drm/i915/guc: Support for extended GuC notification messages
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_guc.c
1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include "intel_guc.h"
26 #include "intel_guc_ads.h"
27 #include "intel_guc_submission.h"
28 #include "i915_drv.h"
29
30 static void gen8_guc_raise_irq(struct intel_guc *guc)
31 {
32         struct drm_i915_private *dev_priv = guc_to_i915(guc);
33
34         I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
35 }
36
37 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
38 {
39         GEM_BUG_ON(!guc->send_regs.base);
40         GEM_BUG_ON(!guc->send_regs.count);
41         GEM_BUG_ON(i >= guc->send_regs.count);
42
43         return _MMIO(guc->send_regs.base + 4 * i);
44 }
45
46 void intel_guc_init_send_regs(struct intel_guc *guc)
47 {
48         struct drm_i915_private *dev_priv = guc_to_i915(guc);
49         enum forcewake_domains fw_domains = 0;
50         unsigned int i;
51
52         guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
53         guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
54         BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
55
56         for (i = 0; i < guc->send_regs.count; i++) {
57                 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
58                                         guc_send_reg(guc, i),
59                                         FW_REG_READ | FW_REG_WRITE);
60         }
61         guc->send_regs.fw_domains = fw_domains;
62 }
63
64 void intel_guc_init_early(struct intel_guc *guc)
65 {
66         intel_guc_fw_init_early(guc);
67         intel_guc_ct_init_early(&guc->ct);
68         intel_guc_log_init_early(&guc->log);
69
70         mutex_init(&guc->send_mutex);
71         spin_lock_init(&guc->irq_lock);
72         guc->send = intel_guc_send_nop;
73         guc->handler = intel_guc_to_host_event_handler_nop;
74         guc->notify = gen8_guc_raise_irq;
75 }
76
77 static int guc_init_wq(struct intel_guc *guc)
78 {
79         struct drm_i915_private *dev_priv = guc_to_i915(guc);
80
81         /*
82          * GuC log buffer flush work item has to do register access to
83          * send the ack to GuC and this work item, if not synced before
84          * suspend, can potentially get executed after the GFX device is
85          * suspended.
86          * By marking the WQ as freezable, we don't have to bother about
87          * flushing of this work item from the suspend hooks, the pending
88          * work item if any will be either executed before the suspend
89          * or scheduled later on resume. This way the handling of work
90          * item can be kept same between system suspend & rpm suspend.
91          */
92         guc->log.relay.flush_wq =
93                 alloc_ordered_workqueue("i915-guc_log",
94                                         WQ_HIGHPRI | WQ_FREEZABLE);
95         if (!guc->log.relay.flush_wq) {
96                 DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
97                 return -ENOMEM;
98         }
99
100         /*
101          * Even though both sending GuC action, and adding a new workitem to
102          * GuC workqueue are serialized (each with its own locking), since
103          * we're using mutliple engines, it's possible that we're going to
104          * issue a preempt request with two (or more - each for different
105          * engine) workitems in GuC queue. In this situation, GuC may submit
106          * all of them, which will make us very confused.
107          * Our preemption contexts may even already be complete - before we
108          * even had the chance to sent the preempt action to GuC!. Rather
109          * than introducing yet another lock, we can just use ordered workqueue
110          * to make sure we're always sending a single preemption request with a
111          * single workitem.
112          */
113         if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
114             USES_GUC_SUBMISSION(dev_priv)) {
115                 guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
116                                                           WQ_HIGHPRI);
117                 if (!guc->preempt_wq) {
118                         destroy_workqueue(guc->log.relay.flush_wq);
119                         DRM_ERROR("Couldn't allocate workqueue for GuC "
120                                   "preemption\n");
121                         return -ENOMEM;
122                 }
123         }
124
125         return 0;
126 }
127
128 static void guc_fini_wq(struct intel_guc *guc)
129 {
130         struct workqueue_struct *wq;
131
132         wq = fetch_and_zero(&guc->preempt_wq);
133         if (wq)
134                 destroy_workqueue(wq);
135
136         wq = fetch_and_zero(&guc->log.relay.flush_wq);
137         if (wq)
138                 destroy_workqueue(wq);
139 }
140
141 int intel_guc_init_misc(struct intel_guc *guc)
142 {
143         struct drm_i915_private *i915 = guc_to_i915(guc);
144         int ret;
145
146         ret = guc_init_wq(guc);
147         if (ret)
148                 return ret;
149
150         intel_uc_fw_fetch(i915, &guc->fw);
151
152         return 0;
153 }
154
155 void intel_guc_fini_misc(struct intel_guc *guc)
156 {
157         intel_uc_fw_fini(&guc->fw);
158         guc_fini_wq(guc);
159 }
160
161 static int guc_shared_data_create(struct intel_guc *guc)
162 {
163         struct i915_vma *vma;
164         void *vaddr;
165
166         vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
167         if (IS_ERR(vma))
168                 return PTR_ERR(vma);
169
170         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
171         if (IS_ERR(vaddr)) {
172                 i915_vma_unpin_and_release(&vma, 0);
173                 return PTR_ERR(vaddr);
174         }
175
176         guc->shared_data = vma;
177         guc->shared_data_vaddr = vaddr;
178
179         return 0;
180 }
181
182 static void guc_shared_data_destroy(struct intel_guc *guc)
183 {
184         i915_vma_unpin_and_release(&guc->shared_data, I915_VMA_RELEASE_MAP);
185 }
186
187 int intel_guc_init(struct intel_guc *guc)
188 {
189         struct drm_i915_private *dev_priv = guc_to_i915(guc);
190         int ret;
191
192         ret = guc_shared_data_create(guc);
193         if (ret)
194                 goto err_fetch;
195         GEM_BUG_ON(!guc->shared_data);
196
197         ret = intel_guc_log_create(&guc->log);
198         if (ret)
199                 goto err_shared;
200
201         ret = intel_guc_ads_create(guc);
202         if (ret)
203                 goto err_log;
204         GEM_BUG_ON(!guc->ads_vma);
205
206         if (HAS_GUC_CT(dev_priv)) {
207                 ret = intel_guc_ct_init(&guc->ct);
208                 if (ret)
209                         goto err_ads;
210         }
211
212         /* We need to notify the guc whenever we change the GGTT */
213         i915_ggtt_enable_guc(dev_priv);
214
215         return 0;
216
217 err_ads:
218         intel_guc_ads_destroy(guc);
219 err_log:
220         intel_guc_log_destroy(&guc->log);
221 err_shared:
222         guc_shared_data_destroy(guc);
223 err_fetch:
224         intel_uc_fw_fini(&guc->fw);
225         return ret;
226 }
227
228 void intel_guc_fini(struct intel_guc *guc)
229 {
230         struct drm_i915_private *dev_priv = guc_to_i915(guc);
231
232         i915_ggtt_disable_guc(dev_priv);
233
234         if (HAS_GUC_CT(dev_priv))
235                 intel_guc_ct_fini(&guc->ct);
236
237         intel_guc_ads_destroy(guc);
238         intel_guc_log_destroy(&guc->log);
239         guc_shared_data_destroy(guc);
240         intel_uc_fw_fini(&guc->fw);
241 }
242
243 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
244 {
245         u32 level = intel_guc_log_get_level(&guc->log);
246         u32 flags;
247         u32 ads;
248
249         ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
250         flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED;
251
252         if (!GUC_LOG_LEVEL_IS_ENABLED(level))
253                 flags |= GUC_LOG_DEFAULT_DISABLED;
254
255         if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
256                 flags |= GUC_LOG_DISABLED;
257         else
258                 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
259                          GUC_LOG_VERBOSITY_SHIFT;
260
261         return flags;
262 }
263
264 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
265 {
266         u32 flags = 0;
267
268         flags |=  GUC_CTL_VCS2_ENABLED;
269
270         if (USES_GUC_SUBMISSION(guc_to_i915(guc)))
271                 flags |= GUC_CTL_KERNEL_SUBMISSIONS;
272         else
273                 flags |= GUC_CTL_DISABLE_SCHEDULER;
274
275         return flags;
276 }
277
278 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
279 {
280         u32 flags = 0;
281
282         if (USES_GUC_SUBMISSION(guc_to_i915(guc))) {
283                 u32 ctxnum, base;
284
285                 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
286                 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
287
288                 base >>= PAGE_SHIFT;
289                 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
290                         (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
291         }
292         return flags;
293 }
294
295 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
296 {
297         u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
298         u32 flags;
299
300         #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
301         #define UNIT SZ_1M
302         #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
303         #else
304         #define UNIT SZ_4K
305         #define FLAG 0
306         #endif
307
308         BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
309         BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
310         BUILD_BUG_ON(!DPC_BUFFER_SIZE);
311         BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
312         BUILD_BUG_ON(!ISR_BUFFER_SIZE);
313         BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
314
315         BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
316                         (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
317         BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
318                         (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
319         BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
320                         (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
321
322         flags = GUC_LOG_VALID |
323                 GUC_LOG_NOTIFY_ON_HALF_FULL |
324                 FLAG |
325                 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
326                 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
327                 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
328                 (offset << GUC_LOG_BUF_ADDR_SHIFT);
329
330         #undef UNIT
331         #undef FLAG
332
333         return flags;
334 }
335
336 /*
337  * Initialise the GuC parameter block before starting the firmware
338  * transfer. These parameters are read by the firmware on startup
339  * and cannot be changed thereafter.
340  */
341 void intel_guc_init_params(struct intel_guc *guc)
342 {
343         struct drm_i915_private *dev_priv = guc_to_i915(guc);
344         u32 params[GUC_CTL_MAX_DWORDS];
345         int i;
346
347         memset(params, 0, sizeof(params));
348
349         /*
350          * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
351          * second. This ARAR is calculated by:
352          * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
353          */
354         params[GUC_CTL_ARAT_HIGH] = 0;
355         params[GUC_CTL_ARAT_LOW] = 100000000;
356
357         params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;
358
359         params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
360         params[GUC_CTL_LOG_PARAMS]  = guc_ctl_log_params_flags(guc);
361         params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
362         params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
363
364         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
365                 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
366
367         /*
368          * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
369          * they are power context saved so it's ok to release forcewake
370          * when we are done here and take it again at xfer time.
371          */
372         intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_BLITTER);
373
374         I915_WRITE(SOFT_SCRATCH(0), 0);
375
376         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
377                 I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);
378
379         intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_BLITTER);
380 }
381
382 int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
383                        u32 *response_buf, u32 response_buf_size)
384 {
385         WARN(1, "Unexpected send: action=%#x\n", *action);
386         return -ENODEV;
387 }
388
389 void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
390 {
391         WARN(1, "Unexpected event: no suitable handler\n");
392 }
393
394 /*
395  * This function implements the MMIO based host to GuC interface.
396  */
397 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
398                         u32 *response_buf, u32 response_buf_size)
399 {
400         struct drm_i915_private *dev_priv = guc_to_i915(guc);
401         u32 status;
402         int i;
403         int ret;
404
405         GEM_BUG_ON(!len);
406         GEM_BUG_ON(len > guc->send_regs.count);
407
408         /* We expect only action code */
409         GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
410
411         /* If CT is available, we expect to use MMIO only during init/fini */
412         GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
413                 *action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
414                 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
415
416         mutex_lock(&guc->send_mutex);
417         intel_uncore_forcewake_get(&dev_priv->uncore, guc->send_regs.fw_domains);
418
419         for (i = 0; i < len; i++)
420                 I915_WRITE(guc_send_reg(guc, i), action[i]);
421
422         POSTING_READ(guc_send_reg(guc, i - 1));
423
424         intel_guc_notify(guc);
425
426         /*
427          * No GuC command should ever take longer than 10ms.
428          * Fast commands should still complete in 10us.
429          */
430         ret = __intel_wait_for_register_fw(dev_priv,
431                                            guc_send_reg(guc, 0),
432                                            INTEL_GUC_MSG_TYPE_MASK,
433                                            INTEL_GUC_MSG_TYPE_RESPONSE <<
434                                            INTEL_GUC_MSG_TYPE_SHIFT,
435                                            10, 10, &status);
436         /* If GuC explicitly returned an error, convert it to -EIO */
437         if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
438                 ret = -EIO;
439
440         if (ret) {
441                 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
442                           action[0], ret, status);
443                 goto out;
444         }
445
446         if (response_buf) {
447                 int count = min(response_buf_size, guc->send_regs.count - 1);
448
449                 for (i = 0; i < count; i++)
450                         response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
451         }
452
453         /* Use data from the GuC response as our return value */
454         ret = INTEL_GUC_MSG_TO_DATA(status);
455
456 out:
457         intel_uncore_forcewake_put(&dev_priv->uncore, guc->send_regs.fw_domains);
458         mutex_unlock(&guc->send_mutex);
459
460         return ret;
461 }
462
463 void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
464 {
465         struct drm_i915_private *dev_priv = guc_to_i915(guc);
466         u32 msg, val;
467
468         /*
469          * Sample the log buffer flush related bits & clear them out now
470          * itself from the message identity register to minimize the
471          * probability of losing a flush interrupt, when there are back
472          * to back flush interrupts.
473          * There can be a new flush interrupt, for different log buffer
474          * type (like for ISR), whilst Host is handling one (for DPC).
475          * Since same bit is used in message register for ISR & DPC, it
476          * could happen that GuC sets the bit for 2nd interrupt but Host
477          * clears out the bit on handling the 1st interrupt.
478          */
479         disable_rpm_wakeref_asserts(dev_priv);
480         spin_lock(&guc->irq_lock);
481         val = I915_READ(SOFT_SCRATCH(15));
482         msg = val & guc->msg_enabled_mask;
483         I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
484         spin_unlock(&guc->irq_lock);
485         enable_rpm_wakeref_asserts(dev_priv);
486
487         intel_guc_to_host_process_recv_msg(guc, &msg, 1);
488 }
489
490 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
491                                        const u32 *payload, u32 len)
492 {
493         u32 msg;
494
495         if (unlikely(!len))
496                 return -EPROTO;
497
498         /* Make sure to handle only enabled messages */
499         msg = payload[0] & guc->msg_enabled_mask;
500
501         if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
502                    INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
503                 intel_guc_log_handle_flush_event(&guc->log);
504
505         return 0;
506 }
507
508 int intel_guc_sample_forcewake(struct intel_guc *guc)
509 {
510         struct drm_i915_private *dev_priv = guc_to_i915(guc);
511         u32 action[2];
512
513         action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
514         /* WaRsDisableCoarsePowerGating:skl,cnl */
515         if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
516                 action[1] = 0;
517         else
518                 /* bit 0 and 1 are for Render and Media domain separately */
519                 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
520
521         return intel_guc_send(guc, action, ARRAY_SIZE(action));
522 }
523
524 /**
525  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
526  * @guc: intel_guc structure
527  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
528  *
529  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
530  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
531  * intel_huc_auth().
532  *
533  * Return:      non-zero code on error
534  */
535 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
536 {
537         u32 action[] = {
538                 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
539                 rsa_offset
540         };
541
542         return intel_guc_send(guc, action, ARRAY_SIZE(action));
543 }
544
545 /*
546  * The ENTER/EXIT_S_STATE actions queue the save/restore operation in GuC FW and
547  * then return, so waiting on the H2G is not enough to guarantee GuC is done.
548  * When all the processing is done, GuC writes INTEL_GUC_SLEEP_STATE_SUCCESS to
549  * scratch register 14, so we can poll on that. Note that GuC does not ensure
550  * that the value in the register is different from
551  * INTEL_GUC_SLEEP_STATE_SUCCESS while the action is in progress so we need to
552  * take care of that ourselves as well.
553  */
554 static int guc_sleep_state_action(struct intel_guc *guc,
555                                   const u32 *action, u32 len)
556 {
557         struct drm_i915_private *dev_priv = guc_to_i915(guc);
558         int ret;
559         u32 status;
560
561         I915_WRITE(SOFT_SCRATCH(14), INTEL_GUC_SLEEP_STATE_INVALID_MASK);
562
563         ret = intel_guc_send(guc, action, len);
564         if (ret)
565                 return ret;
566
567         ret = __intel_wait_for_register(dev_priv, SOFT_SCRATCH(14),
568                                         INTEL_GUC_SLEEP_STATE_INVALID_MASK,
569                                         0, 0, 10, &status);
570         if (ret)
571                 return ret;
572
573         if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
574                 DRM_ERROR("GuC failed to change sleep state. "
575                           "action=0x%x, err=%u\n",
576                           action[0], status);
577                 return -EIO;
578         }
579
580         return 0;
581 }
582
583 /**
584  * intel_guc_suspend() - notify GuC entering suspend state
585  * @guc:        the guc
586  */
587 int intel_guc_suspend(struct intel_guc *guc)
588 {
589         u32 data[] = {
590                 INTEL_GUC_ACTION_ENTER_S_STATE,
591                 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
592                 intel_guc_ggtt_offset(guc, guc->shared_data)
593         };
594
595         return guc_sleep_state_action(guc, data, ARRAY_SIZE(data));
596 }
597
598 /**
599  * intel_guc_reset_engine() - ask GuC to reset an engine
600  * @guc:        intel_guc structure
601  * @engine:     engine to be reset
602  */
603 int intel_guc_reset_engine(struct intel_guc *guc,
604                            struct intel_engine_cs *engine)
605 {
606         u32 data[7];
607
608         GEM_BUG_ON(!guc->execbuf_client);
609
610         data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
611         data[1] = engine->guc_id;
612         data[2] = 0;
613         data[3] = 0;
614         data[4] = 0;
615         data[5] = guc->execbuf_client->stage_id;
616         data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
617
618         return intel_guc_send(guc, data, ARRAY_SIZE(data));
619 }
620
621 /**
622  * intel_guc_resume() - notify GuC resuming from suspend state
623  * @guc:        the guc
624  */
625 int intel_guc_resume(struct intel_guc *guc)
626 {
627         u32 data[] = {
628                 INTEL_GUC_ACTION_EXIT_S_STATE,
629                 GUC_POWER_D0,
630                 intel_guc_ggtt_offset(guc, guc->shared_data)
631         };
632
633         return guc_sleep_state_action(guc, data, ARRAY_SIZE(data));
634 }
635
636 /**
637  * DOC: GuC Address Space
638  *
639  * The layout of GuC address space is shown below:
640  *
641  * ::
642  *
643  *     +===========> +====================+ <== FFFF_FFFF
644  *     ^             |      Reserved      |
645  *     |             +====================+ <== GUC_GGTT_TOP
646  *     |             |                    |
647  *     |             |        DRAM        |
648  *    GuC            |                    |
649  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
650  *   Space     ^     |                    |
651  *     |       |     |                    |
652  *     |      GuC    |        GuC         |
653  *     |     WOPCM   |       WOPCM        |
654  *     |      Size   |                    |
655  *     |       |     |                    |
656  *     v       v     |                    |
657  *     +=======+===> +====================+ <== 0000_0000
658  *
659  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
660  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
661  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
662  */
663
664 /**
665  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
666  * @guc:        the guc
667  * @size:       size of area to allocate (both virtual space and memory)
668  *
669  * This is a wrapper to create an object for use with the GuC. In order to
670  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
671  * both some backing storage and a range inside the Global GTT. We must pin
672  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
673  * range is reserved inside GuC.
674  *
675  * Return:      A i915_vma if successful, otherwise an ERR_PTR.
676  */
677 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
678 {
679         struct drm_i915_private *dev_priv = guc_to_i915(guc);
680         struct drm_i915_gem_object *obj;
681         struct i915_vma *vma;
682         u64 flags;
683         int ret;
684
685         obj = i915_gem_object_create(dev_priv, size);
686         if (IS_ERR(obj))
687                 return ERR_CAST(obj);
688
689         vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL);
690         if (IS_ERR(vma))
691                 goto err;
692
693         flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
694         ret = i915_vma_pin(vma, 0, 0, flags);
695         if (ret) {
696                 vma = ERR_PTR(ret);
697                 goto err;
698         }
699
700         return vma;
701
702 err:
703         i915_gem_object_put(obj);
704         return vma;
705 }
706
707 /**
708  * intel_guc_reserved_gtt_size()
709  * @guc:        intel_guc structure
710  *
711  * The GuC WOPCM mapping shadows the lower part of the GGTT, so if we are using
712  * GuC we can't have any objects pinned in that region. This function returns
713  * the size of the shadowed region.
714  *
715  * Returns:
716  * 0 if GuC is not present or not in use.
717  * Otherwise, the GuC WOPCM size.
718  */
719 u32 intel_guc_reserved_gtt_size(struct intel_guc *guc)
720 {
721         return guc_to_i915(guc)->wopcm.guc.size;
722 }