8704f7f8d0725664d41140dc2a3cd5e35d1aa612
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define GEN8_CTX_STATUS_COMPLETED_MASK \
158          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159
160 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
161 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162 #define WA_TAIL_DWORDS 2
163 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164
165 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166                                             struct intel_engine_cs *engine);
167 static void execlists_init_reg_state(u32 *reg_state,
168                                      struct i915_gem_context *ctx,
169                                      struct intel_engine_cs *engine,
170                                      struct intel_ring *ring);
171
172 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
173 {
174         return rb_entry(rb, struct i915_priolist, node);
175 }
176
177 static inline int rq_prio(const struct i915_request *rq)
178 {
179         return rq->priotree.priority;
180 }
181
182 static inline bool need_preempt(const struct intel_engine_cs *engine,
183                                 const struct i915_request *last,
184                                 int prio)
185 {
186         return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
187 }
188
189 /**
190  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
191  *                                        descriptor for a pinned context
192  * @ctx: Context to work on
193  * @engine: Engine the descriptor will be used with
194  *
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine)
223 {
224         struct intel_context *ce = &ctx->engine[engine->id];
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         if (INTEL_GEN(ctx->i915) >= 11) {
238                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
239                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
240                                                                 /* bits 37-47 */
241
242                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
243                                                                 /* bits 48-53 */
244
245                 /* TODO: decide what to do with SW counter (bits 55-60) */
246
247                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
248                                                                 /* bits 61-63 */
249         } else {
250                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
251                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
252         }
253
254         ce->lrc_desc = desc;
255 }
256
257 static struct i915_priolist *
258 lookup_priolist(struct intel_engine_cs *engine,
259                 struct i915_priotree *pt,
260                 int prio)
261 {
262         struct intel_engine_execlists * const execlists = &engine->execlists;
263         struct i915_priolist *p;
264         struct rb_node **parent, *rb;
265         bool first = true;
266
267         if (unlikely(execlists->no_priolist))
268                 prio = I915_PRIORITY_NORMAL;
269
270 find_priolist:
271         /* most positive priority is scheduled first, equal priorities fifo */
272         rb = NULL;
273         parent = &execlists->queue.rb_node;
274         while (*parent) {
275                 rb = *parent;
276                 p = to_priolist(rb);
277                 if (prio > p->priority) {
278                         parent = &rb->rb_left;
279                 } else if (prio < p->priority) {
280                         parent = &rb->rb_right;
281                         first = false;
282                 } else {
283                         return p;
284                 }
285         }
286
287         if (prio == I915_PRIORITY_NORMAL) {
288                 p = &execlists->default_priolist;
289         } else {
290                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
291                 /* Convert an allocation failure to a priority bump */
292                 if (unlikely(!p)) {
293                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
294
295                         /* To maintain ordering with all rendering, after an
296                          * allocation failure we have to disable all scheduling.
297                          * Requests will then be executed in fifo, and schedule
298                          * will ensure that dependencies are emitted in fifo.
299                          * There will be still some reordering with existing
300                          * requests, so if userspace lied about their
301                          * dependencies that reordering may be visible.
302                          */
303                         execlists->no_priolist = true;
304                         goto find_priolist;
305                 }
306         }
307
308         p->priority = prio;
309         INIT_LIST_HEAD(&p->requests);
310         rb_link_node(&p->node, rb, parent);
311         rb_insert_color(&p->node, &execlists->queue);
312
313         if (first)
314                 execlists->first = &p->node;
315
316         return p;
317 }
318
319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327         struct i915_request *rq, *rn;
328         struct i915_priolist *uninitialized_var(p);
329         int last_prio = I915_PRIORITY_INVALID;
330
331         lockdep_assert_held(&engine->timeline->lock);
332
333         list_for_each_entry_safe_reverse(rq, rn,
334                                          &engine->timeline->requests,
335                                          link) {
336                 if (i915_request_completed(rq))
337                         return;
338
339                 __i915_request_unsubmit(rq);
340                 unwind_wa_tail(rq);
341
342                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343                 if (rq_prio(rq) != last_prio) {
344                         last_prio = rq_prio(rq);
345                         p = lookup_priolist(engine, &rq->priotree, last_prio);
346                 }
347
348                 list_add(&rq->priotree.link, &p->requests);
349         }
350 }
351
352 void
353 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
354 {
355         struct intel_engine_cs *engine =
356                 container_of(execlists, typeof(*engine), execlists);
357
358         spin_lock_irq(&engine->timeline->lock);
359         __unwind_incomplete_requests(engine);
360         spin_unlock_irq(&engine->timeline->lock);
361 }
362
363 static inline void
364 execlists_context_status_change(struct i915_request *rq, unsigned long status)
365 {
366         /*
367          * Only used when GVT-g is enabled now. When GVT-g is disabled,
368          * The compiler should eliminate this function as dead-code.
369          */
370         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
371                 return;
372
373         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
374                                    status, rq);
375 }
376
377 static inline void
378 execlists_context_schedule_in(struct i915_request *rq)
379 {
380         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
381         intel_engine_context_in(rq->engine);
382 }
383
384 static inline void
385 execlists_context_schedule_out(struct i915_request *rq)
386 {
387         intel_engine_context_out(rq->engine);
388         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
389 }
390
391 static void
392 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393 {
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398 }
399
400 static u64 execlists_update_context(struct i915_request *rq)
401 {
402         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
403         struct i915_hw_ppgtt *ppgtt =
404                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
405         u32 *reg_state = ce->lrc_reg_state;
406
407         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
408
409         /* True 32b PPGTT with dynamic page allocation: update PDP
410          * registers and point the unallocated PDPs to scratch page.
411          * PML4 is allocated during ppgtt init, so this is not needed
412          * in 48-bit mode.
413          */
414         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
415                 execlists_update_context_pdps(ppgtt, reg_state);
416
417         return ce->lrc_desc;
418 }
419
420 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
421 {
422         if (execlists->ctrl_reg) {
423                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
424                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
425         } else {
426                 writel(upper_32_bits(desc), execlists->submit_reg);
427                 writel(lower_32_bits(desc), execlists->submit_reg);
428         }
429 }
430
431 static void execlists_submit_ports(struct intel_engine_cs *engine)
432 {
433         struct intel_engine_execlists *execlists = &engine->execlists;
434         struct execlist_port *port = execlists->port;
435         unsigned int n;
436
437         /*
438          * ELSQ note: the submit queue is not cleared after being submitted
439          * to the HW so we need to make sure we always clean it up. This is
440          * currently ensured by the fact that we always write the same number
441          * of elsq entries, keep this in mind before changing the loop below.
442          */
443         for (n = execlists_num_ports(execlists); n--; ) {
444                 struct i915_request *rq;
445                 unsigned int count;
446                 u64 desc;
447
448                 rq = port_unpack(&port[n], &count);
449                 if (rq) {
450                         GEM_BUG_ON(count > !n);
451                         if (!count++)
452                                 execlists_context_schedule_in(rq);
453                         port_set(&port[n], port_pack(rq, count));
454                         desc = execlists_update_context(rq);
455                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
456
457                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
458                                   engine->name, n,
459                                   port[n].context_id, count,
460                                   rq->global_seqno,
461                                   rq_prio(rq));
462                 } else {
463                         GEM_BUG_ON(!n);
464                         desc = 0;
465                 }
466
467                 write_desc(execlists, desc, n);
468         }
469
470         /* we need to manually load the submit queue */
471         if (execlists->ctrl_reg)
472                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
473
474         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
475 }
476
477 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
478 {
479         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
480                 i915_gem_context_force_single_submission(ctx));
481 }
482
483 static bool can_merge_ctx(const struct i915_gem_context *prev,
484                           const struct i915_gem_context *next)
485 {
486         if (prev != next)
487                 return false;
488
489         if (ctx_single_port_submission(prev))
490                 return false;
491
492         return true;
493 }
494
495 static void port_assign(struct execlist_port *port, struct i915_request *rq)
496 {
497         GEM_BUG_ON(rq == port_request(port));
498
499         if (port_isset(port))
500                 i915_request_put(port_request(port));
501
502         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
503 }
504
505 static void inject_preempt_context(struct intel_engine_cs *engine)
506 {
507         struct intel_engine_execlists *execlists = &engine->execlists;
508         struct intel_context *ce =
509                 &engine->i915->preempt_context->engine[engine->id];
510         unsigned int n;
511
512         GEM_BUG_ON(execlists->preempt_complete_status !=
513                    upper_32_bits(ce->lrc_desc));
514         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
515                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
516                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
517                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
518                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
519
520         /*
521          * Switch to our empty preempt context so
522          * the state of the GPU is known (idle).
523          */
524         GEM_TRACE("%s\n", engine->name);
525         for (n = execlists_num_ports(execlists); --n; )
526                 write_desc(execlists, 0, n);
527
528         write_desc(execlists, ce->lrc_desc, n);
529
530         /* we need to manually load the submit queue */
531         if (execlists->ctrl_reg)
532                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
533
534         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
535         execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
536 }
537
538 static void execlists_dequeue(struct intel_engine_cs *engine)
539 {
540         struct intel_engine_execlists * const execlists = &engine->execlists;
541         struct execlist_port *port = execlists->port;
542         const struct execlist_port * const last_port =
543                 &execlists->port[execlists->port_mask];
544         struct i915_request *last = port_request(port);
545         struct rb_node *rb;
546         bool submit = false;
547
548         /* Hardware submission is through 2 ports. Conceptually each port
549          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
550          * static for a context, and unique to each, so we only execute
551          * requests belonging to a single context from each ring. RING_HEAD
552          * is maintained by the CS in the context image, it marks the place
553          * where it got up to last time, and through RING_TAIL we tell the CS
554          * where we want to execute up to this time.
555          *
556          * In this list the requests are in order of execution. Consecutive
557          * requests from the same context are adjacent in the ringbuffer. We
558          * can combine these requests into a single RING_TAIL update:
559          *
560          *              RING_HEAD...req1...req2
561          *                                    ^- RING_TAIL
562          * since to execute req2 the CS must first execute req1.
563          *
564          * Our goal then is to point each port to the end of a consecutive
565          * sequence of requests as being the most optimal (fewest wake ups
566          * and context switches) submission.
567          */
568
569         spin_lock_irq(&engine->timeline->lock);
570         rb = execlists->first;
571         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
572
573         if (last) {
574                 /*
575                  * Don't resubmit or switch until all outstanding
576                  * preemptions (lite-restore) are seen. Then we
577                  * know the next preemption status we see corresponds
578                  * to this ELSP update.
579                  */
580                 GEM_BUG_ON(!execlists_is_active(execlists,
581                                                 EXECLISTS_ACTIVE_USER));
582                 GEM_BUG_ON(!port_count(&port[0]));
583                 if (port_count(&port[0]) > 1)
584                         goto unlock;
585
586                 /*
587                  * If we write to ELSP a second time before the HW has had
588                  * a chance to respond to the previous write, we can confuse
589                  * the HW and hit "undefined behaviour". After writing to ELSP,
590                  * we must then wait until we see a context-switch event from
591                  * the HW to indicate that it has had a chance to respond.
592                  */
593                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
594                         goto unlock;
595
596                 if (need_preempt(engine, last, execlists->queue_priority)) {
597                         inject_preempt_context(engine);
598                         goto unlock;
599                 }
600
601                 /*
602                  * In theory, we could coalesce more requests onto
603                  * the second port (the first port is active, with
604                  * no preemptions pending). However, that means we
605                  * then have to deal with the possible lite-restore
606                  * of the second port (as we submit the ELSP, there
607                  * may be a context-switch) but also we may complete
608                  * the resubmission before the context-switch. Ergo,
609                  * coalescing onto the second port will cause a
610                  * preemption event, but we cannot predict whether
611                  * that will affect port[0] or port[1].
612                  *
613                  * If the second port is already active, we can wait
614                  * until the next context-switch before contemplating
615                  * new requests. The GPU will be busy and we should be
616                  * able to resubmit the new ELSP before it idles,
617                  * avoiding pipeline bubbles (momentary pauses where
618                  * the driver is unable to keep up the supply of new
619                  * work). However, we have to double check that the
620                  * priorities of the ports haven't been switch.
621                  */
622                 if (port_count(&port[1]))
623                         goto unlock;
624
625                 /*
626                  * WaIdleLiteRestore:bdw,skl
627                  * Apply the wa NOOPs to prevent
628                  * ring:HEAD == rq:TAIL as we resubmit the
629                  * request. See gen8_emit_breadcrumb() for
630                  * where we prepare the padding after the
631                  * end of the request.
632                  */
633                 last->tail = last->wa_tail;
634         }
635
636         while (rb) {
637                 struct i915_priolist *p = to_priolist(rb);
638                 struct i915_request *rq, *rn;
639
640                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
641                         /*
642                          * Can we combine this request with the current port?
643                          * It has to be the same context/ringbuffer and not
644                          * have any exceptions (e.g. GVT saying never to
645                          * combine contexts).
646                          *
647                          * If we can combine the requests, we can execute both
648                          * by updating the RING_TAIL to point to the end of the
649                          * second request, and so we never need to tell the
650                          * hardware about the first.
651                          */
652                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
653                                 /*
654                                  * If we are on the second port and cannot
655                                  * combine this request with the last, then we
656                                  * are done.
657                                  */
658                                 if (port == last_port) {
659                                         __list_del_many(&p->requests,
660                                                         &rq->priotree.link);
661                                         goto done;
662                                 }
663
664                                 /*
665                                  * If GVT overrides us we only ever submit
666                                  * port[0], leaving port[1] empty. Note that we
667                                  * also have to be careful that we don't queue
668                                  * the same context (even though a different
669                                  * request) to the second port.
670                                  */
671                                 if (ctx_single_port_submission(last->ctx) ||
672                                     ctx_single_port_submission(rq->ctx)) {
673                                         __list_del_many(&p->requests,
674                                                         &rq->priotree.link);
675                                         goto done;
676                                 }
677
678                                 GEM_BUG_ON(last->ctx == rq->ctx);
679
680                                 if (submit)
681                                         port_assign(port, last);
682                                 port++;
683
684                                 GEM_BUG_ON(port_isset(port));
685                         }
686
687                         INIT_LIST_HEAD(&rq->priotree.link);
688                         __i915_request_submit(rq);
689                         trace_i915_request_in(rq, port_index(port, execlists));
690                         last = rq;
691                         submit = true;
692                 }
693
694                 rb = rb_next(rb);
695                 rb_erase(&p->node, &execlists->queue);
696                 INIT_LIST_HEAD(&p->requests);
697                 if (p->priority != I915_PRIORITY_NORMAL)
698                         kmem_cache_free(engine->i915->priorities, p);
699         }
700 done:
701         execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
702         execlists->first = rb;
703         if (submit)
704                 port_assign(port, last);
705
706         /* We must always keep the beast fed if we have work piled up */
707         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
708
709 unlock:
710         spin_unlock_irq(&engine->timeline->lock);
711
712         if (submit) {
713                 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
714                 execlists_submit_ports(engine);
715         }
716
717         GEM_BUG_ON(port_isset(execlists->port) &&
718                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
719 }
720
721 void
722 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
723 {
724         struct execlist_port *port = execlists->port;
725         unsigned int num_ports = execlists_num_ports(execlists);
726
727         while (num_ports-- && port_isset(port)) {
728                 struct i915_request *rq = port_request(port);
729
730                 GEM_BUG_ON(!execlists->active);
731                 intel_engine_context_out(rq->engine);
732
733                 execlists_context_status_change(rq,
734                                                 i915_request_completed(rq) ?
735                                                 INTEL_CONTEXT_SCHEDULE_OUT :
736                                                 INTEL_CONTEXT_SCHEDULE_PREEMPTED);
737
738                 i915_request_put(rq);
739
740                 memset(port, 0, sizeof(*port));
741                 port++;
742         }
743
744         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
745 }
746
747 static void execlists_cancel_requests(struct intel_engine_cs *engine)
748 {
749         struct intel_engine_execlists * const execlists = &engine->execlists;
750         struct i915_request *rq, *rn;
751         struct rb_node *rb;
752         unsigned long flags;
753
754         GEM_TRACE("%s\n", engine->name);
755
756         /*
757          * Before we call engine->cancel_requests(), we should have exclusive
758          * access to the submission state. This is arranged for us by the
759          * caller disabling the interrupt generation, the tasklet and other
760          * threads that may then access the same state, giving us a free hand
761          * to reset state. However, we still need to let lockdep be aware that
762          * we know this state may be accessed in hardirq context, so we
763          * disable the irq around this manipulation and we want to keep
764          * the spinlock focused on its duties and not accidentally conflate
765          * coverage to the submission's irq state. (Similarly, although we
766          * shouldn't need to disable irq around the manipulation of the
767          * submission's irq state, we also wish to remind ourselves that
768          * it is irq state.)
769          */
770         local_irq_save(flags);
771
772         /* Cancel the requests on the HW and clear the ELSP tracker. */
773         execlists_cancel_port_requests(execlists);
774
775         spin_lock(&engine->timeline->lock);
776
777         /* Mark all executing requests as skipped. */
778         list_for_each_entry(rq, &engine->timeline->requests, link) {
779                 GEM_BUG_ON(!rq->global_seqno);
780                 if (!i915_request_completed(rq))
781                         dma_fence_set_error(&rq->fence, -EIO);
782         }
783
784         /* Flush the queued requests to the timeline list (for retiring). */
785         rb = execlists->first;
786         while (rb) {
787                 struct i915_priolist *p = to_priolist(rb);
788
789                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
790                         INIT_LIST_HEAD(&rq->priotree.link);
791
792                         dma_fence_set_error(&rq->fence, -EIO);
793                         __i915_request_submit(rq);
794                 }
795
796                 rb = rb_next(rb);
797                 rb_erase(&p->node, &execlists->queue);
798                 INIT_LIST_HEAD(&p->requests);
799                 if (p->priority != I915_PRIORITY_NORMAL)
800                         kmem_cache_free(engine->i915->priorities, p);
801         }
802
803         /* Remaining _unready_ requests will be nop'ed when submitted */
804
805         execlists->queue_priority = INT_MIN;
806         execlists->queue = RB_ROOT;
807         execlists->first = NULL;
808         GEM_BUG_ON(port_isset(execlists->port));
809
810         spin_unlock(&engine->timeline->lock);
811
812         /*
813          * The port is checked prior to scheduling a tasklet, but
814          * just in case we have suspended the tasklet to do the
815          * wedging make sure that when it wakes, it decides there
816          * is no work to do by clearing the irq_posted bit.
817          */
818         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
819
820         /* Mark all CS interrupts as complete */
821         execlists->active = 0;
822
823         local_irq_restore(flags);
824 }
825
826 /*
827  * Check the unread Context Status Buffers and manage the submission of new
828  * contexts to the ELSP accordingly.
829  */
830 static void execlists_submission_tasklet(unsigned long data)
831 {
832         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
833         struct intel_engine_execlists * const execlists = &engine->execlists;
834         struct execlist_port * const port = execlists->port;
835         struct drm_i915_private *dev_priv = engine->i915;
836         bool fw = false;
837
838         /*
839          * We can skip acquiring intel_runtime_pm_get() here as it was taken
840          * on our behalf by the request (see i915_gem_mark_busy()) and it will
841          * not be relinquished until the device is idle (see
842          * i915_gem_idle_work_handler()). As a precaution, we make sure
843          * that all ELSP are drained i.e. we have processed the CSB,
844          * before allowing ourselves to idle and calling intel_runtime_pm_put().
845          */
846         GEM_BUG_ON(!dev_priv->gt.awake);
847
848         /*
849          * Prefer doing test_and_clear_bit() as a two stage operation to avoid
850          * imposing the cost of a locked atomic transaction when submitting a
851          * new request (outside of the context-switch interrupt).
852          */
853         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
854                 /* The HWSP contains a (cacheable) mirror of the CSB */
855                 const u32 *buf =
856                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
857                 unsigned int head, tail;
858
859                 if (unlikely(execlists->csb_use_mmio)) {
860                         buf = (u32 * __force)
861                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
862                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
863                 }
864
865                 /* Clear before reading to catch new interrupts */
866                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
867                 smp_mb__after_atomic();
868
869                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
870                         if (!fw) {
871                                 intel_uncore_forcewake_get(dev_priv,
872                                                            execlists->fw_domains);
873                                 fw = true;
874                         }
875
876                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
877                         tail = GEN8_CSB_WRITE_PTR(head);
878                         head = GEN8_CSB_READ_PTR(head);
879                         execlists->csb_head = head;
880                 } else {
881                         const int write_idx =
882                                 intel_hws_csb_write_index(dev_priv) -
883                                 I915_HWS_CSB_BUF0_INDEX;
884
885                         head = execlists->csb_head;
886                         tail = READ_ONCE(buf[write_idx]);
887                         rmb(); /* Hopefully paired with a wmb() in HW */
888                 }
889                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
890                           engine->name,
891                           head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
892                           tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
893
894                 while (head != tail) {
895                         struct i915_request *rq;
896                         unsigned int status;
897                         unsigned int count;
898
899                         if (++head == GEN8_CSB_ENTRIES)
900                                 head = 0;
901
902                         /* We are flying near dragons again.
903                          *
904                          * We hold a reference to the request in execlist_port[]
905                          * but no more than that. We are operating in softirq
906                          * context and so cannot hold any mutex or sleep. That
907                          * prevents us stopping the requests we are processing
908                          * in port[] from being retired simultaneously (the
909                          * breadcrumb will be complete before we see the
910                          * context-switch). As we only hold the reference to the
911                          * request, any pointer chasing underneath the request
912                          * is subject to a potential use-after-free. Thus we
913                          * store all of the bookkeeping within port[] as
914                          * required, and avoid using unguarded pointers beneath
915                          * request itself. The same applies to the atomic
916                          * status notifier.
917                          */
918
919                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
920                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
921                                   engine->name, head,
922                                   status, buf[2*head + 1],
923                                   execlists->active);
924
925                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
926                                       GEN8_CTX_STATUS_PREEMPTED))
927                                 execlists_set_active(execlists,
928                                                      EXECLISTS_ACTIVE_HWACK);
929                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
930                                 execlists_clear_active(execlists,
931                                                        EXECLISTS_ACTIVE_HWACK);
932
933                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
934                                 continue;
935
936                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
937                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
938
939                         if (status & GEN8_CTX_STATUS_COMPLETE &&
940                             buf[2*head + 1] == execlists->preempt_complete_status) {
941                                 GEM_TRACE("%s preempt-idle\n", engine->name);
942
943                                 execlists_cancel_port_requests(execlists);
944                                 execlists_unwind_incomplete_requests(execlists);
945
946                                 GEM_BUG_ON(!execlists_is_active(execlists,
947                                                                 EXECLISTS_ACTIVE_PREEMPT));
948                                 execlists_clear_active(execlists,
949                                                        EXECLISTS_ACTIVE_PREEMPT);
950                                 continue;
951                         }
952
953                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
954                             execlists_is_active(execlists,
955                                                 EXECLISTS_ACTIVE_PREEMPT))
956                                 continue;
957
958                         GEM_BUG_ON(!execlists_is_active(execlists,
959                                                         EXECLISTS_ACTIVE_USER));
960
961                         rq = port_unpack(port, &count);
962                         GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
963                                   engine->name,
964                                   port->context_id, count,
965                                   rq ? rq->global_seqno : 0,
966                                   rq ? rq_prio(rq) : 0);
967
968                         /* Check the context/desc id for this event matches */
969                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
970
971                         GEM_BUG_ON(count == 0);
972                         if (--count == 0) {
973                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
974                                 GEM_BUG_ON(port_isset(&port[1]) &&
975                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
976                                 GEM_BUG_ON(!i915_request_completed(rq));
977                                 execlists_context_schedule_out(rq);
978                                 trace_i915_request_out(rq);
979                                 i915_request_put(rq);
980
981                                 GEM_TRACE("%s completed ctx=%d\n",
982                                           engine->name, port->context_id);
983
984                                 execlists_port_complete(execlists, port);
985                         } else {
986                                 port_set(port, port_pack(rq, count));
987                         }
988
989                         /* After the final element, the hw should be idle */
990                         GEM_BUG_ON(port_count(port) == 0 &&
991                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
992                         if (port_count(port) == 0)
993                                 execlists_clear_active(execlists,
994                                                        EXECLISTS_ACTIVE_USER);
995                 }
996
997                 if (head != execlists->csb_head) {
998                         execlists->csb_head = head;
999                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1000                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001                 }
1002         }
1003
1004         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1005                 execlists_dequeue(engine);
1006
1007         if (fw)
1008                 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1009
1010         /* If the engine is now idle, so should be the flag; and vice versa. */
1011         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1012                                        EXECLISTS_ACTIVE_USER) ==
1013                    !port_isset(engine->execlists.port));
1014 }
1015
1016 static void queue_request(struct intel_engine_cs *engine,
1017                           struct i915_priotree *pt,
1018                           int prio)
1019 {
1020         list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
1021 }
1022
1023 static void submit_queue(struct intel_engine_cs *engine, int prio)
1024 {
1025         if (prio > engine->execlists.queue_priority) {
1026                 engine->execlists.queue_priority = prio;
1027                 tasklet_hi_schedule(&engine->execlists.tasklet);
1028         }
1029 }
1030
1031 static void execlists_submit_request(struct i915_request *request)
1032 {
1033         struct intel_engine_cs *engine = request->engine;
1034         unsigned long flags;
1035
1036         /* Will be called from irq-context when using foreign fences. */
1037         spin_lock_irqsave(&engine->timeline->lock, flags);
1038
1039         queue_request(engine, &request->priotree, rq_prio(request));
1040         submit_queue(engine, rq_prio(request));
1041
1042         GEM_BUG_ON(!engine->execlists.first);
1043         GEM_BUG_ON(list_empty(&request->priotree.link));
1044
1045         spin_unlock_irqrestore(&engine->timeline->lock, flags);
1046 }
1047
1048 static struct i915_request *pt_to_request(struct i915_priotree *pt)
1049 {
1050         return container_of(pt, struct i915_request, priotree);
1051 }
1052
1053 static struct intel_engine_cs *
1054 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
1055 {
1056         struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1057
1058         GEM_BUG_ON(!locked);
1059
1060         if (engine != locked) {
1061                 spin_unlock(&locked->timeline->lock);
1062                 spin_lock(&engine->timeline->lock);
1063         }
1064
1065         return engine;
1066 }
1067
1068 static void execlists_schedule(struct i915_request *request, int prio)
1069 {
1070         struct intel_engine_cs *engine;
1071         struct i915_dependency *dep, *p;
1072         struct i915_dependency stack;
1073         LIST_HEAD(dfs);
1074
1075         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1076
1077         if (i915_request_completed(request))
1078                 return;
1079
1080         if (prio <= READ_ONCE(request->priotree.priority))
1081                 return;
1082
1083         /* Need BKL in order to use the temporary link inside i915_dependency */
1084         lockdep_assert_held(&request->i915->drm.struct_mutex);
1085
1086         stack.signaler = &request->priotree;
1087         list_add(&stack.dfs_link, &dfs);
1088
1089         /*
1090          * Recursively bump all dependent priorities to match the new request.
1091          *
1092          * A naive approach would be to use recursion:
1093          * static void update_priorities(struct i915_priotree *pt, prio) {
1094          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
1095          *              update_priorities(dep->signal, prio)
1096          *      queue_request(pt);
1097          * }
1098          * but that may have unlimited recursion depth and so runs a very
1099          * real risk of overunning the kernel stack. Instead, we build
1100          * a flat list of all dependencies starting with the current request.
1101          * As we walk the list of dependencies, we add all of its dependencies
1102          * to the end of the list (this may include an already visited
1103          * request) and continue to walk onwards onto the new dependencies. The
1104          * end result is a topological list of requests in reverse order, the
1105          * last element in the list is the request we must execute first.
1106          */
1107         list_for_each_entry(dep, &dfs, dfs_link) {
1108                 struct i915_priotree *pt = dep->signaler;
1109
1110                 /*
1111                  * Within an engine, there can be no cycle, but we may
1112                  * refer to the same dependency chain multiple times
1113                  * (redundant dependencies are not eliminated) and across
1114                  * engines.
1115                  */
1116                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1117                         GEM_BUG_ON(p == dep); /* no cycles! */
1118
1119                         if (i915_priotree_signaled(p->signaler))
1120                                 continue;
1121
1122                         GEM_BUG_ON(p->signaler->priority < pt->priority);
1123                         if (prio > READ_ONCE(p->signaler->priority))
1124                                 list_move_tail(&p->dfs_link, &dfs);
1125                 }
1126         }
1127
1128         /*
1129          * If we didn't need to bump any existing priorities, and we haven't
1130          * yet submitted this request (i.e. there is no potential race with
1131          * execlists_submit_request()), we can set our own priority and skip
1132          * acquiring the engine locks.
1133          */
1134         if (request->priotree.priority == I915_PRIORITY_INVALID) {
1135                 GEM_BUG_ON(!list_empty(&request->priotree.link));
1136                 request->priotree.priority = prio;
1137                 if (stack.dfs_link.next == stack.dfs_link.prev)
1138                         return;
1139                 __list_del_entry(&stack.dfs_link);
1140         }
1141
1142         engine = request->engine;
1143         spin_lock_irq(&engine->timeline->lock);
1144
1145         /* Fifo and depth-first replacement ensure our deps execute before us */
1146         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1147                 struct i915_priotree *pt = dep->signaler;
1148
1149                 INIT_LIST_HEAD(&dep->dfs_link);
1150
1151                 engine = pt_lock_engine(pt, engine);
1152
1153                 if (prio <= pt->priority)
1154                         continue;
1155
1156                 pt->priority = prio;
1157                 if (!list_empty(&pt->link)) {
1158                         __list_del_entry(&pt->link);
1159                         queue_request(engine, pt, prio);
1160                 }
1161                 submit_queue(engine, prio);
1162         }
1163
1164         spin_unlock_irq(&engine->timeline->lock);
1165 }
1166
1167 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1168 {
1169         unsigned int flags;
1170         int err;
1171
1172         /*
1173          * Clear this page out of any CPU caches for coherent swap-in/out.
1174          * We only want to do this on the first bind so that we do not stall
1175          * on an active context (which by nature is already on the GPU).
1176          */
1177         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1178                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1179                 if (err)
1180                         return err;
1181         }
1182
1183         flags = PIN_GLOBAL | PIN_HIGH;
1184         if (ctx->ggtt_offset_bias)
1185                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1186
1187         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1188 }
1189
1190 static struct intel_ring *
1191 execlists_context_pin(struct intel_engine_cs *engine,
1192                       struct i915_gem_context *ctx)
1193 {
1194         struct intel_context *ce = &ctx->engine[engine->id];
1195         void *vaddr;
1196         int ret;
1197
1198         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1199
1200         if (likely(ce->pin_count++))
1201                 goto out;
1202         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1203
1204         ret = execlists_context_deferred_alloc(ctx, engine);
1205         if (ret)
1206                 goto err;
1207         GEM_BUG_ON(!ce->state);
1208
1209         ret = __context_pin(ctx, ce->state);
1210         if (ret)
1211                 goto err;
1212
1213         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1214         if (IS_ERR(vaddr)) {
1215                 ret = PTR_ERR(vaddr);
1216                 goto unpin_vma;
1217         }
1218
1219         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1220         if (ret)
1221                 goto unpin_map;
1222
1223         intel_lr_context_descriptor_update(ctx, engine);
1224
1225         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1226         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1227                 i915_ggtt_offset(ce->ring->vma);
1228
1229         ce->state->obj->pin_global++;
1230         i915_gem_context_get(ctx);
1231 out:
1232         return ce->ring;
1233
1234 unpin_map:
1235         i915_gem_object_unpin_map(ce->state->obj);
1236 unpin_vma:
1237         __i915_vma_unpin(ce->state);
1238 err:
1239         ce->pin_count = 0;
1240         return ERR_PTR(ret);
1241 }
1242
1243 static void execlists_context_unpin(struct intel_engine_cs *engine,
1244                                     struct i915_gem_context *ctx)
1245 {
1246         struct intel_context *ce = &ctx->engine[engine->id];
1247
1248         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1249         GEM_BUG_ON(ce->pin_count == 0);
1250
1251         if (--ce->pin_count)
1252                 return;
1253
1254         intel_ring_unpin(ce->ring);
1255
1256         ce->state->obj->pin_global--;
1257         i915_gem_object_unpin_map(ce->state->obj);
1258         i915_vma_unpin(ce->state);
1259
1260         i915_gem_context_put(ctx);
1261 }
1262
1263 static int execlists_request_alloc(struct i915_request *request)
1264 {
1265         struct intel_engine_cs *engine = request->engine;
1266         struct intel_context *ce = &request->ctx->engine[engine->id];
1267         int ret;
1268
1269         GEM_BUG_ON(!ce->pin_count);
1270
1271         /* Flush enough space to reduce the likelihood of waiting after
1272          * we start building the request - in which case we will just
1273          * have to repeat work.
1274          */
1275         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1276
1277         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1278         if (ret)
1279                 return ret;
1280
1281         /* Note that after this point, we have committed to using
1282          * this request as it is being used to both track the
1283          * state of engine initialisation and liveness of the
1284          * golden renderstate above. Think twice before you try
1285          * to cancel/unwind this request now.
1286          */
1287
1288         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1289         return 0;
1290 }
1291
1292 /*
1293  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1294  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1295  * but there is a slight complication as this is applied in WA batch where the
1296  * values are only initialized once so we cannot take register value at the
1297  * beginning and reuse it further; hence we save its value to memory, upload a
1298  * constant value with bit21 set and then we restore it back with the saved value.
1299  * To simplify the WA, a constant value is formed by using the default value
1300  * of this register. This shouldn't be a problem because we are only modifying
1301  * it for a short period and this batch in non-premptible. We can ofcourse
1302  * use additional instructions that read the actual value of the register
1303  * at that time and set our bit of interest but it makes the WA complicated.
1304  *
1305  * This WA is also required for Gen9 so extracting as a function avoids
1306  * code duplication.
1307  */
1308 static u32 *
1309 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1310 {
1311         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1312         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1313         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1314         *batch++ = 0;
1315
1316         *batch++ = MI_LOAD_REGISTER_IMM(1);
1317         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1318         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1319
1320         batch = gen8_emit_pipe_control(batch,
1321                                        PIPE_CONTROL_CS_STALL |
1322                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1323                                        0);
1324
1325         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1326         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1327         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1328         *batch++ = 0;
1329
1330         return batch;
1331 }
1332
1333 /*
1334  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1335  * initialized at the beginning and shared across all contexts but this field
1336  * helps us to have multiple batches at different offsets and select them based
1337  * on a criteria. At the moment this batch always start at the beginning of the page
1338  * and at this point we don't have multiple wa_ctx batch buffers.
1339  *
1340  * The number of WA applied are not known at the beginning; we use this field
1341  * to return the no of DWORDS written.
1342  *
1343  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1344  * so it adds NOOPs as padding to make it cacheline aligned.
1345  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1346  * makes a complete batch buffer.
1347  */
1348 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1349 {
1350         /* WaDisableCtxRestoreArbitration:bdw,chv */
1351         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1352
1353         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1354         if (IS_BROADWELL(engine->i915))
1355                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1356
1357         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1358         /* Actual scratch location is at 128 bytes offset */
1359         batch = gen8_emit_pipe_control(batch,
1360                                        PIPE_CONTROL_FLUSH_L3 |
1361                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1362                                        PIPE_CONTROL_CS_STALL |
1363                                        PIPE_CONTROL_QW_WRITE,
1364                                        i915_ggtt_offset(engine->scratch) +
1365                                        2 * CACHELINE_BYTES);
1366
1367         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1368
1369         /* Pad to end of cacheline */
1370         while ((unsigned long)batch % CACHELINE_BYTES)
1371                 *batch++ = MI_NOOP;
1372
1373         /*
1374          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1375          * execution depends on the length specified in terms of cache lines
1376          * in the register CTX_RCS_INDIRECT_CTX
1377          */
1378
1379         return batch;
1380 }
1381
1382 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1383 {
1384         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1385
1386         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1387         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1388
1389         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1390         *batch++ = MI_LOAD_REGISTER_IMM(1);
1391         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1392         *batch++ = _MASKED_BIT_DISABLE(
1393                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1394         *batch++ = MI_NOOP;
1395
1396         /* WaClearSlmSpaceAtContextSwitch:kbl */
1397         /* Actual scratch location is at 128 bytes offset */
1398         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1399                 batch = gen8_emit_pipe_control(batch,
1400                                                PIPE_CONTROL_FLUSH_L3 |
1401                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1402                                                PIPE_CONTROL_CS_STALL |
1403                                                PIPE_CONTROL_QW_WRITE,
1404                                                i915_ggtt_offset(engine->scratch)
1405                                                + 2 * CACHELINE_BYTES);
1406         }
1407
1408         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1409         if (HAS_POOLED_EU(engine->i915)) {
1410                 /*
1411                  * EU pool configuration is setup along with golden context
1412                  * during context initialization. This value depends on
1413                  * device type (2x6 or 3x6) and needs to be updated based
1414                  * on which subslice is disabled especially for 2x6
1415                  * devices, however it is safe to load default
1416                  * configuration of 3x6 device instead of masking off
1417                  * corresponding bits because HW ignores bits of a disabled
1418                  * subslice and drops down to appropriate config. Please
1419                  * see render_state_setup() in i915_gem_render_state.c for
1420                  * possible configurations, to avoid duplication they are
1421                  * not shown here again.
1422                  */
1423                 *batch++ = GEN9_MEDIA_POOL_STATE;
1424                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1425                 *batch++ = 0x00777000;
1426                 *batch++ = 0;
1427                 *batch++ = 0;
1428                 *batch++ = 0;
1429         }
1430
1431         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1432
1433         /* Pad to end of cacheline */
1434         while ((unsigned long)batch % CACHELINE_BYTES)
1435                 *batch++ = MI_NOOP;
1436
1437         return batch;
1438 }
1439
1440 static u32 *
1441 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1442 {
1443         int i;
1444
1445         /*
1446          * WaPipeControlBefore3DStateSamplePattern: cnl
1447          *
1448          * Ensure the engine is idle prior to programming a
1449          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1450          */
1451         batch = gen8_emit_pipe_control(batch,
1452                                        PIPE_CONTROL_CS_STALL,
1453                                        0);
1454         /*
1455          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1456          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1457          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1458          * confusing. Since gen8_emit_pipe_control() already advances the
1459          * batch by 6 dwords, we advance the other 10 here, completing a
1460          * cacheline. It's not clear if the workaround requires this padding
1461          * before other commands, or if it's just the regular padding we would
1462          * already have for the workaround bb, so leave it here for now.
1463          */
1464         for (i = 0; i < 10; i++)
1465                 *batch++ = MI_NOOP;
1466
1467         /* Pad to end of cacheline */
1468         while ((unsigned long)batch % CACHELINE_BYTES)
1469                 *batch++ = MI_NOOP;
1470
1471         return batch;
1472 }
1473
1474 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1475
1476 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1477 {
1478         struct drm_i915_gem_object *obj;
1479         struct i915_vma *vma;
1480         int err;
1481
1482         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1483         if (IS_ERR(obj))
1484                 return PTR_ERR(obj);
1485
1486         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1487         if (IS_ERR(vma)) {
1488                 err = PTR_ERR(vma);
1489                 goto err;
1490         }
1491
1492         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1493         if (err)
1494                 goto err;
1495
1496         engine->wa_ctx.vma = vma;
1497         return 0;
1498
1499 err:
1500         i915_gem_object_put(obj);
1501         return err;
1502 }
1503
1504 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1505 {
1506         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1507 }
1508
1509 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1510
1511 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512 {
1513         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1514         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1515                                             &wa_ctx->per_ctx };
1516         wa_bb_func_t wa_bb_fn[2];
1517         struct page *page;
1518         void *batch, *batch_ptr;
1519         unsigned int i;
1520         int ret;
1521
1522         if (GEM_WARN_ON(engine->id != RCS))
1523                 return -EINVAL;
1524
1525         switch (INTEL_GEN(engine->i915)) {
1526         case 10:
1527                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1528                 wa_bb_fn[1] = NULL;
1529                 break;
1530         case 9:
1531                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1532                 wa_bb_fn[1] = NULL;
1533                 break;
1534         case 8:
1535                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1536                 wa_bb_fn[1] = NULL;
1537                 break;
1538         default:
1539                 MISSING_CASE(INTEL_GEN(engine->i915));
1540                 return 0;
1541         }
1542
1543         ret = lrc_setup_wa_ctx(engine);
1544         if (ret) {
1545                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1546                 return ret;
1547         }
1548
1549         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1550         batch = batch_ptr = kmap_atomic(page);
1551
1552         /*
1553          * Emit the two workaround batch buffers, recording the offset from the
1554          * start of the workaround batch buffer object for each and their
1555          * respective sizes.
1556          */
1557         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1558                 wa_bb[i]->offset = batch_ptr - batch;
1559                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1560                                             CACHELINE_BYTES))) {
1561                         ret = -EINVAL;
1562                         break;
1563                 }
1564                 if (wa_bb_fn[i])
1565                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1566                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1567         }
1568
1569         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1570
1571         kunmap_atomic(batch);
1572         if (ret)
1573                 lrc_destroy_wa_ctx(engine);
1574
1575         return ret;
1576 }
1577
1578 static u8 gtiir[] = {
1579         [RCS] = 0,
1580         [BCS] = 0,
1581         [VCS] = 1,
1582         [VCS2] = 1,
1583         [VECS] = 3,
1584 };
1585
1586 static void enable_execlists(struct intel_engine_cs *engine)
1587 {
1588         struct drm_i915_private *dev_priv = engine->i915;
1589
1590         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1591
1592         /*
1593          * Make sure we're not enabling the new 12-deep CSB
1594          * FIFO as that requires a slightly updated handling
1595          * in the ctx switch irq. Since we're currently only
1596          * using only 2 elements of the enhanced execlists the
1597          * deeper FIFO it's not needed and it's not worth adding
1598          * more statements to the irq handler to support it.
1599          */
1600         if (INTEL_GEN(dev_priv) >= 11)
1601                 I915_WRITE(RING_MODE_GEN7(engine),
1602                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1603         else
1604                 I915_WRITE(RING_MODE_GEN7(engine),
1605                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1606
1607         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1608                    engine->status_page.ggtt_offset);
1609         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1610
1611         /* Following the reset, we need to reload the CSB read/write pointers */
1612         engine->execlists.csb_head = -1;
1613 }
1614
1615 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1616 {
1617         struct intel_engine_execlists * const execlists = &engine->execlists;
1618         int ret;
1619
1620         ret = intel_mocs_init_engine(engine);
1621         if (ret)
1622                 return ret;
1623
1624         intel_engine_reset_breadcrumbs(engine);
1625         intel_engine_init_hangcheck(engine);
1626
1627         enable_execlists(engine);
1628
1629         /* After a GPU reset, we may have requests to replay */
1630         if (execlists->first)
1631                 tasklet_schedule(&execlists->tasklet);
1632
1633         return 0;
1634 }
1635
1636 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1637 {
1638         struct drm_i915_private *dev_priv = engine->i915;
1639         int ret;
1640
1641         ret = gen8_init_common_ring(engine);
1642         if (ret)
1643                 return ret;
1644
1645         /* We need to disable the AsyncFlip performance optimisations in order
1646          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1647          * programmed to '1' on all products.
1648          *
1649          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1650          */
1651         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1652
1653         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1654
1655         return init_workarounds_ring(engine);
1656 }
1657
1658 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1659 {
1660         int ret;
1661
1662         ret = gen8_init_common_ring(engine);
1663         if (ret)
1664                 return ret;
1665
1666         return init_workarounds_ring(engine);
1667 }
1668
1669 static void reset_irq(struct intel_engine_cs *engine)
1670 {
1671         struct drm_i915_private *dev_priv = engine->i915;
1672         int i;
1673
1674         GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1675
1676         /*
1677          * Clear any pending interrupt state.
1678          *
1679          * We do it twice out of paranoia that some of the IIR are double
1680          * buffered, and if we only reset it once there may still be
1681          * an interrupt pending.
1682          */
1683         for (i = 0; i < 2; i++) {
1684                 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1685                            GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1686                 POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1687         }
1688         GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1689                    (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1690
1691         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1692 }
1693
1694 static void reset_common_ring(struct intel_engine_cs *engine,
1695                               struct i915_request *request)
1696 {
1697         struct intel_engine_execlists * const execlists = &engine->execlists;
1698         struct intel_context *ce;
1699         unsigned long flags;
1700
1701         GEM_TRACE("%s seqno=%x\n",
1702                   engine->name, request ? request->global_seqno : 0);
1703
1704         /* See execlists_cancel_requests() for the irq/spinlock split. */
1705         local_irq_save(flags);
1706
1707         reset_irq(engine);
1708
1709         /*
1710          * Catch up with any missed context-switch interrupts.
1711          *
1712          * Ideally we would just read the remaining CSB entries now that we
1713          * know the gpu is idle. However, the CSB registers are sometimes^W
1714          * often trashed across a GPU reset! Instead we have to rely on
1715          * guessing the missed context-switch events by looking at what
1716          * requests were completed.
1717          */
1718         execlists_cancel_port_requests(execlists);
1719
1720         /* Push back any incomplete requests for replay after the reset. */
1721         spin_lock(&engine->timeline->lock);
1722         __unwind_incomplete_requests(engine);
1723         spin_unlock(&engine->timeline->lock);
1724
1725         /* Mark all CS interrupts as complete */
1726         execlists->active = 0;
1727
1728         local_irq_restore(flags);
1729
1730         /*
1731          * If the request was innocent, we leave the request in the ELSP
1732          * and will try to replay it on restarting. The context image may
1733          * have been corrupted by the reset, in which case we may have
1734          * to service a new GPU hang, but more likely we can continue on
1735          * without impact.
1736          *
1737          * If the request was guilty, we presume the context is corrupt
1738          * and have to at least restore the RING register in the context
1739          * image back to the expected values to skip over the guilty request.
1740          */
1741         if (!request || request->fence.error != -EIO)
1742                 return;
1743
1744         /*
1745          * We want a simple context + ring to execute the breadcrumb update.
1746          * We cannot rely on the context being intact across the GPU hang,
1747          * so clear it and rebuild just what we need for the breadcrumb.
1748          * All pending requests for this context will be zapped, and any
1749          * future request will be after userspace has had the opportunity
1750          * to recreate its own state.
1751          */
1752         ce = &request->ctx->engine[engine->id];
1753         execlists_init_reg_state(ce->lrc_reg_state,
1754                                  request->ctx, engine, ce->ring);
1755
1756         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1757         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1758                 i915_ggtt_offset(ce->ring->vma);
1759         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1760
1761         request->ring->head = request->postfix;
1762         intel_ring_update_space(request->ring);
1763
1764         /* Reset WaIdleLiteRestore:bdw,skl as well */
1765         unwind_wa_tail(request);
1766 }
1767
1768 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1769 {
1770         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1771         struct intel_engine_cs *engine = rq->engine;
1772         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1773         u32 *cs;
1774         int i;
1775
1776         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1777         if (IS_ERR(cs))
1778                 return PTR_ERR(cs);
1779
1780         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1781         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1782                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1783
1784                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1785                 *cs++ = upper_32_bits(pd_daddr);
1786                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1787                 *cs++ = lower_32_bits(pd_daddr);
1788         }
1789
1790         *cs++ = MI_NOOP;
1791         intel_ring_advance(rq, cs);
1792
1793         return 0;
1794 }
1795
1796 static int gen8_emit_bb_start(struct i915_request *rq,
1797                               u64 offset, u32 len,
1798                               const unsigned int flags)
1799 {
1800         u32 *cs;
1801         int ret;
1802
1803         /* Don't rely in hw updating PDPs, specially in lite-restore.
1804          * Ideally, we should set Force PD Restore in ctx descriptor,
1805          * but we can't. Force Restore would be a second option, but
1806          * it is unsafe in case of lite-restore (because the ctx is
1807          * not idle). PML4 is allocated during ppgtt init so this is
1808          * not needed in 48-bit.*/
1809         if (rq->ctx->ppgtt &&
1810             (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1811             !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1812             !intel_vgpu_active(rq->i915)) {
1813                 ret = intel_logical_ring_emit_pdps(rq);
1814                 if (ret)
1815                         return ret;
1816
1817                 rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1818         }
1819
1820         cs = intel_ring_begin(rq, 4);
1821         if (IS_ERR(cs))
1822                 return PTR_ERR(cs);
1823
1824         /*
1825          * WaDisableCtxRestoreArbitration:bdw,chv
1826          *
1827          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1828          * particular all the gen that do not need the w/a at all!), if we
1829          * took care to make sure that on every switch into this context
1830          * (both ordinary and for preemption) that arbitrartion was enabled
1831          * we would be fine. However, there doesn't seem to be a downside to
1832          * being paranoid and making sure it is set before each batch and
1833          * every context-switch.
1834          *
1835          * Note that if we fail to enable arbitration before the request
1836          * is complete, then we do not see the context-switch interrupt and
1837          * the engine hangs (with RING_HEAD == RING_TAIL).
1838          *
1839          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1840          */
1841         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1842
1843         /* FIXME(BDW): Address space and security selectors. */
1844         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1845                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1846                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1847         *cs++ = lower_32_bits(offset);
1848         *cs++ = upper_32_bits(offset);
1849         intel_ring_advance(rq, cs);
1850
1851         return 0;
1852 }
1853
1854 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1855 {
1856         struct drm_i915_private *dev_priv = engine->i915;
1857         I915_WRITE_IMR(engine,
1858                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1859         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1860 }
1861
1862 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1863 {
1864         struct drm_i915_private *dev_priv = engine->i915;
1865         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1866 }
1867
1868 static int gen8_emit_flush(struct i915_request *request, u32 mode)
1869 {
1870         u32 cmd, *cs;
1871
1872         cs = intel_ring_begin(request, 4);
1873         if (IS_ERR(cs))
1874                 return PTR_ERR(cs);
1875
1876         cmd = MI_FLUSH_DW + 1;
1877
1878         /* We always require a command barrier so that subsequent
1879          * commands, such as breadcrumb interrupts, are strictly ordered
1880          * wrt the contents of the write cache being flushed to memory
1881          * (and thus being coherent from the CPU).
1882          */
1883         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1884
1885         if (mode & EMIT_INVALIDATE) {
1886                 cmd |= MI_INVALIDATE_TLB;
1887                 if (request->engine->id == VCS)
1888                         cmd |= MI_INVALIDATE_BSD;
1889         }
1890
1891         *cs++ = cmd;
1892         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1893         *cs++ = 0; /* upper addr */
1894         *cs++ = 0; /* value */
1895         intel_ring_advance(request, cs);
1896
1897         return 0;
1898 }
1899
1900 static int gen8_emit_flush_render(struct i915_request *request,
1901                                   u32 mode)
1902 {
1903         struct intel_engine_cs *engine = request->engine;
1904         u32 scratch_addr =
1905                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1906         bool vf_flush_wa = false, dc_flush_wa = false;
1907         u32 *cs, flags = 0;
1908         int len;
1909
1910         flags |= PIPE_CONTROL_CS_STALL;
1911
1912         if (mode & EMIT_FLUSH) {
1913                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1914                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1915                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1916                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1917         }
1918
1919         if (mode & EMIT_INVALIDATE) {
1920                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1921                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1922                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1923                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1924                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1925                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1926                 flags |= PIPE_CONTROL_QW_WRITE;
1927                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1928
1929                 /*
1930                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1931                  * pipe control.
1932                  */
1933                 if (IS_GEN9(request->i915))
1934                         vf_flush_wa = true;
1935
1936                 /* WaForGAMHang:kbl */
1937                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1938                         dc_flush_wa = true;
1939         }
1940
1941         len = 6;
1942
1943         if (vf_flush_wa)
1944                 len += 6;
1945
1946         if (dc_flush_wa)
1947                 len += 12;
1948
1949         cs = intel_ring_begin(request, len);
1950         if (IS_ERR(cs))
1951                 return PTR_ERR(cs);
1952
1953         if (vf_flush_wa)
1954                 cs = gen8_emit_pipe_control(cs, 0, 0);
1955
1956         if (dc_flush_wa)
1957                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1958                                             0);
1959
1960         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1961
1962         if (dc_flush_wa)
1963                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1964
1965         intel_ring_advance(request, cs);
1966
1967         return 0;
1968 }
1969
1970 /*
1971  * Reserve space for 2 NOOPs at the end of each request to be
1972  * used as a workaround for not being allowed to do lite
1973  * restore with HEAD==TAIL (WaIdleLiteRestore).
1974  */
1975 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1976 {
1977         /* Ensure there's always at least one preemption point per-request. */
1978         *cs++ = MI_ARB_CHECK;
1979         *cs++ = MI_NOOP;
1980         request->wa_tail = intel_ring_offset(request, cs);
1981 }
1982
1983 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
1984 {
1985         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1986         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1987
1988         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1989                                   intel_hws_seqno_address(request->engine));
1990         *cs++ = MI_USER_INTERRUPT;
1991         *cs++ = MI_NOOP;
1992         request->tail = intel_ring_offset(request, cs);
1993         assert_ring_tail_valid(request->ring, request->tail);
1994
1995         gen8_emit_wa_tail(request, cs);
1996 }
1997 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1998
1999 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2000 {
2001         /* We're using qword write, seqno should be aligned to 8 bytes. */
2002         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2003
2004         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2005                                       intel_hws_seqno_address(request->engine));
2006         *cs++ = MI_USER_INTERRUPT;
2007         *cs++ = MI_NOOP;
2008         request->tail = intel_ring_offset(request, cs);
2009         assert_ring_tail_valid(request->ring, request->tail);
2010
2011         gen8_emit_wa_tail(request, cs);
2012 }
2013 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2014
2015 static int gen8_init_rcs_context(struct i915_request *rq)
2016 {
2017         int ret;
2018
2019         ret = intel_ring_workarounds_emit(rq);
2020         if (ret)
2021                 return ret;
2022
2023         ret = intel_rcs_context_init_mocs(rq);
2024         /*
2025          * Failing to program the MOCS is non-fatal.The system will not
2026          * run at peak performance. So generate an error and carry on.
2027          */
2028         if (ret)
2029                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2030
2031         return i915_gem_render_state_emit(rq);
2032 }
2033
2034 /**
2035  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2036  * @engine: Engine Command Streamer.
2037  */
2038 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2039 {
2040         struct drm_i915_private *dev_priv;
2041
2042         /*
2043          * Tasklet cannot be active at this point due intel_mark_active/idle
2044          * so this is just for documentation.
2045          */
2046         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2047                              &engine->execlists.tasklet.state)))
2048                 tasklet_kill(&engine->execlists.tasklet);
2049
2050         dev_priv = engine->i915;
2051
2052         if (engine->buffer) {
2053                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2054         }
2055
2056         if (engine->cleanup)
2057                 engine->cleanup(engine);
2058
2059         intel_engine_cleanup_common(engine);
2060
2061         lrc_destroy_wa_ctx(engine);
2062
2063         engine->i915 = NULL;
2064         dev_priv->engine[engine->id] = NULL;
2065         kfree(engine);
2066 }
2067
2068 static void execlists_set_default_submission(struct intel_engine_cs *engine)
2069 {
2070         engine->submit_request = execlists_submit_request;
2071         engine->cancel_requests = execlists_cancel_requests;
2072         engine->schedule = execlists_schedule;
2073         engine->execlists.tasklet.func = execlists_submission_tasklet;
2074
2075         engine->park = NULL;
2076         engine->unpark = NULL;
2077
2078         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2079
2080         engine->i915->caps.scheduler =
2081                 I915_SCHEDULER_CAP_ENABLED |
2082                 I915_SCHEDULER_CAP_PRIORITY;
2083         if (engine->i915->preempt_context)
2084                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2085 }
2086
2087 static void
2088 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2089 {
2090         /* Default vfuncs which can be overriden by each engine. */
2091         engine->init_hw = gen8_init_common_ring;
2092         engine->reset_hw = reset_common_ring;
2093
2094         engine->context_pin = execlists_context_pin;
2095         engine->context_unpin = execlists_context_unpin;
2096
2097         engine->request_alloc = execlists_request_alloc;
2098
2099         engine->emit_flush = gen8_emit_flush;
2100         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2101         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2102
2103         engine->set_default_submission = execlists_set_default_submission;
2104
2105         if (INTEL_GEN(engine->i915) < 11) {
2106                 engine->irq_enable = gen8_logical_ring_enable_irq;
2107                 engine->irq_disable = gen8_logical_ring_disable_irq;
2108         } else {
2109                 /*
2110                  * TODO: On Gen11 interrupt masks need to be clear
2111                  * to allow C6 entry. Keep interrupts enabled at
2112                  * and take the hit of generating extra interrupts
2113                  * until a more refined solution exists.
2114                  */
2115         }
2116         engine->emit_bb_start = gen8_emit_bb_start;
2117 }
2118
2119 static inline void
2120 logical_ring_default_irqs(struct intel_engine_cs *engine)
2121 {
2122         unsigned shift = engine->irq_shift;
2123         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2124         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2125 }
2126
2127 static void
2128 logical_ring_setup(struct intel_engine_cs *engine)
2129 {
2130         struct drm_i915_private *dev_priv = engine->i915;
2131         enum forcewake_domains fw_domains;
2132
2133         intel_engine_setup_common(engine);
2134
2135         /* Intentionally left blank. */
2136         engine->buffer = NULL;
2137
2138         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2139                                                     RING_ELSP(engine),
2140                                                     FW_REG_WRITE);
2141
2142         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2143                                                      RING_CONTEXT_STATUS_PTR(engine),
2144                                                      FW_REG_READ | FW_REG_WRITE);
2145
2146         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2147                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2148                                                      FW_REG_READ);
2149
2150         engine->execlists.fw_domains = fw_domains;
2151
2152         tasklet_init(&engine->execlists.tasklet,
2153                      execlists_submission_tasklet, (unsigned long)engine);
2154
2155         logical_ring_default_vfuncs(engine);
2156         logical_ring_default_irqs(engine);
2157 }
2158
2159 static int logical_ring_init(struct intel_engine_cs *engine)
2160 {
2161         int ret;
2162
2163         ret = intel_engine_init_common(engine);
2164         if (ret)
2165                 goto error;
2166
2167         if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2168                 engine->execlists.submit_reg = engine->i915->regs +
2169                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2170                 engine->execlists.ctrl_reg = engine->i915->regs +
2171                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2172         } else {
2173                 engine->execlists.submit_reg = engine->i915->regs +
2174                         i915_mmio_reg_offset(RING_ELSP(engine));
2175         }
2176
2177         engine->execlists.preempt_complete_status = ~0u;
2178         if (engine->i915->preempt_context)
2179                 engine->execlists.preempt_complete_status =
2180                         upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);
2181
2182         return 0;
2183
2184 error:
2185         intel_logical_ring_cleanup(engine);
2186         return ret;
2187 }
2188
2189 int logical_render_ring_init(struct intel_engine_cs *engine)
2190 {
2191         struct drm_i915_private *dev_priv = engine->i915;
2192         int ret;
2193
2194         logical_ring_setup(engine);
2195
2196         if (HAS_L3_DPF(dev_priv))
2197                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2198
2199         /* Override some for render ring. */
2200         if (INTEL_GEN(dev_priv) >= 9)
2201                 engine->init_hw = gen9_init_render_ring;
2202         else
2203                 engine->init_hw = gen8_init_render_ring;
2204         engine->init_context = gen8_init_rcs_context;
2205         engine->emit_flush = gen8_emit_flush_render;
2206         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2207         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2208
2209         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2210         if (ret)
2211                 return ret;
2212
2213         ret = intel_init_workaround_bb(engine);
2214         if (ret) {
2215                 /*
2216                  * We continue even if we fail to initialize WA batch
2217                  * because we only expect rare glitches but nothing
2218                  * critical to prevent us from using GPU
2219                  */
2220                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2221                           ret);
2222         }
2223
2224         return logical_ring_init(engine);
2225 }
2226
2227 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2228 {
2229         logical_ring_setup(engine);
2230
2231         return logical_ring_init(engine);
2232 }
2233
2234 static u32
2235 make_rpcs(struct drm_i915_private *dev_priv)
2236 {
2237         u32 rpcs = 0;
2238
2239         /*
2240          * No explicit RPCS request is needed to ensure full
2241          * slice/subslice/EU enablement prior to Gen9.
2242         */
2243         if (INTEL_GEN(dev_priv) < 9)
2244                 return 0;
2245
2246         /*
2247          * Starting in Gen9, render power gating can leave
2248          * slice/subslice/EU in a partially enabled state. We
2249          * must make an explicit request through RPCS for full
2250          * enablement.
2251         */
2252         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2253                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2254                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2255                         GEN8_RPCS_S_CNT_SHIFT;
2256                 rpcs |= GEN8_RPCS_ENABLE;
2257         }
2258
2259         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2260                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2261                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2262                         GEN8_RPCS_SS_CNT_SHIFT;
2263                 rpcs |= GEN8_RPCS_ENABLE;
2264         }
2265
2266         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2267                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2268                         GEN8_RPCS_EU_MIN_SHIFT;
2269                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2270                         GEN8_RPCS_EU_MAX_SHIFT;
2271                 rpcs |= GEN8_RPCS_ENABLE;
2272         }
2273
2274         return rpcs;
2275 }
2276
2277 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2278 {
2279         u32 indirect_ctx_offset;
2280
2281         switch (INTEL_GEN(engine->i915)) {
2282         default:
2283                 MISSING_CASE(INTEL_GEN(engine->i915));
2284                 /* fall through */
2285         case 11:
2286                 indirect_ctx_offset =
2287                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2288                 break;
2289         case 10:
2290                 indirect_ctx_offset =
2291                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2292                 break;
2293         case 9:
2294                 indirect_ctx_offset =
2295                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2296                 break;
2297         case 8:
2298                 indirect_ctx_offset =
2299                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2300                 break;
2301         }
2302
2303         return indirect_ctx_offset;
2304 }
2305
2306 static void execlists_init_reg_state(u32 *regs,
2307                                      struct i915_gem_context *ctx,
2308                                      struct intel_engine_cs *engine,
2309                                      struct intel_ring *ring)
2310 {
2311         struct drm_i915_private *dev_priv = engine->i915;
2312         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2313         u32 base = engine->mmio_base;
2314         bool rcs = engine->id == RCS;
2315
2316         /* A context is actually a big batch buffer with several
2317          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2318          * values we are setting here are only for the first context restore:
2319          * on a subsequent save, the GPU will recreate this batchbuffer with new
2320          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2321          * we are not initializing here).
2322          */
2323         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2324                                  MI_LRI_FORCE_POSTED;
2325
2326         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2327                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2328                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2329                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2330                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2331                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2332         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2333         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2334         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2335         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2336                 RING_CTL_SIZE(ring->size) | RING_VALID);
2337         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2338         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2339         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2340         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2341         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2342         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2343         if (rcs) {
2344                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2345
2346                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2347                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2348                         RING_INDIRECT_CTX_OFFSET(base), 0);
2349                 if (wa_ctx->indirect_ctx.size) {
2350                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2351
2352                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2353                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2354                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2355
2356                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2357                                 intel_lr_indirect_ctx_offset(engine) << 6;
2358                 }
2359
2360                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2361                 if (wa_ctx->per_ctx.size) {
2362                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2363
2364                         regs[CTX_BB_PER_CTX_PTR + 1] =
2365                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2366                 }
2367         }
2368
2369         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2370
2371         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2372         /* PDP values well be assigned later if needed */
2373         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2374         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2375         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2376         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2377         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2378         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2379         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2380         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2381
2382         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2383                 /* 64b PPGTT (48bit canonical)
2384                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2385                  * other PDP Descriptors are ignored.
2386                  */
2387                 ASSIGN_CTX_PML4(ppgtt, regs);
2388         }
2389
2390         if (rcs) {
2391                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2392                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2393                         make_rpcs(dev_priv));
2394
2395                 i915_oa_init_reg_state(engine, ctx, regs);
2396         }
2397 }
2398
2399 static int
2400 populate_lr_context(struct i915_gem_context *ctx,
2401                     struct drm_i915_gem_object *ctx_obj,
2402                     struct intel_engine_cs *engine,
2403                     struct intel_ring *ring)
2404 {
2405         void *vaddr;
2406         u32 *regs;
2407         int ret;
2408
2409         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2410         if (ret) {
2411                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2412                 return ret;
2413         }
2414
2415         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2416         if (IS_ERR(vaddr)) {
2417                 ret = PTR_ERR(vaddr);
2418                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2419                 return ret;
2420         }
2421         ctx_obj->mm.dirty = true;
2422
2423         if (engine->default_state) {
2424                 /*
2425                  * We only want to copy over the template context state;
2426                  * skipping over the headers reserved for GuC communication,
2427                  * leaving those as zero.
2428                  */
2429                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2430                 void *defaults;
2431
2432                 defaults = i915_gem_object_pin_map(engine->default_state,
2433                                                    I915_MAP_WB);
2434                 if (IS_ERR(defaults))
2435                         return PTR_ERR(defaults);
2436
2437                 memcpy(vaddr + start, defaults + start, engine->context_size);
2438                 i915_gem_object_unpin_map(engine->default_state);
2439         }
2440
2441         /* The second page of the context object contains some fields which must
2442          * be set up prior to the first execution. */
2443         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2444         execlists_init_reg_state(regs, ctx, engine, ring);
2445         if (!engine->default_state)
2446                 regs[CTX_CONTEXT_CONTROL + 1] |=
2447                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2448         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2449                 regs[CTX_CONTEXT_CONTROL + 1] |=
2450                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2451                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2452
2453         i915_gem_object_unpin_map(ctx_obj);
2454
2455         return 0;
2456 }
2457
2458 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2459                                             struct intel_engine_cs *engine)
2460 {
2461         struct drm_i915_gem_object *ctx_obj;
2462         struct intel_context *ce = &ctx->engine[engine->id];
2463         struct i915_vma *vma;
2464         uint32_t context_size;
2465         struct intel_ring *ring;
2466         int ret;
2467
2468         if (ce->state)
2469                 return 0;
2470
2471         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2472
2473         /*
2474          * Before the actual start of the context image, we insert a few pages
2475          * for our own use and for sharing with the GuC.
2476          */
2477         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2478
2479         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2480         if (IS_ERR(ctx_obj)) {
2481                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2482                 return PTR_ERR(ctx_obj);
2483         }
2484
2485         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2486         if (IS_ERR(vma)) {
2487                 ret = PTR_ERR(vma);
2488                 goto error_deref_obj;
2489         }
2490
2491         ring = intel_engine_create_ring(engine, ctx->ring_size);
2492         if (IS_ERR(ring)) {
2493                 ret = PTR_ERR(ring);
2494                 goto error_deref_obj;
2495         }
2496
2497         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2498         if (ret) {
2499                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2500                 goto error_ring_free;
2501         }
2502
2503         ce->ring = ring;
2504         ce->state = vma;
2505
2506         return 0;
2507
2508 error_ring_free:
2509         intel_ring_free(ring);
2510 error_deref_obj:
2511         i915_gem_object_put(ctx_obj);
2512         return ret;
2513 }
2514
2515 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2516 {
2517         struct intel_engine_cs *engine;
2518         struct i915_gem_context *ctx;
2519         enum intel_engine_id id;
2520
2521         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2522          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2523          * that stored in context. As we only write new commands from
2524          * ce->ring->tail onwards, everything before that is junk. If the GPU
2525          * starts reading from its RING_HEAD from the context, it may try to
2526          * execute that junk and die.
2527          *
2528          * So to avoid that we reset the context images upon resume. For
2529          * simplicity, we just zero everything out.
2530          */
2531         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2532                 for_each_engine(engine, dev_priv, id) {
2533                         struct intel_context *ce = &ctx->engine[engine->id];
2534                         u32 *reg;
2535
2536                         if (!ce->state)
2537                                 continue;
2538
2539                         reg = i915_gem_object_pin_map(ce->state->obj,
2540                                                       I915_MAP_WB);
2541                         if (WARN_ON(IS_ERR(reg)))
2542                                 continue;
2543
2544                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2545                         reg[CTX_RING_HEAD+1] = 0;
2546                         reg[CTX_RING_TAIL+1] = 0;
2547
2548                         ce->state->obj->mm.dirty = true;
2549                         i915_gem_object_unpin_map(ce->state->obj);
2550
2551                         intel_ring_reset(ce->ring, 0);
2552                 }
2553         }
2554 }