Merge tag 'leds-for-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anasz...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_guc_log.c
1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/debugfs.h>
26
27 #include "intel_guc_log.h"
28 #include "i915_drv.h"
29
30 static void guc_log_capture_logs(struct intel_guc_log *log);
31
32 /**
33  * DOC: GuC firmware log
34  *
35  * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36  * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
37  * i915_guc_load_status will print out firmware loading status and scratch
38  * registers value.
39  */
40
41 static int guc_action_flush_log_complete(struct intel_guc *guc)
42 {
43         u32 action[] = {
44                 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
45         };
46
47         return intel_guc_send(guc, action, ARRAY_SIZE(action));
48 }
49
50 static int guc_action_flush_log(struct intel_guc *guc)
51 {
52         u32 action[] = {
53                 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
54                 0
55         };
56
57         return intel_guc_send(guc, action, ARRAY_SIZE(action));
58 }
59
60 static int guc_action_control_log(struct intel_guc *guc, bool enable,
61                                   bool default_logging, u32 verbosity)
62 {
63         u32 action[] = {
64                 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
65                 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
66                 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
67                 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
68         };
69
70         GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
71
72         return intel_guc_send(guc, action, ARRAY_SIZE(action));
73 }
74
75 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
76 {
77         return container_of(log, struct intel_guc, log);
78 }
79
80 static void guc_log_enable_flush_events(struct intel_guc_log *log)
81 {
82         intel_guc_enable_msg(log_to_guc(log),
83                              INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
84                              INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
85 }
86
87 static void guc_log_disable_flush_events(struct intel_guc_log *log)
88 {
89         intel_guc_disable_msg(log_to_guc(log),
90                               INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
91                               INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
92 }
93
94 /*
95  * Sub buffer switch callback. Called whenever relay has to switch to a new
96  * sub buffer, relay stays on the same sub buffer if 0 is returned.
97  */
98 static int subbuf_start_callback(struct rchan_buf *buf,
99                                  void *subbuf,
100                                  void *prev_subbuf,
101                                  size_t prev_padding)
102 {
103         /*
104          * Use no-overwrite mode by default, where relay will stop accepting
105          * new data if there are no empty sub buffers left.
106          * There is no strict synchronization enforced by relay between Consumer
107          * and Producer. In overwrite mode, there is a possibility of getting
108          * inconsistent/garbled data, the producer could be writing on to the
109          * same sub buffer from which Consumer is reading. This can't be avoided
110          * unless Consumer is fast enough and can always run in tandem with
111          * Producer.
112          */
113         if (relay_buf_full(buf))
114                 return 0;
115
116         return 1;
117 }
118
119 /*
120  * file_create() callback. Creates relay file in debugfs.
121  */
122 static struct dentry *create_buf_file_callback(const char *filename,
123                                                struct dentry *parent,
124                                                umode_t mode,
125                                                struct rchan_buf *buf,
126                                                int *is_global)
127 {
128         struct dentry *buf_file;
129
130         /*
131          * This to enable the use of a single buffer for the relay channel and
132          * correspondingly have a single file exposed to User, through which
133          * it can collect the logs in order without any post-processing.
134          * Need to set 'is_global' even if parent is NULL for early logging.
135          */
136         *is_global = 1;
137
138         if (!parent)
139                 return NULL;
140
141         buf_file = debugfs_create_file(filename, mode,
142                                        parent, buf, &relay_file_operations);
143         if (IS_ERR(buf_file))
144                 return NULL;
145
146         return buf_file;
147 }
148
149 /*
150  * file_remove() default callback. Removes relay file in debugfs.
151  */
152 static int remove_buf_file_callback(struct dentry *dentry)
153 {
154         debugfs_remove(dentry);
155         return 0;
156 }
157
158 /* relay channel callbacks */
159 static struct rchan_callbacks relay_callbacks = {
160         .subbuf_start = subbuf_start_callback,
161         .create_buf_file = create_buf_file_callback,
162         .remove_buf_file = remove_buf_file_callback,
163 };
164
165 static void guc_move_to_next_buf(struct intel_guc_log *log)
166 {
167         /*
168          * Make sure the updates made in the sub buffer are visible when
169          * Consumer sees the following update to offset inside the sub buffer.
170          */
171         smp_wmb();
172
173         /* All data has been written, so now move the offset of sub buffer. */
174         relay_reserve(log->relay.channel, log->vma->obj->base.size);
175
176         /* Switch to the next sub buffer */
177         relay_flush(log->relay.channel);
178 }
179
180 static void *guc_get_write_buffer(struct intel_guc_log *log)
181 {
182         /*
183          * Just get the base address of a new sub buffer and copy data into it
184          * ourselves. NULL will be returned in no-overwrite mode, if all sub
185          * buffers are full. Could have used the relay_write() to indirectly
186          * copy the data, but that would have been bit convoluted, as we need to
187          * write to only certain locations inside a sub buffer which cannot be
188          * done without using relay_reserve() along with relay_write(). So its
189          * better to use relay_reserve() alone.
190          */
191         return relay_reserve(log->relay.channel, 0);
192 }
193
194 static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
195                                        enum guc_log_buffer_type type,
196                                        unsigned int full_cnt)
197 {
198         unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
199         bool overflow = false;
200
201         if (full_cnt != prev_full_cnt) {
202                 overflow = true;
203
204                 log->stats[type].overflow = full_cnt;
205                 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
206
207                 if (full_cnt < prev_full_cnt) {
208                         /* buffer_full_cnt is a 4 bit counter */
209                         log->stats[type].sampled_overflow += 16;
210                 }
211
212                 dev_notice_ratelimited(guc_to_i915(log_to_guc(log))->drm.dev,
213                                        "GuC log buffer overflow\n");
214         }
215
216         return overflow;
217 }
218
219 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
220 {
221         switch (type) {
222         case GUC_ISR_LOG_BUFFER:
223                 return ISR_BUFFER_SIZE;
224         case GUC_DPC_LOG_BUFFER:
225                 return DPC_BUFFER_SIZE;
226         case GUC_CRASH_DUMP_LOG_BUFFER:
227                 return CRASH_BUFFER_SIZE;
228         default:
229                 MISSING_CASE(type);
230         }
231
232         return 0;
233 }
234
235 static void guc_read_update_log_buffer(struct intel_guc_log *log)
236 {
237         unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
238         struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
239         struct guc_log_buffer_state log_buf_state_local;
240         enum guc_log_buffer_type type;
241         void *src_data, *dst_data;
242         bool new_overflow;
243
244         mutex_lock(&log->relay.lock);
245
246         if (WARN_ON(!intel_guc_log_relay_enabled(log)))
247                 goto out_unlock;
248
249         /* Get the pointer to shared GuC log buffer */
250         log_buf_state = src_data = log->relay.buf_addr;
251
252         /* Get the pointer to local buffer to store the logs */
253         log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
254
255         if (unlikely(!log_buf_snapshot_state)) {
256                 /*
257                  * Used rate limited to avoid deluge of messages, logs might be
258                  * getting consumed by User at a slow rate.
259                  */
260                 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
261                 log->relay.full_count++;
262
263                 goto out_unlock;
264         }
265
266         /* Actual logs are present from the 2nd page */
267         src_data += PAGE_SIZE;
268         dst_data += PAGE_SIZE;
269
270         for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
271                 /*
272                  * Make a copy of the state structure, inside GuC log buffer
273                  * (which is uncached mapped), on the stack to avoid reading
274                  * from it multiple times.
275                  */
276                 memcpy(&log_buf_state_local, log_buf_state,
277                        sizeof(struct guc_log_buffer_state));
278                 buffer_size = guc_get_log_buffer_size(type);
279                 read_offset = log_buf_state_local.read_ptr;
280                 write_offset = log_buf_state_local.sampled_write_ptr;
281                 full_cnt = log_buf_state_local.buffer_full_cnt;
282
283                 /* Bookkeeping stuff */
284                 log->stats[type].flush += log_buf_state_local.flush_to_file;
285                 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
286
287                 /* Update the state of shared log buffer */
288                 log_buf_state->read_ptr = write_offset;
289                 log_buf_state->flush_to_file = 0;
290                 log_buf_state++;
291
292                 /* First copy the state structure in snapshot buffer */
293                 memcpy(log_buf_snapshot_state, &log_buf_state_local,
294                        sizeof(struct guc_log_buffer_state));
295
296                 /*
297                  * The write pointer could have been updated by GuC firmware,
298                  * after sending the flush interrupt to Host, for consistency
299                  * set write pointer value to same value of sampled_write_ptr
300                  * in the snapshot buffer.
301                  */
302                 log_buf_snapshot_state->write_ptr = write_offset;
303                 log_buf_snapshot_state++;
304
305                 /* Now copy the actual logs. */
306                 if (unlikely(new_overflow)) {
307                         /* copy the whole buffer in case of overflow */
308                         read_offset = 0;
309                         write_offset = buffer_size;
310                 } else if (unlikely((read_offset > buffer_size) ||
311                                     (write_offset > buffer_size))) {
312                         DRM_ERROR("invalid log buffer state\n");
313                         /* copy whole buffer as offsets are unreliable */
314                         read_offset = 0;
315                         write_offset = buffer_size;
316                 }
317
318                 /* Just copy the newly written data */
319                 if (read_offset > write_offset) {
320                         i915_memcpy_from_wc(dst_data, src_data, write_offset);
321                         bytes_to_copy = buffer_size - read_offset;
322                 } else {
323                         bytes_to_copy = write_offset - read_offset;
324                 }
325                 i915_memcpy_from_wc(dst_data + read_offset,
326                                     src_data + read_offset, bytes_to_copy);
327
328                 src_data += buffer_size;
329                 dst_data += buffer_size;
330         }
331
332         guc_move_to_next_buf(log);
333
334 out_unlock:
335         mutex_unlock(&log->relay.lock);
336 }
337
338 static void capture_logs_work(struct work_struct *work)
339 {
340         struct intel_guc_log *log =
341                 container_of(work, struct intel_guc_log, relay.flush_work);
342
343         guc_log_capture_logs(log);
344 }
345
346 static int guc_log_map(struct intel_guc_log *log)
347 {
348         void *vaddr;
349
350         lockdep_assert_held(&log->relay.lock);
351
352         if (!log->vma)
353                 return -ENODEV;
354
355         /*
356          * Create a WC (Uncached for read) vmalloc mapping of log
357          * buffer pages, so that we can directly get the data
358          * (up-to-date) from memory.
359          */
360         vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
361         if (IS_ERR(vaddr))
362                 return PTR_ERR(vaddr);
363
364         log->relay.buf_addr = vaddr;
365
366         return 0;
367 }
368
369 static void guc_log_unmap(struct intel_guc_log *log)
370 {
371         lockdep_assert_held(&log->relay.lock);
372
373         i915_gem_object_unpin_map(log->vma->obj);
374         log->relay.buf_addr = NULL;
375 }
376
377 void intel_guc_log_init_early(struct intel_guc_log *log)
378 {
379         mutex_init(&log->relay.lock);
380         INIT_WORK(&log->relay.flush_work, capture_logs_work);
381 }
382
383 static int guc_log_relay_create(struct intel_guc_log *log)
384 {
385         struct intel_guc *guc = log_to_guc(log);
386         struct drm_i915_private *dev_priv = guc_to_i915(guc);
387         struct rchan *guc_log_relay_chan;
388         size_t n_subbufs, subbuf_size;
389         int ret;
390
391         lockdep_assert_held(&log->relay.lock);
392
393          /* Keep the size of sub buffers same as shared log buffer */
394         subbuf_size = log->vma->size;
395
396         /*
397          * Store up to 8 snapshots, which is large enough to buffer sufficient
398          * boot time logs and provides enough leeway to User, in terms of
399          * latency, for consuming the logs from relay. Also doesn't take
400          * up too much memory.
401          */
402         n_subbufs = 8;
403
404         guc_log_relay_chan = relay_open("guc_log",
405                                         dev_priv->drm.primary->debugfs_root,
406                                         subbuf_size, n_subbufs,
407                                         &relay_callbacks, dev_priv);
408         if (!guc_log_relay_chan) {
409                 DRM_ERROR("Couldn't create relay chan for GuC logging\n");
410
411                 ret = -ENOMEM;
412                 return ret;
413         }
414
415         GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
416         log->relay.channel = guc_log_relay_chan;
417
418         return 0;
419 }
420
421 static void guc_log_relay_destroy(struct intel_guc_log *log)
422 {
423         lockdep_assert_held(&log->relay.lock);
424
425         relay_close(log->relay.channel);
426         log->relay.channel = NULL;
427 }
428
429 static void guc_log_capture_logs(struct intel_guc_log *log)
430 {
431         struct intel_guc *guc = log_to_guc(log);
432         struct drm_i915_private *dev_priv = guc_to_i915(guc);
433         intel_wakeref_t wakeref;
434
435         guc_read_update_log_buffer(log);
436
437         /*
438          * Generally device is expected to be active only at this
439          * time, so get/put should be really quick.
440          */
441         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
442                 guc_action_flush_log_complete(guc);
443 }
444
445 int intel_guc_log_create(struct intel_guc_log *log)
446 {
447         struct intel_guc *guc = log_to_guc(log);
448         struct i915_vma *vma;
449         u32 guc_log_size;
450         int ret;
451
452         GEM_BUG_ON(log->vma);
453
454         /*
455          *  GuC Log buffer Layout
456          *
457          *  +===============================+ 00B
458          *  |    Crash dump state header    |
459          *  +-------------------------------+ 32B
460          *  |       DPC state header        |
461          *  +-------------------------------+ 64B
462          *  |       ISR state header        |
463          *  +-------------------------------+ 96B
464          *  |                               |
465          *  +===============================+ PAGE_SIZE (4KB)
466          *  |        Crash Dump logs        |
467          *  +===============================+ + CRASH_SIZE
468          *  |           DPC logs            |
469          *  +===============================+ + DPC_SIZE
470          *  |           ISR logs            |
471          *  +===============================+ + ISR_SIZE
472          */
473         guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
474                         ISR_BUFFER_SIZE;
475
476         vma = intel_guc_allocate_vma(guc, guc_log_size);
477         if (IS_ERR(vma)) {
478                 ret = PTR_ERR(vma);
479                 goto err;
480         }
481
482         log->vma = vma;
483
484         log->level = i915_modparams.guc_log_level;
485
486         return 0;
487
488 err:
489         DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
490         return ret;
491 }
492
493 void intel_guc_log_destroy(struct intel_guc_log *log)
494 {
495         i915_vma_unpin_and_release(&log->vma, 0);
496 }
497
498 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
499 {
500         struct intel_guc *guc = log_to_guc(log);
501         struct drm_i915_private *dev_priv = guc_to_i915(guc);
502         intel_wakeref_t wakeref;
503         int ret = 0;
504
505         BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
506         GEM_BUG_ON(!log->vma);
507
508         /*
509          * GuC is recognizing log levels starting from 0 to max, we're using 0
510          * as indication that logging should be disabled.
511          */
512         if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
513                 return -EINVAL;
514
515         mutex_lock(&dev_priv->drm.struct_mutex);
516
517         if (log->level == level)
518                 goto out_unlock;
519
520         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
521                 ret = guc_action_control_log(guc,
522                                              GUC_LOG_LEVEL_IS_VERBOSE(level),
523                                              GUC_LOG_LEVEL_IS_ENABLED(level),
524                                              GUC_LOG_LEVEL_TO_VERBOSITY(level));
525         if (ret) {
526                 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
527                 goto out_unlock;
528         }
529
530         log->level = level;
531
532 out_unlock:
533         mutex_unlock(&dev_priv->drm.struct_mutex);
534
535         return ret;
536 }
537
538 bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
539 {
540         return log->relay.buf_addr;
541 }
542
543 int intel_guc_log_relay_open(struct intel_guc_log *log)
544 {
545         int ret;
546
547         mutex_lock(&log->relay.lock);
548
549         if (intel_guc_log_relay_enabled(log)) {
550                 ret = -EEXIST;
551                 goto out_unlock;
552         }
553
554         /*
555          * We require SSE 4.1 for fast reads from the GuC log buffer and
556          * it should be present on the chipsets supporting GuC based
557          * submisssions.
558          */
559         if (!i915_has_memcpy_from_wc()) {
560                 ret = -ENXIO;
561                 goto out_unlock;
562         }
563
564         ret = guc_log_relay_create(log);
565         if (ret)
566                 goto out_unlock;
567
568         ret = guc_log_map(log);
569         if (ret)
570                 goto out_relay;
571
572         mutex_unlock(&log->relay.lock);
573
574         guc_log_enable_flush_events(log);
575
576         /*
577          * When GuC is logging without us relaying to userspace, we're ignoring
578          * the flush notification. This means that we need to unconditionally
579          * flush on relay enabling, since GuC only notifies us once.
580          */
581         queue_work(log->relay.flush_wq, &log->relay.flush_work);
582
583         return 0;
584
585 out_relay:
586         guc_log_relay_destroy(log);
587 out_unlock:
588         mutex_unlock(&log->relay.lock);
589
590         return ret;
591 }
592
593 void intel_guc_log_relay_flush(struct intel_guc_log *log)
594 {
595         struct intel_guc *guc = log_to_guc(log);
596         struct drm_i915_private *i915 = guc_to_i915(guc);
597         intel_wakeref_t wakeref;
598
599         /*
600          * Before initiating the forceful flush, wait for any pending/ongoing
601          * flush to complete otherwise forceful flush may not actually happen.
602          */
603         flush_work(&log->relay.flush_work);
604
605         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
606                 guc_action_flush_log(guc);
607
608         /* GuC would have updated log buffer by now, so capture it */
609         guc_log_capture_logs(log);
610 }
611
612 void intel_guc_log_relay_close(struct intel_guc_log *log)
613 {
614         struct intel_guc *guc = log_to_guc(log);
615         struct drm_i915_private *i915 = guc_to_i915(guc);
616
617         guc_log_disable_flush_events(log);
618         synchronize_irq(i915->drm.irq);
619
620         flush_work(&log->relay.flush_work);
621
622         mutex_lock(&log->relay.lock);
623         GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
624         guc_log_unmap(log);
625         guc_log_relay_destroy(log);
626         mutex_unlock(&log->relay.lock);
627 }
628
629 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
630 {
631         queue_work(log->relay.flush_wq, &log->relay.flush_work);
632 }