Merge tag '5.1-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_guc_log.c
1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/debugfs.h>
26
27 #include "intel_guc_log.h"
28 #include "i915_drv.h"
29
30 static void guc_log_capture_logs(struct intel_guc_log *log);
31
32 /**
33  * DOC: GuC firmware log
34  *
35  * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36  * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
37  * i915_guc_load_status will print out firmware loading status and scratch
38  * registers value.
39  */
40
41 static int guc_action_flush_log_complete(struct intel_guc *guc)
42 {
43         u32 action[] = {
44                 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
45         };
46
47         return intel_guc_send(guc, action, ARRAY_SIZE(action));
48 }
49
50 static int guc_action_flush_log(struct intel_guc *guc)
51 {
52         u32 action[] = {
53                 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
54                 0
55         };
56
57         return intel_guc_send(guc, action, ARRAY_SIZE(action));
58 }
59
60 static int guc_action_control_log(struct intel_guc *guc, bool enable,
61                                   bool default_logging, u32 verbosity)
62 {
63         u32 action[] = {
64                 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
65                 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
66                 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
67                 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
68         };
69
70         GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
71
72         return intel_guc_send(guc, action, ARRAY_SIZE(action));
73 }
74
75 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
76 {
77         return container_of(log, struct intel_guc, log);
78 }
79
80 static void guc_log_enable_flush_events(struct intel_guc_log *log)
81 {
82         intel_guc_enable_msg(log_to_guc(log),
83                              INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
84                              INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
85 }
86
87 static void guc_log_disable_flush_events(struct intel_guc_log *log)
88 {
89         intel_guc_disable_msg(log_to_guc(log),
90                               INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
91                               INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
92 }
93
94 /*
95  * Sub buffer switch callback. Called whenever relay has to switch to a new
96  * sub buffer, relay stays on the same sub buffer if 0 is returned.
97  */
98 static int subbuf_start_callback(struct rchan_buf *buf,
99                                  void *subbuf,
100                                  void *prev_subbuf,
101                                  size_t prev_padding)
102 {
103         /*
104          * Use no-overwrite mode by default, where relay will stop accepting
105          * new data if there are no empty sub buffers left.
106          * There is no strict synchronization enforced by relay between Consumer
107          * and Producer. In overwrite mode, there is a possibility of getting
108          * inconsistent/garbled data, the producer could be writing on to the
109          * same sub buffer from which Consumer is reading. This can't be avoided
110          * unless Consumer is fast enough and can always run in tandem with
111          * Producer.
112          */
113         if (relay_buf_full(buf))
114                 return 0;
115
116         return 1;
117 }
118
119 /*
120  * file_create() callback. Creates relay file in debugfs.
121  */
122 static struct dentry *create_buf_file_callback(const char *filename,
123                                                struct dentry *parent,
124                                                umode_t mode,
125                                                struct rchan_buf *buf,
126                                                int *is_global)
127 {
128         struct dentry *buf_file;
129
130         /*
131          * This to enable the use of a single buffer for the relay channel and
132          * correspondingly have a single file exposed to User, through which
133          * it can collect the logs in order without any post-processing.
134          * Need to set 'is_global' even if parent is NULL for early logging.
135          */
136         *is_global = 1;
137
138         if (!parent)
139                 return NULL;
140
141         buf_file = debugfs_create_file(filename, mode,
142                                        parent, buf, &relay_file_operations);
143         if (IS_ERR(buf_file))
144                 return NULL;
145
146         return buf_file;
147 }
148
149 /*
150  * file_remove() default callback. Removes relay file in debugfs.
151  */
152 static int remove_buf_file_callback(struct dentry *dentry)
153 {
154         debugfs_remove(dentry);
155         return 0;
156 }
157
158 /* relay channel callbacks */
159 static struct rchan_callbacks relay_callbacks = {
160         .subbuf_start = subbuf_start_callback,
161         .create_buf_file = create_buf_file_callback,
162         .remove_buf_file = remove_buf_file_callback,
163 };
164
165 static void guc_move_to_next_buf(struct intel_guc_log *log)
166 {
167         /*
168          * Make sure the updates made in the sub buffer are visible when
169          * Consumer sees the following update to offset inside the sub buffer.
170          */
171         smp_wmb();
172
173         /* All data has been written, so now move the offset of sub buffer. */
174         relay_reserve(log->relay.channel, log->vma->obj->base.size);
175
176         /* Switch to the next sub buffer */
177         relay_flush(log->relay.channel);
178 }
179
180 static void *guc_get_write_buffer(struct intel_guc_log *log)
181 {
182         /*
183          * Just get the base address of a new sub buffer and copy data into it
184          * ourselves. NULL will be returned in no-overwrite mode, if all sub
185          * buffers are full. Could have used the relay_write() to indirectly
186          * copy the data, but that would have been bit convoluted, as we need to
187          * write to only certain locations inside a sub buffer which cannot be
188          * done without using relay_reserve() along with relay_write(). So its
189          * better to use relay_reserve() alone.
190          */
191         return relay_reserve(log->relay.channel, 0);
192 }
193
194 static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
195                                        enum guc_log_buffer_type type,
196                                        unsigned int full_cnt)
197 {
198         unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
199         bool overflow = false;
200
201         if (full_cnt != prev_full_cnt) {
202                 overflow = true;
203
204                 log->stats[type].overflow = full_cnt;
205                 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
206
207                 if (full_cnt < prev_full_cnt) {
208                         /* buffer_full_cnt is a 4 bit counter */
209                         log->stats[type].sampled_overflow += 16;
210                 }
211                 DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
212         }
213
214         return overflow;
215 }
216
217 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
218 {
219         switch (type) {
220         case GUC_ISR_LOG_BUFFER:
221                 return ISR_BUFFER_SIZE;
222         case GUC_DPC_LOG_BUFFER:
223                 return DPC_BUFFER_SIZE;
224         case GUC_CRASH_DUMP_LOG_BUFFER:
225                 return CRASH_BUFFER_SIZE;
226         default:
227                 MISSING_CASE(type);
228         }
229
230         return 0;
231 }
232
233 static void guc_read_update_log_buffer(struct intel_guc_log *log)
234 {
235         unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
236         struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
237         struct guc_log_buffer_state log_buf_state_local;
238         enum guc_log_buffer_type type;
239         void *src_data, *dst_data;
240         bool new_overflow;
241
242         mutex_lock(&log->relay.lock);
243
244         if (WARN_ON(!intel_guc_log_relay_enabled(log)))
245                 goto out_unlock;
246
247         /* Get the pointer to shared GuC log buffer */
248         log_buf_state = src_data = log->relay.buf_addr;
249
250         /* Get the pointer to local buffer to store the logs */
251         log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
252
253         if (unlikely(!log_buf_snapshot_state)) {
254                 /*
255                  * Used rate limited to avoid deluge of messages, logs might be
256                  * getting consumed by User at a slow rate.
257                  */
258                 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
259                 log->relay.full_count++;
260
261                 goto out_unlock;
262         }
263
264         /* Actual logs are present from the 2nd page */
265         src_data += PAGE_SIZE;
266         dst_data += PAGE_SIZE;
267
268         for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
269                 /*
270                  * Make a copy of the state structure, inside GuC log buffer
271                  * (which is uncached mapped), on the stack to avoid reading
272                  * from it multiple times.
273                  */
274                 memcpy(&log_buf_state_local, log_buf_state,
275                        sizeof(struct guc_log_buffer_state));
276                 buffer_size = guc_get_log_buffer_size(type);
277                 read_offset = log_buf_state_local.read_ptr;
278                 write_offset = log_buf_state_local.sampled_write_ptr;
279                 full_cnt = log_buf_state_local.buffer_full_cnt;
280
281                 /* Bookkeeping stuff */
282                 log->stats[type].flush += log_buf_state_local.flush_to_file;
283                 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
284
285                 /* Update the state of shared log buffer */
286                 log_buf_state->read_ptr = write_offset;
287                 log_buf_state->flush_to_file = 0;
288                 log_buf_state++;
289
290                 /* First copy the state structure in snapshot buffer */
291                 memcpy(log_buf_snapshot_state, &log_buf_state_local,
292                        sizeof(struct guc_log_buffer_state));
293
294                 /*
295                  * The write pointer could have been updated by GuC firmware,
296                  * after sending the flush interrupt to Host, for consistency
297                  * set write pointer value to same value of sampled_write_ptr
298                  * in the snapshot buffer.
299                  */
300                 log_buf_snapshot_state->write_ptr = write_offset;
301                 log_buf_snapshot_state++;
302
303                 /* Now copy the actual logs. */
304                 if (unlikely(new_overflow)) {
305                         /* copy the whole buffer in case of overflow */
306                         read_offset = 0;
307                         write_offset = buffer_size;
308                 } else if (unlikely((read_offset > buffer_size) ||
309                                     (write_offset > buffer_size))) {
310                         DRM_ERROR("invalid log buffer state\n");
311                         /* copy whole buffer as offsets are unreliable */
312                         read_offset = 0;
313                         write_offset = buffer_size;
314                 }
315
316                 /* Just copy the newly written data */
317                 if (read_offset > write_offset) {
318                         i915_memcpy_from_wc(dst_data, src_data, write_offset);
319                         bytes_to_copy = buffer_size - read_offset;
320                 } else {
321                         bytes_to_copy = write_offset - read_offset;
322                 }
323                 i915_memcpy_from_wc(dst_data + read_offset,
324                                     src_data + read_offset, bytes_to_copy);
325
326                 src_data += buffer_size;
327                 dst_data += buffer_size;
328         }
329
330         guc_move_to_next_buf(log);
331
332 out_unlock:
333         mutex_unlock(&log->relay.lock);
334 }
335
336 static void capture_logs_work(struct work_struct *work)
337 {
338         struct intel_guc_log *log =
339                 container_of(work, struct intel_guc_log, relay.flush_work);
340
341         guc_log_capture_logs(log);
342 }
343
344 static int guc_log_map(struct intel_guc_log *log)
345 {
346         struct intel_guc *guc = log_to_guc(log);
347         struct drm_i915_private *dev_priv = guc_to_i915(guc);
348         void *vaddr;
349         int ret;
350
351         lockdep_assert_held(&log->relay.lock);
352
353         if (!log->vma)
354                 return -ENODEV;
355
356         mutex_lock(&dev_priv->drm.struct_mutex);
357         ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
358         mutex_unlock(&dev_priv->drm.struct_mutex);
359         if (ret)
360                 return ret;
361
362         /*
363          * Create a WC (Uncached for read) vmalloc mapping of log
364          * buffer pages, so that we can directly get the data
365          * (up-to-date) from memory.
366          */
367         vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
368         if (IS_ERR(vaddr)) {
369                 DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
370                 return PTR_ERR(vaddr);
371         }
372
373         log->relay.buf_addr = vaddr;
374
375         return 0;
376 }
377
378 static void guc_log_unmap(struct intel_guc_log *log)
379 {
380         lockdep_assert_held(&log->relay.lock);
381
382         i915_gem_object_unpin_map(log->vma->obj);
383         log->relay.buf_addr = NULL;
384 }
385
386 void intel_guc_log_init_early(struct intel_guc_log *log)
387 {
388         mutex_init(&log->relay.lock);
389         INIT_WORK(&log->relay.flush_work, capture_logs_work);
390 }
391
392 static int guc_log_relay_create(struct intel_guc_log *log)
393 {
394         struct intel_guc *guc = log_to_guc(log);
395         struct drm_i915_private *dev_priv = guc_to_i915(guc);
396         struct rchan *guc_log_relay_chan;
397         size_t n_subbufs, subbuf_size;
398         int ret;
399
400         lockdep_assert_held(&log->relay.lock);
401
402          /* Keep the size of sub buffers same as shared log buffer */
403         subbuf_size = log->vma->size;
404
405         /*
406          * Store up to 8 snapshots, which is large enough to buffer sufficient
407          * boot time logs and provides enough leeway to User, in terms of
408          * latency, for consuming the logs from relay. Also doesn't take
409          * up too much memory.
410          */
411         n_subbufs = 8;
412
413         guc_log_relay_chan = relay_open("guc_log",
414                                         dev_priv->drm.primary->debugfs_root,
415                                         subbuf_size, n_subbufs,
416                                         &relay_callbacks, dev_priv);
417         if (!guc_log_relay_chan) {
418                 DRM_ERROR("Couldn't create relay chan for GuC logging\n");
419
420                 ret = -ENOMEM;
421                 return ret;
422         }
423
424         GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
425         log->relay.channel = guc_log_relay_chan;
426
427         return 0;
428 }
429
430 static void guc_log_relay_destroy(struct intel_guc_log *log)
431 {
432         lockdep_assert_held(&log->relay.lock);
433
434         relay_close(log->relay.channel);
435         log->relay.channel = NULL;
436 }
437
438 static void guc_log_capture_logs(struct intel_guc_log *log)
439 {
440         struct intel_guc *guc = log_to_guc(log);
441         struct drm_i915_private *dev_priv = guc_to_i915(guc);
442         intel_wakeref_t wakeref;
443
444         guc_read_update_log_buffer(log);
445
446         /*
447          * Generally device is expected to be active only at this
448          * time, so get/put should be really quick.
449          */
450         with_intel_runtime_pm(dev_priv, wakeref)
451                 guc_action_flush_log_complete(guc);
452 }
453
454 int intel_guc_log_create(struct intel_guc_log *log)
455 {
456         struct intel_guc *guc = log_to_guc(log);
457         struct i915_vma *vma;
458         u32 guc_log_size;
459         int ret;
460
461         GEM_BUG_ON(log->vma);
462
463         /*
464          *  GuC Log buffer Layout
465          *
466          *  +===============================+ 00B
467          *  |    Crash dump state header    |
468          *  +-------------------------------+ 32B
469          *  |       DPC state header        |
470          *  +-------------------------------+ 64B
471          *  |       ISR state header        |
472          *  +-------------------------------+ 96B
473          *  |                               |
474          *  +===============================+ PAGE_SIZE (4KB)
475          *  |        Crash Dump logs        |
476          *  +===============================+ + CRASH_SIZE
477          *  |           DPC logs            |
478          *  +===============================+ + DPC_SIZE
479          *  |           ISR logs            |
480          *  +===============================+ + ISR_SIZE
481          */
482         guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
483                         ISR_BUFFER_SIZE;
484
485         vma = intel_guc_allocate_vma(guc, guc_log_size);
486         if (IS_ERR(vma)) {
487                 ret = PTR_ERR(vma);
488                 goto err;
489         }
490
491         log->vma = vma;
492
493         log->level = i915_modparams.guc_log_level;
494
495         return 0;
496
497 err:
498         DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
499         return ret;
500 }
501
502 void intel_guc_log_destroy(struct intel_guc_log *log)
503 {
504         i915_vma_unpin_and_release(&log->vma, 0);
505 }
506
507 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
508 {
509         struct intel_guc *guc = log_to_guc(log);
510         struct drm_i915_private *dev_priv = guc_to_i915(guc);
511         intel_wakeref_t wakeref;
512         int ret = 0;
513
514         BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
515         GEM_BUG_ON(!log->vma);
516
517         /*
518          * GuC is recognizing log levels starting from 0 to max, we're using 0
519          * as indication that logging should be disabled.
520          */
521         if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
522                 return -EINVAL;
523
524         mutex_lock(&dev_priv->drm.struct_mutex);
525
526         if (log->level == level)
527                 goto out_unlock;
528
529         with_intel_runtime_pm(dev_priv, wakeref)
530                 ret = guc_action_control_log(guc,
531                                              GUC_LOG_LEVEL_IS_VERBOSE(level),
532                                              GUC_LOG_LEVEL_IS_ENABLED(level),
533                                              GUC_LOG_LEVEL_TO_VERBOSITY(level));
534         if (ret) {
535                 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
536                 goto out_unlock;
537         }
538
539         log->level = level;
540
541 out_unlock:
542         mutex_unlock(&dev_priv->drm.struct_mutex);
543
544         return ret;
545 }
546
547 bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
548 {
549         return log->relay.buf_addr;
550 }
551
552 int intel_guc_log_relay_open(struct intel_guc_log *log)
553 {
554         int ret;
555
556         mutex_lock(&log->relay.lock);
557
558         if (intel_guc_log_relay_enabled(log)) {
559                 ret = -EEXIST;
560                 goto out_unlock;
561         }
562
563         /*
564          * We require SSE 4.1 for fast reads from the GuC log buffer and
565          * it should be present on the chipsets supporting GuC based
566          * submisssions.
567          */
568         if (!i915_has_memcpy_from_wc()) {
569                 ret = -ENXIO;
570                 goto out_unlock;
571         }
572
573         ret = guc_log_relay_create(log);
574         if (ret)
575                 goto out_unlock;
576
577         ret = guc_log_map(log);
578         if (ret)
579                 goto out_relay;
580
581         mutex_unlock(&log->relay.lock);
582
583         guc_log_enable_flush_events(log);
584
585         /*
586          * When GuC is logging without us relaying to userspace, we're ignoring
587          * the flush notification. This means that we need to unconditionally
588          * flush on relay enabling, since GuC only notifies us once.
589          */
590         queue_work(log->relay.flush_wq, &log->relay.flush_work);
591
592         return 0;
593
594 out_relay:
595         guc_log_relay_destroy(log);
596 out_unlock:
597         mutex_unlock(&log->relay.lock);
598
599         return ret;
600 }
601
602 void intel_guc_log_relay_flush(struct intel_guc_log *log)
603 {
604         struct intel_guc *guc = log_to_guc(log);
605         struct drm_i915_private *i915 = guc_to_i915(guc);
606         intel_wakeref_t wakeref;
607
608         /*
609          * Before initiating the forceful flush, wait for any pending/ongoing
610          * flush to complete otherwise forceful flush may not actually happen.
611          */
612         flush_work(&log->relay.flush_work);
613
614         with_intel_runtime_pm(i915, wakeref)
615                 guc_action_flush_log(guc);
616
617         /* GuC would have updated log buffer by now, so capture it */
618         guc_log_capture_logs(log);
619 }
620
621 void intel_guc_log_relay_close(struct intel_guc_log *log)
622 {
623         guc_log_disable_flush_events(log);
624         flush_work(&log->relay.flush_work);
625
626         mutex_lock(&log->relay.lock);
627         GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
628         guc_log_unmap(log);
629         guc_log_relay_destroy(log);
630         mutex_unlock(&log->relay.lock);
631 }
632
633 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
634 {
635         queue_work(log->relay.flush_wq, &log->relay.flush_work);
636 }