Merge branch 'stable/for-linus-5.1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  *
5  * Authors:
6  * Sean Paul <seanpaul@chromium.org>
7  */
8
9 #include <drm/drm_hdcp.h>
10 #include <linux/i2c.h>
11 #include <linux/random.h>
12
13 #include "intel_drv.h"
14 #include "i915_reg.h"
15
16 #define KEY_LOAD_TRIES  5
17 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS        50
18
19 static
20 bool intel_hdcp_is_ksv_valid(u8 *ksv)
21 {
22         int i, ones = 0;
23         /* KSV has 20 1's and 20 0's */
24         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
25                 ones += hweight8(ksv[i]);
26         if (ones != 20)
27                 return false;
28
29         return true;
30 }
31
32 static
33 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
34                                const struct intel_hdcp_shim *shim, u8 *bksv)
35 {
36         int ret, i, tries = 2;
37
38         /* HDCP spec states that we must retry the bksv if it is invalid */
39         for (i = 0; i < tries; i++) {
40                 ret = shim->read_bksv(intel_dig_port, bksv);
41                 if (ret)
42                         return ret;
43                 if (intel_hdcp_is_ksv_valid(bksv))
44                         break;
45         }
46         if (i == tries) {
47                 DRM_DEBUG_KMS("Bksv is invalid\n");
48                 return -ENODEV;
49         }
50
51         return 0;
52 }
53
54 /* Is HDCP1.4 capable on Platform and Sink */
55 bool intel_hdcp_capable(struct intel_connector *connector)
56 {
57         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
58         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
59         bool capable = false;
60         u8 bksv[5];
61
62         if (!shim)
63                 return capable;
64
65         if (shim->hdcp_capable) {
66                 shim->hdcp_capable(intel_dig_port, &capable);
67         } else {
68                 if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
69                         capable = true;
70         }
71
72         return capable;
73 }
74
75 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
76                                     const struct intel_hdcp_shim *shim)
77 {
78         int ret, read_ret;
79         bool ksv_ready;
80
81         /* Poll for ksv list ready (spec says max time allowed is 5s) */
82         ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
83                                                          &ksv_ready),
84                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
85                          100 * 1000);
86         if (ret)
87                 return ret;
88         if (read_ret)
89                 return read_ret;
90         if (!ksv_ready)
91                 return -ETIMEDOUT;
92
93         return 0;
94 }
95
96 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
97 {
98         struct i915_power_domains *power_domains = &dev_priv->power_domains;
99         struct i915_power_well *power_well;
100         enum i915_power_well_id id;
101         bool enabled = false;
102
103         /*
104          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
105          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
106          */
107         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
108                 id = HSW_DISP_PW_GLOBAL;
109         else
110                 id = SKL_DISP_PW_1;
111
112         mutex_lock(&power_domains->lock);
113
114         /* PG1 (power well #1) needs to be enabled */
115         for_each_power_well(dev_priv, power_well) {
116                 if (power_well->desc->id == id) {
117                         enabled = power_well->desc->ops->is_enabled(dev_priv,
118                                                                     power_well);
119                         break;
120                 }
121         }
122         mutex_unlock(&power_domains->lock);
123
124         /*
125          * Another req for hdcp key loadability is enabled state of pll for
126          * cdclk. Without active crtc we wont land here. So we are assuming that
127          * cdclk is already on.
128          */
129
130         return enabled;
131 }
132
133 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
134 {
135         I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
136         I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
137                    HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
138 }
139
140 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
141 {
142         int ret;
143         u32 val;
144
145         val = I915_READ(HDCP_KEY_STATUS);
146         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
147                 return 0;
148
149         /*
150          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
151          * out of reset. So if Key is not already loaded, its an error state.
152          */
153         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
154                 if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
155                         return -ENXIO;
156
157         /*
158          * Initiate loading the HDCP key from fuses.
159          *
160          * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
161          * platforms except BXT and GLK, differ in the key load trigger process
162          * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
163          */
164         if (IS_GEN9_BC(dev_priv)) {
165                 mutex_lock(&dev_priv->pcu_lock);
166                 ret = sandybridge_pcode_write(dev_priv,
167                                               SKL_PCODE_LOAD_HDCP_KEYS, 1);
168                 mutex_unlock(&dev_priv->pcu_lock);
169                 if (ret) {
170                         DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
171                                   ret);
172                         return ret;
173                 }
174         } else {
175                 I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
176         }
177
178         /* Wait for the keys to load (500us) */
179         ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS,
180                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
181                                         10, 1, &val);
182         if (ret)
183                 return ret;
184         else if (!(val & HDCP_KEY_LOAD_STATUS))
185                 return -ENXIO;
186
187         /* Send Aksv over to PCH display for use in authentication */
188         I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
189
190         return 0;
191 }
192
193 /* Returns updated SHA-1 index */
194 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
195 {
196         I915_WRITE(HDCP_SHA_TEXT, sha_text);
197         if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
198                                     HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
199                 DRM_ERROR("Timed out waiting for SHA1 ready\n");
200                 return -ETIMEDOUT;
201         }
202         return 0;
203 }
204
205 static
206 u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
207 {
208         enum port port = intel_dig_port->base.port;
209         switch (port) {
210         case PORT_A:
211                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
212         case PORT_B:
213                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
214         case PORT_C:
215                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
216         case PORT_D:
217                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
218         case PORT_E:
219                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
220         default:
221                 break;
222         }
223         DRM_ERROR("Unknown port %d\n", port);
224         return -EINVAL;
225 }
226
227 static
228 int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
229                                 const struct intel_hdcp_shim *shim,
230                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
231 {
232         struct drm_i915_private *dev_priv;
233         u32 vprime, sha_text, sha_leftovers, rep_ctl;
234         int ret, i, j, sha_idx;
235
236         dev_priv = intel_dig_port->base.base.dev->dev_private;
237
238         /* Process V' values from the receiver */
239         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
240                 ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
241                 if (ret)
242                         return ret;
243                 I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
244         }
245
246         /*
247          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
248          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
249          * stream is written via the HDCP_SHA_TEXT register in 32-bit
250          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
251          * index will keep track of our progress through the 64 bytes as well as
252          * helping us work the 40-bit KSVs through our 32-bit register.
253          *
254          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
255          */
256         sha_idx = 0;
257         sha_text = 0;
258         sha_leftovers = 0;
259         rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
260         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
261         for (i = 0; i < num_downstream; i++) {
262                 unsigned int sha_empty;
263                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
264
265                 /* Fill up the empty slots in sha_text and write it out */
266                 sha_empty = sizeof(sha_text) - sha_leftovers;
267                 for (j = 0; j < sha_empty; j++)
268                         sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
269
270                 ret = intel_write_sha_text(dev_priv, sha_text);
271                 if (ret < 0)
272                         return ret;
273
274                 /* Programming guide writes this every 64 bytes */
275                 sha_idx += sizeof(sha_text);
276                 if (!(sha_idx % 64))
277                         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
278
279                 /* Store the leftover bytes from the ksv in sha_text */
280                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
281                 sha_text = 0;
282                 for (j = 0; j < sha_leftovers; j++)
283                         sha_text |= ksv[sha_empty + j] <<
284                                         ((sizeof(sha_text) - j - 1) * 8);
285
286                 /*
287                  * If we still have room in sha_text for more data, continue.
288                  * Otherwise, write it out immediately.
289                  */
290                 if (sizeof(sha_text) > sha_leftovers)
291                         continue;
292
293                 ret = intel_write_sha_text(dev_priv, sha_text);
294                 if (ret < 0)
295                         return ret;
296                 sha_leftovers = 0;
297                 sha_text = 0;
298                 sha_idx += sizeof(sha_text);
299         }
300
301         /*
302          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
303          * bytes are leftover from the last ksv, we might be able to fit them
304          * all in sha_text (first 2 cases), or we might need to split them up
305          * into 2 writes (last 2 cases).
306          */
307         if (sha_leftovers == 0) {
308                 /* Write 16 bits of text, 16 bits of M0 */
309                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
310                 ret = intel_write_sha_text(dev_priv,
311                                            bstatus[0] << 8 | bstatus[1]);
312                 if (ret < 0)
313                         return ret;
314                 sha_idx += sizeof(sha_text);
315
316                 /* Write 32 bits of M0 */
317                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
318                 ret = intel_write_sha_text(dev_priv, 0);
319                 if (ret < 0)
320                         return ret;
321                 sha_idx += sizeof(sha_text);
322
323                 /* Write 16 bits of M0 */
324                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
325                 ret = intel_write_sha_text(dev_priv, 0);
326                 if (ret < 0)
327                         return ret;
328                 sha_idx += sizeof(sha_text);
329
330         } else if (sha_leftovers == 1) {
331                 /* Write 24 bits of text, 8 bits of M0 */
332                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
333                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
334                 /* Only 24-bits of data, must be in the LSB */
335                 sha_text = (sha_text & 0xffffff00) >> 8;
336                 ret = intel_write_sha_text(dev_priv, sha_text);
337                 if (ret < 0)
338                         return ret;
339                 sha_idx += sizeof(sha_text);
340
341                 /* Write 32 bits of M0 */
342                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
343                 ret = intel_write_sha_text(dev_priv, 0);
344                 if (ret < 0)
345                         return ret;
346                 sha_idx += sizeof(sha_text);
347
348                 /* Write 24 bits of M0 */
349                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
350                 ret = intel_write_sha_text(dev_priv, 0);
351                 if (ret < 0)
352                         return ret;
353                 sha_idx += sizeof(sha_text);
354
355         } else if (sha_leftovers == 2) {
356                 /* Write 32 bits of text */
357                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
358                 sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
359                 ret = intel_write_sha_text(dev_priv, sha_text);
360                 if (ret < 0)
361                         return ret;
362                 sha_idx += sizeof(sha_text);
363
364                 /* Write 64 bits of M0 */
365                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
366                 for (i = 0; i < 2; i++) {
367                         ret = intel_write_sha_text(dev_priv, 0);
368                         if (ret < 0)
369                                 return ret;
370                         sha_idx += sizeof(sha_text);
371                 }
372         } else if (sha_leftovers == 3) {
373                 /* Write 32 bits of text */
374                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
375                 sha_text |= bstatus[0] << 24;
376                 ret = intel_write_sha_text(dev_priv, sha_text);
377                 if (ret < 0)
378                         return ret;
379                 sha_idx += sizeof(sha_text);
380
381                 /* Write 8 bits of text, 24 bits of M0 */
382                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
383                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
384                 if (ret < 0)
385                         return ret;
386                 sha_idx += sizeof(sha_text);
387
388                 /* Write 32 bits of M0 */
389                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
390                 ret = intel_write_sha_text(dev_priv, 0);
391                 if (ret < 0)
392                         return ret;
393                 sha_idx += sizeof(sha_text);
394
395                 /* Write 8 bits of M0 */
396                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
397                 ret = intel_write_sha_text(dev_priv, 0);
398                 if (ret < 0)
399                         return ret;
400                 sha_idx += sizeof(sha_text);
401         } else {
402                 DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
403                               sha_leftovers);
404                 return -EINVAL;
405         }
406
407         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
408         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
409         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
410                 ret = intel_write_sha_text(dev_priv, 0);
411                 if (ret < 0)
412                         return ret;
413                 sha_idx += sizeof(sha_text);
414         }
415
416         /*
417          * Last write gets the length of the concatenation in bits. That is:
418          *  - 5 bytes per device
419          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
420          */
421         sha_text = (num_downstream * 5 + 10) * 8;
422         ret = intel_write_sha_text(dev_priv, sha_text);
423         if (ret < 0)
424                 return ret;
425
426         /* Tell the HW we're done with the hash and wait for it to ACK */
427         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
428         if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
429                                     HDCP_SHA1_COMPLETE,
430                                     HDCP_SHA1_COMPLETE, 1)) {
431                 DRM_ERROR("Timed out waiting for SHA1 complete\n");
432                 return -ETIMEDOUT;
433         }
434         if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
435                 DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
436                 return -ENXIO;
437         }
438
439         return 0;
440 }
441
442 /* Implements Part 2 of the HDCP authorization procedure */
443 static
444 int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port,
445                                const struct intel_hdcp_shim *shim)
446 {
447         u8 bstatus[2], num_downstream, *ksv_fifo;
448         int ret, i, tries = 3;
449
450         ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
451         if (ret) {
452                 DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
453                 return ret;
454         }
455
456         ret = shim->read_bstatus(intel_dig_port, bstatus);
457         if (ret)
458                 return ret;
459
460         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
461             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
462                 DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
463                 return -EPERM;
464         }
465
466         /*
467          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
468          * the HDCP encryption. That implies that repeater can't have its own
469          * display. As there is no consumption of encrypted content in the
470          * repeater with 0 downstream devices, we are failing the
471          * authentication.
472          */
473         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
474         if (num_downstream == 0)
475                 return -EINVAL;
476
477         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
478         if (!ksv_fifo)
479                 return -ENOMEM;
480
481         ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
482         if (ret)
483                 goto err;
484
485         /*
486          * When V prime mismatches, DP Spec mandates re-read of
487          * V prime atleast twice.
488          */
489         for (i = 0; i < tries; i++) {
490                 ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
491                                                   ksv_fifo, num_downstream,
492                                                   bstatus);
493                 if (!ret)
494                         break;
495         }
496
497         if (i == tries) {
498                 DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
499                 goto err;
500         }
501
502         DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
503                       num_downstream);
504         ret = 0;
505 err:
506         kfree(ksv_fifo);
507         return ret;
508 }
509
510 /* Implements Part 1 of the HDCP authorization procedure */
511 static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port,
512                            const struct intel_hdcp_shim *shim)
513 {
514         struct drm_i915_private *dev_priv;
515         enum port port;
516         unsigned long r0_prime_gen_start;
517         int ret, i, tries = 2;
518         union {
519                 u32 reg[2];
520                 u8 shim[DRM_HDCP_AN_LEN];
521         } an;
522         union {
523                 u32 reg[2];
524                 u8 shim[DRM_HDCP_KSV_LEN];
525         } bksv;
526         union {
527                 u32 reg;
528                 u8 shim[DRM_HDCP_RI_LEN];
529         } ri;
530         bool repeater_present, hdcp_capable;
531
532         dev_priv = intel_dig_port->base.base.dev->dev_private;
533
534         port = intel_dig_port->base.port;
535
536         /*
537          * Detects whether the display is HDCP capable. Although we check for
538          * valid Bksv below, the HDCP over DP spec requires that we check
539          * whether the display supports HDCP before we write An. For HDMI
540          * displays, this is not necessary.
541          */
542         if (shim->hdcp_capable) {
543                 ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
544                 if (ret)
545                         return ret;
546                 if (!hdcp_capable) {
547                         DRM_DEBUG_KMS("Panel is not HDCP capable\n");
548                         return -EINVAL;
549                 }
550         }
551
552         /* Initialize An with 2 random values and acquire it */
553         for (i = 0; i < 2; i++)
554                 I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
555         I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
556
557         /* Wait for An to be acquired */
558         if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
559                                     HDCP_STATUS_AN_READY,
560                                     HDCP_STATUS_AN_READY, 1)) {
561                 DRM_ERROR("Timed out waiting for An\n");
562                 return -ETIMEDOUT;
563         }
564
565         an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
566         an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
567         ret = shim->write_an_aksv(intel_dig_port, an.shim);
568         if (ret)
569                 return ret;
570
571         r0_prime_gen_start = jiffies;
572
573         memset(&bksv, 0, sizeof(bksv));
574
575         ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
576         if (ret < 0)
577                 return ret;
578
579         I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
580         I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
581
582         ret = shim->repeater_present(intel_dig_port, &repeater_present);
583         if (ret)
584                 return ret;
585         if (repeater_present)
586                 I915_WRITE(HDCP_REP_CTL,
587                            intel_hdcp_get_repeater_ctl(intel_dig_port));
588
589         ret = shim->toggle_signalling(intel_dig_port, true);
590         if (ret)
591                 return ret;
592
593         I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
594
595         /* Wait for R0 ready */
596         if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
597                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
598                 DRM_ERROR("Timed out waiting for R0 ready\n");
599                 return -ETIMEDOUT;
600         }
601
602         /*
603          * Wait for R0' to become available. The spec says 100ms from Aksv, but
604          * some monitors can take longer than this. We'll set the timeout at
605          * 300ms just to be sure.
606          *
607          * On DP, there's an R0_READY bit available but no such bit
608          * exists on HDMI. Since the upper-bound is the same, we'll just do
609          * the stupid thing instead of polling on one and not the other.
610          */
611         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
612
613         tries = 3;
614
615         /*
616          * DP HDCP Spec mandates the two more reattempt to read R0, incase
617          * of R0 mismatch.
618          */
619         for (i = 0; i < tries; i++) {
620                 ri.reg = 0;
621                 ret = shim->read_ri_prime(intel_dig_port, ri.shim);
622                 if (ret)
623                         return ret;
624                 I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
625
626                 /* Wait for Ri prime match */
627                 if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
628                     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
629                         break;
630         }
631
632         if (i == tries) {
633                 DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
634                               I915_READ(PORT_HDCP_STATUS(port)));
635                 return -ETIMEDOUT;
636         }
637
638         /* Wait for encryption confirmation */
639         if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
640                                     HDCP_STATUS_ENC, HDCP_STATUS_ENC,
641                                     ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
642                 DRM_ERROR("Timed out waiting for encryption\n");
643                 return -ETIMEDOUT;
644         }
645
646         /*
647          * XXX: If we have MST-connected devices, we need to enable encryption
648          * on those as well.
649          */
650
651         if (repeater_present)
652                 return intel_hdcp_auth_downstream(intel_dig_port, shim);
653
654         DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
655         return 0;
656 }
657
658 static int _intel_hdcp_disable(struct intel_connector *connector)
659 {
660         struct intel_hdcp *hdcp = &connector->hdcp;
661         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
662         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
663         enum port port = intel_dig_port->base.port;
664         int ret;
665
666         DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
667                       connector->base.name, connector->base.base.id);
668
669         I915_WRITE(PORT_HDCP_CONF(port), 0);
670         if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0,
671                                     ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
672                 DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
673                 return -ETIMEDOUT;
674         }
675
676         ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
677         if (ret) {
678                 DRM_ERROR("Failed to disable HDCP signalling\n");
679                 return ret;
680         }
681
682         DRM_DEBUG_KMS("HDCP is disabled\n");
683         return 0;
684 }
685
686 static int _intel_hdcp_enable(struct intel_connector *connector)
687 {
688         struct intel_hdcp *hdcp = &connector->hdcp;
689         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
690         int i, ret, tries = 3;
691
692         DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
693                       connector->base.name, connector->base.base.id);
694
695         if (!hdcp_key_loadable(dev_priv)) {
696                 DRM_ERROR("HDCP key Load is not possible\n");
697                 return -ENXIO;
698         }
699
700         for (i = 0; i < KEY_LOAD_TRIES; i++) {
701                 ret = intel_hdcp_load_keys(dev_priv);
702                 if (!ret)
703                         break;
704                 intel_hdcp_clear_keys(dev_priv);
705         }
706         if (ret) {
707                 DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
708                 return ret;
709         }
710
711         /* Incase of authentication failures, HDCP spec expects reauth. */
712         for (i = 0; i < tries; i++) {
713                 ret = intel_hdcp_auth(conn_to_dig_port(connector), hdcp->shim);
714                 if (!ret)
715                         return 0;
716
717                 DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
718
719                 /* Ensuring HDCP encryption and signalling are stopped. */
720                 _intel_hdcp_disable(connector);
721         }
722
723         DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
724         return ret;
725 }
726
727 static inline
728 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
729 {
730         return container_of(hdcp, struct intel_connector, hdcp);
731 }
732
733 static void intel_hdcp_check_work(struct work_struct *work)
734 {
735         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
736                                                struct intel_hdcp,
737                                                check_work);
738         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
739
740         if (!intel_hdcp_check_link(connector))
741                 schedule_delayed_work(&hdcp->check_work,
742                                       DRM_HDCP_CHECK_PERIOD_MS);
743 }
744
745 static void intel_hdcp_prop_work(struct work_struct *work)
746 {
747         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
748                                                prop_work);
749         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
750         struct drm_device *dev = connector->base.dev;
751         struct drm_connector_state *state;
752
753         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
754         mutex_lock(&hdcp->mutex);
755
756         /*
757          * This worker is only used to flip between ENABLED/DESIRED. Either of
758          * those to UNDESIRED is handled by core. If value == UNDESIRED,
759          * we're running just after hdcp has been disabled, so just exit
760          */
761         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
762                 state = connector->base.state;
763                 state->content_protection = hdcp->value;
764         }
765
766         mutex_unlock(&hdcp->mutex);
767         drm_modeset_unlock(&dev->mode_config.connection_mutex);
768 }
769
770 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
771 {
772         /* PORT E doesn't have HDCP, and PORT F is disabled */
773         return INTEL_GEN(dev_priv) >= 9 && port < PORT_E;
774 }
775
776 int intel_hdcp_init(struct intel_connector *connector,
777                     const struct intel_hdcp_shim *shim)
778 {
779         struct intel_hdcp *hdcp = &connector->hdcp;
780         int ret;
781
782         ret = drm_connector_attach_content_protection_property(
783                         &connector->base);
784         if (ret)
785                 return ret;
786
787         hdcp->shim = shim;
788         mutex_init(&hdcp->mutex);
789         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
790         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
791         return 0;
792 }
793
794 int intel_hdcp_enable(struct intel_connector *connector)
795 {
796         struct intel_hdcp *hdcp = &connector->hdcp;
797         int ret;
798
799         if (!hdcp->shim)
800                 return -ENOENT;
801
802         mutex_lock(&hdcp->mutex);
803
804         ret = _intel_hdcp_enable(connector);
805         if (ret)
806                 goto out;
807
808         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
809         schedule_work(&hdcp->prop_work);
810         schedule_delayed_work(&hdcp->check_work,
811                               DRM_HDCP_CHECK_PERIOD_MS);
812 out:
813         mutex_unlock(&hdcp->mutex);
814         return ret;
815 }
816
817 int intel_hdcp_disable(struct intel_connector *connector)
818 {
819         struct intel_hdcp *hdcp = &connector->hdcp;
820         int ret = 0;
821
822         if (!hdcp->shim)
823                 return -ENOENT;
824
825         mutex_lock(&hdcp->mutex);
826
827         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
828                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
829                 ret = _intel_hdcp_disable(connector);
830         }
831
832         mutex_unlock(&hdcp->mutex);
833         cancel_delayed_work_sync(&hdcp->check_work);
834         return ret;
835 }
836
837 void intel_hdcp_atomic_check(struct drm_connector *connector,
838                              struct drm_connector_state *old_state,
839                              struct drm_connector_state *new_state)
840 {
841         u64 old_cp = old_state->content_protection;
842         u64 new_cp = new_state->content_protection;
843         struct drm_crtc_state *crtc_state;
844
845         if (!new_state->crtc) {
846                 /*
847                  * If the connector is being disabled with CP enabled, mark it
848                  * desired so it's re-enabled when the connector is brought back
849                  */
850                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
851                         new_state->content_protection =
852                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
853                 return;
854         }
855
856         /*
857          * Nothing to do if the state didn't change, or HDCP was activated since
858          * the last commit
859          */
860         if (old_cp == new_cp ||
861             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
862              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
863                 return;
864
865         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
866                                                    new_state->crtc);
867         crtc_state->mode_changed = true;
868 }
869
870 /* Implements Part 3 of the HDCP authorization procedure */
871 int intel_hdcp_check_link(struct intel_connector *connector)
872 {
873         struct intel_hdcp *hdcp = &connector->hdcp;
874         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
875         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
876         enum port port = intel_dig_port->base.port;
877         int ret = 0;
878
879         if (!hdcp->shim)
880                 return -ENOENT;
881
882         mutex_lock(&hdcp->mutex);
883
884         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
885                 goto out;
886
887         if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) {
888                 DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n",
889                           connector->base.name, connector->base.base.id,
890                           I915_READ(PORT_HDCP_STATUS(port)));
891                 ret = -ENXIO;
892                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
893                 schedule_work(&hdcp->prop_work);
894                 goto out;
895         }
896
897         if (hdcp->shim->check_link(intel_dig_port)) {
898                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
899                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
900                         schedule_work(&hdcp->prop_work);
901                 }
902                 goto out;
903         }
904
905         DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
906                       connector->base.name, connector->base.base.id);
907
908         ret = _intel_hdcp_disable(connector);
909         if (ret) {
910                 DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
911                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
912                 schedule_work(&hdcp->prop_work);
913                 goto out;
914         }
915
916         ret = _intel_hdcp_enable(connector);
917         if (ret) {
918                 DRM_DEBUG_KMS("Failed to enable hdcp (%d)\n", ret);
919                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
920                 schedule_work(&hdcp->prop_work);
921                 goto out;
922         }
923
924 out:
925         mutex_unlock(&hdcp->mutex);
926         return ret;
927 }