Merge tag '9p-for-4.21' of git://github.com/martinetd/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_guc.c
1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include "intel_guc.h"
26 #include "intel_guc_ads.h"
27 #include "intel_guc_submission.h"
28 #include "i915_drv.h"
29
30 static void gen8_guc_raise_irq(struct intel_guc *guc)
31 {
32         struct drm_i915_private *dev_priv = guc_to_i915(guc);
33
34         I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
35 }
36
37 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
38 {
39         GEM_BUG_ON(!guc->send_regs.base);
40         GEM_BUG_ON(!guc->send_regs.count);
41         GEM_BUG_ON(i >= guc->send_regs.count);
42
43         return _MMIO(guc->send_regs.base + 4 * i);
44 }
45
46 void intel_guc_init_send_regs(struct intel_guc *guc)
47 {
48         struct drm_i915_private *dev_priv = guc_to_i915(guc);
49         enum forcewake_domains fw_domains = 0;
50         unsigned int i;
51
52         guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
53         guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
54         BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
55
56         for (i = 0; i < guc->send_regs.count; i++) {
57                 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
58                                         guc_send_reg(guc, i),
59                                         FW_REG_READ | FW_REG_WRITE);
60         }
61         guc->send_regs.fw_domains = fw_domains;
62 }
63
64 void intel_guc_init_early(struct intel_guc *guc)
65 {
66         intel_guc_fw_init_early(guc);
67         intel_guc_ct_init_early(&guc->ct);
68         intel_guc_log_init_early(&guc->log);
69
70         mutex_init(&guc->send_mutex);
71         spin_lock_init(&guc->irq_lock);
72         guc->send = intel_guc_send_nop;
73         guc->handler = intel_guc_to_host_event_handler_nop;
74         guc->notify = gen8_guc_raise_irq;
75 }
76
77 static int guc_init_wq(struct intel_guc *guc)
78 {
79         struct drm_i915_private *dev_priv = guc_to_i915(guc);
80
81         /*
82          * GuC log buffer flush work item has to do register access to
83          * send the ack to GuC and this work item, if not synced before
84          * suspend, can potentially get executed after the GFX device is
85          * suspended.
86          * By marking the WQ as freezable, we don't have to bother about
87          * flushing of this work item from the suspend hooks, the pending
88          * work item if any will be either executed before the suspend
89          * or scheduled later on resume. This way the handling of work
90          * item can be kept same between system suspend & rpm suspend.
91          */
92         guc->log.relay.flush_wq =
93                 alloc_ordered_workqueue("i915-guc_log",
94                                         WQ_HIGHPRI | WQ_FREEZABLE);
95         if (!guc->log.relay.flush_wq) {
96                 DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
97                 return -ENOMEM;
98         }
99
100         /*
101          * Even though both sending GuC action, and adding a new workitem to
102          * GuC workqueue are serialized (each with its own locking), since
103          * we're using mutliple engines, it's possible that we're going to
104          * issue a preempt request with two (or more - each for different
105          * engine) workitems in GuC queue. In this situation, GuC may submit
106          * all of them, which will make us very confused.
107          * Our preemption contexts may even already be complete - before we
108          * even had the chance to sent the preempt action to GuC!. Rather
109          * than introducing yet another lock, we can just use ordered workqueue
110          * to make sure we're always sending a single preemption request with a
111          * single workitem.
112          */
113         if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
114             USES_GUC_SUBMISSION(dev_priv)) {
115                 guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
116                                                           WQ_HIGHPRI);
117                 if (!guc->preempt_wq) {
118                         destroy_workqueue(guc->log.relay.flush_wq);
119                         DRM_ERROR("Couldn't allocate workqueue for GuC "
120                                   "preemption\n");
121                         return -ENOMEM;
122                 }
123         }
124
125         return 0;
126 }
127
128 static void guc_fini_wq(struct intel_guc *guc)
129 {
130         struct workqueue_struct *wq;
131
132         wq = fetch_and_zero(&guc->preempt_wq);
133         if (wq)
134                 destroy_workqueue(wq);
135
136         wq = fetch_and_zero(&guc->log.relay.flush_wq);
137         if (wq)
138                 destroy_workqueue(wq);
139 }
140
141 int intel_guc_init_misc(struct intel_guc *guc)
142 {
143         struct drm_i915_private *i915 = guc_to_i915(guc);
144         int ret;
145
146         ret = guc_init_wq(guc);
147         if (ret)
148                 return ret;
149
150         intel_uc_fw_fetch(i915, &guc->fw);
151
152         return 0;
153 }
154
155 void intel_guc_fini_misc(struct intel_guc *guc)
156 {
157         intel_uc_fw_fini(&guc->fw);
158         guc_fini_wq(guc);
159 }
160
161 static int guc_shared_data_create(struct intel_guc *guc)
162 {
163         struct i915_vma *vma;
164         void *vaddr;
165
166         vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
167         if (IS_ERR(vma))
168                 return PTR_ERR(vma);
169
170         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
171         if (IS_ERR(vaddr)) {
172                 i915_vma_unpin_and_release(&vma, 0);
173                 return PTR_ERR(vaddr);
174         }
175
176         guc->shared_data = vma;
177         guc->shared_data_vaddr = vaddr;
178
179         return 0;
180 }
181
182 static void guc_shared_data_destroy(struct intel_guc *guc)
183 {
184         i915_vma_unpin_and_release(&guc->shared_data, I915_VMA_RELEASE_MAP);
185 }
186
187 int intel_guc_init(struct intel_guc *guc)
188 {
189         struct drm_i915_private *dev_priv = guc_to_i915(guc);
190         int ret;
191
192         ret = guc_shared_data_create(guc);
193         if (ret)
194                 goto err_fetch;
195         GEM_BUG_ON(!guc->shared_data);
196
197         ret = intel_guc_log_create(&guc->log);
198         if (ret)
199                 goto err_shared;
200
201         ret = intel_guc_ads_create(guc);
202         if (ret)
203                 goto err_log;
204         GEM_BUG_ON(!guc->ads_vma);
205
206         /* We need to notify the guc whenever we change the GGTT */
207         i915_ggtt_enable_guc(dev_priv);
208
209         return 0;
210
211 err_log:
212         intel_guc_log_destroy(&guc->log);
213 err_shared:
214         guc_shared_data_destroy(guc);
215 err_fetch:
216         intel_uc_fw_fini(&guc->fw);
217         return ret;
218 }
219
220 void intel_guc_fini(struct intel_guc *guc)
221 {
222         struct drm_i915_private *dev_priv = guc_to_i915(guc);
223
224         i915_ggtt_disable_guc(dev_priv);
225         intel_guc_ads_destroy(guc);
226         intel_guc_log_destroy(&guc->log);
227         guc_shared_data_destroy(guc);
228         intel_uc_fw_fini(&guc->fw);
229 }
230
231 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
232 {
233         u32 level = intel_guc_log_get_level(&guc->log);
234         u32 flags;
235         u32 ads;
236
237         ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
238         flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED;
239
240         if (!GUC_LOG_LEVEL_IS_ENABLED(level))
241                 flags |= GUC_LOG_DEFAULT_DISABLED;
242
243         if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
244                 flags |= GUC_LOG_DISABLED;
245         else
246                 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
247                          GUC_LOG_VERBOSITY_SHIFT;
248
249         return flags;
250 }
251
252 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
253 {
254         u32 flags = 0;
255
256         flags |=  GUC_CTL_VCS2_ENABLED;
257
258         if (USES_GUC_SUBMISSION(guc_to_i915(guc)))
259                 flags |= GUC_CTL_KERNEL_SUBMISSIONS;
260         else
261                 flags |= GUC_CTL_DISABLE_SCHEDULER;
262
263         return flags;
264 }
265
266 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
267 {
268         u32 flags = 0;
269
270         if (USES_GUC_SUBMISSION(guc_to_i915(guc))) {
271                 u32 ctxnum, base;
272
273                 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
274                 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
275
276                 base >>= PAGE_SHIFT;
277                 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
278                         (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
279         }
280         return flags;
281 }
282
283 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
284 {
285         u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
286         u32 flags;
287
288         #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
289         #define UNIT SZ_1M
290         #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
291         #else
292         #define UNIT SZ_4K
293         #define FLAG 0
294         #endif
295
296         BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
297         BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
298         BUILD_BUG_ON(!DPC_BUFFER_SIZE);
299         BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
300         BUILD_BUG_ON(!ISR_BUFFER_SIZE);
301         BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
302
303         BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
304                         (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
305         BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
306                         (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
307         BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
308                         (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
309
310         flags = GUC_LOG_VALID |
311                 GUC_LOG_NOTIFY_ON_HALF_FULL |
312                 FLAG |
313                 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
314                 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
315                 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
316                 (offset << GUC_LOG_BUF_ADDR_SHIFT);
317
318         #undef UNIT
319         #undef FLAG
320
321         return flags;
322 }
323
324 /*
325  * Initialise the GuC parameter block before starting the firmware
326  * transfer. These parameters are read by the firmware on startup
327  * and cannot be changed thereafter.
328  */
329 void intel_guc_init_params(struct intel_guc *guc)
330 {
331         struct drm_i915_private *dev_priv = guc_to_i915(guc);
332         u32 params[GUC_CTL_MAX_DWORDS];
333         int i;
334
335         memset(params, 0, sizeof(params));
336
337         /*
338          * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
339          * second. This ARAR is calculated by:
340          * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
341          */
342         params[GUC_CTL_ARAT_HIGH] = 0;
343         params[GUC_CTL_ARAT_LOW] = 100000000;
344
345         params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;
346
347         params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
348         params[GUC_CTL_LOG_PARAMS]  = guc_ctl_log_params_flags(guc);
349         params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
350         params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
351
352         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
353                 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
354
355         /*
356          * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
357          * they are power context saved so it's ok to release forcewake
358          * when we are done here and take it again at xfer time.
359          */
360         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);
361
362         I915_WRITE(SOFT_SCRATCH(0), 0);
363
364         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
365                 I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);
366
367         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
368 }
369
370 int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
371                        u32 *response_buf, u32 response_buf_size)
372 {
373         WARN(1, "Unexpected send: action=%#x\n", *action);
374         return -ENODEV;
375 }
376
377 void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
378 {
379         WARN(1, "Unexpected event: no suitable handler\n");
380 }
381
382 /*
383  * This function implements the MMIO based host to GuC interface.
384  */
385 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
386                         u32 *response_buf, u32 response_buf_size)
387 {
388         struct drm_i915_private *dev_priv = guc_to_i915(guc);
389         u32 status;
390         int i;
391         int ret;
392
393         GEM_BUG_ON(!len);
394         GEM_BUG_ON(len > guc->send_regs.count);
395
396         /* We expect only action code */
397         GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
398
399         /* If CT is available, we expect to use MMIO only during init/fini */
400         GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
401                 *action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
402                 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
403
404         mutex_lock(&guc->send_mutex);
405         intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);
406
407         for (i = 0; i < len; i++)
408                 I915_WRITE(guc_send_reg(guc, i), action[i]);
409
410         POSTING_READ(guc_send_reg(guc, i - 1));
411
412         intel_guc_notify(guc);
413
414         /*
415          * No GuC command should ever take longer than 10ms.
416          * Fast commands should still complete in 10us.
417          */
418         ret = __intel_wait_for_register_fw(dev_priv,
419                                            guc_send_reg(guc, 0),
420                                            INTEL_GUC_MSG_TYPE_MASK,
421                                            INTEL_GUC_MSG_TYPE_RESPONSE <<
422                                            INTEL_GUC_MSG_TYPE_SHIFT,
423                                            10, 10, &status);
424         /* If GuC explicitly returned an error, convert it to -EIO */
425         if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
426                 ret = -EIO;
427
428         if (ret) {
429                 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
430                           action[0], ret, status);
431                 goto out;
432         }
433
434         if (response_buf) {
435                 int count = min(response_buf_size, guc->send_regs.count - 1);
436
437                 for (i = 0; i < count; i++)
438                         response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
439         }
440
441         /* Use data from the GuC response as our return value */
442         ret = INTEL_GUC_MSG_TO_DATA(status);
443
444 out:
445         intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
446         mutex_unlock(&guc->send_mutex);
447
448         return ret;
449 }
450
451 void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
452 {
453         struct drm_i915_private *dev_priv = guc_to_i915(guc);
454         u32 msg, val;
455
456         /*
457          * Sample the log buffer flush related bits & clear them out now
458          * itself from the message identity register to minimize the
459          * probability of losing a flush interrupt, when there are back
460          * to back flush interrupts.
461          * There can be a new flush interrupt, for different log buffer
462          * type (like for ISR), whilst Host is handling one (for DPC).
463          * Since same bit is used in message register for ISR & DPC, it
464          * could happen that GuC sets the bit for 2nd interrupt but Host
465          * clears out the bit on handling the 1st interrupt.
466          */
467         disable_rpm_wakeref_asserts(dev_priv);
468         spin_lock(&guc->irq_lock);
469         val = I915_READ(SOFT_SCRATCH(15));
470         msg = val & guc->msg_enabled_mask;
471         I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
472         spin_unlock(&guc->irq_lock);
473         enable_rpm_wakeref_asserts(dev_priv);
474
475         intel_guc_to_host_process_recv_msg(guc, msg);
476 }
477
478 void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg)
479 {
480         /* Make sure to handle only enabled messages */
481         msg &= guc->msg_enabled_mask;
482
483         if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
484                    INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
485                 intel_guc_log_handle_flush_event(&guc->log);
486 }
487
488 int intel_guc_sample_forcewake(struct intel_guc *guc)
489 {
490         struct drm_i915_private *dev_priv = guc_to_i915(guc);
491         u32 action[2];
492
493         action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
494         /* WaRsDisableCoarsePowerGating:skl,cnl */
495         if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
496                 action[1] = 0;
497         else
498                 /* bit 0 and 1 are for Render and Media domain separately */
499                 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
500
501         return intel_guc_send(guc, action, ARRAY_SIZE(action));
502 }
503
504 /**
505  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
506  * @guc: intel_guc structure
507  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
508  *
509  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
510  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
511  * intel_huc_auth().
512  *
513  * Return:      non-zero code on error
514  */
515 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
516 {
517         u32 action[] = {
518                 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
519                 rsa_offset
520         };
521
522         return intel_guc_send(guc, action, ARRAY_SIZE(action));
523 }
524
525 /*
526  * The ENTER/EXIT_S_STATE actions queue the save/restore operation in GuC FW and
527  * then return, so waiting on the H2G is not enough to guarantee GuC is done.
528  * When all the processing is done, GuC writes INTEL_GUC_SLEEP_STATE_SUCCESS to
529  * scratch register 14, so we can poll on that. Note that GuC does not ensure
530  * that the value in the register is different from
531  * INTEL_GUC_SLEEP_STATE_SUCCESS while the action is in progress so we need to
532  * take care of that ourselves as well.
533  */
534 static int guc_sleep_state_action(struct intel_guc *guc,
535                                   const u32 *action, u32 len)
536 {
537         struct drm_i915_private *dev_priv = guc_to_i915(guc);
538         int ret;
539         u32 status;
540
541         I915_WRITE(SOFT_SCRATCH(14), INTEL_GUC_SLEEP_STATE_INVALID_MASK);
542
543         ret = intel_guc_send(guc, action, len);
544         if (ret)
545                 return ret;
546
547         ret = __intel_wait_for_register(dev_priv, SOFT_SCRATCH(14),
548                                         INTEL_GUC_SLEEP_STATE_INVALID_MASK,
549                                         0, 0, 10, &status);
550         if (ret)
551                 return ret;
552
553         if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
554                 DRM_ERROR("GuC failed to change sleep state. "
555                           "action=0x%x, err=%u\n",
556                           action[0], status);
557                 return -EIO;
558         }
559
560         return 0;
561 }
562
563 /**
564  * intel_guc_suspend() - notify GuC entering suspend state
565  * @guc:        the guc
566  */
567 int intel_guc_suspend(struct intel_guc *guc)
568 {
569         u32 data[] = {
570                 INTEL_GUC_ACTION_ENTER_S_STATE,
571                 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
572                 intel_guc_ggtt_offset(guc, guc->shared_data)
573         };
574
575         return guc_sleep_state_action(guc, data, ARRAY_SIZE(data));
576 }
577
578 /**
579  * intel_guc_reset_engine() - ask GuC to reset an engine
580  * @guc:        intel_guc structure
581  * @engine:     engine to be reset
582  */
583 int intel_guc_reset_engine(struct intel_guc *guc,
584                            struct intel_engine_cs *engine)
585 {
586         u32 data[7];
587
588         GEM_BUG_ON(!guc->execbuf_client);
589
590         data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
591         data[1] = engine->guc_id;
592         data[2] = 0;
593         data[3] = 0;
594         data[4] = 0;
595         data[5] = guc->execbuf_client->stage_id;
596         data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
597
598         return intel_guc_send(guc, data, ARRAY_SIZE(data));
599 }
600
601 /**
602  * intel_guc_resume() - notify GuC resuming from suspend state
603  * @guc:        the guc
604  */
605 int intel_guc_resume(struct intel_guc *guc)
606 {
607         u32 data[] = {
608                 INTEL_GUC_ACTION_EXIT_S_STATE,
609                 GUC_POWER_D0,
610                 intel_guc_ggtt_offset(guc, guc->shared_data)
611         };
612
613         return guc_sleep_state_action(guc, data, ARRAY_SIZE(data));
614 }
615
616 /**
617  * DOC: GuC Address Space
618  *
619  * The layout of GuC address space is shown below:
620  *
621  * ::
622  *
623  *     +===========> +====================+ <== FFFF_FFFF
624  *     ^             |      Reserved      |
625  *     |             +====================+ <== GUC_GGTT_TOP
626  *     |             |                    |
627  *     |             |        DRAM        |
628  *    GuC            |                    |
629  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
630  *   Space     ^     |                    |
631  *     |       |     |                    |
632  *     |      GuC    |        GuC         |
633  *     |     WOPCM   |       WOPCM        |
634  *     |      Size   |                    |
635  *     |       |     |                    |
636  *     v       v     |                    |
637  *     +=======+===> +====================+ <== 0000_0000
638  *
639  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
640  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
641  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
642  */
643
644 /**
645  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
646  * @guc:        the guc
647  * @size:       size of area to allocate (both virtual space and memory)
648  *
649  * This is a wrapper to create an object for use with the GuC. In order to
650  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
651  * both some backing storage and a range inside the Global GTT. We must pin
652  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
653  * range is reserved inside GuC.
654  *
655  * Return:      A i915_vma if successful, otherwise an ERR_PTR.
656  */
657 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
658 {
659         struct drm_i915_private *dev_priv = guc_to_i915(guc);
660         struct drm_i915_gem_object *obj;
661         struct i915_vma *vma;
662         u64 flags;
663         int ret;
664
665         obj = i915_gem_object_create(dev_priv, size);
666         if (IS_ERR(obj))
667                 return ERR_CAST(obj);
668
669         vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL);
670         if (IS_ERR(vma))
671                 goto err;
672
673         flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
674         ret = i915_vma_pin(vma, 0, 0, flags);
675         if (ret) {
676                 vma = ERR_PTR(ret);
677                 goto err;
678         }
679
680         return vma;
681
682 err:
683         i915_gem_object_put(obj);
684         return vma;
685 }
686
687 /**
688  * intel_guc_reserved_gtt_size()
689  * @guc:        intel_guc structure
690  *
691  * The GuC WOPCM mapping shadows the lower part of the GGTT, so if we are using
692  * GuC we can't have any objects pinned in that region. This function returns
693  * the size of the shadowed region.
694  *
695  * Returns:
696  * 0 if GuC is not present or not in use.
697  * Otherwise, the GuC WOPCM size.
698  */
699 u32 intel_guc_reserved_gtt_size(struct intel_guc *guc)
700 {
701         return guc_to_i915(guc)->wopcm.guc.size;
702 }