4223          */
4224         width = drm_rect_width(&intel_pstate->base.src) >> 16;
4225         height = drm_rect_height(&intel_pstate->base.src) >> 16;
4226
4227         /* UV plane does 1/2 pixel sub-sampling */
4228         if (plane == 1 && is_planar_yuv_format(format)) {
4229                 width /= 2;
4230                 height /= 2;
4231         }
4232
4233         data_rate = width * height;
4234
4235         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4236
4237         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4238
4239         rate *= fb->format->cpp[plane];
4240         return rate;
4241 }
4242
4243 static u64
4244 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4245                                  u64 *plane_data_rate,
4246                                  u64 *uv_plane_data_rate)
4247 {
4248         struct drm_crtc_state *cstate = &intel_cstate->base;
4249         struct drm_atomic_state *state = cstate->state;
4250         struct drm_plane *plane;
4251         const struct drm_plane_state *pstate;
4252         u64 total_data_rate = 0;
4253
4254         if (WARN_ON(!state))
4255                 return 0;
4256
4257         /* Calculate and cache data rate for each plane */
4258         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4259                 enum plane_id plane_id = to_intel_plane(plane)->id;
4260                 u64 rate;
4261                 const struct intel_plane_state *intel_pstate =
4262                         to_intel_plane_state(pstate);
4263
4264                 /* packed/y */
4265                 rate = skl_plane_relative_data_rate(intel_cstate,
4266                                                     intel_pstate, 0);
4267                 plane_data_rate[plane_id] = rate;
4268                 total_data_rate += rate;
4269
4270                 /* uv-plane */
4271                 rate = skl_plane_relative_data_rate(intel_cstate,
4272                                                     intel_pstate, 1);
4273                 uv_plane_data_rate[plane_id] = rate;
4274                 total_data_rate += rate;
4275         }
4276
4277         return total_data_rate;
4278 }
4279
4280 static u64
4281 icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4282                                  u64 *plane_data_rate)
4283 {
4284         struct drm_crtc_state *cstate = &intel_cstate->base;
4285         struct drm_atomic_state *state = cstate->state;
4286         struct drm_plane *plane;
4287         const struct drm_plane_state *pstate;
4288         u64 total_data_rate = 0;
4289
4290         if (WARN_ON(!state))
4291                 return 0;
4292
4293         /* Calculate and cache data rate for each plane */
4294         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4295                 const struct intel_plane_state *intel_pstate =
4296                         to_intel_plane_state(pstate);
4297                 enum plane_id plane_id = to_intel_plane(plane)->id;
4298                 u64 rate;
4299
4300                 if (!intel_pstate->linked_plane) {
4301                         rate = skl_plane_relative_data_rate(intel_cstate,
4302                                                             intel_pstate, 0);
4303                         plane_data_rate[plane_id] = rate;
4304                         total_data_rate += rate;
4305                 } else {
4306                         enum plane_id y_plane_id;
4307
4308                         /*
4309                          * The slave plane might not iterate in
4310                          * drm_atomic_crtc_state_for_each_plane_state(),
4311                          * and needs the master plane state which may be
4312                          * NULL if we try get_new_plane_state(), so we
4313                          * always calculate from the master.
4314                          */
4315                         if (intel_pstate->slave)
4316                                 continue;
4317
4318                         /* Y plane rate is calculated on the slave */
4319                         rate = skl_plane_relative_data_rate(intel_cstate,
4320                                                             intel_pstate, 0);
4321                         y_plane_id = intel_pstate->linked_plane->id;
4322                         plane_data_rate[y_plane_id] = rate;
4323                         total_data_rate += rate;
4324
4325                         rate = skl_plane_relative_data_rate(intel_cstate,
4326                                                             intel_pstate, 1);
4327                         plane_data_rate[plane_id] = rate;
4328                         total_data_rate += rate;
4329                 }
4330         }
4331
4332         return total_data_rate;
4333 }
4334
4335 static int
4336 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4337                       struct skl_ddb_allocation *ddb /* out */)
4338 {
4339         struct drm_atomic_state *state = cstate->base.state;
4340         struct drm_crtc *crtc = cstate->base.crtc;
4341         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4343         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4344         u16 alloc_size, start = 0;
4345         u16 total[I915_MAX_PLANES] = {};
4346         u16 uv_total[I915_MAX_PLANES] = {};
4347         u64 total_data_rate;
4348         enum plane_id plane_id;
4349         int num_active;
4350         u64 plane_data_rate[I915_MAX_PLANES] = {};
4351         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4352         u32 blocks;
4353         int level;
4354
4355         /* Clear the partitioning for disabled planes. */
4356         memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
4357         memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4358
4359         if (WARN_ON(!state))
4360                 return 0;
4361
4362         if (!cstate->base.active) {
4363                 alloc->start = alloc->end = 0;
4364                 return 0;
4365         }
4366
4367         if (INTEL_GEN(dev_priv) >= 11)
4368                 total_data_rate =
4369                         icl_get_total_relative_data_rate(cstate,
4370                                                          plane_data_rate);
4371         else
4372                 total_data_rate =
4373                         skl_get_total_relative_data_rate(cstate,
4374                                                          plane_data_rate,
4375                                                          uv_plane_data_rate);
4376
4377
4378         skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
4379                                            ddb, alloc, &num_active);
4380         alloc_size = skl_ddb_entry_size(alloc);
4381         if (alloc_size == 0)
4382                 return 0;
4383
4384         /* Allocate fixed number of blocks for cursor. */
4385         total[PLANE_CURSOR] = skl_cursor_allocation(cstate, num_active);
4386         alloc_size -= total[PLANE_CURSOR];
4387         cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4388                 alloc->end - total[PLANE_CURSOR];
4389         cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4390
4391         if (total_data_rate == 0)
4392                 return 0;
4393
4394         /*
4395          * Find the highest watermark level for which we can satisfy the block
4396          * requirement of active planes.
4397          */
4398         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4399                 blocks = 0;
4400                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4401                         const struct skl_plane_wm *wm =
4402                                 &cstate->wm.skl.optimal.planes[plane_id];
4403
4404                         if (plane_id == PLANE_CURSOR) {
4405                                 if (WARN_ON(wm->wm[level].min_ddb_alloc >
4406                                             total[PLANE_CURSOR])) {
4407                                         blocks = U32_MAX;
4408                                         break;
4409                                 }
4410                                 continue;
4411                         }
4412
4413                         blocks += wm->wm[level].min_ddb_alloc;
4414                         blocks += wm->uv_wm[level].min_ddb_alloc;
4415                 }
4416
4417                 if (blocks <= alloc_size) {
4418                         alloc_size -= blocks;
4419                         break;
4420                 }
4421         }
4422
4423         if (level < 0) {
4424                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4425                 DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4426                               alloc_size);
4427                 return -EINVAL;
4428         }
4429
4430         /*
4431          * Grant each plane the blocks it requires at the highest achievable
4432          * watermark level, plus an extra share of the leftover blocks
4433          * proportional to its relative data rate.
4434          */
4435         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4436                 const struct skl_plane_wm *wm =
4437                         &cstate->wm.skl.optimal.planes[plane_id];
4438                 u64 rate;
4439                 u16 extra;
4440
4441                 if (plane_id == PLANE_CURSOR)
4442                         continue;
4443
4444                 /*
4445                  * We've accounted for all active planes; remaining planes are
4446                  * all disabled.
4447                  */
4448                 if (total_data_rate == 0)
4449                         break;
4450
4451                 rate = plane_data_rate[plane_id];
4452                 extra = min_t(u16, alloc_size,
4453                               DIV64_U64_ROUND_UP(alloc_size * rate,
4454                                                  total_data_rate));
4455                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4456                 alloc_size -= extra;
4457                 total_data_rate -= rate;
4458
4459                 if (total_data_rate == 0)
4460                         break;
4461
4462                 rate = uv_plane_data_rate[plane_id];
4463                 extra = min_t(u16, alloc_size,
4464                               DIV64_U64_ROUND_UP(alloc_size * rate,
4465                                                  total_data_rate));
4466                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4467                 alloc_size -= extra;
4468                 total_data_rate -= rate;
4469         }
4470         WARN_ON(alloc_size != 0 || total_data_rate != 0);
4471
4472         /* Set the actual DDB start/end points for each plane */
4473         start = alloc->start;
4474         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4475                 struct skl_ddb_entry *plane_alloc =
4476                         &cstate->wm.skl.plane_ddb_y[plane_id];
4477                 struct skl_ddb_entry *uv_plane_alloc =
4478                         &cstate->wm.skl.plane_ddb_uv[plane_id];
4479
4480                 if (plane_id == PLANE_CURSOR)
4481                         continue;
4482
4483                 /* Gen11+ uses a separate plane for UV watermarks */
4484                 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4485
4486                 /* Leave disabled planes at (0,0) */
4487                 if (total[plane_id]) {
4488                         plane_alloc->start = start;
4489                         start += total[plane_id];
4490                         plane_alloc->end = start;
4491                 }
4492
4493                 if (uv_total[plane_id]) {
4494                         uv_plane_alloc->start = start;
4495                         start += uv_total[plane_id];
4496                         uv_plane_alloc->end = start;
4497                 }
4498         }
4499
4500         /*
4501          * When we calculated watermark values we didn't know how high
4502          * of a level we'd actually be able to hit, so we just marked
4503          * all levels as "enabled."  Go back now and disable the ones
4504          * that aren't actually possible.
4505          */
4506         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4507                 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4508                         struct skl_plane_wm *wm =
4509                                 &cstate->wm.skl.optimal.planes[plane_id];
4510
4511                         /*
4512                          * We only disable the watermarks for each plane if
4513                          * they exceed the ddb allocation of said plane. This
4514                          * is done so that we don't end up touching cursor
4515                          * watermarks needlessly when some other plane reduces
4516                          * our max possible watermark level.
4517                          *
4518                          * Bspec has this to say about the PLANE_WM enable bit:
4519                          * "All the watermarks at this level for all enabled
4520                          *  planes must be enabled before the level will be used."
4521                          * So this is actually safe to do.
4522                          */
4523                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4524                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4525                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4526
4527                         /*
4528                          * Wa_1408961008:icl, ehl
4529                          * Underruns with WM1+ disabled
4530                          */
4531                         if (IS_GEN(dev_priv, 11) &&
4532                             level == 1 && wm->wm[0].plane_en) {
4533                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4534                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4535                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4536                         }
4537                 }
4538         }
4539
4540         /*
4541          * Go back and disable the transition watermark if it turns out we
4542          * don't have enough DDB blocks for it.
4543          */
4544         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4545                 struct skl_plane_wm *wm =
4546                         &cstate->wm.skl.optimal.planes[plane_id];
4547
4548                 if (wm->trans_wm.plane_res_b >= total[plane_id])
4549                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4550         }
4551
4552         return 0;
4553 }
4554
4555 /*
4556  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4557  * for the read latency) and cpp should always be <= 8, so that
4558  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4559  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4560 */
4561 static uint_fixed_16_16_t
4562 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4563                u8 cpp, u32 latency, u32 dbuf_block_size)
4564 {
4565         u32 wm_intermediate_val;
4566         uint_fixed_16_16_t ret;
4567
4568         if (latency == 0)
4569                 return FP_16_16_MAX;
4570
4571         wm_intermediate_val = latency * pixel_rate * cpp;
4572         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4573
4574         if (INTEL_GEN(dev_priv) >= 10)
4575                 ret = add_fixed16_u32(ret, 1);
4576
4577         return ret;
4578 }
4579
4580 static uint_fixed_16_16_t
4581 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4582                uint_fixed_16_16_t plane_blocks_per_line)
4583 {
4584         u32 wm_intermediate_val;
4585         uint_fixed_16_16_t ret;
4586
4587         if (latency == 0)
4588                 return FP_16_16_MAX;
4589
4590         wm_intermediate_val = latency * pixel_rate;
4591         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4592                                            pipe_htotal * 1000);
4593         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4594         return ret;
4595 }
4596
4597 static uint_fixed_16_16_t
4598 intel_get_linetime_us(const struct intel_crtc_state *cstate)
4599 {
4600         u32 pixel_rate;
4601         u32 crtc_htotal;
4602         uint_fixed_16_16_t linetime_us;
4603
4604         if (!cstate->base.active)
4605                 return u32_to_fixed16(0);
4606
4607         pixel_rate = cstate->pixel_rate;
4608
4609         if (WARN_ON(pixel_rate == 0))
4610                 return u32_to_fixed16(0);
4611
4612         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4613         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4614
4615         return linetime_us;
4616 }
4617
4618 static u32
4619 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4620                               const struct intel_plane_state *pstate)
4621 {
4622         u64 adjusted_pixel_rate;
4623         uint_fixed_16_16_t downscale_amount;
4624
4625         /* Shouldn't reach here on disabled planes... */
4626         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4627                 return 0;
4628
4629         /*
4630          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4631          * with additional adjustments for plane-specific scaling.
4632          */
4633         adjusted_pixel_rate = cstate->pixel_rate;
4634         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4635
4636         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4637                                             downscale_amount);
4638 }
4639
4640 static int
4641 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4642                       int width, const struct drm_format_info *format,
4643                       u64 modifier, unsigned int rotation,
4644                       u32 plane_pixel_rate, struct skl_wm_params *wp,
4645                       int color_plane)
4646 {
4647         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4648         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4649         u32 interm_pbpl;
4650
4651         /* only planar format has two planes */
4652         if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4653                 DRM_DEBUG_KMS("Non planar format have single plane\n");
4654                 return -EINVAL;
4655         }
4656
4657         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4658                       modifier == I915_FORMAT_MOD_Yf_TILED ||
4659                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4660                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4661         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4662         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4663                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4664         wp->is_planar = is_planar_yuv_format(format->format);
4665
4666         wp->width = width;
4667         if (color_plane == 1 && wp->is_planar)
4668                 wp->width /= 2;
4669
4670         wp->cpp = format->cpp[color_plane];
4671         wp->plane_pixel_rate = plane_pixel_rate;
4672
4673         if (INTEL_GEN(dev_priv) >= 11 &&
4674             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4675                 wp->dbuf_block_size = 256;
4676         else
4677                 wp->dbuf_block_size = 512;
4678
4679         if (drm_rotation_90_or_270(rotation)) {
4680                 switch (wp->cpp) {
4681                 case 1:
4682                         wp->y_min_scanlines = 16;
4683                         break;
4684                 case 2:
4685                         wp->y_min_scanlines = 8;
4686                         break;
4687                 case 4:
4688                         wp->y_min_scanlines = 4;
4689                         break;
4690                 default:
4691                         MISSING_CASE(wp->cpp);
4692                         return -EINVAL;
4693                 }
4694         } else {
4695                 wp->y_min_scanlines = 4;
4696         }
4697
4698         if (skl_needs_memory_bw_wa(dev_priv))
4699                 wp->y_min_scanlines *= 2;
4700
4701         wp->plane_bytes_per_line = wp->width * wp->cpp;
4702         if (wp->y_tiled) {
4703                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4704                                            wp->y_min_scanlines,
4705                                            wp->dbuf_block_size);
4706
4707                 if (INTEL_GEN(dev_priv) >= 10)
4708                         interm_pbpl++;
4709
4710                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4711                                                         wp->y_min_scanlines);
4712         } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4713                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4714                                            wp->dbuf_block_size);
4715                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4716         } else {
4717                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4718                                            wp->dbuf_block_size) + 1;
4719                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4720         }
4721
4722         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4723                                              wp->plane_blocks_per_line);
4724
4725         wp->linetime_us = fixed16_to_u32_round_up(
4726                                         intel_get_linetime_us(crtc_state));
4727
4728         return 0;
4729 }
4730
4731 static int
4732 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4733                             const struct intel_plane_state *plane_state,
4734                             struct skl_wm_params *wp, int color_plane)
4735 {
4736         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4737         const struct drm_framebuffer *fb = plane_state->base.fb;
4738         int width;
4739
4740         if (plane->id == PLANE_CURSOR) {
4741                 width = plane_state->base.crtc_w;
4742         } else {
4743                 /*
4744                  * Src coordinates are already rotated by 270 degrees for
4745                  * the 90/270 degree plane rotation cases (to match the
4746                  * GTT mapping), hence no need to account for rotation here.
4747                  */
4748                 width = drm_rect_width(&plane_state->base.src) >> 16;
4749         }
4750
4751         return skl_compute_wm_params(crtc_state, width,
4752                                      fb->format, fb->modifier,
4753                                      plane_state->base.rotation,
4754                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4755                                      wp, color_plane);
4756 }
4757
4758 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4759 {
4760         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4761                 return true;
4762
4763         /* The number of lines are ignored for the level 0 watermark. */
4764         return level > 0;
4765 }
4766
4767 static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
4768                                  int level,
4769                                  const struct skl_wm_params *wp,
4770                                  const struct skl_wm_level *result_prev,
4771                                  struct skl_wm_level *result /* out */)
4772 {
4773         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4774         u32 latency = dev_priv->wm.skl_latency[level];
4775         uint_fixed_16_16_t method1, method2;
4776         uint_fixed_16_16_t selected_result;
4777         u32 res_blocks, res_lines, min_ddb_alloc = 0;
4778
4779         if (latency == 0) {
4780                 /* reject it */
4781                 result->min_ddb_alloc = U16_MAX;
4782                 return;
4783         }
4784
4785         /*
4786          * WaIncreaseLatencyIPCEnabled: kbl,cfl
4787          * Display WA #1141: kbl,cfl
4788          */
4789         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4790             dev_priv->ipc_enabled)
4791                 latency += 4;
4792
4793         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4794                 latency += 15;
4795
4796         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4797                                  wp->cpp, latency, wp->dbuf_block_size);
4798         method2 = skl_wm_method2(wp->plane_pixel_rate,
4799                                  cstate->base.adjusted_mode.crtc_htotal,
4800                                  latency,
4801                                  wp->plane_blocks_per_line);
4802
4803         if (wp->y_tiled) {
4804                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4805         } else {
4806                 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4807                      wp->dbuf_block_size < 1) &&
4808                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4809                         selected_result = method2;
4810                 } else if (latency >= wp->linetime_us) {
4811                         if (IS_GEN(dev_priv, 9) &&
4812                             !IS_GEMINILAKE(dev_priv))
4813                                 selected_result = min_fixed16(method1, method2);
4814                         else
4815                                 selected_result = method2;
4816                 } else {
4817                         selected_result = method1;
4818                 }
4819         }
4820
4821         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4822         res_lines = div_round_up_fixed16(selected_result,
4823                                          wp->plane_blocks_per_line);
4824
4825         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4826                 /* Display WA #1125: skl,bxt,kbl */
4827                 if (level == 0 && wp->rc_surface)
4828                         res_blocks +=
4829                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
4830
4831                 /* Display WA #1126: skl,bxt,kbl */
4832                 if (level >= 1 && level <= 7) {
4833                         if (wp->y_tiled) {
4834                                 res_blocks +=
4835                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
4836                                 res_lines += wp->y_min_scanlines;
4837                         } else {
4838                                 res_blocks++;
4839                         }
4840
4841                         /*
4842                          * Make sure result blocks for higher latency levels are
4843                          * atleast as high as level below the current level.
4844                          * Assumption in DDB algorithm optimization for special
4845                          * cases. Also covers Display WA #1125 for RC.
4846                          */
4847                         if (result_prev->plane_res_b > res_blocks)
4848                                 res_blocks = result_prev->plane_res_b;
4849                 }
4850         }
4851
4852         if (INTEL_GEN(dev_priv) >= 11) {
4853                 if (wp->y_tiled) {
4854                         int extra_lines;
4855
4856                         if (res_lines % wp->y_min_scanlines == 0)
4857                                 extra_lines = wp->y_min_scanlines;
4858                         else
4859                                 extra_lines = wp->y_min_scanlines * 2 -
4860                                         res_lines % wp->y_min_scanlines;
4861
4862                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4863                                                                  wp->plane_blocks_per_line);
4864                 } else {
4865                         min_ddb_alloc = res_blocks +
4866                                 DIV_ROUND_UP(res_blocks, 10);
4867                 }
4868         }
4869
4870         if (!skl_wm_has_lines(dev_priv, level))
4871                 res_lines = 0;
4872
4873         if (res_lines > 31) {
4874                 /* reject it */
4875                 result->min_ddb_alloc = U16_MAX;
4876                 return;
4877         }
4878
4879         /*
4880          * If res_lines is valid, assume we can use this watermark level
4881          * for now.  We'll come back and disable it after we calculate the
4882          * DDB allocation if it turns out we don't actually have enough
4883          * blocks to satisfy it.
4884          */
4885         result->plane_res_b = res_blocks;
4886         result->plane_res_l = res_lines;
4887         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4888         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4889         result->plane_en = true;
4890 }
4891
4892 static void
4893 skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4894                       const struct skl_wm_params *wm_params,
4895                       struct skl_wm_level *levels)
4896 {
4897         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4898         int level, max_level = ilk_wm_max_level(dev_priv);
4899         struct skl_wm_level *result_prev = &levels[0];
4900
4901         for (level = 0; level <= max_level; level++) {
4902                 struct skl_wm_level *result = &levels[level];
4903
4904                 skl_compute_plane_wm(cstate, level, wm_params,
4905                                      result_prev, result);
4906
4907                 result_prev = result;
4908         }
4909 }
4910
4911 static u32
4912 skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4913 {
4914         struct drm_atomic_state *state = cstate->base.state;
4915         struct drm_i915_private *dev_priv = to_i915(state->dev);
4916         uint_fixed_16_16_t linetime_us;
4917         u32 linetime_wm;
4918
4919         linetime_us = intel_get_linetime_us(cstate);
4920         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4921
4922         /* Display WA #1135: BXT:ALL GLK:ALL */
4923         if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4924                 linetime_wm /= 2;
4925
4926         return linetime_wm;
4927 }
4928
4929 static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4930                                       const struct skl_wm_params *wp,
4931                                       struct skl_plane_wm *wm)
4932 {
4933         struct drm_device *dev = cstate->base.crtc->dev;
4934         const struct drm_i915_private *dev_priv = to_i915(dev);
4935         u16 trans_min, trans_y_tile_min;
4936         const u16 trans_amount = 10; /* This is configurable amount */
4937         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4938
4939         /* Transition WM are not recommended by HW team for GEN9 */
4940         if (INTEL_GEN(dev_priv) <= 9)
4941                 return;
4942
4943         /* Transition WM don't make any sense if ipc is disabled */
4944         if (!dev_priv->ipc_enabled)
4945                 return;
4946
4947         trans_min = 14;
4948         if (INTEL_GEN(dev_priv) >= 11)
4949                 trans_min = 4;
4950
4951         trans_offset_b = trans_min + trans_amount;
4952
4953         /*
4954          * The spec asks for Selected Result Blocks for wm0 (the real value),
4955          * not Result Blocks (the integer value). Pay attention to the capital
4956          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4957          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4958          * and since we later will have to get the ceiling of the sum in the
4959          * transition watermarks calculation, we can just pretend Selected
4960          * Result Blocks is Result Blocks minus 1 and it should work for the
4961          * current platforms.
4962          */
4963         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4964
4965         if (wp->y_tiled) {
4966                 trans_y_tile_min =
4967                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4968                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4969                                 trans_offset_b;
4970         } else {
4971                 res_blocks = wm0_sel_res_b + trans_offset_b;
4972
4973                 /* WA BUG:1938466 add one block for non y-tile planes */
4974                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4975                         res_blocks += 1;
4976
4977         }
4978
4979         /*
4980          * Just assume we can enable the transition watermark.  After
4981          * computing the DDB we'll come back and disable it if that
4982          * assumption turns out to be false.
4983          */
4984         wm->trans_wm.plane_res_b = res_blocks + 1;
4985         wm->trans_wm.plane_en = true;
4986 }
4987
4988 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4989                                      const struct intel_plane_state *plane_state,
4990                                      enum plane_id plane_id, int color_plane)
4991 {
4992         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4993         struct skl_wm_params wm_params;
4994         int ret;
4995
4996         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4997                                           &wm_params, color_plane);
4998         if (ret)
4999                 return ret;
5000
5001         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5002         skl_compute_transition_wm(crtc_state, &wm_params, wm);
5003
5004         return 0;
5005 }
5006
5007 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5008                                  const struct intel_plane_state *plane_state,
5009                                  enum plane_id plane_id)
5010 {
5011         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5012         struct skl_wm_params wm_params;
5013         int ret;
5014
5015         wm->is_planar = true;
5016
5017         /* uv plane watermarks must also be validated for NV12/Planar */
5018         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5019                                           &wm_params, 1);
5020         if (ret)
5021                 return ret;
5022
5023         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5024
5025         return 0;
5026 }
5027
5028 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5029                               const struct intel_plane_state *plane_state)
5030 {
5031         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5032         const struct drm_framebuffer *fb = plane_state->base.fb;
5033         enum plane_id plane_id = plane->id;
5034         int ret;
5035
5036         if (!intel_wm_plane_visible(crtc_state, plane_state))
5037                 return 0;
5038
5039         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5040                                         plane_id, 0);
5041         if (ret)
5042                 return ret;
5043
5044         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5045                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5046                                             plane_id);
5047                 if (ret)
5048                         return ret;
5049         }
5050
5051         return 0;
5052 }
5053
5054 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5055                               const struct intel_plane_state *plane_state)
5056 {
5057         enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5058         int ret;
5059
5060         /* Watermarks calculated in master */
5061         if (plane_state->slave)
5062                 return 0;
5063
5064         if (plane_state->linked_plane) {
5065                 const struct drm_framebuffer *fb = plane_state->base.fb;
5066                 enum plane_id y_plane_id = plane_state->linked_plane->id;
5067
5068                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5069                 WARN_ON(!fb->format->is_yuv ||
5070                         fb->format->num_planes == 1);
5071
5072                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5073                                                 y_plane_id, 0);
5074                 if (ret)
5075                         return ret;
5076
5077                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5078                                                 plane_id, 1);
5079                 if (ret)
5080                         return ret;
5081         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5082                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5083                                                 plane_id, 0);
5084                 if (ret)
5085                         return ret;
5086         }
5087
5088         return 0;
5089 }
5090
5091 static int skl_build_pipe_wm(struct intel_crtc_state *cstate)
5092 {
5093         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5094         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5095         struct drm_crtc_state *crtc_state = &cstate->base;
5096         struct drm_plane *plane;
5097         const struct drm_plane_state *pstate;
5098         int ret;
5099
5100         /*
5101          * We'll only calculate watermarks for planes that are actually
5102          * enabled, so make sure all other planes are set as disabled.
5103          */
5104         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5105
5106         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
5107                 const struct intel_plane_state *intel_pstate =
5108                                                 to_intel_plane_state(pstate);
5109
5110                 if (INTEL_GEN(dev_priv) >= 11)
5111                         ret = icl_build_plane_wm(cstate, intel_pstate);
5112                 else
5113                         ret = skl_build_plane_wm(cstate, intel_pstate);
5114                 if (ret)
5115                         return ret;
5116         }
5117
5118         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5119
5120         return 0;
5121 }
5122
5123 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5124                                 i915_reg_t reg,
5125                                 const struct skl_ddb_entry *entry)
5126 {
5127         if (entry->end)
5128                 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5129         else
5130                 I915_WRITE_FW(reg, 0);
5131 }
5132
5133 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5134                                i915_reg_t reg,
5135                                const struct skl_wm_level *level)
5136 {
5137         u32 val = 0;
5138
5139         if (level->plane_en)
5140                 val |= PLANE_WM_EN;
5141         if (level->ignore_lines)
5142                 val |= PLANE_WM_IGNORE_LINES;
5143         val |= level->plane_res_b;
5144         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5145
5146         I915_WRITE_FW(reg, val);
5147 }
5148
5149 void skl_write_plane_wm(struct intel_plane *plane,
5150                         const struct intel_crtc_state *crtc_state)
5151 {
5152         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5153         int level, max_level = ilk_wm_max_level(dev_priv);
5154         enum plane_id plane_id = plane->id;
5155         enum pipe pipe = plane->pipe;
5156         const struct skl_plane_wm *wm =
5157                 &crtc_state->wm.skl.optimal.planes[plane_id];
5158         const struct skl_ddb_entry *ddb_y =
5159                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5160         const struct skl_ddb_entry *ddb_uv =
5161                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5162
5163         for (level = 0; level <= max_level; level++) {
5164                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5165                                    &wm->wm[level]);
5166         }
5167         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5168                            &wm->trans_wm);
5169
5170         if (INTEL_GEN(dev_priv) >= 11) {
5171                 skl_ddb_entry_write(dev_priv,
5172                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5173                 return;
5174         }
5175
5176         if (wm->is_planar)
5177                 swap(ddb_y, ddb_uv);
5178
5179         skl_ddb_entry_write(dev_priv,
5180                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5181         skl_ddb_entry_write(dev_priv,
5182                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5183 }
5184
5185 void skl_write_cursor_wm(struct intel_plane *plane,
5186                          const struct intel_crtc_state *crtc_state)
5187 {
5188         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5189         int level, max_level = ilk_wm_max_level(dev_priv);
5190         enum plane_id plane_id = plane->id;
5191         enum pipe pipe = plane->pipe;
5192         const struct skl_plane_wm *wm =
5193                 &crtc_state->wm.skl.optimal.planes[plane_id];
5194         const struct skl_ddb_entry *ddb =
5195                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5196
5197         for (level = 0; level <= max_level; level++) {
5198                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5199                                    &wm->wm[level]);
5200         }
5201         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5202
5203         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5204 }
5205
5206 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5207                          const struct skl_wm_level *l2)
5208 {
5209         return l1->plane_en == l2->plane_en &&
5210                 l1->ignore_lines == l2->ignore_lines &&
5211                 l1->plane_res_l == l2->plane_res_l &&
5212                 l1->plane_res_b == l2->plane_res_b;
5213 }
5214
5215 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5216                                 const struct skl_plane_wm *wm1,
5217                                 const struct skl_plane_wm *wm2)
5218 {
5219         int level, max_level = ilk_wm_max_level(dev_priv);
5220
5221         for (level = 0; level <= max_level; level++) {
5222                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5223                     !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5224                         return false;
5225         }
5226
5227         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5228 }
5229
5230 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5231                                const struct skl_pipe_wm *wm1,
5232                                const struct skl_pipe_wm *wm2)
5233 {
5234         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5235         enum plane_id plane_id;
5236
5237         for_each_plane_id_on_crtc(crtc, plane_id) {
5238                 if (!skl_plane_wm_equals(dev_priv,
5239                                          &wm1->planes[plane_id],
5240                                          &wm2->planes[plane_id]))
5241                         return false;
5242         }
5243
5244         return wm1->linetime == wm2->linetime;
5245 }
5246
5247 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5248                                            const struct skl_ddb_entry *b)
5249 {
5250         return a->start < b->end && b->start < a->end;
5251 }
5252
5253 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5254                                  const struct skl_ddb_entry *entries,
5255                                  int num_entries, int ignore_idx)
5256 {
5257         int i;
5258
5259         for (i = 0; i < num_entries; i++) {
5260                 if (i != ignore_idx &&
5261                     skl_ddb_entries_overlap(ddb, &entries[i]))
5262                         return true;
5263         }
5264
5265         return false;
5266 }
5267
5268 static u32
5269 pipes_modified(struct intel_atomic_state *state)
5270 {
5271         struct intel_crtc *crtc;
5272         struct intel_crtc_state *cstate;
5273         u32 i, ret = 0;
5274
5275         for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
5276                 ret |= drm_crtc_mask(&crtc->base);
5277
5278         return ret;
5279 }
5280
5281 static int
5282 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5283                             struct intel_crtc_state *new_crtc_state)
5284 {
5285         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5286         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5287         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5288         struct intel_plane *plane;
5289
5290         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5291                 struct intel_plane_state *plane_state;
5292                 enum plane_id plane_id = plane->id;
5293
5294                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5295                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5296                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5297                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5298                         continue;
5299
5300                 plane_state = intel_atomic_get_plane_state(state, plane);
5301                 if (IS_ERR(plane_state))
5302                         return PTR_ERR(plane_state);
5303
5304                 new_crtc_state->update_planes |= BIT(plane_id);
5305         }
5306
5307         return 0;
5308 }
5309
5310 static int
5311 skl_compute_ddb(struct intel_atomic_state *state)
5312 {
5313         const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5314         struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5315         struct intel_crtc_state *old_crtc_state;
5316         struct intel_crtc_state *new_crtc_state;
5317         struct intel_crtc *crtc;
5318         int ret, i;
5319
5320         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5321
5322         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5323                                             new_crtc_state, i) {
5324                 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5325                 if (ret)
5326                         return ret;
5327
5328                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5329                                                   new_crtc_state);
5330                 if (ret)
5331                         return ret;
5332         }
5333
5334         return 0;
5335 }
5336
5337 static char enast(bool enable)
5338 {
5339         return enable ? '*' : ' ';
5340 }
5341
5342 static void
5343 skl_print_wm_changes(struct intel_atomic_state *state)
5344 {
5345         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5346         const struct intel_crtc_state *old_crtc_state;
5347         const struct intel_crtc_state *new_crtc_state;
5348         struct intel_plane *plane;
5349         struct intel_crtc *crtc;
5350         int i;
5351
5352         if ((drm_debug & DRM_UT_KMS) == 0)
5353                 return;
5354
5355         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5356                                             new_crtc_state, i) {
5357                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5358
5359                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5360                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5361
5362                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5363                         enum plane_id plane_id = plane->id;
5364                         const struct skl_ddb_entry *old, *new;
5365
5366                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5367                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5368
5369                         if (skl_ddb_entry_equal(old, new))
5370                                 continue;
5371
5372                         DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5373                                       plane->base.base.id, plane->base.name,
5374                                       old->start, old->end, new->start, new->end,
5375                                       skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5376                 }
5377
5378                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5379                         enum plane_id plane_id = plane->id;
5380                         const struct skl_plane_wm *old_wm, *new_wm;
5381
5382                         old_wm = &old_pipe_wm->planes[plane_id];
5383                         new_wm = &new_pipe_wm->planes[plane_id];
5384
5385                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5386                                 continue;
5387
5388                         DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5389                                       " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5390                                       plane->base.base.id, plane->base.name,
5391                                       enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5392                                       enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5393                                       enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5394                                       enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5395                                       enast(old_wm->trans_wm.plane_en),
5396                                       enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5397                                       enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5398                                       enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5399                                       enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5400                                       enast(new_wm->trans_wm.plane_en));
5401
5402                         DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5403                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5404                                       plane->base.base.id, plane->base.name,
5405                                       enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5406                                       enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5407                                       enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5408                                       enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5409                                       enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5410                                       enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5411                                       enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5412                                       enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5413                                       enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5414
5415                                       enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5416                                       enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5417                                       enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5418                                       enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5419                                       enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5420                                       enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5421                                       enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5422                                       enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5423                                       enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5424
5425                         DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5426                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5427                                       plane->base.base.id, plane->base.name,
5428                                       old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5429                                       old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5430                                       old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5431                                       old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5432                                       old_wm->trans_wm.plane_res_b,
5433                                       new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5434                                       new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5435                                       new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5436                                       new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5437                                       new_wm->trans_wm.plane_res_b);
5438
5439                         DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5440                                       " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5441                                       plane->base.base.id, plane->base.name,
5442                                       old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5443                                       old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5444                                       old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5445                                       old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5446                                       old_wm->trans_wm.min_ddb_alloc,
5447                                       new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5448                                       new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5449                                       new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5450                                       new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5451                                       new_wm->trans_wm.min_ddb_alloc);
5452                 }
5453         }
5454 }
5455
5456 static int
5457 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5458 {
5459         struct drm_device *dev = state->base.dev;
5460         const struct drm_i915_private *dev_priv = to_i915(dev);
5461         struct intel_crtc *crtc;
5462         struct intel_crtc_state *crtc_state;
5463         u32 realloc_pipes = pipes_modified(state);
5464         int ret, i;
5465
5466         /*
5467          * When we distrust bios wm we always need to recompute to set the
5468          * expected DDB allocations for each CRTC.
5469          */
5470         if (dev_priv->wm.distrust_bios_wm)
5471                 (*changed) = true;
5472
5473         /*
5474          * If this transaction isn't actually touching any CRTC's, don't
5475          * bother with watermark calculation.  Note that if we pass this
5476          * test, we're guaranteed to hold at least one CRTC state mutex,
5477          * which means we can safely use values like dev_priv->active_crtcs
5478          * since any racing commits that want to update them would need to
5479          * hold _all_ CRTC state mutexes.
5480          */
5481         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5482                 (*changed) = true;
5483
5484         if (!*changed)
5485                 return 0;
5486
5487         /*
5488          * If this is our first atomic update following hardware readout,
5489          * we can't trust the DDB that the BIOS programmed for us.  Let's
5490          * pretend that all pipes switched active status so that we'll
5491          * ensure a full DDB recompute.
5492          */
5493         if (dev_priv->wm.distrust_bios_wm) {
5494                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5495                                        state->base.acquire_ctx);
5496                 if (ret)
5497                         return ret;
5498
5499                 state->active_pipe_changes = ~0;
5500
5501                 /*
5502                  * We usually only initialize state->active_crtcs if we
5503                  * we're doing a modeset; make sure this field is always
5504                  * initialized during the sanitization process that happens
5505                  * on the first commit too.
5506                  */
5507                 if (!state->modeset)
5508                         state->active_crtcs = dev_priv->active_crtcs;
5509         }
5510
5511         /*
5512          * If the modeset changes which CRTC's are active, we need to
5513          * recompute the DDB allocation for *all* active pipes, even
5514          * those that weren't otherwise being modified in any way by this
5515          * atomic commit.  Due to the shrinking of the per-pipe allocations
5516          * when new active CRTC's are added, it's possible for a pipe that
5517          * we were already using and aren't changing at all here to suddenly
5518          * become invalid if its DDB needs exceeds its new allocation.
5519          *
5520          * Note that if we wind up doing a full DDB recompute, we can't let
5521          * any other display updates race with this transaction, so we need
5522          * to grab the lock on *all* CRTC's.
5523          */
5524         if (state->active_pipe_changes || state->modeset) {
5525                 realloc_pipes = ~0;
5526                 state->wm_results.dirty_pipes = ~0;
5527         }
5528
5529         /*
5530          * We're not recomputing for the pipes not included in the commit, so
5531          * make sure we start with the current state.
5532          */
5533         for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5534                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5535                 if (IS_ERR(crtc_state))
5536                         return PTR_ERR(crtc_state);
5537         }
5538
5539         return 0;
5540 }
5541
5542 /*
5543  * To make sure the cursor watermark registers are always consistent
5544  * with our computed state the following scenario needs special
5545  * treatment:
5546  *
5547  * 1. enable cursor
5548  * 2. move cursor entirely offscreen
5549  * 3. disable cursor
5550  *
5551  * Step 2. does call .disable_plane() but does not zero the watermarks
5552  * (since we consider an offscreen cursor still active for the purposes
5553  * of watermarks). Step 3. would not normally call .disable_plane()
5554  * because the actual plane visibility isn't changing, and we don't
5555  * deallocate the cursor ddb until the pipe gets disabled. So we must
5556  * force step 3. to call .disable_plane() to update the watermark
5557  * registers properly.
5558  *
5559  * Other planes do not suffer from this issues as their watermarks are
5560  * calculated based on the actual plane visibility. The only time this
5561  * can trigger for the other planes is during the initial readout as the
5562  * default value of the watermarks registers is not zero.
5563  */
5564 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5565                                       struct intel_crtc *crtc)
5566 {
5567         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5568         const struct intel_crtc_state *old_crtc_state =
5569                 intel_atomic_get_old_crtc_state(state, crtc);
5570         struct intel_crtc_state *new_crtc_state =
5571                 intel_atomic_get_new_crtc_state(state, crtc);
5572         struct intel_plane *plane;
5573
5574         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5575                 struct intel_plane_state *plane_state;
5576                 enum plane_id plane_id = plane->id;
5577
5578                 /*
5579                  * Force a full wm update for every plane on modeset.
5580                  * Required because the reset value of the wm registers
5581                  * is non-zero, whereas we want all disabled planes to
5582                  * have zero watermarks. So if we turn off the relevant
5583                  * power well the hardware state will go out of sync
5584                  * with the software state.
5585                  */
5586                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5587                     skl_plane_wm_equals(dev_priv,
5588                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5589                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5590                         continue;
5591
5592                 plane_state = intel_atomic_get_plane_state(state, plane);
5593                 if (IS_ERR(plane_state))
5594                         return PTR_ERR(plane_state);
5595
5596                 new_crtc_state->update_planes |= BIT(plane_id);
5597         }
5598
5599         return 0;
5600 }
5601
5602 static int
5603 skl_compute_wm(struct intel_atomic_state *state)
5604 {
5605         struct intel_crtc *crtc;
5606         struct intel_crtc_state *new_crtc_state;
5607         struct intel_crtc_state *old_crtc_state;
5608         struct skl_ddb_values *results = &state->wm_results;
5609         bool changed = false;
5610         int ret, i;
5611
5612         /* Clear all dirty flags */
5613         results->dirty_pipes = 0;
5614
5615         ret = skl_ddb_add_affected_pipes(state, &changed);
5616         if (ret || !changed)
5617                 return ret;
5618
5619         /*
5620          * Calculate WM's for all pipes that are part of this transaction.
5621          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5622          * weren't otherwise being modified (and set bits in dirty_pipes) if
5623          * pipe allocations had to change.
5624          */
5625         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5626                                             new_crtc_state, i) {
5627                 ret = skl_build_pipe_wm(new_crtc_state);
5628                 if (ret)
5629                         return ret;
5630
5631                 ret = skl_wm_add_affected_planes(state, crtc);
5632                 if (ret)
5633                         return ret;
5634
5635                 if (!skl_pipe_wm_equals(crtc,
5636                                         &old_crtc_state->wm.skl.optimal,
5637                                         &new_crtc_state->wm.skl.optimal))
5638                         results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5639         }
5640
5641         ret = skl_compute_ddb(state);
5642         if (ret)
5643                 return ret;
5644
5645         skl_print_wm_changes(state);
5646
5647         return 0;
5648 }
5649
5650 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5651                                       struct intel_crtc_state *cstate)
5652 {
5653         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5654         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5655         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5656         enum pipe pipe = crtc->pipe;
5657
5658         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5659                 return;
5660
5661         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5662 }
5663
5664 static void skl_initial_wm(struct intel_atomic_state *state,
5665                            struct intel_crtc_state *cstate)
5666 {
5667         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5668         struct drm_device *dev = intel_crtc->base.dev;
5669         struct drm_i915_private *dev_priv = to_i915(dev);
5670         struct skl_ddb_values *results = &state->wm_results;
5671
5672         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5673                 return;
5674
5675         mutex_lock(&dev_priv->wm.wm_mutex);
5676
5677         if (cstate->base.active_changed)
5678                 skl_atomic_update_crtc_wm(state, cstate);
5679
5680         mutex_unlock(&dev_priv->wm.wm_mutex);
5681 }
5682
5683 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5684                                   struct intel_wm_config *config)
5685 {
5686         struct intel_crtc *crtc;
5687
5688         /* Compute the currently _active_ config */
5689         for_each_intel_crtc(&dev_priv->drm, crtc) {
5690                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5691
5692                 if (!wm->pipe_enabled)
5693                         continue;
5694
5695                 config->sprites_enabled |= wm->sprites_enabled;
5696                 config->sprites_scaled |= wm->sprites_scaled;
5697                 config->num_pipes_active++;
5698         }
5699 }
5700
5701 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5702 {
5703         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5704         struct ilk_wm_maximums max;
5705         struct intel_wm_config config = {};
5706         struct ilk_wm_values results = {};
5707         enum intel_ddb_partitioning partitioning;
5708
5709         ilk_compute_wm_config(dev_priv, &config);
5710
5711         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5712         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5713
5714         /* 5/6 split only in single pipe config on IVB+ */
5715         if (INTEL_GEN(dev_priv) >= 7 &&
5716             config.num_pipes_active == 1 && config.sprites_enabled) {
5717                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5718                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5719
5720                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5721         } else {
5722                 best_lp_wm = &lp_wm_1_2;
5723         }
5724
5725         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5726                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5727
5728         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5729
5730         ilk_write_wm_values(dev_priv, &results);
5731 }
5732
5733 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5734                                    struct intel_crtc_state *cstate)
5735 {
5736         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5737         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5738
5739         mutex_lock(&dev_priv->wm.wm_mutex);
5740         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5741         ilk_program_watermarks(dev_priv);
5742         mutex_unlock(&dev_priv->wm.wm_mutex);
5743 }
5744
5745 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5746                                     struct intel_crtc_state *cstate)
5747 {
5748         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5749         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5750
5751         mutex_lock(&dev_priv->wm.wm_mutex);
5752         if (cstate->wm.need_postvbl_update) {
5753                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5754                 ilk_program_watermarks(dev_priv);
5755         }
5756         mutex_unlock(&dev_priv->wm.wm_mutex);
5757 }
5758
5759 static inline void skl_wm_level_from_reg_val(u32 val,
5760                                              struct skl_wm_level *level)
5761 {
5762         level->plane_en = val & PLANE_WM_EN;
5763         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5764         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5765         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5766                 PLANE_WM_LINES_MASK;
5767 }
5768
5769 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5770                               struct skl_pipe_wm *out)
5771 {
5772         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5773         enum pipe pipe = crtc->pipe;
5774         int level, max_level;
5775         enum plane_id plane_id;
5776         u32 val;
5777
5778         max_level = ilk_wm_max_level(dev_priv);
5779
5780         for_each_plane_id_on_crtc(crtc, plane_id) {
5781                 struct skl_plane_wm *wm = &out->planes[plane_id];
5782
5783                 for (level = 0; level <= max_level; level++) {
5784                         if (plane_id != PLANE_CURSOR)
5785                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5786                         else
5787                                 val = I915_READ(CUR_WM(pipe, level));
5788
5789                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5790                 }
5791
5792                 if (plane_id != PLANE_CURSOR)
5793                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5794                 else
5795                         val = I915_READ(CUR_WM_TRANS(pipe));
5796
5797                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5798         }
5799
5800         if (!crtc->active)
5801                 return;
5802
5803         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5804 }
5805
5806 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5807 {
5808         struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5809         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5810         struct intel_crtc *crtc;
5811         struct intel_crtc_state *cstate;
5812
5813         skl_ddb_get_hw_state(dev_priv, ddb);
5814         for_each_intel_crtc(&dev_priv->drm, crtc) {
5815                 cstate = to_intel_crtc_state(crtc->base.state);
5816
5817                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5818
5819                 if (crtc->active)
5820                         hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5821         }
5822
5823         if (dev_priv->active_crtcs) {
5824                 /* Fully recompute DDB on first atomic commit */
5825                 dev_priv->wm.distrust_bios_wm = true;
5826         }
5827 }
5828
5829 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5830 {
5831         struct drm_device *dev = crtc->base.dev;
5832         struct drm_i915_private *dev_priv = to_i915(dev);
5833         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5834         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5835         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5836         enum pipe pipe = crtc->pipe;
5837         static const i915_reg_t wm0_pipe_reg[] = {
5838                 [PIPE_A] = WM0_PIPEA_ILK,
5839                 [PIPE_B] = WM0_PIPEB_ILK,
5840                 [PIPE_C] = WM0_PIPEC_IVB,
5841         };
5842
5843         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5844         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5845                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5846
5847         memset(active, 0, sizeof(*active));
5848
5849         active->pipe_enabled = crtc->active;
5850
5851         if (active->pipe_enabled) {
5852                 u32 tmp = hw->wm_pipe[pipe];
5853
5854                 /*
5855                  * For active pipes LP0 watermark is marked as
5856                  * enabled, and LP1+ watermaks as disabled since
5857                  * we can't really reverse compute them in case
5858                  * multiple pipes are active.
5859                  */
5860                 active->wm[0].enable = true;
5861                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5862                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5863                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5864                 active->linetime = hw->wm_linetime[pipe];
5865         } else {
5866                 int level, max_level = ilk_wm_max_level(dev_priv);
5867
5868                 /*
5869                  * For inactive pipes, all watermark levels
5870                  * should be marked as enabled but zeroed,
5871                  * which is what we'd compute them to.
5872                  */
5873                 for (level = 0; level <= max_level; level++)
5874                         active->wm[level].enable = true;
5875         }
5876
5877         crtc->wm.active.ilk = *active;
5878 }
5879
5880 #define _FW_WM(value, plane) \
5881         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5882 #define _FW_WM_VLV(value, plane) \
5883         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5884
5885 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5886                                struct g4x_wm_values *wm)
5887 {
5888         u32 tmp;
5889
5890         tmp = I915_READ(DSPFW1);
5891         wm->sr.plane = _FW_WM(tmp, SR);
5892         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5893         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5894         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5895
5896         tmp = I915_READ(DSPFW2);
5897         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5898         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5899         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5900         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5901         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5902         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5903
5904         tmp = I915_READ(DSPFW3);
5905         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5906         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5907         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5908         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5909 }
5910
5911 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5912                                struct vlv_wm_values *wm)
5913 {
5914         enum pipe pipe;
5915         u32 tmp;
5916
5917         for_each_pipe(dev_priv, pipe) {
5918                 tmp = I915_READ(VLV_DDL(pipe));
5919
5920                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5921                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5922                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5923                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5924                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5925                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5926                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5927                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5928         }
5929
5930         tmp = I915_READ(DSPFW1);
5931         wm->sr.plane = _FW_WM(tmp, SR);
5932         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5933         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5934         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5935
5936         tmp = I915_READ(DSPFW2);
5937         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5938         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5939         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5940
5941         tmp = I915_READ(DSPFW3);
5942         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5943
5944         if (IS_CHERRYVIEW(dev_priv)) {
5945                 tmp = I915_READ(DSPFW7_CHV);
5946                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5947                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5948
5949                 tmp = I915_READ(DSPFW8_CHV);
5950                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5951                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5952
5953                 tmp = I915_READ(DSPFW9_CHV);
5954                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5955                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5956
5957                 tmp = I915_READ(DSPHOWM);
5958                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5959                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5960                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5961                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5962                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5963                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5964                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5965                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5966                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5967                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5968         } else {
5969                 tmp = I915_READ(DSPFW7);
5970                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5971                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5972
5973                 tmp = I915_READ(DSPHOWM);
5974                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5975                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5976                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5977                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5978                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5979                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5980                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5981         }
5982 }
5983
5984 #undef _FW_WM
5985 #undef _FW_WM_VLV
5986
5987 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5988 {
5989         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5990         struct intel_crtc *crtc;
5991
5992         g4x_read_wm_values(dev_priv, wm);
5993
5994         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5995
5996         for_each_intel_crtc(&dev_priv->drm, crtc) {
5997                 struct intel_crtc_state *crtc_state =
5998                         to_intel_crtc_state(crtc->base.state);
5999                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6000                 struct g4x_pipe_wm *raw;
6001                 enum pipe pipe = crtc->pipe;
6002                 enum plane_id plane_id;
6003                 int level, max_level;
6004
6005                 active->cxsr = wm->cxsr;
6006                 active->hpll_en = wm->hpll_en;
6007                 active->fbc_en = wm->fbc_en;
6008
6009                 active->sr = wm->sr;
6010                 active->hpll = wm->hpll;
6011
6012                 for_each_plane_id_on_crtc(crtc, plane_id) {
6013                         active->wm.plane[plane_id] =
6014                                 wm->pipe[pipe].plane[plane_id];
6015                 }
6016
6017                 if (wm->cxsr && wm->hpll_en)
6018                         max_level = G4X_WM_LEVEL_HPLL;
6019                 else if (wm->cxsr)
6020                         max_level = G4X_WM_LEVEL_SR;
6021                 else
6022                         max_level = G4X_WM_LEVEL_NORMAL;
6023
6024                 level = G4X_WM_LEVEL_NORMAL;
6025                 raw = &crtc_state->wm.g4x.raw[level];
6026                 for_each_plane_id_on_crtc(crtc, plane_id)
6027                         raw->plane[plane_id] = active->wm.plane[plane_id];
6028
6029                 if (++level > max_level)
6030                         goto out;
6031
6032                 raw = &crtc_state->wm.g4x.raw[level];
6033                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6034                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6035                 raw->plane[PLANE_SPRITE0] = 0;
6036                 raw->fbc = active->sr.fbc;
6037
6038                 if (++level > max_level)
6039                         goto out;
6040
6041                 raw = &crtc_state->wm.g4x.raw[level];
6042                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6043                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6044                 raw->plane[PLANE_SPRITE0] = 0;
6045                 raw->fbc = active->hpll.fbc;
6046
6047         out:
6048                 for_each_plane_id_on_crtc(crtc, plane_id)
6049                         g4x_raw_plane_wm_set(crtc_state, level,
6050                                              plane_id, USHRT_MAX);
6051                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6052
6053                 crtc_state->wm.g4x.optimal = *active;
6054                 crtc_state->wm.g4x.intermediate = *active;
6055
6056                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6057                               pipe_name(pipe),
6058                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6059                               wm->pipe[pipe].plane[PLANE_CURSOR],
6060                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
6061         }
6062
6063         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6064                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6065         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6066                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6067         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6068                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6069 }
6070
6071 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6072 {
6073         struct intel_plane *plane;
6074         struct intel_crtc *crtc;
6075
6076         mutex_lock(&dev_priv->wm.wm_mutex);
6077
6078         for_each_intel_plane(&dev_priv->drm, plane) {
6079                 struct intel_crtc *crtc =
6080                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6081                 struct intel_crtc_state *crtc_state =
6082                         to_intel_crtc_state(crtc->base.state);
6083                 struct intel_plane_state *plane_state =
6084                         to_intel_plane_state(plane->base.state);
6085                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6086                 enum plane_id plane_id = plane->id;
6087                 int level;
6088
6089                 if (plane_state->base.visible)
6090                         continue;
6091
6092                 for (level = 0; level < 3; level++) {
6093                         struct g4x_pipe_wm *raw =
6094                                 &crtc_state->wm.g4x.raw[level];
6095
6096                         raw->plane[plane_id] = 0;
6097                         wm_state->wm.plane[plane_id] = 0;
6098                 }
6099
6100                 if (plane_id == PLANE_PRIMARY) {
6101                         for (level = 0; level < 3; level++) {
6102                                 struct g4x_pipe_wm *raw =
6103                                         &crtc_state->wm.g4x.raw[level];
6104                                 raw->fbc = 0;
6105                         }
6106
6107                         wm_state->sr.fbc = 0;
6108                         wm_state->hpll.fbc = 0;
6109                         wm_state->fbc_en = false;
6110                 }
6111         }
6112
6113         for_each_intel_crtc(&dev_priv->drm, crtc) {
6114                 struct intel_crtc_state *crtc_state =
6115                         to_intel_crtc_state(crtc->base.state);
6116
6117                 crtc_state->wm.g4x.intermediate =
6118                         crtc_state->wm.g4x.optimal;
6119                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6120         }
6121
6122         g4x_program_watermarks(dev_priv);
6123
6124         mutex_unlock(&dev_priv->wm.wm_mutex);
6125 }
6126
6127 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6128 {
6129         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6130         struct intel_crtc *crtc;
6131         u32 val;
6132
6133         vlv_read_wm_values(dev_priv, wm);
6134
6135         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6136         wm->level = VLV_WM_LEVEL_PM2;
6137
6138         if (IS_CHERRYVIEW(dev_priv)) {
6139                 vlv_punit_get(dev_priv);
6140
6141                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6142                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6143                         wm->level = VLV_WM_LEVEL_PM5;
6144
6145                 /*
6146                  * If DDR DVFS is disabled in the BIOS, Punit
6147                  * will never ack the request. So if that happens
6148                  * assume we don't have to enable/disable DDR DVFS
6149                  * dynamically. To test that just set the REQ_ACK
6150                  * bit to poke the Punit, but don't change the
6151                  * HIGH/LOW bits so that we don't actually change
6152                  * the current state.
6153                  */
6154                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6155                 val |= FORCE_DDR_FREQ_REQ_ACK;
6156                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6157
6158                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6159                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6160                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6161                                       "assuming DDR DVFS is disabled\n");
6162                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6163                 } else {
6164                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6165                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6166                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6167                 }
6168
6169                 vlv_punit_put(dev_priv);
6170         }
6171
6172         for_each_intel_crtc(&dev_priv->drm, crtc) {
6173                 struct intel_crtc_state *crtc_state =
6174                         to_intel_crtc_state(crtc->base.state);
6175                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6176                 const struct vlv_fifo_state *fifo_state =
6177                         &crtc_state->wm.vlv.fifo_state;
6178                 enum pipe pipe = crtc->pipe;
6179                 enum plane_id plane_id;
6180                 int level;
6181
6182                 vlv_get_fifo_size(crtc_state);
6183
6184                 active->num_levels = wm->level + 1;
6185                 active->cxsr = wm->cxsr;
6186
6187                 for (level = 0; level < active->num_levels; level++) {
6188                         struct g4x_pipe_wm *raw =
6189                                 &crtc_state->wm.vlv.raw[level];
6190
6191                         active->sr[level].plane = wm->sr.plane;
6192                         active->sr[level].cursor = wm->sr.cursor;
6193
6194                         for_each_plane_id_on_crtc(crtc, plane_id) {
6195                                 active->wm[level].plane[plane_id] =
6196                                         wm->pipe[pipe].plane[plane_id];
6197
6198                                 raw->plane[plane_id] =
6199                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6200                                                             fifo_state->plane[plane_id]);
6201                         }
6202                 }
6203
6204                 for_each_plane_id_on_crtc(crtc, plane_id)
6205                         vlv_raw_plane_wm_set(crtc_state, level,
6206                                              plane_id, USHRT_MAX);
6207                 vlv_invalidate_wms(crtc, active, level);
6208
6209                 crtc_state->wm.vlv.optimal = *active;
6210                 crtc_state->wm.vlv.intermediate = *active;
6211
6212                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6213                               pipe_name(pipe),
6214                               wm->pipe[pipe].plane[PLANE_PRIMARY],
6215                               wm->pipe[pipe].plane[PLANE_CURSOR],
6216                               wm->pipe[pipe].plane[PLANE_SPRITE0],
6217                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
6218         }
6219
6220         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6221                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6222 }
6223
6224 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6225 {
6226         struct intel_plane *plane;
6227         struct intel_crtc *crtc;
6228
6229         mutex_lock(&dev_priv->wm.wm_mutex);
6230
6231         for_each_intel_plane(&dev_priv->drm, plane) {
6232                 struct intel_crtc *crtc =
6233                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6234                 struct intel_crtc_state *crtc_state =
6235                         to_intel_crtc_state(crtc->base.state);
6236                 struct intel_plane_state *plane_state =
6237                         to_intel_plane_state(plane->base.state);
6238                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6239                 const struct vlv_fifo_state *fifo_state =
6240                         &crtc_state->wm.vlv.fifo_state;
6241                 enum plane_id plane_id = plane->id;
6242                 int level;
6243
6244                 if (plane_state->base.visible)
6245                         continue;
6246
6247                 for (level = 0; level < wm_state->num_levels; level++) {
6248                         struct g4x_pipe_wm *raw =
6249                                 &crtc_state->wm.vlv.raw[level];
6250
6251                         raw->plane[plane_id] = 0;
6252
6253                         wm_state->wm[level].plane[plane_id] =
6254                                 vlv_invert_wm_value(raw->plane[plane_id],
6255                                                     fifo_state->plane[plane_id]);
6256                 }
6257         }
6258
6259         for_each_intel_crtc(&dev_priv->drm, crtc) {
6260                 struct intel_crtc_state *crtc_state =
6261                         to_intel_crtc_state(crtc->base.state);
6262
6263                 crtc_state->wm.vlv.intermediate =
6264                         crtc_state->wm.vlv.optimal;
6265                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6266         }
6267
6268         vlv_program_watermarks(dev_priv);
6269
6270         mutex_unlock(&dev_priv->wm.wm_mutex);
6271 }
6272
6273 /*
6274  * FIXME should probably kill this and improve
6275  * the real watermark readout/sanitation instead
6276  */
6277 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6278 {
6279         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6280         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6281         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6282
6283         /*
6284          * Don't touch WM1S_LP_EN here.
6285          * Doing so could cause underruns.
6286          */
6287 }
6288
6289 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6290 {
6291         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6292         struct intel_crtc *crtc;
6293
6294         ilk_init_lp_watermarks(dev_priv);
6295
6296         for_each_intel_crtc(&dev_priv->drm, crtc)
6297                 ilk_pipe_wm_get_hw_state(crtc);
6298
6299         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6300         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6301         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6302
6303         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6304         if (INTEL_GEN(dev_priv) >= 7) {
6305                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6306                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6307         }
6308
6309         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6310                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6311                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6312         else if (IS_IVYBRIDGE(dev_priv))
6313                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6314                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6315
6316         hw->enable_fbc_wm =
6317                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6318 }
6319
6320 /**
6321  * intel_update_watermarks - update FIFO watermark values based on current modes
6322  * @crtc: the #intel_crtc on which to compute the WM
6323  *
6324  * Calculate watermark values for the various WM regs based on current mode
6325  * and plane configuration.
6326  *
6327  * There are several cases to deal with here:
6328  *   - normal (i.e. non-self-refresh)
6329  *   - self-refresh (SR) mode
6330  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6331  *   - lines are small relative to FIFO size (buffer can hold more than 2
6332  *     lines), so need to account for TLB latency
6333  *
6334  *   The normal calculation is:
6335  *     watermark = dotclock * bytes per pixel * latency
6336  *   where latency is platform & configuration dependent (we assume pessimal
6337  *   values here).
6338  *
6339  *   The SR calculation is:
6340  *     watermark = (trunc(latency/line time)+1) * surface width *
6341  *       bytes per pixel
6342  *   where
6343  *     line time = htotal / dotclock
6344  *     surface width = hdisplay for normal plane and 64 for cursor
6345  *   and latency is assumed to be high, as above.
6346  *
6347  * The final value programmed to the register should always be rounded up,
6348  * and include an extra 2 entries to account for clock crossings.
6349  *
6350  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6351  * to set the non-SR watermarks to 8.
6352  */
6353 void intel_update_watermarks(struct intel_crtc *crtc)
6354 {
6355         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6356
6357         if (dev_priv->display.update_wm)
6358                 dev_priv->display.update_wm(crtc);
6359 }
6360
6361 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6362 {
6363         u32 val;
6364
6365         if (!HAS_IPC(dev_priv))
6366                 return;
6367
6368         val = I915_READ(DISP_ARB_CTL2);
6369
6370         if (dev_priv->ipc_enabled)
6371                 val |= DISP_IPC_ENABLE;
6372         else
6373                 val &= ~DISP_IPC_ENABLE;
6374
6375         I915_WRITE(DISP_ARB_CTL2, val);
6376 }
6377
6378 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6379 {
6380         /* Display WA #0477 WaDisableIPC: skl */
6381         if (IS_SKYLAKE(dev_priv))
6382                 return false;
6383
6384         /* Display WA #1141: SKL:all KBL:all CFL */
6385         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6386                 return dev_priv->dram_info.symmetric_memory;
6387
6388         return true;
6389 }
6390
6391 void intel_init_ipc(struct drm_i915_private *dev_priv)
6392 {
6393         if (!HAS_IPC(dev_priv))
6394                 return;
6395
6396         dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6397
6398         intel_enable_ipc(dev_priv);
6399 }
6400
6401 /*
6402  * Lock protecting IPS related data structures
6403  */
6404 DEFINE_SPINLOCK(mchdev_lock);
6405
6406 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6407 {
6408         u16 rgvswctl;
6409
6410         lockdep_assert_held(&mchdev_lock);
6411
6412         rgvswctl = I915_READ16(MEMSWCTL);
6413         if (rgvswctl & MEMCTL_CMD_STS) {
6414                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6415                 return false; /* still busy with another command */
6416         }
6417
6418         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6419                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6420         I915_WRITE16(MEMSWCTL, rgvswctl);
6421         POSTING_READ16(MEMSWCTL);
6422
6423         rgvswctl |= MEMCTL_CMD_STS;
6424         I915_WRITE16(MEMSWCTL, rgvswctl);
6425
6426         return true;
6427 }
6428
6429 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6430 {
6431         u32 rgvmodectl;
6432         u8 fmax, fmin, fstart, vstart;
6433
6434         spin_lock_irq(&mchdev_lock);
6435
6436         rgvmodectl = I915_READ(MEMMODECTL);
6437
6438         /* Enable temp reporting */
6439         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6440         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6441
6442         /* 100ms RC evaluation intervals */
6443         I915_WRITE(RCUPEI, 100000);
6444         I915_WRITE(RCDNEI, 100000);
6445
6446         /* Set max/min thresholds to 90ms and 80ms respectively */
6447         I915_WRITE(RCBMAXAVG, 90000);
6448         I915_WRITE(RCBMINAVG, 80000);
6449
6450         I915_WRITE(MEMIHYST, 1);
6451
6452         /* Set up min, max, and cur for interrupt handling */
6453         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6454         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6455         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6456                 MEMMODE_FSTART_SHIFT;
6457
6458         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6459                 PXVFREQ_PX_SHIFT;
6460
6461         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6462         dev_priv->ips.fstart = fstart;
6463
6464         dev_priv->ips.max_delay = fstart;
6465         dev_priv->ips.min_delay = fmin;
6466         dev_priv->ips.cur_delay = fstart;
6467
6468         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6469                          fmax, fmin, fstart);
6470
6471         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6472
6473         /*
6474          * Interrupts will be enabled in ironlake_irq_postinstall
6475          */
6476
6477         I915_WRITE(VIDSTART, vstart);
6478         POSTING_READ(VIDSTART);
6479
6480         rgvmodectl |= MEMMODE_SWMODE_EN;
6481         I915_WRITE(MEMMODECTL, rgvmodectl);
6482
6483         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6484                 DRM_ERROR("stuck trying to change perf mode\n");
6485         mdelay(1);
6486
6487         ironlake_set_drps(dev_priv, fstart);
6488
6489         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6490                 I915_READ(DDREC) + I915_READ(CSIEC);
6491         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6492         dev_priv->ips.last_count2 = I915_READ(GFXEC);
6493         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6494
6495         spin_unlock_irq(&mchdev_lock);
6496 }
6497
6498 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6499 {
6500         u16 rgvswctl;
6501
6502         spin_lock_irq(&mchdev_lock);
6503
6504         rgvswctl = I915_READ16(MEMSWCTL);
6505
6506         /* Ack interrupts, disable EFC interrupt */
6507         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6508         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6509         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6510         I915_WRITE(DEIIR, DE_PCU_EVENT);
6511         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6512
6513         /* Go back to the starting frequency */
6514         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6515         mdelay(1);
6516         rgvswctl |= MEMCTL_CMD_STS;
6517         I915_WRITE(MEMSWCTL, rgvswctl);
6518         mdelay(1);
6519
6520         spin_unlock_irq(&mchdev_lock);
6521 }
6522
6523 /* There's a funny hw issue where the hw returns all 0 when reading from
6524  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6525  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6526  * all limits and the gpu stuck at whatever frequency it is at atm).
6527  */
6528 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6529 {
6530         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6531         u32 limits;
6532
6533         /* Only set the down limit when we've reached the lowest level to avoid
6534          * getting more interrupts, otherwise leave this clear. This prevents a
6535          * race in the hw when coming out of rc6: There's a tiny window where
6536          * the hw runs at the minimal clock before selecting the desired
6537          * frequency, if the down threshold expires in that window we will not
6538          * receive a down interrupt. */
6539         if (INTEL_GEN(dev_priv) >= 9) {
6540                 limits = (rps->max_freq_softlimit) << 23;
6541                 if (val <= rps->min_freq_softlimit)
6542                         limits |= (rps->min_freq_softlimit) << 14;
6543         } else {
6544                 limits = rps->max_freq_softlimit << 24;
6545                 if (val <= rps->min_freq_softlimit)
6546                         limits |= rps->min_freq_softlimit << 16;
6547         }
6548
6549         return limits;
6550 }
6551
6552 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6553 {
6554         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6555         u32 threshold_up = 0, threshold_down = 0; /* in % */
6556         u32 ei_up = 0, ei_down = 0;
6557
6558         lockdep_assert_held(&rps->power.mutex);
6559
6560         if (new_power == rps->power.mode)
6561                 return;
6562
6563         /* Note the units here are not exactly 1us, but 1280ns. */
6564         switch (new_power) {
6565         case LOW_POWER:
6566                 /* Upclock if more than 95% busy over 16ms */
6567                 ei_up = 16000;
6568                 threshold_up = 95;
6569
6570                 /* Downclock if less than 85% busy over 32ms */
6571                 ei_down = 32000;
6572                 threshold_down = 85;
6573                 break;
6574
6575         case BETWEEN:
6576                 /* Upclock if more than 90% busy over 13ms */
6577                 ei_up = 13000;
6578                 threshold_up = 90;
6579
6580                 /* Downclock if less than 75% busy over 32ms */
6581                 ei_down = 32000;
6582                 threshold_down = 75;
6583                 break;
6584
6585         case HIGH_POWER:
6586                 /* Upclock if more than 85% busy over 10ms */
6587                 ei_up = 10000;
6588                 threshold_up = 85;
6589
6590                 /* Downclock if less than 60% busy over 32ms */
6591                 ei_down = 32000;
6592                 threshold_down = 60;
6593                 break;
6594         }
6595
6596         /* When byt can survive without system hang with dynamic
6597          * sw freq adjustments, this restriction can be lifted.
6598          */
6599         if (IS_VALLEYVIEW(dev_priv))
6600                 goto skip_hw_write;
6601
6602         I915_WRITE(GEN6_RP_UP_EI,
6603                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6604         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6605                    GT_INTERVAL_FROM_US(dev_priv,
6606                                        ei_up * threshold_up / 100));
6607
6608         I915_WRITE(GEN6_RP_DOWN_EI,
6609                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6610         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6611                    GT_INTERVAL_FROM_US(dev_priv,
6612                                        ei_down * threshold_down / 100));
6613
6614         I915_WRITE(GEN6_RP_CONTROL,
6615                    (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6616                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6617                    GEN6_RP_MEDIA_IS_GFX |
6618                    GEN6_RP_ENABLE |
6619                    GEN6_RP_UP_BUSY_AVG |
6620                    GEN6_RP_DOWN_IDLE_AVG);
6621
6622 skip_hw_write:
6623         rps->power.mode = new_power;
6624         rps->power.up_threshold = threshold_up;
6625         rps->power.down_threshold = threshold_down;
6626 }
6627
6628 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6629 {
6630         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6631         int new_power;
6632
6633         new_power = rps->power.mode;
6634         switch (rps->power.mode) {
6635         case LOW_POWER:
6636                 if (val > rps->efficient_freq + 1 &&
6637                     val > rps->cur_freq)
6638                         new_power = BETWEEN;
6639                 break;
6640
6641         case BETWEEN:
6642                 if (val <= rps->efficient_freq &&
6643                     val < rps->cur_freq)
6644                         new_power = LOW_POWER;
6645                 else if (val >= rps->rp0_freq &&
6646                          val > rps->cur_freq)
6647                         new_power = HIGH_POWER;
6648                 break;
6649
6650         case HIGH_POWER:
6651                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6652                     val < rps->cur_freq)
6653                         new_power = BETWEEN;
6654                 break;
6655         }
6656         /* Max/min bins are special */
6657         if (val <= rps->min_freq_softlimit)
6658                 new_power = LOW_POWER;
6659         if (val >= rps->max_freq_softlimit)
6660                 new_power = HIGH_POWER;
6661
6662         mutex_lock(&rps->power.mutex);
6663         if (rps->power.interactive)
6664                 new_power = HIGH_POWER;
6665         rps_set_power(dev_priv, new_power);
6666         mutex_unlock(&rps->power.mutex);
6667 }
6668
6669 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6670 {
6671         struct intel_rps *rps = &i915->gt_pm.rps;
6672
6673         if (INTEL_GEN(i915) < 6)
6674                 return;
6675
6676         mutex_lock(&rps->power.mutex);
6677         if (interactive) {
6678                 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6679                         rps_set_power(i915, HIGH_POWER);
6680         } else {
6681                 GEM_BUG_ON(!rps->power.interactive);
6682                 rps->power.interactive--;
6683         }
6684         mutex_unlock(&rps->power.mutex);
6685 }
6686
6687 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6688 {
6689         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6690         u32 mask = 0;
6691
6692         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6693         if (val > rps->min_freq_softlimit)
6694                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6695         if (val < rps->max_freq_softlimit)
6696                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6697
6698         mask &= dev_priv->pm_rps_events;
6699
6700         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6701 }
6702
6703 /* gen6_set_rps is called to update the frequency request, but should also be
6704  * called when the range (min_delay and max_delay) is modified so that we can
6705  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6706 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6707 {
6708         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6709
6710         /* min/max delay may still have been modified so be sure to
6711          * write the limits value.
6712          */
6713         if (val != rps->cur_freq) {
6714                 gen6_set_rps_thresholds(dev_priv, val);
6715
6716                 if (INTEL_GEN(dev_priv) >= 9)
6717                         I915_WRITE(GEN6_RPNSWREQ,
6718                                    GEN9_FREQUENCY(val));
6719                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6720                         I915_WRITE(GEN6_RPNSWREQ,
6721                                    HSW_FREQUENCY(val));
6722                 else
6723                         I915_WRITE(GEN6_RPNSWREQ,
6724                                    GEN6_FREQUENCY(val) |
6725                                    GEN6_OFFSET(0) |
6726                                    GEN6_AGGRESSIVE_TURBO);
6727         }
6728
6729         /* Make sure we continue to get interrupts
6730          * until we hit the minimum or maximum frequencies.
6731          */
6732         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6733         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6734
6735         rps->cur_freq = val;
6736         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6737
6738         return 0;
6739 }
6740
6741 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6742 {
6743         int err;
6744
6745         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6746                       "Odd GPU freq value\n"))
6747                 val &= ~1;
6748
6749         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6750
6751         if (val != dev_priv->gt_pm.rps.cur_freq) {
6752                 vlv_punit_get(dev_priv);
6753                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6754                 vlv_punit_put(dev_priv);
6755                 if (err)
6756                         return err;
6757
6758                 gen6_set_rps_thresholds(dev_priv, val);
6759         }
6760
6761         dev_priv->gt_pm.rps.cur_freq = val;
6762         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6763
6764         return 0;
6765 }
6766
6767 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6768  *
6769  * * If Gfx is Idle, then
6770  * 1. Forcewake Media well.
6771  * 2. Request idle freq.
6772  * 3. Release Forcewake of Media well.
6773 */
6774 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6775 {
6776         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6777         u32 val = rps->idle_freq;
6778         int err;
6779
6780         if (rps->cur_freq <= val)
6781                 return;
6782
6783         /* The punit delays the write of the frequency and voltage until it
6784          * determines the GPU is awake. During normal usage we don't want to
6785          * waste power changing the frequency if the GPU is sleeping (rc6).
6786          * However, the GPU and driver is now idle and we do not want to delay
6787          * switching to minimum voltage (reducing power whilst idle) as we do
6788          * not expect to be woken in the near future and so must flush the
6789          * change by waking the device.
6790          *
6791          * We choose to take the media powerwell (either would do to trick the
6792          * punit into committing the voltage change) as that takes a lot less
6793          * power than the render powerwell.
6794          */
6795         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6796         err = valleyview_set_rps(dev_priv, val);
6797         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6798
6799         if (err)
6800                 DRM_ERROR("Failed to set RPS for idle\n");
6801 }
6802
6803 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6804 {
6805         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6806
6807         mutex_lock(&rps->lock);
6808         if (rps->enabled) {
6809                 u8 freq;
6810
6811                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6812                         gen6_rps_reset_ei(dev_priv);
6813                 I915_WRITE(GEN6_PMINTRMSK,
6814                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6815
6816                 gen6_enable_rps_interrupts(dev_priv);
6817
6818                 /* Use the user's desired frequency as a guide, but for better
6819                  * performance, jump directly to RPe as our starting frequency.
6820                  */
6821                 freq = max(rps->cur_freq,
6822                            rps->efficient_freq);
6823
6824                 if (intel_set_rps(dev_priv,
6825                                   clamp(freq,
6826                                         rps->min_freq_softlimit,
6827                                         rps->max_freq_softlimit)))
6828                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6829         }
6830         mutex_unlock(&rps->lock);
6831 }
6832
6833 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6834 {
6835         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6836
6837         /* Flush our bottom-half so that it does not race with us
6838          * setting the idle frequency and so that it is bounded by
6839          * our rpm wakeref. And then disable the interrupts to stop any
6840          * futher RPS reclocking whilst we are asleep.
6841          */
6842         gen6_disable_rps_interrupts(dev_priv);
6843
6844         mutex_lock(&rps->lock);
6845         if (rps->enabled) {
6846                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6847                         vlv_set_rps_idle(dev_priv);
6848                 else
6849                         gen6_set_rps(dev_priv, rps->idle_freq);
6850                 rps->last_adj = 0;
6851                 I915_WRITE(GEN6_PMINTRMSK,
6852                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6853         }
6854         mutex_unlock(&rps->lock);
6855 }
6856
6857 void gen6_rps_boost(struct i915_request *rq)
6858 {
6859         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6860         unsigned long flags;
6861         bool boost;
6862
6863         /* This is intentionally racy! We peek at the state here, then
6864          * validate inside the RPS worker.
6865          */
6866         if (!rps->enabled)
6867                 return;
6868
6869         if (i915_request_signaled(rq))
6870                 return;
6871
6872         /* Serializes with i915_request_retire() */
6873         boost = false;
6874         spin_lock_irqsave(&rq->lock, flags);
6875         if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6876                 boost = !atomic_fetch_inc(&rps->num_waiters);
6877                 rq->waitboost = true;
6878         }
6879         spin_unlock_irqrestore(&rq->lock, flags);
6880         if (!boost)
6881                 return;
6882
6883         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6884                 schedule_work(&rps->work);
6885
6886         atomic_inc(&rps->boosts);
6887 }
6888
6889 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6890 {
6891         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6892         int err;
6893
6894         lockdep_assert_held(&rps->lock);
6895         GEM_BUG_ON(val > rps->max_freq);
6896         GEM_BUG_ON(val < rps->min_freq);
6897
6898         if (!rps->enabled) {
6899                 rps->cur_freq = val;
6900                 return 0;
6901         }
6902
6903         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6904                 err = valleyview_set_rps(dev_priv, val);
6905         else
6906                 err = gen6_set_rps(dev_priv, val);
6907
6908         return err;
6909 }
6910
6911 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6912 {
6913         I915_WRITE(GEN6_RC_CONTROL, 0);
6914         I915_WRITE(GEN9_PG_ENABLE, 0);
6915 }
6916
6917 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6918 {
6919         I915_WRITE(GEN6_RP_CONTROL, 0);
6920 }
6921
6922 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6923 {
6924         I915_WRITE(GEN6_RC_CONTROL, 0);
6925 }
6926
6927 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6928 {
6929         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6930         I915_WRITE(GEN6_RP_CONTROL, 0);
6931 }
6932
6933 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6934 {
6935         I915_WRITE(GEN6_RC_CONTROL, 0);
6936 }
6937
6938 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6939 {
6940         I915_WRITE(GEN6_RP_CONTROL, 0);
6941 }
6942
6943 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6944 {
6945         /* We're doing forcewake before Disabling RC6,
6946          * This what the BIOS expects when going into suspend */
6947         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6948
6949         I915_WRITE(GEN6_RC_CONTROL, 0);
6950
6951         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6952 }
6953
6954 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6955 {
6956         I915_WRITE(GEN6_RP_CONTROL, 0);
6957 }
6958
6959 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6960 {
6961         bool enable_rc6 = true;
6962         unsigned long rc6_ctx_base;
6963         u32 rc_ctl;
6964         int rc_sw_target;
6965
6966         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6967         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6968                        RC_SW_TARGET_STATE_SHIFT;
6969         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6970                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6971                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6972                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6973                          rc_sw_target);
6974
6975         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6976                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6977                 enable_rc6 = false;
6978         }
6979
6980         /*
6981          * The exact context size is not known for BXT, so assume a page size
6982          * for this check.
6983          */
6984         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6985         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6986               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6987                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6988                 enable_rc6 = false;
6989         }
6990
6991         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6992               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6993               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6994               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6995                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6996                 enable_rc6 = false;
6997         }
6998
6999         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
7000             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
7001             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
7002                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
7003                 enable_rc6 = false;
7004         }
7005
7006         if (!I915_READ(GEN6_GFXPAUSE)) {
7007                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
7008                 enable_rc6 = false;
7009         }
7010
7011         if (!I915_READ(GEN8_MISC_CTRL0)) {
7012                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7013                 enable_rc6 = false;
7014         }
7015
7016         return enable_rc6;
7017 }
7018
7019 static bool sanitize_rc6(struct drm_i915_private *i915)
7020 {
7021         struct intel_device_info *info = mkwrite_device_info(i915);
7022
7023         /* Powersaving is controlled by the host when inside a VM */
7024         if (intel_vgpu_active(i915)) {
7025                 info->has_rc6 = 0;
7026                 info->has_rps = false;
7027         }
7028
7029         if (info->has_rc6 &&
7030             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7031                 DRM_INFO("RC6 disabled by BIOS\n");
7032                 info->has_rc6 = 0;
7033         }
7034
7035         /*
7036          * We assume that we do not have any deep rc6 levels if we don't have
7037          * have the previous rc6 level supported, i.e. we use HAS_RC6()
7038          * as the initial coarse check for rc6 in general, moving on to
7039          * progressively finer/deeper levels.
7040          */
7041         if (!info->has_rc6 && info->has_rc6p)
7042                 info->has_rc6p = 0;
7043
7044         return info->has_rc6;
7045 }
7046
7047 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7048 {
7049         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7050
7051         /* All of these values are in units of 50MHz */
7052
7053         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
7054         if (IS_GEN9_LP(dev_priv)) {
7055                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7056                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
7057                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7058                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
7059         } else {
7060                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7061                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
7062                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7063                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
7064         }
7065         /* hw_max = RP0 until we check for overclocking */
7066         rps->max_freq = rps->rp0_freq;
7067
7068         rps->efficient_freq = rps->rp1_freq;
7069         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7070             IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7071                 u32 ddcc_status = 0;
7072
7073                 if (sandybridge_pcode_read(dev_priv,
7074                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7075                                            &ddcc_status) == 0)
7076                         rps->efficient_freq =
7077                                 clamp_t(u8,
7078                                         ((ddcc_status >> 8) & 0xff),
7079                                         rps->min_freq,
7080                                         rps->max_freq);
7081         }
7082
7083         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7084                 /* Store the frequency values in 16.66 MHZ units, which is
7085                  * the natural hardware unit for SKL
7086                  */
7087                 rps->rp0_freq *= GEN9_FREQ_SCALER;
7088                 rps->rp1_freq *= GEN9_FREQ_SCALER;
7089                 rps->min_freq *= GEN9_FREQ_SCALER;
7090                 rps->max_freq *= GEN9_FREQ_SCALER;
7091                 rps->efficient_freq *= GEN9_FREQ_SCALER;
7092         }
7093 }
7094
7095 static void reset_rps(struct drm_i915_private *dev_priv,
7096                       int (*set)(struct drm_i915_private *, u8))
7097 {
7098         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7099         u8 freq = rps->cur_freq;
7100
7101         /* force a reset */
7102         rps->power.mode = -1;
7103         rps->cur_freq = -1;
7104
7105         if (set(dev_priv, freq))
7106                 DRM_ERROR("Failed to reset RPS to initial values\n");
7107 }
7108
7109 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
7110 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7111 {
7112         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7113
7114         /* Program defaults and thresholds for RPS */
7115         if (IS_GEN(dev_priv, 9))
7116                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7117                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7118
7119         /* 1 second timeout*/
7120         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7121                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
7122
7123         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7124
7125         /* Leaning on the below call to gen6_set_rps to program/setup the
7126          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7127          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7128         reset_rps(dev_priv, gen6_set_rps);
7129
7130         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7131 }
7132
7133 static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
7134 {
7135         struct intel_engine_cs *engine;
7136         enum intel_engine_id id;
7137
7138         /* 1a: Software RC state - RC0 */
7139         I915_WRITE(GEN6_RC_STATE, 0);
7140
7141         /*
7142          * 1b: Get forcewake during program sequence. Although the driver
7143          * hasn't enabled a state yet where we need forcewake, BIOS may have.
7144          */
7145         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7146
7147         /* 2a: Disable RC states. */
7148         I915_WRITE(GEN6_RC_CONTROL, 0);
7149
7150         /* 2b: Program RC6 thresholds.*/
7151         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7152         I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7153
7154         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7155         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7156         for_each_engine(engine, dev_priv, id)
7157                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7158
7159         if (HAS_GUC(dev_priv))
7160                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7161
7162         I915_WRITE(GEN6_RC_SLEEP, 0);
7163
7164         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
7165
7166         /*
7167          * 2c: Program Coarse Power Gating Policies.
7168          *
7169          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7170          * use instead is a more conservative estimate for the maximum time
7171          * it takes us to service a CS interrupt and submit a new ELSP - that
7172          * is the time which the GPU is idle waiting for the CPU to select the
7173          * next request to execute. If the idle hysteresis is less than that
7174          * interrupt service latency, the hardware will automatically gate
7175          * the power well and we will then incur the wake up cost on top of
7176          * the service latency. A similar guide from intel_pstate is that we
7177          * do not want the enable hysteresis to less than the wakeup latency.
7178          *
7179          * igt/gem_exec_nop/sequential provides a rough estimate for the
7180          * service latency, and puts it around 10us for Broadwell (and other
7181          * big core) and around 40us for Broxton (and other low power cores).
7182          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7183          * However, the wakeup latency on Broxton is closer to 100us. To be
7184          * conservative, we have to factor in a context switch on top (due
7185          * to ksoftirqd).
7186          */
7187         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7188         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7189
7190         /* 3a: Enable RC6 */
7191         I915_WRITE(GEN6_RC_CONTROL,
7192                    GEN6_RC_CTL_HW_ENABLE |
7193                    GEN6_RC_CTL_RC6_ENABLE |
7194                    GEN6_RC_CTL_EI_MODE(1));
7195
7196         /* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
7197         I915_WRITE(GEN9_PG_ENABLE,
7198                    GEN9_RENDER_PG_ENABLE |
7199                    GEN9_MEDIA_PG_ENABLE |
7200                    GEN11_MEDIA_SAMPLER_PG_ENABLE);
7201
7202         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7203 }
7204
7205 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7206 {
7207         struct intel_engine_cs *engine;
7208         enum intel_engine_id id;
7209         u32 rc6_mode;
7210
7211         /* 1a: Software RC state - RC0 */
7212         I915_WRITE(GEN6_RC_STATE, 0);
7213
7214         /* 1b: Get forcewake during program sequence. Although the driver
7215          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7216         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7217
7218         /* 2a: Disable RC states. */
7219         I915_WRITE(GEN6_RC_CONTROL, 0);
7220
7221         /* 2b: Program RC6 thresholds.*/
7222         if (INTEL_GEN(dev_priv) >= 10) {
7223                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7224                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7225         } else if (IS_SKYLAKE(dev_priv)) {
7226                 /*
7227                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7228                  * when CPG is enabled
7229                  */
7230                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7231         } else {
7232                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7233         }
7234
7235         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7236         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7237         for_each_engine(engine, dev_priv, id)
7238                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7239
7240         if (HAS_GUC(dev_priv))
7241                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7242
7243         I915_WRITE(GEN6_RC_SLEEP, 0);
7244
7245         /*
7246          * 2c: Program Coarse Power Gating Policies.
7247          *
7248          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7249          * use instead is a more conservative estimate for the maximum time
7250          * it takes us to service a CS interrupt and submit a new ELSP - that
7251          * is the time which the GPU is idle waiting for the CPU to select the
7252          * next request to execute. If the idle hysteresis is less than that
7253          * interrupt service latency, the hardware will automatically gate
7254          * the power well and we will then incur the wake up cost on top of
7255          * the service latency. A similar guide from intel_pstate is that we
7256          * do not want the enable hysteresis to less than the wakeup latency.
7257          *
7258          * igt/gem_exec_nop/sequential provides a rough estimate for the
7259          * service latency, and puts it around 10us for Broadwell (and other
7260          * big core) and around 40us for Broxton (and other low power cores).
7261          * [Note that for legacy ringbuffer submission, this is less than 1us!]
7262          * However, the wakeup latency on Broxton is closer to 100us. To be
7263          * conservative, we have to factor in a context switch on top (due
7264          * to ksoftirqd).
7265          */
7266         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7267         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7268
7269         /* 3a: Enable RC6 */
7270         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7271
7272         /* WaRsUseTimeoutMode:cnl (pre-prod) */
7273         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7274                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7275         else
7276                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7277
7278         I915_WRITE(GEN6_RC_CONTROL,
7279                    GEN6_RC_CTL_HW_ENABLE |
7280                    GEN6_RC_CTL_RC6_ENABLE |
7281                    rc6_mode);
7282
7283         /*
7284          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7285          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7286          */
7287         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7288                 I915_WRITE(GEN9_PG_ENABLE, 0);
7289         else
7290                 I915_WRITE(GEN9_PG_ENABLE,
7291                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7292
7293         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7294 }
7295
7296 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7297 {
7298         struct intel_engine_cs *engine;
7299         enum intel_engine_id id;
7300
7301         /* 1a: Software RC state - RC0 */
7302         I915_WRITE(GEN6_RC_STATE, 0);
7303
7304         /* 1b: Get forcewake during program sequence. Although the driver
7305          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7306         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7307
7308         /* 2a: Disable RC states. */
7309         I915_WRITE(GEN6_RC_CONTROL, 0);
7310
7311         /* 2b: Program RC6 thresholds.*/
7312         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7313         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7314         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7315         for_each_engine(engine, dev_priv, id)
7316                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7317         I915_WRITE(GEN6_RC_SLEEP, 0);
7318         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7319
7320         /* 3: Enable RC6 */
7321
7322         I915_WRITE(GEN6_RC_CONTROL,
7323                    GEN6_RC_CTL_HW_ENABLE |
7324                    GEN7_RC_CTL_TO_MODE |
7325                    GEN6_RC_CTL_RC6_ENABLE);
7326
7327         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7328 }
7329
7330 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7331 {
7332         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7333
7334         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7335
7336         /* 1 Program defaults and thresholds for RPS*/
7337         I915_WRITE(GEN6_RPNSWREQ,
7338                    HSW_FREQUENCY(rps->rp1_freq));
7339         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7340                    HSW_FREQUENCY(rps->rp1_freq));
7341         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7342         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7343
7344         /* Docs recommend 900MHz, and 300 MHz respectively */
7345         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7346                    rps->max_freq_softlimit << 24 |
7347                    rps->min_freq_softlimit << 16);
7348
7349         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7350         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7351         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7352         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7353
7354         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7355
7356         /* 2: Enable RPS */
7357         I915_WRITE(GEN6_RP_CONTROL,
7358                    GEN6_RP_MEDIA_TURBO |
7359                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7360                    GEN6_RP_MEDIA_IS_GFX |
7361                    GEN6_RP_ENABLE |
7362                    GEN6_RP_UP_BUSY_AVG |
7363                    GEN6_RP_DOWN_IDLE_AVG);
7364
7365         reset_rps(dev_priv, gen6_set_rps);
7366
7367         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7368 }
7369
7370 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7371 {
7372         struct intel_engine_cs *engine;
7373         enum intel_engine_id id;
7374         u32 rc6vids, rc6_mask;
7375         u32 gtfifodbg;
7376         int ret;
7377
7378         I915_WRITE(GEN6_RC_STATE, 0);
7379
7380         /* Clear the DBG now so we don't confuse earlier errors */
7381         gtfifodbg = I915_READ(GTFIFODBG);
7382         if (gtfifodbg) {
7383                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7384                 I915_WRITE(GTFIFODBG, gtfifodbg);
7385         }
7386
7387         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7388
7389         /* disable the counters and set deterministic thresholds */
7390         I915_WRITE(GEN6_RC_CONTROL, 0);
7391
7392         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7393         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7394         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7395         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7396         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7397
7398         for_each_engine(engine, dev_priv, id)
7399                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7400
7401         I915_WRITE(GEN6_RC_SLEEP, 0);
7402         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7403         if (IS_IVYBRIDGE(dev_priv))
7404                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7405         else
7406                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7407         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7408         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7409
7410         /* We don't use those on Haswell */
7411         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7412         if (HAS_RC6p(dev_priv))
7413                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7414         if (HAS_RC6pp(dev_priv))
7415                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7416         I915_WRITE(GEN6_RC_CONTROL,
7417                    rc6_mask |
7418                    GEN6_RC_CTL_EI_MODE(1) |
7419                    GEN6_RC_CTL_HW_ENABLE);
7420
7421         rc6vids = 0;
7422         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7423         if (IS_GEN(dev_priv, 6) && ret) {
7424                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7425         } else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7426                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7427                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7428                 rc6vids &= 0xffff00;
7429                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7430                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7431                 if (ret)
7432                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7433         }
7434
7435         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7436 }
7437
7438 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7439 {
7440         /* Here begins a magic sequence of register writes to enable
7441          * auto-downclocking.
7442          *
7443          * Perhaps there might be some value in exposing these to
7444          * userspace...
7445          */
7446         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7447
7448         /* Power down if completely idle for over 50ms */
7449         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7450         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7451
7452         reset_rps(dev_priv, gen6_set_rps);
7453
7454         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7455 }
7456
7457 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7458 {
7459         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7460         const int min_freq = 15;
7461         const int scaling_factor = 180;
7462         unsigned int gpu_freq;
7463         unsigned int max_ia_freq, min_ring_freq;
7464         unsigned int max_gpu_freq, min_gpu_freq;
7465         struct cpufreq_policy *policy;
7466
7467         lockdep_assert_held(&rps->lock);
7468
7469         if (rps->max_freq <= rps->min_freq)
7470                 return;
7471
7472         policy = cpufreq_cpu_get(0);
7473         if (policy) {
7474                 max_ia_freq = policy->cpuinfo.max_freq;
7475                 cpufreq_cpu_put(policy);
7476         } else {
7477                 /*
7478                  * Default to measured freq if none found, PCU will ensure we
7479                  * don't go over
7480                  */
7481                 max_ia_freq = tsc_khz;
7482         }
7483
7484         /* Convert from kHz to MHz */
7485         max_ia_freq /= 1000;
7486
7487         min_ring_freq = I915_READ(DCLK) & 0xf;
7488         /* convert DDR frequency from units of 266.6MHz to bandwidth */
7489         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7490
7491         min_gpu_freq = rps->min_freq;
7492         max_gpu_freq = rps->max_freq;
7493         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7494                 /* Convert GT frequency to 50 HZ units */
7495                 min_gpu_freq /= GEN9_FREQ_SCALER;
7496                 max_gpu_freq /= GEN9_FREQ_SCALER;
7497         }
7498
7499         /*
7500          * For each potential GPU frequency, load a ring frequency we'd like
7501          * to use for memory access.  We do this by specifying the IA frequency
7502          * the PCU should use as a reference to determine the ring frequency.
7503          */
7504         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7505                 const int diff = max_gpu_freq - gpu_freq;
7506                 unsigned int ia_freq = 0, ring_freq = 0;
7507
7508                 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7509                         /*
7510                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
7511                          * No floor required for ring frequency on SKL.
7512                          */
7513                         ring_freq = gpu_freq;
7514                 } else if (INTEL_GEN(dev_priv) >= 8) {
7515                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
7516                         ring_freq = max(min_ring_freq, gpu_freq);
7517                 } else if (IS_HASWELL(dev_priv)) {
7518                         ring_freq = mult_frac(gpu_freq, 5, 4);
7519                         ring_freq = max(min_ring_freq, ring_freq);
7520                         /* leave ia_freq as the default, chosen by cpufreq */
7521                 } else {
7522                         /* On older processors, there is no separate ring
7523                          * clock domain, so in order to boost the bandwidth
7524                          * of the ring, we need to upclock the CPU (ia_freq).
7525                          *
7526                          * For GPU frequencies less than 750MHz,
7527                          * just use the lowest ring freq.
7528                          */
7529                         if (gpu_freq < min_freq)
7530                                 ia_freq = 800;
7531                         else
7532                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7533                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7534                 }
7535
7536                 sandybridge_pcode_write(dev_priv,
7537                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7538                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7539                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7540                                         gpu_freq);
7541         }
7542 }
7543
7544 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7545 {
7546         u32 val, rp0;
7547
7548         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7549
7550         switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7551         case 8:
7552                 /* (2 * 4) config */
7553                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7554                 break;
7555         case 12:
7556                 /* (2 * 6) config */
7557                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7558                 break;
7559         case 16:
7560                 /* (2 * 8) config */
7561         default:
7562                 /* Setting (2 * 8) Min RP0 for any other combination */
7563                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7564                 break;
7565         }
7566
7567         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7568
7569         return rp0;
7570 }
7571
7572 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7573 {
7574         u32 val, rpe;
7575
7576         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7577         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7578
7579         return rpe;
7580 }
7581
7582 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7583 {
7584         u32 val, rp1;
7585
7586         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7587         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7588
7589         return rp1;
7590 }
7591
7592 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7593 {
7594         u32 val, rpn;
7595
7596         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7597         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7598                        FB_GFX_FREQ_FUSE_MASK);
7599
7600         return rpn;
7601 }
7602
7603 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7604 {
7605         u32 val, rp1;
7606
7607         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7608
7609         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7610
7611         return rp1;
7612 }
7613
7614 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7615 {
7616         u32 val, rp0;
7617
7618         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7619
7620         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7621         /* Clamp to max */
7622         rp0 = min_t(u32, rp0, 0xea);
7623
7624         return rp0;
7625 }
7626
7627 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7628 {
7629         u32 val, rpe;
7630
7631         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7632         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7633         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7634         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7635
7636         return rpe;
7637 }
7638
7639 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7640 {
7641         u32 val;
7642
7643         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7644         /*
7645          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7646          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7647          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7648          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7649          * to make sure it matches what Punit accepts.
7650          */
7651         return max_t(u32, val, 0xc0);
7652 }
7653
7654 /* Check that the pctx buffer wasn't move under us. */
7655 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7656 {
7657         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7658
7659         WARN_ON(pctx_addr != dev_priv->dsm.start +
7660                              dev_priv->vlv_pctx->stolen->start);
7661 }
7662
7663
7664 /* Check that the pcbr address is not empty. */
7665 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7666 {
7667         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7668
7669         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7670 }
7671
7672 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7673 {
7674         resource_size_t pctx_paddr, paddr;
7675         resource_size_t pctx_size = 32*1024;
7676         u32 pcbr;
7677
7678         pcbr = I915_READ(VLV_PCBR);
7679         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7680                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7681                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7682                 GEM_BUG_ON(paddr > U32_MAX);
7683
7684                 pctx_paddr = (paddr & (~4095));
7685                 I915_WRITE(VLV_PCBR, pctx_paddr);
7686         }
7687
7688         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7689 }
7690
7691 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7692 {
7693         struct drm_i915_gem_object *pctx;
7694         resource_size_t pctx_paddr;
7695         resource_size_t pctx_size = 24*1024;
7696         u32 pcbr;
7697
7698         pcbr = I915_READ(VLV_PCBR);
7699         if (pcbr) {
7700                 /* BIOS set it up already, grab the pre-alloc'd space */
7701                 resource_size_t pcbr_offset;
7702
7703                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7704                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7705                                                                       pcbr_offset,
7706                                                                       I915_GTT_OFFSET_NONE,
7707                                                                       pctx_size);
7708                 goto out;
7709         }
7710
7711         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7712
7713         /*
7714          * From the Gunit register HAS:
7715          * The Gfx driver is expected to program this register and ensure
7716          * proper allocation within Gfx stolen memory.  For example, this
7717          * register should be programmed such than the PCBR range does not
7718          * overlap with other ranges, such as the frame buffer, protected
7719          * memory, or any other relevant ranges.
7720          */
7721         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7722         if (!pctx) {
7723                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7724                 goto out;
7725         }
7726
7727         GEM_BUG_ON(range_overflows_t(u64,
7728                                      dev_priv->dsm.start,
7729                                      pctx->stolen->start,
7730                                      U32_MAX));
7731         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7732         I915_WRITE(VLV_PCBR, pctx_paddr);
7733
7734 out:
7735         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7736         dev_priv->vlv_pctx = pctx;
7737 }
7738
7739 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7740 {
7741         struct drm_i915_gem_object *pctx;
7742
7743         pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7744         if (pctx)
7745                 i915_gem_object_put(pctx);
7746 }
7747
7748 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7749 {
7750         dev_priv->gt_pm.rps.gpll_ref_freq =
7751                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7752                                   CCK_GPLL_CLOCK_CONTROL,
7753                                   dev_priv->czclk_freq);
7754
7755         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7756                          dev_priv->gt_pm.rps.gpll_ref_freq);
7757 }
7758
7759 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7760 {
7761         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7762         u32 val;
7763
7764         valleyview_setup_pctx(dev_priv);
7765
7766         vlv_iosf_sb_get(dev_priv,
7767                         BIT(VLV_IOSF_SB_PUNIT) |
7768                         BIT(VLV_IOSF_SB_NC) |
7769                         BIT(VLV_IOSF_SB_CCK));
7770
7771         vlv_init_gpll_ref_freq(dev_priv);
7772
7773         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7774         switch ((val >> 6) & 3) {
7775         case 0:
7776         case 1:
7777                 dev_priv->mem_freq = 800;
7778                 break;
7779         case 2:
7780                 dev_priv->mem_freq = 1066;
7781                 break;
7782         case 3:
7783                 dev_priv->mem_freq = 1333;
7784                 break;
7785         }
7786         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7787
7788         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7789         rps->rp0_freq = rps->max_freq;
7790         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7791                          intel_gpu_freq(dev_priv, rps->max_freq),
7792                          rps->max_freq);
7793
7794         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7795         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7796                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7797                          rps->efficient_freq);
7798
7799         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7800         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7801                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7802                          rps->rp1_freq);
7803
7804         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7805         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7806                          intel_gpu_freq(dev_priv, rps->min_freq),
7807                          rps->min_freq);
7808
7809         vlv_iosf_sb_put(dev_priv,
7810                         BIT(VLV_IOSF_SB_PUNIT) |
7811                         BIT(VLV_IOSF_SB_NC) |
7812                         BIT(VLV_IOSF_SB_CCK));
7813 }
7814
7815 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7816 {
7817         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7818         u32 val;
7819
7820         cherryview_setup_pctx(dev_priv);
7821
7822         vlv_iosf_sb_get(dev_priv,
7823                         BIT(VLV_IOSF_SB_PUNIT) |
7824                         BIT(VLV_IOSF_SB_NC) |
7825                         BIT(VLV_IOSF_SB_CCK));
7826
7827         vlv_init_gpll_ref_freq(dev_priv);
7828
7829         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7830
7831         switch ((val >> 2) & 0x7) {
7832         case 3:
7833                 dev_priv->mem_freq = 2000;
7834                 break;
7835         default:
7836                 dev_priv->mem_freq = 1600;
7837                 break;
7838         }
7839         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7840
7841         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7842         rps->rp0_freq = rps->max_freq;
7843         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7844                          intel_gpu_freq(dev_priv, rps->max_freq),
7845                          rps->max_freq);
7846
7847         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7848         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7849                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7850                          rps->efficient_freq);
7851
7852         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7853         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7854                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7855                          rps->rp1_freq);
7856
7857         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7858         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7859                          intel_gpu_freq(dev_priv, rps->min_freq),
7860                          rps->min_freq);
7861
7862         vlv_iosf_sb_put(dev_priv,
7863                         BIT(VLV_IOSF_SB_PUNIT) |
7864                         BIT(VLV_IOSF_SB_NC) |
7865                         BIT(VLV_IOSF_SB_CCK));
7866
7867         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7868                    rps->min_freq) & 1,
7869                   "Odd GPU freq values\n");
7870 }
7871
7872 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7873 {
7874         valleyview_cleanup_pctx(dev_priv);
7875 }
7876
7877 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7878 {
7879         struct intel_engine_cs *engine;
7880         enum intel_engine_id id;
7881         u32 gtfifodbg, rc6_mode, pcbr;
7882
7883         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7884                                              GT_FIFO_FREE_ENTRIES_CHV);
7885         if (gtfifodbg) {
7886                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7887                                  gtfifodbg);
7888                 I915_WRITE(GTFIFODBG, gtfifodbg);
7889         }
7890
7891         cherryview_check_pctx(dev_priv);
7892
7893         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7894          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7895         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7896
7897         /*  Disable RC states. */
7898         I915_WRITE(GEN6_RC_CONTROL, 0);
7899
7900         /* 2a: Program RC6 thresholds.*/
7901         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7902         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7903         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7904
7905         for_each_engine(engine, dev_priv, id)
7906                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7907         I915_WRITE(GEN6_RC_SLEEP, 0);
7908
7909         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7910         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7911
7912         /* Allows RC6 residency counter to work */
7913         I915_WRITE(VLV_COUNTER_CONTROL,
7914                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7915                                       VLV_MEDIA_RC6_COUNT_EN |
7916                                       VLV_RENDER_RC6_COUNT_EN));
7917
7918         /* For now we assume BIOS is allocating and populating the PCBR  */
7919         pcbr = I915_READ(VLV_PCBR);
7920
7921         /* 3: Enable RC6 */
7922         rc6_mode = 0;
7923         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7924                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7925         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7926
7927         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7928 }
7929
7930 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7931 {
7932         u32 val;
7933
7934         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7935
7936         /* 1: Program defaults and thresholds for RPS*/
7937         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7938         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7939         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7940         I915_WRITE(GEN6_RP_UP_EI, 66000);
7941         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7942
7943         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7944
7945         /* 2: Enable RPS */
7946         I915_WRITE(GEN6_RP_CONTROL,
7947                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7948                    GEN6_RP_MEDIA_IS_GFX |
7949                    GEN6_RP_ENABLE |
7950                    GEN6_RP_UP_BUSY_AVG |
7951                    GEN6_RP_DOWN_IDLE_AVG);
7952
7953         /* Setting Fixed Bias */
7954         vlv_punit_get(dev_priv);
7955
7956         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
7957         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7958
7959         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7960
7961         vlv_punit_put(dev_priv);
7962
7963         /* RPS code assumes GPLL is used */
7964         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7965
7966         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7967         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7968
7969         reset_rps(dev_priv, valleyview_set_rps);
7970
7971         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7972 }
7973
7974 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7975 {
7976         struct intel_engine_cs *engine;
7977         enum intel_engine_id id;
7978         u32 gtfifodbg;
7979
7980         valleyview_check_pctx(dev_priv);
7981
7982         gtfifodbg = I915_READ(GTFIFODBG);
7983         if (gtfifodbg) {
7984                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7985                                  gtfifodbg);
7986                 I915_WRITE(GTFIFODBG, gtfifodbg);
7987         }
7988
7989         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7990
7991         /*  Disable RC states. */
7992         I915_WRITE(GEN6_RC_CONTROL, 0);
7993
7994         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7995         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7996         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7997
7998         for_each_engine(engine, dev_priv, id)
7999                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8000
8001         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8002
8003         /* Allows RC6 residency counter to work */
8004         I915_WRITE(VLV_COUNTER_CONTROL,
8005                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
8006                                       VLV_MEDIA_RC0_COUNT_EN |
8007                                       VLV_RENDER_RC0_COUNT_EN |
8008                                       VLV_MEDIA_RC6_COUNT_EN |
8009                                       VLV_RENDER_RC6_COUNT_EN));
8010
8011         I915_WRITE(GEN6_RC_CONTROL,
8012                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8013
8014         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8015 }
8016
8017 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
8018 {
8019         u32 val;
8020
8021         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8022
8023         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8024         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
8025         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
8026         I915_WRITE(GEN6_RP_UP_EI, 66000);
8027         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
8028
8029         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8030
8031         I915_WRITE(GEN6_RP_CONTROL,
8032                    GEN6_RP_MEDIA_TURBO |
8033                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
8034                    GEN6_RP_MEDIA_IS_GFX |
8035                    GEN6_RP_ENABLE |
8036                    GEN6_RP_UP_BUSY_AVG |
8037                    GEN6_RP_DOWN_IDLE_CONT);
8038
8039         vlv_punit_get(dev_priv);
8040
8041         /* Setting Fixed Bias */
8042         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
8043         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
8044
8045         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8046
8047         vlv_punit_put(dev_priv);
8048
8049         /* RPS code assumes GPLL is used */
8050         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
8051
8052         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8053         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
8054
8055         reset_rps(dev_priv, valleyview_set_rps);
8056
8057         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8058 }
8059
8060 static unsigned long intel_pxfreq(u32 vidfreq)
8061 {
8062         unsigned long freq;
8063         int div = (vidfreq & 0x3f0000) >> 16;
8064         int post = (vidfreq & 0x3000) >> 12;
8065         int pre = (vidfreq & 0x7);
8066
8067         if (!pre)
8068                 return 0;
8069
8070         freq = ((div * 133333) / ((1<<post) * pre));
8071
8072         return freq;
8073 }
8074
8075 static const struct cparams {
8076         u16 i;
8077         u16 t;
8078         u16 m;
8079         u16 c;
8080 } cparams[] = {
8081         { 1, 1333, 301, 28664 },
8082         { 1, 1066, 294, 24460 },
8083         { 1, 800, 294, 25192 },
8084         { 0, 1333, 276, 27605 },
8085         { 0, 1066, 276, 27605 },
8086         { 0, 800, 231, 23784 },
8087 };
8088
8089 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8090 {
8091         u64 total_count, diff, ret;
8092         u32 count1, count2, count3, m = 0, c = 0;
8093         unsigned long now = jiffies_to_msecs(jiffies), diff1;
8094         int i;
8095
8096         lockdep_assert_held(&mchdev_lock);
8097
8098         diff1 = now - dev_priv->ips.last_time1;
8099
8100         /* Prevent division-by-zero if we are asking too fast.
8101          * Also, we don't get interesting results if we are polling
8102          * faster than once in 10ms, so just return the saved value
8103          * in such cases.
8104          */
8105         if (diff1 <= 10)
8106                 return dev_priv->ips.chipset_power;
8107
8108         count1 = I915_READ(DMIEC);
8109         count2 = I915_READ(DDREC);
8110         count3 = I915_READ(CSIEC);
8111
8112         total_count = count1 + count2 + count3;
8113
8114         /* FIXME: handle per-counter overflow */
8115         if (total_count < dev_priv->ips.last_count1) {
8116                 diff = ~0UL - dev_priv->ips.last_count1;
8117                 diff += total_count;
8118         } else {
8119                 diff = total_count - dev_priv->ips.last_count1;
8120         }
8121
8122         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8123                 if (cparams[i].i == dev_priv->ips.c_m &&
8124                     cparams[i].t == dev_priv->ips.r_t) {
8125                         m = cparams[i].m;
8126                         c = cparams[i].c;
8127                         break;
8128                 }
8129         }
8130
8131         diff = div_u64(diff, diff1);
8132         ret = ((m * diff) + c);
8133         ret = div_u64(ret, 10);
8134
8135         dev_priv->ips.last_count1 = total_count;
8136         dev_priv->ips.last_time1 = now;
8137
8138         dev_priv->ips.chipset_power = ret;
8139
8140         return ret;
8141 }
8142
8143 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
8144 {
8145         intel_wakeref_t wakeref;
8146         unsigned long val = 0;
8147
8148         if (!IS_GEN(dev_priv, 5))
8149                 return 0;
8150
8151         with_intel_runtime_pm(dev_priv, wakeref) {
8152                 spin_lock_irq(&mchdev_lock);
8153                 val = __i915_chipset_val(dev_priv);
8154                 spin_unlock_irq(&mchdev_lock);
8155         }
8156
8157         return val;
8158 }
8159
8160 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
8161 {
8162         unsigned long m, x, b;
8163         u32 tsfs;
8164
8165         tsfs = I915_READ(TSFS);
8166
8167         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8168         x = I915_READ8(TR1);
8169
8170         b = tsfs & TSFS_INTR_MASK;
8171
8172         return ((m * x) / 127) - b;
8173 }
8174
8175 static int _pxvid_to_vd(u8 pxvid)
8176 {
8177         if (pxvid == 0)
8178                 return 0;
8179
8180         if (pxvid >= 8 && pxvid < 31)
8181                 pxvid = 31;
8182
8183         return (pxvid + 2) * 125;
8184 }
8185
8186 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8187 {
8188         const int vd = _pxvid_to_vd(pxvid);
8189         const int vm = vd - 1125;
8190
8191         if (INTEL_INFO(dev_priv)->is_mobile)
8192                 return vm > 0 ? vm : 0;
8193
8194         return vd;
8195 }
8196
8197 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8198 {
8199         u64 now, diff, diffms;
8200         u32 count;
8201
8202         lockdep_assert_held(&mchdev_lock);
8203
8204         now = ktime_get_raw_ns();
8205         diffms = now - dev_priv->ips.last_time2;
8206         do_div(diffms, NSEC_PER_MSEC);
8207
8208         /* Don't divide by 0 */
8209         if (!diffms)
8210                 return;
8211
8212         count = I915_READ(GFXEC);
8213
8214         if (count < dev_priv->ips.last_count2) {
8215                 diff = ~0UL - dev_priv->ips.last_count2;
8216                 diff += count;
8217         } else {
8218                 diff = count - dev_priv->ips.last_count2;
8219         }
8220
8221         dev_priv->ips.last_count2 = count;
8222         dev_priv->ips.last_time2 = now;
8223
8224         /* More magic constants... */
8225         diff = diff * 1181;
8226         diff = div_u64(diff, diffms * 10);
8227         dev_priv->ips.gfx_power = diff;
8228 }
8229
8230 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8231 {
8232         intel_wakeref_t wakeref;
8233
8234         if (!IS_GEN(dev_priv, 5))
8235                 return;
8236
8237         with_intel_runtime_pm(dev_priv, wakeref) {
8238                 spin_lock_irq(&mchdev_lock);
8239                 __i915_update_gfx_val(dev_priv);
8240                 spin_unlock_irq(&mchdev_lock);
8241         }
8242 }
8243
8244 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8245 {
8246         unsigned long t, corr, state1, corr2, state2;
8247         u32 pxvid, ext_v;
8248
8249         lockdep_assert_held(&mchdev_lock);
8250
8251         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8252         pxvid = (pxvid >> 24) & 0x7f;
8253         ext_v = pvid_to_extvid(dev_priv, pxvid);
8254
8255         state1 = ext_v;
8256
8257         t = i915_mch_val(dev_priv);
8258
8259         /* Revel in the empirically derived constants */
8260
8261         /* Correction factor in 1/100000 units */
8262         if (t > 80)
8263                 corr = ((t * 2349) + 135940);
8264         else if (t >= 50)
8265                 corr = ((t * 964) + 29317);
8266         else /* < 50 */
8267                 corr = ((t * 301) + 1004);
8268
8269         corr = corr * ((150142 * state1) / 10000 - 78642);
8270         corr /= 100000;
8271         corr2 = (corr * dev_priv->ips.corr);
8272
8273         state2 = (corr2 * state1) / 10000;
8274         state2 /= 100; /* convert to mW */
8275
8276         __i915_update_gfx_val(dev_priv);
8277
8278         return dev_priv->ips.gfx_power + state2;
8279 }
8280
8281 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8282 {
8283         intel_wakeref_t wakeref;
8284         unsigned long val = 0;
8285
8286         if (!IS_GEN(dev_priv, 5))
8287                 return 0;
8288
8289         with_intel_runtime_pm(dev_priv, wakeref) {
8290                 spin_lock_irq(&mchdev_lock);
8291                 val = __i915_gfx_val(dev_priv);
8292                 spin_unlock_irq(&mchdev_lock);
8293         }
8294
8295         return val;
8296 }
8297
8298 static struct drm_i915_private __rcu *i915_mch_dev;
8299
8300 static struct drm_i915_private *mchdev_get(void)
8301 {
8302         struct drm_i915_private *i915;
8303
8304         rcu_read_lock();
8305         i915 = rcu_dereference(i915_mch_dev);
8306         if (!kref_get_unless_zero(&i915->drm.ref))
8307                 i915 = NULL;
8308         rcu_read_unlock();
8309
8310         return i915;
8311 }
8312
8313 /**
8314  * i915_read_mch_val - return value for IPS use
8315  *
8316  * Calculate and return a value for the IPS driver to use when deciding whether
8317  * we have thermal and power headroom to increase CPU or GPU power budget.
8318  */
8319 unsigned long i915_read_mch_val(void)
8320 {
8321         struct drm_i915_private *i915;
8322         unsigned long chipset_val = 0;
8323         unsigned long graphics_val = 0;
8324         intel_wakeref_t wakeref;
8325
8326         i915 = mchdev_get();
8327         if (!i915)
8328                 return 0;
8329
8330         with_intel_runtime_pm(i915, wakeref) {
8331                 spin_lock_irq(&mchdev_lock);
8332                 chipset_val = __i915_chipset_val(i915);
8333                 graphics_val = __i915_gfx_val(i915);
8334                 spin_unlock_irq(&mchdev_lock);
8335         }
8336
8337         drm_dev_put(&i915->drm);
8338         return chipset_val + graphics_val;
8339 }
8340 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8341
8342 /**
8343  * i915_gpu_raise - raise GPU frequency limit
8344  *
8345  * Raise the limit; IPS indicates we have thermal headroom.
8346  */
8347 bool i915_gpu_raise(void)
8348 {
8349         struct drm_i915_private *i915;
8350
8351         i915 = mchdev_get();
8352         if (!i915)
8353                 return false;
8354
8355         spin_lock_irq(&mchdev_lock);
8356         if (i915->ips.max_delay > i915->ips.fmax)
8357                 i915->ips.max_delay--;
8358         spin_unlock_irq(&mchdev_lock);
8359
8360         drm_dev_put(&i915->drm);
8361         return true;
8362 }
8363 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8364
8365 /**
8366  * i915_gpu_lower - lower GPU frequency limit
8367  *
8368  * IPS indicates we're close to a thermal limit, so throttle back the GPU
8369  * frequency maximum.
8370  */
8371 bool i915_gpu_lower(void)
8372 {
8373         struct drm_i915_private *i915;
8374
8375         i915 = mchdev_get();
8376         if (!i915)
8377                 return false;
8378
8379         spin_lock_irq(&mchdev_lock);
8380         if (i915->ips.max_delay < i915->ips.min_delay)
8381                 i915->ips.max_delay++;
8382         spin_unlock_irq(&mchdev_lock);
8383
8384         drm_dev_put(&i915->drm);
8385         return true;
8386 }
8387 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8388
8389 /**
8390  * i915_gpu_busy - indicate GPU business to IPS
8391  *
8392  * Tell the IPS driver whether or not the GPU is busy.
8393  */
8394 bool i915_gpu_busy(void)
8395 {
8396         struct drm_i915_private *i915;
8397         bool ret;
8398
8399         i915 = mchdev_get();
8400         if (!i915)
8401                 return false;
8402
8403         ret = i915->gt.awake;
8404
8405         drm_dev_put(&i915->drm);
8406         return ret;
8407 }
8408 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8409
8410 /**
8411  * i915_gpu_turbo_disable - disable graphics turbo
8412  *
8413  * Disable graphics turbo by resetting the max frequency and setting the
8414  * current frequency to the default.
8415  */
8416 bool i915_gpu_turbo_disable(void)
8417 {
8418         struct drm_i915_private *i915;
8419         bool ret;
8420
8421         i915 = mchdev_get();
8422         if (!i915)
8423                 return false;
8424
8425         spin_lock_irq(&mchdev_lock);
8426         i915->ips.max_delay = i915->ips.fstart;
8427         ret = ironlake_set_drps(i915, i915->ips.fstart);
8428         spin_unlock_irq(&mchdev_lock);
8429
8430         drm_dev_put(&i915->drm);
8431         return ret;
8432 }
8433 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8434
8435 /**
8436  * Tells the intel_ips driver that the i915 driver is now loaded, if
8437  * IPS got loaded first.
8438  *
8439  * This awkward dance is so that neither module has to depend on the
8440  * other in order for IPS to do the appropriate communication of
8441  * GPU turbo limits to i915.
8442  */
8443 static void
8444 ips_ping_for_i915_load(void)
8445 {
8446         void (*link)(void);
8447
8448         link = symbol_get(ips_link_to_i915_driver);
8449         if (link) {
8450                 link();
8451                 symbol_put(ips_link_to_i915_driver);
8452         }
8453 }
8454
8455 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8456 {
8457         /* We only register the i915 ips part with intel-ips once everything is
8458          * set up, to avoid intel-ips sneaking in and reading bogus values. */
8459         rcu_assign_pointer(i915_mch_dev, dev_priv);
8460
8461         ips_ping_for_i915_load();
8462 }
8463
8464 void intel_gpu_ips_teardown(void)
8465 {
8466         rcu_assign_pointer(i915_mch_dev, NULL);
8467 }
8468
8469 static void intel_init_emon(struct drm_i915_private *dev_priv)
8470 {
8471         u32 lcfuse;
8472         u8 pxw[16];
8473         int i;
8474
8475         /* Disable to program */
8476         I915_WRITE(ECR, 0);
8477         POSTING_READ(ECR);
8478
8479         /* Program energy weights for various events */
8480         I915_WRITE(SDEW, 0x15040d00);
8481         I915_WRITE(CSIEW0, 0x007f0000);
8482         I915_WRITE(CSIEW1, 0x1e220004);
8483         I915_WRITE(CSIEW2, 0x04000004);
8484
8485         for (i = 0; i < 5; i++)
8486                 I915_WRITE(PEW(i), 0);
8487         for (i = 0; i < 3; i++)
8488                 I915_WRITE(DEW(i), 0);
8489
8490         /* Program P-state weights to account for frequency power adjustment */
8491         for (i = 0; i < 16; i++) {
8492                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8493                 unsigned long freq = intel_pxfreq(pxvidfreq);
8494                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8495                         PXVFREQ_PX_SHIFT;
8496                 unsigned long val;
8497
8498                 val = vid * vid;
8499                 val *= (freq / 1000);
8500                 val *= 255;
8501                 val /= (127*127*900);
8502                 if (val > 0xff)
8503                         DRM_ERROR("bad pxval: %ld\n", val);
8504                 pxw[i] = val;
8505         }
8506         /* Render standby states get 0 weight */
8507         pxw[14] = 0;
8508         pxw[15] = 0;
8509
8510         for (i = 0; i < 4; i++) {
8511                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8512                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8513                 I915_WRITE(PXW(i), val);
8514         }
8515
8516         /* Adjust magic regs to magic values (more experimental results) */
8517         I915_WRITE(OGW0, 0);
8518         I915_WRITE(OGW1, 0);
8519         I915_WRITE(EG0, 0x00007f00);
8520         I915_WRITE(EG1, 0x0000000e);
8521         I915_WRITE(EG2, 0x000e0000);
8522         I915_WRITE(EG3, 0x68000300);
8523         I915_WRITE(EG4, 0x42000000);
8524         I915_WRITE(EG5, 0x00140031);
8525         I915_WRITE(EG6, 0);
8526         I915_WRITE(EG7, 0);
8527
8528         for (i = 0; i < 8; i++)
8529                 I915_WRITE(PXWL(i), 0);
8530
8531         /* Enable PMON + select events */
8532         I915_WRITE(ECR, 0x80000019);
8533
8534         lcfuse = I915_READ(LCFUSE02);
8535
8536         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8537 }
8538
8539 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8540 {
8541         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8542
8543         /*
8544          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8545          * requirement.
8546          */
8547         if (!sanitize_rc6(dev_priv)) {
8548                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8549                 pm_runtime_get(&dev_priv->drm.pdev->dev);
8550         }
8551
8552         /* Initialize RPS limits (for userspace) */
8553         if (IS_CHERRYVIEW(dev_priv))
8554                 cherryview_init_gt_powersave(dev_priv);
8555         else if (IS_VALLEYVIEW(dev_priv))
8556                 valleyview_init_gt_powersave(dev_priv);
8557         else if (INTEL_GEN(dev_priv) >= 6)
8558                 gen6_init_rps_frequencies(dev_priv);
8559
8560         /* Derive initial user preferences/limits from the hardware limits */
8561         rps->max_freq_softlimit = rps->max_freq;
8562         rps->min_freq_softlimit = rps->min_freq;
8563
8564         /* After setting max-softlimit, find the overclock max freq */
8565         if (IS_GEN(dev_priv, 6) ||
8566             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8567                 u32 params = 0;
8568
8569                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8570                 if (params & BIT(31)) { /* OC supported */
8571                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8572                                          (rps->max_freq & 0xff) * 50,
8573                                          (params & 0xff) * 50);
8574                         rps->max_freq = params & 0xff;
8575                 }
8576         }
8577
8578         /* Finally allow us to boost to max by default */
8579         rps->boost_freq = rps->max_freq;
8580         rps->idle_freq = rps->min_freq;
8581         rps->cur_freq = rps->idle_freq;
8582 }
8583
8584 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8585 {
8586         if (IS_VALLEYVIEW(dev_priv))
8587                 valleyview_cleanup_gt_powersave(dev_priv);
8588
8589         if (!HAS_RC6(dev_priv))
8590                 pm_runtime_put(&dev_priv->drm.pdev->dev);
8591 }
8592
8593 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8594 {
8595         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8596         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8597         intel_disable_gt_powersave(dev_priv);
8598
8599         if (INTEL_GEN(dev_priv) >= 11)
8600                 gen11_reset_rps_interrupts(dev_priv);
8601         else if (INTEL_GEN(dev_priv) >= 6)
8602                 gen6_reset_rps_interrupts(dev_priv);
8603 }
8604
8605 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8606 {
8607         lockdep_assert_held(&i915->gt_pm.rps.lock);
8608
8609         if (!i915->gt_pm.llc_pstate.enabled)
8610                 return;
8611
8612         /* Currently there is no HW configuration to be done to disable. */
8613
8614         i915->gt_pm.llc_pstate.enabled = false;
8615 }
8616
8617 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8618 {
8619         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8620
8621         if (!dev_priv->gt_pm.rc6.enabled)
8622                 return;
8623
8624         if (INTEL_GEN(dev_priv) >= 9)
8625                 gen9_disable_rc6(dev_priv);
8626         else if (IS_CHERRYVIEW(dev_priv))
8627                 cherryview_disable_rc6(dev_priv);
8628         else if (IS_VALLEYVIEW(dev_priv))
8629                 valleyview_disable_rc6(dev_priv);
8630         else if (INTEL_GEN(dev_priv) >= 6)
8631                 gen6_disable_rc6(dev_priv);
8632
8633         dev_priv->gt_pm.rc6.enabled = false;
8634 }
8635
8636 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8637 {
8638         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8639
8640         if (!dev_priv->gt_pm.rps.enabled)
8641                 return;
8642
8643         if (INTEL_GEN(dev_priv) >= 9)
8644                 gen9_disable_rps(dev_priv);
8645         else if (IS_CHERRYVIEW(dev_priv))
8646                 cherryview_disable_rps(dev_priv);
8647         else if (IS_VALLEYVIEW(dev_priv))
8648                 valleyview_disable_rps(dev_priv);
8649         else if (INTEL_GEN(dev_priv) >= 6)
8650                 gen6_disable_rps(dev_priv);
8651         else if (IS_IRONLAKE_M(dev_priv))
8652                 ironlake_disable_drps(dev_priv);
8653
8654         dev_priv->gt_pm.rps.enabled = false;
8655 }
8656
8657 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8658 {
8659         mutex_lock(&dev_priv->gt_pm.rps.lock);
8660
8661         intel_disable_rc6(dev_priv);
8662         intel_disable_rps(dev_priv);
8663         if (HAS_LLC(dev_priv))
8664                 intel_disable_llc_pstate(dev_priv);
8665
8666         mutex_unlock(&dev_priv->gt_pm.rps.lock);
8667 }
8668
8669 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8670 {
8671         lockdep_assert_held(&i915->gt_pm.rps.lock);
8672
8673         if (i915->gt_pm.llc_pstate.enabled)
8674                 return;
8675
8676         gen6_update_ring_freq(i915);
8677
8678         i915->gt_pm.llc_pstate.enabled = true;
8679 }
8680
8681 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8682 {
8683         lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8684
8685         if (dev_priv->gt_pm.rc6.enabled)
8686                 return;
8687
8688         if (IS_CHERRYVIEW(dev_priv))
8689                 cherryview_enable_rc6(dev_priv);
8690         else if (IS_VALLEYVIEW(dev_priv))
8691                 valleyview_enable_rc6(dev_priv);
8692         else if (INTEL_GEN(dev_priv) >= 11)
8693                 gen11_enable_rc6(dev_priv);
8694         else if (INTEL_GEN(dev_priv) >= 9)
8695                 gen9_enable_rc6(dev_priv);
8696         else if (IS_BROADWELL(dev_priv))
8697                 gen8_enable_rc6(dev_priv);
8698         else if (INTEL_GEN(dev_priv) >= 6)
8699                 gen6_enable_rc6(dev_priv);
8700
8701         dev_priv->gt_pm.rc6.enabled = true;
8702 }
8703
8704 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8705 {
8706         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8707
8708         lockdep_assert_held(&rps->lock);
8709
8710         if (rps->enabled)
8711                 return;
8712
8713         if (IS_CHERRYVIEW(dev_priv)) {
8714                 cherryview_enable_rps(dev_priv);
8715         } else if (IS_VALLEYVIEW(dev_priv)) {
8716                 valleyview_enable_rps(dev_priv);
8717         } else if (INTEL_GEN(dev_priv) >= 9) {
8718                 gen9_enable_rps(dev_priv);
8719         } else if (IS_BROADWELL(dev_priv)) {
8720                 gen8_enable_rps(dev_priv);
8721         } else if (INTEL_GEN(dev_priv) >= 6) {
8722                 gen6_enable_rps(dev_priv);
8723         } else if (IS_IRONLAKE_M(dev_priv)) {
8724                 ironlake_enable_drps(dev_priv);
8725                 intel_init_emon(dev_priv);
8726         }
8727
8728         WARN_ON(rps->max_freq < rps->min_freq);
8729         WARN_ON(rps->idle_freq > rps->max_freq);
8730
8731         WARN_ON(rps->efficient_freq < rps->min_freq);
8732         WARN_ON(rps->efficient_freq > rps->max_freq);
8733
8734         rps->enabled = true;
8735 }
8736
8737 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8738 {
8739         /* Powersaving is controlled by the host when inside a VM */
8740         if (intel_vgpu_active(dev_priv))
8741                 return;
8742
8743         mutex_lock(&dev_priv->gt_pm.rps.lock);
8744
8745         if (HAS_RC6(dev_priv))
8746                 intel_enable_rc6(dev_priv);
8747         if (HAS_RPS(dev_priv))
8748                 intel_enable_rps(dev_priv);
8749         if (HAS_LLC(dev_priv))
8750                 intel_enable_llc_pstate(dev_priv);
8751
8752         mutex_unlock(&dev_priv->gt_pm.rps.lock);
8753 }
8754
8755 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8756 {
8757         /*
8758          * On Ibex Peak and Cougar Point, we need to disable clock
8759          * gating for the panel power sequencer or it will fail to
8760          * start up when no ports are active.
8761          */
8762         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8763 }
8764
8765 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8766 {
8767         enum pipe pipe;
8768
8769         for_each_pipe(dev_priv, pipe) {
8770                 I915_WRITE(DSPCNTR(pipe),
8771                            I915_READ(DSPCNTR(pipe)) |
8772                            DISPPLANE_TRICKLE_FEED_DISABLE);
8773
8774                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8775                 POSTING_READ(DSPSURF(pipe));
8776         }
8777 }
8778
8779 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8780 {
8781         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8782
8783         /*
8784          * Required for FBC
8785          * WaFbcDisableDpfcClockGating:ilk
8786          */
8787         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8788                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8789                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8790
8791         I915_WRITE(PCH_3DCGDIS0,
8792                    MARIUNIT_CLOCK_GATE_DISABLE |
8793                    SVSMUNIT_CLOCK_GATE_DISABLE);
8794         I915_WRITE(PCH_3DCGDIS1,
8795                    VFMUNIT_CLOCK_GATE_DISABLE);
8796
8797         /*
8798          * According to the spec the following bits should be set in
8799          * order to enable memory self-refresh
8800          * The bit 22/21 of 0x42004
8801          * The bit 5 of 0x42020
8802          * The bit 15 of 0x45000
8803          */
8804         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8805                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8806                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8807         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8808         I915_WRITE(DISP_ARB_CTL,
8809                    (I915_READ(DISP_ARB_CTL) |
8810                     DISP_FBC_WM_DIS));
8811
8812         /*
8813          * Based on the document from hardware guys the following bits
8814          * should be set unconditionally in order to enable FBC.
8815          * The bit 22 of 0x42000
8816          * The bit 22 of 0x42004
8817          * The bit 7,8,9 of 0x42020.
8818          */
8819         if (IS_IRONLAKE_M(dev_priv)) {
8820                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8821                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8822                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8823                            ILK_FBCQ_DIS);
8824                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8825                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8826                            ILK_DPARB_GATE);
8827         }
8828
8829         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8830
8831         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8832                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8833                    ILK_ELPIN_409_SELECT);
8834         I915_WRITE(_3D_CHICKEN2,
8835                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8836                    _3D_CHICKEN2_WM_READ_PIPELINED);
8837
8838         /* WaDisableRenderCachePipelinedFlush:ilk */
8839         I915_WRITE(CACHE_MODE_0,
8840                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8841
8842         /* WaDisable_RenderCache_OperationalFlush:ilk */
8843         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8844
8845         g4x_disable_trickle_feed(dev_priv);
8846
8847         ibx_init_clock_gating(dev_priv);
8848 }
8849
8850 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8851 {
8852         int pipe;
8853         u32 val;
8854
8855         /*
8856          * On Ibex Peak and Cougar Point, we need to disable clock
8857          * gating for the panel power sequencer or it will fail to
8858          * start up when no ports are active.
8859          */
8860         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8861                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8862                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8863         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8864                    DPLS_EDP_PPS_FIX_DIS);
8865         /* The below fixes the weird display corruption, a few pixels shifted
8866          * downward, on (only) LVDS of some HP laptops with IVY.
8867          */
8868         for_each_pipe(dev_priv, pipe) {
8869                 val = I915_READ(TRANS_CHICKEN2(pipe));
8870                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8871                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8872                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8873                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8874                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8875                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8876                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8877                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8878         }
8879         /* WADP0ClockGatingDisable */
8880         for_each_pipe(dev_priv, pipe) {
8881                 I915_WRITE(TRANS_CHICKEN1(pipe),
8882                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8883         }
8884 }
8885
8886 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8887 {
8888         u32 tmp;
8889
8890         tmp = I915_READ(MCH_SSKPD);
8891         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8892                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8893                               tmp);
8894 }
8895
8896 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8897 {
8898         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8899
8900         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8901
8902         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8903                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8904                    ILK_ELPIN_409_SELECT);
8905
8906         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8907         I915_WRITE(_3D_CHICKEN,
8908                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8909
8910         /* WaDisable_RenderCache_OperationalFlush:snb */
8911         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8912
8913         /*
8914          * BSpec recoomends 8x4 when MSAA is used,
8915          * however in practice 16x4 seems fastest.
8916          *
8917          * Note that PS/WM thread counts depend on the WIZ hashing
8918          * disable bit, which we don't touch here, but it's good
8919          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8920          */
8921         I915_WRITE(GEN6_GT_MODE,
8922                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8923
8924         I915_WRITE(CACHE_MODE_0,
8925                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8926
8927         I915_WRITE(GEN6_UCGCTL1,
8928                    I915_READ(GEN6_UCGCTL1) |
8929                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8930                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8931
8932         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8933          * gating disable must be set.  Failure to set it results in
8934          * flickering pixels due to Z write ordering failures after
8935          * some amount of runtime in the Mesa "fire" demo, and Unigine
8936          * Sanctuary and Tropics, and apparently anything else with
8937          * alpha test or pixel discard.
8938          *
8939          * According to the spec, bit 11 (RCCUNIT) must also be set,
8940          * but we didn't debug actual testcases to find it out.
8941          *
8942          * WaDisableRCCUnitClockGating:snb
8943          * WaDisableRCPBUnitClockGating:snb
8944          */
8945         I915_WRITE(GEN6_UCGCTL2,
8946                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8947                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8948
8949         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8950         I915_WRITE(_3D_CHICKEN3,
8951                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8952
8953         /*
8954          * Bspec says:
8955          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8956          * 3DSTATE_SF number of SF output attributes is more than 16."
8957          */
8958         I915_WRITE(_3D_CHICKEN3,
8959                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8960
8961         /*
8962          * According to the spec the following bits should be
8963          * set in order to enable memory self-refresh and fbc:
8964          * The bit21 and bit22 of 0x42000
8965          * The bit21 and bit22 of 0x42004
8966          * The bit5 and bit7 of 0x42020
8967          * The bit14 of 0x70180
8968          * The bit14 of 0x71180
8969          *
8970          * WaFbcAsynchFlipDisableFbcQueue:snb
8971          */
8972         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8973                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8974                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8975         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8976                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8977                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8978         I915_WRITE(ILK_DSPCLK_GATE_D,
8979                    I915_READ(ILK_DSPCLK_GATE_D) |
8980                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8981                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8982
8983         g4x_disable_trickle_feed(dev_priv);
8984
8985         cpt_init_clock_gating(dev_priv);
8986
8987         gen6_check_mch_setup(dev_priv);
8988 }
8989
8990 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8991 {
8992         u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8993
8994         /*
8995          * WaVSThreadDispatchOverride:ivb,vlv
8996          *
8997          * This actually overrides the dispatch
8998          * mode for all thread types.
8999          */
9000         reg &= ~GEN7_FF_SCHED_MASK;
9001         reg |= GEN7_FF_TS_SCHED_HW;
9002         reg |= GEN7_FF_VS_SCHED_HW;
9003         reg |= GEN7_FF_DS_SCHED_HW;
9004
9005         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
9006 }
9007
9008 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9009 {
9010         /*
9011          * TODO: this bit should only be enabled when really needed, then
9012          * disabled when not needed anymore in order to save power.
9013          */
9014         if (HAS_PCH_LPT_LP(dev_priv))
9015                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
9016                            I915_READ(SOUTH_DSPCLK_GATE_D) |
9017                            PCH_LP_PARTITION_LEVEL_DISABLE);
9018
9019         /* WADPOClockGatingDisable:hsw */
9020         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
9021                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9022                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9023 }
9024
9025 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9026 {
9027         if (HAS_PCH_LPT_LP(dev_priv)) {
9028                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9029
9030                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9031                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9032         }
9033 }
9034
9035 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
9036                                    int general_prio_credits,
9037                                    int high_prio_credits)
9038 {
9039         u32 misccpctl;
9040         u32 val;
9041
9042         /* WaTempDisableDOPClkGating:bdw */
9043         misccpctl = I915_READ(GEN7_MISCCPCTL);
9044         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
9045
9046         val = I915_READ(GEN8_L3SQCREG1);
9047         val &= ~L3_PRIO_CREDITS_MASK;
9048         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
9049         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
9050         I915_WRITE(GEN8_L3SQCREG1, val);
9051
9052         /*
9053          * Wait at least 100 clocks before re-enabling clock gating.
9054          * See the definition of L3SQCREG1 in BSpec.
9055          */
9056         POSTING_READ(GEN8_L3SQCREG1);
9057         udelay(1);
9058         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
9059 }
9060
9061 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
9062 {
9063         /* This is not an Wa. Enable to reduce Sampler power */
9064         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
9065                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9066
9067         /* WaEnable32PlaneMode:icl */
9068         I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
9069                    _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
9070 }
9071
9072 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
9073 {
9074         if (!HAS_PCH_CNP(dev_priv))
9075                 return;
9076
9077         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9078         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
9079                    CNP_PWM_CGE_GATING_DISABLE);
9080 }
9081
9082 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9083 {
9084         u32 val;
9085         cnp_init_clock_gating(dev_priv);
9086
9087         /* This is not an Wa. Enable for better image quality */
9088         I915_WRITE(_3D_CHICKEN3,
9089                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
9090
9091         /* WaEnableChickenDCPR:cnl */
9092         I915_WRITE(GEN8_CHICKEN_DCPR_1,
9093                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
9094
9095         /* WaFbcWakeMemOn:cnl */
9096         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
9097                    DISP_FBC_MEMORY_WAKE);
9098
9099         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
9100         /* ReadHitWriteOnlyDisable:cnl */
9101         val |= RCCUNIT_CLKGATE_DIS;
9102         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
9103         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9104                 val |= SARBUNIT_CLKGATE_DIS;
9105         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9106
9107         /* Wa_2201832410:cnl */
9108         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
9109         val |= GWUNIT_CLKGATE_DIS;
9110         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
9111
9112         /* WaDisableVFclkgate:cnl */
9113         /* WaVFUnitClockGatingDisable:cnl */
9114         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
9115         val |= VFUNIT_CLKGATE_DIS;
9116         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9117 }
9118
9119 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
9120 {
9121         cnp_init_clock_gating(dev_priv);
9122         gen9_init_clock_gating(dev_priv);
9123
9124         /* WaFbcNukeOnHostModify:cfl */
9125         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9126                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9127 }
9128
9129 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9130 {
9131         gen9_init_clock_gating(dev_priv);
9132
9133         /* WaDisableSDEUnitClockGating:kbl */
9134         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9135                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9136                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9137
9138         /* WaDisableGamClockGating:kbl */
9139         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9140                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9141                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9142
9143         /* WaFbcNukeOnHostModify:kbl */
9144         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9145                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9146 }
9147
9148 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9149 {
9150         gen9_init_clock_gating(dev_priv);
9151
9152         /* WAC6entrylatency:skl */
9153         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9154                    FBC_LLC_FULLY_OPEN);
9155
9156         /* WaFbcNukeOnHostModify:skl */
9157         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9158                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9159 }
9160
9161 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9162 {
9163         /* The GTT cache must be disabled if the system is using 2M pages. */
9164         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
9165                                                  I915_GTT_PAGE_SIZE_2M);
9166         enum pipe pipe;
9167
9168         /* WaSwitchSolVfFArbitrationPriority:bdw */
9169         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9170
9171         /* WaPsrDPAMaskVBlankInSRD:bdw */
9172         I915_WRITE(CHICKEN_PAR1_1,
9173                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9174
9175         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9176         for_each_pipe(dev_priv, pipe) {
9177                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
9178                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
9179                            BDW_DPRS_MASK_VBLANK_SRD);
9180         }
9181
9182         /* WaVSRefCountFullforceMissDisable:bdw */
9183         /* WaDSRefCountFullforceMissDisable:bdw */
9184         I915_WRITE(GEN7_FF_THREAD_MODE,
9185                    I915_READ(GEN7_FF_THREAD_MODE) &
9186                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9187
9188         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9189                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9190
9191         /* WaDisableSDEUnitClockGating:bdw */
9192         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9193                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9194
9195         /* WaProgramL3SqcReg1Default:bdw */
9196         gen8_set_l3sqc_credits(dev_priv, 30, 2);
9197
9198         /* WaGttCachingOffByDefault:bdw */
9199         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9200
9201         /* WaKVMNotificationOnConfigChange:bdw */
9202         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9203                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9204
9205         lpt_init_clock_gating(dev_priv);
9206
9207         /* WaDisableDopClockGating:bdw
9208          *
9209          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9210          * clock gating.
9211          */
9212         I915_WRITE(GEN6_UCGCTL1,
9213                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9214 }
9215
9216 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9217 {
9218         /* L3 caching of data atomics doesn't work -- disable it. */
9219         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9220         I915_WRITE(HSW_ROW_CHICKEN3,
9221                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9222
9223         /* This is required by WaCatErrorRejectionIssue:hsw */
9224         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9225                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9226                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9227
9228         /* WaVSRefCountFullforceMissDisable:hsw */
9229         I915_WRITE(GEN7_FF_THREAD_MODE,
9230                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9231
9232         /* WaDisable_RenderCache_OperationalFlush:hsw */
9233         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9234
9235         /* enable HiZ Raw Stall Optimization */
9236         I915_WRITE(CACHE_MODE_0_GEN7,
9237                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9238
9239         /* WaDisable4x2SubspanOptimization:hsw */
9240         I915_WRITE(CACHE_MODE_1,
9241                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9242
9243         /*
9244          * BSpec recommends 8x4 when MSAA is used,
9245          * however in practice 16x4 seems fastest.
9246          *
9247          * Note that PS/WM thread counts depend on the WIZ hashing
9248          * disable bit, which we don't touch here, but it's good
9249          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9250          */
9251         I915_WRITE(GEN7_GT_MODE,
9252                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9253
9254         /* WaSampleCChickenBitEnable:hsw */
9255         I915_WRITE(HALF_SLICE_CHICKEN3,
9256                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9257
9258         /* WaSwitchSolVfFArbitrationPriority:hsw */
9259         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9260
9261         lpt_init_clock_gating(dev_priv);
9262 }
9263
9264 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9265 {
9266         u32 snpcr;
9267
9268         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9269
9270         /* WaDisableEarlyCull:ivb */
9271         I915_WRITE(_3D_CHICKEN3,
9272                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9273
9274         /* WaDisableBackToBackFlipFix:ivb */
9275         I915_WRITE(IVB_CHICKEN3,
9276                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9277                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9278
9279         /* WaDisablePSDDualDispatchEnable:ivb */
9280         if (IS_IVB_GT1(dev_priv))
9281                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9282                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9283
9284         /* WaDisable_RenderCache_OperationalFlush:ivb */
9285         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9286
9287         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9288         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9289                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9290
9291         /* WaApplyL3ControlAndL3ChickenMode:ivb */
9292         I915_WRITE(GEN7_L3CNTLREG1,
9293                         GEN7_WA_FOR_GEN7_L3_CONTROL);
9294         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9295                    GEN7_WA_L3_CHICKEN_MODE);
9296         if (IS_IVB_GT1(dev_priv))
9297                 I915_WRITE(GEN7_ROW_CHICKEN2,
9298                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9299         else {
9300                 /* must write both registers */
9301                 I915_WRITE(GEN7_ROW_CHICKEN2,
9302                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9303                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9304                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9305         }
9306
9307         /* WaForceL3Serialization:ivb */
9308         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9309                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9310
9311         /*
9312          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9313          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9314          */
9315         I915_WRITE(GEN6_UCGCTL2,
9316                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9317
9318         /* This is required by WaCatErrorRejectionIssue:ivb */
9319         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9320                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9321                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9322
9323         g4x_disable_trickle_feed(dev_priv);
9324
9325         gen7_setup_fixed_func_scheduler(dev_priv);
9326
9327         if (0) { /* causes HiZ corruption on ivb:gt1 */
9328                 /* enable HiZ Raw Stall Optimization */
9329                 I915_WRITE(CACHE_MODE_0_GEN7,
9330                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9331         }
9332
9333         /* WaDisable4x2SubspanOptimization:ivb */
9334         I915_WRITE(CACHE_MODE_1,
9335                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9336
9337         /*
9338          * BSpec recommends 8x4 when MSAA is used,
9339          * however in practice 16x4 seems fastest.
9340          *
9341          * Note that PS/WM thread counts depend on the WIZ hashing
9342          * disable bit, which we don't touch here, but it's good
9343          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9344          */
9345         I915_WRITE(GEN7_GT_MODE,
9346                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9347
9348         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9349         snpcr &= ~GEN6_MBC_SNPCR_MASK;
9350         snpcr |= GEN6_MBC_SNPCR_MED;
9351         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9352
9353         if (!HAS_PCH_NOP(dev_priv))
9354                 cpt_init_clock_gating(dev_priv);
9355
9356         gen6_check_mch_setup(dev_priv);
9357 }
9358
9359 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9360 {
9361         /* WaDisableEarlyCull:vlv */
9362         I915_WRITE(_3D_CHICKEN3,
9363                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9364
9365         /* WaDisableBackToBackFlipFix:vlv */
9366         I915_WRITE(IVB_CHICKEN3,
9367                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9368                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9369
9370         /* WaPsdDispatchEnable:vlv */
9371         /* WaDisablePSDDualDispatchEnable:vlv */
9372         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9373                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9374                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9375
9376         /* WaDisable_RenderCache_OperationalFlush:vlv */
9377         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9378
9379         /* WaForceL3Serialization:vlv */
9380         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9381                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9382
9383         /* WaDisableDopClockGating:vlv */
9384         I915_WRITE(GEN7_ROW_CHICKEN2,
9385                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9386
9387         /* This is required by WaCatErrorRejectionIssue:vlv */
9388         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9389                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9390                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9391
9392         gen7_setup_fixed_func_scheduler(dev_priv);
9393
9394         /*
9395          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9396          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9397          */
9398         I915_WRITE(GEN6_UCGCTL2,
9399                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9400
9401         /* WaDisableL3Bank2xClockGate:vlv
9402          * Disabling L3 clock gating- MMIO 940c[25] = 1
9403          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9404         I915_WRITE(GEN7_UCGCTL4,
9405                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9406
9407         /*
9408          * BSpec says this must be set, even though
9409          * WaDisable4x2SubspanOptimization isn't listed for VLV.
9410          */
9411         I915_WRITE(CACHE_MODE_1,
9412                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9413
9414         /*
9415          * BSpec recommends 8x4 when MSAA is used,
9416          * however in practice 16x4 seems fastest.
9417          *
9418          * Note that PS/WM thread counts depend on the WIZ hashing
9419          * disable bit, which we don't touch here, but it's good
9420          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9421          */
9422         I915_WRITE(GEN7_GT_MODE,
9423                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9424
9425         /*
9426          * WaIncreaseL3CreditsForVLVB0:vlv
9427          * This is the hardware default actually.
9428          */
9429         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9430
9431         /*
9432          * WaDisableVLVClockGating_VBIIssue:vlv
9433          * Disable clock gating on th GCFG unit to prevent a delay
9434          * in the reporting of vblank events.
9435          */
9436         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9437 }
9438
9439 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9440 {
9441         /* WaVSRefCountFullforceMissDisable:chv */
9442         /* WaDSRefCountFullforceMissDisable:chv */
9443         I915_WRITE(GEN7_FF_THREAD_MODE,
9444                    I915_READ(GEN7_FF_THREAD_MODE) &
9445                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9446
9447         /* WaDisableSemaphoreAndSyncFlipWait:chv */
9448         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9449                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9450
9451         /* WaDisableCSUnitClockGating:chv */
9452         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9453                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9454
9455         /* WaDisableSDEUnitClockGating:chv */
9456         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9457                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9458
9459         /*
9460          * WaProgramL3SqcReg1Default:chv
9461          * See gfxspecs/Related Documents/Performance Guide/
9462          * LSQC Setting Recommendations.
9463          */
9464         gen8_set_l3sqc_credits(dev_priv, 38, 2);
9465
9466         /*
9467          * GTT cache may not work with big pages, so if those
9468          * are ever enabled GTT cache may need to be disabled.
9469          */
9470         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9471 }
9472
9473 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9474 {
9475         u32 dspclk_gate;
9476
9477         I915_WRITE(RENCLK_GATE_D1, 0);
9478         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9479                    GS_UNIT_CLOCK_GATE_DISABLE |
9480                    CL_UNIT_CLOCK_GATE_DISABLE);
9481         I915_WRITE(RAMCLK_GATE_D, 0);
9482         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9483                 OVRUNIT_CLOCK_GATE_DISABLE |
9484                 OVCUNIT_CLOCK_GATE_DISABLE;
9485         if (IS_GM45(dev_priv))
9486                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9487         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9488
9489         /* WaDisableRenderCachePipelinedFlush */
9490         I915_WRITE(CACHE_MODE_0,
9491                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9492
9493         /* WaDisable_RenderCache_OperationalFlush:g4x */
9494         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9495
9496         g4x_disable_trickle_feed(dev_priv);
9497 }
9498
9499 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9500 {
9501         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9502         I915_WRITE(RENCLK_GATE_D2, 0);
9503         I915_WRITE(DSPCLK_GATE_D, 0);
9504         I915_WRITE(RAMCLK_GATE_D, 0);
9505         I915_WRITE16(DEUC, 0);
9506         I915_WRITE(MI_ARB_STATE,
9507                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9508
9509         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9510         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9511 }
9512
9513 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9514 {
9515         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9516                    I965_RCC_CLOCK_GATE_DISABLE |
9517                    I965_RCPB_CLOCK_GATE_DISABLE |
9518                    I965_ISC_CLOCK_GATE_DISABLE |
9519                    I965_FBC_CLOCK_GATE_DISABLE);
9520         I915_WRITE(RENCLK_GATE_D2, 0);
9521         I915_WRITE(MI_ARB_STATE,
9522                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9523
9524         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9525         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9526 }
9527
9528 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9529 {
9530         u32 dstate = I915_READ(D_STATE);
9531
9532         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9533                 DSTATE_DOT_CLOCK_GATING;
9534         I915_WRITE(D_STATE, dstate);
9535
9536         if (IS_PINEVIEW(dev_priv))
9537                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9538
9539         /* IIR "flip pending" means done if this bit is set */
9540         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9541
9542         /* interrupts should cause a wake up from C3 */
9543         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9544
9545         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9546         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9547
9548         I915_WRITE(MI_ARB_STATE,
9549                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9550 }
9551
9552 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9553 {
9554         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9555
9556         /* interrupts should cause a wake up from C3 */
9557         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9558                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9559
9560         I915_WRITE(MEM_MODE,
9561                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9562 }
9563
9564 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9565 {
9566         I915_WRITE(MEM_MODE,
9567                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9568                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9569 }
9570
9571 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9572 {
9573         dev_priv->display.init_clock_gating(dev_priv);
9574 }
9575
9576 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9577 {
9578         if (HAS_PCH_LPT(dev_priv))
9579                 lpt_suspend_hw(dev_priv);
9580 }
9581
9582 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9583 {
9584         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9585 }
9586
9587 /**
9588  * intel_init_clock_gating_hooks - setup the clock gating hooks
9589  * @dev_priv: device private
9590  *
9591  * Setup the hooks that configure which clocks of a given platform can be
9592  * gated and also apply various GT and display specific workarounds for these
9593  * platforms. Note that some GT specific workarounds are applied separately
9594  * when GPU contexts or batchbuffers start their execution.
9595  */
9596 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9597 {
9598         if (IS_GEN(dev_priv, 11))
9599                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9600         else if (IS_CANNONLAKE(dev_priv))
9601                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9602         else if (IS_COFFEELAKE(dev_priv))
9603                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9604         else if (IS_SKYLAKE(dev_priv))
9605                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9606         else if (IS_KABYLAKE(dev_priv))
9607                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9608         else if (IS_BROXTON(dev_priv))
9609                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9610         else if (IS_GEMINILAKE(dev_priv))
9611                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9612         else if (IS_BROADWELL(dev_priv))
9613                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9614         else if (IS_CHERRYVIEW(dev_priv))
9615                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9616         else if (IS_HASWELL(dev_priv))
9617                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9618         else if (IS_IVYBRIDGE(dev_priv))
9619                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9620         else if (IS_VALLEYVIEW(dev_priv))
9621                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9622         else if (IS_GEN(dev_priv, 6))
9623                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9624         else if (IS_GEN(dev_priv, 5))
9625                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9626         else if (IS_G4X(dev_priv))
9627                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9628         else if (IS_I965GM(dev_priv))
9629                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9630         else if (IS_I965G(dev_priv))
9631                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9632         else if (IS_GEN(dev_priv, 3))
9633                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9634         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9635                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9636         else if (IS_GEN(dev_priv, 2))
9637                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9638         else {
9639                 MISSING_CASE(INTEL_DEVID(dev_priv));
9640                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9641         }
9642 }
9643
9644 /* Set up chip specific power management-related functions */
9645 void intel_init_pm(struct drm_i915_private *dev_priv)
9646 {
9647         /* For cxsr */
9648         if (IS_PINEVIEW(dev_priv))
9649                 i915_pineview_get_mem_freq(dev_priv);
9650         else if (IS_GEN(dev_priv, 5))
9651                 i915_ironlake_get_mem_freq(dev_priv);
9652
9653         /* For FIFO watermark updates */
9654         if (INTEL_GEN(dev_priv) >= 9) {
9655                 skl_setup_wm_latency(dev_priv);
9656                 dev_priv->display.initial_watermarks = skl_initial_wm;
9657                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9658                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9659         } else if (HAS_PCH_SPLIT(dev_priv)) {
9660                 ilk_setup_wm_latency(dev_priv);
9661
9662                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9663                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9664                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9665                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9666                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9667                         dev_priv->display.compute_intermediate_wm =
9668                                 ilk_compute_intermediate_wm;
9669                         dev_priv->display.initial_watermarks =
9670                                 ilk_initial_watermarks;
9671                         dev_priv->display.optimize_watermarks =
9672                                 ilk_optimize_watermarks;
9673                 } else {
9674                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9675                                       "Disable CxSR\n");
9676                 }
9677         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9678                 vlv_setup_wm_latency(dev_priv);
9679                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9680                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9681                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9682                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9683                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9684         } else if (IS_G4X(dev_priv)) {
9685                 g4x_setup_wm_latency(dev_priv);
9686                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9687                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9688                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9689                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9690         } else if (IS_PINEVIEW(dev_priv)) {
9691                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9692                                             dev_priv->is_ddr3,
9693                                             dev_priv->fsb_freq,
9694                                             dev_priv->mem_freq)) {
9695                         DRM_INFO("failed to find known CxSR latency "
9696                                  "(found ddr%s fsb freq %d, mem freq %d), "
9697                                  "disabling CxSR\n",
9698                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9699                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9700                         /* Disable CxSR and never update its watermark again */
9701                         intel_set_memory_cxsr(dev_priv, false);
9702                         dev_priv->display.update_wm = NULL;
9703                 } else
9704                         dev_priv->display.update_wm = pineview_update_wm;
9705         } else if (IS_GEN(dev_priv, 4)) {
9706                 dev_priv->display.update_wm = i965_update_wm;
9707         } else if (IS_GEN(dev_priv, 3)) {
9708                 dev_priv->display.update_wm = i9xx_update_wm;
9709                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9710         } else if (IS_GEN(dev_priv, 2)) {
9711                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9712                         dev_priv->display.update_wm = i845_update_wm;
9713                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9714                 } else {
9715                         dev_priv->display.update_wm = i9xx_update_wm;
9716                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9717                 }
9718         } else {
9719                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9720         }
9721 }
9722
9723 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9724 {
9725         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9726
9727         /*
9728          * N = val - 0xb7
9729          * Slow = Fast = GPLL ref * N
9730          */
9731         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9732 }
9733
9734 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9735 {
9736         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9737
9738         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9739 }
9740
9741 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9742 {
9743         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9744
9745         /*
9746          * N = val / 2
9747          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9748          */
9749         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9750 }
9751
9752 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9753 {
9754         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9755
9756         /* CHV needs even values */
9757         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9758 }
9759
9760 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9761 {
9762         if (INTEL_GEN(dev_priv) >= 9)
9763                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9764                                          GEN9_FREQ_SCALER);
9765         else if (IS_CHERRYVIEW(dev_priv))
9766                 return chv_gpu_freq(dev_priv, val);
9767         else if (IS_VALLEYVIEW(dev_priv))
9768                 return byt_gpu_freq(dev_priv, val);
9769         else
9770                 return val * GT_FREQUENCY_MULTIPLIER;
9771 }
9772
9773 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9774 {
9775         if (INTEL_GEN(dev_priv) >= 9)
9776                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9777                                          GT_FREQUENCY_MULTIPLIER);
9778         else if (IS_CHERRYVIEW(dev_priv))
9779                 return chv_freq_opcode(dev_priv, val);
9780         else if (IS_VALLEYVIEW(dev_priv))
9781                 return byt_freq_opcode(dev_priv, val);
9782         else
9783                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9784 }
9785
9786 void intel_pm_setup(struct drm_i915_private *dev_priv)
9787 {
9788         mutex_init(&dev_priv->gt_pm.rps.lock);
9789         mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9790
9791         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9792
9793         dev_priv->runtime_pm.suspended = false;
9794         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9795 }
9796
9797 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9798                              const i915_reg_t reg)
9799 {
9800         u32 lower, upper, tmp;
9801         int loop = 2;
9802
9803         /*
9804          * The register accessed do not need forcewake. We borrow
9805          * uncore lock to prevent concurrent access to range reg.
9806          */
9807         lockdep_assert_held(&dev_priv->uncore.lock);
9808
9809         /*
9810          * vlv and chv residency counters are 40 bits in width.
9811          * With a control bit, we can choose between upper or lower
9812          * 32bit window into this counter.
9813          *
9814          * Although we always use the counter in high-range mode elsewhere,
9815          * userspace may attempt to read the value before rc6 is initialised,
9816          * before we have set the default VLV_COUNTER_CONTROL value. So always
9817          * set the high bit to be safe.
9818          */
9819         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9820                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9821         upper = I915_READ_FW(reg);
9822         do {
9823                 tmp = upper;
9824
9825                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9826                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9827                 lower = I915_READ_FW(reg);
9828
9829                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9830                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9831                 upper = I915_READ_FW(reg);
9832         } while (upper != tmp && --loop);
9833
9834         /*
9835          * Everywhere else we always use VLV_COUNTER_CONTROL with the
9836          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9837          * now.
9838          */
9839
9840         return lower | (u64)upper << 8;
9841 }
9842
9843 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9844                            const i915_reg_t reg)
9845 {
9846         struct intel_uncore *uncore = &dev_priv->uncore;
9847         u64 time_hw, prev_hw, overflow_hw;
9848         unsigned int fw_domains;
9849         unsigned long flags;
9850         unsigned int i;
9851         u32 mul, div;
9852
9853         if (!HAS_RC6(dev_priv))
9854                 return 0;
9855
9856         /*
9857          * Store previous hw counter values for counter wrap-around handling.
9858          *
9859          * There are only four interesting registers and they live next to each
9860          * other so we can use the relative address, compared to the smallest
9861          * one as the index into driver storage.
9862          */
9863         i = (i915_mmio_reg_offset(reg) -
9864              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9865         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9866                 return 0;
9867
9868         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
9869
9870         spin_lock_irqsave(&uncore->lock, flags);
9871         intel_uncore_forcewake_get__locked(uncore, fw_domains);
9872
9873         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9874         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9875                 mul = 1000000;
9876                 div = dev_priv->czclk_freq;
9877                 overflow_hw = BIT_ULL(40);
9878                 time_hw = vlv_residency_raw(dev_priv, reg);
9879         } else {
9880                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9881                 if (IS_GEN9_LP(dev_priv)) {
9882                         mul = 10000;
9883                         div = 12;
9884                 } else {
9885                         mul = 1280;
9886                         div = 1;
9887                 }
9888
9889                 overflow_hw = BIT_ULL(32);
9890                 time_hw = intel_uncore_read_fw(uncore, reg);
9891         }
9892
9893         /*
9894          * Counter wrap handling.
9895          *
9896          * But relying on a sufficient frequency of queries otherwise counters
9897          * can still wrap.
9898          */
9899         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9900         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9901
9902         /* RC6 delta from last sample. */
9903         if (time_hw >= prev_hw)
9904                 time_hw -= prev_hw;
9905         else
9906                 time_hw += overflow_hw - prev_hw;
9907
9908         /* Add delta to RC6 extended raw driver copy. */
9909         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9910         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9911
9912         intel_uncore_forcewake_put__locked(uncore, fw_domains);
9913         spin_unlock_irqrestore(&uncore->lock, flags);
9914
9915         return mul_u64_u32_div(time_hw, mul, div);
9916 }
9917
9918 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9919                            i915_reg_t reg)
9920 {
9921         return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
9922 }
9923
9924 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9925 {
9926         u32 cagf;
9927
9928         if (INTEL_GEN(dev_priv) >= 9)
9929                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9930         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9931                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9932         else
9933                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9934
9935         return  cagf;
9936 }