Merge tag 'v3.6-rc2' into drm-intel-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
35  * framebuffer contents in-memory, aiming at reducing the required bandwidth
36  * during in-memory transfers and, therefore, reduce the power packet.
37  *
38  * The benefits of FBC are mostly visible with solid backgrounds and
39  * variation-less patterns.
40  *
41  * FBC-related functionality can be enabled by the means of the
42  * i915.i915_enable_fbc parameter
43  */
44
45 static void i8xx_disable_fbc(struct drm_device *dev)
46 {
47         struct drm_i915_private *dev_priv = dev->dev_private;
48         u32 fbc_ctl;
49
50         /* Disable compression */
51         fbc_ctl = I915_READ(FBC_CONTROL);
52         if ((fbc_ctl & FBC_CTL_EN) == 0)
53                 return;
54
55         fbc_ctl &= ~FBC_CTL_EN;
56         I915_WRITE(FBC_CONTROL, fbc_ctl);
57
58         /* Wait for compressing bit to clear */
59         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
60                 DRM_DEBUG_KMS("FBC idle timed out\n");
61                 return;
62         }
63
64         DRM_DEBUG_KMS("disabled FBC\n");
65 }
66
67 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
68 {
69         struct drm_device *dev = crtc->dev;
70         struct drm_i915_private *dev_priv = dev->dev_private;
71         struct drm_framebuffer *fb = crtc->fb;
72         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
73         struct drm_i915_gem_object *obj = intel_fb->obj;
74         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
75         int cfb_pitch;
76         int plane, i;
77         u32 fbc_ctl, fbc_ctl2;
78
79         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
80         if (fb->pitches[0] < cfb_pitch)
81                 cfb_pitch = fb->pitches[0];
82
83         /* FBC_CTL wants 64B units */
84         cfb_pitch = (cfb_pitch / 64) - 1;
85         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
86
87         /* Clear old tags */
88         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
89                 I915_WRITE(FBC_TAG + (i * 4), 0);
90
91         /* Set it up... */
92         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
93         fbc_ctl2 |= plane;
94         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
95         I915_WRITE(FBC_FENCE_OFF, crtc->y);
96
97         /* enable it... */
98         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
99         if (IS_I945GM(dev))
100                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
101         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
102         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
103         fbc_ctl |= obj->fence_reg;
104         I915_WRITE(FBC_CONTROL, fbc_ctl);
105
106         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
107                       cfb_pitch, crtc->y, intel_crtc->plane);
108 }
109
110 static bool i8xx_fbc_enabled(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = dev->dev_private;
113
114         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
115 }
116
117 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
118 {
119         struct drm_device *dev = crtc->dev;
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         struct drm_framebuffer *fb = crtc->fb;
122         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
123         struct drm_i915_gem_object *obj = intel_fb->obj;
124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
125         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
126         unsigned long stall_watermark = 200;
127         u32 dpfc_ctl;
128
129         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
130         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
131         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
132
133         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
134                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
135                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
136         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
137
138         /* enable it... */
139         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
140
141         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
142 }
143
144 static void g4x_disable_fbc(struct drm_device *dev)
145 {
146         struct drm_i915_private *dev_priv = dev->dev_private;
147         u32 dpfc_ctl;
148
149         /* Disable compression */
150         dpfc_ctl = I915_READ(DPFC_CONTROL);
151         if (dpfc_ctl & DPFC_CTL_EN) {
152                 dpfc_ctl &= ~DPFC_CTL_EN;
153                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
154
155                 DRM_DEBUG_KMS("disabled FBC\n");
156         }
157 }
158
159 static bool g4x_fbc_enabled(struct drm_device *dev)
160 {
161         struct drm_i915_private *dev_priv = dev->dev_private;
162
163         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
164 }
165
166 static void sandybridge_blit_fbc_update(struct drm_device *dev)
167 {
168         struct drm_i915_private *dev_priv = dev->dev_private;
169         u32 blt_ecoskpd;
170
171         /* Make sure blitter notifies FBC of writes */
172         gen6_gt_force_wake_get(dev_priv);
173         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
174         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
175                 GEN6_BLITTER_LOCK_SHIFT;
176         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
177         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
178         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
180                          GEN6_BLITTER_LOCK_SHIFT);
181         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
182         POSTING_READ(GEN6_BLITTER_ECOSKPD);
183         gen6_gt_force_wake_put(dev_priv);
184 }
185
186 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
187 {
188         struct drm_device *dev = crtc->dev;
189         struct drm_i915_private *dev_priv = dev->dev_private;
190         struct drm_framebuffer *fb = crtc->fb;
191         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
192         struct drm_i915_gem_object *obj = intel_fb->obj;
193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
194         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
195         unsigned long stall_watermark = 200;
196         u32 dpfc_ctl;
197
198         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
199         dpfc_ctl &= DPFC_RESERVED;
200         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
201         /* Set persistent mode for front-buffer rendering, ala X. */
202         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
203         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
204         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
205
206         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
207                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
208                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
209         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
210         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
211         /* enable it... */
212         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
213
214         if (IS_GEN6(dev)) {
215                 I915_WRITE(SNB_DPFC_CTL_SA,
216                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
217                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
218                 sandybridge_blit_fbc_update(dev);
219         }
220
221         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
222 }
223
224 static void ironlake_disable_fbc(struct drm_device *dev)
225 {
226         struct drm_i915_private *dev_priv = dev->dev_private;
227         u32 dpfc_ctl;
228
229         /* Disable compression */
230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
231         if (dpfc_ctl & DPFC_CTL_EN) {
232                 dpfc_ctl &= ~DPFC_CTL_EN;
233                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
234
235                 DRM_DEBUG_KMS("disabled FBC\n");
236         }
237 }
238
239 static bool ironlake_fbc_enabled(struct drm_device *dev)
240 {
241         struct drm_i915_private *dev_priv = dev->dev_private;
242
243         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
244 }
245
246 bool intel_fbc_enabled(struct drm_device *dev)
247 {
248         struct drm_i915_private *dev_priv = dev->dev_private;
249
250         if (!dev_priv->display.fbc_enabled)
251                 return false;
252
253         return dev_priv->display.fbc_enabled(dev);
254 }
255
256 static void intel_fbc_work_fn(struct work_struct *__work)
257 {
258         struct intel_fbc_work *work =
259                 container_of(to_delayed_work(__work),
260                              struct intel_fbc_work, work);
261         struct drm_device *dev = work->crtc->dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263
264         mutex_lock(&dev->struct_mutex);
265         if (work == dev_priv->fbc_work) {
266                 /* Double check that we haven't switched fb without cancelling
267                  * the prior work.
268                  */
269                 if (work->crtc->fb == work->fb) {
270                         dev_priv->display.enable_fbc(work->crtc,
271                                                      work->interval);
272
273                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
274                         dev_priv->cfb_fb = work->crtc->fb->base.id;
275                         dev_priv->cfb_y = work->crtc->y;
276                 }
277
278                 dev_priv->fbc_work = NULL;
279         }
280         mutex_unlock(&dev->struct_mutex);
281
282         kfree(work);
283 }
284
285 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
286 {
287         if (dev_priv->fbc_work == NULL)
288                 return;
289
290         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
291
292         /* Synchronisation is provided by struct_mutex and checking of
293          * dev_priv->fbc_work, so we can perform the cancellation
294          * entirely asynchronously.
295          */
296         if (cancel_delayed_work(&dev_priv->fbc_work->work))
297                 /* tasklet was killed before being run, clean up */
298                 kfree(dev_priv->fbc_work);
299
300         /* Mark the work as no longer wanted so that if it does
301          * wake-up (because the work was already running and waiting
302          * for our mutex), it will discover that is no longer
303          * necessary to run.
304          */
305         dev_priv->fbc_work = NULL;
306 }
307
308 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
309 {
310         struct intel_fbc_work *work;
311         struct drm_device *dev = crtc->dev;
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         if (!dev_priv->display.enable_fbc)
315                 return;
316
317         intel_cancel_fbc_work(dev_priv);
318
319         work = kzalloc(sizeof *work, GFP_KERNEL);
320         if (work == NULL) {
321                 dev_priv->display.enable_fbc(crtc, interval);
322                 return;
323         }
324
325         work->crtc = crtc;
326         work->fb = crtc->fb;
327         work->interval = interval;
328         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
329
330         dev_priv->fbc_work = work;
331
332         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
333
334         /* Delay the actual enabling to let pageflipping cease and the
335          * display to settle before starting the compression. Note that
336          * this delay also serves a second purpose: it allows for a
337          * vblank to pass after disabling the FBC before we attempt
338          * to modify the control registers.
339          *
340          * A more complicated solution would involve tracking vblanks
341          * following the termination of the page-flipping sequence
342          * and indeed performing the enable as a co-routine and not
343          * waiting synchronously upon the vblank.
344          */
345         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
346 }
347
348 void intel_disable_fbc(struct drm_device *dev)
349 {
350         struct drm_i915_private *dev_priv = dev->dev_private;
351
352         intel_cancel_fbc_work(dev_priv);
353
354         if (!dev_priv->display.disable_fbc)
355                 return;
356
357         dev_priv->display.disable_fbc(dev);
358         dev_priv->cfb_plane = -1;
359 }
360
361 /**
362  * intel_update_fbc - enable/disable FBC as needed
363  * @dev: the drm_device
364  *
365  * Set up the framebuffer compression hardware at mode set time.  We
366  * enable it if possible:
367  *   - plane A only (on pre-965)
368  *   - no pixel mulitply/line duplication
369  *   - no alpha buffer discard
370  *   - no dual wide
371  *   - framebuffer <= 2048 in width, 1536 in height
372  *
373  * We can't assume that any compression will take place (worst case),
374  * so the compressed buffer has to be the same size as the uncompressed
375  * one.  It also must reside (along with the line length buffer) in
376  * stolen memory.
377  *
378  * We need to enable/disable FBC on a global basis.
379  */
380 void intel_update_fbc(struct drm_device *dev)
381 {
382         struct drm_i915_private *dev_priv = dev->dev_private;
383         struct drm_crtc *crtc = NULL, *tmp_crtc;
384         struct intel_crtc *intel_crtc;
385         struct drm_framebuffer *fb;
386         struct intel_framebuffer *intel_fb;
387         struct drm_i915_gem_object *obj;
388         int enable_fbc;
389
390         if (!i915_powersave)
391                 return;
392
393         if (!I915_HAS_FBC(dev))
394                 return;
395
396         /*
397          * If FBC is already on, we just have to verify that we can
398          * keep it that way...
399          * Need to disable if:
400          *   - more than one pipe is active
401          *   - changing FBC params (stride, fence, mode)
402          *   - new fb is too large to fit in compressed buffer
403          *   - going to an unsupported config (interlace, pixel multiply, etc.)
404          */
405         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
406                 if (tmp_crtc->enabled &&
407                     !to_intel_crtc(tmp_crtc)->primary_disabled &&
408                     tmp_crtc->fb) {
409                         if (crtc) {
410                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
411                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
412                                 goto out_disable;
413                         }
414                         crtc = tmp_crtc;
415                 }
416         }
417
418         if (!crtc || crtc->fb == NULL) {
419                 DRM_DEBUG_KMS("no output, disabling\n");
420                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
421                 goto out_disable;
422         }
423
424         intel_crtc = to_intel_crtc(crtc);
425         fb = crtc->fb;
426         intel_fb = to_intel_framebuffer(fb);
427         obj = intel_fb->obj;
428
429         enable_fbc = i915_enable_fbc;
430         if (enable_fbc < 0) {
431                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
432                 enable_fbc = 1;
433                 if (INTEL_INFO(dev)->gen <= 6)
434                         enable_fbc = 0;
435         }
436         if (!enable_fbc) {
437                 DRM_DEBUG_KMS("fbc disabled per module param\n");
438                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
439                 goto out_disable;
440         }
441         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
442                 DRM_DEBUG_KMS("framebuffer too large, disabling "
443                               "compression\n");
444                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
445                 goto out_disable;
446         }
447         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
448             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
449                 DRM_DEBUG_KMS("mode incompatible with compression, "
450                               "disabling\n");
451                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
452                 goto out_disable;
453         }
454         if ((crtc->mode.hdisplay > 2048) ||
455             (crtc->mode.vdisplay > 1536)) {
456                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
457                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
458                 goto out_disable;
459         }
460         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
461                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
462                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
463                 goto out_disable;
464         }
465
466         /* The use of a CPU fence is mandatory in order to detect writes
467          * by the CPU to the scanout and trigger updates to the FBC.
468          */
469         if (obj->tiling_mode != I915_TILING_X ||
470             obj->fence_reg == I915_FENCE_REG_NONE) {
471                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
472                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
473                 goto out_disable;
474         }
475
476         /* If the kernel debugger is active, always disable compression */
477         if (in_dbg_master())
478                 goto out_disable;
479
480         /* If the scanout has not changed, don't modify the FBC settings.
481          * Note that we make the fundamental assumption that the fb->obj
482          * cannot be unpinned (and have its GTT offset and fence revoked)
483          * without first being decoupled from the scanout and FBC disabled.
484          */
485         if (dev_priv->cfb_plane == intel_crtc->plane &&
486             dev_priv->cfb_fb == fb->base.id &&
487             dev_priv->cfb_y == crtc->y)
488                 return;
489
490         if (intel_fbc_enabled(dev)) {
491                 /* We update FBC along two paths, after changing fb/crtc
492                  * configuration (modeswitching) and after page-flipping
493                  * finishes. For the latter, we know that not only did
494                  * we disable the FBC at the start of the page-flip
495                  * sequence, but also more than one vblank has passed.
496                  *
497                  * For the former case of modeswitching, it is possible
498                  * to switch between two FBC valid configurations
499                  * instantaneously so we do need to disable the FBC
500                  * before we can modify its control registers. We also
501                  * have to wait for the next vblank for that to take
502                  * effect. However, since we delay enabling FBC we can
503                  * assume that a vblank has passed since disabling and
504                  * that we can safely alter the registers in the deferred
505                  * callback.
506                  *
507                  * In the scenario that we go from a valid to invalid
508                  * and then back to valid FBC configuration we have
509                  * no strict enforcement that a vblank occurred since
510                  * disabling the FBC. However, along all current pipe
511                  * disabling paths we do need to wait for a vblank at
512                  * some point. And we wait before enabling FBC anyway.
513                  */
514                 DRM_DEBUG_KMS("disabling active FBC for update\n");
515                 intel_disable_fbc(dev);
516         }
517
518         intel_enable_fbc(crtc, 500);
519         return;
520
521 out_disable:
522         /* Multiple disables should be harmless */
523         if (intel_fbc_enabled(dev)) {
524                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
525                 intel_disable_fbc(dev);
526         }
527 }
528
529 static void i915_pineview_get_mem_freq(struct drm_device *dev)
530 {
531         drm_i915_private_t *dev_priv = dev->dev_private;
532         u32 tmp;
533
534         tmp = I915_READ(CLKCFG);
535
536         switch (tmp & CLKCFG_FSB_MASK) {
537         case CLKCFG_FSB_533:
538                 dev_priv->fsb_freq = 533; /* 133*4 */
539                 break;
540         case CLKCFG_FSB_800:
541                 dev_priv->fsb_freq = 800; /* 200*4 */
542                 break;
543         case CLKCFG_FSB_667:
544                 dev_priv->fsb_freq =  667; /* 167*4 */
545                 break;
546         case CLKCFG_FSB_400:
547                 dev_priv->fsb_freq = 400; /* 100*4 */
548                 break;
549         }
550
551         switch (tmp & CLKCFG_MEM_MASK) {
552         case CLKCFG_MEM_533:
553                 dev_priv->mem_freq = 533;
554                 break;
555         case CLKCFG_MEM_667:
556                 dev_priv->mem_freq = 667;
557                 break;
558         case CLKCFG_MEM_800:
559                 dev_priv->mem_freq = 800;
560                 break;
561         }
562
563         /* detect pineview DDR3 setting */
564         tmp = I915_READ(CSHRDDR3CTL);
565         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
566 }
567
568 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
569 {
570         drm_i915_private_t *dev_priv = dev->dev_private;
571         u16 ddrpll, csipll;
572
573         ddrpll = I915_READ16(DDRMPLL1);
574         csipll = I915_READ16(CSIPLL0);
575
576         switch (ddrpll & 0xff) {
577         case 0xc:
578                 dev_priv->mem_freq = 800;
579                 break;
580         case 0x10:
581                 dev_priv->mem_freq = 1066;
582                 break;
583         case 0x14:
584                 dev_priv->mem_freq = 1333;
585                 break;
586         case 0x18:
587                 dev_priv->mem_freq = 1600;
588                 break;
589         default:
590                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
591                                  ddrpll & 0xff);
592                 dev_priv->mem_freq = 0;
593                 break;
594         }
595
596         dev_priv->r_t = dev_priv->mem_freq;
597
598         switch (csipll & 0x3ff) {
599         case 0x00c:
600                 dev_priv->fsb_freq = 3200;
601                 break;
602         case 0x00e:
603                 dev_priv->fsb_freq = 3733;
604                 break;
605         case 0x010:
606                 dev_priv->fsb_freq = 4266;
607                 break;
608         case 0x012:
609                 dev_priv->fsb_freq = 4800;
610                 break;
611         case 0x014:
612                 dev_priv->fsb_freq = 5333;
613                 break;
614         case 0x016:
615                 dev_priv->fsb_freq = 5866;
616                 break;
617         case 0x018:
618                 dev_priv->fsb_freq = 6400;
619                 break;
620         default:
621                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
622                                  csipll & 0x3ff);
623                 dev_priv->fsb_freq = 0;
624                 break;
625         }
626
627         if (dev_priv->fsb_freq == 3200) {
628                 dev_priv->c_m = 0;
629         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
630                 dev_priv->c_m = 1;
631         } else {
632                 dev_priv->c_m = 2;
633         }
634 }
635
636 static const struct cxsr_latency cxsr_latency_table[] = {
637         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
638         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
639         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
640         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
641         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
642
643         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
644         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
645         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
646         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
647         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
648
649         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
650         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
651         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
652         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
653         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
654
655         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
656         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
657         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
658         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
659         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
660
661         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
662         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
663         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
664         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
665         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
666
667         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
668         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
669         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
670         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
671         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
672 };
673
674 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
675                                                          int is_ddr3,
676                                                          int fsb,
677                                                          int mem)
678 {
679         const struct cxsr_latency *latency;
680         int i;
681
682         if (fsb == 0 || mem == 0)
683                 return NULL;
684
685         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
686                 latency = &cxsr_latency_table[i];
687                 if (is_desktop == latency->is_desktop &&
688                     is_ddr3 == latency->is_ddr3 &&
689                     fsb == latency->fsb_freq && mem == latency->mem_freq)
690                         return latency;
691         }
692
693         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
694
695         return NULL;
696 }
697
698 static void pineview_disable_cxsr(struct drm_device *dev)
699 {
700         struct drm_i915_private *dev_priv = dev->dev_private;
701
702         /* deactivate cxsr */
703         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
704 }
705
706 /*
707  * Latency for FIFO fetches is dependent on several factors:
708  *   - memory configuration (speed, channels)
709  *   - chipset
710  *   - current MCH state
711  * It can be fairly high in some situations, so here we assume a fairly
712  * pessimal value.  It's a tradeoff between extra memory fetches (if we
713  * set this value too high, the FIFO will fetch frequently to stay full)
714  * and power consumption (set it too low to save power and we might see
715  * FIFO underruns and display "flicker").
716  *
717  * A value of 5us seems to be a good balance; safe for very low end
718  * platforms but not overly aggressive on lower latency configs.
719  */
720 static const int latency_ns = 5000;
721
722 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725         uint32_t dsparb = I915_READ(DSPARB);
726         int size;
727
728         size = dsparb & 0x7f;
729         if (plane)
730                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
731
732         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
733                       plane ? "B" : "A", size);
734
735         return size;
736 }
737
738 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
739 {
740         struct drm_i915_private *dev_priv = dev->dev_private;
741         uint32_t dsparb = I915_READ(DSPARB);
742         int size;
743
744         size = dsparb & 0x1ff;
745         if (plane)
746                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
747         size >>= 1; /* Convert to cachelines */
748
749         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
750                       plane ? "B" : "A", size);
751
752         return size;
753 }
754
755 static int i845_get_fifo_size(struct drm_device *dev, int plane)
756 {
757         struct drm_i915_private *dev_priv = dev->dev_private;
758         uint32_t dsparb = I915_READ(DSPARB);
759         int size;
760
761         size = dsparb & 0x7f;
762         size >>= 2; /* Convert to cachelines */
763
764         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
765                       plane ? "B" : "A",
766                       size);
767
768         return size;
769 }
770
771 static int i830_get_fifo_size(struct drm_device *dev, int plane)
772 {
773         struct drm_i915_private *dev_priv = dev->dev_private;
774         uint32_t dsparb = I915_READ(DSPARB);
775         int size;
776
777         size = dsparb & 0x7f;
778         size >>= 1; /* Convert to cachelines */
779
780         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
781                       plane ? "B" : "A", size);
782
783         return size;
784 }
785
786 /* Pineview has different values for various configs */
787 static const struct intel_watermark_params pineview_display_wm = {
788         PINEVIEW_DISPLAY_FIFO,
789         PINEVIEW_MAX_WM,
790         PINEVIEW_DFT_WM,
791         PINEVIEW_GUARD_WM,
792         PINEVIEW_FIFO_LINE_SIZE
793 };
794 static const struct intel_watermark_params pineview_display_hplloff_wm = {
795         PINEVIEW_DISPLAY_FIFO,
796         PINEVIEW_MAX_WM,
797         PINEVIEW_DFT_HPLLOFF_WM,
798         PINEVIEW_GUARD_WM,
799         PINEVIEW_FIFO_LINE_SIZE
800 };
801 static const struct intel_watermark_params pineview_cursor_wm = {
802         PINEVIEW_CURSOR_FIFO,
803         PINEVIEW_CURSOR_MAX_WM,
804         PINEVIEW_CURSOR_DFT_WM,
805         PINEVIEW_CURSOR_GUARD_WM,
806         PINEVIEW_FIFO_LINE_SIZE,
807 };
808 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
809         PINEVIEW_CURSOR_FIFO,
810         PINEVIEW_CURSOR_MAX_WM,
811         PINEVIEW_CURSOR_DFT_WM,
812         PINEVIEW_CURSOR_GUARD_WM,
813         PINEVIEW_FIFO_LINE_SIZE
814 };
815 static const struct intel_watermark_params g4x_wm_info = {
816         G4X_FIFO_SIZE,
817         G4X_MAX_WM,
818         G4X_MAX_WM,
819         2,
820         G4X_FIFO_LINE_SIZE,
821 };
822 static const struct intel_watermark_params g4x_cursor_wm_info = {
823         I965_CURSOR_FIFO,
824         I965_CURSOR_MAX_WM,
825         I965_CURSOR_DFT_WM,
826         2,
827         G4X_FIFO_LINE_SIZE,
828 };
829 static const struct intel_watermark_params valleyview_wm_info = {
830         VALLEYVIEW_FIFO_SIZE,
831         VALLEYVIEW_MAX_WM,
832         VALLEYVIEW_MAX_WM,
833         2,
834         G4X_FIFO_LINE_SIZE,
835 };
836 static const struct intel_watermark_params valleyview_cursor_wm_info = {
837         I965_CURSOR_FIFO,
838         VALLEYVIEW_CURSOR_MAX_WM,
839         I965_CURSOR_DFT_WM,
840         2,
841         G4X_FIFO_LINE_SIZE,
842 };
843 static const struct intel_watermark_params i965_cursor_wm_info = {
844         I965_CURSOR_FIFO,
845         I965_CURSOR_MAX_WM,
846         I965_CURSOR_DFT_WM,
847         2,
848         I915_FIFO_LINE_SIZE,
849 };
850 static const struct intel_watermark_params i945_wm_info = {
851         I945_FIFO_SIZE,
852         I915_MAX_WM,
853         1,
854         2,
855         I915_FIFO_LINE_SIZE
856 };
857 static const struct intel_watermark_params i915_wm_info = {
858         I915_FIFO_SIZE,
859         I915_MAX_WM,
860         1,
861         2,
862         I915_FIFO_LINE_SIZE
863 };
864 static const struct intel_watermark_params i855_wm_info = {
865         I855GM_FIFO_SIZE,
866         I915_MAX_WM,
867         1,
868         2,
869         I830_FIFO_LINE_SIZE
870 };
871 static const struct intel_watermark_params i830_wm_info = {
872         I830_FIFO_SIZE,
873         I915_MAX_WM,
874         1,
875         2,
876         I830_FIFO_LINE_SIZE
877 };
878
879 static const struct intel_watermark_params ironlake_display_wm_info = {
880         ILK_DISPLAY_FIFO,
881         ILK_DISPLAY_MAXWM,
882         ILK_DISPLAY_DFTWM,
883         2,
884         ILK_FIFO_LINE_SIZE
885 };
886 static const struct intel_watermark_params ironlake_cursor_wm_info = {
887         ILK_CURSOR_FIFO,
888         ILK_CURSOR_MAXWM,
889         ILK_CURSOR_DFTWM,
890         2,
891         ILK_FIFO_LINE_SIZE
892 };
893 static const struct intel_watermark_params ironlake_display_srwm_info = {
894         ILK_DISPLAY_SR_FIFO,
895         ILK_DISPLAY_MAX_SRWM,
896         ILK_DISPLAY_DFT_SRWM,
897         2,
898         ILK_FIFO_LINE_SIZE
899 };
900 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
901         ILK_CURSOR_SR_FIFO,
902         ILK_CURSOR_MAX_SRWM,
903         ILK_CURSOR_DFT_SRWM,
904         2,
905         ILK_FIFO_LINE_SIZE
906 };
907
908 static const struct intel_watermark_params sandybridge_display_wm_info = {
909         SNB_DISPLAY_FIFO,
910         SNB_DISPLAY_MAXWM,
911         SNB_DISPLAY_DFTWM,
912         2,
913         SNB_FIFO_LINE_SIZE
914 };
915 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
916         SNB_CURSOR_FIFO,
917         SNB_CURSOR_MAXWM,
918         SNB_CURSOR_DFTWM,
919         2,
920         SNB_FIFO_LINE_SIZE
921 };
922 static const struct intel_watermark_params sandybridge_display_srwm_info = {
923         SNB_DISPLAY_SR_FIFO,
924         SNB_DISPLAY_MAX_SRWM,
925         SNB_DISPLAY_DFT_SRWM,
926         2,
927         SNB_FIFO_LINE_SIZE
928 };
929 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
930         SNB_CURSOR_SR_FIFO,
931         SNB_CURSOR_MAX_SRWM,
932         SNB_CURSOR_DFT_SRWM,
933         2,
934         SNB_FIFO_LINE_SIZE
935 };
936
937
938 /**
939  * intel_calculate_wm - calculate watermark level
940  * @clock_in_khz: pixel clock
941  * @wm: chip FIFO params
942  * @pixel_size: display pixel size
943  * @latency_ns: memory latency for the platform
944  *
945  * Calculate the watermark level (the level at which the display plane will
946  * start fetching from memory again).  Each chip has a different display
947  * FIFO size and allocation, so the caller needs to figure that out and pass
948  * in the correct intel_watermark_params structure.
949  *
950  * As the pixel clock runs, the FIFO will be drained at a rate that depends
951  * on the pixel size.  When it reaches the watermark level, it'll start
952  * fetching FIFO line sized based chunks from memory until the FIFO fills
953  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
954  * will occur, and a display engine hang could result.
955  */
956 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
957                                         const struct intel_watermark_params *wm,
958                                         int fifo_size,
959                                         int pixel_size,
960                                         unsigned long latency_ns)
961 {
962         long entries_required, wm_size;
963
964         /*
965          * Note: we need to make sure we don't overflow for various clock &
966          * latency values.
967          * clocks go from a few thousand to several hundred thousand.
968          * latency is usually a few thousand
969          */
970         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
971                 1000;
972         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
973
974         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
975
976         wm_size = fifo_size - (entries_required + wm->guard_size);
977
978         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
979
980         /* Don't promote wm_size to unsigned... */
981         if (wm_size > (long)wm->max_wm)
982                 wm_size = wm->max_wm;
983         if (wm_size <= 0)
984                 wm_size = wm->default_wm;
985         return wm_size;
986 }
987
988 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
989 {
990         struct drm_crtc *crtc, *enabled = NULL;
991
992         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
993                 if (crtc->enabled && crtc->fb) {
994                         if (enabled)
995                                 return NULL;
996                         enabled = crtc;
997                 }
998         }
999
1000         return enabled;
1001 }
1002
1003 static void pineview_update_wm(struct drm_device *dev)
1004 {
1005         struct drm_i915_private *dev_priv = dev->dev_private;
1006         struct drm_crtc *crtc;
1007         const struct cxsr_latency *latency;
1008         u32 reg;
1009         unsigned long wm;
1010
1011         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1013         if (!latency) {
1014                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015                 pineview_disable_cxsr(dev);
1016                 return;
1017         }
1018
1019         crtc = single_enabled_crtc(dev);
1020         if (crtc) {
1021                 int clock = crtc->mode.clock;
1022                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024                 /* Display SR */
1025                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1026                                         pineview_display_wm.fifo_size,
1027                                         pixel_size, latency->display_sr);
1028                 reg = I915_READ(DSPFW1);
1029                 reg &= ~DSPFW_SR_MASK;
1030                 reg |= wm << DSPFW_SR_SHIFT;
1031                 I915_WRITE(DSPFW1, reg);
1032                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034                 /* cursor SR */
1035                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036                                         pineview_display_wm.fifo_size,
1037                                         pixel_size, latency->cursor_sr);
1038                 reg = I915_READ(DSPFW3);
1039                 reg &= ~DSPFW_CURSOR_SR_MASK;
1040                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041                 I915_WRITE(DSPFW3, reg);
1042
1043                 /* Display HPLL off SR */
1044                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045                                         pineview_display_hplloff_wm.fifo_size,
1046                                         pixel_size, latency->display_hpll_disable);
1047                 reg = I915_READ(DSPFW3);
1048                 reg &= ~DSPFW_HPLL_SR_MASK;
1049                 reg |= wm & DSPFW_HPLL_SR_MASK;
1050                 I915_WRITE(DSPFW3, reg);
1051
1052                 /* cursor HPLL off SR */
1053                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054                                         pineview_display_hplloff_wm.fifo_size,
1055                                         pixel_size, latency->cursor_hpll_disable);
1056                 reg = I915_READ(DSPFW3);
1057                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059                 I915_WRITE(DSPFW3, reg);
1060                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062                 /* activate cxsr */
1063                 I915_WRITE(DSPFW3,
1064                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066         } else {
1067                 pineview_disable_cxsr(dev);
1068                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069         }
1070 }
1071
1072 static bool g4x_compute_wm0(struct drm_device *dev,
1073                             int plane,
1074                             const struct intel_watermark_params *display,
1075                             int display_latency_ns,
1076                             const struct intel_watermark_params *cursor,
1077                             int cursor_latency_ns,
1078                             int *plane_wm,
1079                             int *cursor_wm)
1080 {
1081         struct drm_crtc *crtc;
1082         int htotal, hdisplay, clock, pixel_size;
1083         int line_time_us, line_count;
1084         int entries, tlb_miss;
1085
1086         crtc = intel_get_crtc_for_plane(dev, plane);
1087         if (crtc->fb == NULL || !crtc->enabled) {
1088                 *cursor_wm = cursor->guard_size;
1089                 *plane_wm = display->guard_size;
1090                 return false;
1091         }
1092
1093         htotal = crtc->mode.htotal;
1094         hdisplay = crtc->mode.hdisplay;
1095         clock = crtc->mode.clock;
1096         pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098         /* Use the small buffer method to calculate plane watermark */
1099         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101         if (tlb_miss > 0)
1102                 entries += tlb_miss;
1103         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104         *plane_wm = entries + display->guard_size;
1105         if (*plane_wm > (int)display->max_wm)
1106                 *plane_wm = display->max_wm;
1107
1108         /* Use the large buffer method to calculate cursor watermark */
1109         line_time_us = ((htotal * 1000) / clock);
1110         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111         entries = line_count * 64 * pixel_size;
1112         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113         if (tlb_miss > 0)
1114                 entries += tlb_miss;
1115         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116         *cursor_wm = entries + cursor->guard_size;
1117         if (*cursor_wm > (int)cursor->max_wm)
1118                 *cursor_wm = (int)cursor->max_wm;
1119
1120         return true;
1121 }
1122
1123 /*
1124  * Check the wm result.
1125  *
1126  * If any calculated watermark values is larger than the maximum value that
1127  * can be programmed into the associated watermark register, that watermark
1128  * must be disabled.
1129  */
1130 static bool g4x_check_srwm(struct drm_device *dev,
1131                            int display_wm, int cursor_wm,
1132                            const struct intel_watermark_params *display,
1133                            const struct intel_watermark_params *cursor)
1134 {
1135         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136                       display_wm, cursor_wm);
1137
1138         if (display_wm > display->max_wm) {
1139                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140                               display_wm, display->max_wm);
1141                 return false;
1142         }
1143
1144         if (cursor_wm > cursor->max_wm) {
1145                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146                               cursor_wm, cursor->max_wm);
1147                 return false;
1148         }
1149
1150         if (!(display_wm || cursor_wm)) {
1151                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152                 return false;
1153         }
1154
1155         return true;
1156 }
1157
1158 static bool g4x_compute_srwm(struct drm_device *dev,
1159                              int plane,
1160                              int latency_ns,
1161                              const struct intel_watermark_params *display,
1162                              const struct intel_watermark_params *cursor,
1163                              int *display_wm, int *cursor_wm)
1164 {
1165         struct drm_crtc *crtc;
1166         int hdisplay, htotal, pixel_size, clock;
1167         unsigned long line_time_us;
1168         int line_count, line_size;
1169         int small, large;
1170         int entries;
1171
1172         if (!latency_ns) {
1173                 *display_wm = *cursor_wm = 0;
1174                 return false;
1175         }
1176
1177         crtc = intel_get_crtc_for_plane(dev, plane);
1178         hdisplay = crtc->mode.hdisplay;
1179         htotal = crtc->mode.htotal;
1180         clock = crtc->mode.clock;
1181         pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183         line_time_us = (htotal * 1000) / clock;
1184         line_count = (latency_ns / line_time_us + 1000) / 1000;
1185         line_size = hdisplay * pixel_size;
1186
1187         /* Use the minimum of the small and large buffer method for primary */
1188         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189         large = line_count * line_size;
1190
1191         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192         *display_wm = entries + display->guard_size;
1193
1194         /* calculate the self-refresh watermark for display cursor */
1195         entries = line_count * pixel_size * 64;
1196         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197         *cursor_wm = entries + cursor->guard_size;
1198
1199         return g4x_check_srwm(dev,
1200                               *display_wm, *cursor_wm,
1201                               display, cursor);
1202 }
1203
1204 static bool vlv_compute_drain_latency(struct drm_device *dev,
1205                                      int plane,
1206                                      int *plane_prec_mult,
1207                                      int *plane_dl,
1208                                      int *cursor_prec_mult,
1209                                      int *cursor_dl)
1210 {
1211         struct drm_crtc *crtc;
1212         int clock, pixel_size;
1213         int entries;
1214
1215         crtc = intel_get_crtc_for_plane(dev, plane);
1216         if (crtc->fb == NULL || !crtc->enabled)
1217                 return false;
1218
1219         clock = crtc->mode.clock;       /* VESA DOT Clock */
1220         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1221
1222         entries = (clock / 1000) * pixel_size;
1223         *plane_prec_mult = (entries > 256) ?
1224                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226                                                      pixel_size);
1227
1228         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1229         *cursor_prec_mult = (entries > 256) ?
1230                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233         return true;
1234 }
1235
1236 /*
1237  * Update drain latency registers of memory arbiter
1238  *
1239  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240  * to be programmed. Each plane has a drain latency multiplier and a drain
1241  * latency value.
1242  */
1243
1244 static void vlv_update_drain_latency(struct drm_device *dev)
1245 {
1246         struct drm_i915_private *dev_priv = dev->dev_private;
1247         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250                                                         either 16 or 32 */
1251
1252         /* For plane A, Cursor A */
1253         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254                                       &cursor_prec_mult, &cursora_dl)) {
1255                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260                 I915_WRITE(VLV_DDL1, cursora_prec |
1261                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1262                                 planea_prec | planea_dl);
1263         }
1264
1265         /* For plane B, Cursor B */
1266         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267                                       &cursor_prec_mult, &cursorb_dl)) {
1268                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273                 I915_WRITE(VLV_DDL2, cursorb_prec |
1274                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1275                                 planeb_prec | planeb_dl);
1276         }
1277 }
1278
1279 #define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281 static void valleyview_update_wm(struct drm_device *dev)
1282 {
1283         static const int sr_latency_ns = 12000;
1284         struct drm_i915_private *dev_priv = dev->dev_private;
1285         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286         int plane_sr, cursor_sr;
1287         unsigned int enabled = 0;
1288
1289         vlv_update_drain_latency(dev);
1290
1291         if (g4x_compute_wm0(dev, 0,
1292                             &valleyview_wm_info, latency_ns,
1293                             &valleyview_cursor_wm_info, latency_ns,
1294                             &planea_wm, &cursora_wm))
1295                 enabled |= 1;
1296
1297         if (g4x_compute_wm0(dev, 1,
1298                             &valleyview_wm_info, latency_ns,
1299                             &valleyview_cursor_wm_info, latency_ns,
1300                             &planeb_wm, &cursorb_wm))
1301                 enabled |= 2;
1302
1303         plane_sr = cursor_sr = 0;
1304         if (single_plane_enabled(enabled) &&
1305             g4x_compute_srwm(dev, ffs(enabled) - 1,
1306                              sr_latency_ns,
1307                              &valleyview_wm_info,
1308                              &valleyview_cursor_wm_info,
1309                              &plane_sr, &cursor_sr))
1310                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311         else
1312                 I915_WRITE(FW_BLC_SELF_VLV,
1313                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316                       planea_wm, cursora_wm,
1317                       planeb_wm, cursorb_wm,
1318                       plane_sr, cursor_sr);
1319
1320         I915_WRITE(DSPFW1,
1321                    (plane_sr << DSPFW_SR_SHIFT) |
1322                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324                    planea_wm);
1325         I915_WRITE(DSPFW2,
1326                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1328         I915_WRITE(DSPFW3,
1329                    (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330 }
1331
1332 static void g4x_update_wm(struct drm_device *dev)
1333 {
1334         static const int sr_latency_ns = 12000;
1335         struct drm_i915_private *dev_priv = dev->dev_private;
1336         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337         int plane_sr, cursor_sr;
1338         unsigned int enabled = 0;
1339
1340         if (g4x_compute_wm0(dev, 0,
1341                             &g4x_wm_info, latency_ns,
1342                             &g4x_cursor_wm_info, latency_ns,
1343                             &planea_wm, &cursora_wm))
1344                 enabled |= 1;
1345
1346         if (g4x_compute_wm0(dev, 1,
1347                             &g4x_wm_info, latency_ns,
1348                             &g4x_cursor_wm_info, latency_ns,
1349                             &planeb_wm, &cursorb_wm))
1350                 enabled |= 2;
1351
1352         plane_sr = cursor_sr = 0;
1353         if (single_plane_enabled(enabled) &&
1354             g4x_compute_srwm(dev, ffs(enabled) - 1,
1355                              sr_latency_ns,
1356                              &g4x_wm_info,
1357                              &g4x_cursor_wm_info,
1358                              &plane_sr, &cursor_sr))
1359                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360         else
1361                 I915_WRITE(FW_BLC_SELF,
1362                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365                       planea_wm, cursora_wm,
1366                       planeb_wm, cursorb_wm,
1367                       plane_sr, cursor_sr);
1368
1369         I915_WRITE(DSPFW1,
1370                    (plane_sr << DSPFW_SR_SHIFT) |
1371                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373                    planea_wm);
1374         I915_WRITE(DSPFW2,
1375                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1377         /* HPLL off in SR has some issues on G4x... disable it */
1378         I915_WRITE(DSPFW3,
1379                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381 }
1382
1383 static void i965_update_wm(struct drm_device *dev)
1384 {
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386         struct drm_crtc *crtc;
1387         int srwm = 1;
1388         int cursor_sr = 16;
1389
1390         /* Calc sr entries for one plane configs */
1391         crtc = single_enabled_crtc(dev);
1392         if (crtc) {
1393                 /* self-refresh has much higher latency */
1394                 static const int sr_latency_ns = 12000;
1395                 int clock = crtc->mode.clock;
1396                 int htotal = crtc->mode.htotal;
1397                 int hdisplay = crtc->mode.hdisplay;
1398                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1399                 unsigned long line_time_us;
1400                 int entries;
1401
1402                 line_time_us = ((htotal * 1000) / clock);
1403
1404                 /* Use ns/us then divide to preserve precision */
1405                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406                         pixel_size * hdisplay;
1407                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408                 srwm = I965_FIFO_SIZE - entries;
1409                 if (srwm < 0)
1410                         srwm = 1;
1411                 srwm &= 0x1ff;
1412                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413                               entries, srwm);
1414
1415                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416                         pixel_size * 64;
1417                 entries = DIV_ROUND_UP(entries,
1418                                           i965_cursor_wm_info.cacheline_size);
1419                 cursor_sr = i965_cursor_wm_info.fifo_size -
1420                         (entries + i965_cursor_wm_info.guard_size);
1421
1422                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1423                         cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426                               "cursor %d\n", srwm, cursor_sr);
1427
1428                 if (IS_CRESTLINE(dev))
1429                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430         } else {
1431                 /* Turn off self refresh if both pipes are enabled */
1432                 if (IS_CRESTLINE(dev))
1433                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434                                    & ~FW_BLC_SELF_EN);
1435         }
1436
1437         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438                       srwm);
1439
1440         /* 965 has limitations... */
1441         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442                    (8 << 16) | (8 << 8) | (8 << 0));
1443         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444         /* update cursor SR watermark */
1445         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446 }
1447
1448 static void i9xx_update_wm(struct drm_device *dev)
1449 {
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         const struct intel_watermark_params *wm_info;
1452         uint32_t fwater_lo;
1453         uint32_t fwater_hi;
1454         int cwm, srwm = 1;
1455         int fifo_size;
1456         int planea_wm, planeb_wm;
1457         struct drm_crtc *crtc, *enabled = NULL;
1458
1459         if (IS_I945GM(dev))
1460                 wm_info = &i945_wm_info;
1461         else if (!IS_GEN2(dev))
1462                 wm_info = &i915_wm_info;
1463         else
1464                 wm_info = &i855_wm_info;
1465
1466         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467         crtc = intel_get_crtc_for_plane(dev, 0);
1468         if (crtc->enabled && crtc->fb) {
1469                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1470                                                wm_info, fifo_size,
1471                                                crtc->fb->bits_per_pixel / 8,
1472                                                latency_ns);
1473                 enabled = crtc;
1474         } else
1475                 planea_wm = fifo_size - wm_info->guard_size;
1476
1477         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478         crtc = intel_get_crtc_for_plane(dev, 1);
1479         if (crtc->enabled && crtc->fb) {
1480                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481                                                wm_info, fifo_size,
1482                                                crtc->fb->bits_per_pixel / 8,
1483                                                latency_ns);
1484                 if (enabled == NULL)
1485                         enabled = crtc;
1486                 else
1487                         enabled = NULL;
1488         } else
1489                 planeb_wm = fifo_size - wm_info->guard_size;
1490
1491         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493         /*
1494          * Overlay gets an aggressive default since video jitter is bad.
1495          */
1496         cwm = 2;
1497
1498         /* Play safe and disable self-refresh before adjusting watermarks. */
1499         if (IS_I945G(dev) || IS_I945GM(dev))
1500                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501         else if (IS_I915GM(dev))
1502                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504         /* Calc sr entries for one plane configs */
1505         if (HAS_FW_BLC(dev) && enabled) {
1506                 /* self-refresh has much higher latency */
1507                 static const int sr_latency_ns = 6000;
1508                 int clock = enabled->mode.clock;
1509                 int htotal = enabled->mode.htotal;
1510                 int hdisplay = enabled->mode.hdisplay;
1511                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1512                 unsigned long line_time_us;
1513                 int entries;
1514
1515                 line_time_us = (htotal * 1000) / clock;
1516
1517                 /* Use ns/us then divide to preserve precision */
1518                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519                         pixel_size * hdisplay;
1520                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522                 srwm = wm_info->fifo_size - entries;
1523                 if (srwm < 0)
1524                         srwm = 1;
1525
1526                 if (IS_I945G(dev) || IS_I945GM(dev))
1527                         I915_WRITE(FW_BLC_SELF,
1528                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529                 else if (IS_I915GM(dev))
1530                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531         }
1532
1533         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534                       planea_wm, planeb_wm, cwm, srwm);
1535
1536         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537         fwater_hi = (cwm & 0x1f);
1538
1539         /* Set request length to 8 cachelines per fetch */
1540         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541         fwater_hi = fwater_hi | (1 << 8);
1542
1543         I915_WRITE(FW_BLC, fwater_lo);
1544         I915_WRITE(FW_BLC2, fwater_hi);
1545
1546         if (HAS_FW_BLC(dev)) {
1547                 if (enabled) {
1548                         if (IS_I945G(dev) || IS_I945GM(dev))
1549                                 I915_WRITE(FW_BLC_SELF,
1550                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551                         else if (IS_I915GM(dev))
1552                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1554                 } else
1555                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1556         }
1557 }
1558
1559 static void i830_update_wm(struct drm_device *dev)
1560 {
1561         struct drm_i915_private *dev_priv = dev->dev_private;
1562         struct drm_crtc *crtc;
1563         uint32_t fwater_lo;
1564         int planea_wm;
1565
1566         crtc = single_enabled_crtc(dev);
1567         if (crtc == NULL)
1568                 return;
1569
1570         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571                                        dev_priv->display.get_fifo_size(dev, 0),
1572                                        crtc->fb->bits_per_pixel / 8,
1573                                        latency_ns);
1574         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575         fwater_lo |= (3<<8) | planea_wm;
1576
1577         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579         I915_WRITE(FW_BLC, fwater_lo);
1580 }
1581
1582 #define ILK_LP0_PLANE_LATENCY           700
1583 #define ILK_LP0_CURSOR_LATENCY          1300
1584
1585 /*
1586  * Check the wm result.
1587  *
1588  * If any calculated watermark values is larger than the maximum value that
1589  * can be programmed into the associated watermark register, that watermark
1590  * must be disabled.
1591  */
1592 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593                                 int fbc_wm, int display_wm, int cursor_wm,
1594                                 const struct intel_watermark_params *display,
1595                                 const struct intel_watermark_params *cursor)
1596 {
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606                 /* fbc has it's own way to disable FBC WM */
1607                 I915_WRITE(DISP_ARB_CTL,
1608                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609                 return false;
1610         }
1611
1612         if (display_wm > display->max_wm) {
1613                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615                 return false;
1616         }
1617
1618         if (cursor_wm > cursor->max_wm) {
1619                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621                 return false;
1622         }
1623
1624         if (!(fbc_wm || display_wm || cursor_wm)) {
1625                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626                 return false;
1627         }
1628
1629         return true;
1630 }
1631
1632 /*
1633  * Compute watermark values of WM[1-3],
1634  */
1635 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636                                   int latency_ns,
1637                                   const struct intel_watermark_params *display,
1638                                   const struct intel_watermark_params *cursor,
1639                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1640 {
1641         struct drm_crtc *crtc;
1642         unsigned long line_time_us;
1643         int hdisplay, htotal, pixel_size, clock;
1644         int line_count, line_size;
1645         int small, large;
1646         int entries;
1647
1648         if (!latency_ns) {
1649                 *fbc_wm = *display_wm = *cursor_wm = 0;
1650                 return false;
1651         }
1652
1653         crtc = intel_get_crtc_for_plane(dev, plane);
1654         hdisplay = crtc->mode.hdisplay;
1655         htotal = crtc->mode.htotal;
1656         clock = crtc->mode.clock;
1657         pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659         line_time_us = (htotal * 1000) / clock;
1660         line_count = (latency_ns / line_time_us + 1000) / 1000;
1661         line_size = hdisplay * pixel_size;
1662
1663         /* Use the minimum of the small and large buffer method for primary */
1664         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665         large = line_count * line_size;
1666
1667         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668         *display_wm = entries + display->guard_size;
1669
1670         /*
1671          * Spec says:
1672          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673          */
1674         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676         /* calculate the self-refresh watermark for display cursor */
1677         entries = line_count * pixel_size * 64;
1678         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679         *cursor_wm = entries + cursor->guard_size;
1680
1681         return ironlake_check_srwm(dev, level,
1682                                    *fbc_wm, *display_wm, *cursor_wm,
1683                                    display, cursor);
1684 }
1685
1686 static void ironlake_update_wm(struct drm_device *dev)
1687 {
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         int fbc_wm, plane_wm, cursor_wm;
1690         unsigned int enabled;
1691
1692         enabled = 0;
1693         if (g4x_compute_wm0(dev, 0,
1694                             &ironlake_display_wm_info,
1695                             ILK_LP0_PLANE_LATENCY,
1696                             &ironlake_cursor_wm_info,
1697                             ILK_LP0_CURSOR_LATENCY,
1698                             &plane_wm, &cursor_wm)) {
1699                 I915_WRITE(WM0_PIPEA_ILK,
1700                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702                               " plane %d, " "cursor: %d\n",
1703                               plane_wm, cursor_wm);
1704                 enabled |= 1;
1705         }
1706
1707         if (g4x_compute_wm0(dev, 1,
1708                             &ironlake_display_wm_info,
1709                             ILK_LP0_PLANE_LATENCY,
1710                             &ironlake_cursor_wm_info,
1711                             ILK_LP0_CURSOR_LATENCY,
1712                             &plane_wm, &cursor_wm)) {
1713                 I915_WRITE(WM0_PIPEB_ILK,
1714                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716                               " plane %d, cursor: %d\n",
1717                               plane_wm, cursor_wm);
1718                 enabled |= 2;
1719         }
1720
1721         /*
1722          * Calculate and update the self-refresh watermark only when one
1723          * display plane is used.
1724          */
1725         I915_WRITE(WM3_LP_ILK, 0);
1726         I915_WRITE(WM2_LP_ILK, 0);
1727         I915_WRITE(WM1_LP_ILK, 0);
1728
1729         if (!single_plane_enabled(enabled))
1730                 return;
1731         enabled = ffs(enabled) - 1;
1732
1733         /* WM1 */
1734         if (!ironlake_compute_srwm(dev, 1, enabled,
1735                                    ILK_READ_WM1_LATENCY() * 500,
1736                                    &ironlake_display_srwm_info,
1737                                    &ironlake_cursor_srwm_info,
1738                                    &fbc_wm, &plane_wm, &cursor_wm))
1739                 return;
1740
1741         I915_WRITE(WM1_LP_ILK,
1742                    WM1_LP_SR_EN |
1743                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1745                    (plane_wm << WM1_LP_SR_SHIFT) |
1746                    cursor_wm);
1747
1748         /* WM2 */
1749         if (!ironlake_compute_srwm(dev, 2, enabled,
1750                                    ILK_READ_WM2_LATENCY() * 500,
1751                                    &ironlake_display_srwm_info,
1752                                    &ironlake_cursor_srwm_info,
1753                                    &fbc_wm, &plane_wm, &cursor_wm))
1754                 return;
1755
1756         I915_WRITE(WM2_LP_ILK,
1757                    WM2_LP_EN |
1758                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1760                    (plane_wm << WM1_LP_SR_SHIFT) |
1761                    cursor_wm);
1762
1763         /*
1764          * WM3 is unsupported on ILK, probably because we don't have latency
1765          * data for that power state
1766          */
1767 }
1768
1769 static void sandybridge_update_wm(struct drm_device *dev)
1770 {
1771         struct drm_i915_private *dev_priv = dev->dev_private;
1772         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1773         u32 val;
1774         int fbc_wm, plane_wm, cursor_wm;
1775         unsigned int enabled;
1776
1777         enabled = 0;
1778         if (g4x_compute_wm0(dev, 0,
1779                             &sandybridge_display_wm_info, latency,
1780                             &sandybridge_cursor_wm_info, latency,
1781                             &plane_wm, &cursor_wm)) {
1782                 val = I915_READ(WM0_PIPEA_ILK);
1783                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784                 I915_WRITE(WM0_PIPEA_ILK, val |
1785                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787                               " plane %d, " "cursor: %d\n",
1788                               plane_wm, cursor_wm);
1789                 enabled |= 1;
1790         }
1791
1792         if (g4x_compute_wm0(dev, 1,
1793                             &sandybridge_display_wm_info, latency,
1794                             &sandybridge_cursor_wm_info, latency,
1795                             &plane_wm, &cursor_wm)) {
1796                 val = I915_READ(WM0_PIPEB_ILK);
1797                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798                 I915_WRITE(WM0_PIPEB_ILK, val |
1799                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801                               " plane %d, cursor: %d\n",
1802                               plane_wm, cursor_wm);
1803                 enabled |= 2;
1804         }
1805
1806         if ((dev_priv->num_pipe == 3) &&
1807             g4x_compute_wm0(dev, 2,
1808                             &sandybridge_display_wm_info, latency,
1809                             &sandybridge_cursor_wm_info, latency,
1810                             &plane_wm, &cursor_wm)) {
1811                 val = I915_READ(WM0_PIPEC_IVB);
1812                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1813                 I915_WRITE(WM0_PIPEC_IVB, val |
1814                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1815                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1816                               " plane %d, cursor: %d\n",
1817                               plane_wm, cursor_wm);
1818                 enabled |= 3;
1819         }
1820
1821         /*
1822          * Calculate and update the self-refresh watermark only when one
1823          * display plane is used.
1824          *
1825          * SNB support 3 levels of watermark.
1826          *
1827          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1828          * and disabled in the descending order
1829          *
1830          */
1831         I915_WRITE(WM3_LP_ILK, 0);
1832         I915_WRITE(WM2_LP_ILK, 0);
1833         I915_WRITE(WM1_LP_ILK, 0);
1834
1835         if (!single_plane_enabled(enabled) ||
1836             dev_priv->sprite_scaling_enabled)
1837                 return;
1838         enabled = ffs(enabled) - 1;
1839
1840         /* WM1 */
1841         if (!ironlake_compute_srwm(dev, 1, enabled,
1842                                    SNB_READ_WM1_LATENCY() * 500,
1843                                    &sandybridge_display_srwm_info,
1844                                    &sandybridge_cursor_srwm_info,
1845                                    &fbc_wm, &plane_wm, &cursor_wm))
1846                 return;
1847
1848         I915_WRITE(WM1_LP_ILK,
1849                    WM1_LP_SR_EN |
1850                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1852                    (plane_wm << WM1_LP_SR_SHIFT) |
1853                    cursor_wm);
1854
1855         /* WM2 */
1856         if (!ironlake_compute_srwm(dev, 2, enabled,
1857                                    SNB_READ_WM2_LATENCY() * 500,
1858                                    &sandybridge_display_srwm_info,
1859                                    &sandybridge_cursor_srwm_info,
1860                                    &fbc_wm, &plane_wm, &cursor_wm))
1861                 return;
1862
1863         I915_WRITE(WM2_LP_ILK,
1864                    WM2_LP_EN |
1865                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1867                    (plane_wm << WM1_LP_SR_SHIFT) |
1868                    cursor_wm);
1869
1870         /* WM3 */
1871         if (!ironlake_compute_srwm(dev, 3, enabled,
1872                                    SNB_READ_WM3_LATENCY() * 500,
1873                                    &sandybridge_display_srwm_info,
1874                                    &sandybridge_cursor_srwm_info,
1875                                    &fbc_wm, &plane_wm, &cursor_wm))
1876                 return;
1877
1878         I915_WRITE(WM3_LP_ILK,
1879                    WM3_LP_EN |
1880                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1882                    (plane_wm << WM1_LP_SR_SHIFT) |
1883                    cursor_wm);
1884 }
1885
1886 static void
1887 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1888                                  struct drm_display_mode *mode)
1889 {
1890         struct drm_i915_private *dev_priv = dev->dev_private;
1891         u32 temp;
1892
1893         temp = I915_READ(PIPE_WM_LINETIME(pipe));
1894         temp &= ~PIPE_WM_LINETIME_MASK;
1895
1896         /* The WM are computed with base on how long it takes to fill a single
1897          * row at the given clock rate, multiplied by 8.
1898          * */
1899         temp |= PIPE_WM_LINETIME_TIME(
1900                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1901
1902         /* IPS watermarks are only used by pipe A, and are ignored by
1903          * pipes B and C.  They are calculated similarly to the common
1904          * linetime values, except that we are using CD clock frequency
1905          * in MHz instead of pixel rate for the division.
1906          *
1907          * This is a placeholder for the IPS watermark calculation code.
1908          */
1909
1910         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1911 }
1912
1913 static bool
1914 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1915                               uint32_t sprite_width, int pixel_size,
1916                               const struct intel_watermark_params *display,
1917                               int display_latency_ns, int *sprite_wm)
1918 {
1919         struct drm_crtc *crtc;
1920         int clock;
1921         int entries, tlb_miss;
1922
1923         crtc = intel_get_crtc_for_plane(dev, plane);
1924         if (crtc->fb == NULL || !crtc->enabled) {
1925                 *sprite_wm = display->guard_size;
1926                 return false;
1927         }
1928
1929         clock = crtc->mode.clock;
1930
1931         /* Use the small buffer method to calculate the sprite watermark */
1932         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1933         tlb_miss = display->fifo_size*display->cacheline_size -
1934                 sprite_width * 8;
1935         if (tlb_miss > 0)
1936                 entries += tlb_miss;
1937         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1938         *sprite_wm = entries + display->guard_size;
1939         if (*sprite_wm > (int)display->max_wm)
1940                 *sprite_wm = display->max_wm;
1941
1942         return true;
1943 }
1944
1945 static bool
1946 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1947                                 uint32_t sprite_width, int pixel_size,
1948                                 const struct intel_watermark_params *display,
1949                                 int latency_ns, int *sprite_wm)
1950 {
1951         struct drm_crtc *crtc;
1952         unsigned long line_time_us;
1953         int clock;
1954         int line_count, line_size;
1955         int small, large;
1956         int entries;
1957
1958         if (!latency_ns) {
1959                 *sprite_wm = 0;
1960                 return false;
1961         }
1962
1963         crtc = intel_get_crtc_for_plane(dev, plane);
1964         clock = crtc->mode.clock;
1965         if (!clock) {
1966                 *sprite_wm = 0;
1967                 return false;
1968         }
1969
1970         line_time_us = (sprite_width * 1000) / clock;
1971         if (!line_time_us) {
1972                 *sprite_wm = 0;
1973                 return false;
1974         }
1975
1976         line_count = (latency_ns / line_time_us + 1000) / 1000;
1977         line_size = sprite_width * pixel_size;
1978
1979         /* Use the minimum of the small and large buffer method for primary */
1980         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1981         large = line_count * line_size;
1982
1983         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1984         *sprite_wm = entries + display->guard_size;
1985
1986         return *sprite_wm > 0x3ff ? false : true;
1987 }
1988
1989 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1990                                          uint32_t sprite_width, int pixel_size)
1991 {
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1994         u32 val;
1995         int sprite_wm, reg;
1996         int ret;
1997
1998         switch (pipe) {
1999         case 0:
2000                 reg = WM0_PIPEA_ILK;
2001                 break;
2002         case 1:
2003                 reg = WM0_PIPEB_ILK;
2004                 break;
2005         case 2:
2006                 reg = WM0_PIPEC_IVB;
2007                 break;
2008         default:
2009                 return; /* bad pipe */
2010         }
2011
2012         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2013                                             &sandybridge_display_wm_info,
2014                                             latency, &sprite_wm);
2015         if (!ret) {
2016                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2017                               pipe);
2018                 return;
2019         }
2020
2021         val = I915_READ(reg);
2022         val &= ~WM0_PIPE_SPRITE_MASK;
2023         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2024         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2025
2026
2027         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2028                                               pixel_size,
2029                                               &sandybridge_display_srwm_info,
2030                                               SNB_READ_WM1_LATENCY() * 500,
2031                                               &sprite_wm);
2032         if (!ret) {
2033                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2034                               pipe);
2035                 return;
2036         }
2037         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2038
2039         /* Only IVB has two more LP watermarks for sprite */
2040         if (!IS_IVYBRIDGE(dev))
2041                 return;
2042
2043         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2044                                               pixel_size,
2045                                               &sandybridge_display_srwm_info,
2046                                               SNB_READ_WM2_LATENCY() * 500,
2047                                               &sprite_wm);
2048         if (!ret) {
2049                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2050                               pipe);
2051                 return;
2052         }
2053         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2054
2055         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2056                                               pixel_size,
2057                                               &sandybridge_display_srwm_info,
2058                                               SNB_READ_WM3_LATENCY() * 500,
2059                                               &sprite_wm);
2060         if (!ret) {
2061                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2062                               pipe);
2063                 return;
2064         }
2065         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2066 }
2067
2068 /**
2069  * intel_update_watermarks - update FIFO watermark values based on current modes
2070  *
2071  * Calculate watermark values for the various WM regs based on current mode
2072  * and plane configuration.
2073  *
2074  * There are several cases to deal with here:
2075  *   - normal (i.e. non-self-refresh)
2076  *   - self-refresh (SR) mode
2077  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2078  *   - lines are small relative to FIFO size (buffer can hold more than 2
2079  *     lines), so need to account for TLB latency
2080  *
2081  *   The normal calculation is:
2082  *     watermark = dotclock * bytes per pixel * latency
2083  *   where latency is platform & configuration dependent (we assume pessimal
2084  *   values here).
2085  *
2086  *   The SR calculation is:
2087  *     watermark = (trunc(latency/line time)+1) * surface width *
2088  *       bytes per pixel
2089  *   where
2090  *     line time = htotal / dotclock
2091  *     surface width = hdisplay for normal plane and 64 for cursor
2092  *   and latency is assumed to be high, as above.
2093  *
2094  * The final value programmed to the register should always be rounded up,
2095  * and include an extra 2 entries to account for clock crossings.
2096  *
2097  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2098  * to set the non-SR watermarks to 8.
2099  */
2100 void intel_update_watermarks(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103
2104         if (dev_priv->display.update_wm)
2105                 dev_priv->display.update_wm(dev);
2106 }
2107
2108 void intel_update_linetime_watermarks(struct drm_device *dev,
2109                 int pipe, struct drm_display_mode *mode)
2110 {
2111         struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113         if (dev_priv->display.update_linetime_wm)
2114                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2115 }
2116
2117 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2118                                     uint32_t sprite_width, int pixel_size)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122         if (dev_priv->display.update_sprite_wm)
2123                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2124                                                    pixel_size);
2125 }
2126
2127 static struct drm_i915_gem_object *
2128 intel_alloc_context_page(struct drm_device *dev)
2129 {
2130         struct drm_i915_gem_object *ctx;
2131         int ret;
2132
2133         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2134
2135         ctx = i915_gem_alloc_object(dev, 4096);
2136         if (!ctx) {
2137                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2138                 return NULL;
2139         }
2140
2141         ret = i915_gem_object_pin(ctx, 4096, true);
2142         if (ret) {
2143                 DRM_ERROR("failed to pin power context: %d\n", ret);
2144                 goto err_unref;
2145         }
2146
2147         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2148         if (ret) {
2149                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2150                 goto err_unpin;
2151         }
2152
2153         return ctx;
2154
2155 err_unpin:
2156         i915_gem_object_unpin(ctx);
2157 err_unref:
2158         drm_gem_object_unreference(&ctx->base);
2159         mutex_unlock(&dev->struct_mutex);
2160         return NULL;
2161 }
2162
2163 /**
2164  * Lock protecting IPS related data structures
2165  *   - i915_mch_dev
2166  *   - dev_priv->max_delay
2167  *   - dev_priv->min_delay
2168  *   - dev_priv->fmax
2169  *   - dev_priv->gpu_busy
2170  *   - dev_priv->gfx_power
2171  */
2172 DEFINE_SPINLOCK(mchdev_lock);
2173
2174 /* Global for IPS driver to get at the current i915 device. Protected by
2175  * mchdev_lock. */
2176 static struct drm_i915_private *i915_mch_dev;
2177
2178 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2179 {
2180         struct drm_i915_private *dev_priv = dev->dev_private;
2181         u16 rgvswctl;
2182
2183         assert_spin_locked(&mchdev_lock);
2184
2185         rgvswctl = I915_READ16(MEMSWCTL);
2186         if (rgvswctl & MEMCTL_CMD_STS) {
2187                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2188                 return false; /* still busy with another command */
2189         }
2190
2191         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2192                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2193         I915_WRITE16(MEMSWCTL, rgvswctl);
2194         POSTING_READ16(MEMSWCTL);
2195
2196         rgvswctl |= MEMCTL_CMD_STS;
2197         I915_WRITE16(MEMSWCTL, rgvswctl);
2198
2199         return true;
2200 }
2201
2202 static void ironlake_enable_drps(struct drm_device *dev)
2203 {
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205         u32 rgvmodectl = I915_READ(MEMMODECTL);
2206         u8 fmax, fmin, fstart, vstart;
2207
2208         spin_lock_irq(&mchdev_lock);
2209
2210         /* Enable temp reporting */
2211         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2212         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2213
2214         /* 100ms RC evaluation intervals */
2215         I915_WRITE(RCUPEI, 100000);
2216         I915_WRITE(RCDNEI, 100000);
2217
2218         /* Set max/min thresholds to 90ms and 80ms respectively */
2219         I915_WRITE(RCBMAXAVG, 90000);
2220         I915_WRITE(RCBMINAVG, 80000);
2221
2222         I915_WRITE(MEMIHYST, 1);
2223
2224         /* Set up min, max, and cur for interrupt handling */
2225         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2226         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2227         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2228                 MEMMODE_FSTART_SHIFT;
2229
2230         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2231                 PXVFREQ_PX_SHIFT;
2232
2233         dev_priv->fmax = fmax; /* IPS callback will increase this */
2234         dev_priv->fstart = fstart;
2235
2236         dev_priv->max_delay = fstart;
2237         dev_priv->min_delay = fmin;
2238         dev_priv->cur_delay = fstart;
2239
2240         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2241                          fmax, fmin, fstart);
2242
2243         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2244
2245         /*
2246          * Interrupts will be enabled in ironlake_irq_postinstall
2247          */
2248
2249         I915_WRITE(VIDSTART, vstart);
2250         POSTING_READ(VIDSTART);
2251
2252         rgvmodectl |= MEMMODE_SWMODE_EN;
2253         I915_WRITE(MEMMODECTL, rgvmodectl);
2254
2255         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2256                 DRM_ERROR("stuck trying to change perf mode\n");
2257         mdelay(1);
2258
2259         ironlake_set_drps(dev, fstart);
2260
2261         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2262                 I915_READ(0x112e0);
2263         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2264         dev_priv->last_count2 = I915_READ(0x112f4);
2265         getrawmonotonic(&dev_priv->last_time2);
2266
2267         spin_unlock_irq(&mchdev_lock);
2268 }
2269
2270 static void ironlake_disable_drps(struct drm_device *dev)
2271 {
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273         u16 rgvswctl;
2274
2275         spin_lock_irq(&mchdev_lock);
2276
2277         rgvswctl = I915_READ16(MEMSWCTL);
2278
2279         /* Ack interrupts, disable EFC interrupt */
2280         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2281         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2282         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2283         I915_WRITE(DEIIR, DE_PCU_EVENT);
2284         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2285
2286         /* Go back to the starting frequency */
2287         ironlake_set_drps(dev, dev_priv->fstart);
2288         mdelay(1);
2289         rgvswctl |= MEMCTL_CMD_STS;
2290         I915_WRITE(MEMSWCTL, rgvswctl);
2291         mdelay(1);
2292
2293         spin_unlock_irq(&mchdev_lock);
2294 }
2295
2296 /* There's a funny hw issue where the hw returns all 0 when reading from
2297  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2298  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2299  * all limits and the gpu stuck at whatever frequency it is at atm).
2300  */
2301 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2302 {
2303         u32 limits;
2304
2305         limits = 0;
2306
2307         if (*val >= dev_priv->rps.max_delay)
2308                 *val = dev_priv->rps.max_delay;
2309         limits |= dev_priv->rps.max_delay << 24;
2310
2311         /* Only set the down limit when we've reached the lowest level to avoid
2312          * getting more interrupts, otherwise leave this clear. This prevents a
2313          * race in the hw when coming out of rc6: There's a tiny window where
2314          * the hw runs at the minimal clock before selecting the desired
2315          * frequency, if the down threshold expires in that window we will not
2316          * receive a down interrupt. */
2317         if (*val <= dev_priv->rps.min_delay) {
2318                 *val = dev_priv->rps.min_delay;
2319                 limits |= dev_priv->rps.min_delay << 16;
2320         }
2321
2322         return limits;
2323 }
2324
2325 void gen6_set_rps(struct drm_device *dev, u8 val)
2326 {
2327         struct drm_i915_private *dev_priv = dev->dev_private;
2328         u32 limits = gen6_rps_limits(dev_priv, &val);
2329
2330         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2331
2332         if (val == dev_priv->rps.cur_delay)
2333                 return;
2334
2335         I915_WRITE(GEN6_RPNSWREQ,
2336                    GEN6_FREQUENCY(val) |
2337                    GEN6_OFFSET(0) |
2338                    GEN6_AGGRESSIVE_TURBO);
2339
2340         /* Make sure we continue to get interrupts
2341          * until we hit the minimum or maximum frequencies.
2342          */
2343         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2344
2345         dev_priv->rps.cur_delay = val;
2346 }
2347
2348 static void gen6_disable_rps(struct drm_device *dev)
2349 {
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351
2352         I915_WRITE(GEN6_RC_CONTROL, 0);
2353         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2354         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2355         I915_WRITE(GEN6_PMIER, 0);
2356         /* Complete PM interrupt masking here doesn't race with the rps work
2357          * item again unmasking PM interrupts because that is using a different
2358          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2359          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2360
2361         spin_lock_irq(&dev_priv->rps.lock);
2362         dev_priv->rps.pm_iir = 0;
2363         spin_unlock_irq(&dev_priv->rps.lock);
2364
2365         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2366 }
2367
2368 int intel_enable_rc6(const struct drm_device *dev)
2369 {
2370         /* Respect the kernel parameter if it is set */
2371         if (i915_enable_rc6 >= 0)
2372                 return i915_enable_rc6;
2373
2374         if (INTEL_INFO(dev)->gen == 5) {
2375                 DRM_DEBUG_DRIVER("Ironlake: only RC6 available\n");
2376                 return INTEL_RC6_ENABLE;
2377         }
2378
2379         if (IS_HASWELL(dev)) {
2380                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2381                 return INTEL_RC6_ENABLE;
2382         }
2383
2384         /* snb/ivb have more than one rc6 state. */
2385         if (INTEL_INFO(dev)->gen == 6) {
2386                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2387                 return INTEL_RC6_ENABLE;
2388         }
2389
2390         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2391         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2392 }
2393
2394 static void gen6_enable_rps(struct drm_device *dev)
2395 {
2396         struct drm_i915_private *dev_priv = dev->dev_private;
2397         struct intel_ring_buffer *ring;
2398         u32 rp_state_cap;
2399         u32 gt_perf_status;
2400         u32 pcu_mbox, rc6_mask = 0;
2401         u32 gtfifodbg;
2402         int rc6_mode;
2403         int i;
2404
2405         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2406
2407         /* Here begins a magic sequence of register writes to enable
2408          * auto-downclocking.
2409          *
2410          * Perhaps there might be some value in exposing these to
2411          * userspace...
2412          */
2413         I915_WRITE(GEN6_RC_STATE, 0);
2414
2415         /* Clear the DBG now so we don't confuse earlier errors */
2416         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2417                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2418                 I915_WRITE(GTFIFODBG, gtfifodbg);
2419         }
2420
2421         gen6_gt_force_wake_get(dev_priv);
2422
2423         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2424         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2425
2426         /* In units of 100MHz */
2427         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2428         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2429         dev_priv->rps.cur_delay = 0;
2430
2431         /* disable the counters and set deterministic thresholds */
2432         I915_WRITE(GEN6_RC_CONTROL, 0);
2433
2434         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2435         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2436         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2437         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2438         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2439
2440         for_each_ring(ring, dev_priv, i)
2441                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2442
2443         I915_WRITE(GEN6_RC_SLEEP, 0);
2444         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2445         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2446         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2447         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2448
2449         /* Check if we are enabling RC6 */
2450         rc6_mode = intel_enable_rc6(dev_priv->dev);
2451         if (rc6_mode & INTEL_RC6_ENABLE)
2452                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2453
2454         /* We don't use those on Haswell */
2455         if (!IS_HASWELL(dev)) {
2456                 if (rc6_mode & INTEL_RC6p_ENABLE)
2457                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2458
2459                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2460                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2461         }
2462
2463         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2464                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2465                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2466                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2467
2468         I915_WRITE(GEN6_RC_CONTROL,
2469                    rc6_mask |
2470                    GEN6_RC_CTL_EI_MODE(1) |
2471                    GEN6_RC_CTL_HW_ENABLE);
2472
2473         I915_WRITE(GEN6_RPNSWREQ,
2474                    GEN6_FREQUENCY(10) |
2475                    GEN6_OFFSET(0) |
2476                    GEN6_AGGRESSIVE_TURBO);
2477         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2478                    GEN6_FREQUENCY(12));
2479
2480         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2481         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2482                    dev_priv->rps.max_delay << 24 |
2483                    dev_priv->rps.min_delay << 16);
2484
2485         if (IS_HASWELL(dev)) {
2486                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2487                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2488                 I915_WRITE(GEN6_RP_UP_EI, 66000);
2489                 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2490         } else {
2491                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
2492                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
2493                 I915_WRITE(GEN6_RP_UP_EI, 100000);
2494                 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
2495         }
2496
2497         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2498         I915_WRITE(GEN6_RP_CONTROL,
2499                    GEN6_RP_MEDIA_TURBO |
2500                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2501                    GEN6_RP_MEDIA_IS_GFX |
2502                    GEN6_RP_ENABLE |
2503                    GEN6_RP_UP_BUSY_AVG |
2504                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2505
2506         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2507                      500))
2508                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2509
2510         I915_WRITE(GEN6_PCODE_DATA, 0);
2511         I915_WRITE(GEN6_PCODE_MAILBOX,
2512                    GEN6_PCODE_READY |
2513                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2514         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2515                      500))
2516                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2517
2518         /* Check for overclock support */
2519         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2520                      500))
2521                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2522         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2523         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2524         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2525                      500))
2526                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2527         if (pcu_mbox & (1<<31)) { /* OC supported */
2528                 dev_priv->rps.max_delay = pcu_mbox & 0xff;
2529                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2530         }
2531
2532         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2533
2534         /* requires MSI enabled */
2535         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2536         spin_lock_irq(&dev_priv->rps.lock);
2537         WARN_ON(dev_priv->rps.pm_iir != 0);
2538         I915_WRITE(GEN6_PMIMR, 0);
2539         spin_unlock_irq(&dev_priv->rps.lock);
2540         /* enable all PM interrupts */
2541         I915_WRITE(GEN6_PMINTRMSK, 0);
2542
2543         gen6_gt_force_wake_put(dev_priv);
2544 }
2545
2546 static void gen6_update_ring_freq(struct drm_device *dev)
2547 {
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549         int min_freq = 15;
2550         int gpu_freq, ia_freq, max_ia_freq;
2551         int scaling_factor = 180;
2552
2553         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2554
2555         max_ia_freq = cpufreq_quick_get_max(0);
2556         /*
2557          * Default to measured freq if none found, PCU will ensure we don't go
2558          * over
2559          */
2560         if (!max_ia_freq)
2561                 max_ia_freq = tsc_khz;
2562
2563         /* Convert from kHz to MHz */
2564         max_ia_freq /= 1000;
2565
2566         /*
2567          * For each potential GPU frequency, load a ring frequency we'd like
2568          * to use for memory access.  We do this by specifying the IA frequency
2569          * the PCU should use as a reference to determine the ring frequency.
2570          */
2571         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2572              gpu_freq--) {
2573                 int diff = dev_priv->rps.max_delay - gpu_freq;
2574
2575                 /*
2576                  * For GPU frequencies less than 750MHz, just use the lowest
2577                  * ring freq.
2578                  */
2579                 if (gpu_freq < min_freq)
2580                         ia_freq = 800;
2581                 else
2582                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2583                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2584
2585                 I915_WRITE(GEN6_PCODE_DATA,
2586                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2587                            gpu_freq);
2588                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2589                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2590                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2591                               GEN6_PCODE_READY) == 0, 10)) {
2592                         DRM_ERROR("pcode write of freq table timed out\n");
2593                         continue;
2594                 }
2595         }
2596 }
2597
2598 void ironlake_teardown_rc6(struct drm_device *dev)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601
2602         if (dev_priv->renderctx) {
2603                 i915_gem_object_unpin(dev_priv->renderctx);
2604                 drm_gem_object_unreference(&dev_priv->renderctx->base);
2605                 dev_priv->renderctx = NULL;
2606         }
2607
2608         if (dev_priv->pwrctx) {
2609                 i915_gem_object_unpin(dev_priv->pwrctx);
2610                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
2611                 dev_priv->pwrctx = NULL;
2612         }
2613 }
2614
2615 static void ironlake_disable_rc6(struct drm_device *dev)
2616 {
2617         struct drm_i915_private *dev_priv = dev->dev_private;
2618
2619         if (I915_READ(PWRCTXA)) {
2620                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2621                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2622                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2623                          50);
2624
2625                 I915_WRITE(PWRCTXA, 0);
2626                 POSTING_READ(PWRCTXA);
2627
2628                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2629                 POSTING_READ(RSTDBYCTL);
2630         }
2631 }
2632
2633 static int ironlake_setup_rc6(struct drm_device *dev)
2634 {
2635         struct drm_i915_private *dev_priv = dev->dev_private;
2636
2637         if (dev_priv->renderctx == NULL)
2638                 dev_priv->renderctx = intel_alloc_context_page(dev);
2639         if (!dev_priv->renderctx)
2640                 return -ENOMEM;
2641
2642         if (dev_priv->pwrctx == NULL)
2643                 dev_priv->pwrctx = intel_alloc_context_page(dev);
2644         if (!dev_priv->pwrctx) {
2645                 ironlake_teardown_rc6(dev);
2646                 return -ENOMEM;
2647         }
2648
2649         return 0;
2650 }
2651
2652 static void ironlake_enable_rc6(struct drm_device *dev)
2653 {
2654         struct drm_i915_private *dev_priv = dev->dev_private;
2655         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2656         int ret;
2657
2658         /* rc6 disabled by default due to repeated reports of hanging during
2659          * boot and resume.
2660          */
2661         if (!intel_enable_rc6(dev))
2662                 return;
2663
2664         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2665
2666         ret = ironlake_setup_rc6(dev);
2667         if (ret)
2668                 return;
2669
2670         /*
2671          * GPU can automatically power down the render unit if given a page
2672          * to save state.
2673          */
2674         ret = intel_ring_begin(ring, 6);
2675         if (ret) {
2676                 ironlake_teardown_rc6(dev);
2677                 return;
2678         }
2679
2680         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2681         intel_ring_emit(ring, MI_SET_CONTEXT);
2682         intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2683                         MI_MM_SPACE_GTT |
2684                         MI_SAVE_EXT_STATE_EN |
2685                         MI_RESTORE_EXT_STATE_EN |
2686                         MI_RESTORE_INHIBIT);
2687         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2688         intel_ring_emit(ring, MI_NOOP);
2689         intel_ring_emit(ring, MI_FLUSH);
2690         intel_ring_advance(ring);
2691
2692         /*
2693          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2694          * does an implicit flush, combined with MI_FLUSH above, it should be
2695          * safe to assume that renderctx is valid
2696          */
2697         ret = intel_wait_ring_idle(ring);
2698         if (ret) {
2699                 DRM_ERROR("failed to enable ironlake power power savings\n");
2700                 ironlake_teardown_rc6(dev);
2701                 return;
2702         }
2703
2704         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2705         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2706 }
2707
2708 static unsigned long intel_pxfreq(u32 vidfreq)
2709 {
2710         unsigned long freq;
2711         int div = (vidfreq & 0x3f0000) >> 16;
2712         int post = (vidfreq & 0x3000) >> 12;
2713         int pre = (vidfreq & 0x7);
2714
2715         if (!pre)
2716                 return 0;
2717
2718         freq = ((div * 133333) / ((1<<post) * pre));
2719
2720         return freq;
2721 }
2722
2723 static const struct cparams {
2724         u16 i;
2725         u16 t;
2726         u16 m;
2727         u16 c;
2728 } cparams[] = {
2729         { 1, 1333, 301, 28664 },
2730         { 1, 1066, 294, 24460 },
2731         { 1, 800, 294, 25192 },
2732         { 0, 1333, 276, 27605 },
2733         { 0, 1066, 276, 27605 },
2734         { 0, 800, 231, 23784 },
2735 };
2736
2737 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2738 {
2739         u64 total_count, diff, ret;
2740         u32 count1, count2, count3, m = 0, c = 0;
2741         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2742         int i;
2743
2744         assert_spin_locked(&mchdev_lock);
2745
2746         diff1 = now - dev_priv->last_time1;
2747
2748         /* Prevent division-by-zero if we are asking too fast.
2749          * Also, we don't get interesting results if we are polling
2750          * faster than once in 10ms, so just return the saved value
2751          * in such cases.
2752          */
2753         if (diff1 <= 10)
2754                 return dev_priv->chipset_power;
2755
2756         count1 = I915_READ(DMIEC);
2757         count2 = I915_READ(DDREC);
2758         count3 = I915_READ(CSIEC);
2759
2760         total_count = count1 + count2 + count3;
2761
2762         /* FIXME: handle per-counter overflow */
2763         if (total_count < dev_priv->last_count1) {
2764                 diff = ~0UL - dev_priv->last_count1;
2765                 diff += total_count;
2766         } else {
2767                 diff = total_count - dev_priv->last_count1;
2768         }
2769
2770         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2771                 if (cparams[i].i == dev_priv->c_m &&
2772                     cparams[i].t == dev_priv->r_t) {
2773                         m = cparams[i].m;
2774                         c = cparams[i].c;
2775                         break;
2776                 }
2777         }
2778
2779         diff = div_u64(diff, diff1);
2780         ret = ((m * diff) + c);
2781         ret = div_u64(ret, 10);
2782
2783         dev_priv->last_count1 = total_count;
2784         dev_priv->last_time1 = now;
2785
2786         dev_priv->chipset_power = ret;
2787
2788         return ret;
2789 }
2790
2791 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2792 {
2793         unsigned long m, x, b;
2794         u32 tsfs;
2795
2796         tsfs = I915_READ(TSFS);
2797
2798         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2799         x = I915_READ8(TR1);
2800
2801         b = tsfs & TSFS_INTR_MASK;
2802
2803         return ((m * x) / 127) - b;
2804 }
2805
2806 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2807 {
2808         static const struct v_table {
2809                 u16 vd; /* in .1 mil */
2810                 u16 vm; /* in .1 mil */
2811         } v_table[] = {
2812                 { 0, 0, },
2813                 { 375, 0, },
2814                 { 500, 0, },
2815                 { 625, 0, },
2816                 { 750, 0, },
2817                 { 875, 0, },
2818                 { 1000, 0, },
2819                 { 1125, 0, },
2820                 { 4125, 3000, },
2821                 { 4125, 3000, },
2822                 { 4125, 3000, },
2823                 { 4125, 3000, },
2824                 { 4125, 3000, },
2825                 { 4125, 3000, },
2826                 { 4125, 3000, },
2827                 { 4125, 3000, },
2828                 { 4125, 3000, },
2829                 { 4125, 3000, },
2830                 { 4125, 3000, },
2831                 { 4125, 3000, },
2832                 { 4125, 3000, },
2833                 { 4125, 3000, },
2834                 { 4125, 3000, },
2835                 { 4125, 3000, },
2836                 { 4125, 3000, },
2837                 { 4125, 3000, },
2838                 { 4125, 3000, },
2839                 { 4125, 3000, },
2840                 { 4125, 3000, },
2841                 { 4125, 3000, },
2842                 { 4125, 3000, },
2843                 { 4125, 3000, },
2844                 { 4250, 3125, },
2845                 { 4375, 3250, },
2846                 { 4500, 3375, },
2847                 { 4625, 3500, },
2848                 { 4750, 3625, },
2849                 { 4875, 3750, },
2850                 { 5000, 3875, },
2851                 { 5125, 4000, },
2852                 { 5250, 4125, },
2853                 { 5375, 4250, },
2854                 { 5500, 4375, },
2855                 { 5625, 4500, },
2856                 { 5750, 4625, },
2857                 { 5875, 4750, },
2858                 { 6000, 4875, },
2859                 { 6125, 5000, },
2860                 { 6250, 5125, },
2861                 { 6375, 5250, },
2862                 { 6500, 5375, },
2863                 { 6625, 5500, },
2864                 { 6750, 5625, },
2865                 { 6875, 5750, },
2866                 { 7000, 5875, },
2867                 { 7125, 6000, },
2868                 { 7250, 6125, },
2869                 { 7375, 6250, },
2870                 { 7500, 6375, },
2871                 { 7625, 6500, },
2872                 { 7750, 6625, },
2873                 { 7875, 6750, },
2874                 { 8000, 6875, },
2875                 { 8125, 7000, },
2876                 { 8250, 7125, },
2877                 { 8375, 7250, },
2878                 { 8500, 7375, },
2879                 { 8625, 7500, },
2880                 { 8750, 7625, },
2881                 { 8875, 7750, },
2882                 { 9000, 7875, },
2883                 { 9125, 8000, },
2884                 { 9250, 8125, },
2885                 { 9375, 8250, },
2886                 { 9500, 8375, },
2887                 { 9625, 8500, },
2888                 { 9750, 8625, },
2889                 { 9875, 8750, },
2890                 { 10000, 8875, },
2891                 { 10125, 9000, },
2892                 { 10250, 9125, },
2893                 { 10375, 9250, },
2894                 { 10500, 9375, },
2895                 { 10625, 9500, },
2896                 { 10750, 9625, },
2897                 { 10875, 9750, },
2898                 { 11000, 9875, },
2899                 { 11125, 10000, },
2900                 { 11250, 10125, },
2901                 { 11375, 10250, },
2902                 { 11500, 10375, },
2903                 { 11625, 10500, },
2904                 { 11750, 10625, },
2905                 { 11875, 10750, },
2906                 { 12000, 10875, },
2907                 { 12125, 11000, },
2908                 { 12250, 11125, },
2909                 { 12375, 11250, },
2910                 { 12500, 11375, },
2911                 { 12625, 11500, },
2912                 { 12750, 11625, },
2913                 { 12875, 11750, },
2914                 { 13000, 11875, },
2915                 { 13125, 12000, },
2916                 { 13250, 12125, },
2917                 { 13375, 12250, },
2918                 { 13500, 12375, },
2919                 { 13625, 12500, },
2920                 { 13750, 12625, },
2921                 { 13875, 12750, },
2922                 { 14000, 12875, },
2923                 { 14125, 13000, },
2924                 { 14250, 13125, },
2925                 { 14375, 13250, },
2926                 { 14500, 13375, },
2927                 { 14625, 13500, },
2928                 { 14750, 13625, },
2929                 { 14875, 13750, },
2930                 { 15000, 13875, },
2931                 { 15125, 14000, },
2932                 { 15250, 14125, },
2933                 { 15375, 14250, },
2934                 { 15500, 14375, },
2935                 { 15625, 14500, },
2936                 { 15750, 14625, },
2937                 { 15875, 14750, },
2938                 { 16000, 14875, },
2939                 { 16125, 15000, },
2940         };
2941         if (dev_priv->info->is_mobile)
2942                 return v_table[pxvid].vm;
2943         else
2944                 return v_table[pxvid].vd;
2945 }
2946
2947 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
2948 {
2949         struct timespec now, diff1;
2950         u64 diff;
2951         unsigned long diffms;
2952         u32 count;
2953
2954         assert_spin_locked(&mchdev_lock);
2955
2956         getrawmonotonic(&now);
2957         diff1 = timespec_sub(now, dev_priv->last_time2);
2958
2959         /* Don't divide by 0 */
2960         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2961         if (!diffms)
2962                 return;
2963
2964         count = I915_READ(GFXEC);
2965
2966         if (count < dev_priv->last_count2) {
2967                 diff = ~0UL - dev_priv->last_count2;
2968                 diff += count;
2969         } else {
2970                 diff = count - dev_priv->last_count2;
2971         }
2972
2973         dev_priv->last_count2 = count;
2974         dev_priv->last_time2 = now;
2975
2976         /* More magic constants... */
2977         diff = diff * 1181;
2978         diff = div_u64(diff, diffms * 10);
2979         dev_priv->gfx_power = diff;
2980 }
2981
2982 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2983 {
2984         if (dev_priv->info->gen != 5)
2985                 return;
2986
2987         spin_lock_irq(&mchdev_lock);
2988
2989         __i915_update_gfx_val(dev_priv);
2990
2991         spin_unlock_irq(&mchdev_lock);
2992 }
2993
2994 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2995 {
2996         unsigned long t, corr, state1, corr2, state2;
2997         u32 pxvid, ext_v;
2998
2999         assert_spin_locked(&mchdev_lock);
3000
3001         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3002         pxvid = (pxvid >> 24) & 0x7f;
3003         ext_v = pvid_to_extvid(dev_priv, pxvid);
3004
3005         state1 = ext_v;
3006
3007         t = i915_mch_val(dev_priv);
3008
3009         /* Revel in the empirically derived constants */
3010
3011         /* Correction factor in 1/100000 units */
3012         if (t > 80)
3013                 corr = ((t * 2349) + 135940);
3014         else if (t >= 50)
3015                 corr = ((t * 964) + 29317);
3016         else /* < 50 */
3017                 corr = ((t * 301) + 1004);
3018
3019         corr = corr * ((150142 * state1) / 10000 - 78642);
3020         corr /= 100000;
3021         corr2 = (corr * dev_priv->corr);
3022
3023         state2 = (corr2 * state1) / 10000;
3024         state2 /= 100; /* convert to mW */
3025
3026         __i915_update_gfx_val(dev_priv);
3027
3028         return dev_priv->gfx_power + state2;
3029 }
3030
3031 /**
3032  * i915_read_mch_val - return value for IPS use
3033  *
3034  * Calculate and return a value for the IPS driver to use when deciding whether
3035  * we have thermal and power headroom to increase CPU or GPU power budget.
3036  */
3037 unsigned long i915_read_mch_val(void)
3038 {
3039         struct drm_i915_private *dev_priv;
3040         unsigned long chipset_val, graphics_val, ret = 0;
3041
3042         spin_lock_irq(&mchdev_lock);
3043         if (!i915_mch_dev)
3044                 goto out_unlock;
3045         dev_priv = i915_mch_dev;
3046
3047         chipset_val = i915_chipset_val(dev_priv);
3048         graphics_val = i915_gfx_val(dev_priv);
3049
3050         ret = chipset_val + graphics_val;
3051
3052 out_unlock:
3053         spin_unlock_irq(&mchdev_lock);
3054
3055         return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3058
3059 /**
3060  * i915_gpu_raise - raise GPU frequency limit
3061  *
3062  * Raise the limit; IPS indicates we have thermal headroom.
3063  */
3064 bool i915_gpu_raise(void)
3065 {
3066         struct drm_i915_private *dev_priv;
3067         bool ret = true;
3068
3069         spin_lock_irq(&mchdev_lock);
3070         if (!i915_mch_dev) {
3071                 ret = false;
3072                 goto out_unlock;
3073         }
3074         dev_priv = i915_mch_dev;
3075
3076         if (dev_priv->max_delay > dev_priv->fmax)
3077                 dev_priv->max_delay--;
3078
3079 out_unlock:
3080         spin_unlock_irq(&mchdev_lock);
3081
3082         return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3085
3086 /**
3087  * i915_gpu_lower - lower GPU frequency limit
3088  *
3089  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3090  * frequency maximum.
3091  */
3092 bool i915_gpu_lower(void)
3093 {
3094         struct drm_i915_private *dev_priv;
3095         bool ret = true;
3096
3097         spin_lock_irq(&mchdev_lock);
3098         if (!i915_mch_dev) {
3099                 ret = false;
3100                 goto out_unlock;
3101         }
3102         dev_priv = i915_mch_dev;
3103
3104         if (dev_priv->max_delay < dev_priv->min_delay)
3105                 dev_priv->max_delay++;
3106
3107 out_unlock:
3108         spin_unlock_irq(&mchdev_lock);
3109
3110         return ret;
3111 }
3112 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3113
3114 /**
3115  * i915_gpu_busy - indicate GPU business to IPS
3116  *
3117  * Tell the IPS driver whether or not the GPU is busy.
3118  */
3119 bool i915_gpu_busy(void)
3120 {
3121         struct drm_i915_private *dev_priv;
3122         struct intel_ring_buffer *ring;
3123         bool ret = false;
3124         int i;
3125
3126         spin_lock_irq(&mchdev_lock);
3127         if (!i915_mch_dev)
3128                 goto out_unlock;
3129         dev_priv = i915_mch_dev;
3130
3131         for_each_ring(ring, dev_priv, i)
3132                 ret |= !list_empty(&ring->request_list);
3133
3134 out_unlock:
3135         spin_unlock_irq(&mchdev_lock);
3136
3137         return ret;
3138 }
3139 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3140
3141 /**
3142  * i915_gpu_turbo_disable - disable graphics turbo
3143  *
3144  * Disable graphics turbo by resetting the max frequency and setting the
3145  * current frequency to the default.
3146  */
3147 bool i915_gpu_turbo_disable(void)
3148 {
3149         struct drm_i915_private *dev_priv;
3150         bool ret = true;
3151
3152         spin_lock_irq(&mchdev_lock);
3153         if (!i915_mch_dev) {
3154                 ret = false;
3155                 goto out_unlock;
3156         }
3157         dev_priv = i915_mch_dev;
3158
3159         dev_priv->max_delay = dev_priv->fstart;
3160
3161         if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3162                 ret = false;
3163
3164 out_unlock:
3165         spin_unlock_irq(&mchdev_lock);
3166
3167         return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3170
3171 /**
3172  * Tells the intel_ips driver that the i915 driver is now loaded, if
3173  * IPS got loaded first.
3174  *
3175  * This awkward dance is so that neither module has to depend on the
3176  * other in order for IPS to do the appropriate communication of
3177  * GPU turbo limits to i915.
3178  */
3179 static void
3180 ips_ping_for_i915_load(void)
3181 {
3182         void (*link)(void);
3183
3184         link = symbol_get(ips_link_to_i915_driver);
3185         if (link) {
3186                 link();
3187                 symbol_put(ips_link_to_i915_driver);
3188         }
3189 }
3190
3191 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3192 {
3193         /* We only register the i915 ips part with intel-ips once everything is
3194          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3195         spin_lock_irq(&mchdev_lock);
3196         i915_mch_dev = dev_priv;
3197         spin_unlock_irq(&mchdev_lock);
3198
3199         ips_ping_for_i915_load();
3200 }
3201
3202 void intel_gpu_ips_teardown(void)
3203 {
3204         spin_lock_irq(&mchdev_lock);
3205         i915_mch_dev = NULL;
3206         spin_unlock_irq(&mchdev_lock);
3207 }
3208 static void intel_init_emon(struct drm_device *dev)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         u32 lcfuse;
3212         u8 pxw[16];
3213         int i;
3214
3215         /* Disable to program */
3216         I915_WRITE(ECR, 0);
3217         POSTING_READ(ECR);
3218
3219         /* Program energy weights for various events */
3220         I915_WRITE(SDEW, 0x15040d00);
3221         I915_WRITE(CSIEW0, 0x007f0000);
3222         I915_WRITE(CSIEW1, 0x1e220004);
3223         I915_WRITE(CSIEW2, 0x04000004);
3224
3225         for (i = 0; i < 5; i++)
3226                 I915_WRITE(PEW + (i * 4), 0);
3227         for (i = 0; i < 3; i++)
3228                 I915_WRITE(DEW + (i * 4), 0);
3229
3230         /* Program P-state weights to account for frequency power adjustment */
3231         for (i = 0; i < 16; i++) {
3232                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3233                 unsigned long freq = intel_pxfreq(pxvidfreq);
3234                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3235                         PXVFREQ_PX_SHIFT;
3236                 unsigned long val;
3237
3238                 val = vid * vid;
3239                 val *= (freq / 1000);
3240                 val *= 255;
3241                 val /= (127*127*900);
3242                 if (val > 0xff)
3243                         DRM_ERROR("bad pxval: %ld\n", val);
3244                 pxw[i] = val;
3245         }
3246         /* Render standby states get 0 weight */
3247         pxw[14] = 0;
3248         pxw[15] = 0;
3249
3250         for (i = 0; i < 4; i++) {
3251                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3252                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3253                 I915_WRITE(PXW + (i * 4), val);
3254         }
3255
3256         /* Adjust magic regs to magic values (more experimental results) */
3257         I915_WRITE(OGW0, 0);
3258         I915_WRITE(OGW1, 0);
3259         I915_WRITE(EG0, 0x00007f00);
3260         I915_WRITE(EG1, 0x0000000e);
3261         I915_WRITE(EG2, 0x000e0000);
3262         I915_WRITE(EG3, 0x68000300);
3263         I915_WRITE(EG4, 0x42000000);
3264         I915_WRITE(EG5, 0x00140031);
3265         I915_WRITE(EG6, 0);
3266         I915_WRITE(EG7, 0);
3267
3268         for (i = 0; i < 8; i++)
3269                 I915_WRITE(PXWL + (i * 4), 0);
3270
3271         /* Enable PMON + select events */
3272         I915_WRITE(ECR, 0x80000019);
3273
3274         lcfuse = I915_READ(LCFUSE02);
3275
3276         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3277 }
3278
3279 void intel_disable_gt_powersave(struct drm_device *dev)
3280 {
3281         if (IS_IRONLAKE_M(dev)) {
3282                 ironlake_disable_drps(dev);
3283                 ironlake_disable_rc6(dev);
3284         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3285                 gen6_disable_rps(dev);
3286         }
3287 }
3288
3289 void intel_enable_gt_powersave(struct drm_device *dev)
3290 {
3291         if (IS_IRONLAKE_M(dev)) {
3292                 ironlake_enable_drps(dev);
3293                 ironlake_enable_rc6(dev);
3294                 intel_init_emon(dev);
3295         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3296                 gen6_enable_rps(dev);
3297                 gen6_update_ring_freq(dev);
3298         }
3299 }
3300
3301 static void ironlake_init_clock_gating(struct drm_device *dev)
3302 {
3303         struct drm_i915_private *dev_priv = dev->dev_private;
3304         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3305
3306         /* Required for FBC */
3307         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3308                 DPFCRUNIT_CLOCK_GATE_DISABLE |
3309                 DPFDUNIT_CLOCK_GATE_DISABLE;
3310         /* Required for CxSR */
3311         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3312
3313         I915_WRITE(PCH_3DCGDIS0,
3314                    MARIUNIT_CLOCK_GATE_DISABLE |
3315                    SVSMUNIT_CLOCK_GATE_DISABLE);
3316         I915_WRITE(PCH_3DCGDIS1,
3317                    VFMUNIT_CLOCK_GATE_DISABLE);
3318
3319         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3320
3321         /*
3322          * According to the spec the following bits should be set in
3323          * order to enable memory self-refresh
3324          * The bit 22/21 of 0x42004
3325          * The bit 5 of 0x42020
3326          * The bit 15 of 0x45000
3327          */
3328         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3329                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3330                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3331         I915_WRITE(ILK_DSPCLK_GATE,
3332                    (I915_READ(ILK_DSPCLK_GATE) |
3333                     ILK_DPARB_CLK_GATE));
3334         I915_WRITE(DISP_ARB_CTL,
3335                    (I915_READ(DISP_ARB_CTL) |
3336                     DISP_FBC_WM_DIS));
3337         I915_WRITE(WM3_LP_ILK, 0);
3338         I915_WRITE(WM2_LP_ILK, 0);
3339         I915_WRITE(WM1_LP_ILK, 0);
3340
3341         /*
3342          * Based on the document from hardware guys the following bits
3343          * should be set unconditionally in order to enable FBC.
3344          * The bit 22 of 0x42000
3345          * The bit 22 of 0x42004
3346          * The bit 7,8,9 of 0x42020.
3347          */
3348         if (IS_IRONLAKE_M(dev)) {
3349                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3350                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3351                            ILK_FBCQ_DIS);
3352                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3353                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3354                            ILK_DPARB_GATE);
3355                 I915_WRITE(ILK_DSPCLK_GATE,
3356                            I915_READ(ILK_DSPCLK_GATE) |
3357                            ILK_DPFC_DIS1 |
3358                            ILK_DPFC_DIS2 |
3359                            ILK_CLK_FBC);
3360         }
3361
3362         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3363                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3364                    ILK_ELPIN_409_SELECT);
3365         I915_WRITE(_3D_CHICKEN2,
3366                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3367                    _3D_CHICKEN2_WM_READ_PIPELINED);
3368 }
3369
3370 static void gen6_init_clock_gating(struct drm_device *dev)
3371 {
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         int pipe;
3374         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3375
3376         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3377
3378         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3379                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3380                    ILK_ELPIN_409_SELECT);
3381
3382         I915_WRITE(WM3_LP_ILK, 0);
3383         I915_WRITE(WM2_LP_ILK, 0);
3384         I915_WRITE(WM1_LP_ILK, 0);
3385
3386         I915_WRITE(CACHE_MODE_0,
3387                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3388
3389         I915_WRITE(GEN6_UCGCTL1,
3390                    I915_READ(GEN6_UCGCTL1) |
3391                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3392                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3393
3394         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3395          * gating disable must be set.  Failure to set it results in
3396          * flickering pixels due to Z write ordering failures after
3397          * some amount of runtime in the Mesa "fire" demo, and Unigine
3398          * Sanctuary and Tropics, and apparently anything else with
3399          * alpha test or pixel discard.
3400          *
3401          * According to the spec, bit 11 (RCCUNIT) must also be set,
3402          * but we didn't debug actual testcases to find it out.
3403          *
3404          * Also apply WaDisableVDSUnitClockGating and
3405          * WaDisableRCPBUnitClockGating.
3406          */
3407         I915_WRITE(GEN6_UCGCTL2,
3408                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3409                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3410                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3411
3412         /* Bspec says we need to always set all mask bits. */
3413         I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3414                    _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3415
3416         /*
3417          * According to the spec the following bits should be
3418          * set in order to enable memory self-refresh and fbc:
3419          * The bit21 and bit22 of 0x42000
3420          * The bit21 and bit22 of 0x42004
3421          * The bit5 and bit7 of 0x42020
3422          * The bit14 of 0x70180
3423          * The bit14 of 0x71180
3424          */
3425         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3426                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3427                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3428         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3429                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3430                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3431         I915_WRITE(ILK_DSPCLK_GATE,
3432                    I915_READ(ILK_DSPCLK_GATE) |
3433                    ILK_DPARB_CLK_GATE  |
3434                    ILK_DPFD_CLK_GATE);
3435
3436         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3437                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3438
3439         for_each_pipe(pipe) {
3440                 I915_WRITE(DSPCNTR(pipe),
3441                            I915_READ(DSPCNTR(pipe)) |
3442                            DISPPLANE_TRICKLE_FEED_DISABLE);
3443                 intel_flush_display_plane(dev_priv, pipe);
3444         }
3445 }
3446
3447 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3448 {
3449         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3450
3451         reg &= ~GEN7_FF_SCHED_MASK;
3452         reg |= GEN7_FF_TS_SCHED_HW;
3453         reg |= GEN7_FF_VS_SCHED_HW;
3454         reg |= GEN7_FF_DS_SCHED_HW;
3455
3456         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3457 }
3458
3459 static void haswell_init_clock_gating(struct drm_device *dev)
3460 {
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         int pipe;
3463         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3464
3465         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3466
3467         I915_WRITE(WM3_LP_ILK, 0);
3468         I915_WRITE(WM2_LP_ILK, 0);
3469         I915_WRITE(WM1_LP_ILK, 0);
3470
3471         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3472          * This implements the WaDisableRCZUnitClockGating workaround.
3473          */
3474         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3475
3476         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3477
3478         I915_WRITE(IVB_CHICKEN3,
3479                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3480                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3481
3482         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3483         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3484                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3485
3486         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3487         I915_WRITE(GEN7_L3CNTLREG1,
3488                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3489         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3490                         GEN7_WA_L3_CHICKEN_MODE);
3491
3492         /* This is required by WaCatErrorRejectionIssue */
3493         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3494                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3495                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3496
3497         for_each_pipe(pipe) {
3498                 I915_WRITE(DSPCNTR(pipe),
3499                            I915_READ(DSPCNTR(pipe)) |
3500                            DISPPLANE_TRICKLE_FEED_DISABLE);
3501                 intel_flush_display_plane(dev_priv, pipe);
3502         }
3503
3504         gen7_setup_fixed_func_scheduler(dev_priv);
3505
3506         /* WaDisable4x2SubspanOptimization */
3507         I915_WRITE(CACHE_MODE_1,
3508                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3509
3510         /* XXX: This is a workaround for early silicon revisions and should be
3511          * removed later.
3512          */
3513         I915_WRITE(WM_DBG,
3514                         I915_READ(WM_DBG) |
3515                         WM_DBG_DISALLOW_MULTIPLE_LP |
3516                         WM_DBG_DISALLOW_SPRITE |
3517                         WM_DBG_DISALLOW_MAXFIFO);
3518
3519 }
3520
3521 static void ivybridge_init_clock_gating(struct drm_device *dev)
3522 {
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         int pipe;
3525         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3526         uint32_t snpcr;
3527
3528         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3529
3530         I915_WRITE(WM3_LP_ILK, 0);
3531         I915_WRITE(WM2_LP_ILK, 0);
3532         I915_WRITE(WM1_LP_ILK, 0);
3533
3534         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3535
3536         I915_WRITE(IVB_CHICKEN3,
3537                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3538                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3539
3540         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3541         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3542                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3543
3544         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3545         I915_WRITE(GEN7_L3CNTLREG1,
3546                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3547         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3548                         GEN7_WA_L3_CHICKEN_MODE);
3549
3550         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3551          * gating disable must be set.  Failure to set it results in
3552          * flickering pixels due to Z write ordering failures after
3553          * some amount of runtime in the Mesa "fire" demo, and Unigine
3554          * Sanctuary and Tropics, and apparently anything else with
3555          * alpha test or pixel discard.
3556          *
3557          * According to the spec, bit 11 (RCCUNIT) must also be set,
3558          * but we didn't debug actual testcases to find it out.
3559          *
3560          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3561          * This implements the WaDisableRCZUnitClockGating workaround.
3562          */
3563         I915_WRITE(GEN6_UCGCTL2,
3564                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3565                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3566
3567         /* This is required by WaCatErrorRejectionIssue */
3568         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3569                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3570                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3571
3572         for_each_pipe(pipe) {
3573                 I915_WRITE(DSPCNTR(pipe),
3574                            I915_READ(DSPCNTR(pipe)) |
3575                            DISPPLANE_TRICKLE_FEED_DISABLE);
3576                 intel_flush_display_plane(dev_priv, pipe);
3577         }
3578
3579         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3580                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3581
3582         gen7_setup_fixed_func_scheduler(dev_priv);
3583
3584         /* WaDisable4x2SubspanOptimization */
3585         I915_WRITE(CACHE_MODE_1,
3586                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3587
3588         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3589         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3590         snpcr |= GEN6_MBC_SNPCR_MED;
3591         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3592 }
3593
3594 static void valleyview_init_clock_gating(struct drm_device *dev)
3595 {
3596         struct drm_i915_private *dev_priv = dev->dev_private;
3597         int pipe;
3598         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3599
3600         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3601
3602         I915_WRITE(WM3_LP_ILK, 0);
3603         I915_WRITE(WM2_LP_ILK, 0);
3604         I915_WRITE(WM1_LP_ILK, 0);
3605
3606         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3607
3608         I915_WRITE(IVB_CHICKEN3,
3609                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3610                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3611
3612         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3613         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3614                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3615
3616         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3617         I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3618         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3619
3620         /* This is required by WaCatErrorRejectionIssue */
3621         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3622                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3623                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3624
3625         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3626                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3627
3628
3629         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3630          * gating disable must be set.  Failure to set it results in
3631          * flickering pixels due to Z write ordering failures after
3632          * some amount of runtime in the Mesa "fire" demo, and Unigine
3633          * Sanctuary and Tropics, and apparently anything else with
3634          * alpha test or pixel discard.
3635          *
3636          * According to the spec, bit 11 (RCCUNIT) must also be set,
3637          * but we didn't debug actual testcases to find it out.
3638          *
3639          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3640          * This implements the WaDisableRCZUnitClockGating workaround.
3641          *
3642          * Also apply WaDisableVDSUnitClockGating and
3643          * WaDisableRCPBUnitClockGating.
3644          */
3645         I915_WRITE(GEN6_UCGCTL2,
3646                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3647                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3648                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3649                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3650                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3651
3652         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3653
3654         for_each_pipe(pipe) {
3655                 I915_WRITE(DSPCNTR(pipe),
3656                            I915_READ(DSPCNTR(pipe)) |
3657                            DISPPLANE_TRICKLE_FEED_DISABLE);
3658                 intel_flush_display_plane(dev_priv, pipe);
3659         }
3660
3661         I915_WRITE(CACHE_MODE_1,
3662                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3663
3664         /*
3665          * On ValleyView, the GUnit needs to signal the GT
3666          * when flip and other events complete.  So enable
3667          * all the GUnit->GT interrupts here
3668          */
3669         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3670                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3671                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3672                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3673                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3674                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3675                    PLANEA_FLIPDONE_INT_EN);
3676 }
3677
3678 static void g4x_init_clock_gating(struct drm_device *dev)
3679 {
3680         struct drm_i915_private *dev_priv = dev->dev_private;
3681         uint32_t dspclk_gate;
3682
3683         I915_WRITE(RENCLK_GATE_D1, 0);
3684         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3685                    GS_UNIT_CLOCK_GATE_DISABLE |
3686                    CL_UNIT_CLOCK_GATE_DISABLE);
3687         I915_WRITE(RAMCLK_GATE_D, 0);
3688         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3689                 OVRUNIT_CLOCK_GATE_DISABLE |
3690                 OVCUNIT_CLOCK_GATE_DISABLE;
3691         if (IS_GM45(dev))
3692                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3693         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3694 }
3695
3696 static void crestline_init_clock_gating(struct drm_device *dev)
3697 {
3698         struct drm_i915_private *dev_priv = dev->dev_private;
3699
3700         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3701         I915_WRITE(RENCLK_GATE_D2, 0);
3702         I915_WRITE(DSPCLK_GATE_D, 0);
3703         I915_WRITE(RAMCLK_GATE_D, 0);
3704         I915_WRITE16(DEUC, 0);
3705 }
3706
3707 static void broadwater_init_clock_gating(struct drm_device *dev)
3708 {
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3712                    I965_RCC_CLOCK_GATE_DISABLE |
3713                    I965_RCPB_CLOCK_GATE_DISABLE |
3714                    I965_ISC_CLOCK_GATE_DISABLE |
3715                    I965_FBC_CLOCK_GATE_DISABLE);
3716         I915_WRITE(RENCLK_GATE_D2, 0);
3717 }
3718
3719 static void gen3_init_clock_gating(struct drm_device *dev)
3720 {
3721         struct drm_i915_private *dev_priv = dev->dev_private;
3722         u32 dstate = I915_READ(D_STATE);
3723
3724         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3725                 DSTATE_DOT_CLOCK_GATING;
3726         I915_WRITE(D_STATE, dstate);
3727
3728         if (IS_PINEVIEW(dev))
3729                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3730 }
3731
3732 static void i85x_init_clock_gating(struct drm_device *dev)
3733 {
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3737 }
3738
3739 static void i830_init_clock_gating(struct drm_device *dev)
3740 {
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742
3743         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3744 }
3745
3746 static void ibx_init_clock_gating(struct drm_device *dev)
3747 {
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749
3750         /*
3751          * On Ibex Peak and Cougar Point, we need to disable clock
3752          * gating for the panel power sequencer or it will fail to
3753          * start up when no ports are active.
3754          */
3755         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3756 }
3757
3758 static void cpt_init_clock_gating(struct drm_device *dev)
3759 {
3760         struct drm_i915_private *dev_priv = dev->dev_private;
3761         int pipe;
3762
3763         /*
3764          * On Ibex Peak and Cougar Point, we need to disable clock
3765          * gating for the panel power sequencer or it will fail to
3766          * start up when no ports are active.
3767          */
3768         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3769         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3770                    DPLS_EDP_PPS_FIX_DIS);
3771         /* Without this, mode sets may fail silently on FDI */
3772         for_each_pipe(pipe)
3773                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3774 }
3775
3776 void intel_init_clock_gating(struct drm_device *dev)
3777 {
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780         dev_priv->display.init_clock_gating(dev);
3781
3782         if (dev_priv->display.init_pch_clock_gating)
3783                 dev_priv->display.init_pch_clock_gating(dev);
3784 }
3785
3786 /* Starting with Haswell, we have different power wells for
3787  * different parts of the GPU. This attempts to enable them all.
3788  */
3789 void intel_init_power_wells(struct drm_device *dev)
3790 {
3791         struct drm_i915_private *dev_priv = dev->dev_private;
3792         unsigned long power_wells[] = {
3793                 HSW_PWR_WELL_CTL1,
3794                 HSW_PWR_WELL_CTL2,
3795                 HSW_PWR_WELL_CTL4
3796         };
3797         int i;
3798
3799         if (!IS_HASWELL(dev))
3800                 return;
3801
3802         mutex_lock(&dev->struct_mutex);
3803
3804         for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3805                 int well = I915_READ(power_wells[i]);
3806
3807                 if ((well & HSW_PWR_WELL_STATE) == 0) {
3808                         I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3809                         if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3810                                 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3811                 }
3812         }
3813
3814         mutex_unlock(&dev->struct_mutex);
3815 }
3816
3817 /* Set up chip specific power management-related functions */
3818 void intel_init_pm(struct drm_device *dev)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821
3822         if (I915_HAS_FBC(dev)) {
3823                 if (HAS_PCH_SPLIT(dev)) {
3824                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3825                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
3826                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
3827                 } else if (IS_GM45(dev)) {
3828                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3829                         dev_priv->display.enable_fbc = g4x_enable_fbc;
3830                         dev_priv->display.disable_fbc = g4x_disable_fbc;
3831                 } else if (IS_CRESTLINE(dev)) {
3832                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3833                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
3834                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
3835                 }
3836                 /* 855GM needs testing */
3837         }
3838
3839         /* For cxsr */
3840         if (IS_PINEVIEW(dev))
3841                 i915_pineview_get_mem_freq(dev);
3842         else if (IS_GEN5(dev))
3843                 i915_ironlake_get_mem_freq(dev);
3844
3845         /* For FIFO watermark updates */
3846         if (HAS_PCH_SPLIT(dev)) {
3847                 if (HAS_PCH_IBX(dev))
3848                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3849                 else if (HAS_PCH_CPT(dev))
3850                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3851
3852                 if (IS_GEN5(dev)) {
3853                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3854                                 dev_priv->display.update_wm = ironlake_update_wm;
3855                         else {
3856                                 DRM_DEBUG_KMS("Failed to get proper latency. "
3857                                               "Disable CxSR\n");
3858                                 dev_priv->display.update_wm = NULL;
3859                         }
3860                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3861                 } else if (IS_GEN6(dev)) {
3862                         if (SNB_READ_WM0_LATENCY()) {
3863                                 dev_priv->display.update_wm = sandybridge_update_wm;
3864                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3865                         } else {
3866                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3867                                               "Disable CxSR\n");
3868                                 dev_priv->display.update_wm = NULL;
3869                         }
3870                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3871                 } else if (IS_IVYBRIDGE(dev)) {
3872                         /* FIXME: detect B0+ stepping and use auto training */
3873                         if (SNB_READ_WM0_LATENCY()) {
3874                                 dev_priv->display.update_wm = sandybridge_update_wm;
3875                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3876                         } else {
3877                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3878                                               "Disable CxSR\n");
3879                                 dev_priv->display.update_wm = NULL;
3880                         }
3881                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3882                 } else if (IS_HASWELL(dev)) {
3883                         if (SNB_READ_WM0_LATENCY()) {
3884                                 dev_priv->display.update_wm = sandybridge_update_wm;
3885                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3886                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3887                         } else {
3888                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
3889                                               "Disable CxSR\n");
3890                                 dev_priv->display.update_wm = NULL;
3891                         }
3892                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
3893                 } else
3894                         dev_priv->display.update_wm = NULL;
3895         } else if (IS_VALLEYVIEW(dev)) {
3896                 dev_priv->display.update_wm = valleyview_update_wm;
3897                 dev_priv->display.init_clock_gating =
3898                         valleyview_init_clock_gating;
3899         } else if (IS_PINEVIEW(dev)) {
3900                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3901                                             dev_priv->is_ddr3,
3902                                             dev_priv->fsb_freq,
3903                                             dev_priv->mem_freq)) {
3904                         DRM_INFO("failed to find known CxSR latency "
3905                                  "(found ddr%s fsb freq %d, mem freq %d), "
3906                                  "disabling CxSR\n",
3907                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
3908                                  dev_priv->fsb_freq, dev_priv->mem_freq);
3909                         /* Disable CxSR and never update its watermark again */
3910                         pineview_disable_cxsr(dev);
3911                         dev_priv->display.update_wm = NULL;
3912                 } else
3913                         dev_priv->display.update_wm = pineview_update_wm;
3914                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3915         } else if (IS_G4X(dev)) {
3916                 dev_priv->display.update_wm = g4x_update_wm;
3917                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3918         } else if (IS_GEN4(dev)) {
3919                 dev_priv->display.update_wm = i965_update_wm;
3920                 if (IS_CRESTLINE(dev))
3921                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3922                 else if (IS_BROADWATER(dev))
3923                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3924         } else if (IS_GEN3(dev)) {
3925                 dev_priv->display.update_wm = i9xx_update_wm;
3926                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3927                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3928         } else if (IS_I865G(dev)) {
3929                 dev_priv->display.update_wm = i830_update_wm;
3930                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3931                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
3932         } else if (IS_I85X(dev)) {
3933                 dev_priv->display.update_wm = i9xx_update_wm;
3934                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3935                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3936         } else {
3937                 dev_priv->display.update_wm = i830_update_wm;
3938                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
3939                 if (IS_845G(dev))
3940                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
3941                 else
3942                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
3943         }
3944 }
3945
3946 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
3947 {
3948         u32 gt_thread_status_mask;
3949
3950         if (IS_HASWELL(dev_priv->dev))
3951                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
3952         else
3953                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
3954
3955         /* w/a for a sporadic read returning 0 by waiting for the GT
3956          * thread to wake up.
3957          */
3958         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
3959                 DRM_ERROR("GT thread status wait timed out\n");
3960 }
3961
3962 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
3963 {
3964         u32 forcewake_ack;
3965
3966         if (IS_HASWELL(dev_priv->dev))
3967                 forcewake_ack = FORCEWAKE_ACK_HSW;
3968         else
3969                 forcewake_ack = FORCEWAKE_ACK;
3970
3971         if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500))
3972                 DRM_ERROR("Force wake wait timed out\n");
3973
3974         I915_WRITE_NOTRACE(FORCEWAKE, 1);
3975         POSTING_READ(FORCEWAKE);
3976
3977         if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500))
3978                 DRM_ERROR("Force wake wait timed out\n");
3979
3980         __gen6_gt_wait_for_thread_c0(dev_priv);
3981 }
3982
3983 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
3984 {
3985         u32 forcewake_ack;
3986
3987         if (IS_HASWELL(dev_priv->dev))
3988                 forcewake_ack = FORCEWAKE_ACK_HSW;
3989         else
3990                 forcewake_ack = FORCEWAKE_MT_ACK;
3991
3992         if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500))
3993                 DRM_ERROR("Force wake wait timed out\n");
3994
3995         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(1));
3996         POSTING_READ(FORCEWAKE_MT);
3997
3998         if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500))
3999                 DRM_ERROR("Force wake wait timed out\n");
4000
4001         __gen6_gt_wait_for_thread_c0(dev_priv);
4002 }
4003
4004 /*
4005  * Generally this is called implicitly by the register read function. However,
4006  * if some sequence requires the GT to not power down then this function should
4007  * be called at the beginning of the sequence followed by a call to
4008  * gen6_gt_force_wake_put() at the end of the sequence.
4009  */
4010 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4011 {
4012         unsigned long irqflags;
4013
4014         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4015         if (dev_priv->forcewake_count++ == 0)
4016                 dev_priv->gt.force_wake_get(dev_priv);
4017         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4018 }
4019
4020 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4021 {
4022         u32 gtfifodbg;
4023         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4024         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4025              "MMIO read or write has been dropped %x\n", gtfifodbg))
4026                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4027 }
4028
4029 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4030 {
4031         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4032         POSTING_READ(FORCEWAKE);
4033         gen6_gt_check_fifodbg(dev_priv);
4034 }
4035
4036 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4037 {
4038         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(1));
4039         POSTING_READ(FORCEWAKE_MT);
4040         gen6_gt_check_fifodbg(dev_priv);
4041 }
4042
4043 /*
4044  * see gen6_gt_force_wake_get()
4045  */
4046 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4047 {
4048         unsigned long irqflags;
4049
4050         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4051         if (--dev_priv->forcewake_count == 0)
4052                 dev_priv->gt.force_wake_put(dev_priv);
4053         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4054 }
4055
4056 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4057 {
4058         int ret = 0;
4059
4060         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4061                 int loop = 500;
4062                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4063                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4064                         udelay(10);
4065                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4066                 }
4067                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4068                         ++ret;
4069                 dev_priv->gt_fifo_count = fifo;
4070         }
4071         dev_priv->gt_fifo_count--;
4072
4073         return ret;
4074 }
4075
4076 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4077 {
4078         /* Already awake? */
4079         if ((I915_READ(0x130094) & 0xa1) == 0xa1)
4080                 return;
4081
4082         I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffffffff);
4083         POSTING_READ(FORCEWAKE_VLV);
4084
4085         if (wait_for_atomic_us((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1), 500))
4086                 DRM_ERROR("Force wake wait timed out\n");
4087
4088         __gen6_gt_wait_for_thread_c0(dev_priv);
4089 }
4090
4091 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4092 {
4093         I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffff0000);
4094         /* FIXME: confirm VLV behavior with Punit folks */
4095         POSTING_READ(FORCEWAKE_VLV);
4096 }
4097
4098 void intel_gt_init(struct drm_device *dev)
4099 {
4100         struct drm_i915_private *dev_priv = dev->dev_private;
4101
4102         spin_lock_init(&dev_priv->gt_lock);
4103
4104         if (IS_VALLEYVIEW(dev)) {
4105                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4106                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4107         } else if (INTEL_INFO(dev)->gen >= 6) {
4108                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4109                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4110
4111                 /* IVB configs may use multi-threaded forcewake */
4112                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4113                         u32 ecobus;
4114
4115                         /* A small trick here - if the bios hasn't configured
4116                          * MT forcewake, and if the device is in RC6, then
4117                          * force_wake_mt_get will not wake the device and the
4118                          * ECOBUS read will return zero. Which will be
4119                          * (correctly) interpreted by the test below as MT
4120                          * forcewake being disabled.
4121                          */
4122                         mutex_lock(&dev->struct_mutex);
4123                         __gen6_gt_force_wake_mt_get(dev_priv);
4124                         ecobus = I915_READ_NOTRACE(ECOBUS);
4125                         __gen6_gt_force_wake_mt_put(dev_priv);
4126                         mutex_unlock(&dev->struct_mutex);
4127
4128                         if (ecobus & FORCEWAKE_MT_ENABLE) {
4129                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
4130                                 dev_priv->gt.force_wake_get =
4131                                         __gen6_gt_force_wake_mt_get;
4132                                 dev_priv->gt.force_wake_put =
4133                                         __gen6_gt_force_wake_mt_put;
4134                         }
4135                 }
4136         }
4137 }
4138