drm/i915: don't leak the pin_map on error
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142 #include "intel_workarounds.h"
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define GEN8_CTX_STATUS_COMPLETED_MASK \
159          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160
161 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
162 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163 #define WA_TAIL_DWORDS 2
164 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165
166 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167                                             struct intel_engine_cs *engine);
168 static void execlists_init_reg_state(u32 *reg_state,
169                                      struct i915_gem_context *ctx,
170                                      struct intel_engine_cs *engine,
171                                      struct intel_ring *ring);
172
173 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
174 {
175         return rb_entry(rb, struct i915_priolist, node);
176 }
177
178 static inline int rq_prio(const struct i915_request *rq)
179 {
180         return rq->sched.attr.priority;
181 }
182
183 static inline bool need_preempt(const struct intel_engine_cs *engine,
184                                 const struct i915_request *last,
185                                 int prio)
186 {
187         return (intel_engine_has_preemption(engine) &&
188                 __execlists_need_preempt(prio, rq_prio(last)) &&
189                 !i915_request_completed(last));
190 }
191
192 /**
193  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
194  *                                        descriptor for a pinned context
195  * @ctx: Context to work on
196  * @engine: Engine the descriptor will be used with
197  *
198  * The context descriptor encodes various attributes of a context,
199  * including its GTT address and some flags. Because it's fairly
200  * expensive to calculate, we'll just do it once and cache the result,
201  * which remains valid until the context is unpinned.
202  *
203  * This is what a descriptor looks like, from LSB to MSB::
204  *
205  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
206  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
207  *      bits 32-52:    ctx ID, a globally unique tag
208  *      bits 53-54:    mbz, reserved for use by hardware
209  *      bits 55-63:    group ID, currently unused and set to 0
210  *
211  * Starting from Gen11, the upper dword of the descriptor has a new format:
212  *
213  *      bits 32-36:    reserved
214  *      bits 37-47:    SW context ID
215  *      bits 48:53:    engine instance
216  *      bit 54:        mbz, reserved for use by hardware
217  *      bits 55-60:    SW counter
218  *      bits 61-63:    engine class
219  *
220  * engine info, SW context ID and SW counter need to form a unique number
221  * (Context ID) per lrc.
222  */
223 static void
224 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225                                    struct intel_engine_cs *engine)
226 {
227         struct intel_context *ce = to_intel_context(ctx, engine);
228         u64 desc;
229
230         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
231         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
232
233         desc = ctx->desc_template;                              /* bits  0-11 */
234         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
235
236         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
237                                                                 /* bits 12-31 */
238         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
239
240         if (INTEL_GEN(ctx->i915) >= 11) {
241                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
242                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
243                                                                 /* bits 37-47 */
244
245                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
246                                                                 /* bits 48-53 */
247
248                 /* TODO: decide what to do with SW counter (bits 55-60) */
249
250                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
251                                                                 /* bits 61-63 */
252         } else {
253                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
254                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
255         }
256
257         ce->lrc_desc = desc;
258 }
259
260 static struct i915_priolist *
261 lookup_priolist(struct intel_engine_cs *engine, int prio)
262 {
263         struct intel_engine_execlists * const execlists = &engine->execlists;
264         struct i915_priolist *p;
265         struct rb_node **parent, *rb;
266         bool first = true;
267
268         if (unlikely(execlists->no_priolist))
269                 prio = I915_PRIORITY_NORMAL;
270
271 find_priolist:
272         /* most positive priority is scheduled first, equal priorities fifo */
273         rb = NULL;
274         parent = &execlists->queue.rb_node;
275         while (*parent) {
276                 rb = *parent;
277                 p = to_priolist(rb);
278                 if (prio > p->priority) {
279                         parent = &rb->rb_left;
280                 } else if (prio < p->priority) {
281                         parent = &rb->rb_right;
282                         first = false;
283                 } else {
284                         return p;
285                 }
286         }
287
288         if (prio == I915_PRIORITY_NORMAL) {
289                 p = &execlists->default_priolist;
290         } else {
291                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
292                 /* Convert an allocation failure to a priority bump */
293                 if (unlikely(!p)) {
294                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
295
296                         /* To maintain ordering with all rendering, after an
297                          * allocation failure we have to disable all scheduling.
298                          * Requests will then be executed in fifo, and schedule
299                          * will ensure that dependencies are emitted in fifo.
300                          * There will be still some reordering with existing
301                          * requests, so if userspace lied about their
302                          * dependencies that reordering may be visible.
303                          */
304                         execlists->no_priolist = true;
305                         goto find_priolist;
306                 }
307         }
308
309         p->priority = prio;
310         INIT_LIST_HEAD(&p->requests);
311         rb_link_node(&p->node, rb, parent);
312         rb_insert_color(&p->node, &execlists->queue);
313
314         if (first)
315                 execlists->first = &p->node;
316
317         return p;
318 }
319
320 static void unwind_wa_tail(struct i915_request *rq)
321 {
322         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
323         assert_ring_tail_valid(rq->ring, rq->tail);
324 }
325
326 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327 {
328         struct i915_request *rq, *rn;
329         struct i915_priolist *uninitialized_var(p);
330         int last_prio = I915_PRIORITY_INVALID;
331
332         lockdep_assert_held(&engine->timeline.lock);
333
334         list_for_each_entry_safe_reverse(rq, rn,
335                                          &engine->timeline.requests,
336                                          link) {
337                 if (i915_request_completed(rq))
338                         return;
339
340                 __i915_request_unsubmit(rq);
341                 unwind_wa_tail(rq);
342
343                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
344                 if (rq_prio(rq) != last_prio) {
345                         last_prio = rq_prio(rq);
346                         p = lookup_priolist(engine, last_prio);
347                 }
348
349                 GEM_BUG_ON(p->priority != rq_prio(rq));
350                 list_add(&rq->sched.link, &p->requests);
351         }
352 }
353
354 void
355 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
356 {
357         struct intel_engine_cs *engine =
358                 container_of(execlists, typeof(*engine), execlists);
359
360         spin_lock_irq(&engine->timeline.lock);
361         __unwind_incomplete_requests(engine);
362         spin_unlock_irq(&engine->timeline.lock);
363 }
364
365 static inline void
366 execlists_context_status_change(struct i915_request *rq, unsigned long status)
367 {
368         /*
369          * Only used when GVT-g is enabled now. When GVT-g is disabled,
370          * The compiler should eliminate this function as dead-code.
371          */
372         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
373                 return;
374
375         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
376                                    status, rq);
377 }
378
379 inline void
380 execlists_user_begin(struct intel_engine_execlists *execlists,
381                      const struct execlist_port *port)
382 {
383         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
384 }
385
386 inline void
387 execlists_user_end(struct intel_engine_execlists *execlists)
388 {
389         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
390 }
391
392 static inline void
393 execlists_context_schedule_in(struct i915_request *rq)
394 {
395         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
396         intel_engine_context_in(rq->engine);
397 }
398
399 static inline void
400 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
401 {
402         intel_engine_context_out(rq->engine);
403         execlists_context_status_change(rq, status);
404         trace_i915_request_out(rq);
405 }
406
407 static void
408 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
409 {
410         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
411         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
412         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
413         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
414 }
415
416 static u64 execlists_update_context(struct i915_request *rq)
417 {
418         struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
419         struct i915_hw_ppgtt *ppgtt =
420                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
421         u32 *reg_state = ce->lrc_reg_state;
422
423         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
424
425         /* True 32b PPGTT with dynamic page allocation: update PDP
426          * registers and point the unallocated PDPs to scratch page.
427          * PML4 is allocated during ppgtt init, so this is not needed
428          * in 48-bit mode.
429          */
430         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
431                 execlists_update_context_pdps(ppgtt, reg_state);
432
433         return ce->lrc_desc;
434 }
435
436 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
437 {
438         if (execlists->ctrl_reg) {
439                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
440                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
441         } else {
442                 writel(upper_32_bits(desc), execlists->submit_reg);
443                 writel(lower_32_bits(desc), execlists->submit_reg);
444         }
445 }
446
447 static void execlists_submit_ports(struct intel_engine_cs *engine)
448 {
449         struct intel_engine_execlists *execlists = &engine->execlists;
450         struct execlist_port *port = execlists->port;
451         unsigned int n;
452
453         /*
454          * ELSQ note: the submit queue is not cleared after being submitted
455          * to the HW so we need to make sure we always clean it up. This is
456          * currently ensured by the fact that we always write the same number
457          * of elsq entries, keep this in mind before changing the loop below.
458          */
459         for (n = execlists_num_ports(execlists); n--; ) {
460                 struct i915_request *rq;
461                 unsigned int count;
462                 u64 desc;
463
464                 rq = port_unpack(&port[n], &count);
465                 if (rq) {
466                         GEM_BUG_ON(count > !n);
467                         if (!count++)
468                                 execlists_context_schedule_in(rq);
469                         port_set(&port[n], port_pack(rq, count));
470                         desc = execlists_update_context(rq);
471                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
472
473                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
474                                   engine->name, n,
475                                   port[n].context_id, count,
476                                   rq->global_seqno,
477                                   rq->fence.context, rq->fence.seqno,
478                                   intel_engine_get_seqno(engine),
479                                   rq_prio(rq));
480                 } else {
481                         GEM_BUG_ON(!n);
482                         desc = 0;
483                 }
484
485                 write_desc(execlists, desc, n);
486         }
487
488         /* we need to manually load the submit queue */
489         if (execlists->ctrl_reg)
490                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
491
492         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
493 }
494
495 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
496 {
497         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
498                 i915_gem_context_force_single_submission(ctx));
499 }
500
501 static bool can_merge_ctx(const struct i915_gem_context *prev,
502                           const struct i915_gem_context *next)
503 {
504         if (prev != next)
505                 return false;
506
507         if (ctx_single_port_submission(prev))
508                 return false;
509
510         return true;
511 }
512
513 static void port_assign(struct execlist_port *port, struct i915_request *rq)
514 {
515         GEM_BUG_ON(rq == port_request(port));
516
517         if (port_isset(port))
518                 i915_request_put(port_request(port));
519
520         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
521 }
522
523 static void inject_preempt_context(struct intel_engine_cs *engine)
524 {
525         struct intel_engine_execlists *execlists = &engine->execlists;
526         struct intel_context *ce =
527                 to_intel_context(engine->i915->preempt_context, engine);
528         unsigned int n;
529
530         GEM_BUG_ON(execlists->preempt_complete_status !=
531                    upper_32_bits(ce->lrc_desc));
532         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
533                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
534                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
535                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
536                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
537
538         /*
539          * Switch to our empty preempt context so
540          * the state of the GPU is known (idle).
541          */
542         GEM_TRACE("%s\n", engine->name);
543         for (n = execlists_num_ports(execlists); --n; )
544                 write_desc(execlists, 0, n);
545
546         write_desc(execlists, ce->lrc_desc, n);
547
548         /* we need to manually load the submit queue */
549         if (execlists->ctrl_reg)
550                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
551
552         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
553         execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
554 }
555
556 static void execlists_dequeue(struct intel_engine_cs *engine)
557 {
558         struct intel_engine_execlists * const execlists = &engine->execlists;
559         struct execlist_port *port = execlists->port;
560         const struct execlist_port * const last_port =
561                 &execlists->port[execlists->port_mask];
562         struct i915_request *last = port_request(port);
563         struct rb_node *rb;
564         bool submit = false;
565
566         /* Hardware submission is through 2 ports. Conceptually each port
567          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
568          * static for a context, and unique to each, so we only execute
569          * requests belonging to a single context from each ring. RING_HEAD
570          * is maintained by the CS in the context image, it marks the place
571          * where it got up to last time, and through RING_TAIL we tell the CS
572          * where we want to execute up to this time.
573          *
574          * In this list the requests are in order of execution. Consecutive
575          * requests from the same context are adjacent in the ringbuffer. We
576          * can combine these requests into a single RING_TAIL update:
577          *
578          *              RING_HEAD...req1...req2
579          *                                    ^- RING_TAIL
580          * since to execute req2 the CS must first execute req1.
581          *
582          * Our goal then is to point each port to the end of a consecutive
583          * sequence of requests as being the most optimal (fewest wake ups
584          * and context switches) submission.
585          */
586
587         spin_lock_irq(&engine->timeline.lock);
588         rb = execlists->first;
589         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
590
591         if (last) {
592                 /*
593                  * Don't resubmit or switch until all outstanding
594                  * preemptions (lite-restore) are seen. Then we
595                  * know the next preemption status we see corresponds
596                  * to this ELSP update.
597                  */
598                 GEM_BUG_ON(!execlists_is_active(execlists,
599                                                 EXECLISTS_ACTIVE_USER));
600                 GEM_BUG_ON(!port_count(&port[0]));
601                 if (port_count(&port[0]) > 1)
602                         goto unlock;
603
604                 /*
605                  * If we write to ELSP a second time before the HW has had
606                  * a chance to respond to the previous write, we can confuse
607                  * the HW and hit "undefined behaviour". After writing to ELSP,
608                  * we must then wait until we see a context-switch event from
609                  * the HW to indicate that it has had a chance to respond.
610                  */
611                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
612                         goto unlock;
613
614                 if (need_preempt(engine, last, execlists->queue_priority)) {
615                         inject_preempt_context(engine);
616                         goto unlock;
617                 }
618
619                 /*
620                  * In theory, we could coalesce more requests onto
621                  * the second port (the first port is active, with
622                  * no preemptions pending). However, that means we
623                  * then have to deal with the possible lite-restore
624                  * of the second port (as we submit the ELSP, there
625                  * may be a context-switch) but also we may complete
626                  * the resubmission before the context-switch. Ergo,
627                  * coalescing onto the second port will cause a
628                  * preemption event, but we cannot predict whether
629                  * that will affect port[0] or port[1].
630                  *
631                  * If the second port is already active, we can wait
632                  * until the next context-switch before contemplating
633                  * new requests. The GPU will be busy and we should be
634                  * able to resubmit the new ELSP before it idles,
635                  * avoiding pipeline bubbles (momentary pauses where
636                  * the driver is unable to keep up the supply of new
637                  * work). However, we have to double check that the
638                  * priorities of the ports haven't been switch.
639                  */
640                 if (port_count(&port[1]))
641                         goto unlock;
642
643                 /*
644                  * WaIdleLiteRestore:bdw,skl
645                  * Apply the wa NOOPs to prevent
646                  * ring:HEAD == rq:TAIL as we resubmit the
647                  * request. See gen8_emit_breadcrumb() for
648                  * where we prepare the padding after the
649                  * end of the request.
650                  */
651                 last->tail = last->wa_tail;
652         }
653
654         while (rb) {
655                 struct i915_priolist *p = to_priolist(rb);
656                 struct i915_request *rq, *rn;
657
658                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
659                         /*
660                          * Can we combine this request with the current port?
661                          * It has to be the same context/ringbuffer and not
662                          * have any exceptions (e.g. GVT saying never to
663                          * combine contexts).
664                          *
665                          * If we can combine the requests, we can execute both
666                          * by updating the RING_TAIL to point to the end of the
667                          * second request, and so we never need to tell the
668                          * hardware about the first.
669                          */
670                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
671                                 /*
672                                  * If we are on the second port and cannot
673                                  * combine this request with the last, then we
674                                  * are done.
675                                  */
676                                 if (port == last_port) {
677                                         __list_del_many(&p->requests,
678                                                         &rq->sched.link);
679                                         goto done;
680                                 }
681
682                                 /*
683                                  * If GVT overrides us we only ever submit
684                                  * port[0], leaving port[1] empty. Note that we
685                                  * also have to be careful that we don't queue
686                                  * the same context (even though a different
687                                  * request) to the second port.
688                                  */
689                                 if (ctx_single_port_submission(last->ctx) ||
690                                     ctx_single_port_submission(rq->ctx)) {
691                                         __list_del_many(&p->requests,
692                                                         &rq->sched.link);
693                                         goto done;
694                                 }
695
696                                 GEM_BUG_ON(last->ctx == rq->ctx);
697
698                                 if (submit)
699                                         port_assign(port, last);
700                                 port++;
701
702                                 GEM_BUG_ON(port_isset(port));
703                         }
704
705                         INIT_LIST_HEAD(&rq->sched.link);
706                         __i915_request_submit(rq);
707                         trace_i915_request_in(rq, port_index(port, execlists));
708                         last = rq;
709                         submit = true;
710                 }
711
712                 rb = rb_next(rb);
713                 rb_erase(&p->node, &execlists->queue);
714                 INIT_LIST_HEAD(&p->requests);
715                 if (p->priority != I915_PRIORITY_NORMAL)
716                         kmem_cache_free(engine->i915->priorities, p);
717         }
718
719 done:
720         /*
721          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
722          *
723          * We choose queue_priority such that if we add a request of greater
724          * priority than this, we kick the submission tasklet to decide on
725          * the right order of submitting the requests to hardware. We must
726          * also be prepared to reorder requests as they are in-flight on the
727          * HW. We derive the queue_priority then as the first "hole" in
728          * the HW submission ports and if there are no available slots,
729          * the priority of the lowest executing request, i.e. last.
730          *
731          * When we do receive a higher priority request ready to run from the
732          * user, see queue_request(), the queue_priority is bumped to that
733          * request triggering preemption on the next dequeue (or subsequent
734          * interrupt for secondary ports).
735          */
736         execlists->queue_priority =
737                 port != execlists->port ? rq_prio(last) : INT_MIN;
738
739         execlists->first = rb;
740         if (submit)
741                 port_assign(port, last);
742
743         /* We must always keep the beast fed if we have work piled up */
744         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
745
746 unlock:
747         spin_unlock_irq(&engine->timeline.lock);
748
749         if (submit) {
750                 execlists_user_begin(execlists, execlists->port);
751                 execlists_submit_ports(engine);
752         }
753
754         GEM_BUG_ON(port_isset(execlists->port) &&
755                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
756 }
757
758 void
759 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
760 {
761         struct execlist_port *port = execlists->port;
762         unsigned int num_ports = execlists_num_ports(execlists);
763
764         while (num_ports-- && port_isset(port)) {
765                 struct i915_request *rq = port_request(port);
766
767                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
768                           rq->engine->name,
769                           (unsigned int)(port - execlists->port),
770                           rq->global_seqno,
771                           rq->fence.context, rq->fence.seqno,
772                           intel_engine_get_seqno(rq->engine));
773
774                 GEM_BUG_ON(!execlists->active);
775                 execlists_context_schedule_out(rq,
776                                                i915_request_completed(rq) ?
777                                                INTEL_CONTEXT_SCHEDULE_OUT :
778                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
779
780                 i915_request_put(rq);
781
782                 memset(port, 0, sizeof(*port));
783                 port++;
784         }
785
786         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
787         execlists_user_end(execlists);
788 }
789
790 static void clear_gtiir(struct intel_engine_cs *engine)
791 {
792         struct drm_i915_private *dev_priv = engine->i915;
793         int i;
794
795         /*
796          * Clear any pending interrupt state.
797          *
798          * We do it twice out of paranoia that some of the IIR are
799          * double buffered, and so if we only reset it once there may
800          * still be an interrupt pending.
801          */
802         if (INTEL_GEN(dev_priv) >= 11) {
803                 static const struct {
804                         u8 bank;
805                         u8 bit;
806                 } gen11_gtiir[] = {
807                         [RCS] = {0, GEN11_RCS0},
808                         [BCS] = {0, GEN11_BCS},
809                         [_VCS(0)] = {1, GEN11_VCS(0)},
810                         [_VCS(1)] = {1, GEN11_VCS(1)},
811                         [_VCS(2)] = {1, GEN11_VCS(2)},
812                         [_VCS(3)] = {1, GEN11_VCS(3)},
813                         [_VECS(0)] = {1, GEN11_VECS(0)},
814                         [_VECS(1)] = {1, GEN11_VECS(1)},
815                 };
816                 unsigned long irqflags;
817
818                 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));
819
820                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
821                 for (i = 0; i < 2; i++) {
822                         gen11_reset_one_iir(dev_priv,
823                                             gen11_gtiir[engine->id].bank,
824                                             gen11_gtiir[engine->id].bit);
825                 }
826                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
827         } else {
828                 static const u8 gtiir[] = {
829                         [RCS]  = 0,
830                         [BCS]  = 0,
831                         [VCS]  = 1,
832                         [VCS2] = 1,
833                         [VECS] = 3,
834                 };
835
836                 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
837
838                 for (i = 0; i < 2; i++) {
839                         I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
840                                    engine->irq_keep_mask);
841                         POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
842                 }
843                 GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
844                            engine->irq_keep_mask);
845         }
846 }
847
848 static void reset_irq(struct intel_engine_cs *engine)
849 {
850         /* Mark all CS interrupts as complete */
851         smp_store_mb(engine->execlists.active, 0);
852         synchronize_hardirq(engine->i915->drm.irq);
853
854         clear_gtiir(engine);
855
856         /*
857          * The port is checked prior to scheduling a tasklet, but
858          * just in case we have suspended the tasklet to do the
859          * wedging make sure that when it wakes, it decides there
860          * is no work to do by clearing the irq_posted bit.
861          */
862         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
863 }
864
865 static void execlists_cancel_requests(struct intel_engine_cs *engine)
866 {
867         struct intel_engine_execlists * const execlists = &engine->execlists;
868         struct i915_request *rq, *rn;
869         struct rb_node *rb;
870         unsigned long flags;
871
872         GEM_TRACE("%s current %d\n",
873                   engine->name, intel_engine_get_seqno(engine));
874
875         /*
876          * Before we call engine->cancel_requests(), we should have exclusive
877          * access to the submission state. This is arranged for us by the
878          * caller disabling the interrupt generation, the tasklet and other
879          * threads that may then access the same state, giving us a free hand
880          * to reset state. However, we still need to let lockdep be aware that
881          * we know this state may be accessed in hardirq context, so we
882          * disable the irq around this manipulation and we want to keep
883          * the spinlock focused on its duties and not accidentally conflate
884          * coverage to the submission's irq state. (Similarly, although we
885          * shouldn't need to disable irq around the manipulation of the
886          * submission's irq state, we also wish to remind ourselves that
887          * it is irq state.)
888          */
889         local_irq_save(flags);
890
891         /* Cancel the requests on the HW and clear the ELSP tracker. */
892         execlists_cancel_port_requests(execlists);
893         reset_irq(engine);
894
895         spin_lock(&engine->timeline.lock);
896
897         /* Mark all executing requests as skipped. */
898         list_for_each_entry(rq, &engine->timeline.requests, link) {
899                 GEM_BUG_ON(!rq->global_seqno);
900                 if (!i915_request_completed(rq))
901                         dma_fence_set_error(&rq->fence, -EIO);
902         }
903
904         /* Flush the queued requests to the timeline list (for retiring). */
905         rb = execlists->first;
906         while (rb) {
907                 struct i915_priolist *p = to_priolist(rb);
908
909                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
910                         INIT_LIST_HEAD(&rq->sched.link);
911
912                         dma_fence_set_error(&rq->fence, -EIO);
913                         __i915_request_submit(rq);
914                 }
915
916                 rb = rb_next(rb);
917                 rb_erase(&p->node, &execlists->queue);
918                 INIT_LIST_HEAD(&p->requests);
919                 if (p->priority != I915_PRIORITY_NORMAL)
920                         kmem_cache_free(engine->i915->priorities, p);
921         }
922
923         /* Remaining _unready_ requests will be nop'ed when submitted */
924
925         execlists->queue_priority = INT_MIN;
926         execlists->queue = RB_ROOT;
927         execlists->first = NULL;
928         GEM_BUG_ON(port_isset(execlists->port));
929
930         spin_unlock(&engine->timeline.lock);
931
932         local_irq_restore(flags);
933 }
934
935 /*
936  * Check the unread Context Status Buffers and manage the submission of new
937  * contexts to the ELSP accordingly.
938  */
939 static void execlists_submission_tasklet(unsigned long data)
940 {
941         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
942         struct intel_engine_execlists * const execlists = &engine->execlists;
943         struct execlist_port *port = execlists->port;
944         struct drm_i915_private *dev_priv = engine->i915;
945         bool fw = false;
946
947         /*
948          * We can skip acquiring intel_runtime_pm_get() here as it was taken
949          * on our behalf by the request (see i915_gem_mark_busy()) and it will
950          * not be relinquished until the device is idle (see
951          * i915_gem_idle_work_handler()). As a precaution, we make sure
952          * that all ELSP are drained i.e. we have processed the CSB,
953          * before allowing ourselves to idle and calling intel_runtime_pm_put().
954          */
955         GEM_BUG_ON(!dev_priv->gt.awake);
956
957         /*
958          * Prefer doing test_and_clear_bit() as a two stage operation to avoid
959          * imposing the cost of a locked atomic transaction when submitting a
960          * new request (outside of the context-switch interrupt).
961          */
962         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
963                 /* The HWSP contains a (cacheable) mirror of the CSB */
964                 const u32 *buf =
965                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
966                 unsigned int head, tail;
967
968                 if (unlikely(execlists->csb_use_mmio)) {
969                         buf = (u32 * __force)
970                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
971                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
972                 }
973
974                 /* Clear before reading to catch new interrupts */
975                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
976                 smp_mb__after_atomic();
977
978                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
979                         if (!fw) {
980                                 intel_uncore_forcewake_get(dev_priv,
981                                                            execlists->fw_domains);
982                                 fw = true;
983                         }
984
985                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
986                         tail = GEN8_CSB_WRITE_PTR(head);
987                         head = GEN8_CSB_READ_PTR(head);
988                         execlists->csb_head = head;
989                 } else {
990                         const int write_idx =
991                                 intel_hws_csb_write_index(dev_priv) -
992                                 I915_HWS_CSB_BUF0_INDEX;
993
994                         head = execlists->csb_head;
995                         tail = READ_ONCE(buf[write_idx]);
996                 }
997                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
998                           engine->name,
999                           head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
1000                           tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1001
1002                 while (head != tail) {
1003                         struct i915_request *rq;
1004                         unsigned int status;
1005                         unsigned int count;
1006
1007                         if (++head == GEN8_CSB_ENTRIES)
1008                                 head = 0;
1009
1010                         /* We are flying near dragons again.
1011                          *
1012                          * We hold a reference to the request in execlist_port[]
1013                          * but no more than that. We are operating in softirq
1014                          * context and so cannot hold any mutex or sleep. That
1015                          * prevents us stopping the requests we are processing
1016                          * in port[] from being retired simultaneously (the
1017                          * breadcrumb will be complete before we see the
1018                          * context-switch). As we only hold the reference to the
1019                          * request, any pointer chasing underneath the request
1020                          * is subject to a potential use-after-free. Thus we
1021                          * store all of the bookkeeping within port[] as
1022                          * required, and avoid using unguarded pointers beneath
1023                          * request itself. The same applies to the atomic
1024                          * status notifier.
1025                          */
1026
1027                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1028                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1029                                   engine->name, head,
1030                                   status, buf[2*head + 1],
1031                                   execlists->active);
1032
1033                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1034                                       GEN8_CTX_STATUS_PREEMPTED))
1035                                 execlists_set_active(execlists,
1036                                                      EXECLISTS_ACTIVE_HWACK);
1037                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1038                                 execlists_clear_active(execlists,
1039                                                        EXECLISTS_ACTIVE_HWACK);
1040
1041                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1042                                 continue;
1043
1044                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
1045                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1046
1047                         if (status & GEN8_CTX_STATUS_COMPLETE &&
1048                             buf[2*head + 1] == execlists->preempt_complete_status) {
1049                                 GEM_TRACE("%s preempt-idle\n", engine->name);
1050
1051                                 execlists_cancel_port_requests(execlists);
1052                                 execlists_unwind_incomplete_requests(execlists);
1053
1054                                 GEM_BUG_ON(!execlists_is_active(execlists,
1055                                                                 EXECLISTS_ACTIVE_PREEMPT));
1056                                 execlists_clear_active(execlists,
1057                                                        EXECLISTS_ACTIVE_PREEMPT);
1058                                 continue;
1059                         }
1060
1061                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
1062                             execlists_is_active(execlists,
1063                                                 EXECLISTS_ACTIVE_PREEMPT))
1064                                 continue;
1065
1066                         GEM_BUG_ON(!execlists_is_active(execlists,
1067                                                         EXECLISTS_ACTIVE_USER));
1068
1069                         rq = port_unpack(port, &count);
1070                         GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1071                                   engine->name,
1072                                   port->context_id, count,
1073                                   rq ? rq->global_seqno : 0,
1074                                   rq ? rq->fence.context : 0,
1075                                   rq ? rq->fence.seqno : 0,
1076                                   intel_engine_get_seqno(engine),
1077                                   rq ? rq_prio(rq) : 0);
1078
1079                         /* Check the context/desc id for this event matches */
1080                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1081
1082                         GEM_BUG_ON(count == 0);
1083                         if (--count == 0) {
1084                                 /*
1085                                  * On the final event corresponding to the
1086                                  * submission of this context, we expect either
1087                                  * an element-switch event or a completion
1088                                  * event (and on completion, the active-idle
1089                                  * marker). No more preemptions, lite-restore
1090                                  * or otherwise.
1091                                  */
1092                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1093                                 GEM_BUG_ON(port_isset(&port[1]) &&
1094                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1095                                 GEM_BUG_ON(!port_isset(&port[1]) &&
1096                                            !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1097
1098                                 /*
1099                                  * We rely on the hardware being strongly
1100                                  * ordered, that the breadcrumb write is
1101                                  * coherent (visible from the CPU) before the
1102                                  * user interrupt and CSB is processed.
1103                                  */
1104                                 GEM_BUG_ON(!i915_request_completed(rq));
1105
1106                                 execlists_context_schedule_out(rq,
1107                                                                INTEL_CONTEXT_SCHEDULE_OUT);
1108                                 i915_request_put(rq);
1109
1110                                 GEM_TRACE("%s completed ctx=%d\n",
1111                                           engine->name, port->context_id);
1112
1113                                 port = execlists_port_complete(execlists, port);
1114                                 if (port_isset(port))
1115                                         execlists_user_begin(execlists, port);
1116                                 else
1117                                         execlists_user_end(execlists);
1118                         } else {
1119                                 port_set(port, port_pack(rq, count));
1120                         }
1121                 }
1122
1123                 if (head != execlists->csb_head) {
1124                         execlists->csb_head = head;
1125                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1126                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1127                 }
1128         }
1129
1130         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1131                 execlists_dequeue(engine);
1132
1133         if (fw)
1134                 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1135
1136         /* If the engine is now idle, so should be the flag; and vice versa. */
1137         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1138                                        EXECLISTS_ACTIVE_USER) ==
1139                    !port_isset(engine->execlists.port));
1140 }
1141
1142 static void queue_request(struct intel_engine_cs *engine,
1143                           struct i915_sched_node *node,
1144                           int prio)
1145 {
1146         list_add_tail(&node->link,
1147                       &lookup_priolist(engine, prio)->requests);
1148 }
1149
1150 static void __submit_queue(struct intel_engine_cs *engine, int prio)
1151 {
1152         engine->execlists.queue_priority = prio;
1153         tasklet_hi_schedule(&engine->execlists.tasklet);
1154 }
1155
1156 static void submit_queue(struct intel_engine_cs *engine, int prio)
1157 {
1158         if (prio > engine->execlists.queue_priority)
1159                 __submit_queue(engine, prio);
1160 }
1161
1162 static void execlists_submit_request(struct i915_request *request)
1163 {
1164         struct intel_engine_cs *engine = request->engine;
1165         unsigned long flags;
1166
1167         /* Will be called from irq-context when using foreign fences. */
1168         spin_lock_irqsave(&engine->timeline.lock, flags);
1169
1170         queue_request(engine, &request->sched, rq_prio(request));
1171         submit_queue(engine, rq_prio(request));
1172
1173         GEM_BUG_ON(!engine->execlists.first);
1174         GEM_BUG_ON(list_empty(&request->sched.link));
1175
1176         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1177 }
1178
1179 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1180 {
1181         return container_of(node, struct i915_request, sched);
1182 }
1183
1184 static struct intel_engine_cs *
1185 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1186 {
1187         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1188
1189         GEM_BUG_ON(!locked);
1190
1191         if (engine != locked) {
1192                 spin_unlock(&locked->timeline.lock);
1193                 spin_lock(&engine->timeline.lock);
1194         }
1195
1196         return engine;
1197 }
1198
1199 static void execlists_schedule(struct i915_request *request,
1200                                const struct i915_sched_attr *attr)
1201 {
1202         struct i915_priolist *uninitialized_var(pl);
1203         struct intel_engine_cs *engine, *last;
1204         struct i915_dependency *dep, *p;
1205         struct i915_dependency stack;
1206         const int prio = attr->priority;
1207         LIST_HEAD(dfs);
1208
1209         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1210
1211         if (i915_request_completed(request))
1212                 return;
1213
1214         if (prio <= READ_ONCE(request->sched.attr.priority))
1215                 return;
1216
1217         /* Need BKL in order to use the temporary link inside i915_dependency */
1218         lockdep_assert_held(&request->i915->drm.struct_mutex);
1219
1220         stack.signaler = &request->sched;
1221         list_add(&stack.dfs_link, &dfs);
1222
1223         /*
1224          * Recursively bump all dependent priorities to match the new request.
1225          *
1226          * A naive approach would be to use recursion:
1227          * static void update_priorities(struct i915_sched_node *node, prio) {
1228          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1229          *              update_priorities(dep->signal, prio)
1230          *      queue_request(node);
1231          * }
1232          * but that may have unlimited recursion depth and so runs a very
1233          * real risk of overunning the kernel stack. Instead, we build
1234          * a flat list of all dependencies starting with the current request.
1235          * As we walk the list of dependencies, we add all of its dependencies
1236          * to the end of the list (this may include an already visited
1237          * request) and continue to walk onwards onto the new dependencies. The
1238          * end result is a topological list of requests in reverse order, the
1239          * last element in the list is the request we must execute first.
1240          */
1241         list_for_each_entry(dep, &dfs, dfs_link) {
1242                 struct i915_sched_node *node = dep->signaler;
1243
1244                 /*
1245                  * Within an engine, there can be no cycle, but we may
1246                  * refer to the same dependency chain multiple times
1247                  * (redundant dependencies are not eliminated) and across
1248                  * engines.
1249                  */
1250                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1251                         GEM_BUG_ON(p == dep); /* no cycles! */
1252
1253                         if (i915_sched_node_signaled(p->signaler))
1254                                 continue;
1255
1256                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1257                         if (prio > READ_ONCE(p->signaler->attr.priority))
1258                                 list_move_tail(&p->dfs_link, &dfs);
1259                 }
1260         }
1261
1262         /*
1263          * If we didn't need to bump any existing priorities, and we haven't
1264          * yet submitted this request (i.e. there is no potential race with
1265          * execlists_submit_request()), we can set our own priority and skip
1266          * acquiring the engine locks.
1267          */
1268         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1269                 GEM_BUG_ON(!list_empty(&request->sched.link));
1270                 request->sched.attr = *attr;
1271                 if (stack.dfs_link.next == stack.dfs_link.prev)
1272                         return;
1273                 __list_del_entry(&stack.dfs_link);
1274         }
1275
1276         last = NULL;
1277         engine = request->engine;
1278         spin_lock_irq(&engine->timeline.lock);
1279
1280         /* Fifo and depth-first replacement ensure our deps execute before us */
1281         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1282                 struct i915_sched_node *node = dep->signaler;
1283
1284                 INIT_LIST_HEAD(&dep->dfs_link);
1285
1286                 engine = sched_lock_engine(node, engine);
1287
1288                 if (prio <= node->attr.priority)
1289                         continue;
1290
1291                 node->attr.priority = prio;
1292                 if (!list_empty(&node->link)) {
1293                         if (last != engine) {
1294                                 pl = lookup_priolist(engine, prio);
1295                                 last = engine;
1296                         }
1297                         GEM_BUG_ON(pl->priority != prio);
1298                         list_move_tail(&node->link, &pl->requests);
1299                 }
1300
1301                 if (prio > engine->execlists.queue_priority &&
1302                     i915_sw_fence_done(&sched_to_request(node)->submit))
1303                         __submit_queue(engine, prio);
1304         }
1305
1306         spin_unlock_irq(&engine->timeline.lock);
1307 }
1308
1309 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1310 {
1311         unsigned int flags;
1312         int err;
1313
1314         /*
1315          * Clear this page out of any CPU caches for coherent swap-in/out.
1316          * We only want to do this on the first bind so that we do not stall
1317          * on an active context (which by nature is already on the GPU).
1318          */
1319         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1320                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1321                 if (err)
1322                         return err;
1323         }
1324
1325         flags = PIN_GLOBAL | PIN_HIGH;
1326         if (ctx->ggtt_offset_bias)
1327                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1328
1329         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1330 }
1331
1332 static struct intel_ring *
1333 execlists_context_pin(struct intel_engine_cs *engine,
1334                       struct i915_gem_context *ctx)
1335 {
1336         struct intel_context *ce = to_intel_context(ctx, engine);
1337         void *vaddr;
1338         int ret;
1339
1340         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1341
1342         if (likely(ce->pin_count++))
1343                 goto out;
1344         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1345
1346         ret = execlists_context_deferred_alloc(ctx, engine);
1347         if (ret)
1348                 goto err;
1349         GEM_BUG_ON(!ce->state);
1350
1351         ret = __context_pin(ctx, ce->state);
1352         if (ret)
1353                 goto err;
1354
1355         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1356         if (IS_ERR(vaddr)) {
1357                 ret = PTR_ERR(vaddr);
1358                 goto unpin_vma;
1359         }
1360
1361         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1362         if (ret)
1363                 goto unpin_map;
1364
1365         intel_lr_context_descriptor_update(ctx, engine);
1366
1367         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1368         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1369                 i915_ggtt_offset(ce->ring->vma);
1370         ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1371
1372         ce->state->obj->pin_global++;
1373         i915_gem_context_get(ctx);
1374 out:
1375         return ce->ring;
1376
1377 unpin_map:
1378         i915_gem_object_unpin_map(ce->state->obj);
1379 unpin_vma:
1380         __i915_vma_unpin(ce->state);
1381 err:
1382         ce->pin_count = 0;
1383         return ERR_PTR(ret);
1384 }
1385
1386 static void execlists_context_unpin(struct intel_engine_cs *engine,
1387                                     struct i915_gem_context *ctx)
1388 {
1389         struct intel_context *ce = to_intel_context(ctx, engine);
1390
1391         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1392         GEM_BUG_ON(ce->pin_count == 0);
1393
1394         if (--ce->pin_count)
1395                 return;
1396
1397         intel_ring_unpin(ce->ring);
1398
1399         ce->state->obj->pin_global--;
1400         i915_gem_object_unpin_map(ce->state->obj);
1401         i915_vma_unpin(ce->state);
1402
1403         i915_gem_context_put(ctx);
1404 }
1405
1406 static int execlists_request_alloc(struct i915_request *request)
1407 {
1408         struct intel_context *ce =
1409                 to_intel_context(request->ctx, request->engine);
1410         int ret;
1411
1412         GEM_BUG_ON(!ce->pin_count);
1413
1414         /* Flush enough space to reduce the likelihood of waiting after
1415          * we start building the request - in which case we will just
1416          * have to repeat work.
1417          */
1418         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1419
1420         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1421         if (ret)
1422                 return ret;
1423
1424         /* Note that after this point, we have committed to using
1425          * this request as it is being used to both track the
1426          * state of engine initialisation and liveness of the
1427          * golden renderstate above. Think twice before you try
1428          * to cancel/unwind this request now.
1429          */
1430
1431         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1432         return 0;
1433 }
1434
1435 /*
1436  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1437  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1438  * but there is a slight complication as this is applied in WA batch where the
1439  * values are only initialized once so we cannot take register value at the
1440  * beginning and reuse it further; hence we save its value to memory, upload a
1441  * constant value with bit21 set and then we restore it back with the saved value.
1442  * To simplify the WA, a constant value is formed by using the default value
1443  * of this register. This shouldn't be a problem because we are only modifying
1444  * it for a short period and this batch in non-premptible. We can ofcourse
1445  * use additional instructions that read the actual value of the register
1446  * at that time and set our bit of interest but it makes the WA complicated.
1447  *
1448  * This WA is also required for Gen9 so extracting as a function avoids
1449  * code duplication.
1450  */
1451 static u32 *
1452 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1453 {
1454         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1455         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1456         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1457         *batch++ = 0;
1458
1459         *batch++ = MI_LOAD_REGISTER_IMM(1);
1460         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1461         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1462
1463         batch = gen8_emit_pipe_control(batch,
1464                                        PIPE_CONTROL_CS_STALL |
1465                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1466                                        0);
1467
1468         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1469         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1470         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1471         *batch++ = 0;
1472
1473         return batch;
1474 }
1475
1476 /*
1477  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1478  * initialized at the beginning and shared across all contexts but this field
1479  * helps us to have multiple batches at different offsets and select them based
1480  * on a criteria. At the moment this batch always start at the beginning of the page
1481  * and at this point we don't have multiple wa_ctx batch buffers.
1482  *
1483  * The number of WA applied are not known at the beginning; we use this field
1484  * to return the no of DWORDS written.
1485  *
1486  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1487  * so it adds NOOPs as padding to make it cacheline aligned.
1488  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1489  * makes a complete batch buffer.
1490  */
1491 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1492 {
1493         /* WaDisableCtxRestoreArbitration:bdw,chv */
1494         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1495
1496         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1497         if (IS_BROADWELL(engine->i915))
1498                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1499
1500         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1501         /* Actual scratch location is at 128 bytes offset */
1502         batch = gen8_emit_pipe_control(batch,
1503                                        PIPE_CONTROL_FLUSH_L3 |
1504                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1505                                        PIPE_CONTROL_CS_STALL |
1506                                        PIPE_CONTROL_QW_WRITE,
1507                                        i915_ggtt_offset(engine->scratch) +
1508                                        2 * CACHELINE_BYTES);
1509
1510         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1511
1512         /* Pad to end of cacheline */
1513         while ((unsigned long)batch % CACHELINE_BYTES)
1514                 *batch++ = MI_NOOP;
1515
1516         /*
1517          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1518          * execution depends on the length specified in terms of cache lines
1519          * in the register CTX_RCS_INDIRECT_CTX
1520          */
1521
1522         return batch;
1523 }
1524
1525 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1526 {
1527         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1528
1529         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1530         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1531
1532         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1533         *batch++ = MI_LOAD_REGISTER_IMM(1);
1534         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1535         *batch++ = _MASKED_BIT_DISABLE(
1536                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1537         *batch++ = MI_NOOP;
1538
1539         /* WaClearSlmSpaceAtContextSwitch:kbl */
1540         /* Actual scratch location is at 128 bytes offset */
1541         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1542                 batch = gen8_emit_pipe_control(batch,
1543                                                PIPE_CONTROL_FLUSH_L3 |
1544                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1545                                                PIPE_CONTROL_CS_STALL |
1546                                                PIPE_CONTROL_QW_WRITE,
1547                                                i915_ggtt_offset(engine->scratch)
1548                                                + 2 * CACHELINE_BYTES);
1549         }
1550
1551         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1552         if (HAS_POOLED_EU(engine->i915)) {
1553                 /*
1554                  * EU pool configuration is setup along with golden context
1555                  * during context initialization. This value depends on
1556                  * device type (2x6 or 3x6) and needs to be updated based
1557                  * on which subslice is disabled especially for 2x6
1558                  * devices, however it is safe to load default
1559                  * configuration of 3x6 device instead of masking off
1560                  * corresponding bits because HW ignores bits of a disabled
1561                  * subslice and drops down to appropriate config. Please
1562                  * see render_state_setup() in i915_gem_render_state.c for
1563                  * possible configurations, to avoid duplication they are
1564                  * not shown here again.
1565                  */
1566                 *batch++ = GEN9_MEDIA_POOL_STATE;
1567                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1568                 *batch++ = 0x00777000;
1569                 *batch++ = 0;
1570                 *batch++ = 0;
1571                 *batch++ = 0;
1572         }
1573
1574         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1575
1576         /* Pad to end of cacheline */
1577         while ((unsigned long)batch % CACHELINE_BYTES)
1578                 *batch++ = MI_NOOP;
1579
1580         return batch;
1581 }
1582
1583 static u32 *
1584 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1585 {
1586         int i;
1587
1588         /*
1589          * WaPipeControlBefore3DStateSamplePattern: cnl
1590          *
1591          * Ensure the engine is idle prior to programming a
1592          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1593          */
1594         batch = gen8_emit_pipe_control(batch,
1595                                        PIPE_CONTROL_CS_STALL,
1596                                        0);
1597         /*
1598          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1599          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1600          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1601          * confusing. Since gen8_emit_pipe_control() already advances the
1602          * batch by 6 dwords, we advance the other 10 here, completing a
1603          * cacheline. It's not clear if the workaround requires this padding
1604          * before other commands, or if it's just the regular padding we would
1605          * already have for the workaround bb, so leave it here for now.
1606          */
1607         for (i = 0; i < 10; i++)
1608                 *batch++ = MI_NOOP;
1609
1610         /* Pad to end of cacheline */
1611         while ((unsigned long)batch % CACHELINE_BYTES)
1612                 *batch++ = MI_NOOP;
1613
1614         return batch;
1615 }
1616
1617 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1618
1619 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1620 {
1621         struct drm_i915_gem_object *obj;
1622         struct i915_vma *vma;
1623         int err;
1624
1625         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1626         if (IS_ERR(obj))
1627                 return PTR_ERR(obj);
1628
1629         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1630         if (IS_ERR(vma)) {
1631                 err = PTR_ERR(vma);
1632                 goto err;
1633         }
1634
1635         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1636         if (err)
1637                 goto err;
1638
1639         engine->wa_ctx.vma = vma;
1640         return 0;
1641
1642 err:
1643         i915_gem_object_put(obj);
1644         return err;
1645 }
1646
1647 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1648 {
1649         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1650 }
1651
1652 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1653
1654 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1655 {
1656         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1657         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1658                                             &wa_ctx->per_ctx };
1659         wa_bb_func_t wa_bb_fn[2];
1660         struct page *page;
1661         void *batch, *batch_ptr;
1662         unsigned int i;
1663         int ret;
1664
1665         if (GEM_WARN_ON(engine->id != RCS))
1666                 return -EINVAL;
1667
1668         switch (INTEL_GEN(engine->i915)) {
1669         case 10:
1670                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1671                 wa_bb_fn[1] = NULL;
1672                 break;
1673         case 9:
1674                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1675                 wa_bb_fn[1] = NULL;
1676                 break;
1677         case 8:
1678                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1679                 wa_bb_fn[1] = NULL;
1680                 break;
1681         default:
1682                 MISSING_CASE(INTEL_GEN(engine->i915));
1683                 return 0;
1684         }
1685
1686         ret = lrc_setup_wa_ctx(engine);
1687         if (ret) {
1688                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1689                 return ret;
1690         }
1691
1692         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1693         batch = batch_ptr = kmap_atomic(page);
1694
1695         /*
1696          * Emit the two workaround batch buffers, recording the offset from the
1697          * start of the workaround batch buffer object for each and their
1698          * respective sizes.
1699          */
1700         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1701                 wa_bb[i]->offset = batch_ptr - batch;
1702                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1703                                             CACHELINE_BYTES))) {
1704                         ret = -EINVAL;
1705                         break;
1706                 }
1707                 if (wa_bb_fn[i])
1708                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1709                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1710         }
1711
1712         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1713
1714         kunmap_atomic(batch);
1715         if (ret)
1716                 lrc_destroy_wa_ctx(engine);
1717
1718         return ret;
1719 }
1720
1721 static void enable_execlists(struct intel_engine_cs *engine)
1722 {
1723         struct drm_i915_private *dev_priv = engine->i915;
1724
1725         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1726
1727         /*
1728          * Make sure we're not enabling the new 12-deep CSB
1729          * FIFO as that requires a slightly updated handling
1730          * in the ctx switch irq. Since we're currently only
1731          * using only 2 elements of the enhanced execlists the
1732          * deeper FIFO it's not needed and it's not worth adding
1733          * more statements to the irq handler to support it.
1734          */
1735         if (INTEL_GEN(dev_priv) >= 11)
1736                 I915_WRITE(RING_MODE_GEN7(engine),
1737                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1738         else
1739                 I915_WRITE(RING_MODE_GEN7(engine),
1740                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1741
1742         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1743                    engine->status_page.ggtt_offset);
1744         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1745
1746         /* Following the reset, we need to reload the CSB read/write pointers */
1747         engine->execlists.csb_head = -1;
1748 }
1749
1750 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1751 {
1752         struct intel_engine_execlists * const execlists = &engine->execlists;
1753         int ret;
1754
1755         ret = intel_mocs_init_engine(engine);
1756         if (ret)
1757                 return ret;
1758
1759         intel_engine_reset_breadcrumbs(engine);
1760         intel_engine_init_hangcheck(engine);
1761
1762         enable_execlists(engine);
1763
1764         /* After a GPU reset, we may have requests to replay */
1765         if (execlists->first)
1766                 tasklet_schedule(&execlists->tasklet);
1767
1768         return 0;
1769 }
1770
1771 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1772 {
1773         struct drm_i915_private *dev_priv = engine->i915;
1774         int ret;
1775
1776         ret = gen8_init_common_ring(engine);
1777         if (ret)
1778                 return ret;
1779
1780         intel_whitelist_workarounds_apply(engine);
1781
1782         /* We need to disable the AsyncFlip performance optimisations in order
1783          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1784          * programmed to '1' on all products.
1785          *
1786          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1787          */
1788         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1789
1790         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1791
1792         return 0;
1793 }
1794
1795 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1796 {
1797         int ret;
1798
1799         ret = gen8_init_common_ring(engine);
1800         if (ret)
1801                 return ret;
1802
1803         intel_whitelist_workarounds_apply(engine);
1804
1805         return 0;
1806 }
1807
1808 static void reset_common_ring(struct intel_engine_cs *engine,
1809                               struct i915_request *request)
1810 {
1811         struct intel_engine_execlists * const execlists = &engine->execlists;
1812         unsigned long flags;
1813         u32 *regs;
1814
1815         GEM_TRACE("%s request global=%x, current=%d\n",
1816                   engine->name, request ? request->global_seqno : 0,
1817                   intel_engine_get_seqno(engine));
1818
1819         /* See execlists_cancel_requests() for the irq/spinlock split. */
1820         local_irq_save(flags);
1821
1822         /*
1823          * Catch up with any missed context-switch interrupts.
1824          *
1825          * Ideally we would just read the remaining CSB entries now that we
1826          * know the gpu is idle. However, the CSB registers are sometimes^W
1827          * often trashed across a GPU reset! Instead we have to rely on
1828          * guessing the missed context-switch events by looking at what
1829          * requests were completed.
1830          */
1831         execlists_cancel_port_requests(execlists);
1832         reset_irq(engine);
1833
1834         /* Push back any incomplete requests for replay after the reset. */
1835         spin_lock(&engine->timeline.lock);
1836         __unwind_incomplete_requests(engine);
1837         spin_unlock(&engine->timeline.lock);
1838
1839         local_irq_restore(flags);
1840
1841         /*
1842          * If the request was innocent, we leave the request in the ELSP
1843          * and will try to replay it on restarting. The context image may
1844          * have been corrupted by the reset, in which case we may have
1845          * to service a new GPU hang, but more likely we can continue on
1846          * without impact.
1847          *
1848          * If the request was guilty, we presume the context is corrupt
1849          * and have to at least restore the RING register in the context
1850          * image back to the expected values to skip over the guilty request.
1851          */
1852         if (!request || request->fence.error != -EIO)
1853                 return;
1854
1855         /*
1856          * We want a simple context + ring to execute the breadcrumb update.
1857          * We cannot rely on the context being intact across the GPU hang,
1858          * so clear it and rebuild just what we need for the breadcrumb.
1859          * All pending requests for this context will be zapped, and any
1860          * future request will be after userspace has had the opportunity
1861          * to recreate its own state.
1862          */
1863         regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1864         if (engine->default_state) {
1865                 void *defaults;
1866
1867                 defaults = i915_gem_object_pin_map(engine->default_state,
1868                                                    I915_MAP_WB);
1869                 if (!IS_ERR(defaults)) {
1870                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
1871                                defaults + LRC_STATE_PN * PAGE_SIZE,
1872                                engine->context_size - PAGE_SIZE);
1873                         i915_gem_object_unpin_map(engine->default_state);
1874                 }
1875         }
1876         execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1877
1878         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1879         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1880         regs[CTX_RING_HEAD + 1] = request->postfix;
1881
1882         request->ring->head = request->postfix;
1883         intel_ring_update_space(request->ring);
1884
1885         /* Reset WaIdleLiteRestore:bdw,skl as well */
1886         unwind_wa_tail(request);
1887 }
1888
1889 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1890 {
1891         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1892         struct intel_engine_cs *engine = rq->engine;
1893         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1894         u32 *cs;
1895         int i;
1896
1897         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1898         if (IS_ERR(cs))
1899                 return PTR_ERR(cs);
1900
1901         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1902         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1903                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1904
1905                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1906                 *cs++ = upper_32_bits(pd_daddr);
1907                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1908                 *cs++ = lower_32_bits(pd_daddr);
1909         }
1910
1911         *cs++ = MI_NOOP;
1912         intel_ring_advance(rq, cs);
1913
1914         return 0;
1915 }
1916
1917 static int gen8_emit_bb_start(struct i915_request *rq,
1918                               u64 offset, u32 len,
1919                               const unsigned int flags)
1920 {
1921         u32 *cs;
1922         int ret;
1923
1924         /* Don't rely in hw updating PDPs, specially in lite-restore.
1925          * Ideally, we should set Force PD Restore in ctx descriptor,
1926          * but we can't. Force Restore would be a second option, but
1927          * it is unsafe in case of lite-restore (because the ctx is
1928          * not idle). PML4 is allocated during ppgtt init so this is
1929          * not needed in 48-bit.*/
1930         if (rq->ctx->ppgtt &&
1931             (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1932             !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1933             !intel_vgpu_active(rq->i915)) {
1934                 ret = intel_logical_ring_emit_pdps(rq);
1935                 if (ret)
1936                         return ret;
1937
1938                 rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1939         }
1940
1941         cs = intel_ring_begin(rq, 6);
1942         if (IS_ERR(cs))
1943                 return PTR_ERR(cs);
1944
1945         /*
1946          * WaDisableCtxRestoreArbitration:bdw,chv
1947          *
1948          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1949          * particular all the gen that do not need the w/a at all!), if we
1950          * took care to make sure that on every switch into this context
1951          * (both ordinary and for preemption) that arbitrartion was enabled
1952          * we would be fine. However, there doesn't seem to be a downside to
1953          * being paranoid and making sure it is set before each batch and
1954          * every context-switch.
1955          *
1956          * Note that if we fail to enable arbitration before the request
1957          * is complete, then we do not see the context-switch interrupt and
1958          * the engine hangs (with RING_HEAD == RING_TAIL).
1959          *
1960          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1961          */
1962         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1963
1964         /* FIXME(BDW): Address space and security selectors. */
1965         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1966                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1967                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1968         *cs++ = lower_32_bits(offset);
1969         *cs++ = upper_32_bits(offset);
1970
1971         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1972         *cs++ = MI_NOOP;
1973         intel_ring_advance(rq, cs);
1974
1975         return 0;
1976 }
1977
1978 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1979 {
1980         struct drm_i915_private *dev_priv = engine->i915;
1981         I915_WRITE_IMR(engine,
1982                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1983         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1984 }
1985
1986 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1987 {
1988         struct drm_i915_private *dev_priv = engine->i915;
1989         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1990 }
1991
1992 static int gen8_emit_flush(struct i915_request *request, u32 mode)
1993 {
1994         u32 cmd, *cs;
1995
1996         cs = intel_ring_begin(request, 4);
1997         if (IS_ERR(cs))
1998                 return PTR_ERR(cs);
1999
2000         cmd = MI_FLUSH_DW + 1;
2001
2002         /* We always require a command barrier so that subsequent
2003          * commands, such as breadcrumb interrupts, are strictly ordered
2004          * wrt the contents of the write cache being flushed to memory
2005          * (and thus being coherent from the CPU).
2006          */
2007         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2008
2009         if (mode & EMIT_INVALIDATE) {
2010                 cmd |= MI_INVALIDATE_TLB;
2011                 if (request->engine->id == VCS)
2012                         cmd |= MI_INVALIDATE_BSD;
2013         }
2014
2015         *cs++ = cmd;
2016         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2017         *cs++ = 0; /* upper addr */
2018         *cs++ = 0; /* value */
2019         intel_ring_advance(request, cs);
2020
2021         return 0;
2022 }
2023
2024 static int gen8_emit_flush_render(struct i915_request *request,
2025                                   u32 mode)
2026 {
2027         struct intel_engine_cs *engine = request->engine;
2028         u32 scratch_addr =
2029                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2030         bool vf_flush_wa = false, dc_flush_wa = false;
2031         u32 *cs, flags = 0;
2032         int len;
2033
2034         flags |= PIPE_CONTROL_CS_STALL;
2035
2036         if (mode & EMIT_FLUSH) {
2037                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2038                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2039                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2040                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2041         }
2042
2043         if (mode & EMIT_INVALIDATE) {
2044                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2045                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2046                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2047                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2048                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2049                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2050                 flags |= PIPE_CONTROL_QW_WRITE;
2051                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2052
2053                 /*
2054                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2055                  * pipe control.
2056                  */
2057                 if (IS_GEN9(request->i915))
2058                         vf_flush_wa = true;
2059
2060                 /* WaForGAMHang:kbl */
2061                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2062                         dc_flush_wa = true;
2063         }
2064
2065         len = 6;
2066
2067         if (vf_flush_wa)
2068                 len += 6;
2069
2070         if (dc_flush_wa)
2071                 len += 12;
2072
2073         cs = intel_ring_begin(request, len);
2074         if (IS_ERR(cs))
2075                 return PTR_ERR(cs);
2076
2077         if (vf_flush_wa)
2078                 cs = gen8_emit_pipe_control(cs, 0, 0);
2079
2080         if (dc_flush_wa)
2081                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2082                                             0);
2083
2084         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2085
2086         if (dc_flush_wa)
2087                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2088
2089         intel_ring_advance(request, cs);
2090
2091         return 0;
2092 }
2093
2094 /*
2095  * Reserve space for 2 NOOPs at the end of each request to be
2096  * used as a workaround for not being allowed to do lite
2097  * restore with HEAD==TAIL (WaIdleLiteRestore).
2098  */
2099 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2100 {
2101         /* Ensure there's always at least one preemption point per-request. */
2102         *cs++ = MI_ARB_CHECK;
2103         *cs++ = MI_NOOP;
2104         request->wa_tail = intel_ring_offset(request, cs);
2105 }
2106
2107 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2108 {
2109         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2110         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2111
2112         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2113                                   intel_hws_seqno_address(request->engine));
2114         *cs++ = MI_USER_INTERRUPT;
2115         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2116         request->tail = intel_ring_offset(request, cs);
2117         assert_ring_tail_valid(request->ring, request->tail);
2118
2119         gen8_emit_wa_tail(request, cs);
2120 }
2121 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2122
2123 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2124 {
2125         /* We're using qword write, seqno should be aligned to 8 bytes. */
2126         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2127
2128         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2129                                       intel_hws_seqno_address(request->engine));
2130         *cs++ = MI_USER_INTERRUPT;
2131         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2132         request->tail = intel_ring_offset(request, cs);
2133         assert_ring_tail_valid(request->ring, request->tail);
2134
2135         gen8_emit_wa_tail(request, cs);
2136 }
2137 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2138
2139 static int gen8_init_rcs_context(struct i915_request *rq)
2140 {
2141         int ret;
2142
2143         ret = intel_ctx_workarounds_emit(rq);
2144         if (ret)
2145                 return ret;
2146
2147         ret = intel_rcs_context_init_mocs(rq);
2148         /*
2149          * Failing to program the MOCS is non-fatal.The system will not
2150          * run at peak performance. So generate an error and carry on.
2151          */
2152         if (ret)
2153                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2154
2155         return i915_gem_render_state_emit(rq);
2156 }
2157
2158 /**
2159  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2160  * @engine: Engine Command Streamer.
2161  */
2162 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2163 {
2164         struct drm_i915_private *dev_priv;
2165
2166         /*
2167          * Tasklet cannot be active at this point due intel_mark_active/idle
2168          * so this is just for documentation.
2169          */
2170         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2171                              &engine->execlists.tasklet.state)))
2172                 tasklet_kill(&engine->execlists.tasklet);
2173
2174         dev_priv = engine->i915;
2175
2176         if (engine->buffer) {
2177                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2178         }
2179
2180         if (engine->cleanup)
2181                 engine->cleanup(engine);
2182
2183         intel_engine_cleanup_common(engine);
2184
2185         lrc_destroy_wa_ctx(engine);
2186
2187         engine->i915 = NULL;
2188         dev_priv->engine[engine->id] = NULL;
2189         kfree(engine);
2190 }
2191
2192 static void execlists_set_default_submission(struct intel_engine_cs *engine)
2193 {
2194         engine->submit_request = execlists_submit_request;
2195         engine->cancel_requests = execlists_cancel_requests;
2196         engine->schedule = execlists_schedule;
2197         engine->execlists.tasklet.func = execlists_submission_tasklet;
2198
2199         engine->park = NULL;
2200         engine->unpark = NULL;
2201
2202         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2203         if (engine->i915->preempt_context)
2204                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2205
2206         engine->i915->caps.scheduler =
2207                 I915_SCHEDULER_CAP_ENABLED |
2208                 I915_SCHEDULER_CAP_PRIORITY;
2209         if (intel_engine_has_preemption(engine))
2210                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2211 }
2212
2213 static void
2214 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2215 {
2216         /* Default vfuncs which can be overriden by each engine. */
2217         engine->init_hw = gen8_init_common_ring;
2218         engine->reset_hw = reset_common_ring;
2219
2220         engine->context_pin = execlists_context_pin;
2221         engine->context_unpin = execlists_context_unpin;
2222
2223         engine->request_alloc = execlists_request_alloc;
2224
2225         engine->emit_flush = gen8_emit_flush;
2226         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2227         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2228
2229         engine->set_default_submission = execlists_set_default_submission;
2230
2231         if (INTEL_GEN(engine->i915) < 11) {
2232                 engine->irq_enable = gen8_logical_ring_enable_irq;
2233                 engine->irq_disable = gen8_logical_ring_disable_irq;
2234         } else {
2235                 /*
2236                  * TODO: On Gen11 interrupt masks need to be clear
2237                  * to allow C6 entry. Keep interrupts enabled at
2238                  * and take the hit of generating extra interrupts
2239                  * until a more refined solution exists.
2240                  */
2241         }
2242         engine->emit_bb_start = gen8_emit_bb_start;
2243 }
2244
2245 static inline void
2246 logical_ring_default_irqs(struct intel_engine_cs *engine)
2247 {
2248         unsigned int shift = 0;
2249
2250         if (INTEL_GEN(engine->i915) < 11) {
2251                 const u8 irq_shifts[] = {
2252                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2253                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2254                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2255                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2256                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2257                 };
2258
2259                 shift = irq_shifts[engine->id];
2260         }
2261
2262         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2263         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2264 }
2265
2266 static void
2267 logical_ring_setup(struct intel_engine_cs *engine)
2268 {
2269         struct drm_i915_private *dev_priv = engine->i915;
2270         enum forcewake_domains fw_domains;
2271
2272         intel_engine_setup_common(engine);
2273
2274         /* Intentionally left blank. */
2275         engine->buffer = NULL;
2276
2277         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2278                                                     RING_ELSP(engine),
2279                                                     FW_REG_WRITE);
2280
2281         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2282                                                      RING_CONTEXT_STATUS_PTR(engine),
2283                                                      FW_REG_READ | FW_REG_WRITE);
2284
2285         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2286                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2287                                                      FW_REG_READ);
2288
2289         engine->execlists.fw_domains = fw_domains;
2290
2291         tasklet_init(&engine->execlists.tasklet,
2292                      execlists_submission_tasklet, (unsigned long)engine);
2293
2294         logical_ring_default_vfuncs(engine);
2295         logical_ring_default_irqs(engine);
2296 }
2297
2298 static int logical_ring_init(struct intel_engine_cs *engine)
2299 {
2300         int ret;
2301
2302         ret = intel_engine_init_common(engine);
2303         if (ret)
2304                 goto error;
2305
2306         if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2307                 engine->execlists.submit_reg = engine->i915->regs +
2308                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2309                 engine->execlists.ctrl_reg = engine->i915->regs +
2310                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2311         } else {
2312                 engine->execlists.submit_reg = engine->i915->regs +
2313                         i915_mmio_reg_offset(RING_ELSP(engine));
2314         }
2315
2316         engine->execlists.preempt_complete_status = ~0u;
2317         if (engine->i915->preempt_context) {
2318                 struct intel_context *ce =
2319                         to_intel_context(engine->i915->preempt_context, engine);
2320
2321                 engine->execlists.preempt_complete_status =
2322                         upper_32_bits(ce->lrc_desc);
2323         }
2324
2325         return 0;
2326
2327 error:
2328         intel_logical_ring_cleanup(engine);
2329         return ret;
2330 }
2331
2332 int logical_render_ring_init(struct intel_engine_cs *engine)
2333 {
2334         struct drm_i915_private *dev_priv = engine->i915;
2335         int ret;
2336
2337         logical_ring_setup(engine);
2338
2339         if (HAS_L3_DPF(dev_priv))
2340                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2341
2342         /* Override some for render ring. */
2343         if (INTEL_GEN(dev_priv) >= 9)
2344                 engine->init_hw = gen9_init_render_ring;
2345         else
2346                 engine->init_hw = gen8_init_render_ring;
2347         engine->init_context = gen8_init_rcs_context;
2348         engine->emit_flush = gen8_emit_flush_render;
2349         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2350         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2351
2352         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2353         if (ret)
2354                 return ret;
2355
2356         ret = intel_init_workaround_bb(engine);
2357         if (ret) {
2358                 /*
2359                  * We continue even if we fail to initialize WA batch
2360                  * because we only expect rare glitches but nothing
2361                  * critical to prevent us from using GPU
2362                  */
2363                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2364                           ret);
2365         }
2366
2367         return logical_ring_init(engine);
2368 }
2369
2370 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2371 {
2372         logical_ring_setup(engine);
2373
2374         return logical_ring_init(engine);
2375 }
2376
2377 static u32
2378 make_rpcs(struct drm_i915_private *dev_priv)
2379 {
2380         u32 rpcs = 0;
2381
2382         /*
2383          * No explicit RPCS request is needed to ensure full
2384          * slice/subslice/EU enablement prior to Gen9.
2385         */
2386         if (INTEL_GEN(dev_priv) < 9)
2387                 return 0;
2388
2389         /*
2390          * Starting in Gen9, render power gating can leave
2391          * slice/subslice/EU in a partially enabled state. We
2392          * must make an explicit request through RPCS for full
2393          * enablement.
2394         */
2395         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2396                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2397                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2398                         GEN8_RPCS_S_CNT_SHIFT;
2399                 rpcs |= GEN8_RPCS_ENABLE;
2400         }
2401
2402         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2403                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2404                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2405                         GEN8_RPCS_SS_CNT_SHIFT;
2406                 rpcs |= GEN8_RPCS_ENABLE;
2407         }
2408
2409         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2410                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2411                         GEN8_RPCS_EU_MIN_SHIFT;
2412                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2413                         GEN8_RPCS_EU_MAX_SHIFT;
2414                 rpcs |= GEN8_RPCS_ENABLE;
2415         }
2416
2417         return rpcs;
2418 }
2419
2420 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2421 {
2422         u32 indirect_ctx_offset;
2423
2424         switch (INTEL_GEN(engine->i915)) {
2425         default:
2426                 MISSING_CASE(INTEL_GEN(engine->i915));
2427                 /* fall through */
2428         case 11:
2429                 indirect_ctx_offset =
2430                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2431                 break;
2432         case 10:
2433                 indirect_ctx_offset =
2434                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2435                 break;
2436         case 9:
2437                 indirect_ctx_offset =
2438                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2439                 break;
2440         case 8:
2441                 indirect_ctx_offset =
2442                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2443                 break;
2444         }
2445
2446         return indirect_ctx_offset;
2447 }
2448
2449 static void execlists_init_reg_state(u32 *regs,
2450                                      struct i915_gem_context *ctx,
2451                                      struct intel_engine_cs *engine,
2452                                      struct intel_ring *ring)
2453 {
2454         struct drm_i915_private *dev_priv = engine->i915;
2455         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2456         u32 base = engine->mmio_base;
2457         bool rcs = engine->id == RCS;
2458
2459         /* A context is actually a big batch buffer with several
2460          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2461          * values we are setting here are only for the first context restore:
2462          * on a subsequent save, the GPU will recreate this batchbuffer with new
2463          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2464          * we are not initializing here).
2465          */
2466         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2467                                  MI_LRI_FORCE_POSTED;
2468
2469         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2470                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2471                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2472                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2473                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2474                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2475         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2476         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2477         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2478         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2479                 RING_CTL_SIZE(ring->size) | RING_VALID);
2480         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2481         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2482         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2483         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2484         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2485         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2486         if (rcs) {
2487                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2488
2489                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2490                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2491                         RING_INDIRECT_CTX_OFFSET(base), 0);
2492                 if (wa_ctx->indirect_ctx.size) {
2493                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2494
2495                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2496                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2497                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2498
2499                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2500                                 intel_lr_indirect_ctx_offset(engine) << 6;
2501                 }
2502
2503                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2504                 if (wa_ctx->per_ctx.size) {
2505                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2506
2507                         regs[CTX_BB_PER_CTX_PTR + 1] =
2508                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2509                 }
2510         }
2511
2512         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2513
2514         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2515         /* PDP values well be assigned later if needed */
2516         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2517         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2518         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2519         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2520         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2521         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2522         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2523         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2524
2525         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2526                 /* 64b PPGTT (48bit canonical)
2527                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2528                  * other PDP Descriptors are ignored.
2529                  */
2530                 ASSIGN_CTX_PML4(ppgtt, regs);
2531         }
2532
2533         if (rcs) {
2534                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2535                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2536                         make_rpcs(dev_priv));
2537
2538                 i915_oa_init_reg_state(engine, ctx, regs);
2539         }
2540 }
2541
2542 static int
2543 populate_lr_context(struct i915_gem_context *ctx,
2544                     struct drm_i915_gem_object *ctx_obj,
2545                     struct intel_engine_cs *engine,
2546                     struct intel_ring *ring)
2547 {
2548         void *vaddr;
2549         u32 *regs;
2550         int ret;
2551
2552         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2553         if (ret) {
2554                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2555                 return ret;
2556         }
2557
2558         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2559         if (IS_ERR(vaddr)) {
2560                 ret = PTR_ERR(vaddr);
2561                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2562                 return ret;
2563         }
2564         ctx_obj->mm.dirty = true;
2565
2566         if (engine->default_state) {
2567                 /*
2568                  * We only want to copy over the template context state;
2569                  * skipping over the headers reserved for GuC communication,
2570                  * leaving those as zero.
2571                  */
2572                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2573                 void *defaults;
2574
2575                 defaults = i915_gem_object_pin_map(engine->default_state,
2576                                                    I915_MAP_WB);
2577                 if (IS_ERR(defaults)) {
2578                         ret = PTR_ERR(defaults);
2579                         goto err_unpin_ctx;
2580                 }
2581
2582                 memcpy(vaddr + start, defaults + start, engine->context_size);
2583                 i915_gem_object_unpin_map(engine->default_state);
2584         }
2585
2586         /* The second page of the context object contains some fields which must
2587          * be set up prior to the first execution. */
2588         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2589         execlists_init_reg_state(regs, ctx, engine, ring);
2590         if (!engine->default_state)
2591                 regs[CTX_CONTEXT_CONTROL + 1] |=
2592                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2593         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2594                 regs[CTX_CONTEXT_CONTROL + 1] |=
2595                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2596                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2597
2598 err_unpin_ctx:
2599         i915_gem_object_unpin_map(ctx_obj);
2600         return ret;
2601 }
2602
2603 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2604                                             struct intel_engine_cs *engine)
2605 {
2606         struct drm_i915_gem_object *ctx_obj;
2607         struct intel_context *ce = to_intel_context(ctx, engine);
2608         struct i915_vma *vma;
2609         uint32_t context_size;
2610         struct intel_ring *ring;
2611         struct i915_timeline *timeline;
2612         int ret;
2613
2614         if (ce->state)
2615                 return 0;
2616
2617         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2618
2619         /*
2620          * Before the actual start of the context image, we insert a few pages
2621          * for our own use and for sharing with the GuC.
2622          */
2623         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2624
2625         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2626         if (IS_ERR(ctx_obj)) {
2627                 ret = PTR_ERR(ctx_obj);
2628                 goto error_deref_obj;
2629         }
2630
2631         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2632         if (IS_ERR(vma)) {
2633                 ret = PTR_ERR(vma);
2634                 goto error_deref_obj;
2635         }
2636
2637         timeline = i915_timeline_create(ctx->i915, ctx->name);
2638         if (IS_ERR(timeline)) {
2639                 ret = PTR_ERR(timeline);
2640                 goto error_deref_obj;
2641         }
2642
2643         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2644         i915_timeline_put(timeline);
2645         if (IS_ERR(ring)) {
2646                 ret = PTR_ERR(ring);
2647                 goto error_deref_obj;
2648         }
2649
2650         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2651         if (ret) {
2652                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2653                 goto error_ring_free;
2654         }
2655
2656         ce->ring = ring;
2657         ce->state = vma;
2658
2659         return 0;
2660
2661 error_ring_free:
2662         intel_ring_free(ring);
2663 error_deref_obj:
2664         i915_gem_object_put(ctx_obj);
2665         return ret;
2666 }
2667
2668 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2669 {
2670         struct intel_engine_cs *engine;
2671         struct i915_gem_context *ctx;
2672         enum intel_engine_id id;
2673
2674         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2675          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2676          * that stored in context. As we only write new commands from
2677          * ce->ring->tail onwards, everything before that is junk. If the GPU
2678          * starts reading from its RING_HEAD from the context, it may try to
2679          * execute that junk and die.
2680          *
2681          * So to avoid that we reset the context images upon resume. For
2682          * simplicity, we just zero everything out.
2683          */
2684         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2685                 for_each_engine(engine, dev_priv, id) {
2686                         struct intel_context *ce =
2687                                 to_intel_context(ctx, engine);
2688                         u32 *reg;
2689
2690                         if (!ce->state)
2691                                 continue;
2692
2693                         reg = i915_gem_object_pin_map(ce->state->obj,
2694                                                       I915_MAP_WB);
2695                         if (WARN_ON(IS_ERR(reg)))
2696                                 continue;
2697
2698                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2699                         reg[CTX_RING_HEAD+1] = 0;
2700                         reg[CTX_RING_TAIL+1] = 0;
2701
2702                         ce->state->obj->mm.dirty = true;
2703                         i915_gem_object_unpin_map(ce->state->obj);
2704
2705                         intel_ring_reset(ce->ring, 0);
2706                 }
2707         }
2708 }
2709
2710 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2711 #include "selftests/intel_lrc.c"
2712 #endif