drm/i915: Prepare to extract gen specific functions from intel_can_enable_sagv
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34
35 #include "display/intel_atomic.h"
36 #include "display/intel_display_types.h"
37 #include "display/intel_fbc.h"
38 #include "display/intel_sprite.h"
39
40 #include "gt/intel_llc.h"
41
42 #include "i915_drv.h"
43 #include "i915_fixed.h"
44 #include "i915_irq.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47 #include "intel_sideband.h"
48 #include "../../../platform/x86/intel_ips.h"
49
50 /* Stores plane specific WM parameters */
51 struct skl_wm_params {
52         bool x_tiled, y_tiled;
53         bool rc_surface;
54         bool is_planar;
55         u32 width;
56         u8 cpp;
57         u32 plane_pixel_rate;
58         u32 y_min_scanlines;
59         u32 plane_bytes_per_line;
60         uint_fixed_16_16_t plane_blocks_per_line;
61         uint_fixed_16_16_t y_tile_minimum;
62         u32 linetime_us;
63         u32 dbuf_block_size;
64 };
65
66 /* used in computing the new watermarks state */
67 struct intel_wm_config {
68         unsigned int num_pipes_active;
69         bool sprites_enabled;
70         bool sprites_scaled;
71 };
72
73 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
74 {
75         if (HAS_LLC(dev_priv)) {
76                 /*
77                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
78                  * Display WA #0390: skl,kbl
79                  *
80                  * Must match Sampler, Pixel Back End, and Media. See
81                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
82                  */
83                 I915_WRITE(CHICKEN_PAR1_1,
84                            I915_READ(CHICKEN_PAR1_1) |
85                            SKL_DE_COMPRESSED_HASH_MODE);
86         }
87
88         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
89         I915_WRITE(CHICKEN_PAR1_1,
90                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
91
92         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
93         I915_WRITE(GEN8_CHICKEN_DCPR_1,
94                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
95
96         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
97         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
98         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
99                    DISP_FBC_WM_DIS |
100                    DISP_FBC_MEMORY_WAKE);
101
102         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
103         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
104                    ILK_DPFC_DISABLE_DUMMY0);
105
106         if (IS_SKYLAKE(dev_priv)) {
107                 /* WaDisableDopClockGating */
108                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
109                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
110         }
111 }
112
113 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
114 {
115         gen9_init_clock_gating(dev_priv);
116
117         /* WaDisableSDEUnitClockGating:bxt */
118         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
119                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
120
121         /*
122          * FIXME:
123          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
124          */
125         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
126                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
127
128         /*
129          * Wa: Backlight PWM may stop in the asserted state, causing backlight
130          * to stay fully on.
131          */
132         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
133                    PWM1_GATING_DIS | PWM2_GATING_DIS);
134
135         /*
136          * Lower the display internal timeout.
137          * This is needed to avoid any hard hangs when DSI port PLL
138          * is off and a MMIO access is attempted by any privilege
139          * application, using batch buffers or any other means.
140          */
141         I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
142 }
143
144 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
145 {
146         gen9_init_clock_gating(dev_priv);
147
148         /*
149          * WaDisablePWMClockGating:glk
150          * Backlight PWM may stop in the asserted state, causing backlight
151          * to stay fully on.
152          */
153         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
154                    PWM1_GATING_DIS | PWM2_GATING_DIS);
155 }
156
157 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
158 {
159         u32 tmp;
160
161         tmp = I915_READ(CLKCFG);
162
163         switch (tmp & CLKCFG_FSB_MASK) {
164         case CLKCFG_FSB_533:
165                 dev_priv->fsb_freq = 533; /* 133*4 */
166                 break;
167         case CLKCFG_FSB_800:
168                 dev_priv->fsb_freq = 800; /* 200*4 */
169                 break;
170         case CLKCFG_FSB_667:
171                 dev_priv->fsb_freq =  667; /* 167*4 */
172                 break;
173         case CLKCFG_FSB_400:
174                 dev_priv->fsb_freq = 400; /* 100*4 */
175                 break;
176         }
177
178         switch (tmp & CLKCFG_MEM_MASK) {
179         case CLKCFG_MEM_533:
180                 dev_priv->mem_freq = 533;
181                 break;
182         case CLKCFG_MEM_667:
183                 dev_priv->mem_freq = 667;
184                 break;
185         case CLKCFG_MEM_800:
186                 dev_priv->mem_freq = 800;
187                 break;
188         }
189
190         /* detect pineview DDR3 setting */
191         tmp = I915_READ(CSHRDDR3CTL);
192         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
193 }
194
195 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
196 {
197         u16 ddrpll, csipll;
198
199         ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
200         csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
201
202         switch (ddrpll & 0xff) {
203         case 0xc:
204                 dev_priv->mem_freq = 800;
205                 break;
206         case 0x10:
207                 dev_priv->mem_freq = 1066;
208                 break;
209         case 0x14:
210                 dev_priv->mem_freq = 1333;
211                 break;
212         case 0x18:
213                 dev_priv->mem_freq = 1600;
214                 break;
215         default:
216                 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
217                         ddrpll & 0xff);
218                 dev_priv->mem_freq = 0;
219                 break;
220         }
221
222         switch (csipll & 0x3ff) {
223         case 0x00c:
224                 dev_priv->fsb_freq = 3200;
225                 break;
226         case 0x00e:
227                 dev_priv->fsb_freq = 3733;
228                 break;
229         case 0x010:
230                 dev_priv->fsb_freq = 4266;
231                 break;
232         case 0x012:
233                 dev_priv->fsb_freq = 4800;
234                 break;
235         case 0x014:
236                 dev_priv->fsb_freq = 5333;
237                 break;
238         case 0x016:
239                 dev_priv->fsb_freq = 5866;
240                 break;
241         case 0x018:
242                 dev_priv->fsb_freq = 6400;
243                 break;
244         default:
245                 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
246                         csipll & 0x3ff);
247                 dev_priv->fsb_freq = 0;
248                 break;
249         }
250 }
251
252 static const struct cxsr_latency cxsr_latency_table[] = {
253         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
254         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
255         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
256         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
257         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
258
259         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
260         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
261         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
262         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
263         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
264
265         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
266         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
267         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
268         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
269         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
270
271         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
272         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
273         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
274         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
275         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
276
277         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
278         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
279         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
280         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
281         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
282
283         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
284         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
285         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
286         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
287         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
288 };
289
290 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
291                                                          bool is_ddr3,
292                                                          int fsb,
293                                                          int mem)
294 {
295         const struct cxsr_latency *latency;
296         int i;
297
298         if (fsb == 0 || mem == 0)
299                 return NULL;
300
301         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
302                 latency = &cxsr_latency_table[i];
303                 if (is_desktop == latency->is_desktop &&
304                     is_ddr3 == latency->is_ddr3 &&
305                     fsb == latency->fsb_freq && mem == latency->mem_freq)
306                         return latency;
307         }
308
309         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310
311         return NULL;
312 }
313
314 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
315 {
316         u32 val;
317
318         vlv_punit_get(dev_priv);
319
320         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
321         if (enable)
322                 val &= ~FORCE_DDR_HIGH_FREQ;
323         else
324                 val |= FORCE_DDR_HIGH_FREQ;
325         val &= ~FORCE_DDR_LOW_FREQ;
326         val |= FORCE_DDR_FREQ_REQ_ACK;
327         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
328
329         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
330                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331                 drm_err(&dev_priv->drm,
332                         "timed out waiting for Punit DDR DVFS request\n");
333
334         vlv_punit_put(dev_priv);
335 }
336
337 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
338 {
339         u32 val;
340
341         vlv_punit_get(dev_priv);
342
343         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
344         if (enable)
345                 val |= DSP_MAXFIFO_PM5_ENABLE;
346         else
347                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
348         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
349
350         vlv_punit_put(dev_priv);
351 }
352
353 #define FW_WM(value, plane) \
354         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
355
356 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
357 {
358         bool was_enabled;
359         u32 val;
360
361         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
362                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
363                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
364                 POSTING_READ(FW_BLC_SELF_VLV);
365         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
366                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
367                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
368                 POSTING_READ(FW_BLC_SELF);
369         } else if (IS_PINEVIEW(dev_priv)) {
370                 val = I915_READ(DSPFW3);
371                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
372                 if (enable)
373                         val |= PINEVIEW_SELF_REFRESH_EN;
374                 else
375                         val &= ~PINEVIEW_SELF_REFRESH_EN;
376                 I915_WRITE(DSPFW3, val);
377                 POSTING_READ(DSPFW3);
378         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
379                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
380                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
381                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
382                 I915_WRITE(FW_BLC_SELF, val);
383                 POSTING_READ(FW_BLC_SELF);
384         } else if (IS_I915GM(dev_priv)) {
385                 /*
386                  * FIXME can't find a bit like this for 915G, and
387                  * and yet it does have the related watermark in
388                  * FW_BLC_SELF. What's going on?
389                  */
390                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
391                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
392                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
393                 I915_WRITE(INSTPM, val);
394                 POSTING_READ(INSTPM);
395         } else {
396                 return false;
397         }
398
399         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
400
401         drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
402                     enableddisabled(enable),
403                     enableddisabled(was_enabled));
404
405         return was_enabled;
406 }
407
408 /**
409  * intel_set_memory_cxsr - Configure CxSR state
410  * @dev_priv: i915 device
411  * @enable: Allow vs. disallow CxSR
412  *
413  * Allow or disallow the system to enter a special CxSR
414  * (C-state self refresh) state. What typically happens in CxSR mode
415  * is that several display FIFOs may get combined into a single larger
416  * FIFO for a particular plane (so called max FIFO mode) to allow the
417  * system to defer memory fetches longer, and the memory will enter
418  * self refresh.
419  *
420  * Note that enabling CxSR does not guarantee that the system enter
421  * this special mode, nor does it guarantee that the system stays
422  * in that mode once entered. So this just allows/disallows the system
423  * to autonomously utilize the CxSR mode. Other factors such as core
424  * C-states will affect when/if the system actually enters/exits the
425  * CxSR mode.
426  *
427  * Note that on VLV/CHV this actually only controls the max FIFO mode,
428  * and the system is free to enter/exit memory self refresh at any time
429  * even when the use of CxSR has been disallowed.
430  *
431  * While the system is actually in the CxSR/max FIFO mode, some plane
432  * control registers will not get latched on vblank. Thus in order to
433  * guarantee the system will respond to changes in the plane registers
434  * we must always disallow CxSR prior to making changes to those registers.
435  * Unfortunately the system will re-evaluate the CxSR conditions at
436  * frame start which happens after vblank start (which is when the plane
437  * registers would get latched), so we can't proceed with the plane update
438  * during the same frame where we disallowed CxSR.
439  *
440  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
441  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
442  * the hardware w.r.t. HPLL SR when writing to plane registers.
443  * Disallowing just CxSR is sufficient.
444  */
445 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
446 {
447         bool ret;
448
449         mutex_lock(&dev_priv->wm.wm_mutex);
450         ret = _intel_set_memory_cxsr(dev_priv, enable);
451         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
452                 dev_priv->wm.vlv.cxsr = enable;
453         else if (IS_G4X(dev_priv))
454                 dev_priv->wm.g4x.cxsr = enable;
455         mutex_unlock(&dev_priv->wm.wm_mutex);
456
457         return ret;
458 }
459
460 /*
461  * Latency for FIFO fetches is dependent on several factors:
462  *   - memory configuration (speed, channels)
463  *   - chipset
464  *   - current MCH state
465  * It can be fairly high in some situations, so here we assume a fairly
466  * pessimal value.  It's a tradeoff between extra memory fetches (if we
467  * set this value too high, the FIFO will fetch frequently to stay full)
468  * and power consumption (set it too low to save power and we might see
469  * FIFO underruns and display "flicker").
470  *
471  * A value of 5us seems to be a good balance; safe for very low end
472  * platforms but not overly aggressive on lower latency configs.
473  */
474 static const int pessimal_latency_ns = 5000;
475
476 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
477         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
478
479 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
480 {
481         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
482         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
483         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
484         enum pipe pipe = crtc->pipe;
485         int sprite0_start, sprite1_start;
486         u32 dsparb, dsparb2, dsparb3;
487
488         switch (pipe) {
489         case PIPE_A:
490                 dsparb = I915_READ(DSPARB);
491                 dsparb2 = I915_READ(DSPARB2);
492                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
493                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
494                 break;
495         case PIPE_B:
496                 dsparb = I915_READ(DSPARB);
497                 dsparb2 = I915_READ(DSPARB2);
498                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
499                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
500                 break;
501         case PIPE_C:
502                 dsparb2 = I915_READ(DSPARB2);
503                 dsparb3 = I915_READ(DSPARB3);
504                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
505                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
506                 break;
507         default:
508                 MISSING_CASE(pipe);
509                 return;
510         }
511
512         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
513         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
514         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
515         fifo_state->plane[PLANE_CURSOR] = 63;
516 }
517
518 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
519                               enum i9xx_plane_id i9xx_plane)
520 {
521         u32 dsparb = I915_READ(DSPARB);
522         int size;
523
524         size = dsparb & 0x7f;
525         if (i9xx_plane == PLANE_B)
526                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
527
528         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
529                     dsparb, plane_name(i9xx_plane), size);
530
531         return size;
532 }
533
534 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
535                               enum i9xx_plane_id i9xx_plane)
536 {
537         u32 dsparb = I915_READ(DSPARB);
538         int size;
539
540         size = dsparb & 0x1ff;
541         if (i9xx_plane == PLANE_B)
542                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
543         size >>= 1; /* Convert to cachelines */
544
545         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
546                     dsparb, plane_name(i9xx_plane), size);
547
548         return size;
549 }
550
551 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
552                               enum i9xx_plane_id i9xx_plane)
553 {
554         u32 dsparb = I915_READ(DSPARB);
555         int size;
556
557         size = dsparb & 0x7f;
558         size >>= 2; /* Convert to cachelines */
559
560         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
561                     dsparb, plane_name(i9xx_plane), size);
562
563         return size;
564 }
565
566 /* Pineview has different values for various configs */
567 static const struct intel_watermark_params pnv_display_wm = {
568         .fifo_size = PINEVIEW_DISPLAY_FIFO,
569         .max_wm = PINEVIEW_MAX_WM,
570         .default_wm = PINEVIEW_DFT_WM,
571         .guard_size = PINEVIEW_GUARD_WM,
572         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 };
574
575 static const struct intel_watermark_params pnv_display_hplloff_wm = {
576         .fifo_size = PINEVIEW_DISPLAY_FIFO,
577         .max_wm = PINEVIEW_MAX_WM,
578         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
579         .guard_size = PINEVIEW_GUARD_WM,
580         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582
583 static const struct intel_watermark_params pnv_cursor_wm = {
584         .fifo_size = PINEVIEW_CURSOR_FIFO,
585         .max_wm = PINEVIEW_CURSOR_MAX_WM,
586         .default_wm = PINEVIEW_CURSOR_DFT_WM,
587         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 };
590
591 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
592         .fifo_size = PINEVIEW_CURSOR_FIFO,
593         .max_wm = PINEVIEW_CURSOR_MAX_WM,
594         .default_wm = PINEVIEW_CURSOR_DFT_WM,
595         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
596         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597 };
598
599 static const struct intel_watermark_params i965_cursor_wm_info = {
600         .fifo_size = I965_CURSOR_FIFO,
601         .max_wm = I965_CURSOR_MAX_WM,
602         .default_wm = I965_CURSOR_DFT_WM,
603         .guard_size = 2,
604         .cacheline_size = I915_FIFO_LINE_SIZE,
605 };
606
607 static const struct intel_watermark_params i945_wm_info = {
608         .fifo_size = I945_FIFO_SIZE,
609         .max_wm = I915_MAX_WM,
610         .default_wm = 1,
611         .guard_size = 2,
612         .cacheline_size = I915_FIFO_LINE_SIZE,
613 };
614
615 static const struct intel_watermark_params i915_wm_info = {
616         .fifo_size = I915_FIFO_SIZE,
617         .max_wm = I915_MAX_WM,
618         .default_wm = 1,
619         .guard_size = 2,
620         .cacheline_size = I915_FIFO_LINE_SIZE,
621 };
622
623 static const struct intel_watermark_params i830_a_wm_info = {
624         .fifo_size = I855GM_FIFO_SIZE,
625         .max_wm = I915_MAX_WM,
626         .default_wm = 1,
627         .guard_size = 2,
628         .cacheline_size = I830_FIFO_LINE_SIZE,
629 };
630
631 static const struct intel_watermark_params i830_bc_wm_info = {
632         .fifo_size = I855GM_FIFO_SIZE,
633         .max_wm = I915_MAX_WM/2,
634         .default_wm = 1,
635         .guard_size = 2,
636         .cacheline_size = I830_FIFO_LINE_SIZE,
637 };
638
639 static const struct intel_watermark_params i845_wm_info = {
640         .fifo_size = I830_FIFO_SIZE,
641         .max_wm = I915_MAX_WM,
642         .default_wm = 1,
643         .guard_size = 2,
644         .cacheline_size = I830_FIFO_LINE_SIZE,
645 };
646
647 /**
648  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
649  * @pixel_rate: Pipe pixel rate in kHz
650  * @cpp: Plane bytes per pixel
651  * @latency: Memory wakeup latency in 0.1us units
652  *
653  * Compute the watermark using the method 1 or "small buffer"
654  * formula. The caller may additonally add extra cachelines
655  * to account for TLB misses and clock crossings.
656  *
657  * This method is concerned with the short term drain rate
658  * of the FIFO, ie. it does not account for blanking periods
659  * which would effectively reduce the average drain rate across
660  * a longer period. The name "small" refers to the fact the
661  * FIFO is relatively small compared to the amount of data
662  * fetched.
663  *
664  * The FIFO level vs. time graph might look something like:
665  *
666  *   |\   |\
667  *   | \  | \
668  * __---__---__ (- plane active, _ blanking)
669  * -> time
670  *
671  * or perhaps like this:
672  *
673  *   |\|\  |\|\
674  * __----__----__ (- plane active, _ blanking)
675  * -> time
676  *
677  * Returns:
678  * The watermark in bytes
679  */
680 static unsigned int intel_wm_method1(unsigned int pixel_rate,
681                                      unsigned int cpp,
682                                      unsigned int latency)
683 {
684         u64 ret;
685
686         ret = mul_u32_u32(pixel_rate, cpp * latency);
687         ret = DIV_ROUND_UP_ULL(ret, 10000);
688
689         return ret;
690 }
691
692 /**
693  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
694  * @pixel_rate: Pipe pixel rate in kHz
695  * @htotal: Pipe horizontal total
696  * @width: Plane width in pixels
697  * @cpp: Plane bytes per pixel
698  * @latency: Memory wakeup latency in 0.1us units
699  *
700  * Compute the watermark using the method 2 or "large buffer"
701  * formula. The caller may additonally add extra cachelines
702  * to account for TLB misses and clock crossings.
703  *
704  * This method is concerned with the long term drain rate
705  * of the FIFO, ie. it does account for blanking periods
706  * which effectively reduce the average drain rate across
707  * a longer period. The name "large" refers to the fact the
708  * FIFO is relatively large compared to the amount of data
709  * fetched.
710  *
711  * The FIFO level vs. time graph might look something like:
712  *
713  *    |\___       |\___
714  *    |    \___   |    \___
715  *    |        \  |        \
716  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
717  * -> time
718  *
719  * Returns:
720  * The watermark in bytes
721  */
722 static unsigned int intel_wm_method2(unsigned int pixel_rate,
723                                      unsigned int htotal,
724                                      unsigned int width,
725                                      unsigned int cpp,
726                                      unsigned int latency)
727 {
728         unsigned int ret;
729
730         /*
731          * FIXME remove once all users are computing
732          * watermarks in the correct place.
733          */
734         if (WARN_ON_ONCE(htotal == 0))
735                 htotal = 1;
736
737         ret = (latency * pixel_rate) / (htotal * 10000);
738         ret = (ret + 1) * width * cpp;
739
740         return ret;
741 }
742
743 /**
744  * intel_calculate_wm - calculate watermark level
745  * @pixel_rate: pixel clock
746  * @wm: chip FIFO params
747  * @fifo_size: size of the FIFO buffer
748  * @cpp: bytes per pixel
749  * @latency_ns: memory latency for the platform
750  *
751  * Calculate the watermark level (the level at which the display plane will
752  * start fetching from memory again).  Each chip has a different display
753  * FIFO size and allocation, so the caller needs to figure that out and pass
754  * in the correct intel_watermark_params structure.
755  *
756  * As the pixel clock runs, the FIFO will be drained at a rate that depends
757  * on the pixel size.  When it reaches the watermark level, it'll start
758  * fetching FIFO line sized based chunks from memory until the FIFO fills
759  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
760  * will occur, and a display engine hang could result.
761  */
762 static unsigned int intel_calculate_wm(int pixel_rate,
763                                        const struct intel_watermark_params *wm,
764                                        int fifo_size, int cpp,
765                                        unsigned int latency_ns)
766 {
767         int entries, wm_size;
768
769         /*
770          * Note: we need to make sure we don't overflow for various clock &
771          * latency values.
772          * clocks go from a few thousand to several hundred thousand.
773          * latency is usually a few thousand
774          */
775         entries = intel_wm_method1(pixel_rate, cpp,
776                                    latency_ns / 100);
777         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
778                 wm->guard_size;
779         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
780
781         wm_size = fifo_size - entries;
782         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
783
784         /* Don't promote wm_size to unsigned... */
785         if (wm_size > wm->max_wm)
786                 wm_size = wm->max_wm;
787         if (wm_size <= 0)
788                 wm_size = wm->default_wm;
789
790         /*
791          * Bspec seems to indicate that the value shouldn't be lower than
792          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
793          * Lets go for 8 which is the burst size since certain platforms
794          * already use a hardcoded 8 (which is what the spec says should be
795          * done).
796          */
797         if (wm_size <= 8)
798                 wm_size = 8;
799
800         return wm_size;
801 }
802
803 static bool is_disabling(int old, int new, int threshold)
804 {
805         return old >= threshold && new < threshold;
806 }
807
808 static bool is_enabling(int old, int new, int threshold)
809 {
810         return old < threshold && new >= threshold;
811 }
812
813 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
814 {
815         return dev_priv->wm.max_level + 1;
816 }
817
818 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
819                                    const struct intel_plane_state *plane_state)
820 {
821         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
822
823         /* FIXME check the 'enable' instead */
824         if (!crtc_state->hw.active)
825                 return false;
826
827         /*
828          * Treat cursor with fb as always visible since cursor updates
829          * can happen faster than the vrefresh rate, and the current
830          * watermark code doesn't handle that correctly. Cursor updates
831          * which set/clear the fb or change the cursor size are going
832          * to get throttled by intel_legacy_cursor_update() to work
833          * around this problem with the watermark code.
834          */
835         if (plane->id == PLANE_CURSOR)
836                 return plane_state->hw.fb != NULL;
837         else
838                 return plane_state->uapi.visible;
839 }
840
841 static bool intel_crtc_active(struct intel_crtc *crtc)
842 {
843         /* Be paranoid as we can arrive here with only partial
844          * state retrieved from the hardware during setup.
845          *
846          * We can ditch the adjusted_mode.crtc_clock check as soon
847          * as Haswell has gained clock readout/fastboot support.
848          *
849          * We can ditch the crtc->primary->state->fb check as soon as we can
850          * properly reconstruct framebuffers.
851          *
852          * FIXME: The intel_crtc->active here should be switched to
853          * crtc->state->active once we have proper CRTC states wired up
854          * for atomic.
855          */
856         return crtc->active && crtc->base.primary->state->fb &&
857                 crtc->config->hw.adjusted_mode.crtc_clock;
858 }
859
860 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
861 {
862         struct intel_crtc *crtc, *enabled = NULL;
863
864         for_each_intel_crtc(&dev_priv->drm, crtc) {
865                 if (intel_crtc_active(crtc)) {
866                         if (enabled)
867                                 return NULL;
868                         enabled = crtc;
869                 }
870         }
871
872         return enabled;
873 }
874
875 static void pnv_update_wm(struct intel_crtc *unused_crtc)
876 {
877         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
878         struct intel_crtc *crtc;
879         const struct cxsr_latency *latency;
880         u32 reg;
881         unsigned int wm;
882
883         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
884                                          dev_priv->is_ddr3,
885                                          dev_priv->fsb_freq,
886                                          dev_priv->mem_freq);
887         if (!latency) {
888                 drm_dbg_kms(&dev_priv->drm,
889                             "Unknown FSB/MEM found, disable CxSR\n");
890                 intel_set_memory_cxsr(dev_priv, false);
891                 return;
892         }
893
894         crtc = single_enabled_crtc(dev_priv);
895         if (crtc) {
896                 const struct drm_display_mode *adjusted_mode =
897                         &crtc->config->hw.adjusted_mode;
898                 const struct drm_framebuffer *fb =
899                         crtc->base.primary->state->fb;
900                 int cpp = fb->format->cpp[0];
901                 int clock = adjusted_mode->crtc_clock;
902
903                 /* Display SR */
904                 wm = intel_calculate_wm(clock, &pnv_display_wm,
905                                         pnv_display_wm.fifo_size,
906                                         cpp, latency->display_sr);
907                 reg = I915_READ(DSPFW1);
908                 reg &= ~DSPFW_SR_MASK;
909                 reg |= FW_WM(wm, SR);
910                 I915_WRITE(DSPFW1, reg);
911                 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
912
913                 /* cursor SR */
914                 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
915                                         pnv_display_wm.fifo_size,
916                                         4, latency->cursor_sr);
917                 reg = I915_READ(DSPFW3);
918                 reg &= ~DSPFW_CURSOR_SR_MASK;
919                 reg |= FW_WM(wm, CURSOR_SR);
920                 I915_WRITE(DSPFW3, reg);
921
922                 /* Display HPLL off SR */
923                 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
924                                         pnv_display_hplloff_wm.fifo_size,
925                                         cpp, latency->display_hpll_disable);
926                 reg = I915_READ(DSPFW3);
927                 reg &= ~DSPFW_HPLL_SR_MASK;
928                 reg |= FW_WM(wm, HPLL_SR);
929                 I915_WRITE(DSPFW3, reg);
930
931                 /* cursor HPLL off SR */
932                 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
933                                         pnv_display_hplloff_wm.fifo_size,
934                                         4, latency->cursor_hpll_disable);
935                 reg = I915_READ(DSPFW3);
936                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
937                 reg |= FW_WM(wm, HPLL_CURSOR);
938                 I915_WRITE(DSPFW3, reg);
939                 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
940
941                 intel_set_memory_cxsr(dev_priv, true);
942         } else {
943                 intel_set_memory_cxsr(dev_priv, false);
944         }
945 }
946
947 /*
948  * Documentation says:
949  * "If the line size is small, the TLB fetches can get in the way of the
950  *  data fetches, causing some lag in the pixel data return which is not
951  *  accounted for in the above formulas. The following adjustment only
952  *  needs to be applied if eight whole lines fit in the buffer at once.
953  *  The WM is adjusted upwards by the difference between the FIFO size
954  *  and the size of 8 whole lines. This adjustment is always performed
955  *  in the actual pixel depth regardless of whether FBC is enabled or not."
956  */
957 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
958 {
959         int tlb_miss = fifo_size * 64 - width * cpp * 8;
960
961         return max(0, tlb_miss);
962 }
963
964 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
965                                 const struct g4x_wm_values *wm)
966 {
967         enum pipe pipe;
968
969         for_each_pipe(dev_priv, pipe)
970                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
971
972         I915_WRITE(DSPFW1,
973                    FW_WM(wm->sr.plane, SR) |
974                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
975                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
976                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
977         I915_WRITE(DSPFW2,
978                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
979                    FW_WM(wm->sr.fbc, FBC_SR) |
980                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
981                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
982                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
983                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
984         I915_WRITE(DSPFW3,
985                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
986                    FW_WM(wm->sr.cursor, CURSOR_SR) |
987                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
988                    FW_WM(wm->hpll.plane, HPLL_SR));
989
990         POSTING_READ(DSPFW1);
991 }
992
993 #define FW_WM_VLV(value, plane) \
994         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
995
996 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
997                                 const struct vlv_wm_values *wm)
998 {
999         enum pipe pipe;
1000
1001         for_each_pipe(dev_priv, pipe) {
1002                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1003
1004                 I915_WRITE(VLV_DDL(pipe),
1005                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1006                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1007                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1008                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1009         }
1010
1011         /*
1012          * Zero the (unused) WM1 watermarks, and also clear all the
1013          * high order bits so that there are no out of bounds values
1014          * present in the registers during the reprogramming.
1015          */
1016         I915_WRITE(DSPHOWM, 0);
1017         I915_WRITE(DSPHOWM1, 0);
1018         I915_WRITE(DSPFW4, 0);
1019         I915_WRITE(DSPFW5, 0);
1020         I915_WRITE(DSPFW6, 0);
1021
1022         I915_WRITE(DSPFW1,
1023                    FW_WM(wm->sr.plane, SR) |
1024                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1025                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1026                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1027         I915_WRITE(DSPFW2,
1028                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1029                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1030                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1031         I915_WRITE(DSPFW3,
1032                    FW_WM(wm->sr.cursor, CURSOR_SR));
1033
1034         if (IS_CHERRYVIEW(dev_priv)) {
1035                 I915_WRITE(DSPFW7_CHV,
1036                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1037                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1038                 I915_WRITE(DSPFW8_CHV,
1039                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1040                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1041                 I915_WRITE(DSPFW9_CHV,
1042                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1043                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1044                 I915_WRITE(DSPHOWM,
1045                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1046                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1047                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1048                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1049                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1050                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1051                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1052                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1053                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1054                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1055         } else {
1056                 I915_WRITE(DSPFW7,
1057                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1058                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059                 I915_WRITE(DSPHOWM,
1060                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1061                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1062                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1063                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1064                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1065                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1066                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1067         }
1068
1069         POSTING_READ(DSPFW1);
1070 }
1071
1072 #undef FW_WM_VLV
1073
1074 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1075 {
1076         /* all latencies in usec */
1077         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1078         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1079         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1080
1081         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1082 }
1083
1084 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1085 {
1086         /*
1087          * DSPCNTR[13] supposedly controls whether the
1088          * primary plane can use the FIFO space otherwise
1089          * reserved for the sprite plane. It's not 100% clear
1090          * what the actual FIFO size is, but it looks like we
1091          * can happily set both primary and sprite watermarks
1092          * up to 127 cachelines. So that would seem to mean
1093          * that either DSPCNTR[13] doesn't do anything, or that
1094          * the total FIFO is >= 256 cachelines in size. Either
1095          * way, we don't seem to have to worry about this
1096          * repartitioning as the maximum watermark value the
1097          * register can hold for each plane is lower than the
1098          * minimum FIFO size.
1099          */
1100         switch (plane_id) {
1101         case PLANE_CURSOR:
1102                 return 63;
1103         case PLANE_PRIMARY:
1104                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1105         case PLANE_SPRITE0:
1106                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1107         default:
1108                 MISSING_CASE(plane_id);
1109                 return 0;
1110         }
1111 }
1112
1113 static int g4x_fbc_fifo_size(int level)
1114 {
1115         switch (level) {
1116         case G4X_WM_LEVEL_SR:
1117                 return 7;
1118         case G4X_WM_LEVEL_HPLL:
1119                 return 15;
1120         default:
1121                 MISSING_CASE(level);
1122                 return 0;
1123         }
1124 }
1125
1126 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1127                           const struct intel_plane_state *plane_state,
1128                           int level)
1129 {
1130         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1131         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1132         const struct drm_display_mode *adjusted_mode =
1133                 &crtc_state->hw.adjusted_mode;
1134         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1135         unsigned int clock, htotal, cpp, width, wm;
1136
1137         if (latency == 0)
1138                 return USHRT_MAX;
1139
1140         if (!intel_wm_plane_visible(crtc_state, plane_state))
1141                 return 0;
1142
1143         cpp = plane_state->hw.fb->format->cpp[0];
1144
1145         /*
1146          * Not 100% sure which way ELK should go here as the
1147          * spec only says CL/CTG should assume 32bpp and BW
1148          * doesn't need to. But as these things followed the
1149          * mobile vs. desktop lines on gen3 as well, let's
1150          * assume ELK doesn't need this.
1151          *
1152          * The spec also fails to list such a restriction for
1153          * the HPLL watermark, which seems a little strange.
1154          * Let's use 32bpp for the HPLL watermark as well.
1155          */
1156         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1157             level != G4X_WM_LEVEL_NORMAL)
1158                 cpp = max(cpp, 4u);
1159
1160         clock = adjusted_mode->crtc_clock;
1161         htotal = adjusted_mode->crtc_htotal;
1162
1163         width = drm_rect_width(&plane_state->uapi.dst);
1164
1165         if (plane->id == PLANE_CURSOR) {
1166                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1167         } else if (plane->id == PLANE_PRIMARY &&
1168                    level == G4X_WM_LEVEL_NORMAL) {
1169                 wm = intel_wm_method1(clock, cpp, latency);
1170         } else {
1171                 unsigned int small, large;
1172
1173                 small = intel_wm_method1(clock, cpp, latency);
1174                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1175
1176                 wm = min(small, large);
1177         }
1178
1179         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1180                               width, cpp);
1181
1182         wm = DIV_ROUND_UP(wm, 64) + 2;
1183
1184         return min_t(unsigned int, wm, USHRT_MAX);
1185 }
1186
1187 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1188                                  int level, enum plane_id plane_id, u16 value)
1189 {
1190         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1191         bool dirty = false;
1192
1193         for (; level < intel_wm_num_levels(dev_priv); level++) {
1194                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1195
1196                 dirty |= raw->plane[plane_id] != value;
1197                 raw->plane[plane_id] = value;
1198         }
1199
1200         return dirty;
1201 }
1202
1203 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1204                                int level, u16 value)
1205 {
1206         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1207         bool dirty = false;
1208
1209         /* NORMAL level doesn't have an FBC watermark */
1210         level = max(level, G4X_WM_LEVEL_SR);
1211
1212         for (; level < intel_wm_num_levels(dev_priv); level++) {
1213                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1214
1215                 dirty |= raw->fbc != value;
1216                 raw->fbc = value;
1217         }
1218
1219         return dirty;
1220 }
1221
1222 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1223                               const struct intel_plane_state *plane_state,
1224                               u32 pri_val);
1225
1226 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1227                                      const struct intel_plane_state *plane_state)
1228 {
1229         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1230         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1231         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1232         enum plane_id plane_id = plane->id;
1233         bool dirty = false;
1234         int level;
1235
1236         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1237                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1238                 if (plane_id == PLANE_PRIMARY)
1239                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1240                 goto out;
1241         }
1242
1243         for (level = 0; level < num_levels; level++) {
1244                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1245                 int wm, max_wm;
1246
1247                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1248                 max_wm = g4x_plane_fifo_size(plane_id, level);
1249
1250                 if (wm > max_wm)
1251                         break;
1252
1253                 dirty |= raw->plane[plane_id] != wm;
1254                 raw->plane[plane_id] = wm;
1255
1256                 if (plane_id != PLANE_PRIMARY ||
1257                     level == G4X_WM_LEVEL_NORMAL)
1258                         continue;
1259
1260                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1261                                         raw->plane[plane_id]);
1262                 max_wm = g4x_fbc_fifo_size(level);
1263
1264                 /*
1265                  * FBC wm is not mandatory as we
1266                  * can always just disable its use.
1267                  */
1268                 if (wm > max_wm)
1269                         wm = USHRT_MAX;
1270
1271                 dirty |= raw->fbc != wm;
1272                 raw->fbc = wm;
1273         }
1274
1275         /* mark watermarks as invalid */
1276         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1277
1278         if (plane_id == PLANE_PRIMARY)
1279                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1280
1281  out:
1282         if (dirty) {
1283                 drm_dbg_kms(&dev_priv->drm,
1284                             "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1285                             plane->base.name,
1286                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1287                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1288                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1289
1290                 if (plane_id == PLANE_PRIMARY)
1291                         drm_dbg_kms(&dev_priv->drm,
1292                                     "FBC watermarks: SR=%d, HPLL=%d\n",
1293                                     crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1294                                     crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1295         }
1296
1297         return dirty;
1298 }
1299
1300 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1301                                       enum plane_id plane_id, int level)
1302 {
1303         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1304
1305         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1306 }
1307
1308 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1309                                      int level)
1310 {
1311         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1312
1313         if (level > dev_priv->wm.max_level)
1314                 return false;
1315
1316         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1317                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1318                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1319 }
1320
1321 /* mark all levels starting from 'level' as invalid */
1322 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1323                                struct g4x_wm_state *wm_state, int level)
1324 {
1325         if (level <= G4X_WM_LEVEL_NORMAL) {
1326                 enum plane_id plane_id;
1327
1328                 for_each_plane_id_on_crtc(crtc, plane_id)
1329                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1330         }
1331
1332         if (level <= G4X_WM_LEVEL_SR) {
1333                 wm_state->cxsr = false;
1334                 wm_state->sr.cursor = USHRT_MAX;
1335                 wm_state->sr.plane = USHRT_MAX;
1336                 wm_state->sr.fbc = USHRT_MAX;
1337         }
1338
1339         if (level <= G4X_WM_LEVEL_HPLL) {
1340                 wm_state->hpll_en = false;
1341                 wm_state->hpll.cursor = USHRT_MAX;
1342                 wm_state->hpll.plane = USHRT_MAX;
1343                 wm_state->hpll.fbc = USHRT_MAX;
1344         }
1345 }
1346
1347 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1348 {
1349         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1350         struct intel_atomic_state *state =
1351                 to_intel_atomic_state(crtc_state->uapi.state);
1352         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1353         int num_active_planes = hweight8(crtc_state->active_planes &
1354                                          ~BIT(PLANE_CURSOR));
1355         const struct g4x_pipe_wm *raw;
1356         const struct intel_plane_state *old_plane_state;
1357         const struct intel_plane_state *new_plane_state;
1358         struct intel_plane *plane;
1359         enum plane_id plane_id;
1360         int i, level;
1361         unsigned int dirty = 0;
1362
1363         for_each_oldnew_intel_plane_in_state(state, plane,
1364                                              old_plane_state,
1365                                              new_plane_state, i) {
1366                 if (new_plane_state->hw.crtc != &crtc->base &&
1367                     old_plane_state->hw.crtc != &crtc->base)
1368                         continue;
1369
1370                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1371                         dirty |= BIT(plane->id);
1372         }
1373
1374         if (!dirty)
1375                 return 0;
1376
1377         level = G4X_WM_LEVEL_NORMAL;
1378         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1379                 goto out;
1380
1381         raw = &crtc_state->wm.g4x.raw[level];
1382         for_each_plane_id_on_crtc(crtc, plane_id)
1383                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1384
1385         level = G4X_WM_LEVEL_SR;
1386
1387         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1388                 goto out;
1389
1390         raw = &crtc_state->wm.g4x.raw[level];
1391         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1392         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1393         wm_state->sr.fbc = raw->fbc;
1394
1395         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1396
1397         level = G4X_WM_LEVEL_HPLL;
1398
1399         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1400                 goto out;
1401
1402         raw = &crtc_state->wm.g4x.raw[level];
1403         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1404         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1405         wm_state->hpll.fbc = raw->fbc;
1406
1407         wm_state->hpll_en = wm_state->cxsr;
1408
1409         level++;
1410
1411  out:
1412         if (level == G4X_WM_LEVEL_NORMAL)
1413                 return -EINVAL;
1414
1415         /* invalidate the higher levels */
1416         g4x_invalidate_wms(crtc, wm_state, level);
1417
1418         /*
1419          * Determine if the FBC watermark(s) can be used. IF
1420          * this isn't the case we prefer to disable the FBC
1421          ( watermark(s) rather than disable the SR/HPLL
1422          * level(s) entirely.
1423          */
1424         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1425
1426         if (level >= G4X_WM_LEVEL_SR &&
1427             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1428                 wm_state->fbc_en = false;
1429         else if (level >= G4X_WM_LEVEL_HPLL &&
1430                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1431                 wm_state->fbc_en = false;
1432
1433         return 0;
1434 }
1435
1436 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1437 {
1438         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1439         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1440         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1441         struct intel_atomic_state *intel_state =
1442                 to_intel_atomic_state(new_crtc_state->uapi.state);
1443         const struct intel_crtc_state *old_crtc_state =
1444                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1445         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1446         enum plane_id plane_id;
1447
1448         if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1449                 *intermediate = *optimal;
1450
1451                 intermediate->cxsr = false;
1452                 intermediate->hpll_en = false;
1453                 goto out;
1454         }
1455
1456         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1457                 !new_crtc_state->disable_cxsr;
1458         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1459                 !new_crtc_state->disable_cxsr;
1460         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1461
1462         for_each_plane_id_on_crtc(crtc, plane_id) {
1463                 intermediate->wm.plane[plane_id] =
1464                         max(optimal->wm.plane[plane_id],
1465                             active->wm.plane[plane_id]);
1466
1467                 WARN_ON(intermediate->wm.plane[plane_id] >
1468                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1469         }
1470
1471         intermediate->sr.plane = max(optimal->sr.plane,
1472                                      active->sr.plane);
1473         intermediate->sr.cursor = max(optimal->sr.cursor,
1474                                       active->sr.cursor);
1475         intermediate->sr.fbc = max(optimal->sr.fbc,
1476                                    active->sr.fbc);
1477
1478         intermediate->hpll.plane = max(optimal->hpll.plane,
1479                                        active->hpll.plane);
1480         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1481                                         active->hpll.cursor);
1482         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1483                                      active->hpll.fbc);
1484
1485         WARN_ON((intermediate->sr.plane >
1486                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1487                  intermediate->sr.cursor >
1488                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1489                 intermediate->cxsr);
1490         WARN_ON((intermediate->sr.plane >
1491                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1492                  intermediate->sr.cursor >
1493                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1494                 intermediate->hpll_en);
1495
1496         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1497                 intermediate->fbc_en && intermediate->cxsr);
1498         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1499                 intermediate->fbc_en && intermediate->hpll_en);
1500
1501 out:
1502         /*
1503          * If our intermediate WM are identical to the final WM, then we can
1504          * omit the post-vblank programming; only update if it's different.
1505          */
1506         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1507                 new_crtc_state->wm.need_postvbl_update = true;
1508
1509         return 0;
1510 }
1511
1512 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1513                          struct g4x_wm_values *wm)
1514 {
1515         struct intel_crtc *crtc;
1516         int num_active_pipes = 0;
1517
1518         wm->cxsr = true;
1519         wm->hpll_en = true;
1520         wm->fbc_en = true;
1521
1522         for_each_intel_crtc(&dev_priv->drm, crtc) {
1523                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1524
1525                 if (!crtc->active)
1526                         continue;
1527
1528                 if (!wm_state->cxsr)
1529                         wm->cxsr = false;
1530                 if (!wm_state->hpll_en)
1531                         wm->hpll_en = false;
1532                 if (!wm_state->fbc_en)
1533                         wm->fbc_en = false;
1534
1535                 num_active_pipes++;
1536         }
1537
1538         if (num_active_pipes != 1) {
1539                 wm->cxsr = false;
1540                 wm->hpll_en = false;
1541                 wm->fbc_en = false;
1542         }
1543
1544         for_each_intel_crtc(&dev_priv->drm, crtc) {
1545                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1546                 enum pipe pipe = crtc->pipe;
1547
1548                 wm->pipe[pipe] = wm_state->wm;
1549                 if (crtc->active && wm->cxsr)
1550                         wm->sr = wm_state->sr;
1551                 if (crtc->active && wm->hpll_en)
1552                         wm->hpll = wm_state->hpll;
1553         }
1554 }
1555
1556 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1557 {
1558         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1559         struct g4x_wm_values new_wm = {};
1560
1561         g4x_merge_wm(dev_priv, &new_wm);
1562
1563         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1564                 return;
1565
1566         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1567                 _intel_set_memory_cxsr(dev_priv, false);
1568
1569         g4x_write_wm_values(dev_priv, &new_wm);
1570
1571         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1572                 _intel_set_memory_cxsr(dev_priv, true);
1573
1574         *old_wm = new_wm;
1575 }
1576
1577 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1578                                    struct intel_crtc *crtc)
1579 {
1580         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1581         const struct intel_crtc_state *crtc_state =
1582                 intel_atomic_get_new_crtc_state(state, crtc);
1583
1584         mutex_lock(&dev_priv->wm.wm_mutex);
1585         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1586         g4x_program_watermarks(dev_priv);
1587         mutex_unlock(&dev_priv->wm.wm_mutex);
1588 }
1589
1590 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1591                                     struct intel_crtc *crtc)
1592 {
1593         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1594         const struct intel_crtc_state *crtc_state =
1595                 intel_atomic_get_new_crtc_state(state, crtc);
1596
1597         if (!crtc_state->wm.need_postvbl_update)
1598                 return;
1599
1600         mutex_lock(&dev_priv->wm.wm_mutex);
1601         crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1602         g4x_program_watermarks(dev_priv);
1603         mutex_unlock(&dev_priv->wm.wm_mutex);
1604 }
1605
1606 /* latency must be in 0.1us units. */
1607 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1608                                    unsigned int htotal,
1609                                    unsigned int width,
1610                                    unsigned int cpp,
1611                                    unsigned int latency)
1612 {
1613         unsigned int ret;
1614
1615         ret = intel_wm_method2(pixel_rate, htotal,
1616                                width, cpp, latency);
1617         ret = DIV_ROUND_UP(ret, 64);
1618
1619         return ret;
1620 }
1621
1622 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1623 {
1624         /* all latencies in usec */
1625         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1626
1627         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1628
1629         if (IS_CHERRYVIEW(dev_priv)) {
1630                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1631                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1632
1633                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1634         }
1635 }
1636
1637 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1638                                 const struct intel_plane_state *plane_state,
1639                                 int level)
1640 {
1641         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1642         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1643         const struct drm_display_mode *adjusted_mode =
1644                 &crtc_state->hw.adjusted_mode;
1645         unsigned int clock, htotal, cpp, width, wm;
1646
1647         if (dev_priv->wm.pri_latency[level] == 0)
1648                 return USHRT_MAX;
1649
1650         if (!intel_wm_plane_visible(crtc_state, plane_state))
1651                 return 0;
1652
1653         cpp = plane_state->hw.fb->format->cpp[0];
1654         clock = adjusted_mode->crtc_clock;
1655         htotal = adjusted_mode->crtc_htotal;
1656         width = crtc_state->pipe_src_w;
1657
1658         if (plane->id == PLANE_CURSOR) {
1659                 /*
1660                  * FIXME the formula gives values that are
1661                  * too big for the cursor FIFO, and hence we
1662                  * would never be able to use cursors. For
1663                  * now just hardcode the watermark.
1664                  */
1665                 wm = 63;
1666         } else {
1667                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1668                                     dev_priv->wm.pri_latency[level] * 10);
1669         }
1670
1671         return min_t(unsigned int, wm, USHRT_MAX);
1672 }
1673
1674 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1675 {
1676         return (active_planes & (BIT(PLANE_SPRITE0) |
1677                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1678 }
1679
1680 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1681 {
1682         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1683         const struct g4x_pipe_wm *raw =
1684                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1685         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1686         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1687         int num_active_planes = hweight8(active_planes);
1688         const int fifo_size = 511;
1689         int fifo_extra, fifo_left = fifo_size;
1690         int sprite0_fifo_extra = 0;
1691         unsigned int total_rate;
1692         enum plane_id plane_id;
1693
1694         /*
1695          * When enabling sprite0 after sprite1 has already been enabled
1696          * we tend to get an underrun unless sprite0 already has some
1697          * FIFO space allcoated. Hence we always allocate at least one
1698          * cacheline for sprite0 whenever sprite1 is enabled.
1699          *
1700          * All other plane enable sequences appear immune to this problem.
1701          */
1702         if (vlv_need_sprite0_fifo_workaround(active_planes))
1703                 sprite0_fifo_extra = 1;
1704
1705         total_rate = raw->plane[PLANE_PRIMARY] +
1706                 raw->plane[PLANE_SPRITE0] +
1707                 raw->plane[PLANE_SPRITE1] +
1708                 sprite0_fifo_extra;
1709
1710         if (total_rate > fifo_size)
1711                 return -EINVAL;
1712
1713         if (total_rate == 0)
1714                 total_rate = 1;
1715
1716         for_each_plane_id_on_crtc(crtc, plane_id) {
1717                 unsigned int rate;
1718
1719                 if ((active_planes & BIT(plane_id)) == 0) {
1720                         fifo_state->plane[plane_id] = 0;
1721                         continue;
1722                 }
1723
1724                 rate = raw->plane[plane_id];
1725                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1726                 fifo_left -= fifo_state->plane[plane_id];
1727         }
1728
1729         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1730         fifo_left -= sprite0_fifo_extra;
1731
1732         fifo_state->plane[PLANE_CURSOR] = 63;
1733
1734         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1735
1736         /* spread the remainder evenly */
1737         for_each_plane_id_on_crtc(crtc, plane_id) {
1738                 int plane_extra;
1739
1740                 if (fifo_left == 0)
1741                         break;
1742
1743                 if ((active_planes & BIT(plane_id)) == 0)
1744                         continue;
1745
1746                 plane_extra = min(fifo_extra, fifo_left);
1747                 fifo_state->plane[plane_id] += plane_extra;
1748                 fifo_left -= plane_extra;
1749         }
1750
1751         WARN_ON(active_planes != 0 && fifo_left != 0);
1752
1753         /* give it all to the first plane if none are active */
1754         if (active_planes == 0) {
1755                 WARN_ON(fifo_left != fifo_size);
1756                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1757         }
1758
1759         return 0;
1760 }
1761
1762 /* mark all levels starting from 'level' as invalid */
1763 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1764                                struct vlv_wm_state *wm_state, int level)
1765 {
1766         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1767
1768         for (; level < intel_wm_num_levels(dev_priv); level++) {
1769                 enum plane_id plane_id;
1770
1771                 for_each_plane_id_on_crtc(crtc, plane_id)
1772                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1773
1774                 wm_state->sr[level].cursor = USHRT_MAX;
1775                 wm_state->sr[level].plane = USHRT_MAX;
1776         }
1777 }
1778
1779 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1780 {
1781         if (wm > fifo_size)
1782                 return USHRT_MAX;
1783         else
1784                 return fifo_size - wm;
1785 }
1786
1787 /*
1788  * Starting from 'level' set all higher
1789  * levels to 'value' in the "raw" watermarks.
1790  */
1791 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1792                                  int level, enum plane_id plane_id, u16 value)
1793 {
1794         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1795         int num_levels = intel_wm_num_levels(dev_priv);
1796         bool dirty = false;
1797
1798         for (; level < num_levels; level++) {
1799                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1800
1801                 dirty |= raw->plane[plane_id] != value;
1802                 raw->plane[plane_id] = value;
1803         }
1804
1805         return dirty;
1806 }
1807
1808 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1809                                      const struct intel_plane_state *plane_state)
1810 {
1811         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1812         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1813         enum plane_id plane_id = plane->id;
1814         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1815         int level;
1816         bool dirty = false;
1817
1818         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1819                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1820                 goto out;
1821         }
1822
1823         for (level = 0; level < num_levels; level++) {
1824                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1825                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1826                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1827
1828                 if (wm > max_wm)
1829                         break;
1830
1831                 dirty |= raw->plane[plane_id] != wm;
1832                 raw->plane[plane_id] = wm;
1833         }
1834
1835         /* mark all higher levels as invalid */
1836         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1837
1838 out:
1839         if (dirty)
1840                 drm_dbg_kms(&dev_priv->drm,
1841                             "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1842                             plane->base.name,
1843                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1844                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1845                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1846
1847         return dirty;
1848 }
1849
1850 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1851                                       enum plane_id plane_id, int level)
1852 {
1853         const struct g4x_pipe_wm *raw =
1854                 &crtc_state->wm.vlv.raw[level];
1855         const struct vlv_fifo_state *fifo_state =
1856                 &crtc_state->wm.vlv.fifo_state;
1857
1858         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1859 }
1860
1861 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1862 {
1863         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1864                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1865                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1866                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1867 }
1868
1869 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1870 {
1871         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1872         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1873         struct intel_atomic_state *state =
1874                 to_intel_atomic_state(crtc_state->uapi.state);
1875         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1876         const struct vlv_fifo_state *fifo_state =
1877                 &crtc_state->wm.vlv.fifo_state;
1878         int num_active_planes = hweight8(crtc_state->active_planes &
1879                                          ~BIT(PLANE_CURSOR));
1880         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1881         const struct intel_plane_state *old_plane_state;
1882         const struct intel_plane_state *new_plane_state;
1883         struct intel_plane *plane;
1884         enum plane_id plane_id;
1885         int level, ret, i;
1886         unsigned int dirty = 0;
1887
1888         for_each_oldnew_intel_plane_in_state(state, plane,
1889                                              old_plane_state,
1890                                              new_plane_state, i) {
1891                 if (new_plane_state->hw.crtc != &crtc->base &&
1892                     old_plane_state->hw.crtc != &crtc->base)
1893                         continue;
1894
1895                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1896                         dirty |= BIT(plane->id);
1897         }
1898
1899         /*
1900          * DSPARB registers may have been reset due to the
1901          * power well being turned off. Make sure we restore
1902          * them to a consistent state even if no primary/sprite
1903          * planes are initially active.
1904          */
1905         if (needs_modeset)
1906                 crtc_state->fifo_changed = true;
1907
1908         if (!dirty)
1909                 return 0;
1910
1911         /* cursor changes don't warrant a FIFO recompute */
1912         if (dirty & ~BIT(PLANE_CURSOR)) {
1913                 const struct intel_crtc_state *old_crtc_state =
1914                         intel_atomic_get_old_crtc_state(state, crtc);
1915                 const struct vlv_fifo_state *old_fifo_state =
1916                         &old_crtc_state->wm.vlv.fifo_state;
1917
1918                 ret = vlv_compute_fifo(crtc_state);
1919                 if (ret)
1920                         return ret;
1921
1922                 if (needs_modeset ||
1923                     memcmp(old_fifo_state, fifo_state,
1924                            sizeof(*fifo_state)) != 0)
1925                         crtc_state->fifo_changed = true;
1926         }
1927
1928         /* initially allow all levels */
1929         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1930         /*
1931          * Note that enabling cxsr with no primary/sprite planes
1932          * enabled can wedge the pipe. Hence we only allow cxsr
1933          * with exactly one enabled primary/sprite plane.
1934          */
1935         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1936
1937         for (level = 0; level < wm_state->num_levels; level++) {
1938                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1939                 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1940
1941                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1942                         break;
1943
1944                 for_each_plane_id_on_crtc(crtc, plane_id) {
1945                         wm_state->wm[level].plane[plane_id] =
1946                                 vlv_invert_wm_value(raw->plane[plane_id],
1947                                                     fifo_state->plane[plane_id]);
1948                 }
1949
1950                 wm_state->sr[level].plane =
1951                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1952                                                  raw->plane[PLANE_SPRITE0],
1953                                                  raw->plane[PLANE_SPRITE1]),
1954                                             sr_fifo_size);
1955
1956                 wm_state->sr[level].cursor =
1957                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1958                                             63);
1959         }
1960
1961         if (level == 0)
1962                 return -EINVAL;
1963
1964         /* limit to only levels we can actually handle */
1965         wm_state->num_levels = level;
1966
1967         /* invalidate the higher levels */
1968         vlv_invalidate_wms(crtc, wm_state, level);
1969
1970         return 0;
1971 }
1972
1973 #define VLV_FIFO(plane, value) \
1974         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1975
1976 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1977                                    struct intel_crtc *crtc)
1978 {
1979         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1980         struct intel_uncore *uncore = &dev_priv->uncore;
1981         const struct intel_crtc_state *crtc_state =
1982                 intel_atomic_get_new_crtc_state(state, crtc);
1983         const struct vlv_fifo_state *fifo_state =
1984                 &crtc_state->wm.vlv.fifo_state;
1985         int sprite0_start, sprite1_start, fifo_size;
1986         u32 dsparb, dsparb2, dsparb3;
1987
1988         if (!crtc_state->fifo_changed)
1989                 return;
1990
1991         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1992         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1993         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1994
1995         drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
1996         drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1997
1998         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1999
2000         /*
2001          * uncore.lock serves a double purpose here. It allows us to
2002          * use the less expensive I915_{READ,WRITE}_FW() functions, and
2003          * it protects the DSPARB registers from getting clobbered by
2004          * parallel updates from multiple pipes.
2005          *
2006          * intel_pipe_update_start() has already disabled interrupts
2007          * for us, so a plain spin_lock() is sufficient here.
2008          */
2009         spin_lock(&uncore->lock);
2010
2011         switch (crtc->pipe) {
2012         case PIPE_A:
2013                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2014                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2015
2016                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2017                             VLV_FIFO(SPRITEB, 0xff));
2018                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2019                            VLV_FIFO(SPRITEB, sprite1_start));
2020
2021                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2022                              VLV_FIFO(SPRITEB_HI, 0x1));
2023                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2024                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2025
2026                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2027                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2028                 break;
2029         case PIPE_B:
2030                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2031                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2032
2033                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2034                             VLV_FIFO(SPRITED, 0xff));
2035                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2036                            VLV_FIFO(SPRITED, sprite1_start));
2037
2038                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2039                              VLV_FIFO(SPRITED_HI, 0xff));
2040                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2041                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2042
2043                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2044                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2045                 break;
2046         case PIPE_C:
2047                 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2048                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2049
2050                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2051                              VLV_FIFO(SPRITEF, 0xff));
2052                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2053                             VLV_FIFO(SPRITEF, sprite1_start));
2054
2055                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2056                              VLV_FIFO(SPRITEF_HI, 0xff));
2057                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2058                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2059
2060                 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2061                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2062                 break;
2063         default:
2064                 break;
2065         }
2066
2067         intel_uncore_posting_read_fw(uncore, DSPARB);
2068
2069         spin_unlock(&uncore->lock);
2070 }
2071
2072 #undef VLV_FIFO
2073
2074 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2075 {
2076         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2077         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2078         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2079         struct intel_atomic_state *intel_state =
2080                 to_intel_atomic_state(new_crtc_state->uapi.state);
2081         const struct intel_crtc_state *old_crtc_state =
2082                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2083         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2084         int level;
2085
2086         if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2087                 *intermediate = *optimal;
2088
2089                 intermediate->cxsr = false;
2090                 goto out;
2091         }
2092
2093         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2094         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2095                 !new_crtc_state->disable_cxsr;
2096
2097         for (level = 0; level < intermediate->num_levels; level++) {
2098                 enum plane_id plane_id;
2099
2100                 for_each_plane_id_on_crtc(crtc, plane_id) {
2101                         intermediate->wm[level].plane[plane_id] =
2102                                 min(optimal->wm[level].plane[plane_id],
2103                                     active->wm[level].plane[plane_id]);
2104                 }
2105
2106                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2107                                                     active->sr[level].plane);
2108                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2109                                                      active->sr[level].cursor);
2110         }
2111
2112         vlv_invalidate_wms(crtc, intermediate, level);
2113
2114 out:
2115         /*
2116          * If our intermediate WM are identical to the final WM, then we can
2117          * omit the post-vblank programming; only update if it's different.
2118          */
2119         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2120                 new_crtc_state->wm.need_postvbl_update = true;
2121
2122         return 0;
2123 }
2124
2125 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2126                          struct vlv_wm_values *wm)
2127 {
2128         struct intel_crtc *crtc;
2129         int num_active_pipes = 0;
2130
2131         wm->level = dev_priv->wm.max_level;
2132         wm->cxsr = true;
2133
2134         for_each_intel_crtc(&dev_priv->drm, crtc) {
2135                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2136
2137                 if (!crtc->active)
2138                         continue;
2139
2140                 if (!wm_state->cxsr)
2141                         wm->cxsr = false;
2142
2143                 num_active_pipes++;
2144                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2145         }
2146
2147         if (num_active_pipes != 1)
2148                 wm->cxsr = false;
2149
2150         if (num_active_pipes > 1)
2151                 wm->level = VLV_WM_LEVEL_PM2;
2152
2153         for_each_intel_crtc(&dev_priv->drm, crtc) {
2154                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2155                 enum pipe pipe = crtc->pipe;
2156
2157                 wm->pipe[pipe] = wm_state->wm[wm->level];
2158                 if (crtc->active && wm->cxsr)
2159                         wm->sr = wm_state->sr[wm->level];
2160
2161                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2162                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2163                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2164                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2165         }
2166 }
2167
2168 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2169 {
2170         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2171         struct vlv_wm_values new_wm = {};
2172
2173         vlv_merge_wm(dev_priv, &new_wm);
2174
2175         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2176                 return;
2177
2178         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2179                 chv_set_memory_dvfs(dev_priv, false);
2180
2181         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2182                 chv_set_memory_pm5(dev_priv, false);
2183
2184         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2185                 _intel_set_memory_cxsr(dev_priv, false);
2186
2187         vlv_write_wm_values(dev_priv, &new_wm);
2188
2189         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2190                 _intel_set_memory_cxsr(dev_priv, true);
2191
2192         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2193                 chv_set_memory_pm5(dev_priv, true);
2194
2195         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2196                 chv_set_memory_dvfs(dev_priv, true);
2197
2198         *old_wm = new_wm;
2199 }
2200
2201 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2202                                    struct intel_crtc *crtc)
2203 {
2204         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2205         const struct intel_crtc_state *crtc_state =
2206                 intel_atomic_get_new_crtc_state(state, crtc);
2207
2208         mutex_lock(&dev_priv->wm.wm_mutex);
2209         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2210         vlv_program_watermarks(dev_priv);
2211         mutex_unlock(&dev_priv->wm.wm_mutex);
2212 }
2213
2214 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2215                                     struct intel_crtc *crtc)
2216 {
2217         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2218         const struct intel_crtc_state *crtc_state =
2219                 intel_atomic_get_new_crtc_state(state, crtc);
2220
2221         if (!crtc_state->wm.need_postvbl_update)
2222                 return;
2223
2224         mutex_lock(&dev_priv->wm.wm_mutex);
2225         crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2226         vlv_program_watermarks(dev_priv);
2227         mutex_unlock(&dev_priv->wm.wm_mutex);
2228 }
2229
2230 static void i965_update_wm(struct intel_crtc *unused_crtc)
2231 {
2232         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2233         struct intel_crtc *crtc;
2234         int srwm = 1;
2235         int cursor_sr = 16;
2236         bool cxsr_enabled;
2237
2238         /* Calc sr entries for one plane configs */
2239         crtc = single_enabled_crtc(dev_priv);
2240         if (crtc) {
2241                 /* self-refresh has much higher latency */
2242                 static const int sr_latency_ns = 12000;
2243                 const struct drm_display_mode *adjusted_mode =
2244                         &crtc->config->hw.adjusted_mode;
2245                 const struct drm_framebuffer *fb =
2246                         crtc->base.primary->state->fb;
2247                 int clock = adjusted_mode->crtc_clock;
2248                 int htotal = adjusted_mode->crtc_htotal;
2249                 int hdisplay = crtc->config->pipe_src_w;
2250                 int cpp = fb->format->cpp[0];
2251                 int entries;
2252
2253                 entries = intel_wm_method2(clock, htotal,
2254                                            hdisplay, cpp, sr_latency_ns / 100);
2255                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2256                 srwm = I965_FIFO_SIZE - entries;
2257                 if (srwm < 0)
2258                         srwm = 1;
2259                 srwm &= 0x1ff;
2260                 drm_dbg_kms(&dev_priv->drm,
2261                             "self-refresh entries: %d, wm: %d\n",
2262                             entries, srwm);
2263
2264                 entries = intel_wm_method2(clock, htotal,
2265                                            crtc->base.cursor->state->crtc_w, 4,
2266                                            sr_latency_ns / 100);
2267                 entries = DIV_ROUND_UP(entries,
2268                                        i965_cursor_wm_info.cacheline_size) +
2269                         i965_cursor_wm_info.guard_size;
2270
2271                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2272                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2273                         cursor_sr = i965_cursor_wm_info.max_wm;
2274
2275                 drm_dbg_kms(&dev_priv->drm,
2276                             "self-refresh watermark: display plane %d "
2277                             "cursor %d\n", srwm, cursor_sr);
2278
2279                 cxsr_enabled = true;
2280         } else {
2281                 cxsr_enabled = false;
2282                 /* Turn off self refresh if both pipes are enabled */
2283                 intel_set_memory_cxsr(dev_priv, false);
2284         }
2285
2286         drm_dbg_kms(&dev_priv->drm,
2287                     "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2288                     srwm);
2289
2290         /* 965 has limitations... */
2291         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2292                    FW_WM(8, CURSORB) |
2293                    FW_WM(8, PLANEB) |
2294                    FW_WM(8, PLANEA));
2295         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2296                    FW_WM(8, PLANEC_OLD));
2297         /* update cursor SR watermark */
2298         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2299
2300         if (cxsr_enabled)
2301                 intel_set_memory_cxsr(dev_priv, true);
2302 }
2303
2304 #undef FW_WM
2305
2306 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2307 {
2308         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2309         const struct intel_watermark_params *wm_info;
2310         u32 fwater_lo;
2311         u32 fwater_hi;
2312         int cwm, srwm = 1;
2313         int fifo_size;
2314         int planea_wm, planeb_wm;
2315         struct intel_crtc *crtc, *enabled = NULL;
2316
2317         if (IS_I945GM(dev_priv))
2318                 wm_info = &i945_wm_info;
2319         else if (!IS_GEN(dev_priv, 2))
2320                 wm_info = &i915_wm_info;
2321         else
2322                 wm_info = &i830_a_wm_info;
2323
2324         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2325         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2326         if (intel_crtc_active(crtc)) {
2327                 const struct drm_display_mode *adjusted_mode =
2328                         &crtc->config->hw.adjusted_mode;
2329                 const struct drm_framebuffer *fb =
2330                         crtc->base.primary->state->fb;
2331                 int cpp;
2332
2333                 if (IS_GEN(dev_priv, 2))
2334                         cpp = 4;
2335                 else
2336                         cpp = fb->format->cpp[0];
2337
2338                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2339                                                wm_info, fifo_size, cpp,
2340                                                pessimal_latency_ns);
2341                 enabled = crtc;
2342         } else {
2343                 planea_wm = fifo_size - wm_info->guard_size;
2344                 if (planea_wm > (long)wm_info->max_wm)
2345                         planea_wm = wm_info->max_wm;
2346         }
2347
2348         if (IS_GEN(dev_priv, 2))
2349                 wm_info = &i830_bc_wm_info;
2350
2351         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2352         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2353         if (intel_crtc_active(crtc)) {
2354                 const struct drm_display_mode *adjusted_mode =
2355                         &crtc->config->hw.adjusted_mode;
2356                 const struct drm_framebuffer *fb =
2357                         crtc->base.primary->state->fb;
2358                 int cpp;
2359
2360                 if (IS_GEN(dev_priv, 2))
2361                         cpp = 4;
2362                 else
2363                         cpp = fb->format->cpp[0];
2364
2365                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2366                                                wm_info, fifo_size, cpp,
2367                                                pessimal_latency_ns);
2368                 if (enabled == NULL)
2369                         enabled = crtc;
2370                 else
2371                         enabled = NULL;
2372         } else {
2373                 planeb_wm = fifo_size - wm_info->guard_size;
2374                 if (planeb_wm > (long)wm_info->max_wm)
2375                         planeb_wm = wm_info->max_wm;
2376         }
2377
2378         drm_dbg_kms(&dev_priv->drm,
2379                     "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2380
2381         if (IS_I915GM(dev_priv) && enabled) {
2382                 struct drm_i915_gem_object *obj;
2383
2384                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2385
2386                 /* self-refresh seems busted with untiled */
2387                 if (!i915_gem_object_is_tiled(obj))
2388                         enabled = NULL;
2389         }
2390
2391         /*
2392          * Overlay gets an aggressive default since video jitter is bad.
2393          */
2394         cwm = 2;
2395
2396         /* Play safe and disable self-refresh before adjusting watermarks. */
2397         intel_set_memory_cxsr(dev_priv, false);
2398
2399         /* Calc sr entries for one plane configs */
2400         if (HAS_FW_BLC(dev_priv) && enabled) {
2401                 /* self-refresh has much higher latency */
2402                 static const int sr_latency_ns = 6000;
2403                 const struct drm_display_mode *adjusted_mode =
2404                         &enabled->config->hw.adjusted_mode;
2405                 const struct drm_framebuffer *fb =
2406                         enabled->base.primary->state->fb;
2407                 int clock = adjusted_mode->crtc_clock;
2408                 int htotal = adjusted_mode->crtc_htotal;
2409                 int hdisplay = enabled->config->pipe_src_w;
2410                 int cpp;
2411                 int entries;
2412
2413                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2414                         cpp = 4;
2415                 else
2416                         cpp = fb->format->cpp[0];
2417
2418                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2419                                            sr_latency_ns / 100);
2420                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2421                 drm_dbg_kms(&dev_priv->drm,
2422                             "self-refresh entries: %d\n", entries);
2423                 srwm = wm_info->fifo_size - entries;
2424                 if (srwm < 0)
2425                         srwm = 1;
2426
2427                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2428                         I915_WRITE(FW_BLC_SELF,
2429                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2430                 else
2431                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2432         }
2433
2434         drm_dbg_kms(&dev_priv->drm,
2435                     "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2436                      planea_wm, planeb_wm, cwm, srwm);
2437
2438         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2439         fwater_hi = (cwm & 0x1f);
2440
2441         /* Set request length to 8 cachelines per fetch */
2442         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2443         fwater_hi = fwater_hi | (1 << 8);
2444
2445         I915_WRITE(FW_BLC, fwater_lo);
2446         I915_WRITE(FW_BLC2, fwater_hi);
2447
2448         if (enabled)
2449                 intel_set_memory_cxsr(dev_priv, true);
2450 }
2451
2452 static void i845_update_wm(struct intel_crtc *unused_crtc)
2453 {
2454         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2455         struct intel_crtc *crtc;
2456         const struct drm_display_mode *adjusted_mode;
2457         u32 fwater_lo;
2458         int planea_wm;
2459
2460         crtc = single_enabled_crtc(dev_priv);
2461         if (crtc == NULL)
2462                 return;
2463
2464         adjusted_mode = &crtc->config->hw.adjusted_mode;
2465         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2466                                        &i845_wm_info,
2467                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2468                                        4, pessimal_latency_ns);
2469         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2470         fwater_lo |= (3<<8) | planea_wm;
2471
2472         drm_dbg_kms(&dev_priv->drm,
2473                     "Setting FIFO watermarks - A: %d\n", planea_wm);
2474
2475         I915_WRITE(FW_BLC, fwater_lo);
2476 }
2477
2478 /* latency must be in 0.1us units. */
2479 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2480                                    unsigned int cpp,
2481                                    unsigned int latency)
2482 {
2483         unsigned int ret;
2484
2485         ret = intel_wm_method1(pixel_rate, cpp, latency);
2486         ret = DIV_ROUND_UP(ret, 64) + 2;
2487
2488         return ret;
2489 }
2490
2491 /* latency must be in 0.1us units. */
2492 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2493                                    unsigned int htotal,
2494                                    unsigned int width,
2495                                    unsigned int cpp,
2496                                    unsigned int latency)
2497 {
2498         unsigned int ret;
2499
2500         ret = intel_wm_method2(pixel_rate, htotal,
2501                                width, cpp, latency);
2502         ret = DIV_ROUND_UP(ret, 64) + 2;
2503
2504         return ret;
2505 }
2506
2507 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2508 {
2509         /*
2510          * Neither of these should be possible since this function shouldn't be
2511          * called if the CRTC is off or the plane is invisible.  But let's be
2512          * extra paranoid to avoid a potential divide-by-zero if we screw up
2513          * elsewhere in the driver.
2514          */
2515         if (WARN_ON(!cpp))
2516                 return 0;
2517         if (WARN_ON(!horiz_pixels))
2518                 return 0;
2519
2520         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2521 }
2522
2523 struct ilk_wm_maximums {
2524         u16 pri;
2525         u16 spr;
2526         u16 cur;
2527         u16 fbc;
2528 };
2529
2530 /*
2531  * For both WM_PIPE and WM_LP.
2532  * mem_value must be in 0.1us units.
2533  */
2534 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2535                               const struct intel_plane_state *plane_state,
2536                               u32 mem_value, bool is_lp)
2537 {
2538         u32 method1, method2;
2539         int cpp;
2540
2541         if (mem_value == 0)
2542                 return U32_MAX;
2543
2544         if (!intel_wm_plane_visible(crtc_state, plane_state))
2545                 return 0;
2546
2547         cpp = plane_state->hw.fb->format->cpp[0];
2548
2549         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2550
2551         if (!is_lp)
2552                 return method1;
2553
2554         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2555                                  crtc_state->hw.adjusted_mode.crtc_htotal,
2556                                  drm_rect_width(&plane_state->uapi.dst),
2557                                  cpp, mem_value);
2558
2559         return min(method1, method2);
2560 }
2561
2562 /*
2563  * For both WM_PIPE and WM_LP.
2564  * mem_value must be in 0.1us units.
2565  */
2566 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2567                               const struct intel_plane_state *plane_state,
2568                               u32 mem_value)
2569 {
2570         u32 method1, method2;
2571         int cpp;
2572
2573         if (mem_value == 0)
2574                 return U32_MAX;
2575
2576         if (!intel_wm_plane_visible(crtc_state, plane_state))
2577                 return 0;
2578
2579         cpp = plane_state->hw.fb->format->cpp[0];
2580
2581         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2582         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2583                                  crtc_state->hw.adjusted_mode.crtc_htotal,
2584                                  drm_rect_width(&plane_state->uapi.dst),
2585                                  cpp, mem_value);
2586         return min(method1, method2);
2587 }
2588
2589 /*
2590  * For both WM_PIPE and WM_LP.
2591  * mem_value must be in 0.1us units.
2592  */
2593 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2594                               const struct intel_plane_state *plane_state,
2595                               u32 mem_value)
2596 {
2597         int cpp;
2598
2599         if (mem_value == 0)
2600                 return U32_MAX;
2601
2602         if (!intel_wm_plane_visible(crtc_state, plane_state))
2603                 return 0;
2604
2605         cpp = plane_state->hw.fb->format->cpp[0];
2606
2607         return ilk_wm_method2(crtc_state->pixel_rate,
2608                               crtc_state->hw.adjusted_mode.crtc_htotal,
2609                               drm_rect_width(&plane_state->uapi.dst),
2610                               cpp, mem_value);
2611 }
2612
2613 /* Only for WM_LP. */
2614 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2615                               const struct intel_plane_state *plane_state,
2616                               u32 pri_val)
2617 {
2618         int cpp;
2619
2620         if (!intel_wm_plane_visible(crtc_state, plane_state))
2621                 return 0;
2622
2623         cpp = plane_state->hw.fb->format->cpp[0];
2624
2625         return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2626                           cpp);
2627 }
2628
2629 static unsigned int
2630 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2631 {
2632         if (INTEL_GEN(dev_priv) >= 8)
2633                 return 3072;
2634         else if (INTEL_GEN(dev_priv) >= 7)
2635                 return 768;
2636         else
2637                 return 512;
2638 }
2639
2640 static unsigned int
2641 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2642                      int level, bool is_sprite)
2643 {
2644         if (INTEL_GEN(dev_priv) >= 8)
2645                 /* BDW primary/sprite plane watermarks */
2646                 return level == 0 ? 255 : 2047;
2647         else if (INTEL_GEN(dev_priv) >= 7)
2648                 /* IVB/HSW primary/sprite plane watermarks */
2649                 return level == 0 ? 127 : 1023;
2650         else if (!is_sprite)
2651                 /* ILK/SNB primary plane watermarks */
2652                 return level == 0 ? 127 : 511;
2653         else
2654                 /* ILK/SNB sprite plane watermarks */
2655                 return level == 0 ? 63 : 255;
2656 }
2657
2658 static unsigned int
2659 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2660 {
2661         if (INTEL_GEN(dev_priv) >= 7)
2662                 return level == 0 ? 63 : 255;
2663         else
2664                 return level == 0 ? 31 : 63;
2665 }
2666
2667 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2668 {
2669         if (INTEL_GEN(dev_priv) >= 8)
2670                 return 31;
2671         else
2672                 return 15;
2673 }
2674
2675 /* Calculate the maximum primary/sprite plane watermark */
2676 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2677                                      int level,
2678                                      const struct intel_wm_config *config,
2679                                      enum intel_ddb_partitioning ddb_partitioning,
2680                                      bool is_sprite)
2681 {
2682         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2683
2684         /* if sprites aren't enabled, sprites get nothing */
2685         if (is_sprite && !config->sprites_enabled)
2686                 return 0;
2687
2688         /* HSW allows LP1+ watermarks even with multiple pipes */
2689         if (level == 0 || config->num_pipes_active > 1) {
2690                 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2691
2692                 /*
2693                  * For some reason the non self refresh
2694                  * FIFO size is only half of the self
2695                  * refresh FIFO size on ILK/SNB.
2696                  */
2697                 if (INTEL_GEN(dev_priv) <= 6)
2698                         fifo_size /= 2;
2699         }
2700
2701         if (config->sprites_enabled) {
2702                 /* level 0 is always calculated with 1:1 split */
2703                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2704                         if (is_sprite)
2705                                 fifo_size *= 5;
2706                         fifo_size /= 6;
2707                 } else {
2708                         fifo_size /= 2;
2709                 }
2710         }
2711
2712         /* clamp to max that the registers can hold */
2713         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2714 }
2715
2716 /* Calculate the maximum cursor plane watermark */
2717 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2718                                       int level,
2719                                       const struct intel_wm_config *config)
2720 {
2721         /* HSW LP1+ watermarks w/ multiple pipes */
2722         if (level > 0 && config->num_pipes_active > 1)
2723                 return 64;
2724
2725         /* otherwise just report max that registers can hold */
2726         return ilk_cursor_wm_reg_max(dev_priv, level);
2727 }
2728
2729 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2730                                     int level,
2731                                     const struct intel_wm_config *config,
2732                                     enum intel_ddb_partitioning ddb_partitioning,
2733                                     struct ilk_wm_maximums *max)
2734 {
2735         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2736         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2737         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2738         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2739 }
2740
2741 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2742                                         int level,
2743                                         struct ilk_wm_maximums *max)
2744 {
2745         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2746         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2747         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2748         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2749 }
2750
2751 static bool ilk_validate_wm_level(int level,
2752                                   const struct ilk_wm_maximums *max,
2753                                   struct intel_wm_level *result)
2754 {
2755         bool ret;
2756
2757         /* already determined to be invalid? */
2758         if (!result->enable)
2759                 return false;
2760
2761         result->enable = result->pri_val <= max->pri &&
2762                          result->spr_val <= max->spr &&
2763                          result->cur_val <= max->cur;
2764
2765         ret = result->enable;
2766
2767         /*
2768          * HACK until we can pre-compute everything,
2769          * and thus fail gracefully if LP0 watermarks
2770          * are exceeded...
2771          */
2772         if (level == 0 && !result->enable) {
2773                 if (result->pri_val > max->pri)
2774                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2775                                       level, result->pri_val, max->pri);
2776                 if (result->spr_val > max->spr)
2777                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2778                                       level, result->spr_val, max->spr);
2779                 if (result->cur_val > max->cur)
2780                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2781                                       level, result->cur_val, max->cur);
2782
2783                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2784                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2785                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2786                 result->enable = true;
2787         }
2788
2789         return ret;
2790 }
2791
2792 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2793                                  const struct intel_crtc *crtc,
2794                                  int level,
2795                                  struct intel_crtc_state *crtc_state,
2796                                  const struct intel_plane_state *pristate,
2797                                  const struct intel_plane_state *sprstate,
2798                                  const struct intel_plane_state *curstate,
2799                                  struct intel_wm_level *result)
2800 {
2801         u16 pri_latency = dev_priv->wm.pri_latency[level];
2802         u16 spr_latency = dev_priv->wm.spr_latency[level];
2803         u16 cur_latency = dev_priv->wm.cur_latency[level];
2804
2805         /* WM1+ latency values stored in 0.5us units */
2806         if (level > 0) {
2807                 pri_latency *= 5;
2808                 spr_latency *= 5;
2809                 cur_latency *= 5;
2810         }
2811
2812         if (pristate) {
2813                 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2814                                                      pri_latency, level);
2815                 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2816         }
2817
2818         if (sprstate)
2819                 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2820
2821         if (curstate)
2822                 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2823
2824         result->enable = true;
2825 }
2826
2827 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2828                                   u16 wm[8])
2829 {
2830         struct intel_uncore *uncore = &dev_priv->uncore;
2831
2832         if (INTEL_GEN(dev_priv) >= 9) {
2833                 u32 val;
2834                 int ret, i;
2835                 int level, max_level = ilk_wm_max_level(dev_priv);
2836
2837                 /* read the first set of memory latencies[0:3] */
2838                 val = 0; /* data0 to be programmed to 0 for first set */
2839                 ret = sandybridge_pcode_read(dev_priv,
2840                                              GEN9_PCODE_READ_MEM_LATENCY,
2841                                              &val, NULL);
2842
2843                 if (ret) {
2844                         drm_err(&dev_priv->drm,
2845                                 "SKL Mailbox read error = %d\n", ret);
2846                         return;
2847                 }
2848
2849                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2850                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2851                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2852                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2853                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2854                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2855                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2856
2857                 /* read the second set of memory latencies[4:7] */
2858                 val = 1; /* data0 to be programmed to 1 for second set */
2859                 ret = sandybridge_pcode_read(dev_priv,
2860                                              GEN9_PCODE_READ_MEM_LATENCY,
2861                                              &val, NULL);
2862                 if (ret) {
2863                         drm_err(&dev_priv->drm,
2864                                 "SKL Mailbox read error = %d\n", ret);
2865                         return;
2866                 }
2867
2868                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2869                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2870                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2871                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2872                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2873                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2874                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2875
2876                 /*
2877                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2878                  * need to be disabled. We make sure to sanitize the values out
2879                  * of the punit to satisfy this requirement.
2880                  */
2881                 for (level = 1; level <= max_level; level++) {
2882                         if (wm[level] == 0) {
2883                                 for (i = level + 1; i <= max_level; i++)
2884                                         wm[i] = 0;
2885                                 break;
2886                         }
2887                 }
2888
2889                 /*
2890                  * WaWmMemoryReadLatency:skl+,glk
2891                  *
2892                  * punit doesn't take into account the read latency so we need
2893                  * to add 2us to the various latency levels we retrieve from the
2894                  * punit when level 0 response data us 0us.
2895                  */
2896                 if (wm[0] == 0) {
2897                         wm[0] += 2;
2898                         for (level = 1; level <= max_level; level++) {
2899                                 if (wm[level] == 0)
2900                                         break;
2901                                 wm[level] += 2;
2902                         }
2903                 }
2904
2905                 /*
2906                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2907                  * If we could not get dimm info enable this WA to prevent from
2908                  * any underrun. If not able to get Dimm info assume 16GB dimm
2909                  * to avoid any underrun.
2910                  */
2911                 if (dev_priv->dram_info.is_16gb_dimm)
2912                         wm[0] += 1;
2913
2914         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2915                 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2916
2917                 wm[0] = (sskpd >> 56) & 0xFF;
2918                 if (wm[0] == 0)
2919                         wm[0] = sskpd & 0xF;
2920                 wm[1] = (sskpd >> 4) & 0xFF;
2921                 wm[2] = (sskpd >> 12) & 0xFF;
2922                 wm[3] = (sskpd >> 20) & 0x1FF;
2923                 wm[4] = (sskpd >> 32) & 0x1FF;
2924         } else if (INTEL_GEN(dev_priv) >= 6) {
2925                 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2926
2927                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2928                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2929                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2930                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2931         } else if (INTEL_GEN(dev_priv) >= 5) {
2932                 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2933
2934                 /* ILK primary LP0 latency is 700 ns */
2935                 wm[0] = 7;
2936                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2937                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2938         } else {
2939                 MISSING_CASE(INTEL_DEVID(dev_priv));
2940         }
2941 }
2942
2943 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2944                                        u16 wm[5])
2945 {
2946         /* ILK sprite LP0 latency is 1300 ns */
2947         if (IS_GEN(dev_priv, 5))
2948                 wm[0] = 13;
2949 }
2950
2951 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2952                                        u16 wm[5])
2953 {
2954         /* ILK cursor LP0 latency is 1300 ns */
2955         if (IS_GEN(dev_priv, 5))
2956                 wm[0] = 13;
2957 }
2958
2959 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2960 {
2961         /* how many WM levels are we expecting */
2962         if (INTEL_GEN(dev_priv) >= 9)
2963                 return 7;
2964         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2965                 return 4;
2966         else if (INTEL_GEN(dev_priv) >= 6)
2967                 return 3;
2968         else
2969                 return 2;
2970 }
2971
2972 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2973                                    const char *name,
2974                                    const u16 wm[8])
2975 {
2976         int level, max_level = ilk_wm_max_level(dev_priv);
2977
2978         for (level = 0; level <= max_level; level++) {
2979                 unsigned int latency = wm[level];
2980
2981                 if (latency == 0) {
2982                         drm_dbg_kms(&dev_priv->drm,
2983                                     "%s WM%d latency not provided\n",
2984                                     name, level);
2985                         continue;
2986                 }
2987
2988                 /*
2989                  * - latencies are in us on gen9.
2990                  * - before then, WM1+ latency values are in 0.5us units
2991                  */
2992                 if (INTEL_GEN(dev_priv) >= 9)
2993                         latency *= 10;
2994                 else if (level > 0)
2995                         latency *= 5;
2996
2997                 drm_dbg_kms(&dev_priv->drm,
2998                             "%s WM%d latency %u (%u.%u usec)\n", name, level,
2999                             wm[level], latency / 10, latency % 10);
3000         }
3001 }
3002
3003 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3004                                     u16 wm[5], u16 min)
3005 {
3006         int level, max_level = ilk_wm_max_level(dev_priv);
3007
3008         if (wm[0] >= min)
3009                 return false;
3010
3011         wm[0] = max(wm[0], min);
3012         for (level = 1; level <= max_level; level++)
3013                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3014
3015         return true;
3016 }
3017
3018 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3019 {
3020         bool changed;
3021
3022         /*
3023          * The BIOS provided WM memory latency values are often
3024          * inadequate for high resolution displays. Adjust them.
3025          */
3026         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3027                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3028                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3029
3030         if (!changed)
3031                 return;
3032
3033         drm_dbg_kms(&dev_priv->drm,
3034                     "WM latency values increased to avoid potential underruns\n");
3035         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3036         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3037         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3038 }
3039
3040 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3041 {
3042         /*
3043          * On some SNB machines (Thinkpad X220 Tablet at least)
3044          * LP3 usage can cause vblank interrupts to be lost.
3045          * The DEIIR bit will go high but it looks like the CPU
3046          * never gets interrupted.
3047          *
3048          * It's not clear whether other interrupt source could
3049          * be affected or if this is somehow limited to vblank
3050          * interrupts only. To play it safe we disable LP3
3051          * watermarks entirely.
3052          */
3053         if (dev_priv->wm.pri_latency[3] == 0 &&
3054             dev_priv->wm.spr_latency[3] == 0 &&
3055             dev_priv->wm.cur_latency[3] == 0)
3056                 return;
3057
3058         dev_priv->wm.pri_latency[3] = 0;
3059         dev_priv->wm.spr_latency[3] = 0;
3060         dev_priv->wm.cur_latency[3] = 0;
3061
3062         drm_dbg_kms(&dev_priv->drm,
3063                     "LP3 watermarks disabled due to potential for lost interrupts\n");
3064         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3065         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3066         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3067 }
3068
3069 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3070 {
3071         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3072
3073         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3074                sizeof(dev_priv->wm.pri_latency));
3075         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3076                sizeof(dev_priv->wm.pri_latency));
3077
3078         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3079         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3080
3081         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3082         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3083         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3084
3085         if (IS_GEN(dev_priv, 6)) {
3086                 snb_wm_latency_quirk(dev_priv);
3087                 snb_wm_lp3_irq_quirk(dev_priv);
3088         }
3089 }
3090
3091 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3092 {
3093         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3094         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3095 }
3096
3097 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3098                                  struct intel_pipe_wm *pipe_wm)
3099 {
3100         /* LP0 watermark maximums depend on this pipe alone */
3101         const struct intel_wm_config config = {
3102                 .num_pipes_active = 1,
3103                 .sprites_enabled = pipe_wm->sprites_enabled,
3104                 .sprites_scaled = pipe_wm->sprites_scaled,
3105         };
3106         struct ilk_wm_maximums max;
3107
3108         /* LP0 watermarks always use 1/2 DDB partitioning */
3109         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3110
3111         /* At least LP0 must be valid */
3112         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3113                 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3114                 return false;
3115         }
3116
3117         return true;
3118 }
3119
3120 /* Compute new watermarks for the pipe */
3121 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3122 {
3123         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3124         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3125         struct intel_pipe_wm *pipe_wm;
3126         struct intel_plane *plane;
3127         const struct intel_plane_state *plane_state;
3128         const struct intel_plane_state *pristate = NULL;
3129         const struct intel_plane_state *sprstate = NULL;
3130         const struct intel_plane_state *curstate = NULL;
3131         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3132         struct ilk_wm_maximums max;
3133
3134         pipe_wm = &crtc_state->wm.ilk.optimal;
3135
3136         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3137                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3138                         pristate = plane_state;
3139                 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3140                         sprstate = plane_state;
3141                 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3142                         curstate = plane_state;
3143         }
3144
3145         pipe_wm->pipe_enabled = crtc_state->hw.active;
3146         if (sprstate) {
3147                 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3148                 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3149                         (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3150                          drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3151         }
3152
3153         usable_level = max_level;
3154
3155         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3156         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3157                 usable_level = 1;
3158
3159         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3160         if (pipe_wm->sprites_scaled)
3161                 usable_level = 0;
3162
3163         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3164         ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3165                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3166
3167         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3168                 return -EINVAL;
3169
3170         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3171
3172         for (level = 1; level <= usable_level; level++) {
3173                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3174
3175                 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3176                                      pristate, sprstate, curstate, wm);
3177
3178                 /*
3179                  * Disable any watermark level that exceeds the
3180                  * register maximums since such watermarks are
3181                  * always invalid.
3182                  */
3183                 if (!ilk_validate_wm_level(level, &max, wm)) {
3184                         memset(wm, 0, sizeof(*wm));
3185                         break;
3186                 }
3187         }
3188
3189         return 0;
3190 }
3191
3192 /*
3193  * Build a set of 'intermediate' watermark values that satisfy both the old
3194  * state and the new state.  These can be programmed to the hardware
3195  * immediately.
3196  */
3197 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3198 {
3199         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3200         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3201         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3202         struct intel_atomic_state *intel_state =
3203                 to_intel_atomic_state(newstate->uapi.state);
3204         const struct intel_crtc_state *oldstate =
3205                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3206         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3207         int level, max_level = ilk_wm_max_level(dev_priv);
3208
3209         /*
3210          * Start with the final, target watermarks, then combine with the
3211          * currently active watermarks to get values that are safe both before
3212          * and after the vblank.
3213          */
3214         *a = newstate->wm.ilk.optimal;
3215         if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3216             intel_state->skip_intermediate_wm)
3217                 return 0;
3218
3219         a->pipe_enabled |= b->pipe_enabled;
3220         a->sprites_enabled |= b->sprites_enabled;
3221         a->sprites_scaled |= b->sprites_scaled;
3222
3223         for (level = 0; level <= max_level; level++) {
3224                 struct intel_wm_level *a_wm = &a->wm[level];
3225                 const struct intel_wm_level *b_wm = &b->wm[level];
3226
3227                 a_wm->enable &= b_wm->enable;
3228                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3229                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3230                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3231                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3232         }
3233
3234         /*
3235          * We need to make sure that these merged watermark values are
3236          * actually a valid configuration themselves.  If they're not,
3237          * there's no safe way to transition from the old state to
3238          * the new state, so we need to fail the atomic transaction.
3239          */
3240         if (!ilk_validate_pipe_wm(dev_priv, a))
3241                 return -EINVAL;
3242
3243         /*
3244          * If our intermediate WM are identical to the final WM, then we can
3245          * omit the post-vblank programming; only update if it's different.
3246          */
3247         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3248                 newstate->wm.need_postvbl_update = true;
3249
3250         return 0;
3251 }
3252
3253 /*
3254  * Merge the watermarks from all active pipes for a specific level.
3255  */
3256 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3257                                int level,
3258                                struct intel_wm_level *ret_wm)
3259 {
3260         const struct intel_crtc *intel_crtc;
3261
3262         ret_wm->enable = true;
3263
3264         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3265                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3266                 const struct intel_wm_level *wm = &active->wm[level];
3267
3268                 if (!active->pipe_enabled)
3269                         continue;
3270
3271                 /*
3272                  * The watermark values may have been used in the past,
3273                  * so we must maintain them in the registers for some
3274                  * time even if the level is now disabled.
3275                  */
3276                 if (!wm->enable)
3277                         ret_wm->enable = false;
3278
3279                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3280                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3281                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3282                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3283         }
3284 }
3285
3286 /*
3287  * Merge all low power watermarks for all active pipes.
3288  */
3289 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3290                          const struct intel_wm_config *config,
3291                          const struct ilk_wm_maximums *max,
3292                          struct intel_pipe_wm *merged)
3293 {
3294         int level, max_level = ilk_wm_max_level(dev_priv);
3295         int last_enabled_level = max_level;
3296
3297         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3298         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3299             config->num_pipes_active > 1)
3300                 last_enabled_level = 0;
3301
3302         /* ILK: FBC WM must be disabled always */
3303         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3304
3305         /* merge each WM1+ level */
3306         for (level = 1; level <= max_level; level++) {
3307                 struct intel_wm_level *wm = &merged->wm[level];
3308
3309                 ilk_merge_wm_level(dev_priv, level, wm);
3310
3311                 if (level > last_enabled_level)
3312                         wm->enable = false;
3313                 else if (!ilk_validate_wm_level(level, max, wm))
3314                         /* make sure all following levels get disabled */
3315                         last_enabled_level = level - 1;
3316
3317                 /*
3318                  * The spec says it is preferred to disable
3319                  * FBC WMs instead of disabling a WM level.
3320                  */
3321                 if (wm->fbc_val > max->fbc) {
3322                         if (wm->enable)
3323                                 merged->fbc_wm_enabled = false;
3324                         wm->fbc_val = 0;
3325                 }
3326         }
3327
3328         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3329         /*
3330          * FIXME this is racy. FBC might get enabled later.
3331          * What we should check here is whether FBC can be
3332          * enabled sometime later.
3333          */
3334         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3335             intel_fbc_is_active(dev_priv)) {
3336                 for (level = 2; level <= max_level; level++) {
3337                         struct intel_wm_level *wm = &merged->wm[level];
3338
3339                         wm->enable = false;
3340                 }
3341         }
3342 }
3343
3344 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3345 {
3346         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3347         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3348 }
3349
3350 /* The value we need to program into the WM_LPx latency field */
3351 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3352                                       int level)
3353 {
3354         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3355                 return 2 * level;
3356         else
3357                 return dev_priv->wm.pri_latency[level];
3358 }
3359
3360 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3361                                    const struct intel_pipe_wm *merged,
3362                                    enum intel_ddb_partitioning partitioning,
3363                                    struct ilk_wm_values *results)
3364 {
3365         struct intel_crtc *intel_crtc;
3366         int level, wm_lp;
3367
3368         results->enable_fbc_wm = merged->fbc_wm_enabled;
3369         results->partitioning = partitioning;
3370
3371         /* LP1+ register values */
3372         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3373                 const struct intel_wm_level *r;
3374
3375                 level = ilk_wm_lp_to_level(wm_lp, merged);
3376
3377                 r = &merged->wm[level];
3378
3379                 /*
3380                  * Maintain the watermark values even if the level is
3381                  * disabled. Doing otherwise could cause underruns.
3382                  */
3383                 results->wm_lp[wm_lp - 1] =
3384                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3385                         (r->pri_val << WM1_LP_SR_SHIFT) |
3386                         r->cur_val;
3387
3388                 if (r->enable)
3389                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3390
3391                 if (INTEL_GEN(dev_priv) >= 8)
3392                         results->wm_lp[wm_lp - 1] |=
3393                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3394                 else
3395                         results->wm_lp[wm_lp - 1] |=
3396                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3397
3398                 /*
3399                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3400                  * level is disabled. Doing otherwise could cause underruns.
3401                  */
3402                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3403                         drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3404                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3405                 } else
3406                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3407         }
3408
3409         /* LP0 register values */
3410         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3411                 enum pipe pipe = intel_crtc->pipe;
3412                 const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3413                 const struct intel_wm_level *r = &pipe_wm->wm[0];
3414
3415                 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3416                         continue;
3417
3418                 results->wm_pipe[pipe] =
3419                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3420                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3421                         r->cur_val;
3422         }
3423 }
3424
3425 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3426  * case both are at the same level. Prefer r1 in case they're the same. */
3427 static struct intel_pipe_wm *
3428 ilk_find_best_result(struct drm_i915_private *dev_priv,
3429                      struct intel_pipe_wm *r1,
3430                      struct intel_pipe_wm *r2)
3431 {
3432         int level, max_level = ilk_wm_max_level(dev_priv);
3433         int level1 = 0, level2 = 0;
3434
3435         for (level = 1; level <= max_level; level++) {
3436                 if (r1->wm[level].enable)
3437                         level1 = level;
3438                 if (r2->wm[level].enable)
3439                         level2 = level;
3440         }
3441
3442         if (level1 == level2) {
3443                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3444                         return r2;
3445                 else
3446                         return r1;
3447         } else if (level1 > level2) {
3448                 return r1;
3449         } else {
3450                 return r2;
3451         }
3452 }
3453
3454 /* dirty bits used to track which watermarks need changes */
3455 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3456 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3457 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3458 #define WM_DIRTY_FBC (1 << 24)
3459 #define WM_DIRTY_DDB (1 << 25)
3460
3461 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3462                                          const struct ilk_wm_values *old,
3463                                          const struct ilk_wm_values *new)
3464 {
3465         unsigned int dirty = 0;
3466         enum pipe pipe;
3467         int wm_lp;
3468
3469         for_each_pipe(dev_priv, pipe) {
3470                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3471                         dirty |= WM_DIRTY_PIPE(pipe);
3472                         /* Must disable LP1+ watermarks too */
3473                         dirty |= WM_DIRTY_LP_ALL;
3474                 }
3475         }
3476
3477         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3478                 dirty |= WM_DIRTY_FBC;
3479                 /* Must disable LP1+ watermarks too */
3480                 dirty |= WM_DIRTY_LP_ALL;
3481         }
3482
3483         if (old->partitioning != new->partitioning) {
3484                 dirty |= WM_DIRTY_DDB;
3485                 /* Must disable LP1+ watermarks too */
3486                 dirty |= WM_DIRTY_LP_ALL;
3487         }
3488
3489         /* LP1+ watermarks already deemed dirty, no need to continue */
3490         if (dirty & WM_DIRTY_LP_ALL)
3491                 return dirty;
3492
3493         /* Find the lowest numbered LP1+ watermark in need of an update... */
3494         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3495                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3496                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3497                         break;
3498         }
3499
3500         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3501         for (; wm_lp <= 3; wm_lp++)
3502                 dirty |= WM_DIRTY_LP(wm_lp);
3503
3504         return dirty;
3505 }
3506
3507 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3508                                unsigned int dirty)
3509 {
3510         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3511         bool changed = false;
3512
3513         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3514                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3515                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3516                 changed = true;
3517         }
3518         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3519                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3520                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3521                 changed = true;
3522         }
3523         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3524                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3525                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3526                 changed = true;
3527         }
3528
3529         /*
3530          * Don't touch WM1S_LP_EN here.
3531          * Doing so could cause underruns.
3532          */
3533
3534         return changed;
3535 }
3536
3537 /*
3538  * The spec says we shouldn't write when we don't need, because every write
3539  * causes WMs to be re-evaluated, expending some power.
3540  */
3541 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3542                                 struct ilk_wm_values *results)
3543 {
3544         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3545         unsigned int dirty;
3546         u32 val;
3547
3548         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3549         if (!dirty)
3550                 return;
3551
3552         _ilk_disable_lp_wm(dev_priv, dirty);
3553
3554         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3555                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3556         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3557                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3558         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3559                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3560
3561         if (dirty & WM_DIRTY_DDB) {
3562                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3563                         val = I915_READ(WM_MISC);
3564                         if (results->partitioning == INTEL_DDB_PART_1_2)
3565                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3566                         else
3567                                 val |= WM_MISC_DATA_PARTITION_5_6;
3568                         I915_WRITE(WM_MISC, val);
3569                 } else {
3570                         val = I915_READ(DISP_ARB_CTL2);
3571                         if (results->partitioning == INTEL_DDB_PART_1_2)
3572                                 val &= ~DISP_DATA_PARTITION_5_6;
3573                         else
3574                                 val |= DISP_DATA_PARTITION_5_6;
3575                         I915_WRITE(DISP_ARB_CTL2, val);
3576                 }
3577         }
3578
3579         if (dirty & WM_DIRTY_FBC) {
3580                 val = I915_READ(DISP_ARB_CTL);
3581                 if (results->enable_fbc_wm)
3582                         val &= ~DISP_FBC_WM_DIS;
3583                 else
3584                         val |= DISP_FBC_WM_DIS;
3585                 I915_WRITE(DISP_ARB_CTL, val);
3586         }
3587
3588         if (dirty & WM_DIRTY_LP(1) &&
3589             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3590                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3591
3592         if (INTEL_GEN(dev_priv) >= 7) {
3593                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3594                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3595                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3596                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3597         }
3598
3599         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3600                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3601         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3602                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3603         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3604                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3605
3606         dev_priv->wm.hw = *results;
3607 }
3608
3609 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3610 {
3611         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3612 }
3613
3614 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3615 {
3616         int i;
3617         int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3618         u8 enabled_slices_mask = 0;
3619
3620         for (i = 0; i < max_slices; i++) {
3621                 if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3622                         enabled_slices_mask |= BIT(i);
3623         }
3624
3625         return enabled_slices_mask;
3626 }
3627
3628 /*
3629  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3630  * so assume we'll always need it in order to avoid underruns.
3631  */
3632 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3633 {
3634         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3635 }
3636
3637 static bool
3638 intel_has_sagv(struct drm_i915_private *dev_priv)
3639 {
3640         /* HACK! */
3641         if (IS_GEN(dev_priv, 12))
3642                 return false;
3643
3644         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3645                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3646 }
3647
3648 static void
3649 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3650 {
3651         if (INTEL_GEN(dev_priv) >= 12) {
3652                 u32 val = 0;
3653                 int ret;
3654
3655                 ret = sandybridge_pcode_read(dev_priv,
3656                                              GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3657                                              &val, NULL);
3658                 if (!ret) {
3659                         dev_priv->sagv_block_time_us = val;
3660                         return;
3661                 }
3662
3663                 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3664         } else if (IS_GEN(dev_priv, 11)) {
3665                 dev_priv->sagv_block_time_us = 10;
3666                 return;
3667         } else if (IS_GEN(dev_priv, 10)) {
3668                 dev_priv->sagv_block_time_us = 20;
3669                 return;
3670         } else if (IS_GEN(dev_priv, 9)) {
3671                 dev_priv->sagv_block_time_us = 30;
3672                 return;
3673         } else {
3674                 MISSING_CASE(INTEL_GEN(dev_priv));
3675         }
3676
3677         /* Default to an unusable block time */
3678         dev_priv->sagv_block_time_us = -1;
3679 }
3680
3681 /*
3682  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3683  * depending on power and performance requirements. The display engine access
3684  * to system memory is blocked during the adjustment time. Because of the
3685  * blocking time, having this enabled can cause full system hangs and/or pipe
3686  * underruns if we don't meet all of the following requirements:
3687  *
3688  *  - <= 1 pipe enabled
3689  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3690  *  - We're not using an interlaced display configuration
3691  */
3692 int
3693 intel_enable_sagv(struct drm_i915_private *dev_priv)
3694 {
3695         int ret;
3696
3697         if (!intel_has_sagv(dev_priv))
3698                 return 0;
3699
3700         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3701                 return 0;
3702
3703         drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3704         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3705                                       GEN9_SAGV_ENABLE);
3706
3707         /* We don't need to wait for SAGV when enabling */
3708
3709         /*
3710          * Some skl systems, pre-release machines in particular,
3711          * don't actually have SAGV.
3712          */
3713         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3714                 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3715                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3716                 return 0;
3717         } else if (ret < 0) {
3718                 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3719                 return ret;
3720         }
3721
3722         dev_priv->sagv_status = I915_SAGV_ENABLED;
3723         return 0;
3724 }
3725
3726 int
3727 intel_disable_sagv(struct drm_i915_private *dev_priv)
3728 {
3729         int ret;
3730
3731         if (!intel_has_sagv(dev_priv))
3732                 return 0;
3733
3734         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3735                 return 0;
3736
3737         drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3738         /* bspec says to keep retrying for at least 1 ms */
3739         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3740                                 GEN9_SAGV_DISABLE,
3741                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3742                                 1);
3743         /*
3744          * Some skl systems, pre-release machines in particular,
3745          * don't actually have SAGV.
3746          */
3747         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3748                 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3749                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3750                 return 0;
3751         } else if (ret < 0) {
3752                 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3753                 return ret;
3754         }
3755
3756         dev_priv->sagv_status = I915_SAGV_DISABLED;
3757         return 0;
3758 }
3759
3760 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3761 {
3762         struct drm_device *dev = crtc_state->uapi.crtc->dev;
3763         struct drm_i915_private *dev_priv = to_i915(dev);
3764         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3765         struct intel_plane *plane;
3766         int level, latency;
3767
3768         if (!crtc_state->hw.active)
3769                 return true;
3770
3771         if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3772                 return false;
3773
3774         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3775                 const struct skl_plane_wm *wm =
3776                         &crtc_state->wm.skl.optimal.planes[plane->id];
3777
3778                 /* Skip this plane if it's not enabled */
3779                 if (!wm->wm[0].plane_en)
3780                         continue;
3781
3782                 /* Find the highest enabled wm level for this plane */
3783                 for (level = ilk_wm_max_level(dev_priv);
3784                      !wm->wm[level].plane_en; --level)
3785                      { }
3786
3787                 latency = dev_priv->wm.skl_latency[level];
3788
3789                 if (skl_needs_memory_bw_wa(dev_priv) &&
3790                     plane->base.state->fb->modifier ==
3791                     I915_FORMAT_MOD_X_TILED)
3792                         latency += 15;
3793
3794                 /*
3795                  * If any of the planes on this pipe don't enable wm levels that
3796                  * incur memory latencies higher than sagv_block_time_us we
3797                  * can't enable SAGV.
3798                  */
3799                 if (latency < dev_priv->sagv_block_time_us)
3800                         return false;
3801         }
3802
3803         return true;
3804 }
3805
3806 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3807 {
3808         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3809         struct intel_crtc *crtc;
3810         const struct intel_crtc_state *crtc_state;
3811         enum pipe pipe;
3812
3813         if (!intel_has_sagv(dev_priv))
3814                 return false;
3815
3816         /*
3817          * If there are no active CRTCs, no additional checks need be performed
3818          */
3819         if (hweight8(state->active_pipes) == 0)
3820                 return true;
3821
3822         /*
3823          * SKL+ workaround: bspec recommends we disable SAGV when we have
3824          * more then one pipe enabled
3825          */
3826         if (hweight8(state->active_pipes) > 1)
3827                 return false;
3828
3829         /* Since we're now guaranteed to only have one active CRTC... */
3830         pipe = ffs(state->active_pipes) - 1;
3831         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3832         crtc_state = to_intel_crtc_state(crtc->base.state);
3833
3834         return intel_crtc_can_enable_sagv(crtc_state);
3835 }
3836
3837 /*
3838  * Calculate initial DBuf slice offset, based on slice size
3839  * and mask(i.e if slice size is 1024 and second slice is enabled
3840  * offset would be 1024)
3841  */
3842 static unsigned int
3843 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
3844                                 u32 slice_size,
3845                                 u32 ddb_size)
3846 {
3847         unsigned int offset = 0;
3848
3849         if (!dbuf_slice_mask)
3850                 return 0;
3851
3852         offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
3853
3854         WARN_ON(offset >= ddb_size);
3855         return offset;
3856 }
3857
3858 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3859 {
3860         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3861
3862         drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3863
3864         if (INTEL_GEN(dev_priv) < 11)
3865                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3866
3867         return ddb_size;
3868 }
3869
3870 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3871                                   u8 active_pipes);
3872
3873 static void
3874 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3875                                    const struct intel_crtc_state *crtc_state,
3876                                    const u64 total_data_rate,
3877                                    struct skl_ddb_entry *alloc, /* out */
3878                                    int *num_active /* out */)
3879 {
3880         struct drm_atomic_state *state = crtc_state->uapi.state;
3881         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3882         struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3883         const struct intel_crtc *crtc;
3884         u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3885         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3886         u16 ddb_size;
3887         u32 ddb_range_size;
3888         u32 i;
3889         u32 dbuf_slice_mask;
3890         u32 active_pipes;
3891         u32 offset;
3892         u32 slice_size;
3893         u32 total_slice_mask;
3894         u32 start, end;
3895
3896         if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3897                 alloc->start = 0;
3898                 alloc->end = 0;
3899                 *num_active = hweight8(dev_priv->active_pipes);
3900                 return;
3901         }
3902
3903         if (intel_state->active_pipe_changes)
3904                 active_pipes = intel_state->active_pipes;
3905         else
3906                 active_pipes = dev_priv->active_pipes;
3907
3908         *num_active = hweight8(active_pipes);
3909
3910         ddb_size = intel_get_ddb_size(dev_priv);
3911
3912         slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3913
3914         /*
3915          * If the state doesn't change the active CRTC's or there is no
3916          * modeset request, then there's no need to recalculate;
3917          * the existing pipe allocation limits should remain unchanged.
3918          * Note that we're safe from racing commits since any racing commit
3919          * that changes the active CRTC list or do modeset would need to
3920          * grab _all_ crtc locks, including the one we currently hold.
3921          */
3922         if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3923                 /*
3924                  * alloc may be cleared by clear_intel_crtc_state,
3925                  * copy from old state to be sure
3926                  */
3927                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3928                 return;
3929         }
3930
3931         /*
3932          * Get allowed DBuf slices for correspondent pipe and platform.
3933          */
3934         dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
3935
3936         DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
3937                       dbuf_slice_mask,
3938                       pipe_name(for_pipe), active_pipes);
3939
3940         /*
3941          * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
3942          * and slice size is 1024, the offset would be 1024
3943          */
3944         offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
3945                                                  slice_size, ddb_size);
3946
3947         /*
3948          * Figure out total size of allowed DBuf slices, which is basically
3949          * a number of allowed slices for that pipe multiplied by slice size.
3950          * Inside of this
3951          * range ddb entries are still allocated in proportion to display width.
3952          */
3953         ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
3954
3955         /*
3956          * Watermark/ddb requirement highly depends upon width of the
3957          * framebuffer, So instead of allocating DDB equally among pipes
3958          * distribute DDB based on resolution/width of the display.
3959          */
3960         total_slice_mask = dbuf_slice_mask;
3961         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3962                 const struct drm_display_mode *adjusted_mode =
3963                         &crtc_state->hw.adjusted_mode;
3964                 enum pipe pipe = crtc->pipe;
3965                 int hdisplay, vdisplay;
3966                 u32 pipe_dbuf_slice_mask;
3967
3968                 if (!crtc_state->hw.active)
3969                         continue;
3970
3971                 pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
3972                                                                active_pipes);
3973
3974                 /*
3975                  * According to BSpec pipe can share one dbuf slice with another
3976                  * pipes or pipe can use multiple dbufs, in both cases we
3977                  * account for other pipes only if they have exactly same mask.
3978                  * However we need to account how many slices we should enable
3979                  * in total.
3980                  */
3981                 total_slice_mask |= pipe_dbuf_slice_mask;
3982
3983                 /*
3984                  * Do not account pipes using other slice sets
3985                  * luckily as of current BSpec slice sets do not partially
3986                  * intersect(pipes share either same one slice or same slice set
3987                  * i.e no partial intersection), so it is enough to check for
3988                  * equality for now.
3989                  */
3990                 if (dbuf_slice_mask != pipe_dbuf_slice_mask)
3991                         continue;
3992
3993                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3994
3995                 total_width_in_range += hdisplay;
3996
3997                 if (pipe < for_pipe)
3998                         width_before_pipe_in_range += hdisplay;
3999                 else if (pipe == for_pipe)
4000                         pipe_width = hdisplay;
4001         }
4002
4003         /*
4004          * FIXME: For now we always enable slice S1 as per
4005          * the Bspec display initialization sequence.
4006          */
4007         intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);
4008
4009         start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
4010         end = ddb_range_size *
4011                 (width_before_pipe_in_range + pipe_width) / total_width_in_range;
4012
4013         alloc->start = offset + start;
4014         alloc->end = offset + end;
4015
4016         DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
4017                       alloc->start, alloc->end);
4018         DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
4019                       intel_state->enabled_dbuf_slices_mask,
4020                       INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4021 }
4022
4023 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4024                                  int width, const struct drm_format_info *format,
4025                                  u64 modifier, unsigned int rotation,
4026                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
4027                                  int color_plane);
4028 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4029                                  int level,
4030                                  unsigned int latency,
4031                                  const struct skl_wm_params *wp,
4032                                  const struct skl_wm_level *result_prev,
4033                                  struct skl_wm_level *result /* out */);
4034
4035 static unsigned int
4036 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4037                       int num_active)
4038 {
4039         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4040         int level, max_level = ilk_wm_max_level(dev_priv);
4041         struct skl_wm_level wm = {};
4042         int ret, min_ddb_alloc = 0;
4043         struct skl_wm_params wp;
4044
4045         ret = skl_compute_wm_params(crtc_state, 256,
4046                                     drm_format_info(DRM_FORMAT_ARGB8888),
4047                                     DRM_FORMAT_MOD_LINEAR,
4048                                     DRM_MODE_ROTATE_0,
4049                                     crtc_state->pixel_rate, &wp, 0);
4050         drm_WARN_ON(&dev_priv->drm, ret);
4051
4052         for (level = 0; level <= max_level; level++) {
4053                 unsigned int latency = dev_priv->wm.skl_latency[level];
4054
4055                 skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4056                 if (wm.min_ddb_alloc == U16_MAX)
4057                         break;
4058
4059                 min_ddb_alloc = wm.min_ddb_alloc;
4060         }
4061
4062         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4063 }
4064
4065 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4066                                        struct skl_ddb_entry *entry, u32 reg)
4067 {
4068
4069         entry->start = reg & DDB_ENTRY_MASK;
4070         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4071
4072         if (entry->end)
4073                 entry->end += 1;
4074 }
4075
4076 static void
4077 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4078                            const enum pipe pipe,
4079                            const enum plane_id plane_id,
4080                            struct skl_ddb_entry *ddb_y,
4081                            struct skl_ddb_entry *ddb_uv)
4082 {
4083         u32 val, val2;
4084         u32 fourcc = 0;
4085
4086         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4087         if (plane_id == PLANE_CURSOR) {
4088                 val = I915_READ(CUR_BUF_CFG(pipe));
4089                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4090                 return;
4091         }
4092
4093         val = I915_READ(PLANE_CTL(pipe, plane_id));
4094
4095         /* No DDB allocated for disabled planes */
4096         if (val & PLANE_CTL_ENABLE)
4097                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4098                                               val & PLANE_CTL_ORDER_RGBX,
4099                                               val & PLANE_CTL_ALPHA_MASK);
4100
4101         if (INTEL_GEN(dev_priv) >= 11) {
4102                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4103                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4104         } else {
4105                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4106                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4107
4108                 if (fourcc &&
4109                     drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4110                         swap(val, val2);
4111
4112                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4113                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4114         }
4115 }
4116
4117 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4118                                struct skl_ddb_entry *ddb_y,
4119                                struct skl_ddb_entry *ddb_uv)
4120 {
4121         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4122         enum intel_display_power_domain power_domain;
4123         enum pipe pipe = crtc->pipe;
4124         intel_wakeref_t wakeref;
4125         enum plane_id plane_id;
4126
4127         power_domain = POWER_DOMAIN_PIPE(pipe);
4128         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4129         if (!wakeref)
4130                 return;
4131
4132         for_each_plane_id_on_crtc(crtc, plane_id)
4133                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4134                                            plane_id,
4135                                            &ddb_y[plane_id],
4136                                            &ddb_uv[plane_id]);
4137
4138         intel_display_power_put(dev_priv, power_domain, wakeref);
4139 }
4140
4141 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4142 {
4143         dev_priv->enabled_dbuf_slices_mask =
4144                                 intel_enabled_dbuf_slices_mask(dev_priv);
4145 }
4146
4147 /*
4148  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4149  * The bspec defines downscale amount as:
4150  *
4151  * """
4152  * Horizontal down scale amount = maximum[1, Horizontal source size /
4153  *                                           Horizontal destination size]
4154  * Vertical down scale amount = maximum[1, Vertical source size /
4155  *                                         Vertical destination size]
4156  * Total down scale amount = Horizontal down scale amount *
4157  *                           Vertical down scale amount
4158  * """
4159  *
4160  * Return value is provided in 16.16 fixed point form to retain fractional part.
4161  * Caller should take care of dividing & rounding off the value.
4162  */
4163 static uint_fixed_16_16_t
4164 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4165                            const struct intel_plane_state *plane_state)
4166 {
4167         u32 src_w, src_h, dst_w, dst_h;
4168         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4169         uint_fixed_16_16_t downscale_h, downscale_w;
4170
4171         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4172                 return u32_to_fixed16(0);
4173
4174         /*
4175          * Src coordinates are already rotated by 270 degrees for
4176          * the 90/270 degree plane rotation cases (to match the
4177          * GTT mapping), hence no need to account for rotation here.
4178          *
4179          * n.b., src is 16.16 fixed point, dst is whole integer.
4180          */
4181         src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4182         src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4183         dst_w = drm_rect_width(&plane_state->uapi.dst);
4184         dst_h = drm_rect_height(&plane_state->uapi.dst);
4185
4186         fp_w_ratio = div_fixed16(src_w, dst_w);
4187         fp_h_ratio = div_fixed16(src_h, dst_h);
4188         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4189         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4190
4191         return mul_fixed16(downscale_w, downscale_h);
4192 }
4193
4194 struct dbuf_slice_conf_entry {
4195         u8 active_pipes;
4196         u8 dbuf_mask[I915_MAX_PIPES];
4197 };
4198
4199 /*
4200  * Table taken from Bspec 12716
4201  * Pipes do have some preferred DBuf slice affinity,
4202  * plus there are some hardcoded requirements on how
4203  * those should be distributed for multipipe scenarios.
4204  * For more DBuf slices algorithm can get even more messy
4205  * and less readable, so decided to use a table almost
4206  * as is from BSpec itself - that way it is at least easier
4207  * to compare, change and check.
4208  */
4209 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4210 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4211 {
4212         {
4213                 .active_pipes = BIT(PIPE_A),
4214                 .dbuf_mask = {
4215                         [PIPE_A] = BIT(DBUF_S1),
4216                 },
4217         },
4218         {
4219                 .active_pipes = BIT(PIPE_B),
4220                 .dbuf_mask = {
4221                         [PIPE_B] = BIT(DBUF_S1),
4222                 },
4223         },
4224         {
4225                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4226                 .dbuf_mask = {
4227                         [PIPE_A] = BIT(DBUF_S1),
4228                         [PIPE_B] = BIT(DBUF_S2),
4229                 },
4230         },
4231         {
4232                 .active_pipes = BIT(PIPE_C),
4233                 .dbuf_mask = {
4234                         [PIPE_C] = BIT(DBUF_S2),
4235                 },
4236         },
4237         {
4238                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4239                 .dbuf_mask = {
4240                         [PIPE_A] = BIT(DBUF_S1),
4241                         [PIPE_C] = BIT(DBUF_S2),
4242                 },
4243         },
4244         {
4245                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4246                 .dbuf_mask = {
4247                         [PIPE_B] = BIT(DBUF_S1),
4248                         [PIPE_C] = BIT(DBUF_S2),
4249                 },
4250         },
4251         {
4252                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4253                 .dbuf_mask = {
4254                         [PIPE_A] = BIT(DBUF_S1),
4255                         [PIPE_B] = BIT(DBUF_S1),
4256                         [PIPE_C] = BIT(DBUF_S2),
4257                 },
4258         },
4259         {}
4260 };
4261
4262 /*
4263  * Table taken from Bspec 49255
4264  * Pipes do have some preferred DBuf slice affinity,
4265  * plus there are some hardcoded requirements on how
4266  * those should be distributed for multipipe scenarios.
4267  * For more DBuf slices algorithm can get even more messy
4268  * and less readable, so decided to use a table almost
4269  * as is from BSpec itself - that way it is at least easier
4270  * to compare, change and check.
4271  */
4272 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4273 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4274 {
4275         {
4276                 .active_pipes = BIT(PIPE_A),
4277                 .dbuf_mask = {
4278                         [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4279                 },
4280         },
4281         {
4282                 .active_pipes = BIT(PIPE_B),
4283                 .dbuf_mask = {
4284                         [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4285                 },
4286         },
4287         {
4288                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4289                 .dbuf_mask = {
4290                         [PIPE_A] = BIT(DBUF_S2),
4291                         [PIPE_B] = BIT(DBUF_S1),
4292                 },
4293         },
4294         {
4295                 .active_pipes = BIT(PIPE_C),
4296                 .dbuf_mask = {
4297                         [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4298                 },
4299         },
4300         {
4301                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4302                 .dbuf_mask = {
4303                         [PIPE_A] = BIT(DBUF_S1),
4304                         [PIPE_C] = BIT(DBUF_S2),
4305                 },
4306         },
4307         {
4308                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4309                 .dbuf_mask = {
4310                         [PIPE_B] = BIT(DBUF_S1),
4311                         [PIPE_C] = BIT(DBUF_S2),
4312                 },
4313         },
4314         {
4315                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4316                 .dbuf_mask = {
4317                         [PIPE_A] = BIT(DBUF_S1),
4318                         [PIPE_B] = BIT(DBUF_S1),
4319                         [PIPE_C] = BIT(DBUF_S2),
4320                 },
4321         },
4322         {
4323                 .active_pipes = BIT(PIPE_D),
4324                 .dbuf_mask = {
4325                         [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4326                 },
4327         },
4328         {
4329                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4330                 .dbuf_mask = {
4331                         [PIPE_A] = BIT(DBUF_S1),
4332                         [PIPE_D] = BIT(DBUF_S2),
4333                 },
4334         },
4335         {
4336                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4337                 .dbuf_mask = {
4338                         [PIPE_B] = BIT(DBUF_S1),
4339                         [PIPE_D] = BIT(DBUF_S2),
4340                 },
4341         },
4342         {
4343                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4344                 .dbuf_mask = {
4345                         [PIPE_A] = BIT(DBUF_S1),
4346                         [PIPE_B] = BIT(DBUF_S1),
4347                         [PIPE_D] = BIT(DBUF_S2),
4348                 },
4349         },
4350         {
4351                 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4352                 .dbuf_mask = {
4353                         [PIPE_C] = BIT(DBUF_S1),
4354                         [PIPE_D] = BIT(DBUF_S2),
4355                 },
4356         },
4357         {
4358                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4359                 .dbuf_mask = {
4360                         [PIPE_A] = BIT(DBUF_S1),
4361                         [PIPE_C] = BIT(DBUF_S2),
4362                         [PIPE_D] = BIT(DBUF_S2),
4363                 },
4364         },
4365         {
4366                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4367                 .dbuf_mask = {
4368                         [PIPE_B] = BIT(DBUF_S1),
4369                         [PIPE_C] = BIT(DBUF_S2),
4370                         [PIPE_D] = BIT(DBUF_S2),
4371                 },
4372         },
4373         {
4374                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4375                 .dbuf_mask = {
4376                         [PIPE_A] = BIT(DBUF_S1),
4377                         [PIPE_B] = BIT(DBUF_S1),
4378                         [PIPE_C] = BIT(DBUF_S2),
4379                         [PIPE_D] = BIT(DBUF_S2),
4380                 },
4381         },
4382         {}
4383 };
4384
4385 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4386                               const struct dbuf_slice_conf_entry *dbuf_slices)
4387 {
4388         int i;
4389
4390         for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4391                 if (dbuf_slices[i].active_pipes == active_pipes)
4392                         return dbuf_slices[i].dbuf_mask[pipe];
4393         }
4394         return 0;
4395 }
4396
4397 /*
4398  * This function finds an entry with same enabled pipe configuration and
4399  * returns correspondent DBuf slice mask as stated in BSpec for particular
4400  * platform.
4401  */
4402 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4403 {
4404         /*
4405          * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4406          * required calculating "pipe ratio" in order to determine
4407          * if one or two slices can be used for single pipe configurations
4408          * as additional constraint to the existing table.
4409          * However based on recent info, it should be not "pipe ratio"
4410          * but rather ratio between pixel_rate and cdclk with additional
4411          * constants, so for now we are using only table until this is
4412          * clarified. Also this is the reason why crtc_state param is
4413          * still here - we will need it once those additional constraints
4414          * pop up.
4415          */
4416         return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4417 }
4418
4419 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4420 {
4421         return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4422 }
4423
4424 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4425                                   u8 active_pipes)
4426 {
4427         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4428         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4429         enum pipe pipe = crtc->pipe;
4430
4431         if (IS_GEN(dev_priv, 12))
4432                 return tgl_compute_dbuf_slices(pipe, active_pipes);
4433         else if (IS_GEN(dev_priv, 11))
4434                 return icl_compute_dbuf_slices(pipe, active_pipes);
4435         /*
4436          * For anything else just return one slice yet.
4437          * Should be extended for other platforms.
4438          */
4439         return BIT(DBUF_S1);
4440 }
4441
4442 static u64
4443 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4444                              const struct intel_plane_state *plane_state,
4445                              int color_plane)
4446 {
4447         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4448         const struct drm_framebuffer *fb = plane_state->hw.fb;
4449         u32 data_rate;
4450         u32 width = 0, height = 0;
4451         uint_fixed_16_16_t down_scale_amount;
4452         u64 rate;
4453
4454         if (!plane_state->uapi.visible)
4455                 return 0;
4456
4457         if (plane->id == PLANE_CURSOR)
4458                 return 0;
4459
4460         if (color_plane == 1 &&
4461             !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4462                 return 0;
4463
4464         /*
4465          * Src coordinates are already rotated by 270 degrees for
4466          * the 90/270 degree plane rotation cases (to match the
4467          * GTT mapping), hence no need to account for rotation here.
4468          */
4469         width = drm_rect_width(&plane_state->uapi.src) >> 16;
4470         height = drm_rect_height(&plane_state->uapi.src) >> 16;
4471
4472         /* UV plane does 1/2 pixel sub-sampling */
4473         if (color_plane == 1) {
4474                 width /= 2;
4475                 height /= 2;
4476         }
4477
4478         data_rate = width * height;
4479
4480         down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4481
4482         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4483
4484         rate *= fb->format->cpp[color_plane];
4485         return rate;
4486 }
4487
4488 static u64
4489 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4490                                  u64 *plane_data_rate,
4491                                  u64 *uv_plane_data_rate)
4492 {
4493         struct intel_plane *plane;
4494         const struct intel_plane_state *plane_state;
4495         u64 total_data_rate = 0;
4496
4497         /* Calculate and cache data rate for each plane */
4498         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4499                 enum plane_id plane_id = plane->id;
4500                 u64 rate;
4501
4502                 /* packed/y */
4503                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4504                 plane_data_rate[plane_id] = rate;
4505                 total_data_rate += rate;
4506
4507                 /* uv-plane */
4508                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4509                 uv_plane_data_rate[plane_id] = rate;
4510                 total_data_rate += rate;
4511         }
4512
4513         return total_data_rate;
4514 }
4515
4516 static u64
4517 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4518                                  u64 *plane_data_rate)
4519 {
4520         struct intel_plane *plane;
4521         const struct intel_plane_state *plane_state;
4522         u64 total_data_rate = 0;
4523
4524         /* Calculate and cache data rate for each plane */
4525         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4526                 enum plane_id plane_id = plane->id;
4527                 u64 rate;
4528
4529                 if (!plane_state->planar_linked_plane) {
4530                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4531                         plane_data_rate[plane_id] = rate;
4532                         total_data_rate += rate;
4533                 } else {
4534                         enum plane_id y_plane_id;
4535
4536                         /*
4537                          * The slave plane might not iterate in
4538                          * intel_atomic_crtc_state_for_each_plane_state(),
4539                          * and needs the master plane state which may be
4540                          * NULL if we try get_new_plane_state(), so we
4541                          * always calculate from the master.
4542                          */
4543                         if (plane_state->planar_slave)
4544                                 continue;
4545
4546                         /* Y plane rate is calculated on the slave */
4547                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4548                         y_plane_id = plane_state->planar_linked_plane->id;
4549                         plane_data_rate[y_plane_id] = rate;
4550                         total_data_rate += rate;
4551
4552                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4553                         plane_data_rate[plane_id] = rate;
4554                         total_data_rate += rate;
4555                 }
4556         }
4557
4558         return total_data_rate;
4559 }
4560
4561 static int
4562 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4563 {
4564         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4565         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4566         struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4567         u16 alloc_size, start = 0;
4568         u16 total[I915_MAX_PLANES] = {};
4569         u16 uv_total[I915_MAX_PLANES] = {};
4570         u64 total_data_rate;
4571         enum plane_id plane_id;
4572         int num_active;
4573         u64 plane_data_rate[I915_MAX_PLANES] = {};
4574         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4575         u32 blocks;
4576         int level;
4577
4578         /* Clear the partitioning for disabled planes. */
4579         memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4580         memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4581
4582         if (!crtc_state->hw.active) {
4583                 alloc->start = alloc->end = 0;
4584                 return 0;
4585         }
4586
4587         if (INTEL_GEN(dev_priv) >= 11)
4588                 total_data_rate =
4589                         icl_get_total_relative_data_rate(crtc_state,
4590                                                          plane_data_rate);
4591         else
4592                 total_data_rate =
4593                         skl_get_total_relative_data_rate(crtc_state,
4594                                                          plane_data_rate,
4595                                                          uv_plane_data_rate);
4596
4597
4598         skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4599                                            alloc, &num_active);
4600         alloc_size = skl_ddb_entry_size(alloc);
4601         if (alloc_size == 0)
4602                 return 0;
4603
4604         /* Allocate fixed number of blocks for cursor. */
4605         total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4606         alloc_size -= total[PLANE_CURSOR];
4607         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4608                 alloc->end - total[PLANE_CURSOR];
4609         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4610
4611         if (total_data_rate == 0)
4612                 return 0;
4613
4614         /*
4615          * Find the highest watermark level for which we can satisfy the block
4616          * requirement of active planes.
4617          */
4618         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4619                 blocks = 0;
4620                 for_each_plane_id_on_crtc(crtc, plane_id) {
4621                         const struct skl_plane_wm *wm =
4622                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4623
4624                         if (plane_id == PLANE_CURSOR) {
4625                                 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4626                                         drm_WARN_ON(&dev_priv->drm,
4627                                                     wm->wm[level].min_ddb_alloc != U16_MAX);
4628                                         blocks = U32_MAX;
4629                                         break;
4630                                 }
4631                                 continue;
4632                         }
4633
4634                         blocks += wm->wm[level].min_ddb_alloc;
4635                         blocks += wm->uv_wm[level].min_ddb_alloc;
4636                 }
4637
4638                 if (blocks <= alloc_size) {
4639                         alloc_size -= blocks;
4640                         break;
4641                 }
4642         }
4643
4644         if (level < 0) {
4645                 drm_dbg_kms(&dev_priv->drm,
4646                             "Requested display configuration exceeds system DDB limitations");
4647                 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4648                             blocks, alloc_size);
4649                 return -EINVAL;
4650         }
4651
4652         /*
4653          * Grant each plane the blocks it requires at the highest achievable
4654          * watermark level, plus an extra share of the leftover blocks
4655          * proportional to its relative data rate.
4656          */
4657         for_each_plane_id_on_crtc(crtc, plane_id) {
4658                 const struct skl_plane_wm *wm =
4659                         &crtc_state->wm.skl.optimal.planes[plane_id];
4660                 u64 rate;
4661                 u16 extra;
4662
4663                 if (plane_id == PLANE_CURSOR)
4664                         continue;
4665
4666                 /*
4667                  * We've accounted for all active planes; remaining planes are
4668                  * all disabled.
4669                  */
4670                 if (total_data_rate == 0)
4671                         break;
4672
4673                 rate = plane_data_rate[plane_id];
4674                 extra = min_t(u16, alloc_size,
4675                               DIV64_U64_ROUND_UP(alloc_size * rate,
4676                                                  total_data_rate));
4677                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4678                 alloc_size -= extra;
4679                 total_data_rate -= rate;
4680
4681                 if (total_data_rate == 0)
4682                         break;
4683
4684                 rate = uv_plane_data_rate[plane_id];
4685                 extra = min_t(u16, alloc_size,
4686                               DIV64_U64_ROUND_UP(alloc_size * rate,
4687                                                  total_data_rate));
4688                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4689                 alloc_size -= extra;
4690                 total_data_rate -= rate;
4691         }
4692         drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4693
4694         /* Set the actual DDB start/end points for each plane */
4695         start = alloc->start;
4696         for_each_plane_id_on_crtc(crtc, plane_id) {
4697                 struct skl_ddb_entry *plane_alloc =
4698                         &crtc_state->wm.skl.plane_ddb_y[plane_id];
4699                 struct skl_ddb_entry *uv_plane_alloc =
4700                         &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4701
4702                 if (plane_id == PLANE_CURSOR)
4703                         continue;
4704
4705                 /* Gen11+ uses a separate plane for UV watermarks */
4706                 drm_WARN_ON(&dev_priv->drm,
4707                             INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4708
4709                 /* Leave disabled planes at (0,0) */
4710                 if (total[plane_id]) {
4711                         plane_alloc->start = start;
4712                         start += total[plane_id];
4713                         plane_alloc->end = start;
4714                 }
4715
4716                 if (uv_total[plane_id]) {
4717                         uv_plane_alloc->start = start;
4718                         start += uv_total[plane_id];
4719                         uv_plane_alloc->end = start;
4720                 }
4721         }
4722
4723         /*
4724          * When we calculated watermark values we didn't know how high
4725          * of a level we'd actually be able to hit, so we just marked
4726          * all levels as "enabled."  Go back now and disable the ones
4727          * that aren't actually possible.
4728          */
4729         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4730                 for_each_plane_id_on_crtc(crtc, plane_id) {
4731                         struct skl_plane_wm *wm =
4732                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4733
4734                         /*
4735                          * We only disable the watermarks for each plane if
4736                          * they exceed the ddb allocation of said plane. This
4737                          * is done so that we don't end up touching cursor
4738                          * watermarks needlessly when some other plane reduces
4739                          * our max possible watermark level.
4740                          *
4741                          * Bspec has this to say about the PLANE_WM enable bit:
4742                          * "All the watermarks at this level for all enabled
4743                          *  planes must be enabled before the level will be used."
4744                          * So this is actually safe to do.
4745                          */
4746                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4747                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4748                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4749
4750                         /*
4751                          * Wa_1408961008:icl, ehl
4752                          * Underruns with WM1+ disabled
4753                          */
4754                         if (IS_GEN(dev_priv, 11) &&
4755                             level == 1 && wm->wm[0].plane_en) {
4756                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4757                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4758                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4759                         }
4760                 }
4761         }
4762
4763         /*
4764          * Go back and disable the transition watermark if it turns out we
4765          * don't have enough DDB blocks for it.
4766          */
4767         for_each_plane_id_on_crtc(crtc, plane_id) {
4768                 struct skl_plane_wm *wm =
4769                         &crtc_state->wm.skl.optimal.planes[plane_id];
4770
4771                 if (wm->trans_wm.plane_res_b >= total[plane_id])
4772                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4773         }
4774
4775         return 0;
4776 }
4777
4778 /*
4779  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4780  * for the read latency) and cpp should always be <= 8, so that
4781  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4782  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4783 */
4784 static uint_fixed_16_16_t
4785 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4786                u8 cpp, u32 latency, u32 dbuf_block_size)
4787 {
4788         u32 wm_intermediate_val;
4789         uint_fixed_16_16_t ret;
4790
4791         if (latency == 0)
4792                 return FP_16_16_MAX;
4793
4794         wm_intermediate_val = latency * pixel_rate * cpp;
4795         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4796
4797         if (INTEL_GEN(dev_priv) >= 10)
4798                 ret = add_fixed16_u32(ret, 1);
4799
4800         return ret;
4801 }
4802
4803 static uint_fixed_16_16_t
4804 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4805                uint_fixed_16_16_t plane_blocks_per_line)
4806 {
4807         u32 wm_intermediate_val;
4808         uint_fixed_16_16_t ret;
4809
4810         if (latency == 0)
4811                 return FP_16_16_MAX;
4812
4813         wm_intermediate_val = latency * pixel_rate;
4814         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4815                                            pipe_htotal * 1000);
4816         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4817         return ret;
4818 }
4819
4820 static uint_fixed_16_16_t
4821 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4822 {
4823         u32 pixel_rate;
4824         u32 crtc_htotal;
4825         uint_fixed_16_16_t linetime_us;
4826
4827         if (!crtc_state->hw.active)
4828                 return u32_to_fixed16(0);
4829
4830         pixel_rate = crtc_state->pixel_rate;
4831
4832         if (WARN_ON(pixel_rate == 0))
4833                 return u32_to_fixed16(0);
4834
4835         crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4836         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4837
4838         return linetime_us;
4839 }
4840
4841 static u32
4842 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4843                               const struct intel_plane_state *plane_state)
4844 {
4845         u64 adjusted_pixel_rate;
4846         uint_fixed_16_16_t downscale_amount;
4847
4848         /* Shouldn't reach here on disabled planes... */
4849         if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4850                 return 0;
4851
4852         /*
4853          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4854          * with additional adjustments for plane-specific scaling.
4855          */
4856         adjusted_pixel_rate = crtc_state->pixel_rate;
4857         downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4858
4859         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4860                                             downscale_amount);
4861 }
4862
4863 static int
4864 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4865                       int width, const struct drm_format_info *format,
4866                       u64 modifier, unsigned int rotation,
4867                       u32 plane_pixel_rate, struct skl_wm_params *wp,
4868                       int color_plane)
4869 {
4870         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4871         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4872         u32 interm_pbpl;
4873
4874         /* only planar format has two planes */
4875         if (color_plane == 1 &&
4876             !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4877                 drm_dbg_kms(&dev_priv->drm,
4878                             "Non planar format have single plane\n");
4879                 return -EINVAL;
4880         }
4881
4882         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4883                       modifier == I915_FORMAT_MOD_Yf_TILED ||
4884                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4885                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4886         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4887         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4888                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4889         wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4890
4891         wp->width = width;
4892         if (color_plane == 1 && wp->is_planar)
4893                 wp->width /= 2;
4894
4895         wp->cpp = format->cpp[color_plane];
4896         wp->plane_pixel_rate = plane_pixel_rate;
4897
4898         if (INTEL_GEN(dev_priv) >= 11 &&
4899             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4900                 wp->dbuf_block_size = 256;
4901         else
4902                 wp->dbuf_block_size = 512;
4903
4904         if (drm_rotation_90_or_270(rotation)) {
4905                 switch (wp->cpp) {
4906                 case 1:
4907                         wp->y_min_scanlines = 16;
4908                         break;
4909                 case 2:
4910                         wp->y_min_scanlines = 8;
4911                         break;
4912                 case 4:
4913                         wp->y_min_scanlines = 4;
4914                         break;
4915                 default:
4916                         MISSING_CASE(wp->cpp);
4917                         return -EINVAL;
4918                 }
4919         } else {
4920                 wp->y_min_scanlines = 4;
4921         }
4922
4923         if (skl_needs_memory_bw_wa(dev_priv))
4924                 wp->y_min_scanlines *= 2;
4925
4926         wp->plane_bytes_per_line = wp->width * wp->cpp;
4927         if (wp->y_tiled) {
4928                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4929                                            wp->y_min_scanlines,
4930                                            wp->dbuf_block_size);
4931
4932                 if (INTEL_GEN(dev_priv) >= 10)
4933                         interm_pbpl++;
4934
4935                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4936                                                         wp->y_min_scanlines);
4937         } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4938                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4939                                            wp->dbuf_block_size);
4940                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4941         } else {
4942                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4943                                            wp->dbuf_block_size) + 1;
4944                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4945         }
4946
4947         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4948                                              wp->plane_blocks_per_line);
4949
4950         wp->linetime_us = fixed16_to_u32_round_up(
4951                                         intel_get_linetime_us(crtc_state));
4952
4953         return 0;
4954 }
4955
4956 static int
4957 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4958                             const struct intel_plane_state *plane_state,
4959                             struct skl_wm_params *wp, int color_plane)
4960 {
4961         const struct drm_framebuffer *fb = plane_state->hw.fb;
4962         int width;
4963
4964         /*
4965          * Src coordinates are already rotated by 270 degrees for
4966          * the 90/270 degree plane rotation cases (to match the
4967          * GTT mapping), hence no need to account for rotation here.
4968          */
4969         width = drm_rect_width(&plane_state->uapi.src) >> 16;
4970
4971         return skl_compute_wm_params(crtc_state, width,
4972                                      fb->format, fb->modifier,
4973                                      plane_state->hw.rotation,
4974                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4975                                      wp, color_plane);
4976 }
4977
4978 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4979 {
4980         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4981                 return true;
4982
4983         /* The number of lines are ignored for the level 0 watermark. */
4984         return level > 0;
4985 }
4986
4987 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4988                                  int level,
4989                                  unsigned int latency,
4990                                  const struct skl_wm_params *wp,
4991                                  const struct skl_wm_level *result_prev,
4992                                  struct skl_wm_level *result /* out */)
4993 {
4994         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4995         uint_fixed_16_16_t method1, method2;
4996         uint_fixed_16_16_t selected_result;
4997         u32 res_blocks, res_lines, min_ddb_alloc = 0;
4998
4999         if (latency == 0) {
5000                 /* reject it */
5001                 result->min_ddb_alloc = U16_MAX;
5002                 return;
5003         }
5004
5005         /*
5006          * WaIncreaseLatencyIPCEnabled: kbl,cfl
5007          * Display WA #1141: kbl,cfl
5008          */
5009         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
5010             dev_priv->ipc_enabled)
5011                 latency += 4;
5012
5013         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5014                 latency += 15;
5015
5016         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5017                                  wp->cpp, latency, wp->dbuf_block_size);
5018         method2 = skl_wm_method2(wp->plane_pixel_rate,
5019                                  crtc_state->hw.adjusted_mode.crtc_htotal,
5020                                  latency,
5021                                  wp->plane_blocks_per_line);
5022
5023         if (wp->y_tiled) {
5024                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5025         } else {
5026                 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5027                      wp->dbuf_block_size < 1) &&
5028                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5029                         selected_result = method2;
5030                 } else if (latency >= wp->linetime_us) {
5031                         if (IS_GEN(dev_priv, 9) &&
5032                             !IS_GEMINILAKE(dev_priv))
5033                                 selected_result = min_fixed16(method1, method2);
5034                         else
5035                                 selected_result = method2;
5036                 } else {
5037                         selected_result = method1;
5038                 }
5039         }
5040
5041         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5042         res_lines = div_round_up_fixed16(selected_result,
5043                                          wp->plane_blocks_per_line);
5044
5045         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5046                 /* Display WA #1125: skl,bxt,kbl */
5047                 if (level == 0 && wp->rc_surface)
5048                         res_blocks +=
5049                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
5050
5051                 /* Display WA #1126: skl,bxt,kbl */
5052                 if (level >= 1 && level <= 7) {
5053                         if (wp->y_tiled) {
5054                                 res_blocks +=
5055                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
5056                                 res_lines += wp->y_min_scanlines;
5057                         } else {
5058                                 res_blocks++;
5059                         }
5060
5061                         /*
5062                          * Make sure result blocks for higher latency levels are
5063                          * atleast as high as level below the current level.
5064                          * Assumption in DDB algorithm optimization for special
5065                          * cases. Also covers Display WA #1125 for RC.
5066                          */
5067                         if (result_prev->plane_res_b > res_blocks)
5068                                 res_blocks = result_prev->plane_res_b;
5069                 }
5070         }
5071
5072         if (INTEL_GEN(dev_priv) >= 11) {
5073                 if (wp->y_tiled) {
5074                         int extra_lines;
5075
5076                         if (res_lines % wp->y_min_scanlines == 0)
5077                                 extra_lines = wp->y_min_scanlines;
5078                         else
5079                                 extra_lines = wp->y_min_scanlines * 2 -
5080                                         res_lines % wp->y_min_scanlines;
5081
5082                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5083                                                                  wp->plane_blocks_per_line);
5084                 } else {
5085                         min_ddb_alloc = res_blocks +
5086                                 DIV_ROUND_UP(res_blocks, 10);
5087                 }
5088         }
5089
5090         if (!skl_wm_has_lines(dev_priv, level))
5091                 res_lines = 0;
5092
5093         if (res_lines > 31) {
5094                 /* reject it */
5095                 result->min_ddb_alloc = U16_MAX;
5096                 return;
5097         }
5098
5099         /*
5100          * If res_lines is valid, assume we can use this watermark level
5101          * for now.  We'll come back and disable it after we calculate the
5102          * DDB allocation if it turns out we don't actually have enough
5103          * blocks to satisfy it.
5104          */
5105         result->plane_res_b = res_blocks;
5106         result->plane_res_l = res_lines;
5107         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5108         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5109         result->plane_en = true;
5110 }
5111
5112 static void
5113 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5114                       const struct skl_wm_params *wm_params,
5115                       struct skl_wm_level *levels)
5116 {
5117         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5118         int level, max_level = ilk_wm_max_level(dev_priv);
5119         struct skl_wm_level *result_prev = &levels[0];
5120
5121         for (level = 0; level <= max_level; level++) {
5122                 struct skl_wm_level *result = &levels[level];
5123                 unsigned int latency = dev_priv->wm.skl_latency[level];
5124
5125                 skl_compute_plane_wm(crtc_state, level, latency,
5126                                      wm_params, result_prev, result);
5127
5128                 result_prev = result;
5129         }
5130 }
5131
5132 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5133                                       const struct skl_wm_params *wp,
5134                                       struct skl_plane_wm *wm)
5135 {
5136         struct drm_device *dev = crtc_state->uapi.crtc->dev;
5137         const struct drm_i915_private *dev_priv = to_i915(dev);
5138         u16 trans_min, trans_amount, trans_y_tile_min;
5139         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5140
5141         /* Transition WM don't make any sense if ipc is disabled */
5142         if (!dev_priv->ipc_enabled)
5143                 return;
5144
5145         /*
5146          * WaDisableTWM:skl,kbl,cfl,bxt
5147          * Transition WM are not recommended by HW team for GEN9
5148          */
5149         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5150                 return;
5151
5152         if (INTEL_GEN(dev_priv) >= 11)
5153                 trans_min = 4;
5154         else
5155                 trans_min = 14;
5156
5157         /* Display WA #1140: glk,cnl */
5158         if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5159                 trans_amount = 0;
5160         else
5161                 trans_amount = 10; /* This is configurable amount */
5162
5163         trans_offset_b = trans_min + trans_amount;
5164
5165         /*
5166          * The spec asks for Selected Result Blocks for wm0 (the real value),
5167          * not Result Blocks (the integer value). Pay attention to the capital
5168          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5169          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5170          * and since we later will have to get the ceiling of the sum in the
5171          * transition watermarks calculation, we can just pretend Selected
5172          * Result Blocks is Result Blocks minus 1 and it should work for the
5173          * current platforms.
5174          */
5175         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5176
5177         if (wp->y_tiled) {
5178                 trans_y_tile_min =
5179                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5180                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5181                                 trans_offset_b;
5182         } else {
5183                 res_blocks = wm0_sel_res_b + trans_offset_b;
5184
5185                 /* WA BUG:1938466 add one block for non y-tile planes */
5186                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
5187                         res_blocks += 1;
5188         }
5189
5190         /*
5191          * Just assume we can enable the transition watermark.  After
5192          * computing the DDB we'll come back and disable it if that
5193          * assumption turns out to be false.
5194          */
5195         wm->trans_wm.plane_res_b = res_blocks + 1;
5196         wm->trans_wm.plane_en = true;
5197 }
5198
5199 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5200                                      const struct intel_plane_state *plane_state,
5201                                      enum plane_id plane_id, int color_plane)
5202 {
5203         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5204         struct skl_wm_params wm_params;
5205         int ret;
5206
5207         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5208                                           &wm_params, color_plane);
5209         if (ret)
5210                 return ret;
5211
5212         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5213         skl_compute_transition_wm(crtc_state, &wm_params, wm);
5214
5215         return 0;
5216 }
5217
5218 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5219                                  const struct intel_plane_state *plane_state,
5220                                  enum plane_id plane_id)
5221 {
5222         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5223         struct skl_wm_params wm_params;
5224         int ret;
5225
5226         wm->is_planar = true;
5227
5228         /* uv plane watermarks must also be validated for NV12/Planar */
5229         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5230                                           &wm_params, 1);
5231         if (ret)
5232                 return ret;
5233
5234         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5235
5236         return 0;
5237 }
5238
5239 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5240                               const struct intel_plane_state *plane_state)
5241 {
5242         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5243         const struct drm_framebuffer *fb = plane_state->hw.fb;
5244         enum plane_id plane_id = plane->id;
5245         int ret;
5246
5247         if (!intel_wm_plane_visible(crtc_state, plane_state))
5248                 return 0;
5249
5250         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5251                                         plane_id, 0);
5252         if (ret)
5253                 return ret;
5254
5255         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5256                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5257                                             plane_id);
5258                 if (ret)
5259                         return ret;
5260         }
5261
5262         return 0;
5263 }
5264
5265 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5266                               const struct intel_plane_state *plane_state)
5267 {
5268         enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5269         int ret;
5270
5271         /* Watermarks calculated in master */
5272         if (plane_state->planar_slave)
5273                 return 0;
5274
5275         if (plane_state->planar_linked_plane) {
5276                 const struct drm_framebuffer *fb = plane_state->hw.fb;
5277                 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5278
5279                 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5280                 WARN_ON(!fb->format->is_yuv ||
5281                         fb->format->num_planes == 1);
5282
5283                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5284                                                 y_plane_id, 0);
5285                 if (ret)
5286                         return ret;
5287
5288                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5289                                                 plane_id, 1);
5290                 if (ret)
5291                         return ret;
5292         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5293                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5294                                                 plane_id, 0);
5295                 if (ret)
5296                         return ret;
5297         }
5298
5299         return 0;
5300 }
5301
5302 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5303 {
5304         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5305         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5306         struct intel_plane *plane;
5307         const struct intel_plane_state *plane_state;
5308         int ret;
5309
5310         /*
5311          * We'll only calculate watermarks for planes that are actually
5312          * enabled, so make sure all other planes are set as disabled.
5313          */
5314         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5315
5316         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5317                                                      crtc_state) {
5318
5319                 if (INTEL_GEN(dev_priv) >= 11)
5320                         ret = icl_build_plane_wm(crtc_state, plane_state);
5321                 else
5322                         ret = skl_build_plane_wm(crtc_state, plane_state);
5323                 if (ret)
5324                         return ret;
5325         }
5326
5327         return 0;
5328 }
5329
5330 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5331                                 i915_reg_t reg,
5332                                 const struct skl_ddb_entry *entry)
5333 {
5334         if (entry->end)
5335                 intel_de_write_fw(dev_priv, reg,
5336                                   (entry->end - 1) << 16 | entry->start);
5337         else
5338                 intel_de_write_fw(dev_priv, reg, 0);
5339 }
5340
5341 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5342                                i915_reg_t reg,
5343                                const struct skl_wm_level *level)
5344 {
5345         u32 val = 0;
5346
5347         if (level->plane_en)
5348                 val |= PLANE_WM_EN;
5349         if (level->ignore_lines)
5350                 val |= PLANE_WM_IGNORE_LINES;
5351         val |= level->plane_res_b;
5352         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5353
5354         intel_de_write_fw(dev_priv, reg, val);
5355 }
5356
5357 void skl_write_plane_wm(struct intel_plane *plane,
5358                         const struct intel_crtc_state *crtc_state)
5359 {
5360         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5361         int level, max_level = ilk_wm_max_level(dev_priv);
5362         enum plane_id plane_id = plane->id;
5363         enum pipe pipe = plane->pipe;
5364         const struct skl_plane_wm *wm =
5365                 &crtc_state->wm.skl.optimal.planes[plane_id];
5366         const struct skl_ddb_entry *ddb_y =
5367                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5368         const struct skl_ddb_entry *ddb_uv =
5369                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5370
5371         for (level = 0; level <= max_level; level++) {
5372                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5373                                    &wm->wm[level]);
5374         }
5375         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5376                            &wm->trans_wm);
5377
5378         if (INTEL_GEN(dev_priv) >= 11) {
5379                 skl_ddb_entry_write(dev_priv,
5380                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5381                 return;
5382         }
5383
5384         if (wm->is_planar)
5385                 swap(ddb_y, ddb_uv);
5386
5387         skl_ddb_entry_write(dev_priv,
5388                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5389         skl_ddb_entry_write(dev_priv,
5390                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5391 }
5392
5393 void skl_write_cursor_wm(struct intel_plane *plane,
5394                          const struct intel_crtc_state *crtc_state)
5395 {
5396         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5397         int level, max_level = ilk_wm_max_level(dev_priv);
5398         enum plane_id plane_id = plane->id;
5399         enum pipe pipe = plane->pipe;
5400         const struct skl_plane_wm *wm =
5401                 &crtc_state->wm.skl.optimal.planes[plane_id];
5402         const struct skl_ddb_entry *ddb =
5403                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5404
5405         for (level = 0; level <= max_level; level++) {
5406                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5407                                    &wm->wm[level]);
5408         }
5409         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5410
5411         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5412 }
5413
5414 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5415                          const struct skl_wm_level *l2)
5416 {
5417         return l1->plane_en == l2->plane_en &&
5418                 l1->ignore_lines == l2->ignore_lines &&
5419                 l1->plane_res_l == l2->plane_res_l &&
5420                 l1->plane_res_b == l2->plane_res_b;
5421 }
5422
5423 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5424                                 const struct skl_plane_wm *wm1,
5425                                 const struct skl_plane_wm *wm2)
5426 {
5427         int level, max_level = ilk_wm_max_level(dev_priv);
5428
5429         for (level = 0; level <= max_level; level++) {
5430                 /*
5431                  * We don't check uv_wm as the hardware doesn't actually
5432                  * use it. It only gets used for calculating the required
5433                  * ddb allocation.
5434                  */
5435                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5436                         return false;
5437         }
5438
5439         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5440 }
5441
5442 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5443                                            const struct skl_ddb_entry *b)
5444 {
5445         return a->start < b->end && b->start < a->end;
5446 }
5447
5448 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5449                                  const struct skl_ddb_entry *entries,
5450                                  int num_entries, int ignore_idx)
5451 {
5452         int i;
5453
5454         for (i = 0; i < num_entries; i++) {
5455                 if (i != ignore_idx &&
5456                     skl_ddb_entries_overlap(ddb, &entries[i]))
5457                         return true;
5458         }
5459
5460         return false;
5461 }
5462
5463 static int
5464 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5465                             struct intel_crtc_state *new_crtc_state)
5466 {
5467         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5468         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5469         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5470         struct intel_plane *plane;
5471
5472         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5473                 struct intel_plane_state *plane_state;
5474                 enum plane_id plane_id = plane->id;
5475
5476                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5477                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5478                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5479                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5480                         continue;
5481
5482                 plane_state = intel_atomic_get_plane_state(state, plane);
5483                 if (IS_ERR(plane_state))
5484                         return PTR_ERR(plane_state);
5485
5486                 new_crtc_state->update_planes |= BIT(plane_id);
5487         }
5488
5489         return 0;
5490 }
5491
5492 static int
5493 skl_compute_ddb(struct intel_atomic_state *state)
5494 {
5495         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5496         struct intel_crtc_state *old_crtc_state;
5497         struct intel_crtc_state *new_crtc_state;
5498         struct intel_crtc *crtc;
5499         int ret, i;
5500
5501         state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5502
5503         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5504                                             new_crtc_state, i) {
5505                 ret = skl_allocate_pipe_ddb(new_crtc_state);
5506                 if (ret)
5507                         return ret;
5508
5509                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5510                                                   new_crtc_state);
5511                 if (ret)
5512                         return ret;
5513         }
5514
5515         return 0;
5516 }
5517
5518 static char enast(bool enable)
5519 {
5520         return enable ? '*' : ' ';
5521 }
5522
5523 static void
5524 skl_print_wm_changes(struct intel_atomic_state *state)
5525 {
5526         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5527         const struct intel_crtc_state *old_crtc_state;
5528         const struct intel_crtc_state *new_crtc_state;
5529         struct intel_plane *plane;
5530         struct intel_crtc *crtc;
5531         int i;
5532
5533         if (!drm_debug_enabled(DRM_UT_KMS))
5534                 return;
5535
5536         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5537                                             new_crtc_state, i) {
5538                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5539
5540                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5541                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5542
5543                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5544                         enum plane_id plane_id = plane->id;
5545                         const struct skl_ddb_entry *old, *new;
5546
5547                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5548                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5549
5550                         if (skl_ddb_entry_equal(old, new))
5551                                 continue;
5552
5553                         drm_dbg_kms(&dev_priv->drm,
5554                                     "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5555                                     plane->base.base.id, plane->base.name,
5556                                     old->start, old->end, new->start, new->end,
5557                                     skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5558                 }
5559
5560                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5561                         enum plane_id plane_id = plane->id;
5562                         const struct skl_plane_wm *old_wm, *new_wm;
5563
5564                         old_wm = &old_pipe_wm->planes[plane_id];
5565                         new_wm = &new_pipe_wm->planes[plane_id];
5566
5567                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5568                                 continue;
5569
5570                         drm_dbg_kms(&dev_priv->drm,
5571                                     "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5572                                     " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5573                                     plane->base.base.id, plane->base.name,
5574                                     enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5575                                     enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5576                                     enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5577                                     enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5578                                     enast(old_wm->trans_wm.plane_en),
5579                                     enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5580                                     enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5581                                     enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5582                                     enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5583                                     enast(new_wm->trans_wm.plane_en));
5584
5585                         drm_dbg_kms(&dev_priv->drm,
5586                                     "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5587                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5588                                     plane->base.base.id, plane->base.name,
5589                                     enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5590                                     enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5591                                     enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5592                                     enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5593                                     enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5594                                     enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5595                                     enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5596                                     enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5597                                     enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5598
5599                                     enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5600                                     enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5601                                     enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5602                                     enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5603                                     enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5604                                     enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5605                                     enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5606                                     enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5607                                     enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5608
5609                         drm_dbg_kms(&dev_priv->drm,
5610                                     "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5611                                     " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5612                                     plane->base.base.id, plane->base.name,
5613                                     old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5614                                     old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5615                                     old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5616                                     old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5617                                     old_wm->trans_wm.plane_res_b,
5618                                     new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5619                                     new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5620                                     new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5621                                     new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5622                                     new_wm->trans_wm.plane_res_b);
5623
5624                         drm_dbg_kms(&dev_priv->drm,
5625                                     "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5626                                     " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5627                                     plane->base.base.id, plane->base.name,
5628                                     old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5629                                     old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5630                                     old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5631                                     old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5632                                     old_wm->trans_wm.min_ddb_alloc,
5633                                     new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5634                                     new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5635                                     new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5636                                     new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5637                                     new_wm->trans_wm.min_ddb_alloc);
5638                 }
5639         }
5640 }
5641
5642 static int intel_add_all_pipes(struct intel_atomic_state *state)
5643 {
5644         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5645         struct intel_crtc *crtc;
5646
5647         for_each_intel_crtc(&dev_priv->drm, crtc) {
5648                 struct intel_crtc_state *crtc_state;
5649
5650                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5651                 if (IS_ERR(crtc_state))
5652                         return PTR_ERR(crtc_state);
5653         }
5654
5655         return 0;
5656 }
5657
5658 static int
5659 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5660 {
5661         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5662         int ret;
5663
5664         /*
5665          * If this is our first atomic update following hardware readout,
5666          * we can't trust the DDB that the BIOS programmed for us.  Let's
5667          * pretend that all pipes switched active status so that we'll
5668          * ensure a full DDB recompute.
5669          */
5670         if (dev_priv->wm.distrust_bios_wm) {
5671                 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5672                                        state->base.acquire_ctx);
5673                 if (ret)
5674                         return ret;
5675
5676                 state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5677
5678                 /*
5679                  * We usually only initialize state->active_pipes if we
5680                  * we're doing a modeset; make sure this field is always
5681                  * initialized during the sanitization process that happens
5682                  * on the first commit too.
5683                  */
5684                 if (!state->modeset)
5685                         state->active_pipes = dev_priv->active_pipes;
5686         }
5687
5688         /*
5689          * If the modeset changes which CRTC's are active, we need to
5690          * recompute the DDB allocation for *all* active pipes, even
5691          * those that weren't otherwise being modified in any way by this
5692          * atomic commit.  Due to the shrinking of the per-pipe allocations
5693          * when new active CRTC's are added, it's possible for a pipe that
5694          * we were already using and aren't changing at all here to suddenly
5695          * become invalid if its DDB needs exceeds its new allocation.
5696          *
5697          * Note that if we wind up doing a full DDB recompute, we can't let
5698          * any other display updates race with this transaction, so we need
5699          * to grab the lock on *all* CRTC's.
5700          */
5701         if (state->active_pipe_changes || state->modeset) {
5702                 ret = intel_add_all_pipes(state);
5703                 if (ret)
5704                         return ret;
5705         }
5706
5707         return 0;
5708 }
5709
5710 /*
5711  * To make sure the cursor watermark registers are always consistent
5712  * with our computed state the following scenario needs special
5713  * treatment:
5714  *
5715  * 1. enable cursor
5716  * 2. move cursor entirely offscreen
5717  * 3. disable cursor
5718  *
5719  * Step 2. does call .disable_plane() but does not zero the watermarks
5720  * (since we consider an offscreen cursor still active for the purposes
5721  * of watermarks). Step 3. would not normally call .disable_plane()
5722  * because the actual plane visibility isn't changing, and we don't
5723  * deallocate the cursor ddb until the pipe gets disabled. So we must
5724  * force step 3. to call .disable_plane() to update the watermark
5725  * registers properly.
5726  *
5727  * Other planes do not suffer from this issues as their watermarks are
5728  * calculated based on the actual plane visibility. The only time this
5729  * can trigger for the other planes is during the initial readout as the
5730  * default value of the watermarks registers is not zero.
5731  */
5732 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5733                                       struct intel_crtc *crtc)
5734 {
5735         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5736         const struct intel_crtc_state *old_crtc_state =
5737                 intel_atomic_get_old_crtc_state(state, crtc);
5738         struct intel_crtc_state *new_crtc_state =
5739                 intel_atomic_get_new_crtc_state(state, crtc);
5740         struct intel_plane *plane;
5741
5742         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5743                 struct intel_plane_state *plane_state;
5744                 enum plane_id plane_id = plane->id;
5745
5746                 /*
5747                  * Force a full wm update for every plane on modeset.
5748                  * Required because the reset value of the wm registers
5749                  * is non-zero, whereas we want all disabled planes to
5750                  * have zero watermarks. So if we turn off the relevant
5751                  * power well the hardware state will go out of sync
5752                  * with the software state.
5753                  */
5754                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5755                     skl_plane_wm_equals(dev_priv,
5756                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
5757                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5758                         continue;
5759
5760                 plane_state = intel_atomic_get_plane_state(state, plane);
5761                 if (IS_ERR(plane_state))
5762                         return PTR_ERR(plane_state);
5763
5764                 new_crtc_state->update_planes |= BIT(plane_id);
5765         }
5766
5767         return 0;
5768 }
5769
5770 static int
5771 skl_compute_wm(struct intel_atomic_state *state)
5772 {
5773         struct intel_crtc *crtc;
5774         struct intel_crtc_state *new_crtc_state;
5775         struct intel_crtc_state *old_crtc_state;
5776         int ret, i;
5777
5778         ret = skl_ddb_add_affected_pipes(state);
5779         if (ret)
5780                 return ret;
5781
5782         /*
5783          * Calculate WM's for all pipes that are part of this transaction.
5784          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5785          * weren't otherwise being modified if pipe allocations had to change.
5786          */
5787         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5788                                             new_crtc_state, i) {
5789                 ret = skl_build_pipe_wm(new_crtc_state);
5790                 if (ret)
5791                         return ret;
5792         }
5793
5794         ret = skl_compute_ddb(state);
5795         if (ret)
5796                 return ret;
5797
5798         /*
5799          * skl_compute_ddb() will have adjusted the final watermarks
5800          * based on how much ddb is available. Now we can actually
5801          * check if the final watermarks changed.
5802          */
5803         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5804                                             new_crtc_state, i) {
5805                 ret = skl_wm_add_affected_planes(state, crtc);
5806                 if (ret)
5807                         return ret;
5808         }
5809
5810         skl_print_wm_changes(state);
5811
5812         return 0;
5813 }
5814
5815 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5816                                   struct intel_wm_config *config)
5817 {
5818         struct intel_crtc *crtc;
5819
5820         /* Compute the currently _active_ config */
5821         for_each_intel_crtc(&dev_priv->drm, crtc) {
5822                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5823
5824                 if (!wm->pipe_enabled)
5825                         continue;
5826
5827                 config->sprites_enabled |= wm->sprites_enabled;
5828                 config->sprites_scaled |= wm->sprites_scaled;
5829                 config->num_pipes_active++;
5830         }
5831 }
5832
5833 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5834 {
5835         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5836         struct ilk_wm_maximums max;
5837         struct intel_wm_config config = {};
5838         struct ilk_wm_values results = {};
5839         enum intel_ddb_partitioning partitioning;
5840
5841         ilk_compute_wm_config(dev_priv, &config);
5842
5843         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5844         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5845
5846         /* 5/6 split only in single pipe config on IVB+ */
5847         if (INTEL_GEN(dev_priv) >= 7 &&
5848             config.num_pipes_active == 1 && config.sprites_enabled) {
5849                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5850                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5851
5852                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5853         } else {
5854                 best_lp_wm = &lp_wm_1_2;
5855         }
5856
5857         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5858                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5859
5860         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5861
5862         ilk_write_wm_values(dev_priv, &results);
5863 }
5864
5865 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5866                                    struct intel_crtc *crtc)
5867 {
5868         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5869         const struct intel_crtc_state *crtc_state =
5870                 intel_atomic_get_new_crtc_state(state, crtc);
5871
5872         mutex_lock(&dev_priv->wm.wm_mutex);
5873         crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5874         ilk_program_watermarks(dev_priv);
5875         mutex_unlock(&dev_priv->wm.wm_mutex);
5876 }
5877
5878 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5879                                     struct intel_crtc *crtc)
5880 {
5881         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5882         const struct intel_crtc_state *crtc_state =
5883                 intel_atomic_get_new_crtc_state(state, crtc);
5884
5885         if (!crtc_state->wm.need_postvbl_update)
5886                 return;
5887
5888         mutex_lock(&dev_priv->wm.wm_mutex);
5889         crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5890         ilk_program_watermarks(dev_priv);
5891         mutex_unlock(&dev_priv->wm.wm_mutex);
5892 }
5893
5894 static inline void skl_wm_level_from_reg_val(u32 val,
5895                                              struct skl_wm_level *level)
5896 {
5897         level->plane_en = val & PLANE_WM_EN;
5898         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5899         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5900         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5901                 PLANE_WM_LINES_MASK;
5902 }
5903
5904 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5905                               struct skl_pipe_wm *out)
5906 {
5907         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5908         enum pipe pipe = crtc->pipe;
5909         int level, max_level;
5910         enum plane_id plane_id;
5911         u32 val;
5912
5913         max_level = ilk_wm_max_level(dev_priv);
5914
5915         for_each_plane_id_on_crtc(crtc, plane_id) {
5916                 struct skl_plane_wm *wm = &out->planes[plane_id];
5917
5918                 for (level = 0; level <= max_level; level++) {
5919                         if (plane_id != PLANE_CURSOR)
5920                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5921                         else
5922                                 val = I915_READ(CUR_WM(pipe, level));
5923
5924                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5925                 }
5926
5927                 if (plane_id != PLANE_CURSOR)
5928                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5929                 else
5930                         val = I915_READ(CUR_WM_TRANS(pipe));
5931
5932                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5933         }
5934
5935         if (!crtc->active)
5936                 return;
5937 }
5938
5939 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5940 {
5941         struct intel_crtc *crtc;
5942         struct intel_crtc_state *crtc_state;
5943
5944         skl_ddb_get_hw_state(dev_priv);
5945         for_each_intel_crtc(&dev_priv->drm, crtc) {
5946                 crtc_state = to_intel_crtc_state(crtc->base.state);
5947
5948                 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5949         }
5950
5951         if (dev_priv->active_pipes) {
5952                 /* Fully recompute DDB on first atomic commit */
5953                 dev_priv->wm.distrust_bios_wm = true;
5954         }
5955 }
5956
5957 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5958 {
5959         struct drm_device *dev = crtc->base.dev;
5960         struct drm_i915_private *dev_priv = to_i915(dev);
5961         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5962         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5963         struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5964         enum pipe pipe = crtc->pipe;
5965         static const i915_reg_t wm0_pipe_reg[] = {
5966                 [PIPE_A] = WM0_PIPEA_ILK,
5967                 [PIPE_B] = WM0_PIPEB_ILK,
5968                 [PIPE_C] = WM0_PIPEC_IVB,
5969         };
5970
5971         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5972
5973         memset(active, 0, sizeof(*active));
5974
5975         active->pipe_enabled = crtc->active;
5976
5977         if (active->pipe_enabled) {
5978                 u32 tmp = hw->wm_pipe[pipe];
5979
5980                 /*
5981                  * For active pipes LP0 watermark is marked as
5982                  * enabled, and LP1+ watermaks as disabled since
5983                  * we can't really reverse compute them in case
5984                  * multiple pipes are active.
5985                  */
5986                 active->wm[0].enable = true;
5987                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5988                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5989                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5990         } else {
5991                 int level, max_level = ilk_wm_max_level(dev_priv);
5992
5993                 /*
5994                  * For inactive pipes, all watermark levels
5995                  * should be marked as enabled but zeroed,
5996                  * which is what we'd compute them to.
5997                  */
5998                 for (level = 0; level <= max_level; level++)
5999                         active->wm[level].enable = true;
6000         }
6001
6002         crtc->wm.active.ilk = *active;
6003 }
6004
6005 #define _FW_WM(value, plane) \
6006         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6007 #define _FW_WM_VLV(value, plane) \
6008         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6009
6010 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6011                                struct g4x_wm_values *wm)
6012 {
6013         u32 tmp;
6014
6015         tmp = I915_READ(DSPFW1);
6016         wm->sr.plane = _FW_WM(tmp, SR);
6017         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6018         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6019         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6020
6021         tmp = I915_READ(DSPFW2);
6022         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6023         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6024         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6025         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6026         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6027         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6028
6029         tmp = I915_READ(DSPFW3);
6030         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6031         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6032         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6033         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6034 }
6035
6036 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6037                                struct vlv_wm_values *wm)
6038 {
6039         enum pipe pipe;
6040         u32 tmp;
6041
6042         for_each_pipe(dev_priv, pipe) {
6043                 tmp = I915_READ(VLV_DDL(pipe));
6044
6045                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6046                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6047                 wm->ddl[pipe].plane[PLANE_CURSOR] =
6048                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6049                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6050                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6051                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6052                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6053         }
6054
6055         tmp = I915_READ(DSPFW1);
6056         wm->sr.plane = _FW_WM(tmp, SR);
6057         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6058         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6059         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6060
6061         tmp = I915_READ(DSPFW2);
6062         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6063         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6064         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6065
6066         tmp = I915_READ(DSPFW3);
6067         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6068
6069         if (IS_CHERRYVIEW(dev_priv)) {
6070                 tmp = I915_READ(DSPFW7_CHV);
6071                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6072                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6073
6074                 tmp = I915_READ(DSPFW8_CHV);
6075                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6076                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6077
6078                 tmp = I915_READ(DSPFW9_CHV);
6079                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6080                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6081
6082                 tmp = I915_READ(DSPHOWM);
6083                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6084                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6085                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6086                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6087                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6088                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6089                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6090                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6091                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6092                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6093         } else {
6094                 tmp = I915_READ(DSPFW7);
6095                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6096                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6097
6098                 tmp = I915_READ(DSPHOWM);
6099                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6100                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6101                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6102                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6103                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6104                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6105                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6106         }
6107 }
6108
6109 #undef _FW_WM
6110 #undef _FW_WM_VLV
6111
6112 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6113 {
6114         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6115         struct intel_crtc *crtc;
6116
6117         g4x_read_wm_values(dev_priv, wm);
6118
6119         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6120
6121         for_each_intel_crtc(&dev_priv->drm, crtc) {
6122                 struct intel_crtc_state *crtc_state =
6123                         to_intel_crtc_state(crtc->base.state);
6124                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6125                 struct g4x_pipe_wm *raw;
6126                 enum pipe pipe = crtc->pipe;
6127                 enum plane_id plane_id;
6128                 int level, max_level;
6129
6130                 active->cxsr = wm->cxsr;
6131                 active->hpll_en = wm->hpll_en;
6132                 active->fbc_en = wm->fbc_en;
6133
6134                 active->sr = wm->sr;
6135                 active->hpll = wm->hpll;
6136
6137                 for_each_plane_id_on_crtc(crtc, plane_id) {
6138                         active->wm.plane[plane_id] =
6139                                 wm->pipe[pipe].plane[plane_id];
6140                 }
6141
6142                 if (wm->cxsr && wm->hpll_en)
6143                         max_level = G4X_WM_LEVEL_HPLL;
6144                 else if (wm->cxsr)
6145                         max_level = G4X_WM_LEVEL_SR;
6146                 else
6147                         max_level = G4X_WM_LEVEL_NORMAL;
6148
6149                 level = G4X_WM_LEVEL_NORMAL;
6150                 raw = &crtc_state->wm.g4x.raw[level];
6151                 for_each_plane_id_on_crtc(crtc, plane_id)
6152                         raw->plane[plane_id] = active->wm.plane[plane_id];
6153
6154                 if (++level > max_level)
6155                         goto out;
6156
6157                 raw = &crtc_state->wm.g4x.raw[level];
6158                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6159                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6160                 raw->plane[PLANE_SPRITE0] = 0;
6161                 raw->fbc = active->sr.fbc;
6162
6163                 if (++level > max_level)
6164                         goto out;
6165
6166                 raw = &crtc_state->wm.g4x.raw[level];
6167                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6168                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6169                 raw->plane[PLANE_SPRITE0] = 0;
6170                 raw->fbc = active->hpll.fbc;
6171
6172         out:
6173                 for_each_plane_id_on_crtc(crtc, plane_id)
6174                         g4x_raw_plane_wm_set(crtc_state, level,
6175                                              plane_id, USHRT_MAX);
6176                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6177
6178                 crtc_state->wm.g4x.optimal = *active;
6179                 crtc_state->wm.g4x.intermediate = *active;
6180
6181                 drm_dbg_kms(&dev_priv->drm,
6182                             "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6183                             pipe_name(pipe),
6184                             wm->pipe[pipe].plane[PLANE_PRIMARY],
6185                             wm->pipe[pipe].plane[PLANE_CURSOR],
6186                             wm->pipe[pipe].plane[PLANE_SPRITE0]);
6187         }
6188
6189         drm_dbg_kms(&dev_priv->drm,
6190                     "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6191                     wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6192         drm_dbg_kms(&dev_priv->drm,
6193                     "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6194                     wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6195         drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6196                     yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6197 }
6198
6199 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6200 {
6201         struct intel_plane *plane;
6202         struct intel_crtc *crtc;
6203
6204         mutex_lock(&dev_priv->wm.wm_mutex);
6205
6206         for_each_intel_plane(&dev_priv->drm, plane) {
6207                 struct intel_crtc *crtc =
6208                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6209                 struct intel_crtc_state *crtc_state =
6210                         to_intel_crtc_state(crtc->base.state);
6211                 struct intel_plane_state *plane_state =
6212                         to_intel_plane_state(plane->base.state);
6213                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6214                 enum plane_id plane_id = plane->id;
6215                 int level;
6216
6217                 if (plane_state->uapi.visible)
6218                         continue;
6219
6220                 for (level = 0; level < 3; level++) {
6221                         struct g4x_pipe_wm *raw =
6222                                 &crtc_state->wm.g4x.raw[level];
6223
6224                         raw->plane[plane_id] = 0;
6225                         wm_state->wm.plane[plane_id] = 0;
6226                 }
6227
6228                 if (plane_id == PLANE_PRIMARY) {
6229                         for (level = 0; level < 3; level++) {
6230                                 struct g4x_pipe_wm *raw =
6231                                         &crtc_state->wm.g4x.raw[level];
6232                                 raw->fbc = 0;
6233                         }
6234
6235                         wm_state->sr.fbc = 0;
6236                         wm_state->hpll.fbc = 0;
6237                         wm_state->fbc_en = false;
6238                 }
6239         }
6240
6241         for_each_intel_crtc(&dev_priv->drm, crtc) {
6242                 struct intel_crtc_state *crtc_state =
6243                         to_intel_crtc_state(crtc->base.state);
6244
6245                 crtc_state->wm.g4x.intermediate =
6246                         crtc_state->wm.g4x.optimal;
6247                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6248         }
6249
6250         g4x_program_watermarks(dev_priv);
6251
6252         mutex_unlock(&dev_priv->wm.wm_mutex);
6253 }
6254
6255 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6256 {
6257         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6258         struct intel_crtc *crtc;
6259         u32 val;
6260
6261         vlv_read_wm_values(dev_priv, wm);
6262
6263         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6264         wm->level = VLV_WM_LEVEL_PM2;
6265
6266         if (IS_CHERRYVIEW(dev_priv)) {
6267                 vlv_punit_get(dev_priv);
6268
6269                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6270                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6271                         wm->level = VLV_WM_LEVEL_PM5;
6272
6273                 /*
6274                  * If DDR DVFS is disabled in the BIOS, Punit
6275                  * will never ack the request. So if that happens
6276                  * assume we don't have to enable/disable DDR DVFS
6277                  * dynamically. To test that just set the REQ_ACK
6278                  * bit to poke the Punit, but don't change the
6279                  * HIGH/LOW bits so that we don't actually change
6280                  * the current state.
6281                  */
6282                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6283                 val |= FORCE_DDR_FREQ_REQ_ACK;
6284                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6285
6286                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6287                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6288                         drm_dbg_kms(&dev_priv->drm,
6289                                     "Punit not acking DDR DVFS request, "
6290                                     "assuming DDR DVFS is disabled\n");
6291                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6292                 } else {
6293                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6294                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6295                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6296                 }
6297
6298                 vlv_punit_put(dev_priv);
6299         }
6300
6301         for_each_intel_crtc(&dev_priv->drm, crtc) {
6302                 struct intel_crtc_state *crtc_state =
6303                         to_intel_crtc_state(crtc->base.state);
6304                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6305                 const struct vlv_fifo_state *fifo_state =
6306                         &crtc_state->wm.vlv.fifo_state;
6307                 enum pipe pipe = crtc->pipe;
6308                 enum plane_id plane_id;
6309                 int level;
6310
6311                 vlv_get_fifo_size(crtc_state);
6312
6313                 active->num_levels = wm->level + 1;
6314                 active->cxsr = wm->cxsr;
6315
6316                 for (level = 0; level < active->num_levels; level++) {
6317                         struct g4x_pipe_wm *raw =
6318                                 &crtc_state->wm.vlv.raw[level];
6319
6320                         active->sr[level].plane = wm->sr.plane;
6321                         active->sr[level].cursor = wm->sr.cursor;
6322
6323                         for_each_plane_id_on_crtc(crtc, plane_id) {
6324                                 active->wm[level].plane[plane_id] =
6325                                         wm->pipe[pipe].plane[plane_id];
6326
6327                                 raw->plane[plane_id] =
6328                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6329                                                             fifo_state->plane[plane_id]);
6330                         }
6331                 }
6332
6333                 for_each_plane_id_on_crtc(crtc, plane_id)
6334                         vlv_raw_plane_wm_set(crtc_state, level,
6335                                              plane_id, USHRT_MAX);
6336                 vlv_invalidate_wms(crtc, active, level);
6337
6338                 crtc_state->wm.vlv.optimal = *active;
6339                 crtc_state->wm.vlv.intermediate = *active;
6340
6341                 drm_dbg_kms(&dev_priv->drm,
6342                             "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6343                             pipe_name(pipe),
6344                             wm->pipe[pipe].plane[PLANE_PRIMARY],
6345                             wm->pipe[pipe].plane[PLANE_CURSOR],
6346                             wm->pipe[pipe].plane[PLANE_SPRITE0],
6347                             wm->pipe[pipe].plane[PLANE_SPRITE1]);
6348         }
6349
6350         drm_dbg_kms(&dev_priv->drm,
6351                     "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6352                     wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6353 }
6354
6355 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6356 {
6357         struct intel_plane *plane;
6358         struct intel_crtc *crtc;
6359
6360         mutex_lock(&dev_priv->wm.wm_mutex);
6361
6362         for_each_intel_plane(&dev_priv->drm, plane) {
6363                 struct intel_crtc *crtc =
6364                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6365                 struct intel_crtc_state *crtc_state =
6366                         to_intel_crtc_state(crtc->base.state);
6367                 struct intel_plane_state *plane_state =
6368                         to_intel_plane_state(plane->base.state);
6369                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6370                 const struct vlv_fifo_state *fifo_state =
6371                         &crtc_state->wm.vlv.fifo_state;
6372                 enum plane_id plane_id = plane->id;
6373                 int level;
6374
6375                 if (plane_state->uapi.visible)
6376                         continue;
6377
6378                 for (level = 0; level < wm_state->num_levels; level++) {
6379                         struct g4x_pipe_wm *raw =
6380                                 &crtc_state->wm.vlv.raw[level];
6381
6382                         raw->plane[plane_id] = 0;
6383
6384                         wm_state->wm[level].plane[plane_id] =
6385                                 vlv_invert_wm_value(raw->plane[plane_id],
6386                                                     fifo_state->plane[plane_id]);
6387                 }
6388         }
6389
6390         for_each_intel_crtc(&dev_priv->drm, crtc) {
6391                 struct intel_crtc_state *crtc_state =
6392                         to_intel_crtc_state(crtc->base.state);
6393
6394                 crtc_state->wm.vlv.intermediate =
6395                         crtc_state->wm.vlv.optimal;
6396                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6397         }
6398
6399         vlv_program_watermarks(dev_priv);
6400
6401         mutex_unlock(&dev_priv->wm.wm_mutex);
6402 }
6403
6404 /*
6405  * FIXME should probably kill this and improve
6406  * the real watermark readout/sanitation instead
6407  */
6408 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6409 {
6410         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6411         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6412         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6413
6414         /*
6415          * Don't touch WM1S_LP_EN here.
6416          * Doing so could cause underruns.
6417          */
6418 }
6419
6420 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6421 {
6422         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6423         struct intel_crtc *crtc;
6424
6425         ilk_init_lp_watermarks(dev_priv);
6426
6427         for_each_intel_crtc(&dev_priv->drm, crtc)
6428                 ilk_pipe_wm_get_hw_state(crtc);
6429
6430         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6431         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6432         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6433
6434         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6435         if (INTEL_GEN(dev_priv) >= 7) {
6436                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6437                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6438         }
6439
6440         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6441                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6442                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6443         else if (IS_IVYBRIDGE(dev_priv))
6444                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6445                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6446
6447         hw->enable_fbc_wm =
6448                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6449 }
6450
6451 /**
6452  * intel_update_watermarks - update FIFO watermark values based on current modes
6453  * @crtc: the #intel_crtc on which to compute the WM
6454  *
6455  * Calculate watermark values for the various WM regs based on current mode
6456  * and plane configuration.
6457  *
6458  * There are several cases to deal with here:
6459  *   - normal (i.e. non-self-refresh)
6460  *   - self-refresh (SR) mode
6461  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6462  *   - lines are small relative to FIFO size (buffer can hold more than 2
6463  *     lines), so need to account for TLB latency
6464  *
6465  *   The normal calculation is:
6466  *     watermark = dotclock * bytes per pixel * latency
6467  *   where latency is platform & configuration dependent (we assume pessimal
6468  *   values here).
6469  *
6470  *   The SR calculation is:
6471  *     watermark = (trunc(latency/line time)+1) * surface width *
6472  *       bytes per pixel
6473  *   where
6474  *     line time = htotal / dotclock
6475  *     surface width = hdisplay for normal plane and 64 for cursor
6476  *   and latency is assumed to be high, as above.
6477  *
6478  * The final value programmed to the register should always be rounded up,
6479  * and include an extra 2 entries to account for clock crossings.
6480  *
6481  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6482  * to set the non-SR watermarks to 8.
6483  */
6484 void intel_update_watermarks(struct intel_crtc *crtc)
6485 {
6486         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6487
6488         if (dev_priv->display.update_wm)
6489                 dev_priv->display.update_wm(crtc);
6490 }
6491
6492 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6493 {
6494         u32 val;
6495
6496         if (!HAS_IPC(dev_priv))
6497                 return;
6498
6499         val = I915_READ(DISP_ARB_CTL2);
6500
6501         if (dev_priv->ipc_enabled)
6502                 val |= DISP_IPC_ENABLE;
6503         else
6504                 val &= ~DISP_IPC_ENABLE;
6505
6506         I915_WRITE(DISP_ARB_CTL2, val);
6507 }
6508
6509 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6510 {
6511         /* Display WA #0477 WaDisableIPC: skl */
6512         if (IS_SKYLAKE(dev_priv))
6513                 return false;
6514
6515         /* Display WA #1141: SKL:all KBL:all CFL */
6516         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6517                 return dev_priv->dram_info.symmetric_memory;
6518
6519         return true;
6520 }
6521
6522 void intel_init_ipc(struct drm_i915_private *dev_priv)
6523 {
6524         if (!HAS_IPC(dev_priv))
6525                 return;
6526
6527         dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6528
6529         intel_enable_ipc(dev_priv);
6530 }
6531
6532 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6533 {
6534         /*
6535          * On Ibex Peak and Cougar Point, we need to disable clock
6536          * gating for the panel power sequencer or it will fail to
6537          * start up when no ports are active.
6538          */
6539         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6540 }
6541
6542 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6543 {
6544         enum pipe pipe;
6545
6546         for_each_pipe(dev_priv, pipe) {
6547                 I915_WRITE(DSPCNTR(pipe),
6548                            I915_READ(DSPCNTR(pipe)) |
6549                            DISPPLANE_TRICKLE_FEED_DISABLE);
6550
6551                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6552                 POSTING_READ(DSPSURF(pipe));
6553         }
6554 }
6555
6556 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6557 {
6558         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6559
6560         /*
6561          * Required for FBC
6562          * WaFbcDisableDpfcClockGating:ilk
6563          */
6564         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6565                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6566                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6567
6568         I915_WRITE(PCH_3DCGDIS0,
6569                    MARIUNIT_CLOCK_GATE_DISABLE |
6570                    SVSMUNIT_CLOCK_GATE_DISABLE);
6571         I915_WRITE(PCH_3DCGDIS1,
6572                    VFMUNIT_CLOCK_GATE_DISABLE);
6573
6574         /*
6575          * According to the spec the following bits should be set in
6576          * order to enable memory self-refresh
6577          * The bit 22/21 of 0x42004
6578          * The bit 5 of 0x42020
6579          * The bit 15 of 0x45000
6580          */
6581         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6582                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6583                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6584         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6585         I915_WRITE(DISP_ARB_CTL,
6586                    (I915_READ(DISP_ARB_CTL) |
6587                     DISP_FBC_WM_DIS));
6588
6589         /*
6590          * Based on the document from hardware guys the following bits
6591          * should be set unconditionally in order to enable FBC.
6592          * The bit 22 of 0x42000
6593          * The bit 22 of 0x42004
6594          * The bit 7,8,9 of 0x42020.
6595          */
6596         if (IS_IRONLAKE_M(dev_priv)) {
6597                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6598                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6599                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6600                            ILK_FBCQ_DIS);
6601                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6602                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6603                            ILK_DPARB_GATE);
6604         }
6605
6606         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6607
6608         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6609                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6610                    ILK_ELPIN_409_SELECT);
6611         I915_WRITE(_3D_CHICKEN2,
6612                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6613                    _3D_CHICKEN2_WM_READ_PIPELINED);
6614
6615         /* WaDisableRenderCachePipelinedFlush:ilk */
6616         I915_WRITE(CACHE_MODE_0,
6617                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6618
6619         /* WaDisable_RenderCache_OperationalFlush:ilk */
6620         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6621
6622         g4x_disable_trickle_feed(dev_priv);
6623
6624         ibx_init_clock_gating(dev_priv);
6625 }
6626
6627 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6628 {
6629         enum pipe pipe;
6630         u32 val;
6631
6632         /*
6633          * On Ibex Peak and Cougar Point, we need to disable clock
6634          * gating for the panel power sequencer or it will fail to
6635          * start up when no ports are active.
6636          */
6637         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6638                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6639                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6640         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6641                    DPLS_EDP_PPS_FIX_DIS);
6642         /* The below fixes the weird display corruption, a few pixels shifted
6643          * downward, on (only) LVDS of some HP laptops with IVY.
6644          */
6645         for_each_pipe(dev_priv, pipe) {
6646                 val = I915_READ(TRANS_CHICKEN2(pipe));
6647                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6648                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6649                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6650                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6651                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6652                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6653                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6654         }
6655         /* WADP0ClockGatingDisable */
6656         for_each_pipe(dev_priv, pipe) {
6657                 I915_WRITE(TRANS_CHICKEN1(pipe),
6658                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6659         }
6660 }
6661
6662 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6663 {
6664         u32 tmp;
6665
6666         tmp = I915_READ(MCH_SSKPD);
6667         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6668                 drm_dbg_kms(&dev_priv->drm,
6669                             "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6670                             tmp);
6671 }
6672
6673 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6674 {
6675         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6676
6677         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6678
6679         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6680                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6681                    ILK_ELPIN_409_SELECT);
6682
6683         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6684         I915_WRITE(_3D_CHICKEN,
6685                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6686
6687         /* WaDisable_RenderCache_OperationalFlush:snb */
6688         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6689
6690         /*
6691          * BSpec recoomends 8x4 when MSAA is used,
6692          * however in practice 16x4 seems fastest.
6693          *
6694          * Note that PS/WM thread counts depend on the WIZ hashing
6695          * disable bit, which we don't touch here, but it's good
6696          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6697          */
6698         I915_WRITE(GEN6_GT_MODE,
6699                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6700
6701         I915_WRITE(CACHE_MODE_0,
6702                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6703
6704         I915_WRITE(GEN6_UCGCTL1,
6705                    I915_READ(GEN6_UCGCTL1) |
6706                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6707                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6708
6709         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6710          * gating disable must be set.  Failure to set it results in
6711          * flickering pixels due to Z write ordering failures after
6712          * some amount of runtime in the Mesa "fire" demo, and Unigine
6713          * Sanctuary and Tropics, and apparently anything else with
6714          * alpha test or pixel discard.
6715          *
6716          * According to the spec, bit 11 (RCCUNIT) must also be set,
6717          * but we didn't debug actual testcases to find it out.
6718          *
6719          * WaDisableRCCUnitClockGating:snb
6720          * WaDisableRCPBUnitClockGating:snb
6721          */
6722         I915_WRITE(GEN6_UCGCTL2,
6723                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6724                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6725
6726         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6727         I915_WRITE(_3D_CHICKEN3,
6728                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6729
6730         /*
6731          * Bspec says:
6732          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6733          * 3DSTATE_SF number of SF output attributes is more than 16."
6734          */
6735         I915_WRITE(_3D_CHICKEN3,
6736                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6737
6738         /*
6739          * According to the spec the following bits should be
6740          * set in order to enable memory self-refresh and fbc:
6741          * The bit21 and bit22 of 0x42000
6742          * The bit21 and bit22 of 0x42004
6743          * The bit5 and bit7 of 0x42020
6744          * The bit14 of 0x70180
6745          * The bit14 of 0x71180
6746          *
6747          * WaFbcAsynchFlipDisableFbcQueue:snb
6748          */
6749         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6750                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6751                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6752         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6753                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6754                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6755         I915_WRITE(ILK_DSPCLK_GATE_D,
6756                    I915_READ(ILK_DSPCLK_GATE_D) |
6757                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6758                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6759
6760         g4x_disable_trickle_feed(dev_priv);
6761
6762         cpt_init_clock_gating(dev_priv);
6763
6764         gen6_check_mch_setup(dev_priv);
6765 }
6766
6767 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6768 {
6769         u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6770
6771         /*
6772          * WaVSThreadDispatchOverride:ivb,vlv
6773          *
6774          * This actually overrides the dispatch
6775          * mode for all thread types.
6776          */
6777         reg &= ~GEN7_FF_SCHED_MASK;
6778         reg |= GEN7_FF_TS_SCHED_HW;
6779         reg |= GEN7_FF_VS_SCHED_HW;
6780         reg |= GEN7_FF_DS_SCHED_HW;
6781
6782         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6783 }
6784
6785 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6786 {
6787         /*
6788          * TODO: this bit should only be enabled when really needed, then
6789          * disabled when not needed anymore in order to save power.
6790          */
6791         if (HAS_PCH_LPT_LP(dev_priv))
6792                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6793                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6794                            PCH_LP_PARTITION_LEVEL_DISABLE);
6795
6796         /* WADPOClockGatingDisable:hsw */
6797         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6798                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6799                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6800 }
6801
6802 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6803 {
6804         if (HAS_PCH_LPT_LP(dev_priv)) {
6805                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6806
6807                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6808                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6809         }
6810 }
6811
6812 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
6813                                    int general_prio_credits,
6814                                    int high_prio_credits)
6815 {
6816         u32 misccpctl;
6817         u32 val;
6818
6819         /* WaTempDisableDOPClkGating:bdw */
6820         misccpctl = I915_READ(GEN7_MISCCPCTL);
6821         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6822
6823         val = I915_READ(GEN8_L3SQCREG1);
6824         val &= ~L3_PRIO_CREDITS_MASK;
6825         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
6826         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
6827         I915_WRITE(GEN8_L3SQCREG1, val);
6828
6829         /*
6830          * Wait at least 100 clocks before re-enabling clock gating.
6831          * See the definition of L3SQCREG1 in BSpec.
6832          */
6833         POSTING_READ(GEN8_L3SQCREG1);
6834         udelay(1);
6835         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6836 }
6837
6838 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
6839 {
6840         /* This is not an Wa. Enable to reduce Sampler power */
6841         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
6842                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6843
6844         /*Wa_14010594013:icl, ehl */
6845         intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
6846                          0, CNL_DELAY_PMRSP);
6847 }
6848
6849 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
6850 {
6851         u32 vd_pg_enable = 0;
6852         unsigned int i;
6853
6854         /* This is not a WA. Enable VD HCP & MFX_ENC powergate */
6855         for (i = 0; i < I915_MAX_VCS; i++) {
6856                 if (HAS_ENGINE(dev_priv, _VCS(i)))
6857                         vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
6858                                         VDN_MFX_POWERGATE_ENABLE(i);
6859         }
6860
6861         I915_WRITE(POWERGATE_ENABLE,
6862                    I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6863
6864         /* Wa_1409825376:tgl (pre-prod)*/
6865         if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
6866                 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
6867                            TGL_VRH_GATING_DIS);
6868 }
6869
6870 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
6871 {
6872         if (!HAS_PCH_CNP(dev_priv))
6873                 return;
6874
6875         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6876         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
6877                    CNP_PWM_CGE_GATING_DISABLE);
6878 }
6879
6880 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6881 {
6882         u32 val;
6883         cnp_init_clock_gating(dev_priv);
6884
6885         /* This is not an Wa. Enable for better image quality */
6886         I915_WRITE(_3D_CHICKEN3,
6887                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
6888
6889         /* WaEnableChickenDCPR:cnl */
6890         I915_WRITE(GEN8_CHICKEN_DCPR_1,
6891                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
6892
6893         /* WaFbcWakeMemOn:cnl */
6894         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
6895                    DISP_FBC_MEMORY_WAKE);
6896
6897         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
6898         /* ReadHitWriteOnlyDisable:cnl */
6899         val |= RCCUNIT_CLKGATE_DIS;
6900         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
6901         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6902                 val |= SARBUNIT_CLKGATE_DIS;
6903         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6904
6905         /* Wa_2201832410:cnl */
6906         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
6907         val |= GWUNIT_CLKGATE_DIS;
6908         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
6909
6910         /* WaDisableVFclkgate:cnl */
6911         /* WaVFUnitClockGatingDisable:cnl */
6912         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
6913         val |= VFUNIT_CLKGATE_DIS;
6914         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6915 }
6916
6917 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
6918 {
6919         cnp_init_clock_gating(dev_priv);
6920         gen9_init_clock_gating(dev_priv);
6921
6922         /* WaFbcNukeOnHostModify:cfl */
6923         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6924                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6925 }
6926
6927 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6928 {
6929         gen9_init_clock_gating(dev_priv);
6930
6931         /* WaDisableSDEUnitClockGating:kbl */
6932         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6933                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6934                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6935
6936         /* WaDisableGamClockGating:kbl */
6937         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
6938                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6939                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6940
6941         /* WaFbcNukeOnHostModify:kbl */
6942         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6943                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6944 }
6945
6946 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6947 {
6948         gen9_init_clock_gating(dev_priv);
6949
6950         /* WAC6entrylatency:skl */
6951         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
6952                    FBC_LLC_FULLY_OPEN);
6953
6954         /* WaFbcNukeOnHostModify:skl */
6955         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
6956                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6957 }
6958
6959 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
6960 {
6961         enum pipe pipe;
6962
6963         /* WaSwitchSolVfFArbitrationPriority:bdw */
6964         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6965
6966         /* WaPsrDPAMaskVBlankInSRD:bdw */
6967         I915_WRITE(CHICKEN_PAR1_1,
6968                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6969
6970         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6971         for_each_pipe(dev_priv, pipe) {
6972                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6973                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6974                            BDW_DPRS_MASK_VBLANK_SRD);
6975         }
6976
6977         /* WaVSRefCountFullforceMissDisable:bdw */
6978         /* WaDSRefCountFullforceMissDisable:bdw */
6979         I915_WRITE(GEN7_FF_THREAD_MODE,
6980                    I915_READ(GEN7_FF_THREAD_MODE) &
6981                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6982
6983         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6984                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6985
6986         /* WaDisableSDEUnitClockGating:bdw */
6987         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6988                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6989
6990         /* WaProgramL3SqcReg1Default:bdw */
6991         gen8_set_l3sqc_credits(dev_priv, 30, 2);
6992
6993         /* WaKVMNotificationOnConfigChange:bdw */
6994         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
6995                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
6996
6997         lpt_init_clock_gating(dev_priv);
6998
6999         /* WaDisableDopClockGating:bdw
7000          *
7001          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7002          * clock gating.
7003          */
7004         I915_WRITE(GEN6_UCGCTL1,
7005                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7006 }
7007
7008 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7009 {
7010         /* L3 caching of data atomics doesn't work -- disable it. */
7011         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7012         I915_WRITE(HSW_ROW_CHICKEN3,
7013                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7014
7015         /* This is required by WaCatErrorRejectionIssue:hsw */
7016         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7017                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7018                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7019
7020         /* WaVSRefCountFullforceMissDisable:hsw */
7021         I915_WRITE(GEN7_FF_THREAD_MODE,
7022                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7023
7024         /* WaDisable_RenderCache_OperationalFlush:hsw */
7025         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7026
7027         /* enable HiZ Raw Stall Optimization */
7028         I915_WRITE(CACHE_MODE_0_GEN7,
7029                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7030
7031         /* WaDisable4x2SubspanOptimization:hsw */
7032         I915_WRITE(CACHE_MODE_1,
7033                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7034
7035         /*
7036          * BSpec recommends 8x4 when MSAA is used,
7037          * however in practice 16x4 seems fastest.
7038          *
7039          * Note that PS/WM thread counts depend on the WIZ hashing
7040          * disable bit, which we don't touch here, but it's good
7041          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7042          */
7043         I915_WRITE(GEN7_GT_MODE,
7044                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7045
7046         /* WaSampleCChickenBitEnable:hsw */
7047         I915_WRITE(HALF_SLICE_CHICKEN3,
7048                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7049
7050         /* WaSwitchSolVfFArbitrationPriority:hsw */
7051         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7052
7053         lpt_init_clock_gating(dev_priv);
7054 }
7055
7056 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7057 {
7058         u32 snpcr;
7059
7060         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7061
7062         /* WaDisableEarlyCull:ivb */
7063         I915_WRITE(_3D_CHICKEN3,
7064                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7065
7066         /* WaDisableBackToBackFlipFix:ivb */
7067         I915_WRITE(IVB_CHICKEN3,
7068                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7069                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7070
7071         /* WaDisablePSDDualDispatchEnable:ivb */
7072         if (IS_IVB_GT1(dev_priv))
7073                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7074                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7075
7076         /* WaDisable_RenderCache_OperationalFlush:ivb */
7077         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7078
7079         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7080         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7081                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7082
7083         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7084         I915_WRITE(GEN7_L3CNTLREG1,
7085                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7086         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7087                    GEN7_WA_L3_CHICKEN_MODE);
7088         if (IS_IVB_GT1(dev_priv))
7089                 I915_WRITE(GEN7_ROW_CHICKEN2,
7090                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7091         else {
7092                 /* must write both registers */
7093                 I915_WRITE(GEN7_ROW_CHICKEN2,
7094                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7095                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7096                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7097         }
7098
7099         /* WaForceL3Serialization:ivb */
7100         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7101                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7102
7103         /*
7104          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7105          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7106          */
7107         I915_WRITE(GEN6_UCGCTL2,
7108                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7109
7110         /* This is required by WaCatErrorRejectionIssue:ivb */
7111         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7112                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7113                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7114
7115         g4x_disable_trickle_feed(dev_priv);
7116
7117         gen7_setup_fixed_func_scheduler(dev_priv);
7118
7119         if (0) { /* causes HiZ corruption on ivb:gt1 */
7120                 /* enable HiZ Raw Stall Optimization */
7121                 I915_WRITE(CACHE_MODE_0_GEN7,
7122                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7123         }
7124
7125         /* WaDisable4x2SubspanOptimization:ivb */
7126         I915_WRITE(CACHE_MODE_1,
7127                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7128
7129         /*
7130          * BSpec recommends 8x4 when MSAA is used,
7131          * however in practice 16x4 seems fastest.
7132          *
7133          * Note that PS/WM thread counts depend on the WIZ hashing
7134          * disable bit, which we don't touch here, but it's good
7135          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7136          */
7137         I915_WRITE(GEN7_GT_MODE,
7138                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7139
7140         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7141         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7142         snpcr |= GEN6_MBC_SNPCR_MED;
7143         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7144
7145         if (!HAS_PCH_NOP(dev_priv))
7146                 cpt_init_clock_gating(dev_priv);
7147
7148         gen6_check_mch_setup(dev_priv);
7149 }
7150
7151 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7152 {
7153         /* WaDisableEarlyCull:vlv */
7154         I915_WRITE(_3D_CHICKEN3,
7155                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7156
7157         /* WaDisableBackToBackFlipFix:vlv */
7158         I915_WRITE(IVB_CHICKEN3,
7159                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7160                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7161
7162         /* WaPsdDispatchEnable:vlv */
7163         /* WaDisablePSDDualDispatchEnable:vlv */
7164         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7165                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7166                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7167
7168         /* WaDisable_RenderCache_OperationalFlush:vlv */
7169         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7170
7171         /* WaForceL3Serialization:vlv */
7172         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7173                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7174
7175         /* WaDisableDopClockGating:vlv */
7176         I915_WRITE(GEN7_ROW_CHICKEN2,
7177                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7178
7179         /* This is required by WaCatErrorRejectionIssue:vlv */
7180         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7181                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7182                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7183
7184         gen7_setup_fixed_func_scheduler(dev_priv);
7185
7186         /*
7187          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7188          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7189          */
7190         I915_WRITE(GEN6_UCGCTL2,
7191                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7192
7193         /* WaDisableL3Bank2xClockGate:vlv
7194          * Disabling L3 clock gating- MMIO 940c[25] = 1
7195          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7196         I915_WRITE(GEN7_UCGCTL4,
7197                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7198
7199         /*
7200          * BSpec says this must be set, even though
7201          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7202          */
7203         I915_WRITE(CACHE_MODE_1,
7204                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7205
7206         /*
7207          * BSpec recommends 8x4 when MSAA is used,
7208          * however in practice 16x4 seems fastest.
7209          *
7210          * Note that PS/WM thread counts depend on the WIZ hashing
7211          * disable bit, which we don't touch here, but it's good
7212          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7213          */
7214         I915_WRITE(GEN7_GT_MODE,
7215                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7216
7217         /*
7218          * WaIncreaseL3CreditsForVLVB0:vlv
7219          * This is the hardware default actually.
7220          */
7221         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7222
7223         /*
7224          * WaDisableVLVClockGating_VBIIssue:vlv
7225          * Disable clock gating on th GCFG unit to prevent a delay
7226          * in the reporting of vblank events.
7227          */
7228         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7229 }
7230
7231 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7232 {
7233         /* WaVSRefCountFullforceMissDisable:chv */
7234         /* WaDSRefCountFullforceMissDisable:chv */
7235         I915_WRITE(GEN7_FF_THREAD_MODE,
7236                    I915_READ(GEN7_FF_THREAD_MODE) &
7237                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7238
7239         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7240         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7241                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7242
7243         /* WaDisableCSUnitClockGating:chv */
7244         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7245                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7246
7247         /* WaDisableSDEUnitClockGating:chv */
7248         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7249                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7250
7251         /*
7252          * WaProgramL3SqcReg1Default:chv
7253          * See gfxspecs/Related Documents/Performance Guide/
7254          * LSQC Setting Recommendations.
7255          */
7256         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7257 }
7258
7259 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7260 {
7261         u32 dspclk_gate;
7262
7263         I915_WRITE(RENCLK_GATE_D1, 0);
7264         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7265                    GS_UNIT_CLOCK_GATE_DISABLE |
7266                    CL_UNIT_CLOCK_GATE_DISABLE);
7267         I915_WRITE(RAMCLK_GATE_D, 0);
7268         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7269                 OVRUNIT_CLOCK_GATE_DISABLE |
7270                 OVCUNIT_CLOCK_GATE_DISABLE;
7271         if (IS_GM45(dev_priv))
7272                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7273         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7274
7275         /* WaDisableRenderCachePipelinedFlush */
7276         I915_WRITE(CACHE_MODE_0,
7277                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7278
7279         /* WaDisable_RenderCache_OperationalFlush:g4x */
7280         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7281
7282         g4x_disable_trickle_feed(dev_priv);
7283 }
7284
7285 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7286 {
7287         struct intel_uncore *uncore = &dev_priv->uncore;
7288
7289         intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7290         intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7291         intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7292         intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7293         intel_uncore_write16(uncore, DEUC, 0);
7294         intel_uncore_write(uncore,
7295                            MI_ARB_STATE,
7296                            _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7297
7298         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7299         intel_uncore_write(uncore,
7300                            CACHE_MODE_0,
7301                            _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7302 }
7303
7304 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7305 {
7306         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7307                    I965_RCC_CLOCK_GATE_DISABLE |
7308                    I965_RCPB_CLOCK_GATE_DISABLE |
7309                    I965_ISC_CLOCK_GATE_DISABLE |
7310                    I965_FBC_CLOCK_GATE_DISABLE);
7311         I915_WRITE(RENCLK_GATE_D2, 0);
7312         I915_WRITE(MI_ARB_STATE,
7313                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7314
7315         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7316         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7317 }
7318
7319 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7320 {
7321         u32 dstate = I915_READ(D_STATE);
7322
7323         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7324                 DSTATE_DOT_CLOCK_GATING;
7325         I915_WRITE(D_STATE, dstate);
7326
7327         if (IS_PINEVIEW(dev_priv))
7328                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7329
7330         /* IIR "flip pending" means done if this bit is set */
7331         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7332
7333         /* interrupts should cause a wake up from C3 */
7334         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7335
7336         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7337         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7338
7339         I915_WRITE(MI_ARB_STATE,
7340                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7341 }
7342
7343 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7344 {
7345         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7346
7347         /* interrupts should cause a wake up from C3 */
7348         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7349                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7350
7351         I915_WRITE(MEM_MODE,
7352                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7353 }
7354
7355 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7356 {
7357         I915_WRITE(MEM_MODE,
7358                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7359                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7360 }
7361
7362 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7363 {
7364         dev_priv->display.init_clock_gating(dev_priv);
7365 }
7366
7367 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7368 {
7369         if (HAS_PCH_LPT(dev_priv))
7370                 lpt_suspend_hw(dev_priv);
7371 }
7372
7373 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7374 {
7375         drm_dbg_kms(&dev_priv->drm,
7376                     "No clock gating settings or workarounds applied.\n");
7377 }
7378
7379 /**
7380  * intel_init_clock_gating_hooks - setup the clock gating hooks
7381  * @dev_priv: device private
7382  *
7383  * Setup the hooks that configure which clocks of a given platform can be
7384  * gated and also apply various GT and display specific workarounds for these
7385  * platforms. Note that some GT specific workarounds are applied separately
7386  * when GPU contexts or batchbuffers start their execution.
7387  */
7388 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7389 {
7390         if (IS_GEN(dev_priv, 12))
7391                 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7392         else if (IS_GEN(dev_priv, 11))
7393                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7394         else if (IS_CANNONLAKE(dev_priv))
7395                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7396         else if (IS_COFFEELAKE(dev_priv))
7397                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7398         else if (IS_SKYLAKE(dev_priv))
7399                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7400         else if (IS_KABYLAKE(dev_priv))
7401                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7402         else if (IS_BROXTON(dev_priv))
7403                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7404         else if (IS_GEMINILAKE(dev_priv))
7405                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7406         else if (IS_BROADWELL(dev_priv))
7407                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7408         else if (IS_CHERRYVIEW(dev_priv))
7409                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7410         else if (IS_HASWELL(dev_priv))
7411                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7412         else if (IS_IVYBRIDGE(dev_priv))
7413                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7414         else if (IS_VALLEYVIEW(dev_priv))
7415                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7416         else if (IS_GEN(dev_priv, 6))
7417                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7418         else if (IS_GEN(dev_priv, 5))
7419                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7420         else if (IS_G4X(dev_priv))
7421                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7422         else if (IS_I965GM(dev_priv))
7423                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7424         else if (IS_I965G(dev_priv))
7425                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7426         else if (IS_GEN(dev_priv, 3))
7427                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7428         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7429                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7430         else if (IS_GEN(dev_priv, 2))
7431                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7432         else {
7433                 MISSING_CASE(INTEL_DEVID(dev_priv));
7434                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7435         }
7436 }
7437
7438 /* Set up chip specific power management-related functions */
7439 void intel_init_pm(struct drm_i915_private *dev_priv)
7440 {
7441         /* For cxsr */
7442         if (IS_PINEVIEW(dev_priv))
7443                 pnv_get_mem_freq(dev_priv);
7444         else if (IS_GEN(dev_priv, 5))
7445                 ilk_get_mem_freq(dev_priv);
7446
7447         if (intel_has_sagv(dev_priv))
7448                 skl_setup_sagv_block_time(dev_priv);
7449
7450         /* For FIFO watermark updates */
7451         if (INTEL_GEN(dev_priv) >= 9) {
7452                 skl_setup_wm_latency(dev_priv);
7453                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7454         } else if (HAS_PCH_SPLIT(dev_priv)) {
7455                 ilk_setup_wm_latency(dev_priv);
7456
7457                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7458                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7459                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7460                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7461                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7462                         dev_priv->display.compute_intermediate_wm =
7463                                 ilk_compute_intermediate_wm;
7464                         dev_priv->display.initial_watermarks =
7465                                 ilk_initial_watermarks;
7466                         dev_priv->display.optimize_watermarks =
7467                                 ilk_optimize_watermarks;
7468                 } else {
7469                         drm_dbg_kms(&dev_priv->drm,
7470                                     "Failed to read display plane latency. "
7471                                     "Disable CxSR\n");
7472                 }
7473         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7474                 vlv_setup_wm_latency(dev_priv);
7475                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7476                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7477                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7478                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7479                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7480         } else if (IS_G4X(dev_priv)) {
7481                 g4x_setup_wm_latency(dev_priv);
7482                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7483                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7484                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7485                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7486         } else if (IS_PINEVIEW(dev_priv)) {
7487                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7488                                             dev_priv->is_ddr3,
7489                                             dev_priv->fsb_freq,
7490                                             dev_priv->mem_freq)) {
7491                         drm_info(&dev_priv->drm,
7492                                  "failed to find known CxSR latency "
7493                                  "(found ddr%s fsb freq %d, mem freq %d), "
7494                                  "disabling CxSR\n",
7495                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7496                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7497                         /* Disable CxSR and never update its watermark again */
7498                         intel_set_memory_cxsr(dev_priv, false);
7499                         dev_priv->display.update_wm = NULL;
7500                 } else
7501                         dev_priv->display.update_wm = pnv_update_wm;
7502         } else if (IS_GEN(dev_priv, 4)) {
7503                 dev_priv->display.update_wm = i965_update_wm;
7504         } else if (IS_GEN(dev_priv, 3)) {
7505                 dev_priv->display.update_wm = i9xx_update_wm;
7506                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7507         } else if (IS_GEN(dev_priv, 2)) {
7508                 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7509                         dev_priv->display.update_wm = i845_update_wm;
7510                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7511                 } else {
7512                         dev_priv->display.update_wm = i9xx_update_wm;
7513                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7514                 }
7515         } else {
7516                 drm_err(&dev_priv->drm,
7517                         "unexpected fall-through in %s\n", __func__);
7518         }
7519 }
7520
7521 void intel_pm_setup(struct drm_i915_private *dev_priv)
7522 {
7523         dev_priv->runtime_pm.suspended = false;
7524         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7525 }