Merge tag 'kvm-ppc-fixes-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include "intel_drv.h"
43 #include <drm/i915_drm.h>
44 #include "i915_drv.h"
45
46 #define DP_DPRX_ESI_LEN 14
47
48 /* Compliance test status bits  */
49 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
50 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
52 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
53
54 struct dp_link_dpll {
55         int clock;
56         struct dpll dpll;
57 };
58
59 static const struct dp_link_dpll g4x_dpll[] = {
60         { 162000,
61                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62         { 270000,
63                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
64 };
65
66 static const struct dp_link_dpll pch_dpll[] = {
67         { 162000,
68                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69         { 270000,
70                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
71 };
72
73 static const struct dp_link_dpll vlv_dpll[] = {
74         { 162000,
75                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76         { 270000,
77                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
78 };
79
80 /*
81  * CHV supports eDP 1.4 that have  more link rates.
82  * Below only provides the fixed rate but exclude variable rate.
83  */
84 static const struct dp_link_dpll chv_dpll[] = {
85         /*
86          * CHV requires to program fractional division for m2.
87          * m2 is stored in fixed point format using formula below
88          * (m2_int << 22) | m2_fraction
89          */
90         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
91                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92         { 270000,       /* m2_int = 27, m2_fraction = 0 */
93                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
94 };
95
96 /**
97  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98  * @intel_dp: DP struct
99  *
100  * If a CPU or PCH DP output is attached to an eDP panel, this function
101  * will return true, and false otherwise.
102  */
103 bool intel_dp_is_edp(struct intel_dp *intel_dp)
104 {
105         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
106
107         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 }
109
110 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
111 {
112         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114         return intel_dig_port->base.base.dev;
115 }
116
117 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
118 {
119         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
120 }
121
122 static void intel_dp_link_down(struct intel_encoder *encoder,
123                                const struct intel_crtc_state *old_crtc_state);
124 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
125 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
126 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
127                                            const struct intel_crtc_state *crtc_state);
128 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
129                                       enum pipe pipe);
130 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
131
132 /* update sink rates from dpcd */
133 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
134 {
135         static const int dp_rates[] = {
136                 162000, 270000, 540000, 810000
137         };
138         int i, max_rate;
139
140         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
141
142         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
143                 if (dp_rates[i] > max_rate)
144                         break;
145                 intel_dp->sink_rates[i] = dp_rates[i];
146         }
147
148         intel_dp->num_sink_rates = i;
149 }
150
151 /* Get length of rates array potentially limited by max_rate. */
152 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
153 {
154         int i;
155
156         /* Limit results by potentially reduced max rate */
157         for (i = 0; i < len; i++) {
158                 if (rates[len - i - 1] <= max_rate)
159                         return len - i;
160         }
161
162         return 0;
163 }
164
165 /* Get length of common rates array potentially limited by max_rate. */
166 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
167                                           int max_rate)
168 {
169         return intel_dp_rate_limit_len(intel_dp->common_rates,
170                                        intel_dp->num_common_rates, max_rate);
171 }
172
173 /* Theoretical max between source and sink */
174 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
175 {
176         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
177 }
178
179 /* Theoretical max between source and sink */
180 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
181 {
182         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
183         int source_max = intel_dig_port->max_lanes;
184         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
185
186         return min(source_max, sink_max);
187 }
188
189 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
190 {
191         return intel_dp->max_link_lane_count;
192 }
193
194 int
195 intel_dp_link_required(int pixel_clock, int bpp)
196 {
197         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
198         return DIV_ROUND_UP(pixel_clock * bpp, 8);
199 }
200
201 int
202 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
203 {
204         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
205          * link rate that is generally expressed in Gbps. Since, 8 bits of data
206          * is transmitted every LS_Clk per lane, there is no need to account for
207          * the channel encoding that is done in the PHY layer here.
208          */
209
210         return max_link_clock * max_lanes;
211 }
212
213 static int
214 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
215 {
216         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
217         struct intel_encoder *encoder = &intel_dig_port->base;
218         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
219         int max_dotclk = dev_priv->max_dotclk_freq;
220         int ds_max_dotclk;
221
222         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
223
224         if (type != DP_DS_PORT_TYPE_VGA)
225                 return max_dotclk;
226
227         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
228                                                     intel_dp->downstream_ports);
229
230         if (ds_max_dotclk != 0)
231                 max_dotclk = min(max_dotclk, ds_max_dotclk);
232
233         return max_dotclk;
234 }
235
236 static int cnl_max_source_rate(struct intel_dp *intel_dp)
237 {
238         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
240         enum port port = dig_port->base.port;
241
242         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
243
244         /* Low voltage SKUs are limited to max of 5.4G */
245         if (voltage == VOLTAGE_INFO_0_85V)
246                 return 540000;
247
248         /* For this SKU 8.1G is supported in all ports */
249         if (IS_CNL_WITH_PORT_F(dev_priv))
250                 return 810000;
251
252         /* For other SKUs, max rate on ports A and D is 5.4G */
253         if (port == PORT_A || port == PORT_D)
254                 return 540000;
255
256         return 810000;
257 }
258
259 static int icl_max_source_rate(struct intel_dp *intel_dp)
260 {
261         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
262         enum port port = dig_port->base.port;
263
264         if (port == PORT_B)
265                 return 540000;
266
267         return 810000;
268 }
269
270 static void
271 intel_dp_set_source_rates(struct intel_dp *intel_dp)
272 {
273         /* The values must be in increasing order */
274         static const int cnl_rates[] = {
275                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
276         };
277         static const int bxt_rates[] = {
278                 162000, 216000, 243000, 270000, 324000, 432000, 540000
279         };
280         static const int skl_rates[] = {
281                 162000, 216000, 270000, 324000, 432000, 540000
282         };
283         static const int hsw_rates[] = {
284                 162000, 270000, 540000
285         };
286         static const int g4x_rates[] = {
287                 162000, 270000
288         };
289         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291         const struct ddi_vbt_port_info *info =
292                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
293         const int *source_rates;
294         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
295
296         /* This should only be done once */
297         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
298
299         if (INTEL_GEN(dev_priv) >= 10) {
300                 source_rates = cnl_rates;
301                 size = ARRAY_SIZE(cnl_rates);
302                 if (INTEL_GEN(dev_priv) == 10)
303                         max_rate = cnl_max_source_rate(intel_dp);
304                 else
305                         max_rate = icl_max_source_rate(intel_dp);
306         } else if (IS_GEN9_LP(dev_priv)) {
307                 source_rates = bxt_rates;
308                 size = ARRAY_SIZE(bxt_rates);
309         } else if (IS_GEN9_BC(dev_priv)) {
310                 source_rates = skl_rates;
311                 size = ARRAY_SIZE(skl_rates);
312         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
313                    IS_BROADWELL(dev_priv)) {
314                 source_rates = hsw_rates;
315                 size = ARRAY_SIZE(hsw_rates);
316         } else {
317                 source_rates = g4x_rates;
318                 size = ARRAY_SIZE(g4x_rates);
319         }
320
321         if (max_rate && vbt_max_rate)
322                 max_rate = min(max_rate, vbt_max_rate);
323         else if (vbt_max_rate)
324                 max_rate = vbt_max_rate;
325
326         if (max_rate)
327                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
328
329         intel_dp->source_rates = source_rates;
330         intel_dp->num_source_rates = size;
331 }
332
333 static int intersect_rates(const int *source_rates, int source_len,
334                            const int *sink_rates, int sink_len,
335                            int *common_rates)
336 {
337         int i = 0, j = 0, k = 0;
338
339         while (i < source_len && j < sink_len) {
340                 if (source_rates[i] == sink_rates[j]) {
341                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
342                                 return k;
343                         common_rates[k] = source_rates[i];
344                         ++k;
345                         ++i;
346                         ++j;
347                 } else if (source_rates[i] < sink_rates[j]) {
348                         ++i;
349                 } else {
350                         ++j;
351                 }
352         }
353         return k;
354 }
355
356 /* return index of rate in rates array, or -1 if not found */
357 static int intel_dp_rate_index(const int *rates, int len, int rate)
358 {
359         int i;
360
361         for (i = 0; i < len; i++)
362                 if (rate == rates[i])
363                         return i;
364
365         return -1;
366 }
367
368 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
369 {
370         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
371
372         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
373                                                      intel_dp->num_source_rates,
374                                                      intel_dp->sink_rates,
375                                                      intel_dp->num_sink_rates,
376                                                      intel_dp->common_rates);
377
378         /* Paranoia, there should always be something in common. */
379         if (WARN_ON(intel_dp->num_common_rates == 0)) {
380                 intel_dp->common_rates[0] = 162000;
381                 intel_dp->num_common_rates = 1;
382         }
383 }
384
385 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
386                                        uint8_t lane_count)
387 {
388         /*
389          * FIXME: we need to synchronize the current link parameters with
390          * hardware readout. Currently fast link training doesn't work on
391          * boot-up.
392          */
393         if (link_rate == 0 ||
394             link_rate > intel_dp->max_link_rate)
395                 return false;
396
397         if (lane_count == 0 ||
398             lane_count > intel_dp_max_lane_count(intel_dp))
399                 return false;
400
401         return true;
402 }
403
404 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
405                                             int link_rate, uint8_t lane_count)
406 {
407         int index;
408
409         index = intel_dp_rate_index(intel_dp->common_rates,
410                                     intel_dp->num_common_rates,
411                                     link_rate);
412         if (index > 0) {
413                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
414                 intel_dp->max_link_lane_count = lane_count;
415         } else if (lane_count > 1) {
416                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
417                 intel_dp->max_link_lane_count = lane_count >> 1;
418         } else {
419                 DRM_ERROR("Link Training Unsuccessful\n");
420                 return -1;
421         }
422
423         return 0;
424 }
425
426 static enum drm_mode_status
427 intel_dp_mode_valid(struct drm_connector *connector,
428                     struct drm_display_mode *mode)
429 {
430         struct intel_dp *intel_dp = intel_attached_dp(connector);
431         struct intel_connector *intel_connector = to_intel_connector(connector);
432         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
433         int target_clock = mode->clock;
434         int max_rate, mode_rate, max_lanes, max_link_clock;
435         int max_dotclk;
436
437         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
438                 return MODE_NO_DBLESCAN;
439
440         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
441
442         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
443                 if (mode->hdisplay > fixed_mode->hdisplay)
444                         return MODE_PANEL;
445
446                 if (mode->vdisplay > fixed_mode->vdisplay)
447                         return MODE_PANEL;
448
449                 target_clock = fixed_mode->clock;
450         }
451
452         max_link_clock = intel_dp_max_link_rate(intel_dp);
453         max_lanes = intel_dp_max_lane_count(intel_dp);
454
455         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
456         mode_rate = intel_dp_link_required(target_clock, 18);
457
458         if (mode_rate > max_rate || target_clock > max_dotclk)
459                 return MODE_CLOCK_HIGH;
460
461         if (mode->clock < 10000)
462                 return MODE_CLOCK_LOW;
463
464         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
465                 return MODE_H_ILLEGAL;
466
467         return MODE_OK;
468 }
469
470 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
471 {
472         int     i;
473         uint32_t v = 0;
474
475         if (src_bytes > 4)
476                 src_bytes = 4;
477         for (i = 0; i < src_bytes; i++)
478                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
479         return v;
480 }
481
482 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
483 {
484         int i;
485         if (dst_bytes > 4)
486                 dst_bytes = 4;
487         for (i = 0; i < dst_bytes; i++)
488                 dst[i] = src >> ((3-i) * 8);
489 }
490
491 static void
492 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
493 static void
494 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
495                                               bool force_disable_vdd);
496 static void
497 intel_dp_pps_init(struct intel_dp *intel_dp);
498
499 static void pps_lock(struct intel_dp *intel_dp)
500 {
501         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
502
503         /*
504          * See intel_power_sequencer_reset() why we need
505          * a power domain reference here.
506          */
507         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
508
509         mutex_lock(&dev_priv->pps_mutex);
510 }
511
512 static void pps_unlock(struct intel_dp *intel_dp)
513 {
514         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
515
516         mutex_unlock(&dev_priv->pps_mutex);
517
518         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
519 }
520
521 static void
522 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
523 {
524         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
525         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
526         enum pipe pipe = intel_dp->pps_pipe;
527         bool pll_enabled, release_cl_override = false;
528         enum dpio_phy phy = DPIO_PHY(pipe);
529         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
530         uint32_t DP;
531
532         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
533                  "skipping pipe %c power sequencer kick due to port %c being active\n",
534                  pipe_name(pipe), port_name(intel_dig_port->base.port)))
535                 return;
536
537         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
538                       pipe_name(pipe), port_name(intel_dig_port->base.port));
539
540         /* Preserve the BIOS-computed detected bit. This is
541          * supposed to be read-only.
542          */
543         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
544         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
545         DP |= DP_PORT_WIDTH(1);
546         DP |= DP_LINK_TRAIN_PAT_1;
547
548         if (IS_CHERRYVIEW(dev_priv))
549                 DP |= DP_PIPE_SEL_CHV(pipe);
550         else
551                 DP |= DP_PIPE_SEL(pipe);
552
553         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
554
555         /*
556          * The DPLL for the pipe must be enabled for this to work.
557          * So enable temporarily it if it's not already enabled.
558          */
559         if (!pll_enabled) {
560                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
561                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
562
563                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
564                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
565                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
566                                   pipe_name(pipe));
567                         return;
568                 }
569         }
570
571         /*
572          * Similar magic as in intel_dp_enable_port().
573          * We _must_ do this port enable + disable trick
574          * to make this power sequencer lock onto the port.
575          * Otherwise even VDD force bit won't work.
576          */
577         I915_WRITE(intel_dp->output_reg, DP);
578         POSTING_READ(intel_dp->output_reg);
579
580         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
581         POSTING_READ(intel_dp->output_reg);
582
583         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
584         POSTING_READ(intel_dp->output_reg);
585
586         if (!pll_enabled) {
587                 vlv_force_pll_off(dev_priv, pipe);
588
589                 if (release_cl_override)
590                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
591         }
592 }
593
594 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
595 {
596         struct intel_encoder *encoder;
597         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
598
599         /*
600          * We don't have power sequencer currently.
601          * Pick one that's not used by other ports.
602          */
603         for_each_intel_dp(&dev_priv->drm, encoder) {
604                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
605
606                 if (encoder->type == INTEL_OUTPUT_EDP) {
607                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
608                                 intel_dp->active_pipe != intel_dp->pps_pipe);
609
610                         if (intel_dp->pps_pipe != INVALID_PIPE)
611                                 pipes &= ~(1 << intel_dp->pps_pipe);
612                 } else {
613                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
614
615                         if (intel_dp->active_pipe != INVALID_PIPE)
616                                 pipes &= ~(1 << intel_dp->active_pipe);
617                 }
618         }
619
620         if (pipes == 0)
621                 return INVALID_PIPE;
622
623         return ffs(pipes) - 1;
624 }
625
626 static enum pipe
627 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
628 {
629         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
630         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
631         enum pipe pipe;
632
633         lockdep_assert_held(&dev_priv->pps_mutex);
634
635         /* We should never land here with regular DP ports */
636         WARN_ON(!intel_dp_is_edp(intel_dp));
637
638         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
639                 intel_dp->active_pipe != intel_dp->pps_pipe);
640
641         if (intel_dp->pps_pipe != INVALID_PIPE)
642                 return intel_dp->pps_pipe;
643
644         pipe = vlv_find_free_pps(dev_priv);
645
646         /*
647          * Didn't find one. This should not happen since there
648          * are two power sequencers and up to two eDP ports.
649          */
650         if (WARN_ON(pipe == INVALID_PIPE))
651                 pipe = PIPE_A;
652
653         vlv_steal_power_sequencer(dev_priv, pipe);
654         intel_dp->pps_pipe = pipe;
655
656         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
657                       pipe_name(intel_dp->pps_pipe),
658                       port_name(intel_dig_port->base.port));
659
660         /* init power sequencer on this pipe and port */
661         intel_dp_init_panel_power_sequencer(intel_dp);
662         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
663
664         /*
665          * Even vdd force doesn't work until we've made
666          * the power sequencer lock in on the port.
667          */
668         vlv_power_sequencer_kick(intel_dp);
669
670         return intel_dp->pps_pipe;
671 }
672
673 static int
674 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
675 {
676         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
677         int backlight_controller = dev_priv->vbt.backlight.controller;
678
679         lockdep_assert_held(&dev_priv->pps_mutex);
680
681         /* We should never land here with regular DP ports */
682         WARN_ON(!intel_dp_is_edp(intel_dp));
683
684         if (!intel_dp->pps_reset)
685                 return backlight_controller;
686
687         intel_dp->pps_reset = false;
688
689         /*
690          * Only the HW needs to be reprogrammed, the SW state is fixed and
691          * has been setup during connector init.
692          */
693         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
694
695         return backlight_controller;
696 }
697
698 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
699                                enum pipe pipe);
700
701 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
702                                enum pipe pipe)
703 {
704         return I915_READ(PP_STATUS(pipe)) & PP_ON;
705 }
706
707 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
708                                 enum pipe pipe)
709 {
710         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
711 }
712
713 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
714                          enum pipe pipe)
715 {
716         return true;
717 }
718
719 static enum pipe
720 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
721                      enum port port,
722                      vlv_pipe_check pipe_check)
723 {
724         enum pipe pipe;
725
726         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
727                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
728                         PANEL_PORT_SELECT_MASK;
729
730                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
731                         continue;
732
733                 if (!pipe_check(dev_priv, pipe))
734                         continue;
735
736                 return pipe;
737         }
738
739         return INVALID_PIPE;
740 }
741
742 static void
743 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
744 {
745         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
746         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
747         enum port port = intel_dig_port->base.port;
748
749         lockdep_assert_held(&dev_priv->pps_mutex);
750
751         /* try to find a pipe with this port selected */
752         /* first pick one where the panel is on */
753         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
754                                                   vlv_pipe_has_pp_on);
755         /* didn't find one? pick one where vdd is on */
756         if (intel_dp->pps_pipe == INVALID_PIPE)
757                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
758                                                           vlv_pipe_has_vdd_on);
759         /* didn't find one? pick one with just the correct port */
760         if (intel_dp->pps_pipe == INVALID_PIPE)
761                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
762                                                           vlv_pipe_any);
763
764         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
765         if (intel_dp->pps_pipe == INVALID_PIPE) {
766                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
767                               port_name(port));
768                 return;
769         }
770
771         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
772                       port_name(port), pipe_name(intel_dp->pps_pipe));
773
774         intel_dp_init_panel_power_sequencer(intel_dp);
775         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
776 }
777
778 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
779 {
780         struct intel_encoder *encoder;
781
782         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
783                     !IS_GEN9_LP(dev_priv)))
784                 return;
785
786         /*
787          * We can't grab pps_mutex here due to deadlock with power_domain
788          * mutex when power_domain functions are called while holding pps_mutex.
789          * That also means that in order to use pps_pipe the code needs to
790          * hold both a power domain reference and pps_mutex, and the power domain
791          * reference get/put must be done while _not_ holding pps_mutex.
792          * pps_{lock,unlock}() do these steps in the correct order, so one
793          * should use them always.
794          */
795
796         for_each_intel_dp(&dev_priv->drm, encoder) {
797                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
798
799                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
800
801                 if (encoder->type != INTEL_OUTPUT_EDP)
802                         continue;
803
804                 if (IS_GEN9_LP(dev_priv))
805                         intel_dp->pps_reset = true;
806                 else
807                         intel_dp->pps_pipe = INVALID_PIPE;
808         }
809 }
810
811 struct pps_registers {
812         i915_reg_t pp_ctrl;
813         i915_reg_t pp_stat;
814         i915_reg_t pp_on;
815         i915_reg_t pp_off;
816         i915_reg_t pp_div;
817 };
818
819 static void intel_pps_get_registers(struct intel_dp *intel_dp,
820                                     struct pps_registers *regs)
821 {
822         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
823         int pps_idx = 0;
824
825         memset(regs, 0, sizeof(*regs));
826
827         if (IS_GEN9_LP(dev_priv))
828                 pps_idx = bxt_power_sequencer_idx(intel_dp);
829         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
830                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
831
832         regs->pp_ctrl = PP_CONTROL(pps_idx);
833         regs->pp_stat = PP_STATUS(pps_idx);
834         regs->pp_on = PP_ON_DELAYS(pps_idx);
835         regs->pp_off = PP_OFF_DELAYS(pps_idx);
836         if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
837             !HAS_PCH_ICP(dev_priv))
838                 regs->pp_div = PP_DIVISOR(pps_idx);
839 }
840
841 static i915_reg_t
842 _pp_ctrl_reg(struct intel_dp *intel_dp)
843 {
844         struct pps_registers regs;
845
846         intel_pps_get_registers(intel_dp, &regs);
847
848         return regs.pp_ctrl;
849 }
850
851 static i915_reg_t
852 _pp_stat_reg(struct intel_dp *intel_dp)
853 {
854         struct pps_registers regs;
855
856         intel_pps_get_registers(intel_dp, &regs);
857
858         return regs.pp_stat;
859 }
860
861 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
862    This function only applicable when panel PM state is not to be tracked */
863 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
864                               void *unused)
865 {
866         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
867                                                  edp_notifier);
868         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
869
870         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
871                 return 0;
872
873         pps_lock(intel_dp);
874
875         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
876                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
877                 i915_reg_t pp_ctrl_reg, pp_div_reg;
878                 u32 pp_div;
879
880                 pp_ctrl_reg = PP_CONTROL(pipe);
881                 pp_div_reg  = PP_DIVISOR(pipe);
882                 pp_div = I915_READ(pp_div_reg);
883                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
884
885                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
886                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
887                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
888                 msleep(intel_dp->panel_power_cycle_delay);
889         }
890
891         pps_unlock(intel_dp);
892
893         return 0;
894 }
895
896 static bool edp_have_panel_power(struct intel_dp *intel_dp)
897 {
898         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
899
900         lockdep_assert_held(&dev_priv->pps_mutex);
901
902         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
903             intel_dp->pps_pipe == INVALID_PIPE)
904                 return false;
905
906         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
907 }
908
909 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
910 {
911         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
912
913         lockdep_assert_held(&dev_priv->pps_mutex);
914
915         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
916             intel_dp->pps_pipe == INVALID_PIPE)
917                 return false;
918
919         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
920 }
921
922 static void
923 intel_dp_check_edp(struct intel_dp *intel_dp)
924 {
925         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
926
927         if (!intel_dp_is_edp(intel_dp))
928                 return;
929
930         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
931                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
932                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
933                               I915_READ(_pp_stat_reg(intel_dp)),
934                               I915_READ(_pp_ctrl_reg(intel_dp)));
935         }
936 }
937
938 static uint32_t
939 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
940 {
941         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
942         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
943         uint32_t status;
944         bool done;
945
946 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
947         done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
948                                   msecs_to_jiffies_timeout(10));
949         if (!done)
950                 DRM_ERROR("dp aux hw did not signal timeout!\n");
951 #undef C
952
953         return status;
954 }
955
956 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
957 {
958         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
959
960         if (index)
961                 return 0;
962
963         /*
964          * The clock divider is based off the hrawclk, and would like to run at
965          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
966          */
967         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
968 }
969
970 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
971 {
972         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
973
974         if (index)
975                 return 0;
976
977         /*
978          * The clock divider is based off the cdclk or PCH rawclk, and would
979          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
980          * divide by 2000 and use that
981          */
982         if (intel_dp->aux_ch == AUX_CH_A)
983                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
984         else
985                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
986 }
987
988 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
989 {
990         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
991
992         if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
993                 /* Workaround for non-ULT HSW */
994                 switch (index) {
995                 case 0: return 63;
996                 case 1: return 72;
997                 default: return 0;
998                 }
999         }
1000
1001         return ilk_get_aux_clock_divider(intel_dp, index);
1002 }
1003
1004 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1005 {
1006         /*
1007          * SKL doesn't need us to program the AUX clock divider (Hardware will
1008          * derive the clock from CDCLK automatically). We still implement the
1009          * get_aux_clock_divider vfunc to plug-in into the existing code.
1010          */
1011         return index ? 0 : 1;
1012 }
1013
1014 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1015                                      int send_bytes,
1016                                      uint32_t aux_clock_divider)
1017 {
1018         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1019         struct drm_i915_private *dev_priv =
1020                         to_i915(intel_dig_port->base.base.dev);
1021         uint32_t precharge, timeout;
1022
1023         if (IS_GEN6(dev_priv))
1024                 precharge = 3;
1025         else
1026                 precharge = 5;
1027
1028         if (IS_BROADWELL(dev_priv))
1029                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1030         else
1031                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1032
1033         return DP_AUX_CH_CTL_SEND_BUSY |
1034                DP_AUX_CH_CTL_DONE |
1035                DP_AUX_CH_CTL_INTERRUPT |
1036                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1037                timeout |
1038                DP_AUX_CH_CTL_RECEIVE_ERROR |
1039                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1040                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1041                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1042 }
1043
1044 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1045                                       int send_bytes,
1046                                       uint32_t unused)
1047 {
1048         return DP_AUX_CH_CTL_SEND_BUSY |
1049                DP_AUX_CH_CTL_DONE |
1050                DP_AUX_CH_CTL_INTERRUPT |
1051                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1052                DP_AUX_CH_CTL_TIME_OUT_MAX |
1053                DP_AUX_CH_CTL_RECEIVE_ERROR |
1054                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1055                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1056                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1057 }
1058
1059 static int
1060 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1061                   const uint8_t *send, int send_bytes,
1062                   uint8_t *recv, int recv_size,
1063                   u32 aux_send_ctl_flags)
1064 {
1065         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1066         struct drm_i915_private *dev_priv =
1067                         to_i915(intel_dig_port->base.base.dev);
1068         i915_reg_t ch_ctl, ch_data[5];
1069         uint32_t aux_clock_divider;
1070         int i, ret, recv_bytes;
1071         uint32_t status;
1072         int try, clock = 0;
1073         bool vdd;
1074
1075         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1076         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1077                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1078
1079         pps_lock(intel_dp);
1080
1081         /*
1082          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1083          * In such cases we want to leave VDD enabled and it's up to upper layers
1084          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1085          * ourselves.
1086          */
1087         vdd = edp_panel_vdd_on(intel_dp);
1088
1089         /* dp aux is extremely sensitive to irq latency, hence request the
1090          * lowest possible wakeup latency and so prevent the cpu from going into
1091          * deep sleep states.
1092          */
1093         pm_qos_update_request(&dev_priv->pm_qos, 0);
1094
1095         intel_dp_check_edp(intel_dp);
1096
1097         /* Try to wait for any previous AUX channel activity */
1098         for (try = 0; try < 3; try++) {
1099                 status = I915_READ_NOTRACE(ch_ctl);
1100                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1101                         break;
1102                 msleep(1);
1103         }
1104
1105         if (try == 3) {
1106                 static u32 last_status = -1;
1107                 const u32 status = I915_READ(ch_ctl);
1108
1109                 if (status != last_status) {
1110                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1111                              status);
1112                         last_status = status;
1113                 }
1114
1115                 ret = -EBUSY;
1116                 goto out;
1117         }
1118
1119         /* Only 5 data registers! */
1120         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1121                 ret = -E2BIG;
1122                 goto out;
1123         }
1124
1125         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1126                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1127                                                           send_bytes,
1128                                                           aux_clock_divider);
1129
1130                 send_ctl |= aux_send_ctl_flags;
1131
1132                 /* Must try at least 3 times according to DP spec */
1133                 for (try = 0; try < 5; try++) {
1134                         /* Load the send data into the aux channel data registers */
1135                         for (i = 0; i < send_bytes; i += 4)
1136                                 I915_WRITE(ch_data[i >> 2],
1137                                            intel_dp_pack_aux(send + i,
1138                                                              send_bytes - i));
1139
1140                         /* Send the command and wait for it to complete */
1141                         I915_WRITE(ch_ctl, send_ctl);
1142
1143                         status = intel_dp_aux_wait_done(intel_dp);
1144
1145                         /* Clear done status and any errors */
1146                         I915_WRITE(ch_ctl,
1147                                    status |
1148                                    DP_AUX_CH_CTL_DONE |
1149                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
1150                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
1151
1152                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1153                          *   400us delay required for errors and timeouts
1154                          *   Timeout errors from the HW already meet this
1155                          *   requirement so skip to next iteration
1156                          */
1157                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1158                                 continue;
1159
1160                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1161                                 usleep_range(400, 500);
1162                                 continue;
1163                         }
1164                         if (status & DP_AUX_CH_CTL_DONE)
1165                                 goto done;
1166                 }
1167         }
1168
1169         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1170                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1171                 ret = -EBUSY;
1172                 goto out;
1173         }
1174
1175 done:
1176         /* Check for timeout or receive error.
1177          * Timeouts occur when the sink is not connected
1178          */
1179         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1180                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1181                 ret = -EIO;
1182                 goto out;
1183         }
1184
1185         /* Timeouts occur when the device isn't connected, so they're
1186          * "normal" -- don't fill the kernel log with these */
1187         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1188                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1189                 ret = -ETIMEDOUT;
1190                 goto out;
1191         }
1192
1193         /* Unload any bytes sent back from the other side */
1194         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1195                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1196
1197         /*
1198          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1199          * We have no idea of what happened so we return -EBUSY so
1200          * drm layer takes care for the necessary retries.
1201          */
1202         if (recv_bytes == 0 || recv_bytes > 20) {
1203                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1204                               recv_bytes);
1205                 ret = -EBUSY;
1206                 goto out;
1207         }
1208
1209         if (recv_bytes > recv_size)
1210                 recv_bytes = recv_size;
1211
1212         for (i = 0; i < recv_bytes; i += 4)
1213                 intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1214                                     recv + i, recv_bytes - i);
1215
1216         ret = recv_bytes;
1217 out:
1218         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1219
1220         if (vdd)
1221                 edp_panel_vdd_off(intel_dp, false);
1222
1223         pps_unlock(intel_dp);
1224
1225         return ret;
1226 }
1227
1228 #define BARE_ADDRESS_SIZE       3
1229 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1230
1231 static void
1232 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1233                     const struct drm_dp_aux_msg *msg)
1234 {
1235         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1236         txbuf[1] = (msg->address >> 8) & 0xff;
1237         txbuf[2] = msg->address & 0xff;
1238         txbuf[3] = msg->size - 1;
1239 }
1240
1241 static ssize_t
1242 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1243 {
1244         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1245         uint8_t txbuf[20], rxbuf[20];
1246         size_t txsize, rxsize;
1247         int ret;
1248
1249         intel_dp_aux_header(txbuf, msg);
1250
1251         switch (msg->request & ~DP_AUX_I2C_MOT) {
1252         case DP_AUX_NATIVE_WRITE:
1253         case DP_AUX_I2C_WRITE:
1254         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1255                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1256                 rxsize = 2; /* 0 or 1 data bytes */
1257
1258                 if (WARN_ON(txsize > 20))
1259                         return -E2BIG;
1260
1261                 WARN_ON(!msg->buffer != !msg->size);
1262
1263                 if (msg->buffer)
1264                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1265
1266                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1267                                         rxbuf, rxsize, 0);
1268                 if (ret > 0) {
1269                         msg->reply = rxbuf[0] >> 4;
1270
1271                         if (ret > 1) {
1272                                 /* Number of bytes written in a short write. */
1273                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1274                         } else {
1275                                 /* Return payload size. */
1276                                 ret = msg->size;
1277                         }
1278                 }
1279                 break;
1280
1281         case DP_AUX_NATIVE_READ:
1282         case DP_AUX_I2C_READ:
1283                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1284                 rxsize = msg->size + 1;
1285
1286                 if (WARN_ON(rxsize > 20))
1287                         return -E2BIG;
1288
1289                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1290                                         rxbuf, rxsize, 0);
1291                 if (ret > 0) {
1292                         msg->reply = rxbuf[0] >> 4;
1293                         /*
1294                          * Assume happy day, and copy the data. The caller is
1295                          * expected to check msg->reply before touching it.
1296                          *
1297                          * Return payload size.
1298                          */
1299                         ret--;
1300                         memcpy(msg->buffer, rxbuf + 1, ret);
1301                 }
1302                 break;
1303
1304         default:
1305                 ret = -EINVAL;
1306                 break;
1307         }
1308
1309         return ret;
1310 }
1311
1312 static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1313 {
1314         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1315         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1316         enum port port = encoder->port;
1317         const struct ddi_vbt_port_info *info =
1318                 &dev_priv->vbt.ddi_port_info[port];
1319         enum aux_ch aux_ch;
1320
1321         if (!info->alternate_aux_channel) {
1322                 aux_ch = (enum aux_ch) port;
1323
1324                 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1325                               aux_ch_name(aux_ch), port_name(port));
1326                 return aux_ch;
1327         }
1328
1329         switch (info->alternate_aux_channel) {
1330         case DP_AUX_A:
1331                 aux_ch = AUX_CH_A;
1332                 break;
1333         case DP_AUX_B:
1334                 aux_ch = AUX_CH_B;
1335                 break;
1336         case DP_AUX_C:
1337                 aux_ch = AUX_CH_C;
1338                 break;
1339         case DP_AUX_D:
1340                 aux_ch = AUX_CH_D;
1341                 break;
1342         case DP_AUX_E:
1343                 aux_ch = AUX_CH_E;
1344                 break;
1345         case DP_AUX_F:
1346                 aux_ch = AUX_CH_F;
1347                 break;
1348         default:
1349                 MISSING_CASE(info->alternate_aux_channel);
1350                 aux_ch = AUX_CH_A;
1351                 break;
1352         }
1353
1354         DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1355                       aux_ch_name(aux_ch), port_name(port));
1356
1357         return aux_ch;
1358 }
1359
1360 static enum intel_display_power_domain
1361 intel_aux_power_domain(struct intel_dp *intel_dp)
1362 {
1363         switch (intel_dp->aux_ch) {
1364         case AUX_CH_A:
1365                 return POWER_DOMAIN_AUX_A;
1366         case AUX_CH_B:
1367                 return POWER_DOMAIN_AUX_B;
1368         case AUX_CH_C:
1369                 return POWER_DOMAIN_AUX_C;
1370         case AUX_CH_D:
1371                 return POWER_DOMAIN_AUX_D;
1372         case AUX_CH_E:
1373                 return POWER_DOMAIN_AUX_E;
1374         case AUX_CH_F:
1375                 return POWER_DOMAIN_AUX_F;
1376         default:
1377                 MISSING_CASE(intel_dp->aux_ch);
1378                 return POWER_DOMAIN_AUX_A;
1379         }
1380 }
1381
1382 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1383 {
1384         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1385         enum aux_ch aux_ch = intel_dp->aux_ch;
1386
1387         switch (aux_ch) {
1388         case AUX_CH_B:
1389         case AUX_CH_C:
1390         case AUX_CH_D:
1391                 return DP_AUX_CH_CTL(aux_ch);
1392         default:
1393                 MISSING_CASE(aux_ch);
1394                 return DP_AUX_CH_CTL(AUX_CH_B);
1395         }
1396 }
1397
1398 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1399 {
1400         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1401         enum aux_ch aux_ch = intel_dp->aux_ch;
1402
1403         switch (aux_ch) {
1404         case AUX_CH_B:
1405         case AUX_CH_C:
1406         case AUX_CH_D:
1407                 return DP_AUX_CH_DATA(aux_ch, index);
1408         default:
1409                 MISSING_CASE(aux_ch);
1410                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1411         }
1412 }
1413
1414 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1415 {
1416         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1417         enum aux_ch aux_ch = intel_dp->aux_ch;
1418
1419         switch (aux_ch) {
1420         case AUX_CH_A:
1421                 return DP_AUX_CH_CTL(aux_ch);
1422         case AUX_CH_B:
1423         case AUX_CH_C:
1424         case AUX_CH_D:
1425                 return PCH_DP_AUX_CH_CTL(aux_ch);
1426         default:
1427                 MISSING_CASE(aux_ch);
1428                 return DP_AUX_CH_CTL(AUX_CH_A);
1429         }
1430 }
1431
1432 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1433 {
1434         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1435         enum aux_ch aux_ch = intel_dp->aux_ch;
1436
1437         switch (aux_ch) {
1438         case AUX_CH_A:
1439                 return DP_AUX_CH_DATA(aux_ch, index);
1440         case AUX_CH_B:
1441         case AUX_CH_C:
1442         case AUX_CH_D:
1443                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1444         default:
1445                 MISSING_CASE(aux_ch);
1446                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1447         }
1448 }
1449
1450 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1451 {
1452         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1453         enum aux_ch aux_ch = intel_dp->aux_ch;
1454
1455         switch (aux_ch) {
1456         case AUX_CH_A:
1457         case AUX_CH_B:
1458         case AUX_CH_C:
1459         case AUX_CH_D:
1460         case AUX_CH_E:
1461         case AUX_CH_F:
1462                 return DP_AUX_CH_CTL(aux_ch);
1463         default:
1464                 MISSING_CASE(aux_ch);
1465                 return DP_AUX_CH_CTL(AUX_CH_A);
1466         }
1467 }
1468
1469 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1470 {
1471         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1472         enum aux_ch aux_ch = intel_dp->aux_ch;
1473
1474         switch (aux_ch) {
1475         case AUX_CH_A:
1476         case AUX_CH_B:
1477         case AUX_CH_C:
1478         case AUX_CH_D:
1479         case AUX_CH_E:
1480         case AUX_CH_F:
1481                 return DP_AUX_CH_DATA(aux_ch, index);
1482         default:
1483                 MISSING_CASE(aux_ch);
1484                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1485         }
1486 }
1487
1488 static void
1489 intel_dp_aux_fini(struct intel_dp *intel_dp)
1490 {
1491         kfree(intel_dp->aux.name);
1492 }
1493
1494 static void
1495 intel_dp_aux_init(struct intel_dp *intel_dp)
1496 {
1497         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1498         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1499
1500         intel_dp->aux_ch = intel_aux_ch(intel_dp);
1501         intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1502
1503         if (INTEL_GEN(dev_priv) >= 9) {
1504                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1505                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1506         } else if (HAS_PCH_SPLIT(dev_priv)) {
1507                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1508                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1509         } else {
1510                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1511                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1512         }
1513
1514         if (INTEL_GEN(dev_priv) >= 9)
1515                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1516         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1517                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1518         else if (HAS_PCH_SPLIT(dev_priv))
1519                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1520         else
1521                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1522
1523         if (INTEL_GEN(dev_priv) >= 9)
1524                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1525         else
1526                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1527
1528         drm_dp_aux_init(&intel_dp->aux);
1529
1530         /* Failure to allocate our preferred name is not critical */
1531         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1532                                        port_name(encoder->port));
1533         intel_dp->aux.transfer = intel_dp_aux_transfer;
1534 }
1535
1536 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1537 {
1538         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1539
1540         return max_rate >= 540000;
1541 }
1542
1543 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1544 {
1545         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1546
1547         return max_rate >= 810000;
1548 }
1549
1550 static void
1551 intel_dp_set_clock(struct intel_encoder *encoder,
1552                    struct intel_crtc_state *pipe_config)
1553 {
1554         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1555         const struct dp_link_dpll *divisor = NULL;
1556         int i, count = 0;
1557
1558         if (IS_G4X(dev_priv)) {
1559                 divisor = g4x_dpll;
1560                 count = ARRAY_SIZE(g4x_dpll);
1561         } else if (HAS_PCH_SPLIT(dev_priv)) {
1562                 divisor = pch_dpll;
1563                 count = ARRAY_SIZE(pch_dpll);
1564         } else if (IS_CHERRYVIEW(dev_priv)) {
1565                 divisor = chv_dpll;
1566                 count = ARRAY_SIZE(chv_dpll);
1567         } else if (IS_VALLEYVIEW(dev_priv)) {
1568                 divisor = vlv_dpll;
1569                 count = ARRAY_SIZE(vlv_dpll);
1570         }
1571
1572         if (divisor && count) {
1573                 for (i = 0; i < count; i++) {
1574                         if (pipe_config->port_clock == divisor[i].clock) {
1575                                 pipe_config->dpll = divisor[i].dpll;
1576                                 pipe_config->clock_set = true;
1577                                 break;
1578                         }
1579                 }
1580         }
1581 }
1582
1583 static void snprintf_int_array(char *str, size_t len,
1584                                const int *array, int nelem)
1585 {
1586         int i;
1587
1588         str[0] = '\0';
1589
1590         for (i = 0; i < nelem; i++) {
1591                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1592                 if (r >= len)
1593                         return;
1594                 str += r;
1595                 len -= r;
1596         }
1597 }
1598
1599 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1600 {
1601         char str[128]; /* FIXME: too big for stack? */
1602
1603         if ((drm_debug & DRM_UT_KMS) == 0)
1604                 return;
1605
1606         snprintf_int_array(str, sizeof(str),
1607                            intel_dp->source_rates, intel_dp->num_source_rates);
1608         DRM_DEBUG_KMS("source rates: %s\n", str);
1609
1610         snprintf_int_array(str, sizeof(str),
1611                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1612         DRM_DEBUG_KMS("sink rates: %s\n", str);
1613
1614         snprintf_int_array(str, sizeof(str),
1615                            intel_dp->common_rates, intel_dp->num_common_rates);
1616         DRM_DEBUG_KMS("common rates: %s\n", str);
1617 }
1618
1619 int
1620 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1621 {
1622         int len;
1623
1624         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1625         if (WARN_ON(len <= 0))
1626                 return 162000;
1627
1628         return intel_dp->common_rates[len - 1];
1629 }
1630
1631 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1632 {
1633         int i = intel_dp_rate_index(intel_dp->sink_rates,
1634                                     intel_dp->num_sink_rates, rate);
1635
1636         if (WARN_ON(i < 0))
1637                 i = 0;
1638
1639         return i;
1640 }
1641
1642 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1643                            uint8_t *link_bw, uint8_t *rate_select)
1644 {
1645         /* eDP 1.4 rate select method. */
1646         if (intel_dp->use_rate_select) {
1647                 *link_bw = 0;
1648                 *rate_select =
1649                         intel_dp_rate_select(intel_dp, port_clock);
1650         } else {
1651                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1652                 *rate_select = 0;
1653         }
1654 }
1655
1656 struct link_config_limits {
1657         int min_clock, max_clock;
1658         int min_lane_count, max_lane_count;
1659         int min_bpp, max_bpp;
1660 };
1661
1662 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1663                                 struct intel_crtc_state *pipe_config)
1664 {
1665         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1666         struct intel_connector *intel_connector = intel_dp->attached_connector;
1667         int bpp, bpc;
1668
1669         bpp = pipe_config->pipe_bpp;
1670         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1671
1672         if (bpc > 0)
1673                 bpp = min(bpp, 3*bpc);
1674
1675         if (intel_dp_is_edp(intel_dp)) {
1676                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1677                 if (intel_connector->base.display_info.bpc == 0 &&
1678                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1679                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1680                                       dev_priv->vbt.edp.bpp);
1681                         bpp = dev_priv->vbt.edp.bpp;
1682                 }
1683         }
1684
1685         return bpp;
1686 }
1687
1688 /* Adjust link config limits based on compliance test requests. */
1689 static void
1690 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1691                                   struct intel_crtc_state *pipe_config,
1692                                   struct link_config_limits *limits)
1693 {
1694         /* For DP Compliance we override the computed bpp for the pipe */
1695         if (intel_dp->compliance.test_data.bpc != 0) {
1696                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1697
1698                 limits->min_bpp = limits->max_bpp = bpp;
1699                 pipe_config->dither_force_disable = bpp == 6 * 3;
1700
1701                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1702         }
1703
1704         /* Use values requested by Compliance Test Request */
1705         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1706                 int index;
1707
1708                 /* Validate the compliance test data since max values
1709                  * might have changed due to link train fallback.
1710                  */
1711                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1712                                                intel_dp->compliance.test_lane_count)) {
1713                         index = intel_dp_rate_index(intel_dp->common_rates,
1714                                                     intel_dp->num_common_rates,
1715                                                     intel_dp->compliance.test_link_rate);
1716                         if (index >= 0)
1717                                 limits->min_clock = limits->max_clock = index;
1718                         limits->min_lane_count = limits->max_lane_count =
1719                                 intel_dp->compliance.test_lane_count;
1720                 }
1721         }
1722 }
1723
1724 /* Optimize link config in order: max bpp, min clock, min lanes */
1725 static bool
1726 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1727                                   struct intel_crtc_state *pipe_config,
1728                                   const struct link_config_limits *limits)
1729 {
1730         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1731         int bpp, clock, lane_count;
1732         int mode_rate, link_clock, link_avail;
1733
1734         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1735                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1736                                                    bpp);
1737
1738                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1739                         for (lane_count = limits->min_lane_count;
1740                              lane_count <= limits->max_lane_count;
1741                              lane_count <<= 1) {
1742                                 link_clock = intel_dp->common_rates[clock];
1743                                 link_avail = intel_dp_max_data_rate(link_clock,
1744                                                                     lane_count);
1745
1746                                 if (mode_rate <= link_avail) {
1747                                         pipe_config->lane_count = lane_count;
1748                                         pipe_config->pipe_bpp = bpp;
1749                                         pipe_config->port_clock = link_clock;
1750
1751                                         return true;
1752                                 }
1753                         }
1754                 }
1755         }
1756
1757         return false;
1758 }
1759
1760 static bool
1761 intel_dp_compute_link_config(struct intel_encoder *encoder,
1762                              struct intel_crtc_state *pipe_config)
1763 {
1764         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1765         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1766         struct link_config_limits limits;
1767         int common_len;
1768
1769         common_len = intel_dp_common_len_rate_limit(intel_dp,
1770                                                     intel_dp->max_link_rate);
1771
1772         /* No common link rates between source and sink */
1773         WARN_ON(common_len <= 0);
1774
1775         limits.min_clock = 0;
1776         limits.max_clock = common_len - 1;
1777
1778         limits.min_lane_count = 1;
1779         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
1780
1781         limits.min_bpp = 6 * 3;
1782         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1783
1784         if (intel_dp_is_edp(intel_dp)) {
1785                 /*
1786                  * Use the maximum clock and number of lanes the eDP panel
1787                  * advertizes being capable of. The panels are generally
1788                  * designed to support only a single clock and lane
1789                  * configuration, and typically these values correspond to the
1790                  * native resolution of the panel.
1791                  */
1792                 limits.min_lane_count = limits.max_lane_count;
1793                 limits.min_clock = limits.max_clock;
1794         }
1795
1796         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
1797
1798         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1799                       "max rate %d max bpp %d pixel clock %iKHz\n",
1800                       limits.max_lane_count,
1801                       intel_dp->common_rates[limits.max_clock],
1802                       limits.max_bpp, adjusted_mode->crtc_clock);
1803
1804         /*
1805          * Optimize for slow and wide. This is the place to add alternative
1806          * optimization policy.
1807          */
1808         if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits))
1809                 return false;
1810
1811         DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
1812                       pipe_config->lane_count, pipe_config->port_clock,
1813                       pipe_config->pipe_bpp);
1814
1815         DRM_DEBUG_KMS("DP link rate required %i available %i\n",
1816                       intel_dp_link_required(adjusted_mode->crtc_clock,
1817                                              pipe_config->pipe_bpp),
1818                       intel_dp_max_data_rate(pipe_config->port_clock,
1819                                              pipe_config->lane_count));
1820
1821         return true;
1822 }
1823
1824 bool
1825 intel_dp_compute_config(struct intel_encoder *encoder,
1826                         struct intel_crtc_state *pipe_config,
1827                         struct drm_connector_state *conn_state)
1828 {
1829         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1830         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1831         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1832         enum port port = encoder->port;
1833         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1834         struct intel_connector *intel_connector = intel_dp->attached_connector;
1835         struct intel_digital_connector_state *intel_conn_state =
1836                 to_intel_digital_connector_state(conn_state);
1837         bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1838                                            DP_DPCD_QUIRK_LIMITED_M_N);
1839
1840         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1841                 pipe_config->has_pch_encoder = true;
1842
1843         pipe_config->has_drrs = false;
1844         if (IS_G4X(dev_priv) || port == PORT_A)
1845                 pipe_config->has_audio = false;
1846         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1847                 pipe_config->has_audio = intel_dp->has_audio;
1848         else
1849                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1850
1851         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1852                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1853                                        adjusted_mode);
1854
1855                 if (INTEL_GEN(dev_priv) >= 9) {
1856                         int ret;
1857
1858                         ret = skl_update_scaler_crtc(pipe_config);
1859                         if (ret)
1860                                 return ret;
1861                 }
1862
1863                 if (HAS_GMCH_DISPLAY(dev_priv))
1864                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1865                                                  conn_state->scaling_mode);
1866                 else
1867                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1868                                                 conn_state->scaling_mode);
1869         }
1870
1871         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
1872                 return false;
1873
1874         if (HAS_GMCH_DISPLAY(dev_priv) &&
1875             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
1876                 return false;
1877
1878         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1879                 return false;
1880
1881         if (!intel_dp_compute_link_config(encoder, pipe_config))
1882                 return false;
1883
1884         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1885                 /*
1886                  * See:
1887                  * CEA-861-E - 5.1 Default Encoding Parameters
1888                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1889                  */
1890                 pipe_config->limited_color_range =
1891                         pipe_config->pipe_bpp != 18 &&
1892                         drm_default_rgb_quant_range(adjusted_mode) ==
1893                         HDMI_QUANTIZATION_RANGE_LIMITED;
1894         } else {
1895                 pipe_config->limited_color_range =
1896                         intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1897         }
1898
1899         intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
1900                                adjusted_mode->crtc_clock,
1901                                pipe_config->port_clock,
1902                                &pipe_config->dp_m_n,
1903                                reduce_m_n);
1904
1905         if (intel_connector->panel.downclock_mode != NULL &&
1906                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1907                         pipe_config->has_drrs = true;
1908                         intel_link_compute_m_n(pipe_config->pipe_bpp,
1909                                                pipe_config->lane_count,
1910                                                intel_connector->panel.downclock_mode->clock,
1911                                                pipe_config->port_clock,
1912                                                &pipe_config->dp_m2_n2,
1913                                                reduce_m_n);
1914         }
1915
1916         if (!HAS_DDI(dev_priv))
1917                 intel_dp_set_clock(encoder, pipe_config);
1918
1919         intel_psr_compute_config(intel_dp, pipe_config);
1920
1921         return true;
1922 }
1923
1924 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1925                               int link_rate, uint8_t lane_count,
1926                               bool link_mst)
1927 {
1928         intel_dp->link_trained = false;
1929         intel_dp->link_rate = link_rate;
1930         intel_dp->lane_count = lane_count;
1931         intel_dp->link_mst = link_mst;
1932 }
1933
1934 static void intel_dp_prepare(struct intel_encoder *encoder,
1935                              const struct intel_crtc_state *pipe_config)
1936 {
1937         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1938         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1939         enum port port = encoder->port;
1940         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1941         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1942
1943         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1944                                  pipe_config->lane_count,
1945                                  intel_crtc_has_type(pipe_config,
1946                                                      INTEL_OUTPUT_DP_MST));
1947
1948         /*
1949          * There are four kinds of DP registers:
1950          *
1951          *      IBX PCH
1952          *      SNB CPU
1953          *      IVB CPU
1954          *      CPT PCH
1955          *
1956          * IBX PCH and CPU are the same for almost everything,
1957          * except that the CPU DP PLL is configured in this
1958          * register
1959          *
1960          * CPT PCH is quite different, having many bits moved
1961          * to the TRANS_DP_CTL register instead. That
1962          * configuration happens (oddly) in ironlake_pch_enable
1963          */
1964
1965         /* Preserve the BIOS-computed detected bit. This is
1966          * supposed to be read-only.
1967          */
1968         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1969
1970         /* Handle DP bits in common between all three register formats */
1971         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1972         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1973
1974         /* Split out the IBX/CPU vs CPT settings */
1975
1976         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
1977                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1978                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1979                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1980                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1981                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1982
1983                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1984                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1985
1986                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
1987         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1988                 u32 trans_dp;
1989
1990                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1991
1992                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1993                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1994                         trans_dp |= TRANS_DP_ENH_FRAMING;
1995                 else
1996                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1997                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1998         } else {
1999                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2000                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2001
2002                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2003                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2004                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2005                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2006                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2007
2008                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2009                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2010
2011                 if (IS_CHERRYVIEW(dev_priv))
2012                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2013                 else
2014                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2015         }
2016 }
2017
2018 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2019 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2020
2021 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2022 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2023
2024 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2025 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2026
2027 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2028
2029 static void wait_panel_status(struct intel_dp *intel_dp,
2030                                        u32 mask,
2031                                        u32 value)
2032 {
2033         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2034         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2035
2036         lockdep_assert_held(&dev_priv->pps_mutex);
2037
2038         intel_pps_verify_state(intel_dp);
2039
2040         pp_stat_reg = _pp_stat_reg(intel_dp);
2041         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2042
2043         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2044                         mask, value,
2045                         I915_READ(pp_stat_reg),
2046                         I915_READ(pp_ctrl_reg));
2047
2048         if (intel_wait_for_register(dev_priv,
2049                                     pp_stat_reg, mask, value,
2050                                     5000))
2051                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2052                                 I915_READ(pp_stat_reg),
2053                                 I915_READ(pp_ctrl_reg));
2054
2055         DRM_DEBUG_KMS("Wait complete\n");
2056 }
2057
2058 static void wait_panel_on(struct intel_dp *intel_dp)
2059 {
2060         DRM_DEBUG_KMS("Wait for panel power on\n");
2061         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2062 }
2063
2064 static void wait_panel_off(struct intel_dp *intel_dp)
2065 {
2066         DRM_DEBUG_KMS("Wait for panel power off time\n");
2067         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2068 }
2069
2070 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2071 {
2072         ktime_t panel_power_on_time;
2073         s64 panel_power_off_duration;
2074
2075         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2076
2077         /* take the difference of currrent time and panel power off time
2078          * and then make panel wait for t11_t12 if needed. */
2079         panel_power_on_time = ktime_get_boottime();
2080         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2081
2082         /* When we disable the VDD override bit last we have to do the manual
2083          * wait. */
2084         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2085                 wait_remaining_ms_from_jiffies(jiffies,
2086                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2087
2088         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2089 }
2090
2091 static void wait_backlight_on(struct intel_dp *intel_dp)
2092 {
2093         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2094                                        intel_dp->backlight_on_delay);
2095 }
2096
2097 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2098 {
2099         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2100                                        intel_dp->backlight_off_delay);
2101 }
2102
2103 /* Read the current pp_control value, unlocking the register if it
2104  * is locked
2105  */
2106
2107 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2108 {
2109         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2110         u32 control;
2111
2112         lockdep_assert_held(&dev_priv->pps_mutex);
2113
2114         control = I915_READ(_pp_ctrl_reg(intel_dp));
2115         if (WARN_ON(!HAS_DDI(dev_priv) &&
2116                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2117                 control &= ~PANEL_UNLOCK_MASK;
2118                 control |= PANEL_UNLOCK_REGS;
2119         }
2120         return control;
2121 }
2122
2123 /*
2124  * Must be paired with edp_panel_vdd_off().
2125  * Must hold pps_mutex around the whole on/off sequence.
2126  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2127  */
2128 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2129 {
2130         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2131         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2132         u32 pp;
2133         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2134         bool need_to_disable = !intel_dp->want_panel_vdd;
2135
2136         lockdep_assert_held(&dev_priv->pps_mutex);
2137
2138         if (!intel_dp_is_edp(intel_dp))
2139                 return false;
2140
2141         cancel_delayed_work(&intel_dp->panel_vdd_work);
2142         intel_dp->want_panel_vdd = true;
2143
2144         if (edp_have_panel_vdd(intel_dp))
2145                 return need_to_disable;
2146
2147         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2148
2149         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2150                       port_name(intel_dig_port->base.port));
2151
2152         if (!edp_have_panel_power(intel_dp))
2153                 wait_panel_power_cycle(intel_dp);
2154
2155         pp = ironlake_get_pp_control(intel_dp);
2156         pp |= EDP_FORCE_VDD;
2157
2158         pp_stat_reg = _pp_stat_reg(intel_dp);
2159         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2160
2161         I915_WRITE(pp_ctrl_reg, pp);
2162         POSTING_READ(pp_ctrl_reg);
2163         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2164                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2165         /*
2166          * If the panel wasn't on, delay before accessing aux channel
2167          */
2168         if (!edp_have_panel_power(intel_dp)) {
2169                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2170                               port_name(intel_dig_port->base.port));
2171                 msleep(intel_dp->panel_power_up_delay);
2172         }
2173
2174         return need_to_disable;
2175 }
2176
2177 /*
2178  * Must be paired with intel_edp_panel_vdd_off() or
2179  * intel_edp_panel_off().
2180  * Nested calls to these functions are not allowed since
2181  * we drop the lock. Caller must use some higher level
2182  * locking to prevent nested calls from other threads.
2183  */
2184 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2185 {
2186         bool vdd;
2187
2188         if (!intel_dp_is_edp(intel_dp))
2189                 return;
2190
2191         pps_lock(intel_dp);
2192         vdd = edp_panel_vdd_on(intel_dp);
2193         pps_unlock(intel_dp);
2194
2195         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2196              port_name(dp_to_dig_port(intel_dp)->base.port));
2197 }
2198
2199 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2200 {
2201         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2202         struct intel_digital_port *intel_dig_port =
2203                 dp_to_dig_port(intel_dp);
2204         u32 pp;
2205         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2206
2207         lockdep_assert_held(&dev_priv->pps_mutex);
2208
2209         WARN_ON(intel_dp->want_panel_vdd);
2210
2211         if (!edp_have_panel_vdd(intel_dp))
2212                 return;
2213
2214         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2215                       port_name(intel_dig_port->base.port));
2216
2217         pp = ironlake_get_pp_control(intel_dp);
2218         pp &= ~EDP_FORCE_VDD;
2219
2220         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2221         pp_stat_reg = _pp_stat_reg(intel_dp);
2222
2223         I915_WRITE(pp_ctrl_reg, pp);
2224         POSTING_READ(pp_ctrl_reg);
2225
2226         /* Make sure sequencer is idle before allowing subsequent activity */
2227         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2228         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2229
2230         if ((pp & PANEL_POWER_ON) == 0)
2231                 intel_dp->panel_power_off_time = ktime_get_boottime();
2232
2233         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2234 }
2235
2236 static void edp_panel_vdd_work(struct work_struct *__work)
2237 {
2238         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2239                                                  struct intel_dp, panel_vdd_work);
2240
2241         pps_lock(intel_dp);
2242         if (!intel_dp->want_panel_vdd)
2243                 edp_panel_vdd_off_sync(intel_dp);
2244         pps_unlock(intel_dp);
2245 }
2246
2247 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2248 {
2249         unsigned long delay;
2250
2251         /*
2252          * Queue the timer to fire a long time from now (relative to the power
2253          * down delay) to keep the panel power up across a sequence of
2254          * operations.
2255          */
2256         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2257         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2258 }
2259
2260 /*
2261  * Must be paired with edp_panel_vdd_on().
2262  * Must hold pps_mutex around the whole on/off sequence.
2263  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2264  */
2265 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2266 {
2267         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2268
2269         lockdep_assert_held(&dev_priv->pps_mutex);
2270
2271         if (!intel_dp_is_edp(intel_dp))
2272                 return;
2273
2274         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2275              port_name(dp_to_dig_port(intel_dp)->base.port));
2276
2277         intel_dp->want_panel_vdd = false;
2278
2279         if (sync)
2280                 edp_panel_vdd_off_sync(intel_dp);
2281         else
2282                 edp_panel_vdd_schedule_off(intel_dp);
2283 }
2284
2285 static void edp_panel_on(struct intel_dp *intel_dp)
2286 {
2287         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2288         u32 pp;
2289         i915_reg_t pp_ctrl_reg;
2290
2291         lockdep_assert_held(&dev_priv->pps_mutex);
2292
2293         if (!intel_dp_is_edp(intel_dp))
2294                 return;
2295
2296         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2297                       port_name(dp_to_dig_port(intel_dp)->base.port));
2298
2299         if (WARN(edp_have_panel_power(intel_dp),
2300                  "eDP port %c panel power already on\n",
2301                  port_name(dp_to_dig_port(intel_dp)->base.port)))
2302                 return;
2303
2304         wait_panel_power_cycle(intel_dp);
2305
2306         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2307         pp = ironlake_get_pp_control(intel_dp);
2308         if (IS_GEN5(dev_priv)) {
2309                 /* ILK workaround: disable reset around power sequence */
2310                 pp &= ~PANEL_POWER_RESET;
2311                 I915_WRITE(pp_ctrl_reg, pp);
2312                 POSTING_READ(pp_ctrl_reg);
2313         }
2314
2315         pp |= PANEL_POWER_ON;
2316         if (!IS_GEN5(dev_priv))
2317                 pp |= PANEL_POWER_RESET;
2318
2319         I915_WRITE(pp_ctrl_reg, pp);
2320         POSTING_READ(pp_ctrl_reg);
2321
2322         wait_panel_on(intel_dp);
2323         intel_dp->last_power_on = jiffies;
2324
2325         if (IS_GEN5(dev_priv)) {
2326                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2327                 I915_WRITE(pp_ctrl_reg, pp);
2328                 POSTING_READ(pp_ctrl_reg);
2329         }
2330 }
2331
2332 void intel_edp_panel_on(struct intel_dp *intel_dp)
2333 {
2334         if (!intel_dp_is_edp(intel_dp))
2335                 return;
2336
2337         pps_lock(intel_dp);
2338         edp_panel_on(intel_dp);
2339         pps_unlock(intel_dp);
2340 }
2341
2342
2343 static void edp_panel_off(struct intel_dp *intel_dp)
2344 {
2345         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2346         u32 pp;
2347         i915_reg_t pp_ctrl_reg;
2348
2349         lockdep_assert_held(&dev_priv->pps_mutex);
2350
2351         if (!intel_dp_is_edp(intel_dp))
2352                 return;
2353
2354         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2355                       port_name(dp_to_dig_port(intel_dp)->base.port));
2356
2357         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2358              port_name(dp_to_dig_port(intel_dp)->base.port));
2359
2360         pp = ironlake_get_pp_control(intel_dp);
2361         /* We need to switch off panel power _and_ force vdd, for otherwise some
2362          * panels get very unhappy and cease to work. */
2363         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2364                 EDP_BLC_ENABLE);
2365
2366         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2367
2368         intel_dp->want_panel_vdd = false;
2369
2370         I915_WRITE(pp_ctrl_reg, pp);
2371         POSTING_READ(pp_ctrl_reg);
2372
2373         wait_panel_off(intel_dp);
2374         intel_dp->panel_power_off_time = ktime_get_boottime();
2375
2376         /* We got a reference when we enabled the VDD. */
2377         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2378 }
2379
2380 void intel_edp_panel_off(struct intel_dp *intel_dp)
2381 {
2382         if (!intel_dp_is_edp(intel_dp))
2383                 return;
2384
2385         pps_lock(intel_dp);
2386         edp_panel_off(intel_dp);
2387         pps_unlock(intel_dp);
2388 }
2389
2390 /* Enable backlight in the panel power control. */
2391 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2392 {
2393         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2394         u32 pp;
2395         i915_reg_t pp_ctrl_reg;
2396
2397         /*
2398          * If we enable the backlight right away following a panel power
2399          * on, we may see slight flicker as the panel syncs with the eDP
2400          * link.  So delay a bit to make sure the image is solid before
2401          * allowing it to appear.
2402          */
2403         wait_backlight_on(intel_dp);
2404
2405         pps_lock(intel_dp);
2406
2407         pp = ironlake_get_pp_control(intel_dp);
2408         pp |= EDP_BLC_ENABLE;
2409
2410         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2411
2412         I915_WRITE(pp_ctrl_reg, pp);
2413         POSTING_READ(pp_ctrl_reg);
2414
2415         pps_unlock(intel_dp);
2416 }
2417
2418 /* Enable backlight PWM and backlight PP control. */
2419 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2420                             const struct drm_connector_state *conn_state)
2421 {
2422         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2423
2424         if (!intel_dp_is_edp(intel_dp))
2425                 return;
2426
2427         DRM_DEBUG_KMS("\n");
2428
2429         intel_panel_enable_backlight(crtc_state, conn_state);
2430         _intel_edp_backlight_on(intel_dp);
2431 }
2432
2433 /* Disable backlight in the panel power control. */
2434 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2435 {
2436         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2437         u32 pp;
2438         i915_reg_t pp_ctrl_reg;
2439
2440         if (!intel_dp_is_edp(intel_dp))
2441                 return;
2442
2443         pps_lock(intel_dp);
2444
2445         pp = ironlake_get_pp_control(intel_dp);
2446         pp &= ~EDP_BLC_ENABLE;
2447
2448         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2449
2450         I915_WRITE(pp_ctrl_reg, pp);
2451         POSTING_READ(pp_ctrl_reg);
2452
2453         pps_unlock(intel_dp);
2454
2455         intel_dp->last_backlight_off = jiffies;
2456         edp_wait_backlight_off(intel_dp);
2457 }
2458
2459 /* Disable backlight PP control and backlight PWM. */
2460 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2461 {
2462         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2463
2464         if (!intel_dp_is_edp(intel_dp))
2465                 return;
2466
2467         DRM_DEBUG_KMS("\n");
2468
2469         _intel_edp_backlight_off(intel_dp);
2470         intel_panel_disable_backlight(old_conn_state);
2471 }
2472
2473 /*
2474  * Hook for controlling the panel power control backlight through the bl_power
2475  * sysfs attribute. Take care to handle multiple calls.
2476  */
2477 static void intel_edp_backlight_power(struct intel_connector *connector,
2478                                       bool enable)
2479 {
2480         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2481         bool is_enabled;
2482
2483         pps_lock(intel_dp);
2484         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2485         pps_unlock(intel_dp);
2486
2487         if (is_enabled == enable)
2488                 return;
2489
2490         DRM_DEBUG_KMS("panel power control backlight %s\n",
2491                       enable ? "enable" : "disable");
2492
2493         if (enable)
2494                 _intel_edp_backlight_on(intel_dp);
2495         else
2496                 _intel_edp_backlight_off(intel_dp);
2497 }
2498
2499 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2500 {
2501         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2502         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2503         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2504
2505         I915_STATE_WARN(cur_state != state,
2506                         "DP port %c state assertion failure (expected %s, current %s)\n",
2507                         port_name(dig_port->base.port),
2508                         onoff(state), onoff(cur_state));
2509 }
2510 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2511
2512 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2513 {
2514         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2515
2516         I915_STATE_WARN(cur_state != state,
2517                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2518                         onoff(state), onoff(cur_state));
2519 }
2520 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2521 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2522
2523 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2524                                 const struct intel_crtc_state *pipe_config)
2525 {
2526         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2527         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2528
2529         assert_pipe_disabled(dev_priv, crtc->pipe);
2530         assert_dp_port_disabled(intel_dp);
2531         assert_edp_pll_disabled(dev_priv);
2532
2533         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2534                       pipe_config->port_clock);
2535
2536         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2537
2538         if (pipe_config->port_clock == 162000)
2539                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2540         else
2541                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2542
2543         I915_WRITE(DP_A, intel_dp->DP);
2544         POSTING_READ(DP_A);
2545         udelay(500);
2546
2547         /*
2548          * [DevILK] Work around required when enabling DP PLL
2549          * while a pipe is enabled going to FDI:
2550          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2551          * 2. Program DP PLL enable
2552          */
2553         if (IS_GEN5(dev_priv))
2554                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2555
2556         intel_dp->DP |= DP_PLL_ENABLE;
2557
2558         I915_WRITE(DP_A, intel_dp->DP);
2559         POSTING_READ(DP_A);
2560         udelay(200);
2561 }
2562
2563 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2564                                  const struct intel_crtc_state *old_crtc_state)
2565 {
2566         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2567         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2568
2569         assert_pipe_disabled(dev_priv, crtc->pipe);
2570         assert_dp_port_disabled(intel_dp);
2571         assert_edp_pll_enabled(dev_priv);
2572
2573         DRM_DEBUG_KMS("disabling eDP PLL\n");
2574
2575         intel_dp->DP &= ~DP_PLL_ENABLE;
2576
2577         I915_WRITE(DP_A, intel_dp->DP);
2578         POSTING_READ(DP_A);
2579         udelay(200);
2580 }
2581
2582 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2583 {
2584         /*
2585          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2586          * be capable of signalling downstream hpd with a long pulse.
2587          * Whether or not that means D3 is safe to use is not clear,
2588          * but let's assume so until proven otherwise.
2589          *
2590          * FIXME should really check all downstream ports...
2591          */
2592         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2593                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2594                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2595 }
2596
2597 /* If the sink supports it, try to set the power state appropriately */
2598 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2599 {
2600         int ret, i;
2601
2602         /* Should have a valid DPCD by this point */
2603         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2604                 return;
2605
2606         if (mode != DRM_MODE_DPMS_ON) {
2607                 if (downstream_hpd_needs_d0(intel_dp))
2608                         return;
2609
2610                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2611                                          DP_SET_POWER_D3);
2612         } else {
2613                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2614
2615                 /*
2616                  * When turning on, we need to retry for 1ms to give the sink
2617                  * time to wake up.
2618                  */
2619                 for (i = 0; i < 3; i++) {
2620                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2621                                                  DP_SET_POWER_D0);
2622                         if (ret == 1)
2623                                 break;
2624                         msleep(1);
2625                 }
2626
2627                 if (ret == 1 && lspcon->active)
2628                         lspcon_wait_pcon_mode(lspcon);
2629         }
2630
2631         if (ret != 1)
2632                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2633                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2634 }
2635
2636 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
2637                                  enum port port, enum pipe *pipe)
2638 {
2639         enum pipe p;
2640
2641         for_each_pipe(dev_priv, p) {
2642                 u32 val = I915_READ(TRANS_DP_CTL(p));
2643
2644                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
2645                         *pipe = p;
2646                         return true;
2647                 }
2648         }
2649
2650         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
2651
2652         /* must initialize pipe to something for the asserts */
2653         *pipe = PIPE_A;
2654
2655         return false;
2656 }
2657
2658 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
2659                            i915_reg_t dp_reg, enum port port,
2660                            enum pipe *pipe)
2661 {
2662         bool ret;
2663         u32 val;
2664
2665         val = I915_READ(dp_reg);
2666
2667         ret = val & DP_PORT_EN;
2668
2669         /* asserts want to know the pipe even if the port is disabled */
2670         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
2671                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
2672         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2673                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
2674         else if (IS_CHERRYVIEW(dev_priv))
2675                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
2676         else
2677                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
2678
2679         return ret;
2680 }
2681
2682 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2683                                   enum pipe *pipe)
2684 {
2685         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2686         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2687         bool ret;
2688
2689         if (!intel_display_power_get_if_enabled(dev_priv,
2690                                                 encoder->power_domain))
2691                 return false;
2692
2693         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
2694                                     encoder->port, pipe);
2695
2696         intel_display_power_put(dev_priv, encoder->power_domain);
2697
2698         return ret;
2699 }
2700
2701 static void intel_dp_get_config(struct intel_encoder *encoder,
2702                                 struct intel_crtc_state *pipe_config)
2703 {
2704         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2705         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2706         u32 tmp, flags = 0;
2707         enum port port = encoder->port;
2708         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2709
2710         if (encoder->type == INTEL_OUTPUT_EDP)
2711                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
2712         else
2713                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2714
2715         tmp = I915_READ(intel_dp->output_reg);
2716
2717         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2718
2719         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2720                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2721
2722                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2723                         flags |= DRM_MODE_FLAG_PHSYNC;
2724                 else
2725                         flags |= DRM_MODE_FLAG_NHSYNC;
2726
2727                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2728                         flags |= DRM_MODE_FLAG_PVSYNC;
2729                 else
2730                         flags |= DRM_MODE_FLAG_NVSYNC;
2731         } else {
2732                 if (tmp & DP_SYNC_HS_HIGH)
2733                         flags |= DRM_MODE_FLAG_PHSYNC;
2734                 else
2735                         flags |= DRM_MODE_FLAG_NHSYNC;
2736
2737                 if (tmp & DP_SYNC_VS_HIGH)
2738                         flags |= DRM_MODE_FLAG_PVSYNC;
2739                 else
2740                         flags |= DRM_MODE_FLAG_NVSYNC;
2741         }
2742
2743         pipe_config->base.adjusted_mode.flags |= flags;
2744
2745         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2746                 pipe_config->limited_color_range = true;
2747
2748         pipe_config->lane_count =
2749                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2750
2751         intel_dp_get_m_n(crtc, pipe_config);
2752
2753         if (port == PORT_A) {
2754                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2755                         pipe_config->port_clock = 162000;
2756                 else
2757                         pipe_config->port_clock = 270000;
2758         }
2759
2760         pipe_config->base.adjusted_mode.crtc_clock =
2761                 intel_dotclock_calculate(pipe_config->port_clock,
2762                                          &pipe_config->dp_m_n);
2763
2764         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2765             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2766                 /*
2767                  * This is a big fat ugly hack.
2768                  *
2769                  * Some machines in UEFI boot mode provide us a VBT that has 18
2770                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2771                  * unknown we fail to light up. Yet the same BIOS boots up with
2772                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2773                  * max, not what it tells us to use.
2774                  *
2775                  * Note: This will still be broken if the eDP panel is not lit
2776                  * up by the BIOS, and thus we can't get the mode at module
2777                  * load.
2778                  */
2779                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2780                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2781                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2782         }
2783 }
2784
2785 static void intel_disable_dp(struct intel_encoder *encoder,
2786                              const struct intel_crtc_state *old_crtc_state,
2787                              const struct drm_connector_state *old_conn_state)
2788 {
2789         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2790
2791         intel_dp->link_trained = false;
2792
2793         if (old_crtc_state->has_audio)
2794                 intel_audio_codec_disable(encoder,
2795                                           old_crtc_state, old_conn_state);
2796
2797         /* Make sure the panel is off before trying to change the mode. But also
2798          * ensure that we have vdd while we switch off the panel. */
2799         intel_edp_panel_vdd_on(intel_dp);
2800         intel_edp_backlight_off(old_conn_state);
2801         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2802         intel_edp_panel_off(intel_dp);
2803 }
2804
2805 static void g4x_disable_dp(struct intel_encoder *encoder,
2806                            const struct intel_crtc_state *old_crtc_state,
2807                            const struct drm_connector_state *old_conn_state)
2808 {
2809         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2810 }
2811
2812 static void vlv_disable_dp(struct intel_encoder *encoder,
2813                            const struct intel_crtc_state *old_crtc_state,
2814                            const struct drm_connector_state *old_conn_state)
2815 {
2816         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2817 }
2818
2819 static void g4x_post_disable_dp(struct intel_encoder *encoder,
2820                                 const struct intel_crtc_state *old_crtc_state,
2821                                 const struct drm_connector_state *old_conn_state)
2822 {
2823         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2824         enum port port = encoder->port;
2825
2826         /*
2827          * Bspec does not list a specific disable sequence for g4x DP.
2828          * Follow the ilk+ sequence (disable pipe before the port) for
2829          * g4x DP as it does not suffer from underruns like the normal
2830          * g4x modeset sequence (disable pipe after the port).
2831          */
2832         intel_dp_link_down(encoder, old_crtc_state);
2833
2834         /* Only ilk+ has port A */
2835         if (port == PORT_A)
2836                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
2837 }
2838
2839 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2840                                 const struct intel_crtc_state *old_crtc_state,
2841                                 const struct drm_connector_state *old_conn_state)
2842 {
2843         intel_dp_link_down(encoder, old_crtc_state);
2844 }
2845
2846 static void chv_post_disable_dp(struct intel_encoder *encoder,
2847                                 const struct intel_crtc_state *old_crtc_state,
2848                                 const struct drm_connector_state *old_conn_state)
2849 {
2850         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2851
2852         intel_dp_link_down(encoder, old_crtc_state);
2853
2854         mutex_lock(&dev_priv->sb_lock);
2855
2856         /* Assert data lane reset */
2857         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2858
2859         mutex_unlock(&dev_priv->sb_lock);
2860 }
2861
2862 static void
2863 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2864                          uint32_t *DP,
2865                          uint8_t dp_train_pat)
2866 {
2867         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2868         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2869         enum port port = intel_dig_port->base.port;
2870         uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
2871
2872         if (dp_train_pat & train_pat_mask)
2873                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2874                               dp_train_pat & train_pat_mask);
2875
2876         if (HAS_DDI(dev_priv)) {
2877                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2878
2879                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2880                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2881                 else
2882                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2883
2884                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2885                 switch (dp_train_pat & train_pat_mask) {
2886                 case DP_TRAINING_PATTERN_DISABLE:
2887                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2888
2889                         break;
2890                 case DP_TRAINING_PATTERN_1:
2891                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2892                         break;
2893                 case DP_TRAINING_PATTERN_2:
2894                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2895                         break;
2896                 case DP_TRAINING_PATTERN_3:
2897                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2898                         break;
2899                 case DP_TRAINING_PATTERN_4:
2900                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
2901                         break;
2902                 }
2903                 I915_WRITE(DP_TP_CTL(port), temp);
2904
2905         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
2906                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2907                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2908
2909                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2910                 case DP_TRAINING_PATTERN_DISABLE:
2911                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2912                         break;
2913                 case DP_TRAINING_PATTERN_1:
2914                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2915                         break;
2916                 case DP_TRAINING_PATTERN_2:
2917                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2918                         break;
2919                 case DP_TRAINING_PATTERN_3:
2920                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2921                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2922                         break;
2923                 }
2924
2925         } else {
2926                 *DP &= ~DP_LINK_TRAIN_MASK;
2927
2928                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2929                 case DP_TRAINING_PATTERN_DISABLE:
2930                         *DP |= DP_LINK_TRAIN_OFF;
2931                         break;
2932                 case DP_TRAINING_PATTERN_1:
2933                         *DP |= DP_LINK_TRAIN_PAT_1;
2934                         break;
2935                 case DP_TRAINING_PATTERN_2:
2936                         *DP |= DP_LINK_TRAIN_PAT_2;
2937                         break;
2938                 case DP_TRAINING_PATTERN_3:
2939                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2940                         *DP |= DP_LINK_TRAIN_PAT_2;
2941                         break;
2942                 }
2943         }
2944 }
2945
2946 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2947                                  const struct intel_crtc_state *old_crtc_state)
2948 {
2949         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2950
2951         /* enable with pattern 1 (as per spec) */
2952
2953         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2954
2955         /*
2956          * Magic for VLV/CHV. We _must_ first set up the register
2957          * without actually enabling the port, and then do another
2958          * write to enable the port. Otherwise link training will
2959          * fail when the power sequencer is freshly used for this port.
2960          */
2961         intel_dp->DP |= DP_PORT_EN;
2962         if (old_crtc_state->has_audio)
2963                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2964
2965         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2966         POSTING_READ(intel_dp->output_reg);
2967 }
2968
2969 static void intel_enable_dp(struct intel_encoder *encoder,
2970                             const struct intel_crtc_state *pipe_config,
2971                             const struct drm_connector_state *conn_state)
2972 {
2973         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2974         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2975         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2976         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2977         enum pipe pipe = crtc->pipe;
2978
2979         if (WARN_ON(dp_reg & DP_PORT_EN))
2980                 return;
2981
2982         pps_lock(intel_dp);
2983
2984         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2985                 vlv_init_panel_power_sequencer(encoder, pipe_config);
2986
2987         intel_dp_enable_port(intel_dp, pipe_config);
2988
2989         edp_panel_vdd_on(intel_dp);
2990         edp_panel_on(intel_dp);
2991         edp_panel_vdd_off(intel_dp, true);
2992
2993         pps_unlock(intel_dp);
2994
2995         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2996                 unsigned int lane_mask = 0x0;
2997
2998                 if (IS_CHERRYVIEW(dev_priv))
2999                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3000
3001                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3002                                     lane_mask);
3003         }
3004
3005         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3006         intel_dp_start_link_train(intel_dp);
3007         intel_dp_stop_link_train(intel_dp);
3008
3009         if (pipe_config->has_audio) {
3010                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3011                                  pipe_name(pipe));
3012                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3013         }
3014 }
3015
3016 static void g4x_enable_dp(struct intel_encoder *encoder,
3017                           const struct intel_crtc_state *pipe_config,
3018                           const struct drm_connector_state *conn_state)
3019 {
3020         intel_enable_dp(encoder, pipe_config, conn_state);
3021         intel_edp_backlight_on(pipe_config, conn_state);
3022 }
3023
3024 static void vlv_enable_dp(struct intel_encoder *encoder,
3025                           const struct intel_crtc_state *pipe_config,
3026                           const struct drm_connector_state *conn_state)
3027 {
3028         intel_edp_backlight_on(pipe_config, conn_state);
3029 }
3030
3031 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3032                               const struct intel_crtc_state *pipe_config,
3033                               const struct drm_connector_state *conn_state)
3034 {
3035         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3036         enum port port = encoder->port;
3037
3038         intel_dp_prepare(encoder, pipe_config);
3039
3040         /* Only ilk+ has port A */
3041         if (port == PORT_A)
3042                 ironlake_edp_pll_on(intel_dp, pipe_config);
3043 }
3044
3045 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3046 {
3047         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3048         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3049         enum pipe pipe = intel_dp->pps_pipe;
3050         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3051
3052         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3053
3054         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3055                 return;
3056
3057         edp_panel_vdd_off_sync(intel_dp);
3058
3059         /*
3060          * VLV seems to get confused when multiple power sequencers
3061          * have the same port selected (even if only one has power/vdd
3062          * enabled). The failure manifests as vlv_wait_port_ready() failing
3063          * CHV on the other hand doesn't seem to mind having the same port
3064          * selected in multiple power sequencers, but let's clear the
3065          * port select always when logically disconnecting a power sequencer
3066          * from a port.
3067          */
3068         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3069                       pipe_name(pipe), port_name(intel_dig_port->base.port));
3070         I915_WRITE(pp_on_reg, 0);
3071         POSTING_READ(pp_on_reg);
3072
3073         intel_dp->pps_pipe = INVALID_PIPE;
3074 }
3075
3076 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3077                                       enum pipe pipe)
3078 {
3079         struct intel_encoder *encoder;
3080
3081         lockdep_assert_held(&dev_priv->pps_mutex);
3082
3083         for_each_intel_dp(&dev_priv->drm, encoder) {
3084                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3085                 enum port port = encoder->port;
3086
3087                 WARN(intel_dp->active_pipe == pipe,
3088                      "stealing pipe %c power sequencer from active (e)DP port %c\n",
3089                      pipe_name(pipe), port_name(port));
3090
3091                 if (intel_dp->pps_pipe != pipe)
3092                         continue;
3093
3094                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3095                               pipe_name(pipe), port_name(port));
3096
3097                 /* make sure vdd is off before we steal it */
3098                 vlv_detach_power_sequencer(intel_dp);
3099         }
3100 }
3101
3102 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3103                                            const struct intel_crtc_state *crtc_state)
3104 {
3105         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3106         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3107         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3108
3109         lockdep_assert_held(&dev_priv->pps_mutex);
3110
3111         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3112
3113         if (intel_dp->pps_pipe != INVALID_PIPE &&
3114             intel_dp->pps_pipe != crtc->pipe) {
3115                 /*
3116                  * If another power sequencer was being used on this
3117                  * port previously make sure to turn off vdd there while
3118                  * we still have control of it.
3119                  */
3120                 vlv_detach_power_sequencer(intel_dp);
3121         }
3122
3123         /*
3124          * We may be stealing the power
3125          * sequencer from another port.
3126          */
3127         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3128
3129         intel_dp->active_pipe = crtc->pipe;
3130
3131         if (!intel_dp_is_edp(intel_dp))
3132                 return;
3133
3134         /* now it's all ours */
3135         intel_dp->pps_pipe = crtc->pipe;
3136
3137         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3138                       pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3139
3140         /* init power sequencer on this pipe and port */
3141         intel_dp_init_panel_power_sequencer(intel_dp);
3142         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3143 }
3144
3145 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3146                               const struct intel_crtc_state *pipe_config,
3147                               const struct drm_connector_state *conn_state)
3148 {
3149         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3150
3151         intel_enable_dp(encoder, pipe_config, conn_state);
3152 }
3153
3154 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3155                                   const struct intel_crtc_state *pipe_config,
3156                                   const struct drm_connector_state *conn_state)
3157 {
3158         intel_dp_prepare(encoder, pipe_config);
3159
3160         vlv_phy_pre_pll_enable(encoder, pipe_config);
3161 }
3162
3163 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3164                               const struct intel_crtc_state *pipe_config,
3165                               const struct drm_connector_state *conn_state)
3166 {
3167         chv_phy_pre_encoder_enable(encoder, pipe_config);
3168
3169         intel_enable_dp(encoder, pipe_config, conn_state);
3170
3171         /* Second common lane will stay alive on its own now */
3172         chv_phy_release_cl2_override(encoder);
3173 }
3174
3175 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3176                                   const struct intel_crtc_state *pipe_config,
3177                                   const struct drm_connector_state *conn_state)
3178 {
3179         intel_dp_prepare(encoder, pipe_config);
3180
3181         chv_phy_pre_pll_enable(encoder, pipe_config);
3182 }
3183
3184 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3185                                     const struct intel_crtc_state *old_crtc_state,
3186                                     const struct drm_connector_state *old_conn_state)
3187 {
3188         chv_phy_post_pll_disable(encoder, old_crtc_state);
3189 }
3190
3191 /*
3192  * Fetch AUX CH registers 0x202 - 0x207 which contain
3193  * link status information
3194  */
3195 bool
3196 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3197 {
3198         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3199                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3200 }
3201
3202 /* These are source-specific values. */
3203 uint8_t
3204 intel_dp_voltage_max(struct intel_dp *intel_dp)
3205 {
3206         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3207         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3208         enum port port = encoder->port;
3209
3210         if (HAS_DDI(dev_priv))
3211                 return intel_ddi_dp_voltage_max(encoder);
3212         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3213                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3214         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3215                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3216         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3217                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3218         else
3219                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3220 }
3221
3222 uint8_t
3223 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3224 {
3225         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3226         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3227         enum port port = encoder->port;
3228
3229         if (HAS_DDI(dev_priv)) {
3230                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3231         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3232                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3233                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3234                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3235                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3236                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3237                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3238                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3239                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3240                 default:
3241                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3242                 }
3243         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3244                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3245                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3246                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3247                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3248                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3249                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3250                 default:
3251                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3252                 }
3253         } else {
3254                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3255                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3256                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3257                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3258                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3259                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3260                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3261                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3262                 default:
3263                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3264                 }
3265         }
3266 }
3267
3268 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3269 {
3270         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3271         unsigned long demph_reg_value, preemph_reg_value,
3272                 uniqtranscale_reg_value;
3273         uint8_t train_set = intel_dp->train_set[0];
3274
3275         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3276         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3277                 preemph_reg_value = 0x0004000;
3278                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3279                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3280                         demph_reg_value = 0x2B405555;
3281                         uniqtranscale_reg_value = 0x552AB83A;
3282                         break;
3283                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3284                         demph_reg_value = 0x2B404040;
3285                         uniqtranscale_reg_value = 0x5548B83A;
3286                         break;
3287                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3288                         demph_reg_value = 0x2B245555;
3289                         uniqtranscale_reg_value = 0x5560B83A;
3290                         break;
3291                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3292                         demph_reg_value = 0x2B405555;
3293                         uniqtranscale_reg_value = 0x5598DA3A;
3294                         break;
3295                 default:
3296                         return 0;
3297                 }
3298                 break;
3299         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3300                 preemph_reg_value = 0x0002000;
3301                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3302                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3303                         demph_reg_value = 0x2B404040;
3304                         uniqtranscale_reg_value = 0x5552B83A;
3305                         break;
3306                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3307                         demph_reg_value = 0x2B404848;
3308                         uniqtranscale_reg_value = 0x5580B83A;
3309                         break;
3310                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3311                         demph_reg_value = 0x2B404040;
3312                         uniqtranscale_reg_value = 0x55ADDA3A;
3313                         break;
3314                 default:
3315                         return 0;
3316                 }
3317                 break;
3318         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3319                 preemph_reg_value = 0x0000000;
3320                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3321                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3322                         demph_reg_value = 0x2B305555;
3323                         uniqtranscale_reg_value = 0x5570B83A;
3324                         break;
3325                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3326                         demph_reg_value = 0x2B2B4040;
3327                         uniqtranscale_reg_value = 0x55ADDA3A;
3328                         break;
3329                 default:
3330                         return 0;
3331                 }
3332                 break;
3333         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3334                 preemph_reg_value = 0x0006000;
3335                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3336                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3337                         demph_reg_value = 0x1B405555;
3338                         uniqtranscale_reg_value = 0x55ADDA3A;
3339                         break;
3340                 default:
3341                         return 0;
3342                 }
3343                 break;
3344         default:
3345                 return 0;
3346         }
3347
3348         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3349                                  uniqtranscale_reg_value, 0);
3350
3351         return 0;
3352 }
3353
3354 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3355 {
3356         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3357         u32 deemph_reg_value, margin_reg_value;
3358         bool uniq_trans_scale = false;
3359         uint8_t train_set = intel_dp->train_set[0];
3360
3361         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3362         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3363                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3364                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3365                         deemph_reg_value = 128;
3366                         margin_reg_value = 52;
3367                         break;
3368                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3369                         deemph_reg_value = 128;
3370                         margin_reg_value = 77;
3371                         break;
3372                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3373                         deemph_reg_value = 128;
3374                         margin_reg_value = 102;
3375                         break;
3376                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3377                         deemph_reg_value = 128;
3378                         margin_reg_value = 154;
3379                         uniq_trans_scale = true;
3380                         break;
3381                 default:
3382                         return 0;
3383                 }
3384                 break;
3385         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3386                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3387                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3388                         deemph_reg_value = 85;
3389                         margin_reg_value = 78;
3390                         break;
3391                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3392                         deemph_reg_value = 85;
3393                         margin_reg_value = 116;
3394                         break;
3395                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3396                         deemph_reg_value = 85;
3397                         margin_reg_value = 154;
3398                         break;
3399                 default:
3400                         return 0;
3401                 }
3402                 break;
3403         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3404                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3405                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3406                         deemph_reg_value = 64;
3407                         margin_reg_value = 104;
3408                         break;
3409                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3410                         deemph_reg_value = 64;
3411                         margin_reg_value = 154;
3412                         break;
3413                 default:
3414                         return 0;
3415                 }
3416                 break;
3417         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3418                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3419                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3420                         deemph_reg_value = 43;
3421                         margin_reg_value = 154;
3422                         break;
3423                 default:
3424                         return 0;
3425                 }
3426                 break;
3427         default:
3428                 return 0;
3429         }
3430
3431         chv_set_phy_signal_level(encoder, deemph_reg_value,
3432                                  margin_reg_value, uniq_trans_scale);
3433
3434         return 0;
3435 }
3436
3437 static uint32_t
3438 g4x_signal_levels(uint8_t train_set)
3439 {
3440         uint32_t        signal_levels = 0;
3441
3442         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3443         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3444         default:
3445                 signal_levels |= DP_VOLTAGE_0_4;
3446                 break;
3447         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3448                 signal_levels |= DP_VOLTAGE_0_6;
3449                 break;
3450         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3451                 signal_levels |= DP_VOLTAGE_0_8;
3452                 break;
3453         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3454                 signal_levels |= DP_VOLTAGE_1_2;
3455                 break;
3456         }
3457         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3458         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3459         default:
3460                 signal_levels |= DP_PRE_EMPHASIS_0;
3461                 break;
3462         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3463                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3464                 break;
3465         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3466                 signal_levels |= DP_PRE_EMPHASIS_6;
3467                 break;
3468         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3469                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3470                 break;
3471         }
3472         return signal_levels;
3473 }
3474
3475 /* SNB CPU eDP voltage swing and pre-emphasis control */
3476 static uint32_t
3477 snb_cpu_edp_signal_levels(uint8_t train_set)
3478 {
3479         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3480                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3481         switch (signal_levels) {
3482         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3483         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3484                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3485         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3486                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3487         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3488         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3489                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3490         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3491         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3492                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3493         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3494         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3495                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3496         default:
3497                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3498                               "0x%x\n", signal_levels);
3499                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3500         }
3501 }
3502
3503 /* IVB CPU eDP voltage swing and pre-emphasis control */
3504 static uint32_t
3505 ivb_cpu_edp_signal_levels(uint8_t train_set)
3506 {
3507         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3508                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3509         switch (signal_levels) {
3510         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3511                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3512         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3513                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3514         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3515                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3516
3517         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3518                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3519         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3520                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3521
3522         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3523                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3524         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3525                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3526
3527         default:
3528                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3529                               "0x%x\n", signal_levels);
3530                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3531         }
3532 }
3533
3534 void
3535 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3536 {
3537         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3538         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3539         enum port port = intel_dig_port->base.port;
3540         uint32_t signal_levels, mask = 0;
3541         uint8_t train_set = intel_dp->train_set[0];
3542
3543         if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3544                 signal_levels = bxt_signal_levels(intel_dp);
3545         } else if (HAS_DDI(dev_priv)) {
3546                 signal_levels = ddi_signal_levels(intel_dp);
3547                 mask = DDI_BUF_EMP_MASK;
3548         } else if (IS_CHERRYVIEW(dev_priv)) {
3549                 signal_levels = chv_signal_levels(intel_dp);
3550         } else if (IS_VALLEYVIEW(dev_priv)) {
3551                 signal_levels = vlv_signal_levels(intel_dp);
3552         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3553                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3554                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3555         } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3556                 signal_levels = snb_cpu_edp_signal_levels(train_set);
3557                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3558         } else {
3559                 signal_levels = g4x_signal_levels(train_set);
3560                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3561         }
3562
3563         if (mask)
3564                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3565
3566         DRM_DEBUG_KMS("Using vswing level %d\n",
3567                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3568         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3569                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3570                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3571
3572         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3573
3574         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3575         POSTING_READ(intel_dp->output_reg);
3576 }
3577
3578 void
3579 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3580                                        uint8_t dp_train_pat)
3581 {
3582         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3583         struct drm_i915_private *dev_priv =
3584                 to_i915(intel_dig_port->base.base.dev);
3585
3586         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3587
3588         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3589         POSTING_READ(intel_dp->output_reg);
3590 }
3591
3592 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3593 {
3594         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3595         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3596         enum port port = intel_dig_port->base.port;
3597         uint32_t val;
3598
3599         if (!HAS_DDI(dev_priv))
3600                 return;
3601
3602         val = I915_READ(DP_TP_CTL(port));
3603         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3604         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3605         I915_WRITE(DP_TP_CTL(port), val);
3606
3607         /*
3608          * On PORT_A we can have only eDP in SST mode. There the only reason
3609          * we need to set idle transmission mode is to work around a HW issue
3610          * where we enable the pipe while not in idle link-training mode.
3611          * In this case there is requirement to wait for a minimum number of
3612          * idle patterns to be sent.
3613          */
3614         if (port == PORT_A)
3615                 return;
3616
3617         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3618                                     DP_TP_STATUS_IDLE_DONE,
3619                                     DP_TP_STATUS_IDLE_DONE,
3620                                     1))
3621                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3622 }
3623
3624 static void
3625 intel_dp_link_down(struct intel_encoder *encoder,
3626                    const struct intel_crtc_state *old_crtc_state)
3627 {
3628         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3629         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3630         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3631         enum port port = encoder->port;
3632         uint32_t DP = intel_dp->DP;
3633
3634         if (WARN_ON(HAS_DDI(dev_priv)))
3635                 return;
3636
3637         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3638                 return;
3639
3640         DRM_DEBUG_KMS("\n");
3641
3642         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3643             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3644                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3645                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3646         } else {
3647                 DP &= ~DP_LINK_TRAIN_MASK;
3648                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3649         }
3650         I915_WRITE(intel_dp->output_reg, DP);
3651         POSTING_READ(intel_dp->output_reg);
3652
3653         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3654         I915_WRITE(intel_dp->output_reg, DP);
3655         POSTING_READ(intel_dp->output_reg);
3656
3657         /*
3658          * HW workaround for IBX, we need to move the port
3659          * to transcoder A after disabling it to allow the
3660          * matching HDMI port to be enabled on transcoder A.
3661          */
3662         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3663                 /*
3664                  * We get CPU/PCH FIFO underruns on the other pipe when
3665                  * doing the workaround. Sweep them under the rug.
3666                  */
3667                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3668                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3669
3670                 /* always enable with pattern 1 (as per spec) */
3671                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
3672                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
3673                         DP_LINK_TRAIN_PAT_1;
3674                 I915_WRITE(intel_dp->output_reg, DP);
3675                 POSTING_READ(intel_dp->output_reg);
3676
3677                 DP &= ~DP_PORT_EN;
3678                 I915_WRITE(intel_dp->output_reg, DP);
3679                 POSTING_READ(intel_dp->output_reg);
3680
3681                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3682                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3683                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3684         }
3685
3686         msleep(intel_dp->panel_power_down_delay);
3687
3688         intel_dp->DP = DP;
3689
3690         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3691                 pps_lock(intel_dp);
3692                 intel_dp->active_pipe = INVALID_PIPE;
3693                 pps_unlock(intel_dp);
3694         }
3695 }
3696
3697 bool
3698 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3699 {
3700         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3701                              sizeof(intel_dp->dpcd)) < 0)
3702                 return false; /* aux transfer failed */
3703
3704         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3705
3706         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3707 }
3708
3709 static bool
3710 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3711 {
3712         struct drm_i915_private *dev_priv =
3713                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3714
3715         /* this function is meant to be called only once */
3716         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3717
3718         if (!intel_dp_read_dpcd(intel_dp))
3719                 return false;
3720
3721         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3722                          drm_dp_is_branch(intel_dp->dpcd));
3723
3724         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3725                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3726                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3727
3728         /*
3729          * Read the eDP display control registers.
3730          *
3731          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3732          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3733          * set, but require eDP 1.4+ detection (e.g. for supported link rates
3734          * method). The display control registers should read zero if they're
3735          * not supported anyway.
3736          */
3737         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3738                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3739                              sizeof(intel_dp->edp_dpcd))
3740                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3741                               intel_dp->edp_dpcd);
3742
3743         /*
3744          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
3745          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
3746          */
3747         intel_psr_init_dpcd(intel_dp);
3748
3749         /* Read the eDP 1.4+ supported link rates. */
3750         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3751                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3752                 int i;
3753
3754                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3755                                 sink_rates, sizeof(sink_rates));
3756
3757                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3758                         int val = le16_to_cpu(sink_rates[i]);
3759
3760                         if (val == 0)
3761                                 break;
3762
3763                         /* Value read multiplied by 200kHz gives the per-lane
3764                          * link rate in kHz. The source rates are, however,
3765                          * stored in terms of LS_Clk kHz. The full conversion
3766                          * back to symbols is
3767                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3768                          */
3769                         intel_dp->sink_rates[i] = (val * 200) / 10;
3770                 }
3771                 intel_dp->num_sink_rates = i;
3772         }
3773
3774         /*
3775          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
3776          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
3777          */
3778         if (intel_dp->num_sink_rates)
3779                 intel_dp->use_rate_select = true;
3780         else
3781                 intel_dp_set_sink_rates(intel_dp);
3782
3783         intel_dp_set_common_rates(intel_dp);
3784
3785         return true;
3786 }
3787
3788
3789 static bool
3790 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3791 {
3792         u8 sink_count;
3793
3794         if (!intel_dp_read_dpcd(intel_dp))
3795                 return false;
3796
3797         /* Don't clobber cached eDP rates. */
3798         if (!intel_dp_is_edp(intel_dp)) {
3799                 intel_dp_set_sink_rates(intel_dp);
3800                 intel_dp_set_common_rates(intel_dp);
3801         }
3802
3803         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3804                 return false;
3805
3806         /*
3807          * Sink count can change between short pulse hpd hence
3808          * a member variable in intel_dp will track any changes
3809          * between short pulse interrupts.
3810          */
3811         intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3812
3813         /*
3814          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3815          * a dongle is present but no display. Unless we require to know
3816          * if a dongle is present or not, we don't need to update
3817          * downstream port information. So, an early return here saves
3818          * time from performing other operations which are not required.
3819          */
3820         if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3821                 return false;
3822
3823         if (!drm_dp_is_branch(intel_dp->dpcd))
3824                 return true; /* native DP sink */
3825
3826         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3827                 return true; /* no per-port downstream info */
3828
3829         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3830                              intel_dp->downstream_ports,
3831                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3832                 return false; /* downstream port status fetch failed */
3833
3834         return true;
3835 }
3836
3837 static bool
3838 intel_dp_can_mst(struct intel_dp *intel_dp)
3839 {
3840         u8 mstm_cap;
3841
3842         if (!i915_modparams.enable_dp_mst)
3843                 return false;
3844
3845         if (!intel_dp->can_mst)
3846                 return false;
3847
3848         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3849                 return false;
3850
3851         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3852                 return false;
3853
3854         return mstm_cap & DP_MST_CAP;
3855 }
3856
3857 static void
3858 intel_dp_configure_mst(struct intel_dp *intel_dp)
3859 {
3860         if (!i915_modparams.enable_dp_mst)
3861                 return;
3862
3863         if (!intel_dp->can_mst)
3864                 return;
3865
3866         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3867
3868         if (intel_dp->is_mst)
3869                 DRM_DEBUG_KMS("Sink is MST capable\n");
3870         else
3871                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3872
3873         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3874                                         intel_dp->is_mst);
3875 }
3876
3877 static bool
3878 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3879 {
3880         return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3881                                  sink_irq_vector) == 1;
3882 }
3883
3884 static bool
3885 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3886 {
3887         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
3888                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
3889                 DP_DPRX_ESI_LEN;
3890 }
3891
3892 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3893 {
3894         int status = 0;
3895         int test_link_rate;
3896         uint8_t test_lane_count, test_link_bw;
3897         /* (DP CTS 1.2)
3898          * 4.3.1.11
3899          */
3900         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
3901         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
3902                                    &test_lane_count);
3903
3904         if (status <= 0) {
3905                 DRM_DEBUG_KMS("Lane count read failed\n");
3906                 return DP_TEST_NAK;
3907         }
3908         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
3909
3910         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
3911                                    &test_link_bw);
3912         if (status <= 0) {
3913                 DRM_DEBUG_KMS("Link Rate read failed\n");
3914                 return DP_TEST_NAK;
3915         }
3916         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
3917
3918         /* Validate the requested link rate and lane count */
3919         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
3920                                         test_lane_count))
3921                 return DP_TEST_NAK;
3922
3923         intel_dp->compliance.test_lane_count = test_lane_count;
3924         intel_dp->compliance.test_link_rate = test_link_rate;
3925
3926         return DP_TEST_ACK;
3927 }
3928
3929 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3930 {
3931         uint8_t test_pattern;
3932         uint8_t test_misc;
3933         __be16 h_width, v_height;
3934         int status = 0;
3935
3936         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
3937         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
3938                                    &test_pattern);
3939         if (status <= 0) {
3940                 DRM_DEBUG_KMS("Test pattern read failed\n");
3941                 return DP_TEST_NAK;
3942         }
3943         if (test_pattern != DP_COLOR_RAMP)
3944                 return DP_TEST_NAK;
3945
3946         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
3947                                   &h_width, 2);
3948         if (status <= 0) {
3949                 DRM_DEBUG_KMS("H Width read failed\n");
3950                 return DP_TEST_NAK;
3951         }
3952
3953         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
3954                                   &v_height, 2);
3955         if (status <= 0) {
3956                 DRM_DEBUG_KMS("V Height read failed\n");
3957                 return DP_TEST_NAK;
3958         }
3959
3960         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
3961                                    &test_misc);
3962         if (status <= 0) {
3963                 DRM_DEBUG_KMS("TEST MISC read failed\n");
3964                 return DP_TEST_NAK;
3965         }
3966         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
3967                 return DP_TEST_NAK;
3968         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
3969                 return DP_TEST_NAK;
3970         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
3971         case DP_TEST_BIT_DEPTH_6:
3972                 intel_dp->compliance.test_data.bpc = 6;
3973                 break;
3974         case DP_TEST_BIT_DEPTH_8:
3975                 intel_dp->compliance.test_data.bpc = 8;
3976                 break;
3977         default:
3978                 return DP_TEST_NAK;
3979         }
3980
3981         intel_dp->compliance.test_data.video_pattern = test_pattern;
3982         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
3983         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
3984         /* Set test active flag here so userspace doesn't interrupt things */
3985         intel_dp->compliance.test_active = 1;
3986
3987         return DP_TEST_ACK;
3988 }
3989
3990 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3991 {
3992         uint8_t test_result = DP_TEST_ACK;
3993         struct intel_connector *intel_connector = intel_dp->attached_connector;
3994         struct drm_connector *connector = &intel_connector->base;
3995
3996         if (intel_connector->detect_edid == NULL ||
3997             connector->edid_corrupt ||
3998             intel_dp->aux.i2c_defer_count > 6) {
3999                 /* Check EDID read for NACKs, DEFERs and corruption
4000                  * (DP CTS 1.2 Core r1.1)
4001                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4002                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4003                  *    4.2.2.6 : EDID corruption detected
4004                  * Use failsafe mode for all cases
4005                  */
4006                 if (intel_dp->aux.i2c_nack_count > 0 ||
4007                         intel_dp->aux.i2c_defer_count > 0)
4008                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4009                                       intel_dp->aux.i2c_nack_count,
4010                                       intel_dp->aux.i2c_defer_count);
4011                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4012         } else {
4013                 struct edid *block = intel_connector->detect_edid;
4014
4015                 /* We have to write the checksum
4016                  * of the last block read
4017                  */
4018                 block += intel_connector->detect_edid->extensions;
4019
4020                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4021                                        block->checksum) <= 0)
4022                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4023
4024                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4025                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4026         }
4027
4028         /* Set test active flag here so userspace doesn't interrupt things */
4029         intel_dp->compliance.test_active = 1;
4030
4031         return test_result;
4032 }
4033
4034 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4035 {
4036         uint8_t test_result = DP_TEST_NAK;
4037         return test_result;
4038 }
4039
4040 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4041 {
4042         uint8_t response = DP_TEST_NAK;
4043         uint8_t request = 0;
4044         int status;
4045
4046         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4047         if (status <= 0) {
4048                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4049                 goto update_status;
4050         }
4051
4052         switch (request) {
4053         case DP_TEST_LINK_TRAINING:
4054                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4055                 response = intel_dp_autotest_link_training(intel_dp);
4056                 break;
4057         case DP_TEST_LINK_VIDEO_PATTERN:
4058                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4059                 response = intel_dp_autotest_video_pattern(intel_dp);
4060                 break;
4061         case DP_TEST_LINK_EDID_READ:
4062                 DRM_DEBUG_KMS("EDID test requested\n");
4063                 response = intel_dp_autotest_edid(intel_dp);
4064                 break;
4065         case DP_TEST_LINK_PHY_TEST_PATTERN:
4066                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4067                 response = intel_dp_autotest_phy_pattern(intel_dp);
4068                 break;
4069         default:
4070                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4071                 break;
4072         }
4073
4074         if (response & DP_TEST_ACK)
4075                 intel_dp->compliance.test_type = request;
4076
4077 update_status:
4078         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4079         if (status <= 0)
4080                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4081 }
4082
4083 static int
4084 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4085 {
4086         bool bret;
4087
4088         if (intel_dp->is_mst) {
4089                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4090                 int ret = 0;
4091                 int retry;
4092                 bool handled;
4093                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4094 go_again:
4095                 if (bret == true) {
4096
4097                         /* check link status - esi[10] = 0x200c */
4098                         if (intel_dp->active_mst_links &&
4099                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4100                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4101                                 intel_dp_start_link_train(intel_dp);
4102                                 intel_dp_stop_link_train(intel_dp);
4103                         }
4104
4105                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4106                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4107
4108                         if (handled) {
4109                                 for (retry = 0; retry < 3; retry++) {
4110                                         int wret;
4111                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4112                                                                  DP_SINK_COUNT_ESI+1,
4113                                                                  &esi[1], 3);
4114                                         if (wret == 3) {
4115                                                 break;
4116                                         }
4117                                 }
4118
4119                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4120                                 if (bret == true) {
4121                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4122                                         goto go_again;
4123                                 }
4124                         } else
4125                                 ret = 0;
4126
4127                         return ret;
4128                 } else {
4129                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4130                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4131                         intel_dp->is_mst = false;
4132                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4133                         /* send a hotplug event */
4134                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4135                 }
4136         }
4137         return -EINVAL;
4138 }
4139
4140 static bool
4141 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4142 {
4143         u8 link_status[DP_LINK_STATUS_SIZE];
4144
4145         if (!intel_dp->link_trained)
4146                 return false;
4147
4148         if (!intel_dp_get_link_status(intel_dp, link_status))
4149                 return false;
4150
4151         /*
4152          * Validate the cached values of intel_dp->link_rate and
4153          * intel_dp->lane_count before attempting to retrain.
4154          */
4155         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4156                                         intel_dp->lane_count))
4157                 return false;
4158
4159         /* Retrain if Channel EQ or CR not ok */
4160         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4161 }
4162
4163 int intel_dp_retrain_link(struct intel_encoder *encoder,
4164                           struct drm_modeset_acquire_ctx *ctx)
4165 {
4166         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4167         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4168         struct intel_connector *connector = intel_dp->attached_connector;
4169         struct drm_connector_state *conn_state;
4170         struct intel_crtc_state *crtc_state;
4171         struct intel_crtc *crtc;
4172         int ret;
4173
4174         /* FIXME handle the MST connectors as well */
4175
4176         if (!connector || connector->base.status != connector_status_connected)
4177                 return 0;
4178
4179         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4180                                ctx);
4181         if (ret)
4182                 return ret;
4183
4184         conn_state = connector->base.state;
4185
4186         crtc = to_intel_crtc(conn_state->crtc);
4187         if (!crtc)
4188                 return 0;
4189
4190         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4191         if (ret)
4192                 return ret;
4193
4194         crtc_state = to_intel_crtc_state(crtc->base.state);
4195
4196         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4197
4198         if (!crtc_state->base.active)
4199                 return 0;
4200
4201         if (conn_state->commit &&
4202             !try_wait_for_completion(&conn_state->commit->hw_done))
4203                 return 0;
4204
4205         if (!intel_dp_needs_link_retrain(intel_dp))
4206                 return 0;
4207
4208         /* Suppress underruns caused by re-training */
4209         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4210         if (crtc->config->has_pch_encoder)
4211                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4212                                                       intel_crtc_pch_transcoder(crtc), false);
4213
4214         intel_dp_start_link_train(intel_dp);
4215         intel_dp_stop_link_train(intel_dp);
4216
4217         /* Keep underrun reporting disabled until things are stable */
4218         intel_wait_for_vblank(dev_priv, crtc->pipe);
4219
4220         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4221         if (crtc->config->has_pch_encoder)
4222                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4223                                                       intel_crtc_pch_transcoder(crtc), true);
4224
4225         return 0;
4226 }
4227
4228 /*
4229  * If display is now connected check links status,
4230  * there has been known issues of link loss triggering
4231  * long pulse.
4232  *
4233  * Some sinks (eg. ASUS PB287Q) seem to perform some
4234  * weird HPD ping pong during modesets. So we can apparently
4235  * end up with HPD going low during a modeset, and then
4236  * going back up soon after. And once that happens we must
4237  * retrain the link to get a picture. That's in case no
4238  * userspace component reacted to intermittent HPD dip.
4239  */
4240 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4241                              struct intel_connector *connector)
4242 {
4243         struct drm_modeset_acquire_ctx ctx;
4244         bool changed;
4245         int ret;
4246
4247         changed = intel_encoder_hotplug(encoder, connector);
4248
4249         drm_modeset_acquire_init(&ctx, 0);
4250
4251         for (;;) {
4252                 ret = intel_dp_retrain_link(encoder, &ctx);
4253
4254                 if (ret == -EDEADLK) {
4255                         drm_modeset_backoff(&ctx);
4256                         continue;
4257                 }
4258
4259                 break;
4260         }
4261
4262         drm_modeset_drop_locks(&ctx);
4263         drm_modeset_acquire_fini(&ctx);
4264         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4265
4266         return changed;
4267 }
4268
4269 /*
4270  * According to DP spec
4271  * 5.1.2:
4272  *  1. Read DPCD
4273  *  2. Configure link according to Receiver Capabilities
4274  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4275  *  4. Check link status on receipt of hot-plug interrupt
4276  *
4277  * intel_dp_short_pulse -  handles short pulse interrupts
4278  * when full detection is not required.
4279  * Returns %true if short pulse is handled and full detection
4280  * is NOT required and %false otherwise.
4281  */
4282 static bool
4283 intel_dp_short_pulse(struct intel_dp *intel_dp)
4284 {
4285         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4286         u8 sink_irq_vector = 0;
4287         u8 old_sink_count = intel_dp->sink_count;
4288         bool ret;
4289
4290         /*
4291          * Clearing compliance test variables to allow capturing
4292          * of values for next automated test request.
4293          */
4294         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4295
4296         /*
4297          * Now read the DPCD to see if it's actually running
4298          * If the current value of sink count doesn't match with
4299          * the value that was stored earlier or dpcd read failed
4300          * we need to do full detection
4301          */
4302         ret = intel_dp_get_dpcd(intel_dp);
4303
4304         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4305                 /* No need to proceed if we are going to do full detect */
4306                 return false;
4307         }
4308
4309         /* Try to read the source of the interrupt */
4310         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4311             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4312             sink_irq_vector != 0) {
4313                 /* Clear interrupt source */
4314                 drm_dp_dpcd_writeb(&intel_dp->aux,
4315                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4316                                    sink_irq_vector);
4317
4318                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4319                         intel_dp_handle_test_request(intel_dp);
4320                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4321                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4322         }
4323
4324         /* Handle CEC interrupts, if any */
4325         drm_dp_cec_irq(&intel_dp->aux);
4326
4327         /* defer to the hotplug work for link retraining if needed */
4328         if (intel_dp_needs_link_retrain(intel_dp))
4329                 return false;
4330
4331         intel_psr_short_pulse(intel_dp);
4332
4333         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4334                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4335                 /* Send a Hotplug Uevent to userspace to start modeset */
4336                 drm_kms_helper_hotplug_event(&dev_priv->drm);
4337         }
4338
4339         return true;
4340 }
4341
4342 /* XXX this is probably wrong for multiple downstream ports */
4343 static enum drm_connector_status
4344 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4345 {
4346         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4347         uint8_t *dpcd = intel_dp->dpcd;
4348         uint8_t type;
4349
4350         if (lspcon->active)
4351                 lspcon_resume(lspcon);
4352
4353         if (!intel_dp_get_dpcd(intel_dp))
4354                 return connector_status_disconnected;
4355
4356         if (intel_dp_is_edp(intel_dp))
4357                 return connector_status_connected;
4358
4359         /* if there's no downstream port, we're done */
4360         if (!drm_dp_is_branch(dpcd))
4361                 return connector_status_connected;
4362
4363         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4364         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4365             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4366
4367                 return intel_dp->sink_count ?
4368                 connector_status_connected : connector_status_disconnected;
4369         }
4370
4371         if (intel_dp_can_mst(intel_dp))
4372                 return connector_status_connected;
4373
4374         /* If no HPD, poke DDC gently */
4375         if (drm_probe_ddc(&intel_dp->aux.ddc))
4376                 return connector_status_connected;
4377
4378         /* Well we tried, say unknown for unreliable port types */
4379         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4380                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4381                 if (type == DP_DS_PORT_TYPE_VGA ||
4382                     type == DP_DS_PORT_TYPE_NON_EDID)
4383                         return connector_status_unknown;
4384         } else {
4385                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4386                         DP_DWN_STRM_PORT_TYPE_MASK;
4387                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4388                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4389                         return connector_status_unknown;
4390         }
4391
4392         /* Anything else is out of spec, warn and ignore */
4393         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4394         return connector_status_disconnected;
4395 }
4396
4397 static enum drm_connector_status
4398 edp_detect(struct intel_dp *intel_dp)
4399 {
4400         return connector_status_connected;
4401 }
4402
4403 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4404 {
4405         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4406         u32 bit;
4407
4408         switch (encoder->hpd_pin) {
4409         case HPD_PORT_B:
4410                 bit = SDE_PORTB_HOTPLUG;
4411                 break;
4412         case HPD_PORT_C:
4413                 bit = SDE_PORTC_HOTPLUG;
4414                 break;
4415         case HPD_PORT_D:
4416                 bit = SDE_PORTD_HOTPLUG;
4417                 break;
4418         default:
4419                 MISSING_CASE(encoder->hpd_pin);
4420                 return false;
4421         }
4422
4423         return I915_READ(SDEISR) & bit;
4424 }
4425
4426 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4427 {
4428         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4429         u32 bit;
4430
4431         switch (encoder->hpd_pin) {
4432         case HPD_PORT_B:
4433                 bit = SDE_PORTB_HOTPLUG_CPT;
4434                 break;
4435         case HPD_PORT_C:
4436                 bit = SDE_PORTC_HOTPLUG_CPT;
4437                 break;
4438         case HPD_PORT_D:
4439                 bit = SDE_PORTD_HOTPLUG_CPT;
4440                 break;
4441         default:
4442                 MISSING_CASE(encoder->hpd_pin);
4443                 return false;
4444         }
4445
4446         return I915_READ(SDEISR) & bit;
4447 }
4448
4449 static bool spt_digital_port_connected(struct intel_encoder *encoder)
4450 {
4451         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4452         u32 bit;
4453
4454         switch (encoder->hpd_pin) {
4455         case HPD_PORT_A:
4456                 bit = SDE_PORTA_HOTPLUG_SPT;
4457                 break;
4458         case HPD_PORT_E:
4459                 bit = SDE_PORTE_HOTPLUG_SPT;
4460                 break;
4461         default:
4462                 return cpt_digital_port_connected(encoder);
4463         }
4464
4465         return I915_READ(SDEISR) & bit;
4466 }
4467
4468 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4469 {
4470         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4471         u32 bit;
4472
4473         switch (encoder->hpd_pin) {
4474         case HPD_PORT_B:
4475                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4476                 break;
4477         case HPD_PORT_C:
4478                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4479                 break;
4480         case HPD_PORT_D:
4481                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4482                 break;
4483         default:
4484                 MISSING_CASE(encoder->hpd_pin);
4485                 return false;
4486         }
4487
4488         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4489 }
4490
4491 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4492 {
4493         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4494         u32 bit;
4495
4496         switch (encoder->hpd_pin) {
4497         case HPD_PORT_B:
4498                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4499                 break;
4500         case HPD_PORT_C:
4501                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4502                 break;
4503         case HPD_PORT_D:
4504                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4505                 break;
4506         default:
4507                 MISSING_CASE(encoder->hpd_pin);
4508                 return false;
4509         }
4510
4511         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4512 }
4513
4514 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4515 {
4516         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4517
4518         if (encoder->hpd_pin == HPD_PORT_A)
4519                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4520         else
4521                 return ibx_digital_port_connected(encoder);
4522 }
4523
4524 static bool snb_digital_port_connected(struct intel_encoder *encoder)
4525 {
4526         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4527
4528         if (encoder->hpd_pin == HPD_PORT_A)
4529                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4530         else
4531                 return cpt_digital_port_connected(encoder);
4532 }
4533
4534 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4535 {
4536         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4537
4538         if (encoder->hpd_pin == HPD_PORT_A)
4539                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4540         else
4541                 return cpt_digital_port_connected(encoder);
4542 }
4543
4544 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4545 {
4546         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4547
4548         if (encoder->hpd_pin == HPD_PORT_A)
4549                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4550         else
4551                 return cpt_digital_port_connected(encoder);
4552 }
4553
4554 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4555 {
4556         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4557         u32 bit;
4558
4559         switch (encoder->hpd_pin) {
4560         case HPD_PORT_A:
4561                 bit = BXT_DE_PORT_HP_DDIA;
4562                 break;
4563         case HPD_PORT_B:
4564                 bit = BXT_DE_PORT_HP_DDIB;
4565                 break;
4566         case HPD_PORT_C:
4567                 bit = BXT_DE_PORT_HP_DDIC;
4568                 break;
4569         default:
4570                 MISSING_CASE(encoder->hpd_pin);
4571                 return false;
4572         }
4573
4574         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4575 }
4576
4577 /*
4578  * intel_digital_port_connected - is the specified port connected?
4579  * @encoder: intel_encoder
4580  *
4581  * Return %true if port is connected, %false otherwise.
4582  */
4583 bool intel_digital_port_connected(struct intel_encoder *encoder)
4584 {
4585         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4586
4587         if (HAS_GMCH_DISPLAY(dev_priv)) {
4588                 if (IS_GM45(dev_priv))
4589                         return gm45_digital_port_connected(encoder);
4590                 else
4591                         return g4x_digital_port_connected(encoder);
4592         }
4593
4594         if (IS_GEN5(dev_priv))
4595                 return ilk_digital_port_connected(encoder);
4596         else if (IS_GEN6(dev_priv))
4597                 return snb_digital_port_connected(encoder);
4598         else if (IS_GEN7(dev_priv))
4599                 return ivb_digital_port_connected(encoder);
4600         else if (IS_GEN8(dev_priv))
4601                 return bdw_digital_port_connected(encoder);
4602         else if (IS_GEN9_LP(dev_priv))
4603                 return bxt_digital_port_connected(encoder);
4604         else
4605                 return spt_digital_port_connected(encoder);
4606 }
4607
4608 static struct edid *
4609 intel_dp_get_edid(struct intel_dp *intel_dp)
4610 {
4611         struct intel_connector *intel_connector = intel_dp->attached_connector;
4612
4613         /* use cached edid if we have one */
4614         if (intel_connector->edid) {
4615                 /* invalid edid */
4616                 if (IS_ERR(intel_connector->edid))
4617                         return NULL;
4618
4619                 return drm_edid_duplicate(intel_connector->edid);
4620         } else
4621                 return drm_get_edid(&intel_connector->base,
4622                                     &intel_dp->aux.ddc);
4623 }
4624
4625 static void
4626 intel_dp_set_edid(struct intel_dp *intel_dp)
4627 {
4628         struct intel_connector *intel_connector = intel_dp->attached_connector;
4629         struct edid *edid;
4630
4631         intel_dp_unset_edid(intel_dp);
4632         edid = intel_dp_get_edid(intel_dp);
4633         intel_connector->detect_edid = edid;
4634
4635         intel_dp->has_audio = drm_detect_monitor_audio(edid);
4636         drm_dp_cec_set_edid(&intel_dp->aux, edid);
4637 }
4638
4639 static void
4640 intel_dp_unset_edid(struct intel_dp *intel_dp)
4641 {
4642         struct intel_connector *intel_connector = intel_dp->attached_connector;
4643
4644         drm_dp_cec_unset_edid(&intel_dp->aux);
4645         kfree(intel_connector->detect_edid);
4646         intel_connector->detect_edid = NULL;
4647
4648         intel_dp->has_audio = false;
4649 }
4650
4651 static int
4652 intel_dp_long_pulse(struct intel_connector *connector,
4653                     struct drm_modeset_acquire_ctx *ctx)
4654 {
4655         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
4656         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
4657         enum drm_connector_status status;
4658         u8 sink_irq_vector = 0;
4659
4660         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
4661
4662         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4663
4664         /* Can't disconnect eDP */
4665         if (intel_dp_is_edp(intel_dp))
4666                 status = edp_detect(intel_dp);
4667         else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
4668                 status = intel_dp_detect_dpcd(intel_dp);
4669         else
4670                 status = connector_status_disconnected;
4671
4672         if (status == connector_status_disconnected) {
4673                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4674
4675                 if (intel_dp->is_mst) {
4676                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4677                                       intel_dp->is_mst,
4678                                       intel_dp->mst_mgr.mst_state);
4679                         intel_dp->is_mst = false;
4680                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4681                                                         intel_dp->is_mst);
4682                 }
4683
4684                 goto out;
4685         }
4686
4687         if (intel_dp->reset_link_params) {
4688                 /* Initial max link lane count */
4689                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4690
4691                 /* Initial max link rate */
4692                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4693
4694                 intel_dp->reset_link_params = false;
4695         }
4696
4697         intel_dp_print_rates(intel_dp);
4698
4699         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4700                          drm_dp_is_branch(intel_dp->dpcd));
4701
4702         intel_dp_configure_mst(intel_dp);
4703
4704         if (intel_dp->is_mst) {
4705                 /*
4706                  * If we are in MST mode then this connector
4707                  * won't appear connected or have anything
4708                  * with EDID on it
4709                  */
4710                 status = connector_status_disconnected;
4711                 goto out;
4712         } else {
4713                 /*
4714                  * If display is now connected check links status,
4715                  * there has been known issues of link loss triggering
4716                  * long pulse.
4717                  *
4718                  * Some sinks (eg. ASUS PB287Q) seem to perform some
4719                  * weird HPD ping pong during modesets. So we can apparently
4720                  * end up with HPD going low during a modeset, and then
4721                  * going back up soon after. And once that happens we must
4722                  * retrain the link to get a picture. That's in case no
4723                  * userspace component reacted to intermittent HPD dip.
4724                  */
4725                 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4726
4727                 intel_dp_retrain_link(encoder, ctx);
4728         }
4729
4730         /*
4731          * Clearing NACK and defer counts to get their exact values
4732          * while reading EDID which are required by Compliance tests
4733          * 4.2.2.4 and 4.2.2.5
4734          */
4735         intel_dp->aux.i2c_nack_count = 0;
4736         intel_dp->aux.i2c_defer_count = 0;
4737
4738         intel_dp_set_edid(intel_dp);
4739         if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
4740                 status = connector_status_connected;
4741         intel_dp->detect_done = true;
4742
4743         /* Try to read the source of the interrupt */
4744         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4745             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4746             sink_irq_vector != 0) {
4747                 /* Clear interrupt source */
4748                 drm_dp_dpcd_writeb(&intel_dp->aux,
4749                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4750                                    sink_irq_vector);
4751
4752                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4753                         intel_dp_handle_test_request(intel_dp);
4754                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4755                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4756         }
4757
4758 out:
4759         if (status != connector_status_connected && !intel_dp->is_mst)
4760                 intel_dp_unset_edid(intel_dp);
4761
4762         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4763         return status;
4764 }
4765
4766 static int
4767 intel_dp_detect(struct drm_connector *connector,
4768                 struct drm_modeset_acquire_ctx *ctx,
4769                 bool force)
4770 {
4771         struct intel_dp *intel_dp = intel_attached_dp(connector);
4772         int status = connector->status;
4773
4774         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4775                       connector->base.id, connector->name);
4776
4777         /* If full detect is not performed yet, do a full detect */
4778         if (!intel_dp->detect_done) {
4779                 struct drm_crtc *crtc;
4780                 int ret;
4781
4782                 crtc = connector->state->crtc;
4783                 if (crtc) {
4784                         ret = drm_modeset_lock(&crtc->mutex, ctx);
4785                         if (ret)
4786                                 return ret;
4787                 }
4788
4789                 status = intel_dp_long_pulse(intel_dp->attached_connector, ctx);
4790         }
4791
4792         intel_dp->detect_done = false;
4793
4794         return status;
4795 }
4796
4797 static void
4798 intel_dp_force(struct drm_connector *connector)
4799 {
4800         struct intel_dp *intel_dp = intel_attached_dp(connector);
4801         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4802         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4803
4804         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4805                       connector->base.id, connector->name);
4806         intel_dp_unset_edid(intel_dp);
4807
4808         if (connector->status != connector_status_connected)
4809                 return;
4810
4811         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4812
4813         intel_dp_set_edid(intel_dp);
4814
4815         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4816 }
4817
4818 static int intel_dp_get_modes(struct drm_connector *connector)
4819 {
4820         struct intel_connector *intel_connector = to_intel_connector(connector);
4821         struct edid *edid;
4822
4823         edid = intel_connector->detect_edid;
4824         if (edid) {
4825                 int ret = intel_connector_update_modes(connector, edid);
4826                 if (ret)
4827                         return ret;
4828         }
4829
4830         /* if eDP has no EDID, fall back to fixed mode */
4831         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4832             intel_connector->panel.fixed_mode) {
4833                 struct drm_display_mode *mode;
4834
4835                 mode = drm_mode_duplicate(connector->dev,
4836                                           intel_connector->panel.fixed_mode);
4837                 if (mode) {
4838                         drm_mode_probed_add(connector, mode);
4839                         return 1;
4840                 }
4841         }
4842
4843         return 0;
4844 }
4845
4846 static int
4847 intel_dp_connector_register(struct drm_connector *connector)
4848 {
4849         struct intel_dp *intel_dp = intel_attached_dp(connector);
4850         struct drm_device *dev = connector->dev;
4851         int ret;
4852
4853         ret = intel_connector_register(connector);
4854         if (ret)
4855                 return ret;
4856
4857         i915_debugfs_connector_add(connector);
4858
4859         DRM_DEBUG_KMS("registering %s bus for %s\n",
4860                       intel_dp->aux.name, connector->kdev->kobj.name);
4861
4862         intel_dp->aux.dev = connector->kdev;
4863         ret = drm_dp_aux_register(&intel_dp->aux);
4864         if (!ret)
4865                 drm_dp_cec_register_connector(&intel_dp->aux,
4866                                               connector->name, dev->dev);
4867         return ret;
4868 }
4869
4870 static void
4871 intel_dp_connector_unregister(struct drm_connector *connector)
4872 {
4873         struct intel_dp *intel_dp = intel_attached_dp(connector);
4874
4875         drm_dp_cec_unregister_connector(&intel_dp->aux);
4876         drm_dp_aux_unregister(&intel_dp->aux);
4877         intel_connector_unregister(connector);
4878 }
4879
4880 static void
4881 intel_dp_connector_destroy(struct drm_connector *connector)
4882 {
4883         struct intel_connector *intel_connector = to_intel_connector(connector);
4884
4885         kfree(intel_connector->detect_edid);
4886
4887         if (!IS_ERR_OR_NULL(intel_connector->edid))
4888                 kfree(intel_connector->edid);
4889
4890         /*
4891          * Can't call intel_dp_is_edp() since the encoder may have been
4892          * destroyed already.
4893          */
4894         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4895                 intel_panel_fini(&intel_connector->panel);
4896
4897         drm_connector_cleanup(connector);
4898         kfree(connector);
4899 }
4900
4901 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4902 {
4903         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4904         struct intel_dp *intel_dp = &intel_dig_port->dp;
4905
4906         intel_dp_mst_encoder_cleanup(intel_dig_port);
4907         if (intel_dp_is_edp(intel_dp)) {
4908                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4909                 /*
4910                  * vdd might still be enabled do to the delayed vdd off.
4911                  * Make sure vdd is actually turned off here.
4912                  */
4913                 pps_lock(intel_dp);
4914                 edp_panel_vdd_off_sync(intel_dp);
4915                 pps_unlock(intel_dp);
4916
4917                 if (intel_dp->edp_notifier.notifier_call) {
4918                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4919                         intel_dp->edp_notifier.notifier_call = NULL;
4920                 }
4921         }
4922
4923         intel_dp_aux_fini(intel_dp);
4924
4925         drm_encoder_cleanup(encoder);
4926         kfree(intel_dig_port);
4927 }
4928
4929 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4930 {
4931         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4932
4933         if (!intel_dp_is_edp(intel_dp))
4934                 return;
4935
4936         /*
4937          * vdd might still be enabled do to the delayed vdd off.
4938          * Make sure vdd is actually turned off here.
4939          */
4940         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4941         pps_lock(intel_dp);
4942         edp_panel_vdd_off_sync(intel_dp);
4943         pps_unlock(intel_dp);
4944 }
4945
4946 static
4947 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
4948                                 u8 *an)
4949 {
4950         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
4951         static const struct drm_dp_aux_msg msg = {
4952                 .request = DP_AUX_NATIVE_WRITE,
4953                 .address = DP_AUX_HDCP_AKSV,
4954                 .size = DRM_HDCP_KSV_LEN,
4955         };
4956         uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
4957         ssize_t dpcd_ret;
4958         int ret;
4959
4960         /* Output An first, that's easy */
4961         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
4962                                      an, DRM_HDCP_AN_LEN);
4963         if (dpcd_ret != DRM_HDCP_AN_LEN) {
4964                 DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
4965                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
4966         }
4967
4968         /*
4969          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
4970          * order to get it on the wire, we need to create the AUX header as if
4971          * we were writing the data, and then tickle the hardware to output the
4972          * data once the header is sent out.
4973          */
4974         intel_dp_aux_header(txbuf, &msg);
4975
4976         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
4977                                 rxbuf, sizeof(rxbuf),
4978                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
4979         if (ret < 0) {
4980                 DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
4981                 return ret;
4982         } else if (ret == 0) {
4983                 DRM_ERROR("Aksv write over DP/AUX was empty\n");
4984                 return -EIO;
4985         }
4986
4987         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
4988         return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
4989 }
4990
4991 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
4992                                    u8 *bksv)
4993 {
4994         ssize_t ret;
4995         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
4996                                DRM_HDCP_KSV_LEN);
4997         if (ret != DRM_HDCP_KSV_LEN) {
4998                 DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
4999                 return ret >= 0 ? -EIO : ret;
5000         }
5001         return 0;
5002 }
5003
5004 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5005                                       u8 *bstatus)
5006 {
5007         ssize_t ret;
5008         /*
5009          * For some reason the HDMI and DP HDCP specs call this register
5010          * definition by different names. In the HDMI spec, it's called BSTATUS,
5011          * but in DP it's called BINFO.
5012          */
5013         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5014                                bstatus, DRM_HDCP_BSTATUS_LEN);
5015         if (ret != DRM_HDCP_BSTATUS_LEN) {
5016                 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5017                 return ret >= 0 ? -EIO : ret;
5018         }
5019         return 0;
5020 }
5021
5022 static
5023 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5024                              u8 *bcaps)
5025 {
5026         ssize_t ret;
5027
5028         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5029                                bcaps, 1);
5030         if (ret != 1) {
5031                 DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
5032                 return ret >= 0 ? -EIO : ret;
5033         }
5034
5035         return 0;
5036 }
5037
5038 static
5039 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5040                                    bool *repeater_present)
5041 {
5042         ssize_t ret;
5043         u8 bcaps;
5044
5045         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5046         if (ret)
5047                 return ret;
5048
5049         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5050         return 0;
5051 }
5052
5053 static
5054 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5055                                 u8 *ri_prime)
5056 {
5057         ssize_t ret;
5058         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5059                                ri_prime, DRM_HDCP_RI_LEN);
5060         if (ret != DRM_HDCP_RI_LEN) {
5061                 DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
5062                 return ret >= 0 ? -EIO : ret;
5063         }
5064         return 0;
5065 }
5066
5067 static
5068 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5069                                  bool *ksv_ready)
5070 {
5071         ssize_t ret;
5072         u8 bstatus;
5073         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5074                                &bstatus, 1);
5075         if (ret != 1) {
5076                 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5077                 return ret >= 0 ? -EIO : ret;
5078         }
5079         *ksv_ready = bstatus & DP_BSTATUS_READY;
5080         return 0;
5081 }
5082
5083 static
5084 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5085                                 int num_downstream, u8 *ksv_fifo)
5086 {
5087         ssize_t ret;
5088         int i;
5089
5090         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5091         for (i = 0; i < num_downstream; i += 3) {
5092                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5093                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5094                                        DP_AUX_HDCP_KSV_FIFO,
5095                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
5096                                        len);
5097                 if (ret != len) {
5098                         DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
5099                                   ret);
5100                         return ret >= 0 ? -EIO : ret;
5101                 }
5102         }
5103         return 0;
5104 }
5105
5106 static
5107 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5108                                     int i, u32 *part)
5109 {
5110         ssize_t ret;
5111
5112         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5113                 return -EINVAL;
5114
5115         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5116                                DP_AUX_HDCP_V_PRIME(i), part,
5117                                DRM_HDCP_V_PRIME_PART_LEN);
5118         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5119                 DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5120                 return ret >= 0 ? -EIO : ret;
5121         }
5122         return 0;
5123 }
5124
5125 static
5126 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5127                                     bool enable)
5128 {
5129         /* Not used for single stream DisplayPort setups */
5130         return 0;
5131 }
5132
5133 static
5134 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5135 {
5136         ssize_t ret;
5137         u8 bstatus;
5138
5139         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5140                                &bstatus, 1);
5141         if (ret != 1) {
5142                 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5143                 return false;
5144         }
5145
5146         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5147 }
5148
5149 static
5150 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5151                           bool *hdcp_capable)
5152 {
5153         ssize_t ret;
5154         u8 bcaps;
5155
5156         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5157         if (ret)
5158                 return ret;
5159
5160         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5161         return 0;
5162 }
5163
5164 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
5165         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
5166         .read_bksv = intel_dp_hdcp_read_bksv,
5167         .read_bstatus = intel_dp_hdcp_read_bstatus,
5168         .repeater_present = intel_dp_hdcp_repeater_present,
5169         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
5170         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
5171         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
5172         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
5173         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
5174         .check_link = intel_dp_hdcp_check_link,
5175         .hdcp_capable = intel_dp_hdcp_capable,
5176 };
5177
5178 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5179 {
5180         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5181
5182         lockdep_assert_held(&dev_priv->pps_mutex);
5183
5184         if (!edp_have_panel_vdd(intel_dp))
5185                 return;
5186
5187         /*
5188          * The VDD bit needs a power domain reference, so if the bit is
5189          * already enabled when we boot or resume, grab this reference and
5190          * schedule a vdd off, so we don't hold on to the reference
5191          * indefinitely.
5192          */
5193         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5194         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5195
5196         edp_panel_vdd_schedule_off(intel_dp);
5197 }
5198
5199 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5200 {
5201         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5202         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
5203         enum pipe pipe;
5204
5205         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
5206                                   encoder->port, &pipe))
5207                 return pipe;
5208
5209         return INVALID_PIPE;
5210 }
5211
5212 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5213 {
5214         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5215         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5216         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5217
5218         if (!HAS_DDI(dev_priv))
5219                 intel_dp->DP = I915_READ(intel_dp->output_reg);
5220
5221         if (lspcon->active)
5222                 lspcon_resume(lspcon);
5223
5224         intel_dp->reset_link_params = true;
5225
5226         pps_lock(intel_dp);
5227
5228         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5229                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5230
5231         if (intel_dp_is_edp(intel_dp)) {
5232                 /* Reinit the power sequencer, in case BIOS did something with it. */
5233                 intel_dp_pps_init(intel_dp);
5234                 intel_edp_panel_vdd_sanitize(intel_dp);
5235         }
5236
5237         pps_unlock(intel_dp);
5238 }
5239
5240 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5241         .force = intel_dp_force,
5242         .fill_modes = drm_helper_probe_single_connector_modes,
5243         .atomic_get_property = intel_digital_connector_atomic_get_property,
5244         .atomic_set_property = intel_digital_connector_atomic_set_property,
5245         .late_register = intel_dp_connector_register,
5246         .early_unregister = intel_dp_connector_unregister,
5247         .destroy = intel_dp_connector_destroy,
5248         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5249         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5250 };
5251
5252 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5253         .detect_ctx = intel_dp_detect,
5254         .get_modes = intel_dp_get_modes,
5255         .mode_valid = intel_dp_mode_valid,
5256         .atomic_check = intel_digital_connector_atomic_check,
5257 };
5258
5259 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5260         .reset = intel_dp_encoder_reset,
5261         .destroy = intel_dp_encoder_destroy,
5262 };
5263
5264 enum irqreturn
5265 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5266 {
5267         struct intel_dp *intel_dp = &intel_dig_port->dp;
5268         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5269         enum irqreturn ret = IRQ_NONE;
5270
5271         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5272                 /*
5273                  * vdd off can generate a long pulse on eDP which
5274                  * would require vdd on to handle it, and thus we
5275                  * would end up in an endless cycle of
5276                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5277                  */
5278                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5279                               port_name(intel_dig_port->base.port));
5280                 return IRQ_HANDLED;
5281         }
5282
5283         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5284                       port_name(intel_dig_port->base.port),
5285                       long_hpd ? "long" : "short");
5286
5287         if (long_hpd) {
5288                 intel_dp->reset_link_params = true;
5289                 intel_dp->detect_done = false;
5290                 return IRQ_NONE;
5291         }
5292
5293         intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5294
5295         if (intel_dp->is_mst) {
5296                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5297                         /*
5298                          * If we were in MST mode, and device is not
5299                          * there, get out of MST mode
5300                          */
5301                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5302                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5303                         intel_dp->is_mst = false;
5304                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5305                                                         intel_dp->is_mst);
5306                         intel_dp->detect_done = false;
5307                         goto put_power;
5308                 }
5309         }
5310
5311         if (!intel_dp->is_mst) {
5312                 bool handled;
5313
5314                 handled = intel_dp_short_pulse(intel_dp);
5315
5316                 /* Short pulse can signify loss of hdcp authentication */
5317                 intel_hdcp_check_link(intel_dp->attached_connector);
5318
5319                 if (!handled) {
5320                         intel_dp->detect_done = false;
5321                         goto put_power;
5322                 }
5323         }
5324
5325         ret = IRQ_HANDLED;
5326
5327 put_power:
5328         intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5329
5330         return ret;
5331 }
5332
5333 /* check the VBT to see whether the eDP is on another port */
5334 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5335 {
5336         /*
5337          * eDP not supported on g4x. so bail out early just
5338          * for a bit extra safety in case the VBT is bonkers.
5339          */
5340         if (INTEL_GEN(dev_priv) < 5)
5341                 return false;
5342
5343         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5344                 return true;
5345
5346         return intel_bios_is_port_edp(dev_priv, port);
5347 }
5348
5349 static void
5350 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5351 {
5352         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5353         enum port port = dp_to_dig_port(intel_dp)->base.port;
5354
5355         if (!IS_G4X(dev_priv) && port != PORT_A)
5356                 intel_attach_force_audio_property(connector);
5357
5358         intel_attach_broadcast_rgb_property(connector);
5359
5360         if (intel_dp_is_edp(intel_dp)) {
5361                 u32 allowed_scalers;
5362
5363                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5364                 if (!HAS_GMCH_DISPLAY(dev_priv))
5365                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5366
5367                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5368
5369                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5370
5371         }
5372 }
5373
5374 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5375 {
5376         intel_dp->panel_power_off_time = ktime_get_boottime();
5377         intel_dp->last_power_on = jiffies;
5378         intel_dp->last_backlight_off = jiffies;
5379 }
5380
5381 static void
5382 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5383 {
5384         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5385         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5386         struct pps_registers regs;
5387
5388         intel_pps_get_registers(intel_dp, &regs);
5389
5390         /* Workaround: Need to write PP_CONTROL with the unlock key as
5391          * the very first thing. */
5392         pp_ctl = ironlake_get_pp_control(intel_dp);
5393
5394         pp_on = I915_READ(regs.pp_on);
5395         pp_off = I915_READ(regs.pp_off);
5396         if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
5397             !HAS_PCH_ICP(dev_priv)) {
5398                 I915_WRITE(regs.pp_ctrl, pp_ctl);
5399                 pp_div = I915_READ(regs.pp_div);
5400         }
5401
5402         /* Pull timing values out of registers */
5403         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5404                      PANEL_POWER_UP_DELAY_SHIFT;
5405
5406         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5407                   PANEL_LIGHT_ON_DELAY_SHIFT;
5408
5409         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5410                   PANEL_LIGHT_OFF_DELAY_SHIFT;
5411
5412         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5413                    PANEL_POWER_DOWN_DELAY_SHIFT;
5414
5415         if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5416             HAS_PCH_ICP(dev_priv)) {
5417                 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5418                                 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5419         } else {
5420                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5421                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5422         }
5423 }
5424
5425 static void
5426 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5427 {
5428         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5429                       state_name,
5430                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5431 }
5432
5433 static void
5434 intel_pps_verify_state(struct intel_dp *intel_dp)
5435 {
5436         struct edp_power_seq hw;
5437         struct edp_power_seq *sw = &intel_dp->pps_delays;
5438
5439         intel_pps_readout_hw_state(intel_dp, &hw);
5440
5441         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5442             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5443                 DRM_ERROR("PPS state mismatch\n");
5444                 intel_pps_dump_state("sw", sw);
5445                 intel_pps_dump_state("hw", &hw);
5446         }
5447 }
5448
5449 static void
5450 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5451 {
5452         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5453         struct edp_power_seq cur, vbt, spec,
5454                 *final = &intel_dp->pps_delays;
5455
5456         lockdep_assert_held(&dev_priv->pps_mutex);
5457
5458         /* already initialized? */
5459         if (final->t11_t12 != 0)
5460                 return;
5461
5462         intel_pps_readout_hw_state(intel_dp, &cur);
5463
5464         intel_pps_dump_state("cur", &cur);
5465
5466         vbt = dev_priv->vbt.edp.pps;
5467         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5468          * of 500ms appears to be too short. Ocassionally the panel
5469          * just fails to power back on. Increasing the delay to 800ms
5470          * seems sufficient to avoid this problem.
5471          */
5472         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5473                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5474                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5475                               vbt.t11_t12);
5476         }
5477         /* T11_T12 delay is special and actually in units of 100ms, but zero
5478          * based in the hw (so we need to add 100 ms). But the sw vbt
5479          * table multiplies it with 1000 to make it in units of 100usec,
5480          * too. */
5481         vbt.t11_t12 += 100 * 10;
5482
5483         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5484          * our hw here, which are all in 100usec. */
5485         spec.t1_t3 = 210 * 10;
5486         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5487         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5488         spec.t10 = 500 * 10;
5489         /* This one is special and actually in units of 100ms, but zero
5490          * based in the hw (so we need to add 100 ms). But the sw vbt
5491          * table multiplies it with 1000 to make it in units of 100usec,
5492          * too. */
5493         spec.t11_t12 = (510 + 100) * 10;
5494
5495         intel_pps_dump_state("vbt", &vbt);
5496
5497         /* Use the max of the register settings and vbt. If both are
5498          * unset, fall back to the spec limits. */
5499 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5500                                        spec.field : \
5501                                        max(cur.field, vbt.field))
5502         assign_final(t1_t3);
5503         assign_final(t8);
5504         assign_final(t9);
5505         assign_final(t10);
5506         assign_final(t11_t12);
5507 #undef assign_final
5508
5509 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5510         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5511         intel_dp->backlight_on_delay = get_delay(t8);
5512         intel_dp->backlight_off_delay = get_delay(t9);
5513         intel_dp->panel_power_down_delay = get_delay(t10);
5514         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5515 #undef get_delay
5516
5517         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5518                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5519                       intel_dp->panel_power_cycle_delay);
5520
5521         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5522                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5523
5524         /*
5525          * We override the HW backlight delays to 1 because we do manual waits
5526          * on them. For T8, even BSpec recommends doing it. For T9, if we
5527          * don't do this, we'll end up waiting for the backlight off delay
5528          * twice: once when we do the manual sleep, and once when we disable
5529          * the panel and wait for the PP_STATUS bit to become zero.
5530          */
5531         final->t8 = 1;
5532         final->t9 = 1;
5533
5534         /*
5535          * HW has only a 100msec granularity for t11_t12 so round it up
5536          * accordingly.
5537          */
5538         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5539 }
5540
5541 static void
5542 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5543                                               bool force_disable_vdd)
5544 {
5545         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5546         u32 pp_on, pp_off, pp_div, port_sel = 0;
5547         int div = dev_priv->rawclk_freq / 1000;
5548         struct pps_registers regs;
5549         enum port port = dp_to_dig_port(intel_dp)->base.port;
5550         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5551
5552         lockdep_assert_held(&dev_priv->pps_mutex);
5553
5554         intel_pps_get_registers(intel_dp, &regs);
5555
5556         /*
5557          * On some VLV machines the BIOS can leave the VDD
5558          * enabled even on power sequencers which aren't
5559          * hooked up to any port. This would mess up the
5560          * power domain tracking the first time we pick
5561          * one of these power sequencers for use since
5562          * edp_panel_vdd_on() would notice that the VDD was
5563          * already on and therefore wouldn't grab the power
5564          * domain reference. Disable VDD first to avoid this.
5565          * This also avoids spuriously turning the VDD on as
5566          * soon as the new power sequencer gets initialized.
5567          */
5568         if (force_disable_vdd) {
5569                 u32 pp = ironlake_get_pp_control(intel_dp);
5570
5571                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5572
5573                 if (pp & EDP_FORCE_VDD)
5574                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
5575
5576                 pp &= ~EDP_FORCE_VDD;
5577
5578                 I915_WRITE(regs.pp_ctrl, pp);
5579         }
5580
5581         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5582                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5583         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5584                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5585         /* Compute the divisor for the pp clock, simply match the Bspec
5586          * formula. */
5587         if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5588             HAS_PCH_ICP(dev_priv)) {
5589                 pp_div = I915_READ(regs.pp_ctrl);
5590                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5591                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5592                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5593         } else {
5594                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5595                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5596                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5597         }
5598
5599         /* Haswell doesn't have any port selection bits for the panel
5600          * power sequencer any more. */
5601         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5602                 port_sel = PANEL_PORT_SELECT_VLV(port);
5603         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5604                 switch (port) {
5605                 case PORT_A:
5606                         port_sel = PANEL_PORT_SELECT_DPA;
5607                         break;
5608                 case PORT_C:
5609                         port_sel = PANEL_PORT_SELECT_DPC;
5610                         break;
5611                 case PORT_D:
5612                         port_sel = PANEL_PORT_SELECT_DPD;
5613                         break;
5614                 default:
5615                         MISSING_CASE(port);
5616                         break;
5617                 }
5618         }
5619
5620         pp_on |= port_sel;
5621
5622         I915_WRITE(regs.pp_on, pp_on);
5623         I915_WRITE(regs.pp_off, pp_off);
5624         if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5625             HAS_PCH_ICP(dev_priv))
5626                 I915_WRITE(regs.pp_ctrl, pp_div);
5627         else
5628                 I915_WRITE(regs.pp_div, pp_div);
5629
5630         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5631                       I915_READ(regs.pp_on),
5632                       I915_READ(regs.pp_off),
5633                       (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
5634                        HAS_PCH_ICP(dev_priv)) ?
5635                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5636                       I915_READ(regs.pp_div));
5637 }
5638
5639 static void intel_dp_pps_init(struct intel_dp *intel_dp)
5640 {
5641         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5642
5643         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5644                 vlv_initial_power_sequencer_setup(intel_dp);
5645         } else {
5646                 intel_dp_init_panel_power_sequencer(intel_dp);
5647                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
5648         }
5649 }
5650
5651 /**
5652  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5653  * @dev_priv: i915 device
5654  * @crtc_state: a pointer to the active intel_crtc_state
5655  * @refresh_rate: RR to be programmed
5656  *
5657  * This function gets called when refresh rate (RR) has to be changed from
5658  * one frequency to another. Switches can be between high and low RR
5659  * supported by the panel or to any other RR based on media playback (in
5660  * this case, RR value needs to be passed from user space).
5661  *
5662  * The caller of this function needs to take a lock on dev_priv->drrs.
5663  */
5664 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5665                                     const struct intel_crtc_state *crtc_state,
5666                                     int refresh_rate)
5667 {
5668         struct intel_encoder *encoder;
5669         struct intel_digital_port *dig_port = NULL;
5670         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5672         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5673
5674         if (refresh_rate <= 0) {
5675                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5676                 return;
5677         }
5678
5679         if (intel_dp == NULL) {
5680                 DRM_DEBUG_KMS("DRRS not supported.\n");
5681                 return;
5682         }
5683
5684         dig_port = dp_to_dig_port(intel_dp);
5685         encoder = &dig_port->base;
5686
5687         if (!intel_crtc) {
5688                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5689                 return;
5690         }
5691
5692         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5693                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5694                 return;
5695         }
5696
5697         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5698                         refresh_rate)
5699                 index = DRRS_LOW_RR;
5700
5701         if (index == dev_priv->drrs.refresh_rate_type) {
5702                 DRM_DEBUG_KMS(
5703                         "DRRS requested for previously set RR...ignoring\n");
5704                 return;
5705         }
5706
5707         if (!crtc_state->base.active) {
5708                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5709                 return;
5710         }
5711
5712         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5713                 switch (index) {
5714                 case DRRS_HIGH_RR:
5715                         intel_dp_set_m_n(intel_crtc, M1_N1);
5716                         break;
5717                 case DRRS_LOW_RR:
5718                         intel_dp_set_m_n(intel_crtc, M2_N2);
5719                         break;
5720                 case DRRS_MAX_RR:
5721                 default:
5722                         DRM_ERROR("Unsupported refreshrate type\n");
5723                 }
5724         } else if (INTEL_GEN(dev_priv) > 6) {
5725                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5726                 u32 val;
5727
5728                 val = I915_READ(reg);
5729                 if (index > DRRS_HIGH_RR) {
5730                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5731                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5732                         else
5733                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5734                 } else {
5735                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5736                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5737                         else
5738                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5739                 }
5740                 I915_WRITE(reg, val);
5741         }
5742
5743         dev_priv->drrs.refresh_rate_type = index;
5744
5745         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5746 }
5747
5748 /**
5749  * intel_edp_drrs_enable - init drrs struct if supported
5750  * @intel_dp: DP struct
5751  * @crtc_state: A pointer to the active crtc state.
5752  *
5753  * Initializes frontbuffer_bits and drrs.dp
5754  */
5755 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5756                            const struct intel_crtc_state *crtc_state)
5757 {
5758         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5759
5760         if (!crtc_state->has_drrs) {
5761                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5762                 return;
5763         }
5764
5765         if (dev_priv->psr.enabled) {
5766                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
5767                 return;
5768         }
5769
5770         mutex_lock(&dev_priv->drrs.mutex);
5771         if (WARN_ON(dev_priv->drrs.dp)) {
5772                 DRM_ERROR("DRRS already enabled\n");
5773                 goto unlock;
5774         }
5775
5776         dev_priv->drrs.busy_frontbuffer_bits = 0;
5777
5778         dev_priv->drrs.dp = intel_dp;
5779
5780 unlock:
5781         mutex_unlock(&dev_priv->drrs.mutex);
5782 }
5783
5784 /**
5785  * intel_edp_drrs_disable - Disable DRRS
5786  * @intel_dp: DP struct
5787  * @old_crtc_state: Pointer to old crtc_state.
5788  *
5789  */
5790 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5791                             const struct intel_crtc_state *old_crtc_state)
5792 {
5793         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5794
5795         if (!old_crtc_state->has_drrs)
5796                 return;
5797
5798         mutex_lock(&dev_priv->drrs.mutex);
5799         if (!dev_priv->drrs.dp) {
5800                 mutex_unlock(&dev_priv->drrs.mutex);
5801                 return;
5802         }
5803
5804         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5805                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5806                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5807
5808         dev_priv->drrs.dp = NULL;
5809         mutex_unlock(&dev_priv->drrs.mutex);
5810
5811         cancel_delayed_work_sync(&dev_priv->drrs.work);
5812 }
5813
5814 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5815 {
5816         struct drm_i915_private *dev_priv =
5817                 container_of(work, typeof(*dev_priv), drrs.work.work);
5818         struct intel_dp *intel_dp;
5819
5820         mutex_lock(&dev_priv->drrs.mutex);
5821
5822         intel_dp = dev_priv->drrs.dp;
5823
5824         if (!intel_dp)
5825                 goto unlock;
5826
5827         /*
5828          * The delayed work can race with an invalidate hence we need to
5829          * recheck.
5830          */
5831
5832         if (dev_priv->drrs.busy_frontbuffer_bits)
5833                 goto unlock;
5834
5835         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5836                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5837
5838                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5839                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5840         }
5841
5842 unlock:
5843         mutex_unlock(&dev_priv->drrs.mutex);
5844 }
5845
5846 /**
5847  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5848  * @dev_priv: i915 device
5849  * @frontbuffer_bits: frontbuffer plane tracking bits
5850  *
5851  * This function gets called everytime rendering on the given planes start.
5852  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5853  *
5854  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5855  */
5856 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5857                                unsigned int frontbuffer_bits)
5858 {
5859         struct drm_crtc *crtc;
5860         enum pipe pipe;
5861
5862         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5863                 return;
5864
5865         cancel_delayed_work(&dev_priv->drrs.work);
5866
5867         mutex_lock(&dev_priv->drrs.mutex);
5868         if (!dev_priv->drrs.dp) {
5869                 mutex_unlock(&dev_priv->drrs.mutex);
5870                 return;
5871         }
5872
5873         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5874         pipe = to_intel_crtc(crtc)->pipe;
5875
5876         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5877         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5878
5879         /* invalidate means busy screen hence upclock */
5880         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5881                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5882                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5883
5884         mutex_unlock(&dev_priv->drrs.mutex);
5885 }
5886
5887 /**
5888  * intel_edp_drrs_flush - Restart Idleness DRRS
5889  * @dev_priv: i915 device
5890  * @frontbuffer_bits: frontbuffer plane tracking bits
5891  *
5892  * This function gets called every time rendering on the given planes has
5893  * completed or flip on a crtc is completed. So DRRS should be upclocked
5894  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5895  * if no other planes are dirty.
5896  *
5897  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5898  */
5899 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5900                           unsigned int frontbuffer_bits)
5901 {
5902         struct drm_crtc *crtc;
5903         enum pipe pipe;
5904
5905         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5906                 return;
5907
5908         cancel_delayed_work(&dev_priv->drrs.work);
5909
5910         mutex_lock(&dev_priv->drrs.mutex);
5911         if (!dev_priv->drrs.dp) {
5912                 mutex_unlock(&dev_priv->drrs.mutex);
5913                 return;
5914         }
5915
5916         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5917         pipe = to_intel_crtc(crtc)->pipe;
5918
5919         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5920         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5921
5922         /* flush means busy screen hence upclock */
5923         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5924                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5925                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5926
5927         /*
5928          * flush also means no more activity hence schedule downclock, if all
5929          * other fbs are quiescent too
5930          */
5931         if (!dev_priv->drrs.busy_frontbuffer_bits)
5932                 schedule_delayed_work(&dev_priv->drrs.work,
5933                                 msecs_to_jiffies(1000));
5934         mutex_unlock(&dev_priv->drrs.mutex);
5935 }
5936
5937 /**
5938  * DOC: Display Refresh Rate Switching (DRRS)
5939  *
5940  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5941  * which enables swtching between low and high refresh rates,
5942  * dynamically, based on the usage scenario. This feature is applicable
5943  * for internal panels.
5944  *
5945  * Indication that the panel supports DRRS is given by the panel EDID, which
5946  * would list multiple refresh rates for one resolution.
5947  *
5948  * DRRS is of 2 types - static and seamless.
5949  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5950  * (may appear as a blink on screen) and is used in dock-undock scenario.
5951  * Seamless DRRS involves changing RR without any visual effect to the user
5952  * and can be used during normal system usage. This is done by programming
5953  * certain registers.
5954  *
5955  * Support for static/seamless DRRS may be indicated in the VBT based on
5956  * inputs from the panel spec.
5957  *
5958  * DRRS saves power by switching to low RR based on usage scenarios.
5959  *
5960  * The implementation is based on frontbuffer tracking implementation.  When
5961  * there is a disturbance on the screen triggered by user activity or a periodic
5962  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5963  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5964  * made.
5965  *
5966  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5967  * and intel_edp_drrs_flush() are called.
5968  *
5969  * DRRS can be further extended to support other internal panels and also
5970  * the scenario of video playback wherein RR is set based on the rate
5971  * requested by userspace.
5972  */
5973
5974 /**
5975  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5976  * @connector: eDP connector
5977  * @fixed_mode: preferred mode of panel
5978  *
5979  * This function is  called only once at driver load to initialize basic
5980  * DRRS stuff.
5981  *
5982  * Returns:
5983  * Downclock mode if panel supports it, else return NULL.
5984  * DRRS support is determined by the presence of downclock mode (apart
5985  * from VBT setting).
5986  */
5987 static struct drm_display_mode *
5988 intel_dp_drrs_init(struct intel_connector *connector,
5989                    struct drm_display_mode *fixed_mode)
5990 {
5991         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
5992         struct drm_display_mode *downclock_mode = NULL;
5993
5994         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5995         mutex_init(&dev_priv->drrs.mutex);
5996
5997         if (INTEL_GEN(dev_priv) <= 6) {
5998                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5999                 return NULL;
6000         }
6001
6002         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6003                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6004                 return NULL;
6005         }
6006
6007         downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
6008                                                     &connector->base);
6009
6010         if (!downclock_mode) {
6011                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6012                 return NULL;
6013         }
6014
6015         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6016
6017         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6018         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6019         return downclock_mode;
6020 }
6021
6022 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6023                                      struct intel_connector *intel_connector)
6024 {
6025         struct drm_device *dev = intel_dp_to_dev(intel_dp);
6026         struct drm_i915_private *dev_priv = to_i915(dev);
6027         struct drm_connector *connector = &intel_connector->base;
6028         struct drm_display_mode *fixed_mode = NULL;
6029         struct drm_display_mode *downclock_mode = NULL;
6030         bool has_dpcd;
6031         struct drm_display_mode *scan;
6032         struct edid *edid;
6033         enum pipe pipe = INVALID_PIPE;
6034
6035         if (!intel_dp_is_edp(intel_dp))
6036                 return true;
6037
6038         /*
6039          * On IBX/CPT we may get here with LVDS already registered. Since the
6040          * driver uses the only internal power sequencer available for both
6041          * eDP and LVDS bail out early in this case to prevent interfering
6042          * with an already powered-on LVDS power sequencer.
6043          */
6044         if (intel_get_lvds_encoder(&dev_priv->drm)) {
6045                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
6046                 DRM_INFO("LVDS was detected, not registering eDP\n");
6047
6048                 return false;
6049         }
6050
6051         pps_lock(intel_dp);
6052
6053         intel_dp_init_panel_power_timestamps(intel_dp);
6054         intel_dp_pps_init(intel_dp);
6055         intel_edp_panel_vdd_sanitize(intel_dp);
6056
6057         pps_unlock(intel_dp);
6058
6059         /* Cache DPCD and EDID for edp. */
6060         has_dpcd = intel_edp_init_dpcd(intel_dp);
6061
6062         if (!has_dpcd) {
6063                 /* if this fails, presume the device is a ghost */
6064                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
6065                 goto out_vdd_off;
6066         }
6067
6068         mutex_lock(&dev->mode_config.mutex);
6069         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6070         if (edid) {
6071                 if (drm_add_edid_modes(connector, edid)) {
6072                         drm_connector_update_edid_property(connector,
6073                                                                 edid);
6074                 } else {
6075                         kfree(edid);
6076                         edid = ERR_PTR(-EINVAL);
6077                 }
6078         } else {
6079                 edid = ERR_PTR(-ENOENT);
6080         }
6081         intel_connector->edid = edid;
6082
6083         /* prefer fixed mode from EDID if available */
6084         list_for_each_entry(scan, &connector->probed_modes, head) {
6085                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
6086                         fixed_mode = drm_mode_duplicate(dev, scan);
6087                         downclock_mode = intel_dp_drrs_init(
6088                                                 intel_connector, fixed_mode);
6089                         break;
6090                 }
6091         }
6092
6093         /* fallback to VBT if available for eDP */
6094         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
6095                 fixed_mode = drm_mode_duplicate(dev,
6096                                         dev_priv->vbt.lfp_lvds_vbt_mode);
6097                 if (fixed_mode) {
6098                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6099                         connector->display_info.width_mm = fixed_mode->width_mm;
6100                         connector->display_info.height_mm = fixed_mode->height_mm;
6101                 }
6102         }
6103         mutex_unlock(&dev->mode_config.mutex);
6104
6105         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6106                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
6107                 register_reboot_notifier(&intel_dp->edp_notifier);
6108
6109                 /*
6110                  * Figure out the current pipe for the initial backlight setup.
6111                  * If the current pipe isn't valid, try the PPS pipe, and if that
6112                  * fails just assume pipe A.
6113                  */
6114                 pipe = vlv_active_pipe(intel_dp);
6115
6116                 if (pipe != PIPE_A && pipe != PIPE_B)
6117                         pipe = intel_dp->pps_pipe;
6118
6119                 if (pipe != PIPE_A && pipe != PIPE_B)
6120                         pipe = PIPE_A;
6121
6122                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
6123                               pipe_name(pipe));
6124         }
6125
6126         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6127         intel_connector->panel.backlight.power = intel_edp_backlight_power;
6128         intel_panel_setup_backlight(connector, pipe);
6129
6130         return true;
6131
6132 out_vdd_off:
6133         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6134         /*
6135          * vdd might still be enabled do to the delayed vdd off.
6136          * Make sure vdd is actually turned off here.
6137          */
6138         pps_lock(intel_dp);
6139         edp_panel_vdd_off_sync(intel_dp);
6140         pps_unlock(intel_dp);
6141
6142         return false;
6143 }
6144
6145 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
6146 {
6147         struct intel_connector *intel_connector;
6148         struct drm_connector *connector;
6149
6150         intel_connector = container_of(work, typeof(*intel_connector),
6151                                        modeset_retry_work);
6152         connector = &intel_connector->base;
6153         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
6154                       connector->name);
6155
6156         /* Grab the locks before changing connector property*/
6157         mutex_lock(&connector->dev->mode_config.mutex);
6158         /* Set connector link status to BAD and send a Uevent to notify
6159          * userspace to do a modeset.
6160          */
6161         drm_connector_set_link_status_property(connector,
6162                                                DRM_MODE_LINK_STATUS_BAD);
6163         mutex_unlock(&connector->dev->mode_config.mutex);
6164         /* Send Hotplug uevent so userspace can reprobe */
6165         drm_kms_helper_hotplug_event(connector->dev);
6166 }
6167
6168 bool
6169 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6170                         struct intel_connector *intel_connector)
6171 {
6172         struct drm_connector *connector = &intel_connector->base;
6173         struct intel_dp *intel_dp = &intel_dig_port->dp;
6174         struct intel_encoder *intel_encoder = &intel_dig_port->base;
6175         struct drm_device *dev = intel_encoder->base.dev;
6176         struct drm_i915_private *dev_priv = to_i915(dev);
6177         enum port port = intel_encoder->port;
6178         int type;
6179
6180         /* Initialize the work for modeset in case of link train failure */
6181         INIT_WORK(&intel_connector->modeset_retry_work,
6182                   intel_dp_modeset_retry_work_fn);
6183
6184         if (WARN(intel_dig_port->max_lanes < 1,
6185                  "Not enough lanes (%d) for DP on port %c\n",
6186                  intel_dig_port->max_lanes, port_name(port)))
6187                 return false;
6188
6189         intel_dp_set_source_rates(intel_dp);
6190
6191         intel_dp->reset_link_params = true;
6192         intel_dp->pps_pipe = INVALID_PIPE;
6193         intel_dp->active_pipe = INVALID_PIPE;
6194
6195         /* intel_dp vfuncs */
6196         if (HAS_DDI(dev_priv))
6197                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6198
6199         /* Preserve the current hw state. */
6200         intel_dp->DP = I915_READ(intel_dp->output_reg);
6201         intel_dp->attached_connector = intel_connector;
6202
6203         if (intel_dp_is_port_edp(dev_priv, port))
6204                 type = DRM_MODE_CONNECTOR_eDP;
6205         else
6206                 type = DRM_MODE_CONNECTOR_DisplayPort;
6207
6208         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6209                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6210
6211         /*
6212          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6213          * for DP the encoder type can be set by the caller to
6214          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6215          */
6216         if (type == DRM_MODE_CONNECTOR_eDP)
6217                 intel_encoder->type = INTEL_OUTPUT_EDP;
6218
6219         /* eDP only on port B and/or C on vlv/chv */
6220         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6221                     intel_dp_is_edp(intel_dp) &&
6222                     port != PORT_B && port != PORT_C))
6223                 return false;
6224
6225         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6226                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6227                         port_name(port));
6228
6229         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6230         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6231
6232         if (!HAS_GMCH_DISPLAY(dev_priv))
6233                 connector->interlace_allowed = true;
6234         connector->doublescan_allowed = 0;
6235
6236         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6237
6238         intel_dp_aux_init(intel_dp);
6239
6240         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6241                           edp_panel_vdd_work);
6242
6243         intel_connector_attach_encoder(intel_connector, intel_encoder);
6244
6245         if (HAS_DDI(dev_priv))
6246                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6247         else
6248                 intel_connector->get_hw_state = intel_connector_get_hw_state;
6249
6250         /* init MST on ports that can support it */
6251         if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6252             (port == PORT_B || port == PORT_C ||
6253              port == PORT_D || port == PORT_F))
6254                 intel_dp_mst_encoder_init(intel_dig_port,
6255                                           intel_connector->base.base.id);
6256
6257         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6258                 intel_dp_aux_fini(intel_dp);
6259                 intel_dp_mst_encoder_cleanup(intel_dig_port);
6260                 goto fail;
6261         }
6262
6263         intel_dp_add_properties(intel_dp, connector);
6264
6265         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6266                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
6267                 if (ret)
6268                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
6269         }
6270
6271         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6272          * 0xd.  Failure to do so will result in spurious interrupts being
6273          * generated on the port when a cable is not attached.
6274          */
6275         if (IS_G45(dev_priv)) {
6276                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6277                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6278         }
6279
6280         return true;
6281
6282 fail:
6283         drm_connector_cleanup(connector);
6284
6285         return false;
6286 }
6287
6288 bool intel_dp_init(struct drm_i915_private *dev_priv,
6289                    i915_reg_t output_reg,
6290                    enum port port)
6291 {
6292         struct intel_digital_port *intel_dig_port;
6293         struct intel_encoder *intel_encoder;
6294         struct drm_encoder *encoder;
6295         struct intel_connector *intel_connector;
6296
6297         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6298         if (!intel_dig_port)
6299                 return false;
6300
6301         intel_connector = intel_connector_alloc();
6302         if (!intel_connector)
6303                 goto err_connector_alloc;
6304
6305         intel_encoder = &intel_dig_port->base;
6306         encoder = &intel_encoder->base;
6307
6308         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6309                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6310                              "DP %c", port_name(port)))
6311                 goto err_encoder_init;
6312
6313         intel_encoder->hotplug = intel_dp_hotplug;
6314         intel_encoder->compute_config = intel_dp_compute_config;
6315         intel_encoder->get_hw_state = intel_dp_get_hw_state;
6316         intel_encoder->get_config = intel_dp_get_config;
6317         intel_encoder->suspend = intel_dp_encoder_suspend;
6318         if (IS_CHERRYVIEW(dev_priv)) {
6319                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6320                 intel_encoder->pre_enable = chv_pre_enable_dp;
6321                 intel_encoder->enable = vlv_enable_dp;
6322                 intel_encoder->disable = vlv_disable_dp;
6323                 intel_encoder->post_disable = chv_post_disable_dp;
6324                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6325         } else if (IS_VALLEYVIEW(dev_priv)) {
6326                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6327                 intel_encoder->pre_enable = vlv_pre_enable_dp;
6328                 intel_encoder->enable = vlv_enable_dp;
6329                 intel_encoder->disable = vlv_disable_dp;
6330                 intel_encoder->post_disable = vlv_post_disable_dp;
6331         } else {
6332                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6333                 intel_encoder->enable = g4x_enable_dp;
6334                 intel_encoder->disable = g4x_disable_dp;
6335                 intel_encoder->post_disable = g4x_post_disable_dp;
6336         }
6337
6338         intel_dig_port->dp.output_reg = output_reg;
6339         intel_dig_port->max_lanes = 4;
6340
6341         intel_encoder->type = INTEL_OUTPUT_DP;
6342         intel_encoder->power_domain = intel_port_to_power_domain(port);
6343         if (IS_CHERRYVIEW(dev_priv)) {
6344                 if (port == PORT_D)
6345                         intel_encoder->crtc_mask = 1 << 2;
6346                 else
6347                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6348         } else {
6349                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6350         }
6351         intel_encoder->cloneable = 0;
6352         intel_encoder->port = port;
6353
6354         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6355
6356         if (port != PORT_A)
6357                 intel_infoframe_init(intel_dig_port);
6358
6359         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6360                 goto err_init_connector;
6361
6362         return true;
6363
6364 err_init_connector:
6365         drm_encoder_cleanup(encoder);
6366 err_encoder_init:
6367         kfree(intel_connector);
6368 err_connector_alloc:
6369         kfree(intel_dig_port);
6370         return false;
6371 }
6372
6373 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6374 {
6375         struct intel_encoder *encoder;
6376
6377         for_each_intel_encoder(&dev_priv->drm, encoder) {
6378                 struct intel_dp *intel_dp;
6379
6380                 if (encoder->type != INTEL_OUTPUT_DDI)
6381                         continue;
6382
6383                 intel_dp = enc_to_intel_dp(&encoder->base);
6384
6385                 if (!intel_dp->can_mst)
6386                         continue;
6387
6388                 if (intel_dp->is_mst)
6389                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6390         }
6391 }
6392
6393 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6394 {
6395         struct intel_encoder *encoder;
6396
6397         for_each_intel_encoder(&dev_priv->drm, encoder) {
6398                 struct intel_dp *intel_dp;
6399                 int ret;
6400
6401                 if (encoder->type != INTEL_OUTPUT_DDI)
6402                         continue;
6403
6404                 intel_dp = enc_to_intel_dp(&encoder->base);
6405
6406                 if (!intel_dp->can_mst)
6407                         continue;
6408
6409                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6410                 if (ret)
6411                         intel_dp_check_mst_status(intel_dp);
6412         }
6413 }