drm/i915: Assert that we always complete a submission to guc/execlists
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define GEN8_CTX_STATUS_COMPLETED_MASK \
158          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159
160 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
161 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162 #define WA_TAIL_DWORDS 2
163 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164
165 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166                                             struct intel_engine_cs *engine);
167 static void execlists_init_reg_state(u32 *reg_state,
168                                      struct i915_gem_context *ctx,
169                                      struct intel_engine_cs *engine,
170                                      struct intel_ring *ring);
171
172 /**
173  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
174  *                                        descriptor for a pinned context
175  * @ctx: Context to work on
176  * @engine: Engine the descriptor will be used with
177  *
178  * The context descriptor encodes various attributes of a context,
179  * including its GTT address and some flags. Because it's fairly
180  * expensive to calculate, we'll just do it once and cache the result,
181  * which remains valid until the context is unpinned.
182  *
183  * This is what a descriptor looks like, from LSB to MSB::
184  *
185  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
186  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
187  *      bits 32-52:    ctx ID, a globally unique tag
188  *      bits 53-54:    mbz, reserved for use by hardware
189  *      bits 55-63:    group ID, currently unused and set to 0
190  */
191 static void
192 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
193                                    struct intel_engine_cs *engine)
194 {
195         struct intel_context *ce = &ctx->engine[engine->id];
196         u64 desc;
197
198         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
199
200         desc = ctx->desc_template;                              /* bits  0-11 */
201         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
202                                                                 /* bits 12-31 */
203         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
204
205         ce->lrc_desc = desc;
206 }
207
208 static struct i915_priolist *
209 lookup_priolist(struct intel_engine_cs *engine,
210                 struct i915_priotree *pt,
211                 int prio)
212 {
213         struct intel_engine_execlists * const execlists = &engine->execlists;
214         struct i915_priolist *p;
215         struct rb_node **parent, *rb;
216         bool first = true;
217
218         if (unlikely(execlists->no_priolist))
219                 prio = I915_PRIORITY_NORMAL;
220
221 find_priolist:
222         /* most positive priority is scheduled first, equal priorities fifo */
223         rb = NULL;
224         parent = &execlists->queue.rb_node;
225         while (*parent) {
226                 rb = *parent;
227                 p = rb_entry(rb, typeof(*p), node);
228                 if (prio > p->priority) {
229                         parent = &rb->rb_left;
230                 } else if (prio < p->priority) {
231                         parent = &rb->rb_right;
232                         first = false;
233                 } else {
234                         return p;
235                 }
236         }
237
238         if (prio == I915_PRIORITY_NORMAL) {
239                 p = &execlists->default_priolist;
240         } else {
241                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
242                 /* Convert an allocation failure to a priority bump */
243                 if (unlikely(!p)) {
244                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
245
246                         /* To maintain ordering with all rendering, after an
247                          * allocation failure we have to disable all scheduling.
248                          * Requests will then be executed in fifo, and schedule
249                          * will ensure that dependencies are emitted in fifo.
250                          * There will be still some reordering with existing
251                          * requests, so if userspace lied about their
252                          * dependencies that reordering may be visible.
253                          */
254                         execlists->no_priolist = true;
255                         goto find_priolist;
256                 }
257         }
258
259         p->priority = prio;
260         INIT_LIST_HEAD(&p->requests);
261         rb_link_node(&p->node, rb, parent);
262         rb_insert_color(&p->node, &execlists->queue);
263
264         if (first)
265                 execlists->first = &p->node;
266
267         return ptr_pack_bits(p, first, 1);
268 }
269
270 static void unwind_wa_tail(struct drm_i915_gem_request *rq)
271 {
272         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
273         assert_ring_tail_valid(rq->ring, rq->tail);
274 }
275
276 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
277 {
278         struct drm_i915_gem_request *rq, *rn;
279         struct i915_priolist *uninitialized_var(p);
280         int last_prio = I915_PRIORITY_INVALID;
281
282         lockdep_assert_held(&engine->timeline->lock);
283
284         list_for_each_entry_safe_reverse(rq, rn,
285                                          &engine->timeline->requests,
286                                          link) {
287                 if (i915_gem_request_completed(rq))
288                         return;
289
290                 __i915_gem_request_unsubmit(rq);
291                 unwind_wa_tail(rq);
292
293                 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
294                 if (rq->priotree.priority != last_prio) {
295                         p = lookup_priolist(engine,
296                                             &rq->priotree,
297                                             rq->priotree.priority);
298                         p = ptr_mask_bits(p, 1);
299
300                         last_prio = rq->priotree.priority;
301                 }
302
303                 list_add(&rq->priotree.link, &p->requests);
304         }
305 }
306
307 void
308 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
309 {
310         struct intel_engine_cs *engine =
311                 container_of(execlists, typeof(*engine), execlists);
312
313         spin_lock_irq(&engine->timeline->lock);
314         __unwind_incomplete_requests(engine);
315         spin_unlock_irq(&engine->timeline->lock);
316 }
317
318 static inline void
319 execlists_context_status_change(struct drm_i915_gem_request *rq,
320                                 unsigned long status)
321 {
322         /*
323          * Only used when GVT-g is enabled now. When GVT-g is disabled,
324          * The compiler should eliminate this function as dead-code.
325          */
326         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
327                 return;
328
329         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
330                                    status, rq);
331 }
332
333 static inline void
334 execlists_context_schedule_in(struct drm_i915_gem_request *rq)
335 {
336         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
337         intel_engine_context_in(rq->engine);
338 }
339
340 static inline void
341 execlists_context_schedule_out(struct drm_i915_gem_request *rq)
342 {
343         intel_engine_context_out(rq->engine);
344         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
345 }
346
347 static void
348 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
349 {
350         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
351         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
352         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
353         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
354 }
355
356 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
357 {
358         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
359         struct i915_hw_ppgtt *ppgtt =
360                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
361         u32 *reg_state = ce->lrc_reg_state;
362
363         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
364
365         /* True 32b PPGTT with dynamic page allocation: update PDP
366          * registers and point the unallocated PDPs to scratch page.
367          * PML4 is allocated during ppgtt init, so this is not needed
368          * in 48-bit mode.
369          */
370         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
371                 execlists_update_context_pdps(ppgtt, reg_state);
372
373         return ce->lrc_desc;
374 }
375
376 static inline void elsp_write(u64 desc, u32 __iomem *elsp)
377 {
378         writel(upper_32_bits(desc), elsp);
379         writel(lower_32_bits(desc), elsp);
380 }
381
382 static void execlists_submit_ports(struct intel_engine_cs *engine)
383 {
384         struct execlist_port *port = engine->execlists.port;
385         unsigned int n;
386
387         for (n = execlists_num_ports(&engine->execlists); n--; ) {
388                 struct drm_i915_gem_request *rq;
389                 unsigned int count;
390                 u64 desc;
391
392                 rq = port_unpack(&port[n], &count);
393                 if (rq) {
394                         GEM_BUG_ON(count > !n);
395                         if (!count++)
396                                 execlists_context_schedule_in(rq);
397                         port_set(&port[n], port_pack(rq, count));
398                         desc = execlists_update_context(rq);
399                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
400
401                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
402                                   engine->name, n,
403                                   port[n].context_id, count,
404                                   rq->global_seqno);
405                 } else {
406                         GEM_BUG_ON(!n);
407                         desc = 0;
408                 }
409
410                 elsp_write(desc, engine->execlists.elsp);
411         }
412         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
413 }
414
415 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416 {
417         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418                 i915_gem_context_force_single_submission(ctx));
419 }
420
421 static bool can_merge_ctx(const struct i915_gem_context *prev,
422                           const struct i915_gem_context *next)
423 {
424         if (prev != next)
425                 return false;
426
427         if (ctx_single_port_submission(prev))
428                 return false;
429
430         return true;
431 }
432
433 static void port_assign(struct execlist_port *port,
434                         struct drm_i915_gem_request *rq)
435 {
436         GEM_BUG_ON(rq == port_request(port));
437
438         if (port_isset(port))
439                 i915_gem_request_put(port_request(port));
440
441         port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
442 }
443
444 static void inject_preempt_context(struct intel_engine_cs *engine)
445 {
446         struct intel_context *ce =
447                 &engine->i915->preempt_context->engine[engine->id];
448         unsigned int n;
449
450         GEM_BUG_ON(engine->execlists.preempt_complete_status !=
451                    upper_32_bits(ce->lrc_desc));
452         GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
453
454         memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
455         ce->ring->tail += WA_TAIL_BYTES;
456         ce->ring->tail &= (ce->ring->size - 1);
457         ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
458
459         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
460                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
461                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
462                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
463                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
464
465         GEM_TRACE("%s\n", engine->name);
466         for (n = execlists_num_ports(&engine->execlists); --n; )
467                 elsp_write(0, engine->execlists.elsp);
468
469         elsp_write(ce->lrc_desc, engine->execlists.elsp);
470         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
471 }
472
473 static void execlists_dequeue(struct intel_engine_cs *engine)
474 {
475         struct intel_engine_execlists * const execlists = &engine->execlists;
476         struct execlist_port *port = execlists->port;
477         const struct execlist_port * const last_port =
478                 &execlists->port[execlists->port_mask];
479         struct drm_i915_gem_request *last = port_request(port);
480         struct rb_node *rb;
481         bool submit = false;
482
483         /* Hardware submission is through 2 ports. Conceptually each port
484          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
485          * static for a context, and unique to each, so we only execute
486          * requests belonging to a single context from each ring. RING_HEAD
487          * is maintained by the CS in the context image, it marks the place
488          * where it got up to last time, and through RING_TAIL we tell the CS
489          * where we want to execute up to this time.
490          *
491          * In this list the requests are in order of execution. Consecutive
492          * requests from the same context are adjacent in the ringbuffer. We
493          * can combine these requests into a single RING_TAIL update:
494          *
495          *              RING_HEAD...req1...req2
496          *                                    ^- RING_TAIL
497          * since to execute req2 the CS must first execute req1.
498          *
499          * Our goal then is to point each port to the end of a consecutive
500          * sequence of requests as being the most optimal (fewest wake ups
501          * and context switches) submission.
502          */
503
504         spin_lock_irq(&engine->timeline->lock);
505         rb = execlists->first;
506         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
507         if (!rb)
508                 goto unlock;
509
510         if (last) {
511                 /*
512                  * Don't resubmit or switch until all outstanding
513                  * preemptions (lite-restore) are seen. Then we
514                  * know the next preemption status we see corresponds
515                  * to this ELSP update.
516                  */
517                 GEM_BUG_ON(!port_count(&port[0]));
518                 if (port_count(&port[0]) > 1)
519                         goto unlock;
520
521                 /*
522                  * If we write to ELSP a second time before the HW has had
523                  * a chance to respond to the previous write, we can confuse
524                  * the HW and hit "undefined behaviour". After writing to ELSP,
525                  * we must then wait until we see a context-switch event from
526                  * the HW to indicate that it has had a chance to respond.
527                  */
528                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
529                         goto unlock;
530
531                 if (engine->i915->preempt_context &&
532                     rb_entry(rb, struct i915_priolist, node)->priority >
533                     max(last->priotree.priority, 0)) {
534                         /*
535                          * Switch to our empty preempt context so
536                          * the state of the GPU is known (idle).
537                          */
538                         inject_preempt_context(engine);
539                         execlists_set_active(execlists,
540                                              EXECLISTS_ACTIVE_PREEMPT);
541                         goto unlock;
542                 } else {
543                         /*
544                          * In theory, we could coalesce more requests onto
545                          * the second port (the first port is active, with
546                          * no preemptions pending). However, that means we
547                          * then have to deal with the possible lite-restore
548                          * of the second port (as we submit the ELSP, there
549                          * may be a context-switch) but also we may complete
550                          * the resubmission before the context-switch. Ergo,
551                          * coalescing onto the second port will cause a
552                          * preemption event, but we cannot predict whether
553                          * that will affect port[0] or port[1].
554                          *
555                          * If the second port is already active, we can wait
556                          * until the next context-switch before contemplating
557                          * new requests. The GPU will be busy and we should be
558                          * able to resubmit the new ELSP before it idles,
559                          * avoiding pipeline bubbles (momentary pauses where
560                          * the driver is unable to keep up the supply of new
561                          * work).
562                          */
563                         if (port_count(&port[1]))
564                                 goto unlock;
565
566                         /* WaIdleLiteRestore:bdw,skl
567                          * Apply the wa NOOPs to prevent
568                          * ring:HEAD == req:TAIL as we resubmit the
569                          * request. See gen8_emit_breadcrumb() for
570                          * where we prepare the padding after the
571                          * end of the request.
572                          */
573                         last->tail = last->wa_tail;
574                 }
575         }
576
577         do {
578                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
579                 struct drm_i915_gem_request *rq, *rn;
580
581                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
582                         /*
583                          * Can we combine this request with the current port?
584                          * It has to be the same context/ringbuffer and not
585                          * have any exceptions (e.g. GVT saying never to
586                          * combine contexts).
587                          *
588                          * If we can combine the requests, we can execute both
589                          * by updating the RING_TAIL to point to the end of the
590                          * second request, and so we never need to tell the
591                          * hardware about the first.
592                          */
593                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
594                                 /*
595                                  * If we are on the second port and cannot
596                                  * combine this request with the last, then we
597                                  * are done.
598                                  */
599                                 if (port == last_port) {
600                                         __list_del_many(&p->requests,
601                                                         &rq->priotree.link);
602                                         goto done;
603                                 }
604
605                                 /*
606                                  * If GVT overrides us we only ever submit
607                                  * port[0], leaving port[1] empty. Note that we
608                                  * also have to be careful that we don't queue
609                                  * the same context (even though a different
610                                  * request) to the second port.
611                                  */
612                                 if (ctx_single_port_submission(last->ctx) ||
613                                     ctx_single_port_submission(rq->ctx)) {
614                                         __list_del_many(&p->requests,
615                                                         &rq->priotree.link);
616                                         goto done;
617                                 }
618
619                                 GEM_BUG_ON(last->ctx == rq->ctx);
620
621                                 if (submit)
622                                         port_assign(port, last);
623                                 port++;
624
625                                 GEM_BUG_ON(port_isset(port));
626                         }
627
628                         INIT_LIST_HEAD(&rq->priotree.link);
629                         __i915_gem_request_submit(rq);
630                         trace_i915_gem_request_in(rq, port_index(port, execlists));
631                         last = rq;
632                         submit = true;
633                 }
634
635                 rb = rb_next(rb);
636                 rb_erase(&p->node, &execlists->queue);
637                 INIT_LIST_HEAD(&p->requests);
638                 if (p->priority != I915_PRIORITY_NORMAL)
639                         kmem_cache_free(engine->i915->priorities, p);
640         } while (rb);
641 done:
642         execlists->first = rb;
643         if (submit)
644                 port_assign(port, last);
645
646         /* We must always keep the beast fed if we have work piled up */
647         GEM_BUG_ON(port_isset(execlists->port) &&
648                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
649         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
650
651 unlock:
652         spin_unlock_irq(&engine->timeline->lock);
653
654         if (submit) {
655                 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
656                 execlists_submit_ports(engine);
657         }
658 }
659
660 void
661 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
662 {
663         struct execlist_port *port = execlists->port;
664         unsigned int num_ports = execlists_num_ports(execlists);
665
666         while (num_ports-- && port_isset(port)) {
667                 struct drm_i915_gem_request *rq = port_request(port);
668
669                 GEM_BUG_ON(!execlists->active);
670                 intel_engine_context_out(rq->engine);
671                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
672                 i915_gem_request_put(rq);
673
674                 memset(port, 0, sizeof(*port));
675                 port++;
676         }
677 }
678
679 static void execlists_cancel_requests(struct intel_engine_cs *engine)
680 {
681         struct intel_engine_execlists * const execlists = &engine->execlists;
682         struct drm_i915_gem_request *rq, *rn;
683         struct rb_node *rb;
684         unsigned long flags;
685
686         spin_lock_irqsave(&engine->timeline->lock, flags);
687
688         /* Cancel the requests on the HW and clear the ELSP tracker. */
689         execlists_cancel_port_requests(execlists);
690
691         /* Mark all executing requests as skipped. */
692         list_for_each_entry(rq, &engine->timeline->requests, link) {
693                 GEM_BUG_ON(!rq->global_seqno);
694                 if (!i915_gem_request_completed(rq))
695                         dma_fence_set_error(&rq->fence, -EIO);
696         }
697
698         /* Flush the queued requests to the timeline list (for retiring). */
699         rb = execlists->first;
700         while (rb) {
701                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
702
703                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
704                         INIT_LIST_HEAD(&rq->priotree.link);
705
706                         dma_fence_set_error(&rq->fence, -EIO);
707                         __i915_gem_request_submit(rq);
708                 }
709
710                 rb = rb_next(rb);
711                 rb_erase(&p->node, &execlists->queue);
712                 INIT_LIST_HEAD(&p->requests);
713                 if (p->priority != I915_PRIORITY_NORMAL)
714                         kmem_cache_free(engine->i915->priorities, p);
715         }
716
717         /* Remaining _unready_ requests will be nop'ed when submitted */
718
719
720         execlists->queue = RB_ROOT;
721         execlists->first = NULL;
722         GEM_BUG_ON(port_isset(execlists->port));
723
724         /*
725          * The port is checked prior to scheduling a tasklet, but
726          * just in case we have suspended the tasklet to do the
727          * wedging make sure that when it wakes, it decides there
728          * is no work to do by clearing the irq_posted bit.
729          */
730         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
731
732         spin_unlock_irqrestore(&engine->timeline->lock, flags);
733 }
734
735 /*
736  * Check the unread Context Status Buffers and manage the submission of new
737  * contexts to the ELSP accordingly.
738  */
739 static void execlists_submission_tasklet(unsigned long data)
740 {
741         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
742         struct intel_engine_execlists * const execlists = &engine->execlists;
743         struct execlist_port * const port = execlists->port;
744         struct drm_i915_private *dev_priv = engine->i915;
745         bool fw = false;
746
747         /* We can skip acquiring intel_runtime_pm_get() here as it was taken
748          * on our behalf by the request (see i915_gem_mark_busy()) and it will
749          * not be relinquished until the device is idle (see
750          * i915_gem_idle_work_handler()). As a precaution, we make sure
751          * that all ELSP are drained i.e. we have processed the CSB,
752          * before allowing ourselves to idle and calling intel_runtime_pm_put().
753          */
754         GEM_BUG_ON(!dev_priv->gt.awake);
755
756         /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
757          * imposing the cost of a locked atomic transaction when submitting a
758          * new request (outside of the context-switch interrupt).
759          */
760         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
761                 /* The HWSP contains a (cacheable) mirror of the CSB */
762                 const u32 *buf =
763                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
764                 unsigned int head, tail;
765
766                 if (unlikely(execlists->csb_use_mmio)) {
767                         buf = (u32 * __force)
768                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
769                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
770                 }
771
772                 /* The write will be ordered by the uncached read (itself
773                  * a memory barrier), so we do not need another in the form
774                  * of a locked instruction. The race between the interrupt
775                  * handler and the split test/clear is harmless as we order
776                  * our clear before the CSB read. If the interrupt arrived
777                  * first between the test and the clear, we read the updated
778                  * CSB and clear the bit. If the interrupt arrives as we read
779                  * the CSB or later (i.e. after we had cleared the bit) the bit
780                  * is set and we do a new loop.
781                  */
782                 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
783                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
784                         if (!fw) {
785                                 intel_uncore_forcewake_get(dev_priv,
786                                                            execlists->fw_domains);
787                                 fw = true;
788                         }
789
790                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
791                         tail = GEN8_CSB_WRITE_PTR(head);
792                         head = GEN8_CSB_READ_PTR(head);
793                         execlists->csb_head = head;
794                 } else {
795                         const int write_idx =
796                                 intel_hws_csb_write_index(dev_priv) -
797                                 I915_HWS_CSB_BUF0_INDEX;
798
799                         head = execlists->csb_head;
800                         tail = READ_ONCE(buf[write_idx]);
801                 }
802                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
803                           engine->name,
804                           head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
805                           tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
806
807                 while (head != tail) {
808                         struct drm_i915_gem_request *rq;
809                         unsigned int status;
810                         unsigned int count;
811
812                         if (++head == GEN8_CSB_ENTRIES)
813                                 head = 0;
814
815                         /* We are flying near dragons again.
816                          *
817                          * We hold a reference to the request in execlist_port[]
818                          * but no more than that. We are operating in softirq
819                          * context and so cannot hold any mutex or sleep. That
820                          * prevents us stopping the requests we are processing
821                          * in port[] from being retired simultaneously (the
822                          * breadcrumb will be complete before we see the
823                          * context-switch). As we only hold the reference to the
824                          * request, any pointer chasing underneath the request
825                          * is subject to a potential use-after-free. Thus we
826                          * store all of the bookkeeping within port[] as
827                          * required, and avoid using unguarded pointers beneath
828                          * request itself. The same applies to the atomic
829                          * status notifier.
830                          */
831
832                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
833                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
834                                   engine->name, head,
835                                   status, buf[2*head + 1],
836                                   execlists->active);
837
838                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
839                                       GEN8_CTX_STATUS_PREEMPTED))
840                                 execlists_set_active(execlists,
841                                                      EXECLISTS_ACTIVE_HWACK);
842                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
843                                 execlists_clear_active(execlists,
844                                                        EXECLISTS_ACTIVE_HWACK);
845
846                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
847                                 continue;
848
849                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
850                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
851
852                         if (status & GEN8_CTX_STATUS_COMPLETE &&
853                             buf[2*head + 1] == execlists->preempt_complete_status) {
854                                 GEM_TRACE("%s preempt-idle\n", engine->name);
855
856                                 execlists_cancel_port_requests(execlists);
857                                 execlists_unwind_incomplete_requests(execlists);
858
859                                 GEM_BUG_ON(!execlists_is_active(execlists,
860                                                                 EXECLISTS_ACTIVE_PREEMPT));
861                                 execlists_clear_active(execlists,
862                                                        EXECLISTS_ACTIVE_PREEMPT);
863                                 continue;
864                         }
865
866                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
867                             execlists_is_active(execlists,
868                                                 EXECLISTS_ACTIVE_PREEMPT))
869                                 continue;
870
871                         GEM_BUG_ON(!execlists_is_active(execlists,
872                                                         EXECLISTS_ACTIVE_USER));
873
874                         /* Check the context/desc id for this event matches */
875                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
876
877                         rq = port_unpack(port, &count);
878                         GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
879                                   engine->name,
880                                   port->context_id, count,
881                                   rq ? rq->global_seqno : 0);
882                         GEM_BUG_ON(count == 0);
883                         if (--count == 0) {
884                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
885                                 GEM_BUG_ON(port_isset(&port[1]) &&
886                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
887                                 GEM_BUG_ON(!i915_gem_request_completed(rq));
888                                 execlists_context_schedule_out(rq);
889                                 trace_i915_gem_request_out(rq);
890                                 i915_gem_request_put(rq);
891
892                                 execlists_port_complete(execlists, port);
893                         } else {
894                                 port_set(port, port_pack(rq, count));
895                         }
896
897                         /* After the final element, the hw should be idle */
898                         GEM_BUG_ON(port_count(port) == 0 &&
899                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
900                         if (port_count(port) == 0)
901                                 execlists_clear_active(execlists,
902                                                        EXECLISTS_ACTIVE_USER);
903                 }
904
905                 if (head != execlists->csb_head) {
906                         execlists->csb_head = head;
907                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
908                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
909                 }
910         }
911
912         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
913                 execlists_dequeue(engine);
914
915         if (fw)
916                 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
917 }
918
919 static void insert_request(struct intel_engine_cs *engine,
920                            struct i915_priotree *pt,
921                            int prio)
922 {
923         struct i915_priolist *p = lookup_priolist(engine, pt, prio);
924
925         list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
926         if (ptr_unmask_bits(p, 1))
927                 tasklet_hi_schedule(&engine->execlists.tasklet);
928 }
929
930 static void execlists_submit_request(struct drm_i915_gem_request *request)
931 {
932         struct intel_engine_cs *engine = request->engine;
933         unsigned long flags;
934
935         /* Will be called from irq-context when using foreign fences. */
936         spin_lock_irqsave(&engine->timeline->lock, flags);
937
938         insert_request(engine, &request->priotree, request->priotree.priority);
939
940         GEM_BUG_ON(!engine->execlists.first);
941         GEM_BUG_ON(list_empty(&request->priotree.link));
942
943         spin_unlock_irqrestore(&engine->timeline->lock, flags);
944 }
945
946 static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
947 {
948         return container_of(pt, struct drm_i915_gem_request, priotree);
949 }
950
951 static struct intel_engine_cs *
952 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
953 {
954         struct intel_engine_cs *engine = pt_to_request(pt)->engine;
955
956         GEM_BUG_ON(!locked);
957
958         if (engine != locked) {
959                 spin_unlock(&locked->timeline->lock);
960                 spin_lock(&engine->timeline->lock);
961         }
962
963         return engine;
964 }
965
966 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
967 {
968         struct intel_engine_cs *engine;
969         struct i915_dependency *dep, *p;
970         struct i915_dependency stack;
971         LIST_HEAD(dfs);
972
973         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
974
975         if (i915_gem_request_completed(request))
976                 return;
977
978         if (prio <= READ_ONCE(request->priotree.priority))
979                 return;
980
981         /* Need BKL in order to use the temporary link inside i915_dependency */
982         lockdep_assert_held(&request->i915->drm.struct_mutex);
983
984         stack.signaler = &request->priotree;
985         list_add(&stack.dfs_link, &dfs);
986
987         /*
988          * Recursively bump all dependent priorities to match the new request.
989          *
990          * A naive approach would be to use recursion:
991          * static void update_priorities(struct i915_priotree *pt, prio) {
992          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
993          *              update_priorities(dep->signal, prio)
994          *      insert_request(pt);
995          * }
996          * but that may have unlimited recursion depth and so runs a very
997          * real risk of overunning the kernel stack. Instead, we build
998          * a flat list of all dependencies starting with the current request.
999          * As we walk the list of dependencies, we add all of its dependencies
1000          * to the end of the list (this may include an already visited
1001          * request) and continue to walk onwards onto the new dependencies. The
1002          * end result is a topological list of requests in reverse order, the
1003          * last element in the list is the request we must execute first.
1004          */
1005         list_for_each_entry(dep, &dfs, dfs_link) {
1006                 struct i915_priotree *pt = dep->signaler;
1007
1008                 /*
1009                  * Within an engine, there can be no cycle, but we may
1010                  * refer to the same dependency chain multiple times
1011                  * (redundant dependencies are not eliminated) and across
1012                  * engines.
1013                  */
1014                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1015                         GEM_BUG_ON(p == dep); /* no cycles! */
1016
1017                         if (i915_priotree_signaled(p->signaler))
1018                                 continue;
1019
1020                         GEM_BUG_ON(p->signaler->priority < pt->priority);
1021                         if (prio > READ_ONCE(p->signaler->priority))
1022                                 list_move_tail(&p->dfs_link, &dfs);
1023                 }
1024         }
1025
1026         /*
1027          * If we didn't need to bump any existing priorities, and we haven't
1028          * yet submitted this request (i.e. there is no potential race with
1029          * execlists_submit_request()), we can set our own priority and skip
1030          * acquiring the engine locks.
1031          */
1032         if (request->priotree.priority == I915_PRIORITY_INVALID) {
1033                 GEM_BUG_ON(!list_empty(&request->priotree.link));
1034                 request->priotree.priority = prio;
1035                 if (stack.dfs_link.next == stack.dfs_link.prev)
1036                         return;
1037                 __list_del_entry(&stack.dfs_link);
1038         }
1039
1040         engine = request->engine;
1041         spin_lock_irq(&engine->timeline->lock);
1042
1043         /* Fifo and depth-first replacement ensure our deps execute before us */
1044         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1045                 struct i915_priotree *pt = dep->signaler;
1046
1047                 INIT_LIST_HEAD(&dep->dfs_link);
1048
1049                 engine = pt_lock_engine(pt, engine);
1050
1051                 if (prio <= pt->priority)
1052                         continue;
1053
1054                 pt->priority = prio;
1055                 if (!list_empty(&pt->link)) {
1056                         __list_del_entry(&pt->link);
1057                         insert_request(engine, pt, prio);
1058                 }
1059         }
1060
1061         spin_unlock_irq(&engine->timeline->lock);
1062 }
1063
1064 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1065 {
1066         unsigned int flags;
1067         int err;
1068
1069         /*
1070          * Clear this page out of any CPU caches for coherent swap-in/out.
1071          * We only want to do this on the first bind so that we do not stall
1072          * on an active context (which by nature is already on the GPU).
1073          */
1074         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1075                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1076                 if (err)
1077                         return err;
1078         }
1079
1080         flags = PIN_GLOBAL | PIN_HIGH;
1081         if (ctx->ggtt_offset_bias)
1082                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1083
1084         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1085 }
1086
1087 static struct intel_ring *
1088 execlists_context_pin(struct intel_engine_cs *engine,
1089                       struct i915_gem_context *ctx)
1090 {
1091         struct intel_context *ce = &ctx->engine[engine->id];
1092         void *vaddr;
1093         int ret;
1094
1095         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1096
1097         if (likely(ce->pin_count++))
1098                 goto out;
1099         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1100
1101         ret = execlists_context_deferred_alloc(ctx, engine);
1102         if (ret)
1103                 goto err;
1104         GEM_BUG_ON(!ce->state);
1105
1106         ret = __context_pin(ctx, ce->state);
1107         if (ret)
1108                 goto err;
1109
1110         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1111         if (IS_ERR(vaddr)) {
1112                 ret = PTR_ERR(vaddr);
1113                 goto unpin_vma;
1114         }
1115
1116         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1117         if (ret)
1118                 goto unpin_map;
1119
1120         intel_lr_context_descriptor_update(ctx, engine);
1121
1122         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1123         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1124                 i915_ggtt_offset(ce->ring->vma);
1125
1126         ce->state->obj->pin_global++;
1127         i915_gem_context_get(ctx);
1128 out:
1129         return ce->ring;
1130
1131 unpin_map:
1132         i915_gem_object_unpin_map(ce->state->obj);
1133 unpin_vma:
1134         __i915_vma_unpin(ce->state);
1135 err:
1136         ce->pin_count = 0;
1137         return ERR_PTR(ret);
1138 }
1139
1140 static void execlists_context_unpin(struct intel_engine_cs *engine,
1141                                     struct i915_gem_context *ctx)
1142 {
1143         struct intel_context *ce = &ctx->engine[engine->id];
1144
1145         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1146         GEM_BUG_ON(ce->pin_count == 0);
1147
1148         if (--ce->pin_count)
1149                 return;
1150
1151         intel_ring_unpin(ce->ring);
1152
1153         ce->state->obj->pin_global--;
1154         i915_gem_object_unpin_map(ce->state->obj);
1155         i915_vma_unpin(ce->state);
1156
1157         i915_gem_context_put(ctx);
1158 }
1159
1160 static int execlists_request_alloc(struct drm_i915_gem_request *request)
1161 {
1162         struct intel_engine_cs *engine = request->engine;
1163         struct intel_context *ce = &request->ctx->engine[engine->id];
1164         int ret;
1165
1166         GEM_BUG_ON(!ce->pin_count);
1167
1168         /* Flush enough space to reduce the likelihood of waiting after
1169          * we start building the request - in which case we will just
1170          * have to repeat work.
1171          */
1172         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1173
1174         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1175         if (ret)
1176                 return ret;
1177
1178         /* Note that after this point, we have committed to using
1179          * this request as it is being used to both track the
1180          * state of engine initialisation and liveness of the
1181          * golden renderstate above. Think twice before you try
1182          * to cancel/unwind this request now.
1183          */
1184
1185         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1186         return 0;
1187 }
1188
1189 /*
1190  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1191  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1192  * but there is a slight complication as this is applied in WA batch where the
1193  * values are only initialized once so we cannot take register value at the
1194  * beginning and reuse it further; hence we save its value to memory, upload a
1195  * constant value with bit21 set and then we restore it back with the saved value.
1196  * To simplify the WA, a constant value is formed by using the default value
1197  * of this register. This shouldn't be a problem because we are only modifying
1198  * it for a short period and this batch in non-premptible. We can ofcourse
1199  * use additional instructions that read the actual value of the register
1200  * at that time and set our bit of interest but it makes the WA complicated.
1201  *
1202  * This WA is also required for Gen9 so extracting as a function avoids
1203  * code duplication.
1204  */
1205 static u32 *
1206 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1207 {
1208         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1209         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1210         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1211         *batch++ = 0;
1212
1213         *batch++ = MI_LOAD_REGISTER_IMM(1);
1214         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1215         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1216
1217         batch = gen8_emit_pipe_control(batch,
1218                                        PIPE_CONTROL_CS_STALL |
1219                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1220                                        0);
1221
1222         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1223         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1224         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1225         *batch++ = 0;
1226
1227         return batch;
1228 }
1229
1230 /*
1231  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1232  * initialized at the beginning and shared across all contexts but this field
1233  * helps us to have multiple batches at different offsets and select them based
1234  * on a criteria. At the moment this batch always start at the beginning of the page
1235  * and at this point we don't have multiple wa_ctx batch buffers.
1236  *
1237  * The number of WA applied are not known at the beginning; we use this field
1238  * to return the no of DWORDS written.
1239  *
1240  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1241  * so it adds NOOPs as padding to make it cacheline aligned.
1242  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1243  * makes a complete batch buffer.
1244  */
1245 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1246 {
1247         /* WaDisableCtxRestoreArbitration:bdw,chv */
1248         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1249
1250         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1251         if (IS_BROADWELL(engine->i915))
1252                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1253
1254         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1255         /* Actual scratch location is at 128 bytes offset */
1256         batch = gen8_emit_pipe_control(batch,
1257                                        PIPE_CONTROL_FLUSH_L3 |
1258                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1259                                        PIPE_CONTROL_CS_STALL |
1260                                        PIPE_CONTROL_QW_WRITE,
1261                                        i915_ggtt_offset(engine->scratch) +
1262                                        2 * CACHELINE_BYTES);
1263
1264         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1265
1266         /* Pad to end of cacheline */
1267         while ((unsigned long)batch % CACHELINE_BYTES)
1268                 *batch++ = MI_NOOP;
1269
1270         /*
1271          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1272          * execution depends on the length specified in terms of cache lines
1273          * in the register CTX_RCS_INDIRECT_CTX
1274          */
1275
1276         return batch;
1277 }
1278
1279 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1280 {
1281         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1282
1283         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1284         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1285
1286         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1287         *batch++ = MI_LOAD_REGISTER_IMM(1);
1288         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1289         *batch++ = _MASKED_BIT_DISABLE(
1290                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1291         *batch++ = MI_NOOP;
1292
1293         /* WaClearSlmSpaceAtContextSwitch:kbl */
1294         /* Actual scratch location is at 128 bytes offset */
1295         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1296                 batch = gen8_emit_pipe_control(batch,
1297                                                PIPE_CONTROL_FLUSH_L3 |
1298                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1299                                                PIPE_CONTROL_CS_STALL |
1300                                                PIPE_CONTROL_QW_WRITE,
1301                                                i915_ggtt_offset(engine->scratch)
1302                                                + 2 * CACHELINE_BYTES);
1303         }
1304
1305         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1306         if (HAS_POOLED_EU(engine->i915)) {
1307                 /*
1308                  * EU pool configuration is setup along with golden context
1309                  * during context initialization. This value depends on
1310                  * device type (2x6 or 3x6) and needs to be updated based
1311                  * on which subslice is disabled especially for 2x6
1312                  * devices, however it is safe to load default
1313                  * configuration of 3x6 device instead of masking off
1314                  * corresponding bits because HW ignores bits of a disabled
1315                  * subslice and drops down to appropriate config. Please
1316                  * see render_state_setup() in i915_gem_render_state.c for
1317                  * possible configurations, to avoid duplication they are
1318                  * not shown here again.
1319                  */
1320                 *batch++ = GEN9_MEDIA_POOL_STATE;
1321                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1322                 *batch++ = 0x00777000;
1323                 *batch++ = 0;
1324                 *batch++ = 0;
1325                 *batch++ = 0;
1326         }
1327
1328         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1329
1330         /* Pad to end of cacheline */
1331         while ((unsigned long)batch % CACHELINE_BYTES)
1332                 *batch++ = MI_NOOP;
1333
1334         return batch;
1335 }
1336
1337 static u32 *
1338 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1339 {
1340         int i;
1341
1342         /*
1343          * WaPipeControlBefore3DStateSamplePattern: cnl
1344          *
1345          * Ensure the engine is idle prior to programming a
1346          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1347          */
1348         batch = gen8_emit_pipe_control(batch,
1349                                        PIPE_CONTROL_CS_STALL,
1350                                        0);
1351         /*
1352          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1353          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1354          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1355          * confusing. Since gen8_emit_pipe_control() already advances the
1356          * batch by 6 dwords, we advance the other 10 here, completing a
1357          * cacheline. It's not clear if the workaround requires this padding
1358          * before other commands, or if it's just the regular padding we would
1359          * already have for the workaround bb, so leave it here for now.
1360          */
1361         for (i = 0; i < 10; i++)
1362                 *batch++ = MI_NOOP;
1363
1364         /* Pad to end of cacheline */
1365         while ((unsigned long)batch % CACHELINE_BYTES)
1366                 *batch++ = MI_NOOP;
1367
1368         return batch;
1369 }
1370
1371 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1372
1373 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1374 {
1375         struct drm_i915_gem_object *obj;
1376         struct i915_vma *vma;
1377         int err;
1378
1379         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1380         if (IS_ERR(obj))
1381                 return PTR_ERR(obj);
1382
1383         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1384         if (IS_ERR(vma)) {
1385                 err = PTR_ERR(vma);
1386                 goto err;
1387         }
1388
1389         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1390         if (err)
1391                 goto err;
1392
1393         engine->wa_ctx.vma = vma;
1394         return 0;
1395
1396 err:
1397         i915_gem_object_put(obj);
1398         return err;
1399 }
1400
1401 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1402 {
1403         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1404 }
1405
1406 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1407
1408 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1409 {
1410         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1411         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1412                                             &wa_ctx->per_ctx };
1413         wa_bb_func_t wa_bb_fn[2];
1414         struct page *page;
1415         void *batch, *batch_ptr;
1416         unsigned int i;
1417         int ret;
1418
1419         if (GEM_WARN_ON(engine->id != RCS))
1420                 return -EINVAL;
1421
1422         switch (INTEL_GEN(engine->i915)) {
1423         case 10:
1424                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1425                 wa_bb_fn[1] = NULL;
1426                 break;
1427         case 9:
1428                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1429                 wa_bb_fn[1] = NULL;
1430                 break;
1431         case 8:
1432                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1433                 wa_bb_fn[1] = NULL;
1434                 break;
1435         default:
1436                 MISSING_CASE(INTEL_GEN(engine->i915));
1437                 return 0;
1438         }
1439
1440         ret = lrc_setup_wa_ctx(engine);
1441         if (ret) {
1442                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1443                 return ret;
1444         }
1445
1446         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1447         batch = batch_ptr = kmap_atomic(page);
1448
1449         /*
1450          * Emit the two workaround batch buffers, recording the offset from the
1451          * start of the workaround batch buffer object for each and their
1452          * respective sizes.
1453          */
1454         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1455                 wa_bb[i]->offset = batch_ptr - batch;
1456                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1457                                             CACHELINE_BYTES))) {
1458                         ret = -EINVAL;
1459                         break;
1460                 }
1461                 if (wa_bb_fn[i])
1462                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1463                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1464         }
1465
1466         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1467
1468         kunmap_atomic(batch);
1469         if (ret)
1470                 lrc_destroy_wa_ctx(engine);
1471
1472         return ret;
1473 }
1474
1475 static u8 gtiir[] = {
1476         [RCS] = 0,
1477         [BCS] = 0,
1478         [VCS] = 1,
1479         [VCS2] = 1,
1480         [VECS] = 3,
1481 };
1482
1483 static void enable_execlists(struct intel_engine_cs *engine)
1484 {
1485         struct drm_i915_private *dev_priv = engine->i915;
1486
1487         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1488
1489         /*
1490          * Make sure we're not enabling the new 12-deep CSB
1491          * FIFO as that requires a slightly updated handling
1492          * in the ctx switch irq. Since we're currently only
1493          * using only 2 elements of the enhanced execlists the
1494          * deeper FIFO it's not needed and it's not worth adding
1495          * more statements to the irq handler to support it.
1496          */
1497         if (INTEL_GEN(dev_priv) >= 11)
1498                 I915_WRITE(RING_MODE_GEN7(engine),
1499                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1500         else
1501                 I915_WRITE(RING_MODE_GEN7(engine),
1502                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1503
1504         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1505                    engine->status_page.ggtt_offset);
1506         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1507
1508         /* Following the reset, we need to reload the CSB read/write pointers */
1509         engine->execlists.csb_head = -1;
1510 }
1511
1512 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1513 {
1514         struct intel_engine_execlists * const execlists = &engine->execlists;
1515         int ret;
1516
1517         ret = intel_mocs_init_engine(engine);
1518         if (ret)
1519                 return ret;
1520
1521         intel_engine_reset_breadcrumbs(engine);
1522         intel_engine_init_hangcheck(engine);
1523
1524         enable_execlists(engine);
1525
1526         /* After a GPU reset, we may have requests to replay */
1527         if (execlists->first)
1528                 tasklet_schedule(&execlists->tasklet);
1529
1530         return 0;
1531 }
1532
1533 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1534 {
1535         struct drm_i915_private *dev_priv = engine->i915;
1536         int ret;
1537
1538         ret = gen8_init_common_ring(engine);
1539         if (ret)
1540                 return ret;
1541
1542         /* We need to disable the AsyncFlip performance optimisations in order
1543          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1544          * programmed to '1' on all products.
1545          *
1546          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1547          */
1548         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1549
1550         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1551
1552         return init_workarounds_ring(engine);
1553 }
1554
1555 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1556 {
1557         int ret;
1558
1559         ret = gen8_init_common_ring(engine);
1560         if (ret)
1561                 return ret;
1562
1563         return init_workarounds_ring(engine);
1564 }
1565
1566 static void reset_irq(struct intel_engine_cs *engine)
1567 {
1568         struct drm_i915_private *dev_priv = engine->i915;
1569         int i;
1570
1571         GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1572
1573         /*
1574          * Clear any pending interrupt state.
1575          *
1576          * We do it twice out of paranoia that some of the IIR are double
1577          * buffered, and if we only reset it once there may still be
1578          * an interrupt pending.
1579          */
1580         for (i = 0; i < 2; i++) {
1581                 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1582                            GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1583                 POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1584         }
1585         GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1586                    (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1587
1588         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1589 }
1590
1591 static void reset_common_ring(struct intel_engine_cs *engine,
1592                               struct drm_i915_gem_request *request)
1593 {
1594         struct intel_engine_execlists * const execlists = &engine->execlists;
1595         struct intel_context *ce;
1596         unsigned long flags;
1597
1598         GEM_TRACE("%s seqno=%x\n",
1599                   engine->name, request ? request->global_seqno : 0);
1600
1601         reset_irq(engine);
1602
1603         spin_lock_irqsave(&engine->timeline->lock, flags);
1604
1605         /*
1606          * Catch up with any missed context-switch interrupts.
1607          *
1608          * Ideally we would just read the remaining CSB entries now that we
1609          * know the gpu is idle. However, the CSB registers are sometimes^W
1610          * often trashed across a GPU reset! Instead we have to rely on
1611          * guessing the missed context-switch events by looking at what
1612          * requests were completed.
1613          */
1614         execlists_cancel_port_requests(execlists);
1615
1616         /* Push back any incomplete requests for replay after the reset. */
1617         __unwind_incomplete_requests(engine);
1618
1619         spin_unlock_irqrestore(&engine->timeline->lock, flags);
1620
1621         /* Mark all CS interrupts as complete */
1622         execlists->active = 0;
1623
1624         /* If the request was innocent, we leave the request in the ELSP
1625          * and will try to replay it on restarting. The context image may
1626          * have been corrupted by the reset, in which case we may have
1627          * to service a new GPU hang, but more likely we can continue on
1628          * without impact.
1629          *
1630          * If the request was guilty, we presume the context is corrupt
1631          * and have to at least restore the RING register in the context
1632          * image back to the expected values to skip over the guilty request.
1633          */
1634         if (!request || request->fence.error != -EIO)
1635                 return;
1636
1637         /* We want a simple context + ring to execute the breadcrumb update.
1638          * We cannot rely on the context being intact across the GPU hang,
1639          * so clear it and rebuild just what we need for the breadcrumb.
1640          * All pending requests for this context will be zapped, and any
1641          * future request will be after userspace has had the opportunity
1642          * to recreate its own state.
1643          */
1644         ce = &request->ctx->engine[engine->id];
1645         execlists_init_reg_state(ce->lrc_reg_state,
1646                                  request->ctx, engine, ce->ring);
1647
1648         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1649         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1650                 i915_ggtt_offset(ce->ring->vma);
1651         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1652
1653         request->ring->head = request->postfix;
1654         intel_ring_update_space(request->ring);
1655
1656         /* Reset WaIdleLiteRestore:bdw,skl as well */
1657         unwind_wa_tail(request);
1658 }
1659
1660 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1661 {
1662         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1663         struct intel_engine_cs *engine = req->engine;
1664         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1665         u32 *cs;
1666         int i;
1667
1668         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1669         if (IS_ERR(cs))
1670                 return PTR_ERR(cs);
1671
1672         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1673         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1674                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1675
1676                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1677                 *cs++ = upper_32_bits(pd_daddr);
1678                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1679                 *cs++ = lower_32_bits(pd_daddr);
1680         }
1681
1682         *cs++ = MI_NOOP;
1683         intel_ring_advance(req, cs);
1684
1685         return 0;
1686 }
1687
1688 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1689                               u64 offset, u32 len,
1690                               const unsigned int flags)
1691 {
1692         u32 *cs;
1693         int ret;
1694
1695         /* Don't rely in hw updating PDPs, specially in lite-restore.
1696          * Ideally, we should set Force PD Restore in ctx descriptor,
1697          * but we can't. Force Restore would be a second option, but
1698          * it is unsafe in case of lite-restore (because the ctx is
1699          * not idle). PML4 is allocated during ppgtt init so this is
1700          * not needed in 48-bit.*/
1701         if (req->ctx->ppgtt &&
1702             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1703             !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1704             !intel_vgpu_active(req->i915)) {
1705                 ret = intel_logical_ring_emit_pdps(req);
1706                 if (ret)
1707                         return ret;
1708
1709                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1710         }
1711
1712         cs = intel_ring_begin(req, 4);
1713         if (IS_ERR(cs))
1714                 return PTR_ERR(cs);
1715
1716         /*
1717          * WaDisableCtxRestoreArbitration:bdw,chv
1718          *
1719          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1720          * particular all the gen that do not need the w/a at all!), if we
1721          * took care to make sure that on every switch into this context
1722          * (both ordinary and for preemption) that arbitrartion was enabled
1723          * we would be fine. However, there doesn't seem to be a downside to
1724          * being paranoid and making sure it is set before each batch and
1725          * every context-switch.
1726          *
1727          * Note that if we fail to enable arbitration before the request
1728          * is complete, then we do not see the context-switch interrupt and
1729          * the engine hangs (with RING_HEAD == RING_TAIL).
1730          *
1731          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1732          */
1733         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1734
1735         /* FIXME(BDW): Address space and security selectors. */
1736         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1737                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1738                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1739         *cs++ = lower_32_bits(offset);
1740         *cs++ = upper_32_bits(offset);
1741         intel_ring_advance(req, cs);
1742
1743         return 0;
1744 }
1745
1746 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1747 {
1748         struct drm_i915_private *dev_priv = engine->i915;
1749         I915_WRITE_IMR(engine,
1750                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1751         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1752 }
1753
1754 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1755 {
1756         struct drm_i915_private *dev_priv = engine->i915;
1757         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1758 }
1759
1760 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1761 {
1762         u32 cmd, *cs;
1763
1764         cs = intel_ring_begin(request, 4);
1765         if (IS_ERR(cs))
1766                 return PTR_ERR(cs);
1767
1768         cmd = MI_FLUSH_DW + 1;
1769
1770         /* We always require a command barrier so that subsequent
1771          * commands, such as breadcrumb interrupts, are strictly ordered
1772          * wrt the contents of the write cache being flushed to memory
1773          * (and thus being coherent from the CPU).
1774          */
1775         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1776
1777         if (mode & EMIT_INVALIDATE) {
1778                 cmd |= MI_INVALIDATE_TLB;
1779                 if (request->engine->id == VCS)
1780                         cmd |= MI_INVALIDATE_BSD;
1781         }
1782
1783         *cs++ = cmd;
1784         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1785         *cs++ = 0; /* upper addr */
1786         *cs++ = 0; /* value */
1787         intel_ring_advance(request, cs);
1788
1789         return 0;
1790 }
1791
1792 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1793                                   u32 mode)
1794 {
1795         struct intel_engine_cs *engine = request->engine;
1796         u32 scratch_addr =
1797                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1798         bool vf_flush_wa = false, dc_flush_wa = false;
1799         u32 *cs, flags = 0;
1800         int len;
1801
1802         flags |= PIPE_CONTROL_CS_STALL;
1803
1804         if (mode & EMIT_FLUSH) {
1805                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1806                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1807                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1808                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1809         }
1810
1811         if (mode & EMIT_INVALIDATE) {
1812                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1813                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1814                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1815                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1816                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1817                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1818                 flags |= PIPE_CONTROL_QW_WRITE;
1819                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1820
1821                 /*
1822                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1823                  * pipe control.
1824                  */
1825                 if (IS_GEN9(request->i915))
1826                         vf_flush_wa = true;
1827
1828                 /* WaForGAMHang:kbl */
1829                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1830                         dc_flush_wa = true;
1831         }
1832
1833         len = 6;
1834
1835         if (vf_flush_wa)
1836                 len += 6;
1837
1838         if (dc_flush_wa)
1839                 len += 12;
1840
1841         cs = intel_ring_begin(request, len);
1842         if (IS_ERR(cs))
1843                 return PTR_ERR(cs);
1844
1845         if (vf_flush_wa)
1846                 cs = gen8_emit_pipe_control(cs, 0, 0);
1847
1848         if (dc_flush_wa)
1849                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1850                                             0);
1851
1852         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1853
1854         if (dc_flush_wa)
1855                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1856
1857         intel_ring_advance(request, cs);
1858
1859         return 0;
1860 }
1861
1862 /*
1863  * Reserve space for 2 NOOPs at the end of each request to be
1864  * used as a workaround for not being allowed to do lite
1865  * restore with HEAD==TAIL (WaIdleLiteRestore).
1866  */
1867 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1868 {
1869         /* Ensure there's always at least one preemption point per-request. */
1870         *cs++ = MI_ARB_CHECK;
1871         *cs++ = MI_NOOP;
1872         request->wa_tail = intel_ring_offset(request, cs);
1873 }
1874
1875 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1876 {
1877         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1878         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1879
1880         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1881                                   intel_hws_seqno_address(request->engine));
1882         *cs++ = MI_USER_INTERRUPT;
1883         *cs++ = MI_NOOP;
1884         request->tail = intel_ring_offset(request, cs);
1885         assert_ring_tail_valid(request->ring, request->tail);
1886
1887         gen8_emit_wa_tail(request, cs);
1888 }
1889 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1890
1891 static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1892                                         u32 *cs)
1893 {
1894         /* We're using qword write, seqno should be aligned to 8 bytes. */
1895         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1896
1897         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1898                                       intel_hws_seqno_address(request->engine));
1899         *cs++ = MI_USER_INTERRUPT;
1900         *cs++ = MI_NOOP;
1901         request->tail = intel_ring_offset(request, cs);
1902         assert_ring_tail_valid(request->ring, request->tail);
1903
1904         gen8_emit_wa_tail(request, cs);
1905 }
1906 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1907
1908 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1909 {
1910         int ret;
1911
1912         ret = intel_ring_workarounds_emit(req);
1913         if (ret)
1914                 return ret;
1915
1916         ret = intel_rcs_context_init_mocs(req);
1917         /*
1918          * Failing to program the MOCS is non-fatal.The system will not
1919          * run at peak performance. So generate an error and carry on.
1920          */
1921         if (ret)
1922                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1923
1924         return i915_gem_render_state_emit(req);
1925 }
1926
1927 /**
1928  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1929  * @engine: Engine Command Streamer.
1930  */
1931 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1932 {
1933         struct drm_i915_private *dev_priv;
1934
1935         /*
1936          * Tasklet cannot be active at this point due intel_mark_active/idle
1937          * so this is just for documentation.
1938          */
1939         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
1940                              &engine->execlists.tasklet.state)))
1941                 tasklet_kill(&engine->execlists.tasklet);
1942
1943         dev_priv = engine->i915;
1944
1945         if (engine->buffer) {
1946                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1947         }
1948
1949         if (engine->cleanup)
1950                 engine->cleanup(engine);
1951
1952         intel_engine_cleanup_common(engine);
1953
1954         lrc_destroy_wa_ctx(engine);
1955
1956         engine->i915 = NULL;
1957         dev_priv->engine[engine->id] = NULL;
1958         kfree(engine);
1959 }
1960
1961 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1962 {
1963         engine->submit_request = execlists_submit_request;
1964         engine->cancel_requests = execlists_cancel_requests;
1965         engine->schedule = execlists_schedule;
1966         engine->execlists.tasklet.func = execlists_submission_tasklet;
1967
1968         engine->park = NULL;
1969         engine->unpark = NULL;
1970
1971         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1972
1973         engine->i915->caps.scheduler =
1974                 I915_SCHEDULER_CAP_ENABLED |
1975                 I915_SCHEDULER_CAP_PRIORITY;
1976         if (engine->i915->preempt_context)
1977                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
1978 }
1979
1980 static void
1981 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1982 {
1983         /* Default vfuncs which can be overriden by each engine. */
1984         engine->init_hw = gen8_init_common_ring;
1985         engine->reset_hw = reset_common_ring;
1986
1987         engine->context_pin = execlists_context_pin;
1988         engine->context_unpin = execlists_context_unpin;
1989
1990         engine->request_alloc = execlists_request_alloc;
1991
1992         engine->emit_flush = gen8_emit_flush;
1993         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1994         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1995
1996         engine->set_default_submission = execlists_set_default_submission;
1997
1998         engine->irq_enable = gen8_logical_ring_enable_irq;
1999         engine->irq_disable = gen8_logical_ring_disable_irq;
2000         engine->emit_bb_start = gen8_emit_bb_start;
2001 }
2002
2003 static inline void
2004 logical_ring_default_irqs(struct intel_engine_cs *engine)
2005 {
2006         unsigned shift = engine->irq_shift;
2007         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2008         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2009 }
2010
2011 static void
2012 logical_ring_setup(struct intel_engine_cs *engine)
2013 {
2014         struct drm_i915_private *dev_priv = engine->i915;
2015         enum forcewake_domains fw_domains;
2016
2017         intel_engine_setup_common(engine);
2018
2019         /* Intentionally left blank. */
2020         engine->buffer = NULL;
2021
2022         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2023                                                     RING_ELSP(engine),
2024                                                     FW_REG_WRITE);
2025
2026         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2027                                                      RING_CONTEXT_STATUS_PTR(engine),
2028                                                      FW_REG_READ | FW_REG_WRITE);
2029
2030         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2031                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2032                                                      FW_REG_READ);
2033
2034         engine->execlists.fw_domains = fw_domains;
2035
2036         tasklet_init(&engine->execlists.tasklet,
2037                      execlists_submission_tasklet, (unsigned long)engine);
2038
2039         logical_ring_default_vfuncs(engine);
2040         logical_ring_default_irqs(engine);
2041 }
2042
2043 static int logical_ring_init(struct intel_engine_cs *engine)
2044 {
2045         int ret;
2046
2047         ret = intel_engine_init_common(engine);
2048         if (ret)
2049                 goto error;
2050
2051         engine->execlists.elsp =
2052                 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
2053
2054         engine->execlists.preempt_complete_status = ~0u;
2055         if (engine->i915->preempt_context)
2056                 engine->execlists.preempt_complete_status =
2057                         upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);
2058
2059         return 0;
2060
2061 error:
2062         intel_logical_ring_cleanup(engine);
2063         return ret;
2064 }
2065
2066 int logical_render_ring_init(struct intel_engine_cs *engine)
2067 {
2068         struct drm_i915_private *dev_priv = engine->i915;
2069         int ret;
2070
2071         logical_ring_setup(engine);
2072
2073         if (HAS_L3_DPF(dev_priv))
2074                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2075
2076         /* Override some for render ring. */
2077         if (INTEL_GEN(dev_priv) >= 9)
2078                 engine->init_hw = gen9_init_render_ring;
2079         else
2080                 engine->init_hw = gen8_init_render_ring;
2081         engine->init_context = gen8_init_rcs_context;
2082         engine->emit_flush = gen8_emit_flush_render;
2083         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2084         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2085
2086         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2087         if (ret)
2088                 return ret;
2089
2090         ret = intel_init_workaround_bb(engine);
2091         if (ret) {
2092                 /*
2093                  * We continue even if we fail to initialize WA batch
2094                  * because we only expect rare glitches but nothing
2095                  * critical to prevent us from using GPU
2096                  */
2097                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2098                           ret);
2099         }
2100
2101         return logical_ring_init(engine);
2102 }
2103
2104 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2105 {
2106         logical_ring_setup(engine);
2107
2108         return logical_ring_init(engine);
2109 }
2110
2111 static u32
2112 make_rpcs(struct drm_i915_private *dev_priv)
2113 {
2114         u32 rpcs = 0;
2115
2116         /*
2117          * No explicit RPCS request is needed to ensure full
2118          * slice/subslice/EU enablement prior to Gen9.
2119         */
2120         if (INTEL_GEN(dev_priv) < 9)
2121                 return 0;
2122
2123         /*
2124          * Starting in Gen9, render power gating can leave
2125          * slice/subslice/EU in a partially enabled state. We
2126          * must make an explicit request through RPCS for full
2127          * enablement.
2128         */
2129         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2130                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2131                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2132                         GEN8_RPCS_S_CNT_SHIFT;
2133                 rpcs |= GEN8_RPCS_ENABLE;
2134         }
2135
2136         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2137                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2138                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2139                         GEN8_RPCS_SS_CNT_SHIFT;
2140                 rpcs |= GEN8_RPCS_ENABLE;
2141         }
2142
2143         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2144                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2145                         GEN8_RPCS_EU_MIN_SHIFT;
2146                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2147                         GEN8_RPCS_EU_MAX_SHIFT;
2148                 rpcs |= GEN8_RPCS_ENABLE;
2149         }
2150
2151         return rpcs;
2152 }
2153
2154 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2155 {
2156         u32 indirect_ctx_offset;
2157
2158         switch (INTEL_GEN(engine->i915)) {
2159         default:
2160                 MISSING_CASE(INTEL_GEN(engine->i915));
2161                 /* fall through */
2162         case 10:
2163                 indirect_ctx_offset =
2164                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2165                 break;
2166         case 9:
2167                 indirect_ctx_offset =
2168                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2169                 break;
2170         case 8:
2171                 indirect_ctx_offset =
2172                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2173                 break;
2174         }
2175
2176         return indirect_ctx_offset;
2177 }
2178
2179 static void execlists_init_reg_state(u32 *regs,
2180                                      struct i915_gem_context *ctx,
2181                                      struct intel_engine_cs *engine,
2182                                      struct intel_ring *ring)
2183 {
2184         struct drm_i915_private *dev_priv = engine->i915;
2185         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2186         u32 base = engine->mmio_base;
2187         bool rcs = engine->id == RCS;
2188
2189         /* A context is actually a big batch buffer with several
2190          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2191          * values we are setting here are only for the first context restore:
2192          * on a subsequent save, the GPU will recreate this batchbuffer with new
2193          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2194          * we are not initializing here).
2195          */
2196         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2197                                  MI_LRI_FORCE_POSTED;
2198
2199         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2200                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2201                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2202                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2203                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2204                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2205         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2206         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2207         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2208         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2209                 RING_CTL_SIZE(ring->size) | RING_VALID);
2210         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2211         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2212         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2213         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2214         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2215         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2216         if (rcs) {
2217                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2218
2219                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2220                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2221                         RING_INDIRECT_CTX_OFFSET(base), 0);
2222                 if (wa_ctx->indirect_ctx.size) {
2223                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2224
2225                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2226                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2227                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2228
2229                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2230                                 intel_lr_indirect_ctx_offset(engine) << 6;
2231                 }
2232
2233                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2234                 if (wa_ctx->per_ctx.size) {
2235                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2236
2237                         regs[CTX_BB_PER_CTX_PTR + 1] =
2238                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2239                 }
2240         }
2241
2242         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2243
2244         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2245         /* PDP values well be assigned later if needed */
2246         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2247         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2248         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2249         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2250         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2251         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2252         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2253         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2254
2255         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2256                 /* 64b PPGTT (48bit canonical)
2257                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2258                  * other PDP Descriptors are ignored.
2259                  */
2260                 ASSIGN_CTX_PML4(ppgtt, regs);
2261         }
2262
2263         if (rcs) {
2264                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2265                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2266                         make_rpcs(dev_priv));
2267
2268                 i915_oa_init_reg_state(engine, ctx, regs);
2269         }
2270 }
2271
2272 static int
2273 populate_lr_context(struct i915_gem_context *ctx,
2274                     struct drm_i915_gem_object *ctx_obj,
2275                     struct intel_engine_cs *engine,
2276                     struct intel_ring *ring)
2277 {
2278         void *vaddr;
2279         u32 *regs;
2280         int ret;
2281
2282         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2283         if (ret) {
2284                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2285                 return ret;
2286         }
2287
2288         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2289         if (IS_ERR(vaddr)) {
2290                 ret = PTR_ERR(vaddr);
2291                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2292                 return ret;
2293         }
2294         ctx_obj->mm.dirty = true;
2295
2296         if (engine->default_state) {
2297                 /*
2298                  * We only want to copy over the template context state;
2299                  * skipping over the headers reserved for GuC communication,
2300                  * leaving those as zero.
2301                  */
2302                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2303                 void *defaults;
2304
2305                 defaults = i915_gem_object_pin_map(engine->default_state,
2306                                                    I915_MAP_WB);
2307                 if (IS_ERR(defaults))
2308                         return PTR_ERR(defaults);
2309
2310                 memcpy(vaddr + start, defaults + start, engine->context_size);
2311                 i915_gem_object_unpin_map(engine->default_state);
2312         }
2313
2314         /* The second page of the context object contains some fields which must
2315          * be set up prior to the first execution. */
2316         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2317         execlists_init_reg_state(regs, ctx, engine, ring);
2318         if (!engine->default_state)
2319                 regs[CTX_CONTEXT_CONTROL + 1] |=
2320                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2321         if (ctx == ctx->i915->preempt_context)
2322                 regs[CTX_CONTEXT_CONTROL + 1] |=
2323                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2324                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2325
2326         i915_gem_object_unpin_map(ctx_obj);
2327
2328         return 0;
2329 }
2330
2331 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2332                                             struct intel_engine_cs *engine)
2333 {
2334         struct drm_i915_gem_object *ctx_obj;
2335         struct intel_context *ce = &ctx->engine[engine->id];
2336         struct i915_vma *vma;
2337         uint32_t context_size;
2338         struct intel_ring *ring;
2339         int ret;
2340
2341         if (ce->state)
2342                 return 0;
2343
2344         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2345
2346         /*
2347          * Before the actual start of the context image, we insert a few pages
2348          * for our own use and for sharing with the GuC.
2349          */
2350         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2351
2352         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2353         if (IS_ERR(ctx_obj)) {
2354                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2355                 return PTR_ERR(ctx_obj);
2356         }
2357
2358         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2359         if (IS_ERR(vma)) {
2360                 ret = PTR_ERR(vma);
2361                 goto error_deref_obj;
2362         }
2363
2364         ring = intel_engine_create_ring(engine, ctx->ring_size);
2365         if (IS_ERR(ring)) {
2366                 ret = PTR_ERR(ring);
2367                 goto error_deref_obj;
2368         }
2369
2370         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2371         if (ret) {
2372                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2373                 goto error_ring_free;
2374         }
2375
2376         ce->ring = ring;
2377         ce->state = vma;
2378
2379         return 0;
2380
2381 error_ring_free:
2382         intel_ring_free(ring);
2383 error_deref_obj:
2384         i915_gem_object_put(ctx_obj);
2385         return ret;
2386 }
2387
2388 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2389 {
2390         struct intel_engine_cs *engine;
2391         struct i915_gem_context *ctx;
2392         enum intel_engine_id id;
2393
2394         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2395          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2396          * that stored in context. As we only write new commands from
2397          * ce->ring->tail onwards, everything before that is junk. If the GPU
2398          * starts reading from its RING_HEAD from the context, it may try to
2399          * execute that junk and die.
2400          *
2401          * So to avoid that we reset the context images upon resume. For
2402          * simplicity, we just zero everything out.
2403          */
2404         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2405                 for_each_engine(engine, dev_priv, id) {
2406                         struct intel_context *ce = &ctx->engine[engine->id];
2407                         u32 *reg;
2408
2409                         if (!ce->state)
2410                                 continue;
2411
2412                         reg = i915_gem_object_pin_map(ce->state->obj,
2413                                                       I915_MAP_WB);
2414                         if (WARN_ON(IS_ERR(reg)))
2415                                 continue;
2416
2417                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2418                         reg[CTX_RING_HEAD+1] = 0;
2419                         reg[CTX_RING_TAIL+1] = 0;
2420
2421                         ce->state->obj->mm.dirty = true;
2422                         i915_gem_object_unpin_map(ce->state->obj);
2423
2424                         intel_ring_reset(ce->ring, 0);
2425                 }
2426         }
2427 }