drm/i915: Make IS_GEN macros only take dev_priv
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197         struct intel_encoder *encoder = &intel_dig_port->base;
198         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199         int max_dotclk = dev_priv->max_dotclk_freq;
200         int ds_max_dotclk;
201
202         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204         if (type != DP_DS_PORT_TYPE_VGA)
205                 return max_dotclk;
206
207         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208                                                     intel_dp->downstream_ports);
209
210         if (ds_max_dotclk != 0)
211                 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213         return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218                     struct drm_display_mode *mode)
219 {
220         struct intel_dp *intel_dp = intel_attached_dp(connector);
221         struct intel_connector *intel_connector = to_intel_connector(connector);
222         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223         int target_clock = mode->clock;
224         int max_rate, mode_rate, max_lanes, max_link_clock;
225         int max_dotclk;
226
227         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229         if (is_edp(intel_dp) && fixed_mode) {
230                 if (mode->hdisplay > fixed_mode->hdisplay)
231                         return MODE_PANEL;
232
233                 if (mode->vdisplay > fixed_mode->vdisplay)
234                         return MODE_PANEL;
235
236                 target_clock = fixed_mode->clock;
237         }
238
239         max_link_clock = intel_dp_max_link_rate(intel_dp);
240         max_lanes = intel_dp_max_lane_count(intel_dp);
241
242         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243         mode_rate = intel_dp_link_required(target_clock, 18);
244
245         if (mode_rate > max_rate || target_clock > max_dotclk)
246                 return MODE_CLOCK_HIGH;
247
248         if (mode->clock < 10000)
249                 return MODE_CLOCK_LOW;
250
251         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252                 return MODE_H_ILLEGAL;
253
254         return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259         int     i;
260         uint32_t v = 0;
261
262         if (src_bytes > 4)
263                 src_bytes = 4;
264         for (i = 0; i < src_bytes; i++)
265                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266         return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271         int i;
272         if (dst_bytes > 4)
273                 dst_bytes = 4;
274         for (i = 0; i < dst_bytes; i++)
275                 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280                                     struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283                                               struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290         struct intel_encoder *encoder = &intel_dig_port->base;
291         struct drm_device *dev = encoder->base.dev;
292         struct drm_i915_private *dev_priv = to_i915(dev);
293         enum intel_display_power_domain power_domain;
294
295         /*
296          * See vlv_power_sequencer_reset() why we need
297          * a power domain reference here.
298          */
299         power_domain = intel_display_port_aux_power_domain(encoder);
300         intel_display_power_get(dev_priv, power_domain);
301
302         mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308         struct intel_encoder *encoder = &intel_dig_port->base;
309         struct drm_device *dev = encoder->base.dev;
310         struct drm_i915_private *dev_priv = to_i915(dev);
311         enum intel_display_power_domain power_domain;
312
313         mutex_unlock(&dev_priv->pps_mutex);
314
315         power_domain = intel_display_port_aux_power_domain(encoder);
316         intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323         struct drm_device *dev = intel_dig_port->base.base.dev;
324         struct drm_i915_private *dev_priv = to_i915(dev);
325         enum pipe pipe = intel_dp->pps_pipe;
326         bool pll_enabled, release_cl_override = false;
327         enum dpio_phy phy = DPIO_PHY(pipe);
328         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329         uint32_t DP;
330
331         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333                  pipe_name(pipe), port_name(intel_dig_port->port)))
334                 return;
335
336         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337                       pipe_name(pipe), port_name(intel_dig_port->port));
338
339         /* Preserve the BIOS-computed detected bit. This is
340          * supposed to be read-only.
341          */
342         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344         DP |= DP_PORT_WIDTH(1);
345         DP |= DP_LINK_TRAIN_PAT_1;
346
347         if (IS_CHERRYVIEW(dev_priv))
348                 DP |= DP_PIPE_SELECT_CHV(pipe);
349         else if (pipe == PIPE_B)
350                 DP |= DP_PIPEB_SELECT;
351
352         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354         /*
355          * The DPLL for the pipe must be enabled for this to work.
356          * So enable temporarily it if it's not already enabled.
357          */
358         if (!pll_enabled) {
359                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
360                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev_priv) ?
363                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
365                                   pipe_name(pipe));
366                         return;
367                 }
368         }
369
370         /*
371          * Similar magic as in intel_dp_enable_port().
372          * We _must_ do this port enable + disable trick
373          * to make this power seqeuencer lock onto the port.
374          * Otherwise even VDD force bit won't work.
375          */
376         I915_WRITE(intel_dp->output_reg, DP);
377         POSTING_READ(intel_dp->output_reg);
378
379         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380         POSTING_READ(intel_dp->output_reg);
381
382         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383         POSTING_READ(intel_dp->output_reg);
384
385         if (!pll_enabled) {
386                 vlv_force_pll_off(dev, pipe);
387
388                 if (release_cl_override)
389                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
390         }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397         struct drm_device *dev = intel_dig_port->base.base.dev;
398         struct drm_i915_private *dev_priv = to_i915(dev);
399         struct intel_encoder *encoder;
400         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401         enum pipe pipe;
402
403         lockdep_assert_held(&dev_priv->pps_mutex);
404
405         /* We should never land here with regular DP ports */
406         WARN_ON(!is_edp(intel_dp));
407
408         if (intel_dp->pps_pipe != INVALID_PIPE)
409                 return intel_dp->pps_pipe;
410
411         /*
412          * We don't have power sequencer currently.
413          * Pick one that's not used by other ports.
414          */
415         for_each_intel_encoder(dev, encoder) {
416                 struct intel_dp *tmp;
417
418                 if (encoder->type != INTEL_OUTPUT_EDP)
419                         continue;
420
421                 tmp = enc_to_intel_dp(&encoder->base);
422
423                 if (tmp->pps_pipe != INVALID_PIPE)
424                         pipes &= ~(1 << tmp->pps_pipe);
425         }
426
427         /*
428          * Didn't find one. This should not happen since there
429          * are two power sequencers and up to two eDP ports.
430          */
431         if (WARN_ON(pipes == 0))
432                 pipe = PIPE_A;
433         else
434                 pipe = ffs(pipes) - 1;
435
436         vlv_steal_power_sequencer(dev, pipe);
437         intel_dp->pps_pipe = pipe;
438
439         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440                       pipe_name(intel_dp->pps_pipe),
441                       port_name(intel_dig_port->port));
442
443         /* init power sequencer on this pipe and port */
444         intel_dp_init_panel_power_sequencer(dev, intel_dp);
445         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447         /*
448          * Even vdd force doesn't work until we've made
449          * the power sequencer lock in on the port.
450          */
451         vlv_power_sequencer_kick(intel_dp);
452
453         return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460         struct drm_device *dev = intel_dig_port->base.base.dev;
461         struct drm_i915_private *dev_priv = to_i915(dev);
462
463         lockdep_assert_held(&dev_priv->pps_mutex);
464
465         /* We should never land here with regular DP ports */
466         WARN_ON(!is_edp(intel_dp));
467
468         /*
469          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470          * mapping needs to be retrieved from VBT, for now just hard-code to
471          * use instance #0 always.
472          */
473         if (!intel_dp->pps_reset)
474                 return 0;
475
476         intel_dp->pps_reset = false;
477
478         /*
479          * Only the HW needs to be reprogrammed, the SW state is fixed and
480          * has been setup during connector init.
481          */
482         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484         return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488                                enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491                                enum pipe pipe)
492 {
493         return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497                                 enum pipe pipe)
498 {
499         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503                          enum pipe pipe)
504 {
505         return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510                      enum port port,
511                      vlv_pipe_check pipe_check)
512 {
513         enum pipe pipe;
514
515         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517                         PANEL_PORT_SELECT_MASK;
518
519                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520                         continue;
521
522                 if (!pipe_check(dev_priv, pipe))
523                         continue;
524
525                 return pipe;
526         }
527
528         return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535         struct drm_device *dev = intel_dig_port->base.base.dev;
536         struct drm_i915_private *dev_priv = to_i915(dev);
537         enum port port = intel_dig_port->port;
538
539         lockdep_assert_held(&dev_priv->pps_mutex);
540
541         /* try to find a pipe with this port selected */
542         /* first pick one where the panel is on */
543         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544                                                   vlv_pipe_has_pp_on);
545         /* didn't find one? pick one where vdd is on */
546         if (intel_dp->pps_pipe == INVALID_PIPE)
547                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548                                                           vlv_pipe_has_vdd_on);
549         /* didn't find one? pick one with just the correct port */
550         if (intel_dp->pps_pipe == INVALID_PIPE)
551                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552                                                           vlv_pipe_any);
553
554         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555         if (intel_dp->pps_pipe == INVALID_PIPE) {
556                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557                               port_name(port));
558                 return;
559         }
560
561         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562                       port_name(port), pipe_name(intel_dp->pps_pipe));
563
564         intel_dp_init_panel_power_sequencer(dev, intel_dp);
565         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570         struct drm_device *dev = &dev_priv->drm;
571         struct intel_encoder *encoder;
572
573         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
574                     !IS_BROXTON(dev_priv)))
575                 return;
576
577         /*
578          * We can't grab pps_mutex here due to deadlock with power_domain
579          * mutex when power_domain functions are called while holding pps_mutex.
580          * That also means that in order to use pps_pipe the code needs to
581          * hold both a power domain reference and pps_mutex, and the power domain
582          * reference get/put must be done while _not_ holding pps_mutex.
583          * pps_{lock,unlock}() do these steps in the correct order, so one
584          * should use them always.
585          */
586
587         for_each_intel_encoder(dev, encoder) {
588                 struct intel_dp *intel_dp;
589
590                 if (encoder->type != INTEL_OUTPUT_EDP)
591                         continue;
592
593                 intel_dp = enc_to_intel_dp(&encoder->base);
594                 if (IS_BROXTON(dev_priv))
595                         intel_dp->pps_reset = true;
596                 else
597                         intel_dp->pps_pipe = INVALID_PIPE;
598         }
599 }
600
601 struct pps_registers {
602         i915_reg_t pp_ctrl;
603         i915_reg_t pp_stat;
604         i915_reg_t pp_on;
605         i915_reg_t pp_off;
606         i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610                                     struct intel_dp *intel_dp,
611                                     struct pps_registers *regs)
612 {
613         int pps_idx = 0;
614
615         memset(regs, 0, sizeof(*regs));
616
617         if (IS_BROXTON(dev_priv))
618                 pps_idx = bxt_power_sequencer_idx(intel_dp);
619         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622         regs->pp_ctrl = PP_CONTROL(pps_idx);
623         regs->pp_stat = PP_STATUS(pps_idx);
624         regs->pp_on = PP_ON_DELAYS(pps_idx);
625         regs->pp_off = PP_OFF_DELAYS(pps_idx);
626         if (!IS_BROXTON(dev_priv))
627                 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633         struct pps_registers regs;
634
635         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636                                 &regs);
637
638         return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644         struct pps_registers regs;
645
646         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647                                 &regs);
648
649         return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653    This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655                               void *unused)
656 {
657         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658                                                  edp_notifier);
659         struct drm_device *dev = intel_dp_to_dev(intel_dp);
660         struct drm_i915_private *dev_priv = to_i915(dev);
661
662         if (!is_edp(intel_dp) || code != SYS_RESTART)
663                 return 0;
664
665         pps_lock(intel_dp);
666
667         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
668                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669                 i915_reg_t pp_ctrl_reg, pp_div_reg;
670                 u32 pp_div;
671
672                 pp_ctrl_reg = PP_CONTROL(pipe);
673                 pp_div_reg  = PP_DIVISOR(pipe);
674                 pp_div = I915_READ(pp_div_reg);
675                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680                 msleep(intel_dp->panel_power_cycle_delay);
681         }
682
683         pps_unlock(intel_dp);
684
685         return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690         struct drm_device *dev = intel_dp_to_dev(intel_dp);
691         struct drm_i915_private *dev_priv = to_i915(dev);
692
693         lockdep_assert_held(&dev_priv->pps_mutex);
694
695         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
696             intel_dp->pps_pipe == INVALID_PIPE)
697                 return false;
698
699         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704         struct drm_device *dev = intel_dp_to_dev(intel_dp);
705         struct drm_i915_private *dev_priv = to_i915(dev);
706
707         lockdep_assert_held(&dev_priv->pps_mutex);
708
709         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
710             intel_dp->pps_pipe == INVALID_PIPE)
711                 return false;
712
713         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719         struct drm_device *dev = intel_dp_to_dev(intel_dp);
720         struct drm_i915_private *dev_priv = to_i915(dev);
721
722         if (!is_edp(intel_dp))
723                 return;
724
725         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728                               I915_READ(_pp_stat_reg(intel_dp)),
729                               I915_READ(_pp_ctrl_reg(intel_dp)));
730         }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737         struct drm_device *dev = intel_dig_port->base.base.dev;
738         struct drm_i915_private *dev_priv = to_i915(dev);
739         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740         uint32_t status;
741         bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744         if (has_aux_irq)
745                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746                                           msecs_to_jiffies_timeout(10));
747         else
748                 done = wait_for(C, 10) == 0;
749         if (!done)
750                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751                           has_aux_irq);
752 #undef C
753
754         return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762         if (index)
763                 return 0;
764
765         /*
766          * The clock divider is based off the hrawclk, and would like to run at
767          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
768          */
769         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777         if (index)
778                 return 0;
779
780         /*
781          * The clock divider is based off the cdclk or PCH rawclk, and would
782          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
783          * divide by 2000 and use that
784          */
785         if (intel_dig_port->port == PORT_A)
786                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787         else
788                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797                 /* Workaround for non-ULT HSW */
798                 switch (index) {
799                 case 0: return 63;
800                 case 1: return 72;
801                 default: return 0;
802                 }
803         }
804
805         return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810         /*
811          * SKL doesn't need us to program the AUX clock divider (Hardware will
812          * derive the clock from CDCLK automatically). We still implement the
813          * get_aux_clock_divider vfunc to plug-in into the existing code.
814          */
815         return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819                                      bool has_aux_irq,
820                                      int send_bytes,
821                                      uint32_t aux_clock_divider)
822 {
823         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824         struct drm_i915_private *dev_priv =
825                         to_i915(intel_dig_port->base.base.dev);
826         uint32_t precharge, timeout;
827
828         if (IS_GEN6(dev_priv))
829                 precharge = 3;
830         else
831                 precharge = 5;
832
833         if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
834                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
835         else
836                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
837
838         return DP_AUX_CH_CTL_SEND_BUSY |
839                DP_AUX_CH_CTL_DONE |
840                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841                DP_AUX_CH_CTL_TIME_OUT_ERROR |
842                timeout |
843                DP_AUX_CH_CTL_RECEIVE_ERROR |
844                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
845                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 }
848
849 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
850                                       bool has_aux_irq,
851                                       int send_bytes,
852                                       uint32_t unused)
853 {
854         return DP_AUX_CH_CTL_SEND_BUSY |
855                DP_AUX_CH_CTL_DONE |
856                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
857                DP_AUX_CH_CTL_TIME_OUT_ERROR |
858                DP_AUX_CH_CTL_TIME_OUT_1600us |
859                DP_AUX_CH_CTL_RECEIVE_ERROR |
860                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
863 }
864
865 static int
866 intel_dp_aux_ch(struct intel_dp *intel_dp,
867                 const uint8_t *send, int send_bytes,
868                 uint8_t *recv, int recv_size)
869 {
870         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
871         struct drm_device *dev = intel_dig_port->base.base.dev;
872         struct drm_i915_private *dev_priv = to_i915(dev);
873         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874         uint32_t aux_clock_divider;
875         int i, ret, recv_bytes;
876         uint32_t status;
877         int try, clock = 0;
878         bool has_aux_irq = HAS_AUX_IRQ(dev);
879         bool vdd;
880
881         pps_lock(intel_dp);
882
883         /*
884          * We will be called with VDD already enabled for dpcd/edid/oui reads.
885          * In such cases we want to leave VDD enabled and it's up to upper layers
886          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
887          * ourselves.
888          */
889         vdd = edp_panel_vdd_on(intel_dp);
890
891         /* dp aux is extremely sensitive to irq latency, hence request the
892          * lowest possible wakeup latency and so prevent the cpu from going into
893          * deep sleep states.
894          */
895         pm_qos_update_request(&dev_priv->pm_qos, 0);
896
897         intel_dp_check_edp(intel_dp);
898
899         /* Try to wait for any previous AUX channel activity */
900         for (try = 0; try < 3; try++) {
901                 status = I915_READ_NOTRACE(ch_ctl);
902                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
903                         break;
904                 msleep(1);
905         }
906
907         if (try == 3) {
908                 static u32 last_status = -1;
909                 const u32 status = I915_READ(ch_ctl);
910
911                 if (status != last_status) {
912                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
913                              status);
914                         last_status = status;
915                 }
916
917                 ret = -EBUSY;
918                 goto out;
919         }
920
921         /* Only 5 data registers! */
922         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
923                 ret = -E2BIG;
924                 goto out;
925         }
926
927         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
929                                                           has_aux_irq,
930                                                           send_bytes,
931                                                           aux_clock_divider);
932
933                 /* Must try at least 3 times according to DP spec */
934                 for (try = 0; try < 5; try++) {
935                         /* Load the send data into the aux channel data registers */
936                         for (i = 0; i < send_bytes; i += 4)
937                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938                                            intel_dp_pack_aux(send + i,
939                                                              send_bytes - i));
940
941                         /* Send the command and wait for it to complete */
942                         I915_WRITE(ch_ctl, send_ctl);
943
944                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
945
946                         /* Clear done status and any errors */
947                         I915_WRITE(ch_ctl,
948                                    status |
949                                    DP_AUX_CH_CTL_DONE |
950                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
951                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
952
953                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954                                 continue;
955
956                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
957                          *   400us delay required for errors and timeouts
958                          *   Timeout errors from the HW already meet this
959                          *   requirement so skip to next iteration
960                          */
961                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962                                 usleep_range(400, 500);
963                                 continue;
964                         }
965                         if (status & DP_AUX_CH_CTL_DONE)
966                                 goto done;
967                 }
968         }
969
970         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972                 ret = -EBUSY;
973                 goto out;
974         }
975
976 done:
977         /* Check for timeout or receive error.
978          * Timeouts occur when the sink is not connected
979          */
980         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982                 ret = -EIO;
983                 goto out;
984         }
985
986         /* Timeouts occur when the device isn't connected, so they're
987          * "normal" -- don't fill the kernel log with these */
988         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990                 ret = -ETIMEDOUT;
991                 goto out;
992         }
993
994         /* Unload any bytes sent back from the other side */
995         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
996                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997
998         /*
999          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1000          * We have no idea of what happened so we return -EBUSY so
1001          * drm layer takes care for the necessary retries.
1002          */
1003         if (recv_bytes == 0 || recv_bytes > 20) {
1004                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1005                               recv_bytes);
1006                 /*
1007                  * FIXME: This patch was created on top of a series that
1008                  * organize the retries at drm level. There EBUSY should
1009                  * also take care for 1ms wait before retrying.
1010                  * That aux retries re-org is still needed and after that is
1011                  * merged we remove this sleep from here.
1012                  */
1013                 usleep_range(1000, 1500);
1014                 ret = -EBUSY;
1015                 goto out;
1016         }
1017
1018         if (recv_bytes > recv_size)
1019                 recv_bytes = recv_size;
1020
1021         for (i = 0; i < recv_bytes; i += 4)
1022                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023                                     recv + i, recv_bytes - i);
1024
1025         ret = recv_bytes;
1026 out:
1027         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1028
1029         if (vdd)
1030                 edp_panel_vdd_off(intel_dp, false);
1031
1032         pps_unlock(intel_dp);
1033
1034         return ret;
1035 }
1036
1037 #define BARE_ADDRESS_SIZE       3
1038 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1039 static ssize_t
1040 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041 {
1042         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1043         uint8_t txbuf[20], rxbuf[20];
1044         size_t txsize, rxsize;
1045         int ret;
1046
1047         txbuf[0] = (msg->request << 4) |
1048                 ((msg->address >> 16) & 0xf);
1049         txbuf[1] = (msg->address >> 8) & 0xff;
1050         txbuf[2] = msg->address & 0xff;
1051         txbuf[3] = msg->size - 1;
1052
1053         switch (msg->request & ~DP_AUX_I2C_MOT) {
1054         case DP_AUX_NATIVE_WRITE:
1055         case DP_AUX_I2C_WRITE:
1056         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058                 rxsize = 2; /* 0 or 1 data bytes */
1059
1060                 if (WARN_ON(txsize > 20))
1061                         return -E2BIG;
1062
1063                 WARN_ON(!msg->buffer != !msg->size);
1064
1065                 if (msg->buffer)
1066                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067
1068                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1069                 if (ret > 0) {
1070                         msg->reply = rxbuf[0] >> 4;
1071
1072                         if (ret > 1) {
1073                                 /* Number of bytes written in a short write. */
1074                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1075                         } else {
1076                                 /* Return payload size. */
1077                                 ret = msg->size;
1078                         }
1079                 }
1080                 break;
1081
1082         case DP_AUX_NATIVE_READ:
1083         case DP_AUX_I2C_READ:
1084                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085                 rxsize = msg->size + 1;
1086
1087                 if (WARN_ON(rxsize > 20))
1088                         return -E2BIG;
1089
1090                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1091                 if (ret > 0) {
1092                         msg->reply = rxbuf[0] >> 4;
1093                         /*
1094                          * Assume happy day, and copy the data. The caller is
1095                          * expected to check msg->reply before touching it.
1096                          *
1097                          * Return payload size.
1098                          */
1099                         ret--;
1100                         memcpy(msg->buffer, rxbuf + 1, ret);
1101                 }
1102                 break;
1103
1104         default:
1105                 ret = -EINVAL;
1106                 break;
1107         }
1108
1109         return ret;
1110 }
1111
1112 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1113                                        enum port port)
1114 {
1115         switch (port) {
1116         case PORT_B:
1117         case PORT_C:
1118         case PORT_D:
1119                 return DP_AUX_CH_CTL(port);
1120         default:
1121                 MISSING_CASE(port);
1122                 return DP_AUX_CH_CTL(PORT_B);
1123         }
1124 }
1125
1126 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1127                                         enum port port, int index)
1128 {
1129         switch (port) {
1130         case PORT_B:
1131         case PORT_C:
1132         case PORT_D:
1133                 return DP_AUX_CH_DATA(port, index);
1134         default:
1135                 MISSING_CASE(port);
1136                 return DP_AUX_CH_DATA(PORT_B, index);
1137         }
1138 }
1139
1140 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1141                                        enum port port)
1142 {
1143         switch (port) {
1144         case PORT_A:
1145                 return DP_AUX_CH_CTL(port);
1146         case PORT_B:
1147         case PORT_C:
1148         case PORT_D:
1149                 return PCH_DP_AUX_CH_CTL(port);
1150         default:
1151                 MISSING_CASE(port);
1152                 return DP_AUX_CH_CTL(PORT_A);
1153         }
1154 }
1155
1156 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1157                                         enum port port, int index)
1158 {
1159         switch (port) {
1160         case PORT_A:
1161                 return DP_AUX_CH_DATA(port, index);
1162         case PORT_B:
1163         case PORT_C:
1164         case PORT_D:
1165                 return PCH_DP_AUX_CH_DATA(port, index);
1166         default:
1167                 MISSING_CASE(port);
1168                 return DP_AUX_CH_DATA(PORT_A, index);
1169         }
1170 }
1171
1172 /*
1173  * On SKL we don't have Aux for port E so we rely
1174  * on VBT to set a proper alternate aux channel.
1175  */
1176 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1177 {
1178         const struct ddi_vbt_port_info *info =
1179                 &dev_priv->vbt.ddi_port_info[PORT_E];
1180
1181         switch (info->alternate_aux_channel) {
1182         case DP_AUX_A:
1183                 return PORT_A;
1184         case DP_AUX_B:
1185                 return PORT_B;
1186         case DP_AUX_C:
1187                 return PORT_C;
1188         case DP_AUX_D:
1189                 return PORT_D;
1190         default:
1191                 MISSING_CASE(info->alternate_aux_channel);
1192                 return PORT_A;
1193         }
1194 }
1195
1196 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1197                                        enum port port)
1198 {
1199         if (port == PORT_E)
1200                 port = skl_porte_aux_port(dev_priv);
1201
1202         switch (port) {
1203         case PORT_A:
1204         case PORT_B:
1205         case PORT_C:
1206         case PORT_D:
1207                 return DP_AUX_CH_CTL(port);
1208         default:
1209                 MISSING_CASE(port);
1210                 return DP_AUX_CH_CTL(PORT_A);
1211         }
1212 }
1213
1214 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1215                                         enum port port, int index)
1216 {
1217         if (port == PORT_E)
1218                 port = skl_porte_aux_port(dev_priv);
1219
1220         switch (port) {
1221         case PORT_A:
1222         case PORT_B:
1223         case PORT_C:
1224         case PORT_D:
1225                 return DP_AUX_CH_DATA(port, index);
1226         default:
1227                 MISSING_CASE(port);
1228                 return DP_AUX_CH_DATA(PORT_A, index);
1229         }
1230 }
1231
1232 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1233                                          enum port port)
1234 {
1235         if (INTEL_INFO(dev_priv)->gen >= 9)
1236                 return skl_aux_ctl_reg(dev_priv, port);
1237         else if (HAS_PCH_SPLIT(dev_priv))
1238                 return ilk_aux_ctl_reg(dev_priv, port);
1239         else
1240                 return g4x_aux_ctl_reg(dev_priv, port);
1241 }
1242
1243 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1244                                           enum port port, int index)
1245 {
1246         if (INTEL_INFO(dev_priv)->gen >= 9)
1247                 return skl_aux_data_reg(dev_priv, port, index);
1248         else if (HAS_PCH_SPLIT(dev_priv))
1249                 return ilk_aux_data_reg(dev_priv, port, index);
1250         else
1251                 return g4x_aux_data_reg(dev_priv, port, index);
1252 }
1253
1254 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1255 {
1256         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1257         enum port port = dp_to_dig_port(intel_dp)->port;
1258         int i;
1259
1260         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1261         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1262                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1263 }
1264
1265 static void
1266 intel_dp_aux_fini(struct intel_dp *intel_dp)
1267 {
1268         kfree(intel_dp->aux.name);
1269 }
1270
1271 static void
1272 intel_dp_aux_init(struct intel_dp *intel_dp)
1273 {
1274         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1275         enum port port = intel_dig_port->port;
1276
1277         intel_aux_reg_init(intel_dp);
1278         drm_dp_aux_init(&intel_dp->aux);
1279
1280         /* Failure to allocate our preferred name is not critical */
1281         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1282         intel_dp->aux.transfer = intel_dp_aux_transfer;
1283 }
1284
1285 static int
1286 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1287 {
1288         if (intel_dp->num_sink_rates) {
1289                 *sink_rates = intel_dp->sink_rates;
1290                 return intel_dp->num_sink_rates;
1291         }
1292
1293         *sink_rates = default_rates;
1294
1295         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1296 }
1297
1298 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1299 {
1300         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1301         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1302
1303         if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1304             IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1305                 return true;
1306         else
1307                 return false;
1308 }
1309
1310 static int
1311 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1312 {
1313         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1314         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1315         int size;
1316
1317         if (IS_BROXTON(dev_priv)) {
1318                 *source_rates = bxt_rates;
1319                 size = ARRAY_SIZE(bxt_rates);
1320         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1321                 *source_rates = skl_rates;
1322                 size = ARRAY_SIZE(skl_rates);
1323         } else {
1324                 *source_rates = default_rates;
1325                 size = ARRAY_SIZE(default_rates);
1326         }
1327
1328         /* This depends on the fact that 5.4 is last value in the array */
1329         if (!intel_dp_source_supports_hbr2(intel_dp))
1330                 size--;
1331
1332         return size;
1333 }
1334
1335 static void
1336 intel_dp_set_clock(struct intel_encoder *encoder,
1337                    struct intel_crtc_state *pipe_config)
1338 {
1339         struct drm_device *dev = encoder->base.dev;
1340         struct drm_i915_private *dev_priv = to_i915(dev);
1341         const struct dp_link_dpll *divisor = NULL;
1342         int i, count = 0;
1343
1344         if (IS_G4X(dev_priv)) {
1345                 divisor = gen4_dpll;
1346                 count = ARRAY_SIZE(gen4_dpll);
1347         } else if (HAS_PCH_SPLIT(dev_priv)) {
1348                 divisor = pch_dpll;
1349                 count = ARRAY_SIZE(pch_dpll);
1350         } else if (IS_CHERRYVIEW(dev_priv)) {
1351                 divisor = chv_dpll;
1352                 count = ARRAY_SIZE(chv_dpll);
1353         } else if (IS_VALLEYVIEW(dev_priv)) {
1354                 divisor = vlv_dpll;
1355                 count = ARRAY_SIZE(vlv_dpll);
1356         }
1357
1358         if (divisor && count) {
1359                 for (i = 0; i < count; i++) {
1360                         if (pipe_config->port_clock == divisor[i].clock) {
1361                                 pipe_config->dpll = divisor[i].dpll;
1362                                 pipe_config->clock_set = true;
1363                                 break;
1364                         }
1365                 }
1366         }
1367 }
1368
1369 static int intersect_rates(const int *source_rates, int source_len,
1370                            const int *sink_rates, int sink_len,
1371                            int *common_rates)
1372 {
1373         int i = 0, j = 0, k = 0;
1374
1375         while (i < source_len && j < sink_len) {
1376                 if (source_rates[i] == sink_rates[j]) {
1377                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1378                                 return k;
1379                         common_rates[k] = source_rates[i];
1380                         ++k;
1381                         ++i;
1382                         ++j;
1383                 } else if (source_rates[i] < sink_rates[j]) {
1384                         ++i;
1385                 } else {
1386                         ++j;
1387                 }
1388         }
1389         return k;
1390 }
1391
1392 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1393                                  int *common_rates)
1394 {
1395         const int *source_rates, *sink_rates;
1396         int source_len, sink_len;
1397
1398         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1399         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1400
1401         return intersect_rates(source_rates, source_len,
1402                                sink_rates, sink_len,
1403                                common_rates);
1404 }
1405
1406 static void snprintf_int_array(char *str, size_t len,
1407                                const int *array, int nelem)
1408 {
1409         int i;
1410
1411         str[0] = '\0';
1412
1413         for (i = 0; i < nelem; i++) {
1414                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1415                 if (r >= len)
1416                         return;
1417                 str += r;
1418                 len -= r;
1419         }
1420 }
1421
1422 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1423 {
1424         const int *source_rates, *sink_rates;
1425         int source_len, sink_len, common_len;
1426         int common_rates[DP_MAX_SUPPORTED_RATES];
1427         char str[128]; /* FIXME: too big for stack? */
1428
1429         if ((drm_debug & DRM_UT_KMS) == 0)
1430                 return;
1431
1432         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1433         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1434         DRM_DEBUG_KMS("source rates: %s\n", str);
1435
1436         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1437         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1438         DRM_DEBUG_KMS("sink rates: %s\n", str);
1439
1440         common_len = intel_dp_common_rates(intel_dp, common_rates);
1441         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1442         DRM_DEBUG_KMS("common rates: %s\n", str);
1443 }
1444
1445 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1446 {
1447         uint8_t rev;
1448         int len;
1449
1450         if ((drm_debug & DRM_UT_KMS) == 0)
1451                 return;
1452
1453         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1454               DP_DWN_STRM_PORT_PRESENT))
1455                 return;
1456
1457         len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1458         if (len < 0)
1459                 return;
1460
1461         DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1462 }
1463
1464 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1465 {
1466         uint8_t rev[2];
1467         int len;
1468
1469         if ((drm_debug & DRM_UT_KMS) == 0)
1470                 return;
1471
1472         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1473               DP_DWN_STRM_PORT_PRESENT))
1474                 return;
1475
1476         len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1477         if (len < 0)
1478                 return;
1479
1480         DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1481 }
1482
1483 static int rate_to_index(int find, const int *rates)
1484 {
1485         int i = 0;
1486
1487         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1488                 if (find == rates[i])
1489                         break;
1490
1491         return i;
1492 }
1493
1494 int
1495 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1496 {
1497         int rates[DP_MAX_SUPPORTED_RATES] = {};
1498         int len;
1499
1500         len = intel_dp_common_rates(intel_dp, rates);
1501         if (WARN_ON(len <= 0))
1502                 return 162000;
1503
1504         return rates[len - 1];
1505 }
1506
1507 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1508 {
1509         return rate_to_index(rate, intel_dp->sink_rates);
1510 }
1511
1512 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1513                            uint8_t *link_bw, uint8_t *rate_select)
1514 {
1515         if (intel_dp->num_sink_rates) {
1516                 *link_bw = 0;
1517                 *rate_select =
1518                         intel_dp_rate_select(intel_dp, port_clock);
1519         } else {
1520                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1521                 *rate_select = 0;
1522         }
1523 }
1524
1525 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1526                                 struct intel_crtc_state *pipe_config)
1527 {
1528         int bpp, bpc;
1529
1530         bpp = pipe_config->pipe_bpp;
1531         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1532
1533         if (bpc > 0)
1534                 bpp = min(bpp, 3*bpc);
1535
1536         return bpp;
1537 }
1538
1539 bool
1540 intel_dp_compute_config(struct intel_encoder *encoder,
1541                         struct intel_crtc_state *pipe_config,
1542                         struct drm_connector_state *conn_state)
1543 {
1544         struct drm_device *dev = encoder->base.dev;
1545         struct drm_i915_private *dev_priv = to_i915(dev);
1546         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1547         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1548         enum port port = dp_to_dig_port(intel_dp)->port;
1549         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1550         struct intel_connector *intel_connector = intel_dp->attached_connector;
1551         int lane_count, clock;
1552         int min_lane_count = 1;
1553         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1554         /* Conveniently, the link BW constants become indices with a shift...*/
1555         int min_clock = 0;
1556         int max_clock;
1557         int bpp, mode_rate;
1558         int link_avail, link_clock;
1559         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1560         int common_len;
1561         uint8_t link_bw, rate_select;
1562
1563         common_len = intel_dp_common_rates(intel_dp, common_rates);
1564
1565         /* No common link rates between source and sink */
1566         WARN_ON(common_len <= 0);
1567
1568         max_clock = common_len - 1;
1569
1570         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1571                 pipe_config->has_pch_encoder = true;
1572
1573         pipe_config->has_drrs = false;
1574         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1575
1576         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1577                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1578                                        adjusted_mode);
1579
1580                 if (INTEL_INFO(dev)->gen >= 9) {
1581                         int ret;
1582                         ret = skl_update_scaler_crtc(pipe_config);
1583                         if (ret)
1584                                 return ret;
1585                 }
1586
1587                 if (HAS_GMCH_DISPLAY(dev_priv))
1588                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1589                                                  intel_connector->panel.fitting_mode);
1590                 else
1591                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1592                                                 intel_connector->panel.fitting_mode);
1593         }
1594
1595         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1596                 return false;
1597
1598         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1599                       "max bw %d pixel clock %iKHz\n",
1600                       max_lane_count, common_rates[max_clock],
1601                       adjusted_mode->crtc_clock);
1602
1603         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1604          * bpc in between. */
1605         bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1606         if (is_edp(intel_dp)) {
1607
1608                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1609                 if (intel_connector->base.display_info.bpc == 0 &&
1610                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1611                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1612                                       dev_priv->vbt.edp.bpp);
1613                         bpp = dev_priv->vbt.edp.bpp;
1614                 }
1615
1616                 /*
1617                  * Use the maximum clock and number of lanes the eDP panel
1618                  * advertizes being capable of. The panels are generally
1619                  * designed to support only a single clock and lane
1620                  * configuration, and typically these values correspond to the
1621                  * native resolution of the panel.
1622                  */
1623                 min_lane_count = max_lane_count;
1624                 min_clock = max_clock;
1625         }
1626
1627         for (; bpp >= 6*3; bpp -= 2*3) {
1628                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1629                                                    bpp);
1630
1631                 for (clock = min_clock; clock <= max_clock; clock++) {
1632                         for (lane_count = min_lane_count;
1633                                 lane_count <= max_lane_count;
1634                                 lane_count <<= 1) {
1635
1636                                 link_clock = common_rates[clock];
1637                                 link_avail = intel_dp_max_data_rate(link_clock,
1638                                                                     lane_count);
1639
1640                                 if (mode_rate <= link_avail) {
1641                                         goto found;
1642                                 }
1643                         }
1644                 }
1645         }
1646
1647         return false;
1648
1649 found:
1650         if (intel_dp->color_range_auto) {
1651                 /*
1652                  * See:
1653                  * CEA-861-E - 5.1 Default Encoding Parameters
1654                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1655                  */
1656                 pipe_config->limited_color_range =
1657                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1658         } else {
1659                 pipe_config->limited_color_range =
1660                         intel_dp->limited_color_range;
1661         }
1662
1663         pipe_config->lane_count = lane_count;
1664
1665         pipe_config->pipe_bpp = bpp;
1666         pipe_config->port_clock = common_rates[clock];
1667
1668         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1669                               &link_bw, &rate_select);
1670
1671         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1672                       link_bw, rate_select, pipe_config->lane_count,
1673                       pipe_config->port_clock, bpp);
1674         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1675                       mode_rate, link_avail);
1676
1677         intel_link_compute_m_n(bpp, lane_count,
1678                                adjusted_mode->crtc_clock,
1679                                pipe_config->port_clock,
1680                                &pipe_config->dp_m_n);
1681
1682         if (intel_connector->panel.downclock_mode != NULL &&
1683                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1684                         pipe_config->has_drrs = true;
1685                         intel_link_compute_m_n(bpp, lane_count,
1686                                 intel_connector->panel.downclock_mode->clock,
1687                                 pipe_config->port_clock,
1688                                 &pipe_config->dp_m2_n2);
1689         }
1690
1691         /*
1692          * DPLL0 VCO may need to be adjusted to get the correct
1693          * clock for eDP. This will affect cdclk as well.
1694          */
1695         if (is_edp(intel_dp) &&
1696             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1697                 int vco;
1698
1699                 switch (pipe_config->port_clock / 2) {
1700                 case 108000:
1701                 case 216000:
1702                         vco = 8640000;
1703                         break;
1704                 default:
1705                         vco = 8100000;
1706                         break;
1707                 }
1708
1709                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1710         }
1711
1712         if (!HAS_DDI(dev_priv))
1713                 intel_dp_set_clock(encoder, pipe_config);
1714
1715         return true;
1716 }
1717
1718 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1719                               int link_rate, uint8_t lane_count,
1720                               bool link_mst)
1721 {
1722         intel_dp->link_rate = link_rate;
1723         intel_dp->lane_count = lane_count;
1724         intel_dp->link_mst = link_mst;
1725 }
1726
1727 static void intel_dp_prepare(struct intel_encoder *encoder,
1728                              struct intel_crtc_state *pipe_config)
1729 {
1730         struct drm_device *dev = encoder->base.dev;
1731         struct drm_i915_private *dev_priv = to_i915(dev);
1732         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1733         enum port port = dp_to_dig_port(intel_dp)->port;
1734         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1735         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1736
1737         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1738                                  pipe_config->lane_count,
1739                                  intel_crtc_has_type(pipe_config,
1740                                                      INTEL_OUTPUT_DP_MST));
1741
1742         /*
1743          * There are four kinds of DP registers:
1744          *
1745          *      IBX PCH
1746          *      SNB CPU
1747          *      IVB CPU
1748          *      CPT PCH
1749          *
1750          * IBX PCH and CPU are the same for almost everything,
1751          * except that the CPU DP PLL is configured in this
1752          * register
1753          *
1754          * CPT PCH is quite different, having many bits moved
1755          * to the TRANS_DP_CTL register instead. That
1756          * configuration happens (oddly) in ironlake_pch_enable
1757          */
1758
1759         /* Preserve the BIOS-computed detected bit. This is
1760          * supposed to be read-only.
1761          */
1762         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1763
1764         /* Handle DP bits in common between all three register formats */
1765         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1766         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1767
1768         /* Split out the IBX/CPU vs CPT settings */
1769
1770         if (IS_GEN7(dev_priv) && port == PORT_A) {
1771                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1772                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1773                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1774                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1775                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1776
1777                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1778                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1779
1780                 intel_dp->DP |= crtc->pipe << 29;
1781         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1782                 u32 trans_dp;
1783
1784                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1785
1786                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1787                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1788                         trans_dp |= TRANS_DP_ENH_FRAMING;
1789                 else
1790                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1791                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1792         } else {
1793                 if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
1794                     !IS_CHERRYVIEW(dev_priv) &&
1795                     pipe_config->limited_color_range)
1796                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1797
1798                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1799                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1800                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1801                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1802                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1803
1804                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1805                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1806
1807                 if (IS_CHERRYVIEW(dev_priv))
1808                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1809                 else if (crtc->pipe == PIPE_B)
1810                         intel_dp->DP |= DP_PIPEB_SELECT;
1811         }
1812 }
1813
1814 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1815 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1816
1817 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1818 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1819
1820 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1821 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1822
1823 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1824                                    struct intel_dp *intel_dp);
1825
1826 static void wait_panel_status(struct intel_dp *intel_dp,
1827                                        u32 mask,
1828                                        u32 value)
1829 {
1830         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1831         struct drm_i915_private *dev_priv = to_i915(dev);
1832         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1833
1834         lockdep_assert_held(&dev_priv->pps_mutex);
1835
1836         intel_pps_verify_state(dev_priv, intel_dp);
1837
1838         pp_stat_reg = _pp_stat_reg(intel_dp);
1839         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1840
1841         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1842                         mask, value,
1843                         I915_READ(pp_stat_reg),
1844                         I915_READ(pp_ctrl_reg));
1845
1846         if (intel_wait_for_register(dev_priv,
1847                                     pp_stat_reg, mask, value,
1848                                     5000))
1849                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1850                                 I915_READ(pp_stat_reg),
1851                                 I915_READ(pp_ctrl_reg));
1852
1853         DRM_DEBUG_KMS("Wait complete\n");
1854 }
1855
1856 static void wait_panel_on(struct intel_dp *intel_dp)
1857 {
1858         DRM_DEBUG_KMS("Wait for panel power on\n");
1859         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1860 }
1861
1862 static void wait_panel_off(struct intel_dp *intel_dp)
1863 {
1864         DRM_DEBUG_KMS("Wait for panel power off time\n");
1865         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1866 }
1867
1868 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1869 {
1870         ktime_t panel_power_on_time;
1871         s64 panel_power_off_duration;
1872
1873         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1874
1875         /* take the difference of currrent time and panel power off time
1876          * and then make panel wait for t11_t12 if needed. */
1877         panel_power_on_time = ktime_get_boottime();
1878         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1879
1880         /* When we disable the VDD override bit last we have to do the manual
1881          * wait. */
1882         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1883                 wait_remaining_ms_from_jiffies(jiffies,
1884                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1885
1886         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1887 }
1888
1889 static void wait_backlight_on(struct intel_dp *intel_dp)
1890 {
1891         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1892                                        intel_dp->backlight_on_delay);
1893 }
1894
1895 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1896 {
1897         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1898                                        intel_dp->backlight_off_delay);
1899 }
1900
1901 /* Read the current pp_control value, unlocking the register if it
1902  * is locked
1903  */
1904
1905 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1906 {
1907         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1908         struct drm_i915_private *dev_priv = to_i915(dev);
1909         u32 control;
1910
1911         lockdep_assert_held(&dev_priv->pps_mutex);
1912
1913         control = I915_READ(_pp_ctrl_reg(intel_dp));
1914         if (WARN_ON(!HAS_DDI(dev_priv) &&
1915                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1916                 control &= ~PANEL_UNLOCK_MASK;
1917                 control |= PANEL_UNLOCK_REGS;
1918         }
1919         return control;
1920 }
1921
1922 /*
1923  * Must be paired with edp_panel_vdd_off().
1924  * Must hold pps_mutex around the whole on/off sequence.
1925  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1926  */
1927 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1928 {
1929         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1930         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1931         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1932         struct drm_i915_private *dev_priv = to_i915(dev);
1933         enum intel_display_power_domain power_domain;
1934         u32 pp;
1935         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1936         bool need_to_disable = !intel_dp->want_panel_vdd;
1937
1938         lockdep_assert_held(&dev_priv->pps_mutex);
1939
1940         if (!is_edp(intel_dp))
1941                 return false;
1942
1943         cancel_delayed_work(&intel_dp->panel_vdd_work);
1944         intel_dp->want_panel_vdd = true;
1945
1946         if (edp_have_panel_vdd(intel_dp))
1947                 return need_to_disable;
1948
1949         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1950         intel_display_power_get(dev_priv, power_domain);
1951
1952         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1953                       port_name(intel_dig_port->port));
1954
1955         if (!edp_have_panel_power(intel_dp))
1956                 wait_panel_power_cycle(intel_dp);
1957
1958         pp = ironlake_get_pp_control(intel_dp);
1959         pp |= EDP_FORCE_VDD;
1960
1961         pp_stat_reg = _pp_stat_reg(intel_dp);
1962         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1963
1964         I915_WRITE(pp_ctrl_reg, pp);
1965         POSTING_READ(pp_ctrl_reg);
1966         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1967                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1968         /*
1969          * If the panel wasn't on, delay before accessing aux channel
1970          */
1971         if (!edp_have_panel_power(intel_dp)) {
1972                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1973                               port_name(intel_dig_port->port));
1974                 msleep(intel_dp->panel_power_up_delay);
1975         }
1976
1977         return need_to_disable;
1978 }
1979
1980 /*
1981  * Must be paired with intel_edp_panel_vdd_off() or
1982  * intel_edp_panel_off().
1983  * Nested calls to these functions are not allowed since
1984  * we drop the lock. Caller must use some higher level
1985  * locking to prevent nested calls from other threads.
1986  */
1987 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1988 {
1989         bool vdd;
1990
1991         if (!is_edp(intel_dp))
1992                 return;
1993
1994         pps_lock(intel_dp);
1995         vdd = edp_panel_vdd_on(intel_dp);
1996         pps_unlock(intel_dp);
1997
1998         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1999              port_name(dp_to_dig_port(intel_dp)->port));
2000 }
2001
2002 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2003 {
2004         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2005         struct drm_i915_private *dev_priv = to_i915(dev);
2006         struct intel_digital_port *intel_dig_port =
2007                 dp_to_dig_port(intel_dp);
2008         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2009         enum intel_display_power_domain power_domain;
2010         u32 pp;
2011         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2012
2013         lockdep_assert_held(&dev_priv->pps_mutex);
2014
2015         WARN_ON(intel_dp->want_panel_vdd);
2016
2017         if (!edp_have_panel_vdd(intel_dp))
2018                 return;
2019
2020         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2021                       port_name(intel_dig_port->port));
2022
2023         pp = ironlake_get_pp_control(intel_dp);
2024         pp &= ~EDP_FORCE_VDD;
2025
2026         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2027         pp_stat_reg = _pp_stat_reg(intel_dp);
2028
2029         I915_WRITE(pp_ctrl_reg, pp);
2030         POSTING_READ(pp_ctrl_reg);
2031
2032         /* Make sure sequencer is idle before allowing subsequent activity */
2033         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2034         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2035
2036         if ((pp & PANEL_POWER_ON) == 0)
2037                 intel_dp->panel_power_off_time = ktime_get_boottime();
2038
2039         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2040         intel_display_power_put(dev_priv, power_domain);
2041 }
2042
2043 static void edp_panel_vdd_work(struct work_struct *__work)
2044 {
2045         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2046                                                  struct intel_dp, panel_vdd_work);
2047
2048         pps_lock(intel_dp);
2049         if (!intel_dp->want_panel_vdd)
2050                 edp_panel_vdd_off_sync(intel_dp);
2051         pps_unlock(intel_dp);
2052 }
2053
2054 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2055 {
2056         unsigned long delay;
2057
2058         /*
2059          * Queue the timer to fire a long time from now (relative to the power
2060          * down delay) to keep the panel power up across a sequence of
2061          * operations.
2062          */
2063         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2064         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2065 }
2066
2067 /*
2068  * Must be paired with edp_panel_vdd_on().
2069  * Must hold pps_mutex around the whole on/off sequence.
2070  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2071  */
2072 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2073 {
2074         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2075
2076         lockdep_assert_held(&dev_priv->pps_mutex);
2077
2078         if (!is_edp(intel_dp))
2079                 return;
2080
2081         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2082              port_name(dp_to_dig_port(intel_dp)->port));
2083
2084         intel_dp->want_panel_vdd = false;
2085
2086         if (sync)
2087                 edp_panel_vdd_off_sync(intel_dp);
2088         else
2089                 edp_panel_vdd_schedule_off(intel_dp);
2090 }
2091
2092 static void edp_panel_on(struct intel_dp *intel_dp)
2093 {
2094         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2095         struct drm_i915_private *dev_priv = to_i915(dev);
2096         u32 pp;
2097         i915_reg_t pp_ctrl_reg;
2098
2099         lockdep_assert_held(&dev_priv->pps_mutex);
2100
2101         if (!is_edp(intel_dp))
2102                 return;
2103
2104         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2105                       port_name(dp_to_dig_port(intel_dp)->port));
2106
2107         if (WARN(edp_have_panel_power(intel_dp),
2108                  "eDP port %c panel power already on\n",
2109                  port_name(dp_to_dig_port(intel_dp)->port)))
2110                 return;
2111
2112         wait_panel_power_cycle(intel_dp);
2113
2114         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2115         pp = ironlake_get_pp_control(intel_dp);
2116         if (IS_GEN5(dev_priv)) {
2117                 /* ILK workaround: disable reset around power sequence */
2118                 pp &= ~PANEL_POWER_RESET;
2119                 I915_WRITE(pp_ctrl_reg, pp);
2120                 POSTING_READ(pp_ctrl_reg);
2121         }
2122
2123         pp |= PANEL_POWER_ON;
2124         if (!IS_GEN5(dev_priv))
2125                 pp |= PANEL_POWER_RESET;
2126
2127         I915_WRITE(pp_ctrl_reg, pp);
2128         POSTING_READ(pp_ctrl_reg);
2129
2130         wait_panel_on(intel_dp);
2131         intel_dp->last_power_on = jiffies;
2132
2133         if (IS_GEN5(dev_priv)) {
2134                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2135                 I915_WRITE(pp_ctrl_reg, pp);
2136                 POSTING_READ(pp_ctrl_reg);
2137         }
2138 }
2139
2140 void intel_edp_panel_on(struct intel_dp *intel_dp)
2141 {
2142         if (!is_edp(intel_dp))
2143                 return;
2144
2145         pps_lock(intel_dp);
2146         edp_panel_on(intel_dp);
2147         pps_unlock(intel_dp);
2148 }
2149
2150
2151 static void edp_panel_off(struct intel_dp *intel_dp)
2152 {
2153         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2154         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2155         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2156         struct drm_i915_private *dev_priv = to_i915(dev);
2157         enum intel_display_power_domain power_domain;
2158         u32 pp;
2159         i915_reg_t pp_ctrl_reg;
2160
2161         lockdep_assert_held(&dev_priv->pps_mutex);
2162
2163         if (!is_edp(intel_dp))
2164                 return;
2165
2166         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2167                       port_name(dp_to_dig_port(intel_dp)->port));
2168
2169         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2170              port_name(dp_to_dig_port(intel_dp)->port));
2171
2172         pp = ironlake_get_pp_control(intel_dp);
2173         /* We need to switch off panel power _and_ force vdd, for otherwise some
2174          * panels get very unhappy and cease to work. */
2175         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2176                 EDP_BLC_ENABLE);
2177
2178         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2179
2180         intel_dp->want_panel_vdd = false;
2181
2182         I915_WRITE(pp_ctrl_reg, pp);
2183         POSTING_READ(pp_ctrl_reg);
2184
2185         intel_dp->panel_power_off_time = ktime_get_boottime();
2186         wait_panel_off(intel_dp);
2187
2188         /* We got a reference when we enabled the VDD. */
2189         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2190         intel_display_power_put(dev_priv, power_domain);
2191 }
2192
2193 void intel_edp_panel_off(struct intel_dp *intel_dp)
2194 {
2195         if (!is_edp(intel_dp))
2196                 return;
2197
2198         pps_lock(intel_dp);
2199         edp_panel_off(intel_dp);
2200         pps_unlock(intel_dp);
2201 }
2202
2203 /* Enable backlight in the panel power control. */
2204 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2205 {
2206         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2207         struct drm_device *dev = intel_dig_port->base.base.dev;
2208         struct drm_i915_private *dev_priv = to_i915(dev);
2209         u32 pp;
2210         i915_reg_t pp_ctrl_reg;
2211
2212         /*
2213          * If we enable the backlight right away following a panel power
2214          * on, we may see slight flicker as the panel syncs with the eDP
2215          * link.  So delay a bit to make sure the image is solid before
2216          * allowing it to appear.
2217          */
2218         wait_backlight_on(intel_dp);
2219
2220         pps_lock(intel_dp);
2221
2222         pp = ironlake_get_pp_control(intel_dp);
2223         pp |= EDP_BLC_ENABLE;
2224
2225         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2226
2227         I915_WRITE(pp_ctrl_reg, pp);
2228         POSTING_READ(pp_ctrl_reg);
2229
2230         pps_unlock(intel_dp);
2231 }
2232
2233 /* Enable backlight PWM and backlight PP control. */
2234 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2235 {
2236         if (!is_edp(intel_dp))
2237                 return;
2238
2239         DRM_DEBUG_KMS("\n");
2240
2241         intel_panel_enable_backlight(intel_dp->attached_connector);
2242         _intel_edp_backlight_on(intel_dp);
2243 }
2244
2245 /* Disable backlight in the panel power control. */
2246 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2247 {
2248         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2249         struct drm_i915_private *dev_priv = to_i915(dev);
2250         u32 pp;
2251         i915_reg_t pp_ctrl_reg;
2252
2253         if (!is_edp(intel_dp))
2254                 return;
2255
2256         pps_lock(intel_dp);
2257
2258         pp = ironlake_get_pp_control(intel_dp);
2259         pp &= ~EDP_BLC_ENABLE;
2260
2261         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2262
2263         I915_WRITE(pp_ctrl_reg, pp);
2264         POSTING_READ(pp_ctrl_reg);
2265
2266         pps_unlock(intel_dp);
2267
2268         intel_dp->last_backlight_off = jiffies;
2269         edp_wait_backlight_off(intel_dp);
2270 }
2271
2272 /* Disable backlight PP control and backlight PWM. */
2273 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2274 {
2275         if (!is_edp(intel_dp))
2276                 return;
2277
2278         DRM_DEBUG_KMS("\n");
2279
2280         _intel_edp_backlight_off(intel_dp);
2281         intel_panel_disable_backlight(intel_dp->attached_connector);
2282 }
2283
2284 /*
2285  * Hook for controlling the panel power control backlight through the bl_power
2286  * sysfs attribute. Take care to handle multiple calls.
2287  */
2288 static void intel_edp_backlight_power(struct intel_connector *connector,
2289                                       bool enable)
2290 {
2291         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2292         bool is_enabled;
2293
2294         pps_lock(intel_dp);
2295         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2296         pps_unlock(intel_dp);
2297
2298         if (is_enabled == enable)
2299                 return;
2300
2301         DRM_DEBUG_KMS("panel power control backlight %s\n",
2302                       enable ? "enable" : "disable");
2303
2304         if (enable)
2305                 _intel_edp_backlight_on(intel_dp);
2306         else
2307                 _intel_edp_backlight_off(intel_dp);
2308 }
2309
2310 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2311 {
2312         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2313         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2314         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2315
2316         I915_STATE_WARN(cur_state != state,
2317                         "DP port %c state assertion failure (expected %s, current %s)\n",
2318                         port_name(dig_port->port),
2319                         onoff(state), onoff(cur_state));
2320 }
2321 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2322
2323 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2324 {
2325         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2326
2327         I915_STATE_WARN(cur_state != state,
2328                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2329                         onoff(state), onoff(cur_state));
2330 }
2331 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2332 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2333
2334 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2335                                 struct intel_crtc_state *pipe_config)
2336 {
2337         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2338         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2339
2340         assert_pipe_disabled(dev_priv, crtc->pipe);
2341         assert_dp_port_disabled(intel_dp);
2342         assert_edp_pll_disabled(dev_priv);
2343
2344         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2345                       pipe_config->port_clock);
2346
2347         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2348
2349         if (pipe_config->port_clock == 162000)
2350                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2351         else
2352                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2353
2354         I915_WRITE(DP_A, intel_dp->DP);
2355         POSTING_READ(DP_A);
2356         udelay(500);
2357
2358         /*
2359          * [DevILK] Work around required when enabling DP PLL
2360          * while a pipe is enabled going to FDI:
2361          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2362          * 2. Program DP PLL enable
2363          */
2364         if (IS_GEN5(dev_priv))
2365                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2366
2367         intel_dp->DP |= DP_PLL_ENABLE;
2368
2369         I915_WRITE(DP_A, intel_dp->DP);
2370         POSTING_READ(DP_A);
2371         udelay(200);
2372 }
2373
2374 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2375 {
2376         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2377         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2378         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2379
2380         assert_pipe_disabled(dev_priv, crtc->pipe);
2381         assert_dp_port_disabled(intel_dp);
2382         assert_edp_pll_enabled(dev_priv);
2383
2384         DRM_DEBUG_KMS("disabling eDP PLL\n");
2385
2386         intel_dp->DP &= ~DP_PLL_ENABLE;
2387
2388         I915_WRITE(DP_A, intel_dp->DP);
2389         POSTING_READ(DP_A);
2390         udelay(200);
2391 }
2392
2393 /* If the sink supports it, try to set the power state appropriately */
2394 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2395 {
2396         int ret, i;
2397
2398         /* Should have a valid DPCD by this point */
2399         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2400                 return;
2401
2402         if (mode != DRM_MODE_DPMS_ON) {
2403                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2404                                          DP_SET_POWER_D3);
2405         } else {
2406                 /*
2407                  * When turning on, we need to retry for 1ms to give the sink
2408                  * time to wake up.
2409                  */
2410                 for (i = 0; i < 3; i++) {
2411                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2412                                                  DP_SET_POWER_D0);
2413                         if (ret == 1)
2414                                 break;
2415                         msleep(1);
2416                 }
2417         }
2418
2419         if (ret != 1)
2420                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2421                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2422 }
2423
2424 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2425                                   enum pipe *pipe)
2426 {
2427         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2428         enum port port = dp_to_dig_port(intel_dp)->port;
2429         struct drm_device *dev = encoder->base.dev;
2430         struct drm_i915_private *dev_priv = to_i915(dev);
2431         enum intel_display_power_domain power_domain;
2432         u32 tmp;
2433         bool ret;
2434
2435         power_domain = intel_display_port_power_domain(encoder);
2436         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2437                 return false;
2438
2439         ret = false;
2440
2441         tmp = I915_READ(intel_dp->output_reg);
2442
2443         if (!(tmp & DP_PORT_EN))
2444                 goto out;
2445
2446         if (IS_GEN7(dev_priv) && port == PORT_A) {
2447                 *pipe = PORT_TO_PIPE_CPT(tmp);
2448         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2449                 enum pipe p;
2450
2451                 for_each_pipe(dev_priv, p) {
2452                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2453                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2454                                 *pipe = p;
2455                                 ret = true;
2456
2457                                 goto out;
2458                         }
2459                 }
2460
2461                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2462                               i915_mmio_reg_offset(intel_dp->output_reg));
2463         } else if (IS_CHERRYVIEW(dev_priv)) {
2464                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2465         } else {
2466                 *pipe = PORT_TO_PIPE(tmp);
2467         }
2468
2469         ret = true;
2470
2471 out:
2472         intel_display_power_put(dev_priv, power_domain);
2473
2474         return ret;
2475 }
2476
2477 static void intel_dp_get_config(struct intel_encoder *encoder,
2478                                 struct intel_crtc_state *pipe_config)
2479 {
2480         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2481         u32 tmp, flags = 0;
2482         struct drm_device *dev = encoder->base.dev;
2483         struct drm_i915_private *dev_priv = to_i915(dev);
2484         enum port port = dp_to_dig_port(intel_dp)->port;
2485         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2486
2487         tmp = I915_READ(intel_dp->output_reg);
2488
2489         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2490
2491         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2492                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2493
2494                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2495                         flags |= DRM_MODE_FLAG_PHSYNC;
2496                 else
2497                         flags |= DRM_MODE_FLAG_NHSYNC;
2498
2499                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2500                         flags |= DRM_MODE_FLAG_PVSYNC;
2501                 else
2502                         flags |= DRM_MODE_FLAG_NVSYNC;
2503         } else {
2504                 if (tmp & DP_SYNC_HS_HIGH)
2505                         flags |= DRM_MODE_FLAG_PHSYNC;
2506                 else
2507                         flags |= DRM_MODE_FLAG_NHSYNC;
2508
2509                 if (tmp & DP_SYNC_VS_HIGH)
2510                         flags |= DRM_MODE_FLAG_PVSYNC;
2511                 else
2512                         flags |= DRM_MODE_FLAG_NVSYNC;
2513         }
2514
2515         pipe_config->base.adjusted_mode.flags |= flags;
2516
2517         if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
2518             !IS_CHERRYVIEW(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2519                 pipe_config->limited_color_range = true;
2520
2521         pipe_config->lane_count =
2522                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2523
2524         intel_dp_get_m_n(crtc, pipe_config);
2525
2526         if (port == PORT_A) {
2527                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2528                         pipe_config->port_clock = 162000;
2529                 else
2530                         pipe_config->port_clock = 270000;
2531         }
2532
2533         pipe_config->base.adjusted_mode.crtc_clock =
2534                 intel_dotclock_calculate(pipe_config->port_clock,
2535                                          &pipe_config->dp_m_n);
2536
2537         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2538             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2539                 /*
2540                  * This is a big fat ugly hack.
2541                  *
2542                  * Some machines in UEFI boot mode provide us a VBT that has 18
2543                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2544                  * unknown we fail to light up. Yet the same BIOS boots up with
2545                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2546                  * max, not what it tells us to use.
2547                  *
2548                  * Note: This will still be broken if the eDP panel is not lit
2549                  * up by the BIOS, and thus we can't get the mode at module
2550                  * load.
2551                  */
2552                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2553                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2554                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2555         }
2556 }
2557
2558 static void intel_disable_dp(struct intel_encoder *encoder,
2559                              struct intel_crtc_state *old_crtc_state,
2560                              struct drm_connector_state *old_conn_state)
2561 {
2562         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2563         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2564
2565         if (old_crtc_state->has_audio)
2566                 intel_audio_codec_disable(encoder);
2567
2568         if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2569                 intel_psr_disable(intel_dp);
2570
2571         /* Make sure the panel is off before trying to change the mode. But also
2572          * ensure that we have vdd while we switch off the panel. */
2573         intel_edp_panel_vdd_on(intel_dp);
2574         intel_edp_backlight_off(intel_dp);
2575         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2576         intel_edp_panel_off(intel_dp);
2577
2578         /* disable the port before the pipe on g4x */
2579         if (INTEL_GEN(dev_priv) < 5)
2580                 intel_dp_link_down(intel_dp);
2581 }
2582
2583 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2584                                 struct intel_crtc_state *old_crtc_state,
2585                                 struct drm_connector_state *old_conn_state)
2586 {
2587         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2588         enum port port = dp_to_dig_port(intel_dp)->port;
2589
2590         intel_dp_link_down(intel_dp);
2591
2592         /* Only ilk+ has port A */
2593         if (port == PORT_A)
2594                 ironlake_edp_pll_off(intel_dp);
2595 }
2596
2597 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2598                                 struct intel_crtc_state *old_crtc_state,
2599                                 struct drm_connector_state *old_conn_state)
2600 {
2601         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2602
2603         intel_dp_link_down(intel_dp);
2604 }
2605
2606 static void chv_post_disable_dp(struct intel_encoder *encoder,
2607                                 struct intel_crtc_state *old_crtc_state,
2608                                 struct drm_connector_state *old_conn_state)
2609 {
2610         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2611         struct drm_device *dev = encoder->base.dev;
2612         struct drm_i915_private *dev_priv = to_i915(dev);
2613
2614         intel_dp_link_down(intel_dp);
2615
2616         mutex_lock(&dev_priv->sb_lock);
2617
2618         /* Assert data lane reset */
2619         chv_data_lane_soft_reset(encoder, true);
2620
2621         mutex_unlock(&dev_priv->sb_lock);
2622 }
2623
2624 static void
2625 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2626                          uint32_t *DP,
2627                          uint8_t dp_train_pat)
2628 {
2629         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2630         struct drm_device *dev = intel_dig_port->base.base.dev;
2631         struct drm_i915_private *dev_priv = to_i915(dev);
2632         enum port port = intel_dig_port->port;
2633
2634         if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2635                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2636                               dp_train_pat & DP_TRAINING_PATTERN_MASK);
2637
2638         if (HAS_DDI(dev_priv)) {
2639                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2640
2641                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2642                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2643                 else
2644                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2645
2646                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2647                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2648                 case DP_TRAINING_PATTERN_DISABLE:
2649                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2650
2651                         break;
2652                 case DP_TRAINING_PATTERN_1:
2653                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2654                         break;
2655                 case DP_TRAINING_PATTERN_2:
2656                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2657                         break;
2658                 case DP_TRAINING_PATTERN_3:
2659                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2660                         break;
2661                 }
2662                 I915_WRITE(DP_TP_CTL(port), temp);
2663
2664         } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2665                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2666                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2667
2668                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2669                 case DP_TRAINING_PATTERN_DISABLE:
2670                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2671                         break;
2672                 case DP_TRAINING_PATTERN_1:
2673                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2674                         break;
2675                 case DP_TRAINING_PATTERN_2:
2676                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2677                         break;
2678                 case DP_TRAINING_PATTERN_3:
2679                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2680                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2681                         break;
2682                 }
2683
2684         } else {
2685                 if (IS_CHERRYVIEW(dev_priv))
2686                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2687                 else
2688                         *DP &= ~DP_LINK_TRAIN_MASK;
2689
2690                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2691                 case DP_TRAINING_PATTERN_DISABLE:
2692                         *DP |= DP_LINK_TRAIN_OFF;
2693                         break;
2694                 case DP_TRAINING_PATTERN_1:
2695                         *DP |= DP_LINK_TRAIN_PAT_1;
2696                         break;
2697                 case DP_TRAINING_PATTERN_2:
2698                         *DP |= DP_LINK_TRAIN_PAT_2;
2699                         break;
2700                 case DP_TRAINING_PATTERN_3:
2701                         if (IS_CHERRYVIEW(dev_priv)) {
2702                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2703                         } else {
2704                                 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2705                                 *DP |= DP_LINK_TRAIN_PAT_2;
2706                         }
2707                         break;
2708                 }
2709         }
2710 }
2711
2712 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2713                                  struct intel_crtc_state *old_crtc_state)
2714 {
2715         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2716         struct drm_i915_private *dev_priv = to_i915(dev);
2717
2718         /* enable with pattern 1 (as per spec) */
2719
2720         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2721
2722         /*
2723          * Magic for VLV/CHV. We _must_ first set up the register
2724          * without actually enabling the port, and then do another
2725          * write to enable the port. Otherwise link training will
2726          * fail when the power sequencer is freshly used for this port.
2727          */
2728         intel_dp->DP |= DP_PORT_EN;
2729         if (old_crtc_state->has_audio)
2730                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2731
2732         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2733         POSTING_READ(intel_dp->output_reg);
2734 }
2735
2736 static void intel_enable_dp(struct intel_encoder *encoder,
2737                             struct intel_crtc_state *pipe_config)
2738 {
2739         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2740         struct drm_device *dev = encoder->base.dev;
2741         struct drm_i915_private *dev_priv = to_i915(dev);
2742         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2743         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2744         enum pipe pipe = crtc->pipe;
2745
2746         if (WARN_ON(dp_reg & DP_PORT_EN))
2747                 return;
2748
2749         pps_lock(intel_dp);
2750
2751         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2752                 vlv_init_panel_power_sequencer(intel_dp);
2753
2754         intel_dp_enable_port(intel_dp, pipe_config);
2755
2756         edp_panel_vdd_on(intel_dp);
2757         edp_panel_on(intel_dp);
2758         edp_panel_vdd_off(intel_dp, true);
2759
2760         pps_unlock(intel_dp);
2761
2762         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2763                 unsigned int lane_mask = 0x0;
2764
2765                 if (IS_CHERRYVIEW(dev_priv))
2766                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2767
2768                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2769                                     lane_mask);
2770         }
2771
2772         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2773         intel_dp_start_link_train(intel_dp);
2774         intel_dp_stop_link_train(intel_dp);
2775
2776         if (pipe_config->has_audio) {
2777                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2778                                  pipe_name(pipe));
2779                 intel_audio_codec_enable(encoder);
2780         }
2781 }
2782
2783 static void g4x_enable_dp(struct intel_encoder *encoder,
2784                           struct intel_crtc_state *pipe_config,
2785                           struct drm_connector_state *conn_state)
2786 {
2787         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2788
2789         intel_enable_dp(encoder, pipe_config);
2790         intel_edp_backlight_on(intel_dp);
2791 }
2792
2793 static void vlv_enable_dp(struct intel_encoder *encoder,
2794                           struct intel_crtc_state *pipe_config,
2795                           struct drm_connector_state *conn_state)
2796 {
2797         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2798
2799         intel_edp_backlight_on(intel_dp);
2800         intel_psr_enable(intel_dp);
2801 }
2802
2803 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2804                               struct intel_crtc_state *pipe_config,
2805                               struct drm_connector_state *conn_state)
2806 {
2807         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2808         enum port port = dp_to_dig_port(intel_dp)->port;
2809
2810         intel_dp_prepare(encoder, pipe_config);
2811
2812         /* Only ilk+ has port A */
2813         if (port == PORT_A)
2814                 ironlake_edp_pll_on(intel_dp, pipe_config);
2815 }
2816
2817 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2818 {
2819         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2820         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2821         enum pipe pipe = intel_dp->pps_pipe;
2822         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2823
2824         edp_panel_vdd_off_sync(intel_dp);
2825
2826         /*
2827          * VLV seems to get confused when multiple power seqeuencers
2828          * have the same port selected (even if only one has power/vdd
2829          * enabled). The failure manifests as vlv_wait_port_ready() failing
2830          * CHV on the other hand doesn't seem to mind having the same port
2831          * selected in multiple power seqeuencers, but let's clear the
2832          * port select always when logically disconnecting a power sequencer
2833          * from a port.
2834          */
2835         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2836                       pipe_name(pipe), port_name(intel_dig_port->port));
2837         I915_WRITE(pp_on_reg, 0);
2838         POSTING_READ(pp_on_reg);
2839
2840         intel_dp->pps_pipe = INVALID_PIPE;
2841 }
2842
2843 static void vlv_steal_power_sequencer(struct drm_device *dev,
2844                                       enum pipe pipe)
2845 {
2846         struct drm_i915_private *dev_priv = to_i915(dev);
2847         struct intel_encoder *encoder;
2848
2849         lockdep_assert_held(&dev_priv->pps_mutex);
2850
2851         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2852                 return;
2853
2854         for_each_intel_encoder(dev, encoder) {
2855                 struct intel_dp *intel_dp;
2856                 enum port port;
2857
2858                 if (encoder->type != INTEL_OUTPUT_EDP)
2859                         continue;
2860
2861                 intel_dp = enc_to_intel_dp(&encoder->base);
2862                 port = dp_to_dig_port(intel_dp)->port;
2863
2864                 if (intel_dp->pps_pipe != pipe)
2865                         continue;
2866
2867                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2868                               pipe_name(pipe), port_name(port));
2869
2870                 WARN(encoder->base.crtc,
2871                      "stealing pipe %c power sequencer from active eDP port %c\n",
2872                      pipe_name(pipe), port_name(port));
2873
2874                 /* make sure vdd is off before we steal it */
2875                 vlv_detach_power_sequencer(intel_dp);
2876         }
2877 }
2878
2879 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2880 {
2881         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2882         struct intel_encoder *encoder = &intel_dig_port->base;
2883         struct drm_device *dev = encoder->base.dev;
2884         struct drm_i915_private *dev_priv = to_i915(dev);
2885         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2886
2887         lockdep_assert_held(&dev_priv->pps_mutex);
2888
2889         if (!is_edp(intel_dp))
2890                 return;
2891
2892         if (intel_dp->pps_pipe == crtc->pipe)
2893                 return;
2894
2895         /*
2896          * If another power sequencer was being used on this
2897          * port previously make sure to turn off vdd there while
2898          * we still have control of it.
2899          */
2900         if (intel_dp->pps_pipe != INVALID_PIPE)
2901                 vlv_detach_power_sequencer(intel_dp);
2902
2903         /*
2904          * We may be stealing the power
2905          * sequencer from another port.
2906          */
2907         vlv_steal_power_sequencer(dev, crtc->pipe);
2908
2909         /* now it's all ours */
2910         intel_dp->pps_pipe = crtc->pipe;
2911
2912         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2913                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2914
2915         /* init power sequencer on this pipe and port */
2916         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2917         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2918 }
2919
2920 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2921                               struct intel_crtc_state *pipe_config,
2922                               struct drm_connector_state *conn_state)
2923 {
2924         vlv_phy_pre_encoder_enable(encoder);
2925
2926         intel_enable_dp(encoder, pipe_config);
2927 }
2928
2929 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2930                                   struct intel_crtc_state *pipe_config,
2931                                   struct drm_connector_state *conn_state)
2932 {
2933         intel_dp_prepare(encoder, pipe_config);
2934
2935         vlv_phy_pre_pll_enable(encoder);
2936 }
2937
2938 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2939                               struct intel_crtc_state *pipe_config,
2940                               struct drm_connector_state *conn_state)
2941 {
2942         chv_phy_pre_encoder_enable(encoder);
2943
2944         intel_enable_dp(encoder, pipe_config);
2945
2946         /* Second common lane will stay alive on its own now */
2947         chv_phy_release_cl2_override(encoder);
2948 }
2949
2950 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2951                                   struct intel_crtc_state *pipe_config,
2952                                   struct drm_connector_state *conn_state)
2953 {
2954         intel_dp_prepare(encoder, pipe_config);
2955
2956         chv_phy_pre_pll_enable(encoder);
2957 }
2958
2959 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2960                                     struct intel_crtc_state *pipe_config,
2961                                     struct drm_connector_state *conn_state)
2962 {
2963         chv_phy_post_pll_disable(encoder);
2964 }
2965
2966 /*
2967  * Fetch AUX CH registers 0x202 - 0x207 which contain
2968  * link status information
2969  */
2970 bool
2971 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2972 {
2973         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2974                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2975 }
2976
2977 /* These are source-specific values. */
2978 uint8_t
2979 intel_dp_voltage_max(struct intel_dp *intel_dp)
2980 {
2981         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2982         struct drm_i915_private *dev_priv = to_i915(dev);
2983         enum port port = dp_to_dig_port(intel_dp)->port;
2984
2985         if (IS_BROXTON(dev_priv))
2986                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2987         else if (INTEL_INFO(dev)->gen >= 9) {
2988                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2989                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2990                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2991         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2992                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2993         else if (IS_GEN7(dev_priv) && port == PORT_A)
2994                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2995         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2996                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2997         else
2998                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2999 }
3000
3001 uint8_t
3002 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3003 {
3004         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3005         enum port port = dp_to_dig_port(intel_dp)->port;
3006
3007         if (INTEL_GEN(dev_priv) >= 9) {
3008                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3009                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3010                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3011                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3012                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3013                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3014                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3015                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3016                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3017                 default:
3018                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3019                 }
3020         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3021                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3022                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3023                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3024                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3025                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3026                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3027                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3028                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3029                 default:
3030                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3031                 }
3032         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3033                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3034                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3035                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3036                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3037                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3038                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3039                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3040                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3041                 default:
3042                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3043                 }
3044         } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3045                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3046                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3047                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3048                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3049                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3050                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3051                 default:
3052                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3053                 }
3054         } else {
3055                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3056                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3057                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3058                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3059                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3060                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3061                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3062                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3063                 default:
3064                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3065                 }
3066         }
3067 }
3068
3069 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3070 {
3071         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3072         unsigned long demph_reg_value, preemph_reg_value,
3073                 uniqtranscale_reg_value;
3074         uint8_t train_set = intel_dp->train_set[0];
3075
3076         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3077         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3078                 preemph_reg_value = 0x0004000;
3079                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3080                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3081                         demph_reg_value = 0x2B405555;
3082                         uniqtranscale_reg_value = 0x552AB83A;
3083                         break;
3084                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3085                         demph_reg_value = 0x2B404040;
3086                         uniqtranscale_reg_value = 0x5548B83A;
3087                         break;
3088                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3089                         demph_reg_value = 0x2B245555;
3090                         uniqtranscale_reg_value = 0x5560B83A;
3091                         break;
3092                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3093                         demph_reg_value = 0x2B405555;
3094                         uniqtranscale_reg_value = 0x5598DA3A;
3095                         break;
3096                 default:
3097                         return 0;
3098                 }
3099                 break;
3100         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3101                 preemph_reg_value = 0x0002000;
3102                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3103                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3104                         demph_reg_value = 0x2B404040;
3105                         uniqtranscale_reg_value = 0x5552B83A;
3106                         break;
3107                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3108                         demph_reg_value = 0x2B404848;
3109                         uniqtranscale_reg_value = 0x5580B83A;
3110                         break;
3111                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3112                         demph_reg_value = 0x2B404040;
3113                         uniqtranscale_reg_value = 0x55ADDA3A;
3114                         break;
3115                 default:
3116                         return 0;
3117                 }
3118                 break;
3119         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3120                 preemph_reg_value = 0x0000000;
3121                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3122                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3123                         demph_reg_value = 0x2B305555;
3124                         uniqtranscale_reg_value = 0x5570B83A;
3125                         break;
3126                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3127                         demph_reg_value = 0x2B2B4040;
3128                         uniqtranscale_reg_value = 0x55ADDA3A;
3129                         break;
3130                 default:
3131                         return 0;
3132                 }
3133                 break;
3134         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3135                 preemph_reg_value = 0x0006000;
3136                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3137                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3138                         demph_reg_value = 0x1B405555;
3139                         uniqtranscale_reg_value = 0x55ADDA3A;
3140                         break;
3141                 default:
3142                         return 0;
3143                 }
3144                 break;
3145         default:
3146                 return 0;
3147         }
3148
3149         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3150                                  uniqtranscale_reg_value, 0);
3151
3152         return 0;
3153 }
3154
3155 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3156 {
3157         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3158         u32 deemph_reg_value, margin_reg_value;
3159         bool uniq_trans_scale = false;
3160         uint8_t train_set = intel_dp->train_set[0];
3161
3162         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3163         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3164                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3165                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3166                         deemph_reg_value = 128;
3167                         margin_reg_value = 52;
3168                         break;
3169                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3170                         deemph_reg_value = 128;
3171                         margin_reg_value = 77;
3172                         break;
3173                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3174                         deemph_reg_value = 128;
3175                         margin_reg_value = 102;
3176                         break;
3177                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3178                         deemph_reg_value = 128;
3179                         margin_reg_value = 154;
3180                         uniq_trans_scale = true;
3181                         break;
3182                 default:
3183                         return 0;
3184                 }
3185                 break;
3186         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3187                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3188                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3189                         deemph_reg_value = 85;
3190                         margin_reg_value = 78;
3191                         break;
3192                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3193                         deemph_reg_value = 85;
3194                         margin_reg_value = 116;
3195                         break;
3196                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3197                         deemph_reg_value = 85;
3198                         margin_reg_value = 154;
3199                         break;
3200                 default:
3201                         return 0;
3202                 }
3203                 break;
3204         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3205                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3206                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3207                         deemph_reg_value = 64;
3208                         margin_reg_value = 104;
3209                         break;
3210                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3211                         deemph_reg_value = 64;
3212                         margin_reg_value = 154;
3213                         break;
3214                 default:
3215                         return 0;
3216                 }
3217                 break;
3218         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3219                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3220                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3221                         deemph_reg_value = 43;
3222                         margin_reg_value = 154;
3223                         break;
3224                 default:
3225                         return 0;
3226                 }
3227                 break;
3228         default:
3229                 return 0;
3230         }
3231
3232         chv_set_phy_signal_level(encoder, deemph_reg_value,
3233                                  margin_reg_value, uniq_trans_scale);
3234
3235         return 0;
3236 }
3237
3238 static uint32_t
3239 gen4_signal_levels(uint8_t train_set)
3240 {
3241         uint32_t        signal_levels = 0;
3242
3243         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3244         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3245         default:
3246                 signal_levels |= DP_VOLTAGE_0_4;
3247                 break;
3248         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3249                 signal_levels |= DP_VOLTAGE_0_6;
3250                 break;
3251         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3252                 signal_levels |= DP_VOLTAGE_0_8;
3253                 break;
3254         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3255                 signal_levels |= DP_VOLTAGE_1_2;
3256                 break;
3257         }
3258         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3259         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3260         default:
3261                 signal_levels |= DP_PRE_EMPHASIS_0;
3262                 break;
3263         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3264                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3265                 break;
3266         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3267                 signal_levels |= DP_PRE_EMPHASIS_6;
3268                 break;
3269         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3270                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3271                 break;
3272         }
3273         return signal_levels;
3274 }
3275
3276 /* Gen6's DP voltage swing and pre-emphasis control */
3277 static uint32_t
3278 gen6_edp_signal_levels(uint8_t train_set)
3279 {
3280         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3281                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3282         switch (signal_levels) {
3283         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3284         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3285                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3286         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3287                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3288         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3289         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3290                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3291         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3292         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3293                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3294         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3295         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3296                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3297         default:
3298                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3299                               "0x%x\n", signal_levels);
3300                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3301         }
3302 }
3303
3304 /* Gen7's DP voltage swing and pre-emphasis control */
3305 static uint32_t
3306 gen7_edp_signal_levels(uint8_t train_set)
3307 {
3308         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3309                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3310         switch (signal_levels) {
3311         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3312                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3313         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3314                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3315         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3316                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3317
3318         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3319                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3320         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3321                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3322
3323         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3324                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3325         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3326                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3327
3328         default:
3329                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3330                               "0x%x\n", signal_levels);
3331                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3332         }
3333 }
3334
3335 void
3336 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3337 {
3338         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3339         enum port port = intel_dig_port->port;
3340         struct drm_device *dev = intel_dig_port->base.base.dev;
3341         struct drm_i915_private *dev_priv = to_i915(dev);
3342         uint32_t signal_levels, mask = 0;
3343         uint8_t train_set = intel_dp->train_set[0];
3344
3345         if (HAS_DDI(dev_priv)) {
3346                 signal_levels = ddi_signal_levels(intel_dp);
3347
3348                 if (IS_BROXTON(dev_priv))
3349                         signal_levels = 0;
3350                 else
3351                         mask = DDI_BUF_EMP_MASK;
3352         } else if (IS_CHERRYVIEW(dev_priv)) {
3353                 signal_levels = chv_signal_levels(intel_dp);
3354         } else if (IS_VALLEYVIEW(dev_priv)) {
3355                 signal_levels = vlv_signal_levels(intel_dp);
3356         } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3357                 signal_levels = gen7_edp_signal_levels(train_set);
3358                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3359         } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3360                 signal_levels = gen6_edp_signal_levels(train_set);
3361                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3362         } else {
3363                 signal_levels = gen4_signal_levels(train_set);
3364                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3365         }
3366
3367         if (mask)
3368                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3369
3370         DRM_DEBUG_KMS("Using vswing level %d\n",
3371                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3372         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3373                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3374                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3375
3376         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3377
3378         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3379         POSTING_READ(intel_dp->output_reg);
3380 }
3381
3382 void
3383 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3384                                        uint8_t dp_train_pat)
3385 {
3386         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3387         struct drm_i915_private *dev_priv =
3388                 to_i915(intel_dig_port->base.base.dev);
3389
3390         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3391
3392         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3393         POSTING_READ(intel_dp->output_reg);
3394 }
3395
3396 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3397 {
3398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3399         struct drm_device *dev = intel_dig_port->base.base.dev;
3400         struct drm_i915_private *dev_priv = to_i915(dev);
3401         enum port port = intel_dig_port->port;
3402         uint32_t val;
3403
3404         if (!HAS_DDI(dev_priv))
3405                 return;
3406
3407         val = I915_READ(DP_TP_CTL(port));
3408         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3409         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3410         I915_WRITE(DP_TP_CTL(port), val);
3411
3412         /*
3413          * On PORT_A we can have only eDP in SST mode. There the only reason
3414          * we need to set idle transmission mode is to work around a HW issue
3415          * where we enable the pipe while not in idle link-training mode.
3416          * In this case there is requirement to wait for a minimum number of
3417          * idle patterns to be sent.
3418          */
3419         if (port == PORT_A)
3420                 return;
3421
3422         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3423                                     DP_TP_STATUS_IDLE_DONE,
3424                                     DP_TP_STATUS_IDLE_DONE,
3425                                     1))
3426                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3427 }
3428
3429 static void
3430 intel_dp_link_down(struct intel_dp *intel_dp)
3431 {
3432         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3433         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3434         enum port port = intel_dig_port->port;
3435         struct drm_device *dev = intel_dig_port->base.base.dev;
3436         struct drm_i915_private *dev_priv = to_i915(dev);
3437         uint32_t DP = intel_dp->DP;
3438
3439         if (WARN_ON(HAS_DDI(dev_priv)))
3440                 return;
3441
3442         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3443                 return;
3444
3445         DRM_DEBUG_KMS("\n");
3446
3447         if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3448             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3449                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3450                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3451         } else {
3452                 if (IS_CHERRYVIEW(dev_priv))
3453                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3454                 else
3455                         DP &= ~DP_LINK_TRAIN_MASK;
3456                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3457         }
3458         I915_WRITE(intel_dp->output_reg, DP);
3459         POSTING_READ(intel_dp->output_reg);
3460
3461         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3462         I915_WRITE(intel_dp->output_reg, DP);
3463         POSTING_READ(intel_dp->output_reg);
3464
3465         /*
3466          * HW workaround for IBX, we need to move the port
3467          * to transcoder A after disabling it to allow the
3468          * matching HDMI port to be enabled on transcoder A.
3469          */
3470         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3471                 /*
3472                  * We get CPU/PCH FIFO underruns on the other pipe when
3473                  * doing the workaround. Sweep them under the rug.
3474                  */
3475                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3476                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3477
3478                 /* always enable with pattern 1 (as per spec) */
3479                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3480                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3481                 I915_WRITE(intel_dp->output_reg, DP);
3482                 POSTING_READ(intel_dp->output_reg);
3483
3484                 DP &= ~DP_PORT_EN;
3485                 I915_WRITE(intel_dp->output_reg, DP);
3486                 POSTING_READ(intel_dp->output_reg);
3487
3488                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3489                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3490                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3491         }
3492
3493         msleep(intel_dp->panel_power_down_delay);
3494
3495         intel_dp->DP = DP;
3496 }
3497
3498 static bool
3499 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3500 {
3501         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3502                              sizeof(intel_dp->dpcd)) < 0)
3503                 return false; /* aux transfer failed */
3504
3505         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3506
3507         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3508 }
3509
3510 static bool
3511 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3512 {
3513         struct drm_i915_private *dev_priv =
3514                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3515
3516         /* this function is meant to be called only once */
3517         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3518
3519         if (!intel_dp_read_dpcd(intel_dp))
3520                 return false;
3521
3522         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3523                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3524                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3525
3526         /* Check if the panel supports PSR */
3527         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3528                          intel_dp->psr_dpcd,
3529                          sizeof(intel_dp->psr_dpcd));
3530         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3531                 dev_priv->psr.sink_support = true;
3532                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3533         }
3534
3535         if (INTEL_GEN(dev_priv) >= 9 &&
3536             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3537                 uint8_t frame_sync_cap;
3538
3539                 dev_priv->psr.sink_support = true;
3540                 drm_dp_dpcd_read(&intel_dp->aux,
3541                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3542                                  &frame_sync_cap, 1);
3543                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3544                 /* PSR2 needs frame sync as well */
3545                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3546                 DRM_DEBUG_KMS("PSR2 %s on sink",
3547                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3548         }
3549
3550         /* Read the eDP Display control capabilities registers */
3551         if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3552             drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3553                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3554                              sizeof(intel_dp->edp_dpcd))
3555                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3556                               intel_dp->edp_dpcd);
3557
3558         /* Intermediate frequency support */
3559         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3560                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3561                 int i;
3562
3563                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3564                                 sink_rates, sizeof(sink_rates));
3565
3566                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3567                         int val = le16_to_cpu(sink_rates[i]);
3568
3569                         if (val == 0)
3570                                 break;
3571
3572                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3573                         intel_dp->sink_rates[i] = (val * 200) / 10;
3574                 }
3575                 intel_dp->num_sink_rates = i;
3576         }
3577
3578         return true;
3579 }
3580
3581
3582 static bool
3583 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3584 {
3585         if (!intel_dp_read_dpcd(intel_dp))
3586                 return false;
3587
3588         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3589                              &intel_dp->sink_count, 1) < 0)
3590                 return false;
3591
3592         /*
3593          * Sink count can change between short pulse hpd hence
3594          * a member variable in intel_dp will track any changes
3595          * between short pulse interrupts.
3596          */
3597         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3598
3599         /*
3600          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3601          * a dongle is present but no display. Unless we require to know
3602          * if a dongle is present or not, we don't need to update
3603          * downstream port information. So, an early return here saves
3604          * time from performing other operations which are not required.
3605          */
3606         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3607                 return false;
3608
3609         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3610               DP_DWN_STRM_PORT_PRESENT))
3611                 return true; /* native DP sink */
3612
3613         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3614                 return true; /* no per-port downstream info */
3615
3616         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3617                              intel_dp->downstream_ports,
3618                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3619                 return false; /* downstream port status fetch failed */
3620
3621         return true;
3622 }
3623
3624 static void
3625 intel_dp_probe_oui(struct intel_dp *intel_dp)
3626 {
3627         u8 buf[3];
3628
3629         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3630                 return;
3631
3632         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3633                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3634                               buf[0], buf[1], buf[2]);
3635
3636         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3637                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3638                               buf[0], buf[1], buf[2]);
3639 }
3640
3641 static bool
3642 intel_dp_can_mst(struct intel_dp *intel_dp)
3643 {
3644         u8 buf[1];
3645
3646         if (!i915.enable_dp_mst)
3647                 return false;
3648
3649         if (!intel_dp->can_mst)
3650                 return false;
3651
3652         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3653                 return false;
3654
3655         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3656                 return false;
3657
3658         return buf[0] & DP_MST_CAP;
3659 }
3660
3661 static void
3662 intel_dp_configure_mst(struct intel_dp *intel_dp)
3663 {
3664         if (!i915.enable_dp_mst)
3665                 return;
3666
3667         if (!intel_dp->can_mst)
3668                 return;
3669
3670         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3671
3672         if (intel_dp->is_mst)
3673                 DRM_DEBUG_KMS("Sink is MST capable\n");
3674         else
3675                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3676
3677         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3678                                         intel_dp->is_mst);
3679 }
3680
3681 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3682 {
3683         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3684         struct drm_device *dev = dig_port->base.base.dev;
3685         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3686         u8 buf;
3687         int ret = 0;
3688         int count = 0;
3689         int attempts = 10;
3690
3691         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3692                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3693                 ret = -EIO;
3694                 goto out;
3695         }
3696
3697         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3698                                buf & ~DP_TEST_SINK_START) < 0) {
3699                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3700                 ret = -EIO;
3701                 goto out;
3702         }
3703
3704         do {
3705                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3706
3707                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3708                                       DP_TEST_SINK_MISC, &buf) < 0) {
3709                         ret = -EIO;
3710                         goto out;
3711                 }
3712                 count = buf & DP_TEST_COUNT_MASK;
3713         } while (--attempts && count);
3714
3715         if (attempts == 0) {
3716                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3717                 ret = -ETIMEDOUT;
3718         }
3719
3720  out:
3721         hsw_enable_ips(intel_crtc);
3722         return ret;
3723 }
3724
3725 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3726 {
3727         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3728         struct drm_device *dev = dig_port->base.base.dev;
3729         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3730         u8 buf;
3731         int ret;
3732
3733         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3734                 return -EIO;
3735
3736         if (!(buf & DP_TEST_CRC_SUPPORTED))
3737                 return -ENOTTY;
3738
3739         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3740                 return -EIO;
3741
3742         if (buf & DP_TEST_SINK_START) {
3743                 ret = intel_dp_sink_crc_stop(intel_dp);
3744                 if (ret)
3745                         return ret;
3746         }
3747
3748         hsw_disable_ips(intel_crtc);
3749
3750         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3751                                buf | DP_TEST_SINK_START) < 0) {
3752                 hsw_enable_ips(intel_crtc);
3753                 return -EIO;
3754         }
3755
3756         intel_wait_for_vblank(dev, intel_crtc->pipe);
3757         return 0;
3758 }
3759
3760 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3761 {
3762         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3763         struct drm_device *dev = dig_port->base.base.dev;
3764         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3765         u8 buf;
3766         int count, ret;
3767         int attempts = 6;
3768
3769         ret = intel_dp_sink_crc_start(intel_dp);
3770         if (ret)
3771                 return ret;
3772
3773         do {
3774                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3775
3776                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3777                                       DP_TEST_SINK_MISC, &buf) < 0) {
3778                         ret = -EIO;
3779                         goto stop;
3780                 }
3781                 count = buf & DP_TEST_COUNT_MASK;
3782
3783         } while (--attempts && count == 0);
3784
3785         if (attempts == 0) {
3786                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3787                 ret = -ETIMEDOUT;
3788                 goto stop;
3789         }
3790
3791         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3792                 ret = -EIO;
3793                 goto stop;
3794         }
3795
3796 stop:
3797         intel_dp_sink_crc_stop(intel_dp);
3798         return ret;
3799 }
3800
3801 static bool
3802 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3803 {
3804         return drm_dp_dpcd_read(&intel_dp->aux,
3805                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3806                                        sink_irq_vector, 1) == 1;
3807 }
3808
3809 static bool
3810 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3811 {
3812         int ret;
3813
3814         ret = drm_dp_dpcd_read(&intel_dp->aux,
3815                                              DP_SINK_COUNT_ESI,
3816                                              sink_irq_vector, 14);
3817         if (ret != 14)
3818                 return false;
3819
3820         return true;
3821 }
3822
3823 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3824 {
3825         uint8_t test_result = DP_TEST_ACK;
3826         return test_result;
3827 }
3828
3829 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3830 {
3831         uint8_t test_result = DP_TEST_NAK;
3832         return test_result;
3833 }
3834
3835 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3836 {
3837         uint8_t test_result = DP_TEST_NAK;
3838         struct intel_connector *intel_connector = intel_dp->attached_connector;
3839         struct drm_connector *connector = &intel_connector->base;
3840
3841         if (intel_connector->detect_edid == NULL ||
3842             connector->edid_corrupt ||
3843             intel_dp->aux.i2c_defer_count > 6) {
3844                 /* Check EDID read for NACKs, DEFERs and corruption
3845                  * (DP CTS 1.2 Core r1.1)
3846                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3847                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3848                  *    4.2.2.6 : EDID corruption detected
3849                  * Use failsafe mode for all cases
3850                  */
3851                 if (intel_dp->aux.i2c_nack_count > 0 ||
3852                         intel_dp->aux.i2c_defer_count > 0)
3853                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3854                                       intel_dp->aux.i2c_nack_count,
3855                                       intel_dp->aux.i2c_defer_count);
3856                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3857         } else {
3858                 struct edid *block = intel_connector->detect_edid;
3859
3860                 /* We have to write the checksum
3861                  * of the last block read
3862                  */
3863                 block += intel_connector->detect_edid->extensions;
3864
3865                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3866                                         DP_TEST_EDID_CHECKSUM,
3867                                         &block->checksum,
3868                                         1))
3869                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3870
3871                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3872                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3873         }
3874
3875         /* Set test active flag here so userspace doesn't interrupt things */
3876         intel_dp->compliance_test_active = 1;
3877
3878         return test_result;
3879 }
3880
3881 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3882 {
3883         uint8_t test_result = DP_TEST_NAK;
3884         return test_result;
3885 }
3886
3887 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3888 {
3889         uint8_t response = DP_TEST_NAK;
3890         uint8_t rxdata = 0;
3891         int status = 0;
3892
3893         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3894         if (status <= 0) {
3895                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3896                 goto update_status;
3897         }
3898
3899         switch (rxdata) {
3900         case DP_TEST_LINK_TRAINING:
3901                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3902                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3903                 response = intel_dp_autotest_link_training(intel_dp);
3904                 break;
3905         case DP_TEST_LINK_VIDEO_PATTERN:
3906                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3907                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3908                 response = intel_dp_autotest_video_pattern(intel_dp);
3909                 break;
3910         case DP_TEST_LINK_EDID_READ:
3911                 DRM_DEBUG_KMS("EDID test requested\n");
3912                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3913                 response = intel_dp_autotest_edid(intel_dp);
3914                 break;
3915         case DP_TEST_LINK_PHY_TEST_PATTERN:
3916                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3917                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3918                 response = intel_dp_autotest_phy_pattern(intel_dp);
3919                 break;
3920         default:
3921                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3922                 break;
3923         }
3924
3925 update_status:
3926         status = drm_dp_dpcd_write(&intel_dp->aux,
3927                                    DP_TEST_RESPONSE,
3928                                    &response, 1);
3929         if (status <= 0)
3930                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3931 }
3932
3933 static int
3934 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3935 {
3936         bool bret;
3937
3938         if (intel_dp->is_mst) {
3939                 u8 esi[16] = { 0 };
3940                 int ret = 0;
3941                 int retry;
3942                 bool handled;
3943                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3944 go_again:
3945                 if (bret == true) {
3946
3947                         /* check link status - esi[10] = 0x200c */
3948                         if (intel_dp->active_mst_links &&
3949                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3950                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3951                                 intel_dp_start_link_train(intel_dp);
3952                                 intel_dp_stop_link_train(intel_dp);
3953                         }
3954
3955                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3956                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3957
3958                         if (handled) {
3959                                 for (retry = 0; retry < 3; retry++) {
3960                                         int wret;
3961                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3962                                                                  DP_SINK_COUNT_ESI+1,
3963                                                                  &esi[1], 3);
3964                                         if (wret == 3) {
3965                                                 break;
3966                                         }
3967                                 }
3968
3969                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3970                                 if (bret == true) {
3971                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3972                                         goto go_again;
3973                                 }
3974                         } else
3975                                 ret = 0;
3976
3977                         return ret;
3978                 } else {
3979                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3980                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3981                         intel_dp->is_mst = false;
3982                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3983                         /* send a hotplug event */
3984                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3985                 }
3986         }
3987         return -EINVAL;
3988 }
3989
3990 static void
3991 intel_dp_check_link_status(struct intel_dp *intel_dp)
3992 {
3993         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3994         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3995         u8 link_status[DP_LINK_STATUS_SIZE];
3996
3997         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3998
3999         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4000                 DRM_ERROR("Failed to get link status\n");
4001                 return;
4002         }
4003
4004         if (!intel_encoder->base.crtc)
4005                 return;
4006
4007         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4008                 return;
4009
4010         /* if link training is requested we should perform it always */
4011         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4012             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4013                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4014                               intel_encoder->base.name);
4015                 intel_dp_start_link_train(intel_dp);
4016                 intel_dp_stop_link_train(intel_dp);
4017         }
4018 }
4019
4020 /*
4021  * According to DP spec
4022  * 5.1.2:
4023  *  1. Read DPCD
4024  *  2. Configure link according to Receiver Capabilities
4025  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4026  *  4. Check link status on receipt of hot-plug interrupt
4027  *
4028  * intel_dp_short_pulse -  handles short pulse interrupts
4029  * when full detection is not required.
4030  * Returns %true if short pulse is handled and full detection
4031  * is NOT required and %false otherwise.
4032  */
4033 static bool
4034 intel_dp_short_pulse(struct intel_dp *intel_dp)
4035 {
4036         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4037         u8 sink_irq_vector = 0;
4038         u8 old_sink_count = intel_dp->sink_count;
4039         bool ret;
4040
4041         /*
4042          * Clearing compliance test variables to allow capturing
4043          * of values for next automated test request.
4044          */
4045         intel_dp->compliance_test_active = 0;
4046         intel_dp->compliance_test_type = 0;
4047         intel_dp->compliance_test_data = 0;
4048
4049         /*
4050          * Now read the DPCD to see if it's actually running
4051          * If the current value of sink count doesn't match with
4052          * the value that was stored earlier or dpcd read failed
4053          * we need to do full detection
4054          */
4055         ret = intel_dp_get_dpcd(intel_dp);
4056
4057         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4058                 /* No need to proceed if we are going to do full detect */
4059                 return false;
4060         }
4061
4062         /* Try to read the source of the interrupt */
4063         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4064             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4065             sink_irq_vector != 0) {
4066                 /* Clear interrupt source */
4067                 drm_dp_dpcd_writeb(&intel_dp->aux,
4068                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4069                                    sink_irq_vector);
4070
4071                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4072                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4073                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4074                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4075         }
4076
4077         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4078         intel_dp_check_link_status(intel_dp);
4079         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4080
4081         return true;
4082 }
4083
4084 /* XXX this is probably wrong for multiple downstream ports */
4085 static enum drm_connector_status
4086 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4087 {
4088         uint8_t *dpcd = intel_dp->dpcd;
4089         uint8_t type;
4090
4091         if (!intel_dp_get_dpcd(intel_dp))
4092                 return connector_status_disconnected;
4093
4094         if (is_edp(intel_dp))
4095                 return connector_status_connected;
4096
4097         /* if there's no downstream port, we're done */
4098         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4099                 return connector_status_connected;
4100
4101         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4102         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4103             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4104
4105                 return intel_dp->sink_count ?
4106                 connector_status_connected : connector_status_disconnected;
4107         }
4108
4109         if (intel_dp_can_mst(intel_dp))
4110                 return connector_status_connected;
4111
4112         /* If no HPD, poke DDC gently */
4113         if (drm_probe_ddc(&intel_dp->aux.ddc))
4114                 return connector_status_connected;
4115
4116         /* Well we tried, say unknown for unreliable port types */
4117         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4118                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4119                 if (type == DP_DS_PORT_TYPE_VGA ||
4120                     type == DP_DS_PORT_TYPE_NON_EDID)
4121                         return connector_status_unknown;
4122         } else {
4123                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4124                         DP_DWN_STRM_PORT_TYPE_MASK;
4125                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4126                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4127                         return connector_status_unknown;
4128         }
4129
4130         /* Anything else is out of spec, warn and ignore */
4131         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4132         return connector_status_disconnected;
4133 }
4134
4135 static enum drm_connector_status
4136 edp_detect(struct intel_dp *intel_dp)
4137 {
4138         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4139         enum drm_connector_status status;
4140
4141         status = intel_panel_detect(dev);
4142         if (status == connector_status_unknown)
4143                 status = connector_status_connected;
4144
4145         return status;
4146 }
4147
4148 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4149                                        struct intel_digital_port *port)
4150 {
4151         u32 bit;
4152
4153         switch (port->port) {
4154         case PORT_A:
4155                 return true;
4156         case PORT_B:
4157                 bit = SDE_PORTB_HOTPLUG;
4158                 break;
4159         case PORT_C:
4160                 bit = SDE_PORTC_HOTPLUG;
4161                 break;
4162         case PORT_D:
4163                 bit = SDE_PORTD_HOTPLUG;
4164                 break;
4165         default:
4166                 MISSING_CASE(port->port);
4167                 return false;
4168         }
4169
4170         return I915_READ(SDEISR) & bit;
4171 }
4172
4173 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4174                                        struct intel_digital_port *port)
4175 {
4176         u32 bit;
4177
4178         switch (port->port) {
4179         case PORT_A:
4180                 return true;
4181         case PORT_B:
4182                 bit = SDE_PORTB_HOTPLUG_CPT;
4183                 break;
4184         case PORT_C:
4185                 bit = SDE_PORTC_HOTPLUG_CPT;
4186                 break;
4187         case PORT_D:
4188                 bit = SDE_PORTD_HOTPLUG_CPT;
4189                 break;
4190         case PORT_E:
4191                 bit = SDE_PORTE_HOTPLUG_SPT;
4192                 break;
4193         default:
4194                 MISSING_CASE(port->port);
4195                 return false;
4196         }
4197
4198         return I915_READ(SDEISR) & bit;
4199 }
4200
4201 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4202                                        struct intel_digital_port *port)
4203 {
4204         u32 bit;
4205
4206         switch (port->port) {
4207         case PORT_B:
4208                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4209                 break;
4210         case PORT_C:
4211                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4212                 break;
4213         case PORT_D:
4214                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4215                 break;
4216         default:
4217                 MISSING_CASE(port->port);
4218                 return false;
4219         }
4220
4221         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4222 }
4223
4224 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4225                                         struct intel_digital_port *port)
4226 {
4227         u32 bit;
4228
4229         switch (port->port) {
4230         case PORT_B:
4231                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4232                 break;
4233         case PORT_C:
4234                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4235                 break;
4236         case PORT_D:
4237                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4238                 break;
4239         default:
4240                 MISSING_CASE(port->port);
4241                 return false;
4242         }
4243
4244         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4245 }
4246
4247 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4248                                        struct intel_digital_port *intel_dig_port)
4249 {
4250         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4251         enum port port;
4252         u32 bit;
4253
4254         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4255         switch (port) {
4256         case PORT_A:
4257                 bit = BXT_DE_PORT_HP_DDIA;
4258                 break;
4259         case PORT_B:
4260                 bit = BXT_DE_PORT_HP_DDIB;
4261                 break;
4262         case PORT_C:
4263                 bit = BXT_DE_PORT_HP_DDIC;
4264                 break;
4265         default:
4266                 MISSING_CASE(port);
4267                 return false;
4268         }
4269
4270         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4271 }
4272
4273 /*
4274  * intel_digital_port_connected - is the specified port connected?
4275  * @dev_priv: i915 private structure
4276  * @port: the port to test
4277  *
4278  * Return %true if @port is connected, %false otherwise.
4279  */
4280 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4281                                          struct intel_digital_port *port)
4282 {
4283         if (HAS_PCH_IBX(dev_priv))
4284                 return ibx_digital_port_connected(dev_priv, port);
4285         else if (HAS_PCH_SPLIT(dev_priv))
4286                 return cpt_digital_port_connected(dev_priv, port);
4287         else if (IS_BROXTON(dev_priv))
4288                 return bxt_digital_port_connected(dev_priv, port);
4289         else if (IS_GM45(dev_priv))
4290                 return gm45_digital_port_connected(dev_priv, port);
4291         else
4292                 return g4x_digital_port_connected(dev_priv, port);
4293 }
4294
4295 static struct edid *
4296 intel_dp_get_edid(struct intel_dp *intel_dp)
4297 {
4298         struct intel_connector *intel_connector = intel_dp->attached_connector;
4299
4300         /* use cached edid if we have one */
4301         if (intel_connector->edid) {
4302                 /* invalid edid */
4303                 if (IS_ERR(intel_connector->edid))
4304                         return NULL;
4305
4306                 return drm_edid_duplicate(intel_connector->edid);
4307         } else
4308                 return drm_get_edid(&intel_connector->base,
4309                                     &intel_dp->aux.ddc);
4310 }
4311
4312 static void
4313 intel_dp_set_edid(struct intel_dp *intel_dp)
4314 {
4315         struct intel_connector *intel_connector = intel_dp->attached_connector;
4316         struct edid *edid;
4317
4318         intel_dp_unset_edid(intel_dp);
4319         edid = intel_dp_get_edid(intel_dp);
4320         intel_connector->detect_edid = edid;
4321
4322         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4323                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4324         else
4325                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4326 }
4327
4328 static void
4329 intel_dp_unset_edid(struct intel_dp *intel_dp)
4330 {
4331         struct intel_connector *intel_connector = intel_dp->attached_connector;
4332
4333         kfree(intel_connector->detect_edid);
4334         intel_connector->detect_edid = NULL;
4335
4336         intel_dp->has_audio = false;
4337 }
4338
4339 static enum drm_connector_status
4340 intel_dp_long_pulse(struct intel_connector *intel_connector)
4341 {
4342         struct drm_connector *connector = &intel_connector->base;
4343         struct intel_dp *intel_dp = intel_attached_dp(connector);
4344         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4345         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4346         struct drm_device *dev = connector->dev;
4347         enum drm_connector_status status;
4348         enum intel_display_power_domain power_domain;
4349         u8 sink_irq_vector = 0;
4350
4351         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4352         intel_display_power_get(to_i915(dev), power_domain);
4353
4354         /* Can't disconnect eDP, but you can close the lid... */
4355         if (is_edp(intel_dp))
4356                 status = edp_detect(intel_dp);
4357         else if (intel_digital_port_connected(to_i915(dev),
4358                                               dp_to_dig_port(intel_dp)))
4359                 status = intel_dp_detect_dpcd(intel_dp);
4360         else
4361                 status = connector_status_disconnected;
4362
4363         if (status == connector_status_disconnected) {
4364                 intel_dp->compliance_test_active = 0;
4365                 intel_dp->compliance_test_type = 0;
4366                 intel_dp->compliance_test_data = 0;
4367
4368                 if (intel_dp->is_mst) {
4369                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4370                                       intel_dp->is_mst,
4371                                       intel_dp->mst_mgr.mst_state);
4372                         intel_dp->is_mst = false;
4373                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4374                                                         intel_dp->is_mst);
4375                 }
4376
4377                 goto out;
4378         }
4379
4380         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4381                 intel_encoder->type = INTEL_OUTPUT_DP;
4382
4383         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4384                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4385                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4386
4387         intel_dp_print_rates(intel_dp);
4388
4389         intel_dp_probe_oui(intel_dp);
4390
4391         intel_dp_print_hw_revision(intel_dp);
4392         intel_dp_print_sw_revision(intel_dp);
4393
4394         intel_dp_configure_mst(intel_dp);
4395
4396         if (intel_dp->is_mst) {
4397                 /*
4398                  * If we are in MST mode then this connector
4399                  * won't appear connected or have anything
4400                  * with EDID on it
4401                  */
4402                 status = connector_status_disconnected;
4403                 goto out;
4404         } else if (connector->status == connector_status_connected) {
4405                 /*
4406                  * If display was connected already and is still connected
4407                  * check links status, there has been known issues of
4408                  * link loss triggerring long pulse!!!!
4409                  */
4410                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4411                 intel_dp_check_link_status(intel_dp);
4412                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4413                 goto out;
4414         }
4415
4416         /*
4417          * Clearing NACK and defer counts to get their exact values
4418          * while reading EDID which are required by Compliance tests
4419          * 4.2.2.4 and 4.2.2.5
4420          */
4421         intel_dp->aux.i2c_nack_count = 0;
4422         intel_dp->aux.i2c_defer_count = 0;
4423
4424         intel_dp_set_edid(intel_dp);
4425         if (is_edp(intel_dp) || intel_connector->detect_edid)
4426                 status = connector_status_connected;
4427         intel_dp->detect_done = true;
4428
4429         /* Try to read the source of the interrupt */
4430         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4431             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4432             sink_irq_vector != 0) {
4433                 /* Clear interrupt source */
4434                 drm_dp_dpcd_writeb(&intel_dp->aux,
4435                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4436                                    sink_irq_vector);
4437
4438                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4439                         intel_dp_handle_test_request(intel_dp);
4440                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4441                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4442         }
4443
4444 out:
4445         if (status != connector_status_connected && !intel_dp->is_mst)
4446                 intel_dp_unset_edid(intel_dp);
4447
4448         intel_display_power_put(to_i915(dev), power_domain);
4449         return status;
4450 }
4451
4452 static enum drm_connector_status
4453 intel_dp_detect(struct drm_connector *connector, bool force)
4454 {
4455         struct intel_dp *intel_dp = intel_attached_dp(connector);
4456         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4457         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4458         enum drm_connector_status status = connector->status;
4459
4460         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4461                       connector->base.id, connector->name);
4462
4463         if (intel_dp->is_mst) {
4464                 /* MST devices are disconnected from a monitor POV */
4465                 intel_dp_unset_edid(intel_dp);
4466                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4467                         intel_encoder->type = INTEL_OUTPUT_DP;
4468                 return connector_status_disconnected;
4469         }
4470
4471         /* If full detect is not performed yet, do a full detect */
4472         if (!intel_dp->detect_done)
4473                 status = intel_dp_long_pulse(intel_dp->attached_connector);
4474
4475         intel_dp->detect_done = false;
4476
4477         return status;
4478 }
4479
4480 static void
4481 intel_dp_force(struct drm_connector *connector)
4482 {
4483         struct intel_dp *intel_dp = intel_attached_dp(connector);
4484         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4485         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4486         enum intel_display_power_domain power_domain;
4487
4488         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4489                       connector->base.id, connector->name);
4490         intel_dp_unset_edid(intel_dp);
4491
4492         if (connector->status != connector_status_connected)
4493                 return;
4494
4495         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4496         intel_display_power_get(dev_priv, power_domain);
4497
4498         intel_dp_set_edid(intel_dp);
4499
4500         intel_display_power_put(dev_priv, power_domain);
4501
4502         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4503                 intel_encoder->type = INTEL_OUTPUT_DP;
4504 }
4505
4506 static int intel_dp_get_modes(struct drm_connector *connector)
4507 {
4508         struct intel_connector *intel_connector = to_intel_connector(connector);
4509         struct edid *edid;
4510
4511         edid = intel_connector->detect_edid;
4512         if (edid) {
4513                 int ret = intel_connector_update_modes(connector, edid);
4514                 if (ret)
4515                         return ret;
4516         }
4517
4518         /* if eDP has no EDID, fall back to fixed mode */
4519         if (is_edp(intel_attached_dp(connector)) &&
4520             intel_connector->panel.fixed_mode) {
4521                 struct drm_display_mode *mode;
4522
4523                 mode = drm_mode_duplicate(connector->dev,
4524                                           intel_connector->panel.fixed_mode);
4525                 if (mode) {
4526                         drm_mode_probed_add(connector, mode);
4527                         return 1;
4528                 }
4529         }
4530
4531         return 0;
4532 }
4533
4534 static bool
4535 intel_dp_detect_audio(struct drm_connector *connector)
4536 {
4537         bool has_audio = false;
4538         struct edid *edid;
4539
4540         edid = to_intel_connector(connector)->detect_edid;
4541         if (edid)
4542                 has_audio = drm_detect_monitor_audio(edid);
4543
4544         return has_audio;
4545 }
4546
4547 static int
4548 intel_dp_set_property(struct drm_connector *connector,
4549                       struct drm_property *property,
4550                       uint64_t val)
4551 {
4552         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4553         struct intel_connector *intel_connector = to_intel_connector(connector);
4554         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4555         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4556         int ret;
4557
4558         ret = drm_object_property_set_value(&connector->base, property, val);
4559         if (ret)
4560                 return ret;
4561
4562         if (property == dev_priv->force_audio_property) {
4563                 int i = val;
4564                 bool has_audio;
4565
4566                 if (i == intel_dp->force_audio)
4567                         return 0;
4568
4569                 intel_dp->force_audio = i;
4570
4571                 if (i == HDMI_AUDIO_AUTO)
4572                         has_audio = intel_dp_detect_audio(connector);
4573                 else
4574                         has_audio = (i == HDMI_AUDIO_ON);
4575
4576                 if (has_audio == intel_dp->has_audio)
4577                         return 0;
4578
4579                 intel_dp->has_audio = has_audio;
4580                 goto done;
4581         }
4582
4583         if (property == dev_priv->broadcast_rgb_property) {
4584                 bool old_auto = intel_dp->color_range_auto;
4585                 bool old_range = intel_dp->limited_color_range;
4586
4587                 switch (val) {
4588                 case INTEL_BROADCAST_RGB_AUTO:
4589                         intel_dp->color_range_auto = true;
4590                         break;
4591                 case INTEL_BROADCAST_RGB_FULL:
4592                         intel_dp->color_range_auto = false;
4593                         intel_dp->limited_color_range = false;
4594                         break;
4595                 case INTEL_BROADCAST_RGB_LIMITED:
4596                         intel_dp->color_range_auto = false;
4597                         intel_dp->limited_color_range = true;
4598                         break;
4599                 default:
4600                         return -EINVAL;
4601                 }
4602
4603                 if (old_auto == intel_dp->color_range_auto &&
4604                     old_range == intel_dp->limited_color_range)
4605                         return 0;
4606
4607                 goto done;
4608         }
4609
4610         if (is_edp(intel_dp) &&
4611             property == connector->dev->mode_config.scaling_mode_property) {
4612                 if (val == DRM_MODE_SCALE_NONE) {
4613                         DRM_DEBUG_KMS("no scaling not supported\n");
4614                         return -EINVAL;
4615                 }
4616                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4617                     val == DRM_MODE_SCALE_CENTER) {
4618                         DRM_DEBUG_KMS("centering not supported\n");
4619                         return -EINVAL;
4620                 }
4621
4622                 if (intel_connector->panel.fitting_mode == val) {
4623                         /* the eDP scaling property is not changed */
4624                         return 0;
4625                 }
4626                 intel_connector->panel.fitting_mode = val;
4627
4628                 goto done;
4629         }
4630
4631         return -EINVAL;
4632
4633 done:
4634         if (intel_encoder->base.crtc)
4635                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4636
4637         return 0;
4638 }
4639
4640 static int
4641 intel_dp_connector_register(struct drm_connector *connector)
4642 {
4643         struct intel_dp *intel_dp = intel_attached_dp(connector);
4644         int ret;
4645
4646         ret = intel_connector_register(connector);
4647         if (ret)
4648                 return ret;
4649
4650         i915_debugfs_connector_add(connector);
4651
4652         DRM_DEBUG_KMS("registering %s bus for %s\n",
4653                       intel_dp->aux.name, connector->kdev->kobj.name);
4654
4655         intel_dp->aux.dev = connector->kdev;
4656         return drm_dp_aux_register(&intel_dp->aux);
4657 }
4658
4659 static void
4660 intel_dp_connector_unregister(struct drm_connector *connector)
4661 {
4662         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4663         intel_connector_unregister(connector);
4664 }
4665
4666 static void
4667 intel_dp_connector_destroy(struct drm_connector *connector)
4668 {
4669         struct intel_connector *intel_connector = to_intel_connector(connector);
4670
4671         kfree(intel_connector->detect_edid);
4672
4673         if (!IS_ERR_OR_NULL(intel_connector->edid))
4674                 kfree(intel_connector->edid);
4675
4676         /* Can't call is_edp() since the encoder may have been destroyed
4677          * already. */
4678         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4679                 intel_panel_fini(&intel_connector->panel);
4680
4681         drm_connector_cleanup(connector);
4682         kfree(connector);
4683 }
4684
4685 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4686 {
4687         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4688         struct intel_dp *intel_dp = &intel_dig_port->dp;
4689
4690         intel_dp_mst_encoder_cleanup(intel_dig_port);
4691         if (is_edp(intel_dp)) {
4692                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4693                 /*
4694                  * vdd might still be enabled do to the delayed vdd off.
4695                  * Make sure vdd is actually turned off here.
4696                  */
4697                 pps_lock(intel_dp);
4698                 edp_panel_vdd_off_sync(intel_dp);
4699                 pps_unlock(intel_dp);
4700
4701                 if (intel_dp->edp_notifier.notifier_call) {
4702                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4703                         intel_dp->edp_notifier.notifier_call = NULL;
4704                 }
4705         }
4706
4707         intel_dp_aux_fini(intel_dp);
4708
4709         drm_encoder_cleanup(encoder);
4710         kfree(intel_dig_port);
4711 }
4712
4713 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4714 {
4715         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4716
4717         if (!is_edp(intel_dp))
4718                 return;
4719
4720         /*
4721          * vdd might still be enabled do to the delayed vdd off.
4722          * Make sure vdd is actually turned off here.
4723          */
4724         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4725         pps_lock(intel_dp);
4726         edp_panel_vdd_off_sync(intel_dp);
4727         pps_unlock(intel_dp);
4728 }
4729
4730 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4731 {
4732         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4733         struct drm_device *dev = intel_dig_port->base.base.dev;
4734         struct drm_i915_private *dev_priv = to_i915(dev);
4735         enum intel_display_power_domain power_domain;
4736
4737         lockdep_assert_held(&dev_priv->pps_mutex);
4738
4739         if (!edp_have_panel_vdd(intel_dp))
4740                 return;
4741
4742         /*
4743          * The VDD bit needs a power domain reference, so if the bit is
4744          * already enabled when we boot or resume, grab this reference and
4745          * schedule a vdd off, so we don't hold on to the reference
4746          * indefinitely.
4747          */
4748         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4749         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4750         intel_display_power_get(dev_priv, power_domain);
4751
4752         edp_panel_vdd_schedule_off(intel_dp);
4753 }
4754
4755 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4756 {
4757         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4758         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4759
4760         if (!HAS_DDI(dev_priv))
4761                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4762
4763         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4764                 return;
4765
4766         pps_lock(intel_dp);
4767
4768         /* Reinit the power sequencer, in case BIOS did something with it. */
4769         intel_dp_pps_init(encoder->dev, intel_dp);
4770         intel_edp_panel_vdd_sanitize(intel_dp);
4771
4772         pps_unlock(intel_dp);
4773 }
4774
4775 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4776         .dpms = drm_atomic_helper_connector_dpms,
4777         .detect = intel_dp_detect,
4778         .force = intel_dp_force,
4779         .fill_modes = drm_helper_probe_single_connector_modes,
4780         .set_property = intel_dp_set_property,
4781         .atomic_get_property = intel_connector_atomic_get_property,
4782         .late_register = intel_dp_connector_register,
4783         .early_unregister = intel_dp_connector_unregister,
4784         .destroy = intel_dp_connector_destroy,
4785         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4786         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4787 };
4788
4789 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4790         .get_modes = intel_dp_get_modes,
4791         .mode_valid = intel_dp_mode_valid,
4792 };
4793
4794 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4795         .reset = intel_dp_encoder_reset,
4796         .destroy = intel_dp_encoder_destroy,
4797 };
4798
4799 enum irqreturn
4800 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4801 {
4802         struct intel_dp *intel_dp = &intel_dig_port->dp;
4803         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4804         struct drm_device *dev = intel_dig_port->base.base.dev;
4805         struct drm_i915_private *dev_priv = to_i915(dev);
4806         enum intel_display_power_domain power_domain;
4807         enum irqreturn ret = IRQ_NONE;
4808
4809         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4810             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4811                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4812
4813         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4814                 /*
4815                  * vdd off can generate a long pulse on eDP which
4816                  * would require vdd on to handle it, and thus we
4817                  * would end up in an endless cycle of
4818                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4819                  */
4820                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4821                               port_name(intel_dig_port->port));
4822                 return IRQ_HANDLED;
4823         }
4824
4825         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4826                       port_name(intel_dig_port->port),
4827                       long_hpd ? "long" : "short");
4828
4829         if (long_hpd) {
4830                 intel_dp->detect_done = false;
4831                 return IRQ_NONE;
4832         }
4833
4834         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4835         intel_display_power_get(dev_priv, power_domain);
4836
4837         if (intel_dp->is_mst) {
4838                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4839                         /*
4840                          * If we were in MST mode, and device is not
4841                          * there, get out of MST mode
4842                          */
4843                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4844                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4845                         intel_dp->is_mst = false;
4846                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4847                                                         intel_dp->is_mst);
4848                         intel_dp->detect_done = false;
4849                         goto put_power;
4850                 }
4851         }
4852
4853         if (!intel_dp->is_mst) {
4854                 if (!intel_dp_short_pulse(intel_dp)) {
4855                         intel_dp->detect_done = false;
4856                         goto put_power;
4857                 }
4858         }
4859
4860         ret = IRQ_HANDLED;
4861
4862 put_power:
4863         intel_display_power_put(dev_priv, power_domain);
4864
4865         return ret;
4866 }
4867
4868 /* check the VBT to see whether the eDP is on another port */
4869 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4870 {
4871         struct drm_i915_private *dev_priv = to_i915(dev);
4872
4873         /*
4874          * eDP not supported on g4x. so bail out early just
4875          * for a bit extra safety in case the VBT is bonkers.
4876          */
4877         if (INTEL_INFO(dev)->gen < 5)
4878                 return false;
4879
4880         if (port == PORT_A)
4881                 return true;
4882
4883         return intel_bios_is_port_edp(dev_priv, port);
4884 }
4885
4886 void
4887 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4888 {
4889         struct intel_connector *intel_connector = to_intel_connector(connector);
4890
4891         intel_attach_force_audio_property(connector);
4892         intel_attach_broadcast_rgb_property(connector);
4893         intel_dp->color_range_auto = true;
4894
4895         if (is_edp(intel_dp)) {
4896                 drm_mode_create_scaling_mode_property(connector->dev);
4897                 drm_object_attach_property(
4898                         &connector->base,
4899                         connector->dev->mode_config.scaling_mode_property,
4900                         DRM_MODE_SCALE_ASPECT);
4901                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4902         }
4903 }
4904
4905 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4906 {
4907         intel_dp->panel_power_off_time = ktime_get_boottime();
4908         intel_dp->last_power_on = jiffies;
4909         intel_dp->last_backlight_off = jiffies;
4910 }
4911
4912 static void
4913 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4914                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4915 {
4916         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4917         struct pps_registers regs;
4918
4919         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4920
4921         /* Workaround: Need to write PP_CONTROL with the unlock key as
4922          * the very first thing. */
4923         pp_ctl = ironlake_get_pp_control(intel_dp);
4924
4925         pp_on = I915_READ(regs.pp_on);
4926         pp_off = I915_READ(regs.pp_off);
4927         if (!IS_BROXTON(dev_priv)) {
4928                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4929                 pp_div = I915_READ(regs.pp_div);
4930         }
4931
4932         /* Pull timing values out of registers */
4933         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4934                      PANEL_POWER_UP_DELAY_SHIFT;
4935
4936         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4937                   PANEL_LIGHT_ON_DELAY_SHIFT;
4938
4939         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4940                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4941
4942         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4943                    PANEL_POWER_DOWN_DELAY_SHIFT;
4944
4945         if (IS_BROXTON(dev_priv)) {
4946                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4947                         BXT_POWER_CYCLE_DELAY_SHIFT;
4948                 if (tmp > 0)
4949                         seq->t11_t12 = (tmp - 1) * 1000;
4950                 else
4951                         seq->t11_t12 = 0;
4952         } else {
4953                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4954                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4955         }
4956 }
4957
4958 static void
4959 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4960 {
4961         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4962                       state_name,
4963                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4964 }
4965
4966 static void
4967 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4968                        struct intel_dp *intel_dp)
4969 {
4970         struct edp_power_seq hw;
4971         struct edp_power_seq *sw = &intel_dp->pps_delays;
4972
4973         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4974
4975         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4976             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4977                 DRM_ERROR("PPS state mismatch\n");
4978                 intel_pps_dump_state("sw", sw);
4979                 intel_pps_dump_state("hw", &hw);
4980         }
4981 }
4982
4983 static void
4984 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4985                                     struct intel_dp *intel_dp)
4986 {
4987         struct drm_i915_private *dev_priv = to_i915(dev);
4988         struct edp_power_seq cur, vbt, spec,
4989                 *final = &intel_dp->pps_delays;
4990
4991         lockdep_assert_held(&dev_priv->pps_mutex);
4992
4993         /* already initialized? */
4994         if (final->t11_t12 != 0)
4995                 return;
4996
4997         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4998
4999         intel_pps_dump_state("cur", &cur);
5000
5001         vbt = dev_priv->vbt.edp.pps;
5002
5003         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5004          * our hw here, which are all in 100usec. */
5005         spec.t1_t3 = 210 * 10;
5006         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5007         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5008         spec.t10 = 500 * 10;
5009         /* This one is special and actually in units of 100ms, but zero
5010          * based in the hw (so we need to add 100 ms). But the sw vbt
5011          * table multiplies it with 1000 to make it in units of 100usec,
5012          * too. */
5013         spec.t11_t12 = (510 + 100) * 10;
5014
5015         intel_pps_dump_state("vbt", &vbt);
5016
5017         /* Use the max of the register settings and vbt. If both are
5018          * unset, fall back to the spec limits. */
5019 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5020                                        spec.field : \
5021                                        max(cur.field, vbt.field))
5022         assign_final(t1_t3);
5023         assign_final(t8);
5024         assign_final(t9);
5025         assign_final(t10);
5026         assign_final(t11_t12);
5027 #undef assign_final
5028
5029 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5030         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5031         intel_dp->backlight_on_delay = get_delay(t8);
5032         intel_dp->backlight_off_delay = get_delay(t9);
5033         intel_dp->panel_power_down_delay = get_delay(t10);
5034         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5035 #undef get_delay
5036
5037         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5038                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5039                       intel_dp->panel_power_cycle_delay);
5040
5041         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5042                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5043
5044         /*
5045          * We override the HW backlight delays to 1 because we do manual waits
5046          * on them. For T8, even BSpec recommends doing it. For T9, if we
5047          * don't do this, we'll end up waiting for the backlight off delay
5048          * twice: once when we do the manual sleep, and once when we disable
5049          * the panel and wait for the PP_STATUS bit to become zero.
5050          */
5051         final->t8 = 1;
5052         final->t9 = 1;
5053 }
5054
5055 static void
5056 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5057                                               struct intel_dp *intel_dp)
5058 {
5059         struct drm_i915_private *dev_priv = to_i915(dev);
5060         u32 pp_on, pp_off, pp_div, port_sel = 0;
5061         int div = dev_priv->rawclk_freq / 1000;
5062         struct pps_registers regs;
5063         enum port port = dp_to_dig_port(intel_dp)->port;
5064         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5065
5066         lockdep_assert_held(&dev_priv->pps_mutex);
5067
5068         intel_pps_get_registers(dev_priv, intel_dp, &regs);
5069
5070         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5071                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5072         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5073                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5074         /* Compute the divisor for the pp clock, simply match the Bspec
5075          * formula. */
5076         if (IS_BROXTON(dev_priv)) {
5077                 pp_div = I915_READ(regs.pp_ctrl);
5078                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5079                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5080                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5081         } else {
5082                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5083                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5084                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5085         }
5086
5087         /* Haswell doesn't have any port selection bits for the panel
5088          * power sequencer any more. */
5089         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5090                 port_sel = PANEL_PORT_SELECT_VLV(port);
5091         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5092                 if (port == PORT_A)
5093                         port_sel = PANEL_PORT_SELECT_DPA;
5094                 else
5095                         port_sel = PANEL_PORT_SELECT_DPD;
5096         }
5097
5098         pp_on |= port_sel;
5099
5100         I915_WRITE(regs.pp_on, pp_on);
5101         I915_WRITE(regs.pp_off, pp_off);
5102         if (IS_BROXTON(dev_priv))
5103                 I915_WRITE(regs.pp_ctrl, pp_div);
5104         else
5105                 I915_WRITE(regs.pp_div, pp_div);
5106
5107         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5108                       I915_READ(regs.pp_on),
5109                       I915_READ(regs.pp_off),
5110                       IS_BROXTON(dev_priv) ?
5111                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5112                       I915_READ(regs.pp_div));
5113 }
5114
5115 static void intel_dp_pps_init(struct drm_device *dev,
5116                               struct intel_dp *intel_dp)
5117 {
5118         struct drm_i915_private *dev_priv = to_i915(dev);
5119
5120         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5121                 vlv_initial_power_sequencer_setup(intel_dp);
5122         } else {
5123                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5124                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5125         }
5126 }
5127
5128 /**
5129  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5130  * @dev_priv: i915 device
5131  * @crtc_state: a pointer to the active intel_crtc_state
5132  * @refresh_rate: RR to be programmed
5133  *
5134  * This function gets called when refresh rate (RR) has to be changed from
5135  * one frequency to another. Switches can be between high and low RR
5136  * supported by the panel or to any other RR based on media playback (in
5137  * this case, RR value needs to be passed from user space).
5138  *
5139  * The caller of this function needs to take a lock on dev_priv->drrs.
5140  */
5141 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5142                                     struct intel_crtc_state *crtc_state,
5143                                     int refresh_rate)
5144 {
5145         struct intel_encoder *encoder;
5146         struct intel_digital_port *dig_port = NULL;
5147         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5149         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5150
5151         if (refresh_rate <= 0) {
5152                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5153                 return;
5154         }
5155
5156         if (intel_dp == NULL) {
5157                 DRM_DEBUG_KMS("DRRS not supported.\n");
5158                 return;
5159         }
5160
5161         /*
5162          * FIXME: This needs proper synchronization with psr state for some
5163          * platforms that cannot have PSR and DRRS enabled at the same time.
5164          */
5165
5166         dig_port = dp_to_dig_port(intel_dp);
5167         encoder = &dig_port->base;
5168         intel_crtc = to_intel_crtc(encoder->base.crtc);
5169
5170         if (!intel_crtc) {
5171                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5172                 return;
5173         }
5174
5175         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5176                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5177                 return;
5178         }
5179
5180         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5181                         refresh_rate)
5182                 index = DRRS_LOW_RR;
5183
5184         if (index == dev_priv->drrs.refresh_rate_type) {
5185                 DRM_DEBUG_KMS(
5186                         "DRRS requested for previously set RR...ignoring\n");
5187                 return;
5188         }
5189
5190         if (!crtc_state->base.active) {
5191                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5192                 return;
5193         }
5194
5195         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5196                 switch (index) {
5197                 case DRRS_HIGH_RR:
5198                         intel_dp_set_m_n(intel_crtc, M1_N1);
5199                         break;
5200                 case DRRS_LOW_RR:
5201                         intel_dp_set_m_n(intel_crtc, M2_N2);
5202                         break;
5203                 case DRRS_MAX_RR:
5204                 default:
5205                         DRM_ERROR("Unsupported refreshrate type\n");
5206                 }
5207         } else if (INTEL_GEN(dev_priv) > 6) {
5208                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5209                 u32 val;
5210
5211                 val = I915_READ(reg);
5212                 if (index > DRRS_HIGH_RR) {
5213                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5214                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5215                         else
5216                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5217                 } else {
5218                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5219                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5220                         else
5221                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5222                 }
5223                 I915_WRITE(reg, val);
5224         }
5225
5226         dev_priv->drrs.refresh_rate_type = index;
5227
5228         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5229 }
5230
5231 /**
5232  * intel_edp_drrs_enable - init drrs struct if supported
5233  * @intel_dp: DP struct
5234  * @crtc_state: A pointer to the active crtc state.
5235  *
5236  * Initializes frontbuffer_bits and drrs.dp
5237  */
5238 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5239                            struct intel_crtc_state *crtc_state)
5240 {
5241         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5242         struct drm_i915_private *dev_priv = to_i915(dev);
5243
5244         if (!crtc_state->has_drrs) {
5245                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5246                 return;
5247         }
5248
5249         mutex_lock(&dev_priv->drrs.mutex);
5250         if (WARN_ON(dev_priv->drrs.dp)) {
5251                 DRM_ERROR("DRRS already enabled\n");
5252                 goto unlock;
5253         }
5254
5255         dev_priv->drrs.busy_frontbuffer_bits = 0;
5256
5257         dev_priv->drrs.dp = intel_dp;
5258
5259 unlock:
5260         mutex_unlock(&dev_priv->drrs.mutex);
5261 }
5262
5263 /**
5264  * intel_edp_drrs_disable - Disable DRRS
5265  * @intel_dp: DP struct
5266  * @old_crtc_state: Pointer to old crtc_state.
5267  *
5268  */
5269 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5270                             struct intel_crtc_state *old_crtc_state)
5271 {
5272         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5273         struct drm_i915_private *dev_priv = to_i915(dev);
5274
5275         if (!old_crtc_state->has_drrs)
5276                 return;
5277
5278         mutex_lock(&dev_priv->drrs.mutex);
5279         if (!dev_priv->drrs.dp) {
5280                 mutex_unlock(&dev_priv->drrs.mutex);
5281                 return;
5282         }
5283
5284         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5285                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5286                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5287
5288         dev_priv->drrs.dp = NULL;
5289         mutex_unlock(&dev_priv->drrs.mutex);
5290
5291         cancel_delayed_work_sync(&dev_priv->drrs.work);
5292 }
5293
5294 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5295 {
5296         struct drm_i915_private *dev_priv =
5297                 container_of(work, typeof(*dev_priv), drrs.work.work);
5298         struct intel_dp *intel_dp;
5299
5300         mutex_lock(&dev_priv->drrs.mutex);
5301
5302         intel_dp = dev_priv->drrs.dp;
5303
5304         if (!intel_dp)
5305                 goto unlock;
5306
5307         /*
5308          * The delayed work can race with an invalidate hence we need to
5309          * recheck.
5310          */
5311
5312         if (dev_priv->drrs.busy_frontbuffer_bits)
5313                 goto unlock;
5314
5315         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5316                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5317
5318                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5319                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5320         }
5321
5322 unlock:
5323         mutex_unlock(&dev_priv->drrs.mutex);
5324 }
5325
5326 /**
5327  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5328  * @dev_priv: i915 device
5329  * @frontbuffer_bits: frontbuffer plane tracking bits
5330  *
5331  * This function gets called everytime rendering on the given planes start.
5332  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5333  *
5334  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5335  */
5336 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5337                                unsigned int frontbuffer_bits)
5338 {
5339         struct drm_crtc *crtc;
5340         enum pipe pipe;
5341
5342         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5343                 return;
5344
5345         cancel_delayed_work(&dev_priv->drrs.work);
5346
5347         mutex_lock(&dev_priv->drrs.mutex);
5348         if (!dev_priv->drrs.dp) {
5349                 mutex_unlock(&dev_priv->drrs.mutex);
5350                 return;
5351         }
5352
5353         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5354         pipe = to_intel_crtc(crtc)->pipe;
5355
5356         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5357         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5358
5359         /* invalidate means busy screen hence upclock */
5360         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5361                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5362                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5363
5364         mutex_unlock(&dev_priv->drrs.mutex);
5365 }
5366
5367 /**
5368  * intel_edp_drrs_flush - Restart Idleness DRRS
5369  * @dev_priv: i915 device
5370  * @frontbuffer_bits: frontbuffer plane tracking bits
5371  *
5372  * This function gets called every time rendering on the given planes has
5373  * completed or flip on a crtc is completed. So DRRS should be upclocked
5374  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5375  * if no other planes are dirty.
5376  *
5377  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5378  */
5379 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5380                           unsigned int frontbuffer_bits)
5381 {
5382         struct drm_crtc *crtc;
5383         enum pipe pipe;
5384
5385         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5386                 return;
5387
5388         cancel_delayed_work(&dev_priv->drrs.work);
5389
5390         mutex_lock(&dev_priv->drrs.mutex);
5391         if (!dev_priv->drrs.dp) {
5392                 mutex_unlock(&dev_priv->drrs.mutex);
5393                 return;
5394         }
5395
5396         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5397         pipe = to_intel_crtc(crtc)->pipe;
5398
5399         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5400         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5401
5402         /* flush means busy screen hence upclock */
5403         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5404                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5405                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5406
5407         /*
5408          * flush also means no more activity hence schedule downclock, if all
5409          * other fbs are quiescent too
5410          */
5411         if (!dev_priv->drrs.busy_frontbuffer_bits)
5412                 schedule_delayed_work(&dev_priv->drrs.work,
5413                                 msecs_to_jiffies(1000));
5414         mutex_unlock(&dev_priv->drrs.mutex);
5415 }
5416
5417 /**
5418  * DOC: Display Refresh Rate Switching (DRRS)
5419  *
5420  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5421  * which enables swtching between low and high refresh rates,
5422  * dynamically, based on the usage scenario. This feature is applicable
5423  * for internal panels.
5424  *
5425  * Indication that the panel supports DRRS is given by the panel EDID, which
5426  * would list multiple refresh rates for one resolution.
5427  *
5428  * DRRS is of 2 types - static and seamless.
5429  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5430  * (may appear as a blink on screen) and is used in dock-undock scenario.
5431  * Seamless DRRS involves changing RR without any visual effect to the user
5432  * and can be used during normal system usage. This is done by programming
5433  * certain registers.
5434  *
5435  * Support for static/seamless DRRS may be indicated in the VBT based on
5436  * inputs from the panel spec.
5437  *
5438  * DRRS saves power by switching to low RR based on usage scenarios.
5439  *
5440  * The implementation is based on frontbuffer tracking implementation.  When
5441  * there is a disturbance on the screen triggered by user activity or a periodic
5442  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5443  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5444  * made.
5445  *
5446  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5447  * and intel_edp_drrs_flush() are called.
5448  *
5449  * DRRS can be further extended to support other internal panels and also
5450  * the scenario of video playback wherein RR is set based on the rate
5451  * requested by userspace.
5452  */
5453
5454 /**
5455  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5456  * @intel_connector: eDP connector
5457  * @fixed_mode: preferred mode of panel
5458  *
5459  * This function is  called only once at driver load to initialize basic
5460  * DRRS stuff.
5461  *
5462  * Returns:
5463  * Downclock mode if panel supports it, else return NULL.
5464  * DRRS support is determined by the presence of downclock mode (apart
5465  * from VBT setting).
5466  */
5467 static struct drm_display_mode *
5468 intel_dp_drrs_init(struct intel_connector *intel_connector,
5469                 struct drm_display_mode *fixed_mode)
5470 {
5471         struct drm_connector *connector = &intel_connector->base;
5472         struct drm_device *dev = connector->dev;
5473         struct drm_i915_private *dev_priv = to_i915(dev);
5474         struct drm_display_mode *downclock_mode = NULL;
5475
5476         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5477         mutex_init(&dev_priv->drrs.mutex);
5478
5479         if (INTEL_INFO(dev)->gen <= 6) {
5480                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5481                 return NULL;
5482         }
5483
5484         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5485                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5486                 return NULL;
5487         }
5488
5489         downclock_mode = intel_find_panel_downclock
5490                                         (dev, fixed_mode, connector);
5491
5492         if (!downclock_mode) {
5493                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5494                 return NULL;
5495         }
5496
5497         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5498
5499         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5500         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5501         return downclock_mode;
5502 }
5503
5504 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5505                                      struct intel_connector *intel_connector)
5506 {
5507         struct drm_connector *connector = &intel_connector->base;
5508         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5509         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5510         struct drm_device *dev = intel_encoder->base.dev;
5511         struct drm_i915_private *dev_priv = to_i915(dev);
5512         struct drm_display_mode *fixed_mode = NULL;
5513         struct drm_display_mode *downclock_mode = NULL;
5514         bool has_dpcd;
5515         struct drm_display_mode *scan;
5516         struct edid *edid;
5517         enum pipe pipe = INVALID_PIPE;
5518
5519         if (!is_edp(intel_dp))
5520                 return true;
5521
5522         /*
5523          * On IBX/CPT we may get here with LVDS already registered. Since the
5524          * driver uses the only internal power sequencer available for both
5525          * eDP and LVDS bail out early in this case to prevent interfering
5526          * with an already powered-on LVDS power sequencer.
5527          */
5528         if (intel_get_lvds_encoder(dev)) {
5529                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5530                 DRM_INFO("LVDS was detected, not registering eDP\n");
5531
5532                 return false;
5533         }
5534
5535         pps_lock(intel_dp);
5536
5537         intel_dp_init_panel_power_timestamps(intel_dp);
5538         intel_dp_pps_init(dev, intel_dp);
5539         intel_edp_panel_vdd_sanitize(intel_dp);
5540
5541         pps_unlock(intel_dp);
5542
5543         /* Cache DPCD and EDID for edp. */
5544         has_dpcd = intel_edp_init_dpcd(intel_dp);
5545
5546         if (!has_dpcd) {
5547                 /* if this fails, presume the device is a ghost */
5548                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5549                 goto out_vdd_off;
5550         }
5551
5552         mutex_lock(&dev->mode_config.mutex);
5553         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5554         if (edid) {
5555                 if (drm_add_edid_modes(connector, edid)) {
5556                         drm_mode_connector_update_edid_property(connector,
5557                                                                 edid);
5558                         drm_edid_to_eld(connector, edid);
5559                 } else {
5560                         kfree(edid);
5561                         edid = ERR_PTR(-EINVAL);
5562                 }
5563         } else {
5564                 edid = ERR_PTR(-ENOENT);
5565         }
5566         intel_connector->edid = edid;
5567
5568         /* prefer fixed mode from EDID if available */
5569         list_for_each_entry(scan, &connector->probed_modes, head) {
5570                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5571                         fixed_mode = drm_mode_duplicate(dev, scan);
5572                         downclock_mode = intel_dp_drrs_init(
5573                                                 intel_connector, fixed_mode);
5574                         break;
5575                 }
5576         }
5577
5578         /* fallback to VBT if available for eDP */
5579         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5580                 fixed_mode = drm_mode_duplicate(dev,
5581                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5582                 if (fixed_mode) {
5583                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5584                         connector->display_info.width_mm = fixed_mode->width_mm;
5585                         connector->display_info.height_mm = fixed_mode->height_mm;
5586                 }
5587         }
5588         mutex_unlock(&dev->mode_config.mutex);
5589
5590         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5591                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5592                 register_reboot_notifier(&intel_dp->edp_notifier);
5593
5594                 /*
5595                  * Figure out the current pipe for the initial backlight setup.
5596                  * If the current pipe isn't valid, try the PPS pipe, and if that
5597                  * fails just assume pipe A.
5598                  */
5599                 if (IS_CHERRYVIEW(dev_priv))
5600                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5601                 else
5602                         pipe = PORT_TO_PIPE(intel_dp->DP);
5603
5604                 if (pipe != PIPE_A && pipe != PIPE_B)
5605                         pipe = intel_dp->pps_pipe;
5606
5607                 if (pipe != PIPE_A && pipe != PIPE_B)
5608                         pipe = PIPE_A;
5609
5610                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5611                               pipe_name(pipe));
5612         }
5613
5614         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5615         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5616         intel_panel_setup_backlight(connector, pipe);
5617
5618         return true;
5619
5620 out_vdd_off:
5621         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5622         /*
5623          * vdd might still be enabled do to the delayed vdd off.
5624          * Make sure vdd is actually turned off here.
5625          */
5626         pps_lock(intel_dp);
5627         edp_panel_vdd_off_sync(intel_dp);
5628         pps_unlock(intel_dp);
5629
5630         return false;
5631 }
5632
5633 bool
5634 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5635                         struct intel_connector *intel_connector)
5636 {
5637         struct drm_connector *connector = &intel_connector->base;
5638         struct intel_dp *intel_dp = &intel_dig_port->dp;
5639         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5640         struct drm_device *dev = intel_encoder->base.dev;
5641         struct drm_i915_private *dev_priv = to_i915(dev);
5642         enum port port = intel_dig_port->port;
5643         int type;
5644
5645         if (WARN(intel_dig_port->max_lanes < 1,
5646                  "Not enough lanes (%d) for DP on port %c\n",
5647                  intel_dig_port->max_lanes, port_name(port)))
5648                 return false;
5649
5650         intel_dp->pps_pipe = INVALID_PIPE;
5651
5652         /* intel_dp vfuncs */
5653         if (INTEL_INFO(dev)->gen >= 9)
5654                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5655         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5656                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5657         else if (HAS_PCH_SPLIT(dev_priv))
5658                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5659         else
5660                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5661
5662         if (INTEL_INFO(dev)->gen >= 9)
5663                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5664         else
5665                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5666
5667         if (HAS_DDI(dev_priv))
5668                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5669
5670         /* Preserve the current hw state. */
5671         intel_dp->DP = I915_READ(intel_dp->output_reg);
5672         intel_dp->attached_connector = intel_connector;
5673
5674         if (intel_dp_is_edp(dev, port))
5675                 type = DRM_MODE_CONNECTOR_eDP;
5676         else
5677                 type = DRM_MODE_CONNECTOR_DisplayPort;
5678
5679         /*
5680          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5681          * for DP the encoder type can be set by the caller to
5682          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5683          */
5684         if (type == DRM_MODE_CONNECTOR_eDP)
5685                 intel_encoder->type = INTEL_OUTPUT_EDP;
5686
5687         /* eDP only on port B and/or C on vlv/chv */
5688         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5689                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5690                 return false;
5691
5692         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5693                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5694                         port_name(port));
5695
5696         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5697         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5698
5699         connector->interlace_allowed = true;
5700         connector->doublescan_allowed = 0;
5701
5702         intel_dp_aux_init(intel_dp);
5703
5704         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5705                           edp_panel_vdd_work);
5706
5707         intel_connector_attach_encoder(intel_connector, intel_encoder);
5708
5709         if (HAS_DDI(dev_priv))
5710                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5711         else
5712                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5713
5714         /* Set up the hotplug pin. */
5715         switch (port) {
5716         case PORT_A:
5717                 intel_encoder->hpd_pin = HPD_PORT_A;
5718                 break;
5719         case PORT_B:
5720                 intel_encoder->hpd_pin = HPD_PORT_B;
5721                 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
5722                         intel_encoder->hpd_pin = HPD_PORT_A;
5723                 break;
5724         case PORT_C:
5725                 intel_encoder->hpd_pin = HPD_PORT_C;
5726                 break;
5727         case PORT_D:
5728                 intel_encoder->hpd_pin = HPD_PORT_D;
5729                 break;
5730         case PORT_E:
5731                 intel_encoder->hpd_pin = HPD_PORT_E;
5732                 break;
5733         default:
5734                 BUG();
5735         }
5736
5737         /* init MST on ports that can support it */
5738         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5739             (port == PORT_B || port == PORT_C || port == PORT_D))
5740                 intel_dp_mst_encoder_init(intel_dig_port,
5741                                           intel_connector->base.base.id);
5742
5743         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5744                 intel_dp_aux_fini(intel_dp);
5745                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5746                 goto fail;
5747         }
5748
5749         intel_dp_add_properties(intel_dp, connector);
5750
5751         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5752          * 0xd.  Failure to do so will result in spurious interrupts being
5753          * generated on the port when a cable is not attached.
5754          */
5755         if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
5756                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5757                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5758         }
5759
5760         return true;
5761
5762 fail:
5763         drm_connector_cleanup(connector);
5764
5765         return false;
5766 }
5767
5768 bool intel_dp_init(struct drm_device *dev,
5769                    i915_reg_t output_reg,
5770                    enum port port)
5771 {
5772         struct drm_i915_private *dev_priv = to_i915(dev);
5773         struct intel_digital_port *intel_dig_port;
5774         struct intel_encoder *intel_encoder;
5775         struct drm_encoder *encoder;
5776         struct intel_connector *intel_connector;
5777
5778         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5779         if (!intel_dig_port)
5780                 return false;
5781
5782         intel_connector = intel_connector_alloc();
5783         if (!intel_connector)
5784                 goto err_connector_alloc;
5785
5786         intel_encoder = &intel_dig_port->base;
5787         encoder = &intel_encoder->base;
5788
5789         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5790                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5791                 goto err_encoder_init;
5792
5793         intel_encoder->compute_config = intel_dp_compute_config;
5794         intel_encoder->disable = intel_disable_dp;
5795         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5796         intel_encoder->get_config = intel_dp_get_config;
5797         intel_encoder->suspend = intel_dp_encoder_suspend;
5798         if (IS_CHERRYVIEW(dev_priv)) {
5799                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5800                 intel_encoder->pre_enable = chv_pre_enable_dp;
5801                 intel_encoder->enable = vlv_enable_dp;
5802                 intel_encoder->post_disable = chv_post_disable_dp;
5803                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5804         } else if (IS_VALLEYVIEW(dev_priv)) {
5805                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5806                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5807                 intel_encoder->enable = vlv_enable_dp;
5808                 intel_encoder->post_disable = vlv_post_disable_dp;
5809         } else {
5810                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5811                 intel_encoder->enable = g4x_enable_dp;
5812                 if (INTEL_INFO(dev)->gen >= 5)
5813                         intel_encoder->post_disable = ilk_post_disable_dp;
5814         }
5815
5816         intel_dig_port->port = port;
5817         intel_dig_port->dp.output_reg = output_reg;
5818         intel_dig_port->max_lanes = 4;
5819
5820         intel_encoder->type = INTEL_OUTPUT_DP;
5821         if (IS_CHERRYVIEW(dev_priv)) {
5822                 if (port == PORT_D)
5823                         intel_encoder->crtc_mask = 1 << 2;
5824                 else
5825                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5826         } else {
5827                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5828         }
5829         intel_encoder->cloneable = 0;
5830         intel_encoder->port = port;
5831
5832         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5833         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5834
5835         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5836                 goto err_init_connector;
5837
5838         return true;
5839
5840 err_init_connector:
5841         drm_encoder_cleanup(encoder);
5842 err_encoder_init:
5843         kfree(intel_connector);
5844 err_connector_alloc:
5845         kfree(intel_dig_port);
5846         return false;
5847 }
5848
5849 void intel_dp_mst_suspend(struct drm_device *dev)
5850 {
5851         struct drm_i915_private *dev_priv = to_i915(dev);
5852         int i;
5853
5854         /* disable MST */
5855         for (i = 0; i < I915_MAX_PORTS; i++) {
5856                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5857
5858                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5859                         continue;
5860
5861                 if (intel_dig_port->dp.is_mst)
5862                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5863         }
5864 }
5865
5866 void intel_dp_mst_resume(struct drm_device *dev)
5867 {
5868         struct drm_i915_private *dev_priv = to_i915(dev);
5869         int i;
5870
5871         for (i = 0; i < I915_MAX_PORTS; i++) {
5872                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5873                 int ret;
5874
5875                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5876                         continue;
5877
5878                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5879                 if (ret)
5880                         intel_dp_check_mst_status(&intel_dig_port->dp);
5881         }
5882 }