netfilter: netns: shrink netns_ct struct
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_engine_cs.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "i915_drv.h"
28 #include "intel_ringbuffer.h"
29 #include "intel_lrc.h"
30
31 /* Haswell does have the CXT_SIZE register however it does not appear to be
32  * valid. Now, docs explain in dwords what is in the context object. The full
33  * size is 70720 bytes, however, the power context and execlist context will
34  * never be saved (power context is stored elsewhere, and execlists don't work
35  * on HSW) - so the final size, including the extra state required for the
36  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
37  */
38 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
39
40 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
41 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
42 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
43 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
44 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
45
46 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
47
48 struct engine_class_info {
49         const char *name;
50         int (*init_legacy)(struct intel_engine_cs *engine);
51         int (*init_execlists)(struct intel_engine_cs *engine);
52
53         u8 uabi_class;
54 };
55
56 static const struct engine_class_info intel_engine_classes[] = {
57         [RENDER_CLASS] = {
58                 .name = "rcs",
59                 .init_execlists = logical_render_ring_init,
60                 .init_legacy = intel_init_render_ring_buffer,
61                 .uabi_class = I915_ENGINE_CLASS_RENDER,
62         },
63         [COPY_ENGINE_CLASS] = {
64                 .name = "bcs",
65                 .init_execlists = logical_xcs_ring_init,
66                 .init_legacy = intel_init_blt_ring_buffer,
67                 .uabi_class = I915_ENGINE_CLASS_COPY,
68         },
69         [VIDEO_DECODE_CLASS] = {
70                 .name = "vcs",
71                 .init_execlists = logical_xcs_ring_init,
72                 .init_legacy = intel_init_bsd_ring_buffer,
73                 .uabi_class = I915_ENGINE_CLASS_VIDEO,
74         },
75         [VIDEO_ENHANCEMENT_CLASS] = {
76                 .name = "vecs",
77                 .init_execlists = logical_xcs_ring_init,
78                 .init_legacy = intel_init_vebox_ring_buffer,
79                 .uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80         },
81 };
82
83 #define MAX_MMIO_BASES 3
84 struct engine_info {
85         unsigned int hw_id;
86         unsigned int uabi_id;
87         u8 class;
88         u8 instance;
89         /* mmio bases table *must* be sorted in reverse gen order */
90         struct engine_mmio_base {
91                 u32 gen : 8;
92                 u32 base : 24;
93         } mmio_bases[MAX_MMIO_BASES];
94 };
95
96 static const struct engine_info intel_engines[] = {
97         [RCS] = {
98                 .hw_id = RCS_HW,
99                 .uabi_id = I915_EXEC_RENDER,
100                 .class = RENDER_CLASS,
101                 .instance = 0,
102                 .mmio_bases = {
103                         { .gen = 1, .base = RENDER_RING_BASE }
104                 },
105         },
106         [BCS] = {
107                 .hw_id = BCS_HW,
108                 .uabi_id = I915_EXEC_BLT,
109                 .class = COPY_ENGINE_CLASS,
110                 .instance = 0,
111                 .mmio_bases = {
112                         { .gen = 6, .base = BLT_RING_BASE }
113                 },
114         },
115         [VCS] = {
116                 .hw_id = VCS_HW,
117                 .uabi_id = I915_EXEC_BSD,
118                 .class = VIDEO_DECODE_CLASS,
119                 .instance = 0,
120                 .mmio_bases = {
121                         { .gen = 11, .base = GEN11_BSD_RING_BASE },
122                         { .gen = 6, .base = GEN6_BSD_RING_BASE },
123                         { .gen = 4, .base = BSD_RING_BASE }
124                 },
125         },
126         [VCS2] = {
127                 .hw_id = VCS2_HW,
128                 .uabi_id = I915_EXEC_BSD,
129                 .class = VIDEO_DECODE_CLASS,
130                 .instance = 1,
131                 .mmio_bases = {
132                         { .gen = 11, .base = GEN11_BSD2_RING_BASE },
133                         { .gen = 8, .base = GEN8_BSD2_RING_BASE }
134                 },
135         },
136         [VCS3] = {
137                 .hw_id = VCS3_HW,
138                 .uabi_id = I915_EXEC_BSD,
139                 .class = VIDEO_DECODE_CLASS,
140                 .instance = 2,
141                 .mmio_bases = {
142                         { .gen = 11, .base = GEN11_BSD3_RING_BASE }
143                 },
144         },
145         [VCS4] = {
146                 .hw_id = VCS4_HW,
147                 .uabi_id = I915_EXEC_BSD,
148                 .class = VIDEO_DECODE_CLASS,
149                 .instance = 3,
150                 .mmio_bases = {
151                         { .gen = 11, .base = GEN11_BSD4_RING_BASE }
152                 },
153         },
154         [VECS] = {
155                 .hw_id = VECS_HW,
156                 .uabi_id = I915_EXEC_VEBOX,
157                 .class = VIDEO_ENHANCEMENT_CLASS,
158                 .instance = 0,
159                 .mmio_bases = {
160                         { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
161                         { .gen = 7, .base = VEBOX_RING_BASE }
162                 },
163         },
164         [VECS2] = {
165                 .hw_id = VECS2_HW,
166                 .uabi_id = I915_EXEC_VEBOX,
167                 .class = VIDEO_ENHANCEMENT_CLASS,
168                 .instance = 1,
169                 .mmio_bases = {
170                         { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
171                 },
172         },
173 };
174
175 /**
176  * ___intel_engine_context_size() - return the size of the context for an engine
177  * @dev_priv: i915 device private
178  * @class: engine class
179  *
180  * Each engine class may require a different amount of space for a context
181  * image.
182  *
183  * Return: size (in bytes) of an engine class specific context image
184  *
185  * Note: this size includes the HWSP, which is part of the context image
186  * in LRC mode, but does not include the "shared data page" used with
187  * GuC submission. The caller should account for this if using the GuC.
188  */
189 static u32
190 __intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
191 {
192         u32 cxt_size;
193
194         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
195
196         switch (class) {
197         case RENDER_CLASS:
198                 switch (INTEL_GEN(dev_priv)) {
199                 default:
200                         MISSING_CASE(INTEL_GEN(dev_priv));
201                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202                 case 11:
203                         return GEN11_LR_CONTEXT_RENDER_SIZE;
204                 case 10:
205                         return GEN10_LR_CONTEXT_RENDER_SIZE;
206                 case 9:
207                         return GEN9_LR_CONTEXT_RENDER_SIZE;
208                 case 8:
209                         return GEN8_LR_CONTEXT_RENDER_SIZE;
210                 case 7:
211                         if (IS_HASWELL(dev_priv))
212                                 return HSW_CXT_TOTAL_SIZE;
213
214                         cxt_size = I915_READ(GEN7_CXT_SIZE);
215                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
216                                         PAGE_SIZE);
217                 case 6:
218                         cxt_size = I915_READ(CXT_SIZE);
219                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
220                                         PAGE_SIZE);
221                 case 5:
222                 case 4:
223                 case 3:
224                 case 2:
225                 /* For the special day when i810 gets merged. */
226                 case 1:
227                         return 0;
228                 }
229                 break;
230         default:
231                 MISSING_CASE(class);
232                 /* fall through */
233         case VIDEO_DECODE_CLASS:
234         case VIDEO_ENHANCEMENT_CLASS:
235         case COPY_ENGINE_CLASS:
236                 if (INTEL_GEN(dev_priv) < 8)
237                         return 0;
238                 return GEN8_LR_CONTEXT_OTHER_SIZE;
239         }
240 }
241
242 static u32 __engine_mmio_base(struct drm_i915_private *i915,
243                               const struct engine_mmio_base *bases)
244 {
245         int i;
246
247         for (i = 0; i < MAX_MMIO_BASES; i++)
248                 if (INTEL_GEN(i915) >= bases[i].gen)
249                         break;
250
251         GEM_BUG_ON(i == MAX_MMIO_BASES);
252         GEM_BUG_ON(!bases[i].base);
253
254         return bases[i].base;
255 }
256
257 static void __sprint_engine_name(char *name, const struct engine_info *info)
258 {
259         WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
260                          intel_engine_classes[info->class].name,
261                          info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
262 }
263
264 static int
265 intel_engine_setup(struct drm_i915_private *dev_priv,
266                    enum intel_engine_id id)
267 {
268         const struct engine_info *info = &intel_engines[id];
269         struct intel_engine_cs *engine;
270
271         GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));
272
273         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
274         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
275
276         if (GEM_WARN_ON(info->class > MAX_ENGINE_CLASS))
277                 return -EINVAL;
278
279         if (GEM_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280                 return -EINVAL;
281
282         if (GEM_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
283                 return -EINVAL;
284
285         GEM_BUG_ON(dev_priv->engine[id]);
286         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
287         if (!engine)
288                 return -ENOMEM;
289
290         engine->id = id;
291         engine->i915 = dev_priv;
292         __sprint_engine_name(engine->name, info);
293         engine->hw_id = engine->guc_id = info->hw_id;
294         engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295         engine->class = info->class;
296         engine->instance = info->instance;
297
298         engine->uabi_id = info->uabi_id;
299         engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300
301         engine->context_size = __intel_engine_context_size(dev_priv,
302                                                            engine->class);
303         if (WARN_ON(engine->context_size > BIT(20)))
304                 engine->context_size = 0;
305         if (engine->context_size)
306                 DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
307
308         /* Nothing to do here, execute in order of dependencies */
309         engine->schedule = NULL;
310
311         seqlock_init(&engine->stats.lock);
312
313         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
314
315         dev_priv->engine_class[info->class][info->instance] = engine;
316         dev_priv->engine[id] = engine;
317         return 0;
318 }
319
320 /**
321  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
322  * @dev_priv: i915 device private
323  *
324  * Return: non-zero if the initialization failed.
325  */
326 int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
327 {
328         struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
329         const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
330         struct intel_engine_cs *engine;
331         enum intel_engine_id id;
332         unsigned int mask = 0;
333         unsigned int i;
334         int err;
335
336         WARN_ON(ring_mask == 0);
337         WARN_ON(ring_mask &
338                 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
339
340         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
341                 if (!HAS_ENGINE(dev_priv, i))
342                         continue;
343
344                 err = intel_engine_setup(dev_priv, i);
345                 if (err)
346                         goto cleanup;
347
348                 mask |= ENGINE_MASK(i);
349         }
350
351         /*
352          * Catch failures to update intel_engines table when the new engines
353          * are added to the driver by a warning and disabling the forgotten
354          * engines.
355          */
356         if (WARN_ON(mask != ring_mask))
357                 device_info->ring_mask = mask;
358
359         /* We always presume we have at least RCS available for later probing */
360         if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
361                 err = -ENODEV;
362                 goto cleanup;
363         }
364
365         device_info->num_rings = hweight32(mask);
366
367         i915_check_and_clear_faults(dev_priv);
368
369         return 0;
370
371 cleanup:
372         for_each_engine(engine, dev_priv, id)
373                 kfree(engine);
374         return err;
375 }
376
377 /**
378  * intel_engines_init() - init the Engine Command Streamers
379  * @dev_priv: i915 device private
380  *
381  * Return: non-zero if the initialization failed.
382  */
383 int intel_engines_init(struct drm_i915_private *dev_priv)
384 {
385         struct intel_engine_cs *engine;
386         enum intel_engine_id id, err_id;
387         int err;
388
389         for_each_engine(engine, dev_priv, id) {
390                 const struct engine_class_info *class_info =
391                         &intel_engine_classes[engine->class];
392                 int (*init)(struct intel_engine_cs *engine);
393
394                 if (HAS_EXECLISTS(dev_priv))
395                         init = class_info->init_execlists;
396                 else
397                         init = class_info->init_legacy;
398
399                 err = -EINVAL;
400                 err_id = id;
401
402                 if (GEM_WARN_ON(!init))
403                         goto cleanup;
404
405                 err = init(engine);
406                 if (err)
407                         goto cleanup;
408
409                 GEM_BUG_ON(!engine->submit_request);
410         }
411
412         return 0;
413
414 cleanup:
415         for_each_engine(engine, dev_priv, id) {
416                 if (id >= err_id) {
417                         kfree(engine);
418                         dev_priv->engine[id] = NULL;
419                 } else {
420                         dev_priv->gt.cleanup_engine(engine);
421                 }
422         }
423         return err;
424 }
425
426 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
427 {
428         struct drm_i915_private *dev_priv = engine->i915;
429
430         /* Our semaphore implementation is strictly monotonic (i.e. we proceed
431          * so long as the semaphore value in the register/page is greater
432          * than the sync value), so whenever we reset the seqno,
433          * so long as we reset the tracking semaphore value to 0, it will
434          * always be before the next request's seqno. If we don't reset
435          * the semaphore value, then when the seqno moves backwards all
436          * future waits will complete instantly (causing rendering corruption).
437          */
438         if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
439                 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
440                 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
441                 if (HAS_VEBOX(dev_priv))
442                         I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
443         }
444
445         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
446         clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
447
448         /* After manually advancing the seqno, fake the interrupt in case
449          * there are any waiters for that seqno.
450          */
451         intel_engine_wakeup(engine);
452
453         GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
454 }
455
456 static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
457 {
458         i915_gem_batch_pool_init(&engine->batch_pool, engine);
459 }
460
461 static void intel_engine_init_execlist(struct intel_engine_cs *engine)
462 {
463         struct intel_engine_execlists * const execlists = &engine->execlists;
464
465         execlists->port_mask = 1;
466         BUILD_BUG_ON_NOT_POWER_OF_2(execlists_num_ports(execlists));
467         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
468
469         execlists->queue_priority = INT_MIN;
470         execlists->queue = RB_ROOT_CACHED;
471 }
472
473 /**
474  * intel_engines_setup_common - setup engine state not requiring hw access
475  * @engine: Engine to setup.
476  *
477  * Initializes @engine@ structure members shared between legacy and execlists
478  * submission modes which do not require hardware access.
479  *
480  * Typically done early in the submission mode specific engine setup stage.
481  */
482 void intel_engine_setup_common(struct intel_engine_cs *engine)
483 {
484         i915_timeline_init(engine->i915, &engine->timeline, engine->name);
485         lockdep_set_subclass(&engine->timeline.lock, TIMELINE_ENGINE);
486
487         intel_engine_init_execlist(engine);
488         intel_engine_init_hangcheck(engine);
489         intel_engine_init_batch_pool(engine);
490         intel_engine_init_cmd_parser(engine);
491 }
492
493 int intel_engine_create_scratch(struct intel_engine_cs *engine,
494                                 unsigned int size)
495 {
496         struct drm_i915_gem_object *obj;
497         struct i915_vma *vma;
498         int ret;
499
500         WARN_ON(engine->scratch);
501
502         obj = i915_gem_object_create_stolen(engine->i915, size);
503         if (!obj)
504                 obj = i915_gem_object_create_internal(engine->i915, size);
505         if (IS_ERR(obj)) {
506                 DRM_ERROR("Failed to allocate scratch page\n");
507                 return PTR_ERR(obj);
508         }
509
510         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
511         if (IS_ERR(vma)) {
512                 ret = PTR_ERR(vma);
513                 goto err_unref;
514         }
515
516         ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
517         if (ret)
518                 goto err_unref;
519
520         engine->scratch = vma;
521         return 0;
522
523 err_unref:
524         i915_gem_object_put(obj);
525         return ret;
526 }
527
528 void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
529 {
530         i915_vma_unpin_and_release(&engine->scratch, 0);
531 }
532
533 static void cleanup_status_page(struct intel_engine_cs *engine)
534 {
535         if (HWS_NEEDS_PHYSICAL(engine->i915)) {
536                 void *addr = fetch_and_zero(&engine->status_page.page_addr);
537
538                 __free_page(virt_to_page(addr));
539         }
540
541         i915_vma_unpin_and_release(&engine->status_page.vma,
542                                    I915_VMA_RELEASE_MAP);
543 }
544
545 static int init_status_page(struct intel_engine_cs *engine)
546 {
547         struct drm_i915_gem_object *obj;
548         struct i915_vma *vma;
549         unsigned int flags;
550         void *vaddr;
551         int ret;
552
553         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
554         if (IS_ERR(obj)) {
555                 DRM_ERROR("Failed to allocate status page\n");
556                 return PTR_ERR(obj);
557         }
558
559         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
560         if (ret)
561                 goto err;
562
563         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
564         if (IS_ERR(vma)) {
565                 ret = PTR_ERR(vma);
566                 goto err;
567         }
568
569         flags = PIN_GLOBAL;
570         if (!HAS_LLC(engine->i915))
571                 /* On g33, we cannot place HWS above 256MiB, so
572                  * restrict its pinning to the low mappable arena.
573                  * Though this restriction is not documented for
574                  * gen4, gen5, or byt, they also behave similarly
575                  * and hang if the HWS is placed at the top of the
576                  * GTT. To generalise, it appears that all !llc
577                  * platforms have issues with us placing the HWS
578                  * above the mappable region (even though we never
579                  * actually map it).
580                  */
581                 flags |= PIN_MAPPABLE;
582         else
583                 flags |= PIN_HIGH;
584         ret = i915_vma_pin(vma, 0, 0, flags);
585         if (ret)
586                 goto err;
587
588         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
589         if (IS_ERR(vaddr)) {
590                 ret = PTR_ERR(vaddr);
591                 goto err_unpin;
592         }
593
594         engine->status_page.vma = vma;
595         engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
596         engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
597         return 0;
598
599 err_unpin:
600         i915_vma_unpin(vma);
601 err:
602         i915_gem_object_put(obj);
603         return ret;
604 }
605
606 static int init_phys_status_page(struct intel_engine_cs *engine)
607 {
608         struct page *page;
609
610         /*
611          * Though the HWS register does support 36bit addresses, historically
612          * we have had hangs and corruption reported due to wild writes if
613          * the HWS is placed above 4G.
614          */
615         page = alloc_page(GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO);
616         if (!page)
617                 return -ENOMEM;
618
619         engine->status_page.page_addr = page_address(page);
620
621         return 0;
622 }
623
624 static void __intel_context_unpin(struct i915_gem_context *ctx,
625                                   struct intel_engine_cs *engine)
626 {
627         intel_context_unpin(to_intel_context(ctx, engine));
628 }
629
630 /**
631  * intel_engines_init_common - initialize cengine state which might require hw access
632  * @engine: Engine to initialize.
633  *
634  * Initializes @engine@ structure members shared between legacy and execlists
635  * submission modes which do require hardware access.
636  *
637  * Typcally done at later stages of submission mode specific engine setup.
638  *
639  * Returns zero on success or an error code on failure.
640  */
641 int intel_engine_init_common(struct intel_engine_cs *engine)
642 {
643         struct drm_i915_private *i915 = engine->i915;
644         struct intel_context *ce;
645         int ret;
646
647         engine->set_default_submission(engine);
648
649         /* We may need to do things with the shrinker which
650          * require us to immediately switch back to the default
651          * context. This can cause a problem as pinning the
652          * default context also requires GTT space which may not
653          * be available. To avoid this we always pin the default
654          * context.
655          */
656         ce = intel_context_pin(i915->kernel_context, engine);
657         if (IS_ERR(ce))
658                 return PTR_ERR(ce);
659
660         /*
661          * Similarly the preempt context must always be available so that
662          * we can interrupt the engine at any time.
663          */
664         if (i915->preempt_context) {
665                 ce = intel_context_pin(i915->preempt_context, engine);
666                 if (IS_ERR(ce)) {
667                         ret = PTR_ERR(ce);
668                         goto err_unpin_kernel;
669                 }
670         }
671
672         ret = intel_engine_init_breadcrumbs(engine);
673         if (ret)
674                 goto err_unpin_preempt;
675
676         if (HWS_NEEDS_PHYSICAL(i915))
677                 ret = init_phys_status_page(engine);
678         else
679                 ret = init_status_page(engine);
680         if (ret)
681                 goto err_breadcrumbs;
682
683         return 0;
684
685 err_breadcrumbs:
686         intel_engine_fini_breadcrumbs(engine);
687 err_unpin_preempt:
688         if (i915->preempt_context)
689                 __intel_context_unpin(i915->preempt_context, engine);
690
691 err_unpin_kernel:
692         __intel_context_unpin(i915->kernel_context, engine);
693         return ret;
694 }
695
696 /**
697  * intel_engines_cleanup_common - cleans up the engine state created by
698  *                                the common initiailizers.
699  * @engine: Engine to cleanup.
700  *
701  * This cleans up everything created by the common helpers.
702  */
703 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
704 {
705         struct drm_i915_private *i915 = engine->i915;
706
707         intel_engine_cleanup_scratch(engine);
708
709         cleanup_status_page(engine);
710
711         intel_engine_fini_breadcrumbs(engine);
712         intel_engine_cleanup_cmd_parser(engine);
713         i915_gem_batch_pool_fini(&engine->batch_pool);
714
715         if (engine->default_state)
716                 i915_gem_object_put(engine->default_state);
717
718         if (i915->preempt_context)
719                 __intel_context_unpin(i915->preempt_context, engine);
720         __intel_context_unpin(i915->kernel_context, engine);
721
722         i915_timeline_fini(&engine->timeline);
723 }
724
725 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
726 {
727         struct drm_i915_private *dev_priv = engine->i915;
728         u64 acthd;
729
730         if (INTEL_GEN(dev_priv) >= 8)
731                 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
732                                          RING_ACTHD_UDW(engine->mmio_base));
733         else if (INTEL_GEN(dev_priv) >= 4)
734                 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
735         else
736                 acthd = I915_READ(ACTHD);
737
738         return acthd;
739 }
740
741 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
742 {
743         struct drm_i915_private *dev_priv = engine->i915;
744         u64 bbaddr;
745
746         if (INTEL_GEN(dev_priv) >= 8)
747                 bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
748                                           RING_BBADDR_UDW(engine->mmio_base));
749         else
750                 bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));
751
752         return bbaddr;
753 }
754
755 int intel_engine_stop_cs(struct intel_engine_cs *engine)
756 {
757         struct drm_i915_private *dev_priv = engine->i915;
758         const u32 base = engine->mmio_base;
759         const i915_reg_t mode = RING_MI_MODE(base);
760         int err;
761
762         if (INTEL_GEN(dev_priv) < 3)
763                 return -ENODEV;
764
765         GEM_TRACE("%s\n", engine->name);
766
767         I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));
768
769         err = 0;
770         if (__intel_wait_for_register_fw(dev_priv,
771                                          mode, MODE_IDLE, MODE_IDLE,
772                                          1000, 0,
773                                          NULL)) {
774                 GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
775                 err = -ETIMEDOUT;
776         }
777
778         /* A final mmio read to let GPU writes be hopefully flushed to memory */
779         POSTING_READ_FW(mode);
780
781         return err;
782 }
783
784 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
785 {
786         struct drm_i915_private *dev_priv = engine->i915;
787
788         GEM_TRACE("%s\n", engine->name);
789
790         I915_WRITE_FW(RING_MI_MODE(engine->mmio_base),
791                       _MASKED_BIT_DISABLE(STOP_RING));
792 }
793
794 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
795 {
796         switch (type) {
797         case I915_CACHE_NONE: return " uncached";
798         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
799         case I915_CACHE_L3_LLC: return " L3+LLC";
800         case I915_CACHE_WT: return " WT";
801         default: return "";
802         }
803 }
804
805 u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
806 {
807         const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
808         u32 mcr_s_ss_select;
809         u32 slice = fls(sseu->slice_mask);
810         u32 subslice = fls(sseu->subslice_mask[slice]);
811
812         if (INTEL_GEN(dev_priv) == 10)
813                 mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
814                                   GEN8_MCR_SUBSLICE(subslice);
815         else if (INTEL_GEN(dev_priv) >= 11)
816                 mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
817                                   GEN11_MCR_SUBSLICE(subslice);
818         else
819                 mcr_s_ss_select = 0;
820
821         return mcr_s_ss_select;
822 }
823
824 static inline uint32_t
825 read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
826                   int subslice, i915_reg_t reg)
827 {
828         uint32_t mcr_slice_subslice_mask;
829         uint32_t mcr_slice_subslice_select;
830         uint32_t default_mcr_s_ss_select;
831         uint32_t mcr;
832         uint32_t ret;
833         enum forcewake_domains fw_domains;
834
835         if (INTEL_GEN(dev_priv) >= 11) {
836                 mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
837                                           GEN11_MCR_SUBSLICE_MASK;
838                 mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
839                                             GEN11_MCR_SUBSLICE(subslice);
840         } else {
841                 mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
842                                           GEN8_MCR_SUBSLICE_MASK;
843                 mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
844                                             GEN8_MCR_SUBSLICE(subslice);
845         }
846
847         default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);
848
849         fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
850                                                     FW_REG_READ);
851         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
852                                                      GEN8_MCR_SELECTOR,
853                                                      FW_REG_READ | FW_REG_WRITE);
854
855         spin_lock_irq(&dev_priv->uncore.lock);
856         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
857
858         mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
859
860         WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
861                      default_mcr_s_ss_select);
862
863         mcr &= ~mcr_slice_subslice_mask;
864         mcr |= mcr_slice_subslice_select;
865         I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
866
867         ret = I915_READ_FW(reg);
868
869         mcr &= ~mcr_slice_subslice_mask;
870         mcr |= default_mcr_s_ss_select;
871
872         I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
873
874         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
875         spin_unlock_irq(&dev_priv->uncore.lock);
876
877         return ret;
878 }
879
880 /* NB: please notice the memset */
881 void intel_engine_get_instdone(struct intel_engine_cs *engine,
882                                struct intel_instdone *instdone)
883 {
884         struct drm_i915_private *dev_priv = engine->i915;
885         u32 mmio_base = engine->mmio_base;
886         int slice;
887         int subslice;
888
889         memset(instdone, 0, sizeof(*instdone));
890
891         switch (INTEL_GEN(dev_priv)) {
892         default:
893                 instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
894
895                 if (engine->id != RCS)
896                         break;
897
898                 instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
899                 for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
900                         instdone->sampler[slice][subslice] =
901                                 read_subslice_reg(dev_priv, slice, subslice,
902                                                   GEN7_SAMPLER_INSTDONE);
903                         instdone->row[slice][subslice] =
904                                 read_subslice_reg(dev_priv, slice, subslice,
905                                                   GEN7_ROW_INSTDONE);
906                 }
907                 break;
908         case 7:
909                 instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
910
911                 if (engine->id != RCS)
912                         break;
913
914                 instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
915                 instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
916                 instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);
917
918                 break;
919         case 6:
920         case 5:
921         case 4:
922                 instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
923
924                 if (engine->id == RCS)
925                         /* HACK: Using the wrong struct member */
926                         instdone->slice_common = I915_READ(GEN4_INSTDONE1);
927                 break;
928         case 3:
929         case 2:
930                 instdone->instdone = I915_READ(GEN2_INSTDONE);
931                 break;
932         }
933 }
934
935 static bool ring_is_idle(struct intel_engine_cs *engine)
936 {
937         struct drm_i915_private *dev_priv = engine->i915;
938         bool idle = true;
939
940         /* If the whole device is asleep, the engine must be idle */
941         if (!intel_runtime_pm_get_if_in_use(dev_priv))
942                 return true;
943
944         /* First check that no commands are left in the ring */
945         if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
946             (I915_READ_TAIL(engine) & TAIL_ADDR))
947                 idle = false;
948
949         /* No bit for gen2, so assume the CS parser is idle */
950         if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
951                 idle = false;
952
953         intel_runtime_pm_put(dev_priv);
954
955         return idle;
956 }
957
958 /**
959  * intel_engine_is_idle() - Report if the engine has finished process all work
960  * @engine: the intel_engine_cs
961  *
962  * Return true if there are no requests pending, nothing left to be submitted
963  * to hardware, and that the engine is idle.
964  */
965 bool intel_engine_is_idle(struct intel_engine_cs *engine)
966 {
967         struct drm_i915_private *dev_priv = engine->i915;
968
969         /* More white lies, if wedged, hw state is inconsistent */
970         if (i915_terminally_wedged(&dev_priv->gpu_error))
971                 return true;
972
973         /* Any inflight/incomplete requests? */
974         if (!intel_engine_signaled(engine, intel_engine_last_submit(engine)))
975                 return false;
976
977         if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
978                 return true;
979
980         /* Waiting to drain ELSP? */
981         if (READ_ONCE(engine->execlists.active)) {
982                 struct tasklet_struct *t = &engine->execlists.tasklet;
983
984                 local_bh_disable();
985                 if (tasklet_trylock(t)) {
986                         /* Must wait for any GPU reset in progress. */
987                         if (__tasklet_is_enabled(t))
988                                 t->func(t->data);
989                         tasklet_unlock(t);
990                 }
991                 local_bh_enable();
992
993                 /* Otherwise flush the tasklet if it was on another cpu */
994                 tasklet_unlock_wait(t);
995
996                 if (READ_ONCE(engine->execlists.active))
997                         return false;
998         }
999
1000         /* ELSP is empty, but there are ready requests? E.g. after reset */
1001         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1002                 return false;
1003
1004         /* Ring stopped? */
1005         if (!ring_is_idle(engine))
1006                 return false;
1007
1008         return true;
1009 }
1010
1011 bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
1012 {
1013         struct intel_engine_cs *engine;
1014         enum intel_engine_id id;
1015
1016         /*
1017          * If the driver is wedged, HW state may be very inconsistent and
1018          * report that it is still busy, even though we have stopped using it.
1019          */
1020         if (i915_terminally_wedged(&dev_priv->gpu_error))
1021                 return true;
1022
1023         for_each_engine(engine, dev_priv, id) {
1024                 if (!intel_engine_is_idle(engine))
1025                         return false;
1026         }
1027
1028         return true;
1029 }
1030
1031 /**
1032  * intel_engine_has_kernel_context:
1033  * @engine: the engine
1034  *
1035  * Returns true if the last context to be executed on this engine, or has been
1036  * executed if the engine is already idle, is the kernel context
1037  * (#i915.kernel_context).
1038  */
1039 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
1040 {
1041         const struct intel_context *kernel_context =
1042                 to_intel_context(engine->i915->kernel_context, engine);
1043         struct i915_request *rq;
1044
1045         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1046
1047         /*
1048          * Check the last context seen by the engine. If active, it will be
1049          * the last request that remains in the timeline. When idle, it is
1050          * the last executed context as tracked by retirement.
1051          */
1052         rq = __i915_gem_active_peek(&engine->timeline.last_request);
1053         if (rq)
1054                 return rq->hw_context == kernel_context;
1055         else
1056                 return engine->last_retired_context == kernel_context;
1057 }
1058
1059 void intel_engines_reset_default_submission(struct drm_i915_private *i915)
1060 {
1061         struct intel_engine_cs *engine;
1062         enum intel_engine_id id;
1063
1064         for_each_engine(engine, i915, id)
1065                 engine->set_default_submission(engine);
1066 }
1067
1068 /**
1069  * intel_engines_sanitize: called after the GPU has lost power
1070  * @i915: the i915 device
1071  *
1072  * Anytime we reset the GPU, either with an explicit GPU reset or through a
1073  * PCI power cycle, the GPU loses state and we must reset our state tracking
1074  * to match. Note that calling intel_engines_sanitize() if the GPU has not
1075  * been reset results in much confusion!
1076  */
1077 void intel_engines_sanitize(struct drm_i915_private *i915)
1078 {
1079         struct intel_engine_cs *engine;
1080         enum intel_engine_id id;
1081
1082         GEM_TRACE("\n");
1083
1084         for_each_engine(engine, i915, id) {
1085                 if (engine->reset.reset)
1086                         engine->reset.reset(engine, NULL);
1087         }
1088 }
1089
1090 /**
1091  * intel_engines_park: called when the GT is transitioning from busy->idle
1092  * @i915: the i915 device
1093  *
1094  * The GT is now idle and about to go to sleep (maybe never to wake again?).
1095  * Time for us to tidy and put away our toys (release resources back to the
1096  * system).
1097  */
1098 void intel_engines_park(struct drm_i915_private *i915)
1099 {
1100         struct intel_engine_cs *engine;
1101         enum intel_engine_id id;
1102
1103         for_each_engine(engine, i915, id) {
1104                 /* Flush the residual irq tasklets first. */
1105                 intel_engine_disarm_breadcrumbs(engine);
1106                 tasklet_kill(&engine->execlists.tasklet);
1107
1108                 /*
1109                  * We are committed now to parking the engines, make sure there
1110                  * will be no more interrupts arriving later and the engines
1111                  * are truly idle.
1112                  */
1113                 if (wait_for(intel_engine_is_idle(engine), 10)) {
1114                         struct drm_printer p = drm_debug_printer(__func__);
1115
1116                         dev_err(i915->drm.dev,
1117                                 "%s is not idle before parking\n",
1118                                 engine->name);
1119                         intel_engine_dump(engine, &p, NULL);
1120                 }
1121
1122                 /* Must be reset upon idling, or we may miss the busy wakeup. */
1123                 GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);
1124
1125                 if (engine->park)
1126                         engine->park(engine);
1127
1128                 if (engine->pinned_default_state) {
1129                         i915_gem_object_unpin_map(engine->default_state);
1130                         engine->pinned_default_state = NULL;
1131                 }
1132
1133                 i915_gem_batch_pool_fini(&engine->batch_pool);
1134                 engine->execlists.no_priolist = false;
1135         }
1136 }
1137
1138 /**
1139  * intel_engines_unpark: called when the GT is transitioning from idle->busy
1140  * @i915: the i915 device
1141  *
1142  * The GT was idle and now about to fire up with some new user requests.
1143  */
1144 void intel_engines_unpark(struct drm_i915_private *i915)
1145 {
1146         struct intel_engine_cs *engine;
1147         enum intel_engine_id id;
1148
1149         for_each_engine(engine, i915, id) {
1150                 void *map;
1151
1152                 /* Pin the default state for fast resets from atomic context. */
1153                 map = NULL;
1154                 if (engine->default_state)
1155                         map = i915_gem_object_pin_map(engine->default_state,
1156                                                       I915_MAP_WB);
1157                 if (!IS_ERR_OR_NULL(map))
1158                         engine->pinned_default_state = map;
1159
1160                 if (engine->unpark)
1161                         engine->unpark(engine);
1162
1163                 intel_engine_init_hangcheck(engine);
1164         }
1165 }
1166
1167 /**
1168  * intel_engine_lost_context: called when the GPU is reset into unknown state
1169  * @engine: the engine
1170  *
1171  * We have either reset the GPU or otherwise about to lose state tracking of
1172  * the current GPU logical state (e.g. suspend). On next use, it is therefore
1173  * imperative that we make no presumptions about the current state and load
1174  * from scratch.
1175  */
1176 void intel_engine_lost_context(struct intel_engine_cs *engine)
1177 {
1178         struct intel_context *ce;
1179
1180         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1181
1182         ce = fetch_and_zero(&engine->last_retired_context);
1183         if (ce)
1184                 intel_context_unpin(ce);
1185 }
1186
1187 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1188 {
1189         switch (INTEL_GEN(engine->i915)) {
1190         case 2:
1191                 return false; /* uses physical not virtual addresses */
1192         case 3:
1193                 /* maybe only uses physical not virtual addresses */
1194                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1195         case 6:
1196                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1197         default:
1198                 return true;
1199         }
1200 }
1201
1202 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
1203 {
1204         struct intel_engine_cs *engine;
1205         enum intel_engine_id id;
1206         unsigned int which;
1207
1208         which = 0;
1209         for_each_engine(engine, i915, id)
1210                 if (engine->default_state)
1211                         which |= BIT(engine->uabi_class);
1212
1213         return which;
1214 }
1215
1216 static int print_sched_attr(struct drm_i915_private *i915,
1217                             const struct i915_sched_attr *attr,
1218                             char *buf, int x, int len)
1219 {
1220         if (attr->priority == I915_PRIORITY_INVALID)
1221                 return x;
1222
1223         x += snprintf(buf + x, len - x,
1224                       " prio=%d", attr->priority);
1225
1226         return x;
1227 }
1228
1229 static void print_request(struct drm_printer *m,
1230                           struct i915_request *rq,
1231                           const char *prefix)
1232 {
1233         const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1234         char buf[80] = "";
1235         int x = 0;
1236
1237         x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1238
1239         drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1240                    prefix,
1241                    rq->global_seqno,
1242                    i915_request_completed(rq) ? "!" : "",
1243                    rq->fence.context, rq->fence.seqno,
1244                    buf,
1245                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1246                    name);
1247 }
1248
1249 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1250 {
1251         const size_t rowsize = 8 * sizeof(u32);
1252         const void *prev = NULL;
1253         bool skip = false;
1254         size_t pos;
1255
1256         for (pos = 0; pos < len; pos += rowsize) {
1257                 char line[128];
1258
1259                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1260                         if (!skip) {
1261                                 drm_printf(m, "*\n");
1262                                 skip = true;
1263                         }
1264                         continue;
1265                 }
1266
1267                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1268                                                 rowsize, sizeof(u32),
1269                                                 line, sizeof(line),
1270                                                 false) >= sizeof(line));
1271                 drm_printf(m, "[%04zx] %s\n", pos, line);
1272
1273                 prev = buf + pos;
1274                 skip = false;
1275         }
1276 }
1277
1278 static void intel_engine_print_registers(const struct intel_engine_cs *engine,
1279                                          struct drm_printer *m)
1280 {
1281         struct drm_i915_private *dev_priv = engine->i915;
1282         const struct intel_engine_execlists * const execlists =
1283                 &engine->execlists;
1284         u64 addr;
1285
1286         if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
1287                 drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1288         drm_printf(m, "\tRING_START: 0x%08x\n",
1289                    I915_READ(RING_START(engine->mmio_base)));
1290         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1291                    I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
1292         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1293                    I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1294         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1295                    I915_READ(RING_CTL(engine->mmio_base)),
1296                    I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1297         if (INTEL_GEN(engine->i915) > 2) {
1298                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1299                            I915_READ(RING_MI_MODE(engine->mmio_base)),
1300                            I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
1301         }
1302
1303         if (INTEL_GEN(dev_priv) >= 6) {
1304                 drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
1305         }
1306
1307         if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1308                 drm_printf(m, "\tSYNC_0: 0x%08x\n",
1309                            I915_READ(RING_SYNC_0(engine->mmio_base)));
1310                 drm_printf(m, "\tSYNC_1: 0x%08x\n",
1311                            I915_READ(RING_SYNC_1(engine->mmio_base)));
1312                 if (HAS_VEBOX(dev_priv))
1313                         drm_printf(m, "\tSYNC_2: 0x%08x\n",
1314                                    I915_READ(RING_SYNC_2(engine->mmio_base)));
1315         }
1316
1317         addr = intel_engine_get_active_head(engine);
1318         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1319                    upper_32_bits(addr), lower_32_bits(addr));
1320         addr = intel_engine_get_last_batch_head(engine);
1321         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1322                    upper_32_bits(addr), lower_32_bits(addr));
1323         if (INTEL_GEN(dev_priv) >= 8)
1324                 addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
1325                                         RING_DMA_FADD_UDW(engine->mmio_base));
1326         else if (INTEL_GEN(dev_priv) >= 4)
1327                 addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
1328         else
1329                 addr = I915_READ(DMA_FADD_I8XX);
1330         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1331                    upper_32_bits(addr), lower_32_bits(addr));
1332         if (INTEL_GEN(dev_priv) >= 4) {
1333                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1334                            I915_READ(RING_IPEIR(engine->mmio_base)));
1335                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1336                            I915_READ(RING_IPEHR(engine->mmio_base)));
1337         } else {
1338                 drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
1339                 drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
1340         }
1341
1342         if (HAS_EXECLISTS(dev_priv)) {
1343                 const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
1344                 unsigned int idx;
1345                 u8 read, write;
1346
1347                 drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
1348                            I915_READ(RING_EXECLIST_STATUS_LO(engine)),
1349                            I915_READ(RING_EXECLIST_STATUS_HI(engine)));
1350
1351                 read = execlists->csb_head;
1352                 write = READ_ONCE(*execlists->csb_write);
1353
1354                 drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n",
1355                            read, write,
1356                            GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))),
1357                            yesno(test_bit(TASKLET_STATE_SCHED,
1358                                           &engine->execlists.tasklet.state)),
1359                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1360                 if (read >= GEN8_CSB_ENTRIES)
1361                         read = 0;
1362                 if (write >= GEN8_CSB_ENTRIES)
1363                         write = 0;
1364                 if (read > write)
1365                         write += GEN8_CSB_ENTRIES;
1366                 while (read < write) {
1367                         idx = ++read % GEN8_CSB_ENTRIES;
1368                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n",
1369                                    idx,
1370                                    hws[idx * 2],
1371                                    I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
1372                                    hws[idx * 2 + 1],
1373                                    I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
1374                 }
1375
1376                 rcu_read_lock();
1377                 for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1378                         struct i915_request *rq;
1379                         unsigned int count;
1380
1381                         rq = port_unpack(&execlists->port[idx], &count);
1382                         if (rq) {
1383                                 char hdr[80];
1384
1385                                 snprintf(hdr, sizeof(hdr),
1386                                          "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
1387                                          idx, count,
1388                                          i915_ggtt_offset(rq->ring->vma));
1389                                 print_request(m, rq, hdr);
1390                         } else {
1391                                 drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1392                         }
1393                 }
1394                 drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1395                 rcu_read_unlock();
1396         } else if (INTEL_GEN(dev_priv) > 6) {
1397                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1398                            I915_READ(RING_PP_DIR_BASE(engine)));
1399                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1400                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
1401                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1402                            I915_READ(RING_PP_DIR_DCLV(engine)));
1403         }
1404 }
1405
1406 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1407 {
1408         void *ring;
1409         int size;
1410
1411         drm_printf(m,
1412                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1413                    rq->head, rq->postfix, rq->tail,
1414                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1415                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1416
1417         size = rq->tail - rq->head;
1418         if (rq->tail < rq->head)
1419                 size += rq->ring->size;
1420
1421         ring = kmalloc(size, GFP_ATOMIC);
1422         if (ring) {
1423                 const void *vaddr = rq->ring->vaddr;
1424                 unsigned int head = rq->head;
1425                 unsigned int len = 0;
1426
1427                 if (rq->tail < head) {
1428                         len = rq->ring->size - head;
1429                         memcpy(ring, vaddr + head, len);
1430                         head = 0;
1431                 }
1432                 memcpy(ring + len, vaddr + head, size - len);
1433
1434                 hexdump(m, ring, size);
1435                 kfree(ring);
1436         }
1437 }
1438
1439 void intel_engine_dump(struct intel_engine_cs *engine,
1440                        struct drm_printer *m,
1441                        const char *header, ...)
1442 {
1443         const int MAX_REQUESTS_TO_SHOW = 8;
1444         struct intel_breadcrumbs * const b = &engine->breadcrumbs;
1445         const struct intel_engine_execlists * const execlists = &engine->execlists;
1446         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1447         struct i915_request *rq, *last;
1448         unsigned long flags;
1449         struct rb_node *rb;
1450         int count;
1451
1452         if (header) {
1453                 va_list ap;
1454
1455                 va_start(ap, header);
1456                 drm_vprintf(m, header, &ap);
1457                 va_end(ap);
1458         }
1459
1460         if (i915_terminally_wedged(&engine->i915->gpu_error))
1461                 drm_printf(m, "*** WEDGED ***\n");
1462
1463         drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1464                    intel_engine_get_seqno(engine),
1465                    intel_engine_last_submit(engine),
1466                    engine->hangcheck.seqno,
1467                    jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1468         drm_printf(m, "\tReset count: %d (global %d)\n",
1469                    i915_reset_engine_count(error, engine),
1470                    i915_reset_count(error));
1471
1472         rcu_read_lock();
1473
1474         drm_printf(m, "\tRequests:\n");
1475
1476         rq = list_first_entry(&engine->timeline.requests,
1477                               struct i915_request, link);
1478         if (&rq->link != &engine->timeline.requests)
1479                 print_request(m, rq, "\t\tfirst  ");
1480
1481         rq = list_last_entry(&engine->timeline.requests,
1482                              struct i915_request, link);
1483         if (&rq->link != &engine->timeline.requests)
1484                 print_request(m, rq, "\t\tlast   ");
1485
1486         rq = i915_gem_find_active_request(engine);
1487         if (rq) {
1488                 print_request(m, rq, "\t\tactive ");
1489
1490                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1491                            i915_ggtt_offset(rq->ring->vma));
1492                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1493                            rq->ring->head);
1494                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1495                            rq->ring->tail);
1496                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1497                            rq->ring->emit);
1498                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1499                            rq->ring->space);
1500
1501                 print_request_ring(m, rq);
1502         }
1503
1504         rcu_read_unlock();
1505
1506         if (intel_runtime_pm_get_if_in_use(engine->i915)) {
1507                 intel_engine_print_registers(engine, m);
1508                 intel_runtime_pm_put(engine->i915);
1509         } else {
1510                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1511         }
1512
1513         local_irq_save(flags);
1514         spin_lock(&engine->timeline.lock);
1515
1516         last = NULL;
1517         count = 0;
1518         list_for_each_entry(rq, &engine->timeline.requests, link) {
1519                 if (count++ < MAX_REQUESTS_TO_SHOW - 1)
1520                         print_request(m, rq, "\t\tE ");
1521                 else
1522                         last = rq;
1523         }
1524         if (last) {
1525                 if (count > MAX_REQUESTS_TO_SHOW) {
1526                         drm_printf(m,
1527                                    "\t\t...skipping %d executing requests...\n",
1528                                    count - MAX_REQUESTS_TO_SHOW);
1529                 }
1530                 print_request(m, last, "\t\tE ");
1531         }
1532
1533         last = NULL;
1534         count = 0;
1535         drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1536         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
1537                 struct i915_priolist *p =
1538                         rb_entry(rb, typeof(*p), node);
1539
1540                 list_for_each_entry(rq, &p->requests, sched.link) {
1541                         if (count++ < MAX_REQUESTS_TO_SHOW - 1)
1542                                 print_request(m, rq, "\t\tQ ");
1543                         else
1544                                 last = rq;
1545                 }
1546         }
1547         if (last) {
1548                 if (count > MAX_REQUESTS_TO_SHOW) {
1549                         drm_printf(m,
1550                                    "\t\t...skipping %d queued requests...\n",
1551                                    count - MAX_REQUESTS_TO_SHOW);
1552                 }
1553                 print_request(m, last, "\t\tQ ");
1554         }
1555
1556         spin_unlock(&engine->timeline.lock);
1557
1558         spin_lock(&b->rb_lock);
1559         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1560                 struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1561
1562                 drm_printf(m, "\t%s [%d] waiting for %x\n",
1563                            w->tsk->comm, w->tsk->pid, w->seqno);
1564         }
1565         spin_unlock(&b->rb_lock);
1566         local_irq_restore(flags);
1567
1568         drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s)\n",
1569                    engine->irq_posted,
1570                    yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
1571                                   &engine->irq_posted)));
1572
1573         drm_printf(m, "HWSP:\n");
1574         hexdump(m, engine->status_page.page_addr, PAGE_SIZE);
1575
1576         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1577 }
1578
1579 static u8 user_class_map[] = {
1580         [I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
1581         [I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
1582         [I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
1583         [I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
1584 };
1585
1586 struct intel_engine_cs *
1587 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
1588 {
1589         if (class >= ARRAY_SIZE(user_class_map))
1590                 return NULL;
1591
1592         class = user_class_map[class];
1593
1594         GEM_BUG_ON(class > MAX_ENGINE_CLASS);
1595
1596         if (instance > MAX_ENGINE_INSTANCE)
1597                 return NULL;
1598
1599         return i915->engine_class[class][instance];
1600 }
1601
1602 /**
1603  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1604  * @engine: engine to enable stats collection
1605  *
1606  * Start collecting the engine busyness data for @engine.
1607  *
1608  * Returns 0 on success or a negative error code.
1609  */
1610 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1611 {
1612         struct intel_engine_execlists *execlists = &engine->execlists;
1613         unsigned long flags;
1614         int err = 0;
1615
1616         if (!intel_engine_supports_stats(engine))
1617                 return -ENODEV;
1618
1619         spin_lock_irqsave(&engine->timeline.lock, flags);
1620         write_seqlock(&engine->stats.lock);
1621
1622         if (unlikely(engine->stats.enabled == ~0)) {
1623                 err = -EBUSY;
1624                 goto unlock;
1625         }
1626
1627         if (engine->stats.enabled++ == 0) {
1628                 const struct execlist_port *port = execlists->port;
1629                 unsigned int num_ports = execlists_num_ports(execlists);
1630
1631                 engine->stats.enabled_at = ktime_get();
1632
1633                 /* XXX submission method oblivious? */
1634                 while (num_ports-- && port_isset(port)) {
1635                         engine->stats.active++;
1636                         port++;
1637                 }
1638
1639                 if (engine->stats.active)
1640                         engine->stats.start = engine->stats.enabled_at;
1641         }
1642
1643 unlock:
1644         write_sequnlock(&engine->stats.lock);
1645         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1646
1647         return err;
1648 }
1649
1650 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1651 {
1652         ktime_t total = engine->stats.total;
1653
1654         /*
1655          * If the engine is executing something at the moment
1656          * add it to the total.
1657          */
1658         if (engine->stats.active)
1659                 total = ktime_add(total,
1660                                   ktime_sub(ktime_get(), engine->stats.start));
1661
1662         return total;
1663 }
1664
1665 /**
1666  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1667  * @engine: engine to report on
1668  *
1669  * Returns accumulated time @engine was busy since engine stats were enabled.
1670  */
1671 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1672 {
1673         unsigned int seq;
1674         ktime_t total;
1675
1676         do {
1677                 seq = read_seqbegin(&engine->stats.lock);
1678                 total = __intel_engine_get_busy_time(engine);
1679         } while (read_seqretry(&engine->stats.lock, seq));
1680
1681         return total;
1682 }
1683
1684 /**
1685  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1686  * @engine: engine to disable stats collection
1687  *
1688  * Stops collecting the engine busyness data for @engine.
1689  */
1690 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1691 {
1692         unsigned long flags;
1693
1694         if (!intel_engine_supports_stats(engine))
1695                 return;
1696
1697         write_seqlock_irqsave(&engine->stats.lock, flags);
1698         WARN_ON_ONCE(engine->stats.enabled == 0);
1699         if (--engine->stats.enabled == 0) {
1700                 engine->stats.total = __intel_engine_get_busy_time(engine);
1701                 engine->stats.active = 0;
1702         }
1703         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1704 }
1705
1706 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1707 #include "selftests/mock_engine.c"
1708 #include "selftests/intel_engine_cs.c"
1709 #endif