Merge tag 'drm/panel/for-3.15-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55                                   struct intel_framebuffer *ifb,
56                                   struct drm_mode_fb_cmd2 *mode_cmd,
57                                   struct drm_i915_gem_object *obj);
58
59 typedef struct {
60         int     min, max;
61 } intel_range_t;
62
63 typedef struct {
64         int     dot_limit;
65         int     p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71         intel_p2_t          p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77         struct drm_i915_private *dev_priv = dev->dev_private;
78
79         WARN_ON(!HAS_PCH_SPLIT(dev));
80
81         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87         if (IS_GEN5(dev)) {
88                 struct drm_i915_private *dev_priv = dev->dev_private;
89                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90         } else
91                 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95         .dot = { .min = 25000, .max = 350000 },
96         .vco = { .min = 908000, .max = 1512000 },
97         .n = { .min = 2, .max = 16 },
98         .m = { .min = 96, .max = 140 },
99         .m1 = { .min = 18, .max = 26 },
100         .m2 = { .min = 6, .max = 16 },
101         .p = { .min = 4, .max = 128 },
102         .p1 = { .min = 2, .max = 33 },
103         .p2 = { .dot_limit = 165000,
104                 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 908000, .max = 1512000 },
110         .n = { .min = 2, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 908000, .max = 1512000 },
123         .n = { .min = 2, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134         .dot = { .min = 20000, .max = 400000 },
135         .vco = { .min = 1400000, .max = 2800000 },
136         .n = { .min = 1, .max = 6 },
137         .m = { .min = 70, .max = 120 },
138         .m1 = { .min = 8, .max = 18 },
139         .m2 = { .min = 3, .max = 7 },
140         .p = { .min = 5, .max = 80 },
141         .p1 = { .min = 1, .max = 8 },
142         .p2 = { .dot_limit = 200000,
143                 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147         .dot = { .min = 20000, .max = 400000 },
148         .vco = { .min = 1400000, .max = 2800000 },
149         .n = { .min = 1, .max = 6 },
150         .m = { .min = 70, .max = 120 },
151         .m1 = { .min = 8, .max = 18 },
152         .m2 = { .min = 3, .max = 7 },
153         .p = { .min = 7, .max = 98 },
154         .p1 = { .min = 1, .max = 8 },
155         .p2 = { .dot_limit = 112000,
156                 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161         .dot = { .min = 25000, .max = 270000 },
162         .vco = { .min = 1750000, .max = 3500000},
163         .n = { .min = 1, .max = 4 },
164         .m = { .min = 104, .max = 138 },
165         .m1 = { .min = 17, .max = 23 },
166         .m2 = { .min = 5, .max = 11 },
167         .p = { .min = 10, .max = 30 },
168         .p1 = { .min = 1, .max = 3},
169         .p2 = { .dot_limit = 270000,
170                 .p2_slow = 10,
171                 .p2_fast = 10
172         },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176         .dot = { .min = 22000, .max = 400000 },
177         .vco = { .min = 1750000, .max = 3500000},
178         .n = { .min = 1, .max = 4 },
179         .m = { .min = 104, .max = 138 },
180         .m1 = { .min = 16, .max = 23 },
181         .m2 = { .min = 5, .max = 11 },
182         .p = { .min = 5, .max = 80 },
183         .p1 = { .min = 1, .max = 8},
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189         .dot = { .min = 20000, .max = 115000 },
190         .vco = { .min = 1750000, .max = 3500000 },
191         .n = { .min = 1, .max = 3 },
192         .m = { .min = 104, .max = 138 },
193         .m1 = { .min = 17, .max = 23 },
194         .m2 = { .min = 5, .max = 11 },
195         .p = { .min = 28, .max = 112 },
196         .p1 = { .min = 2, .max = 8 },
197         .p2 = { .dot_limit = 0,
198                 .p2_slow = 14, .p2_fast = 14
199         },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203         .dot = { .min = 80000, .max = 224000 },
204         .vco = { .min = 1750000, .max = 3500000 },
205         .n = { .min = 1, .max = 3 },
206         .m = { .min = 104, .max = 138 },
207         .m1 = { .min = 17, .max = 23 },
208         .m2 = { .min = 5, .max = 11 },
209         .p = { .min = 14, .max = 42 },
210         .p1 = { .min = 2, .max = 6 },
211         .p2 = { .dot_limit = 0,
212                 .p2_slow = 7, .p2_fast = 7
213         },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217         .dot = { .min = 20000, .max = 400000},
218         .vco = { .min = 1700000, .max = 3500000 },
219         /* Pineview's Ncounter is a ring counter */
220         .n = { .min = 3, .max = 6 },
221         .m = { .min = 2, .max = 256 },
222         /* Pineview only has one combined m divider, which we treat as m2. */
223         .m1 = { .min = 0, .max = 0 },
224         .m2 = { .min = 0, .max = 254 },
225         .p = { .min = 5, .max = 80 },
226         .p1 = { .min = 1, .max = 8 },
227         .p2 = { .dot_limit = 200000,
228                 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232         .dot = { .min = 20000, .max = 400000 },
233         .vco = { .min = 1700000, .max = 3500000 },
234         .n = { .min = 3, .max = 6 },
235         .m = { .min = 2, .max = 256 },
236         .m1 = { .min = 0, .max = 0 },
237         .m2 = { .min = 0, .max = 254 },
238         .p = { .min = 7, .max = 112 },
239         .p1 = { .min = 1, .max = 8 },
240         .p2 = { .dot_limit = 112000,
241                 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245  *
246  * We calculate clock using (register_value + 2) for N/M1/M2, so here
247  * the range value for them is (actual_value - 2).
248  */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 1760000, .max = 3510000 },
252         .n = { .min = 1, .max = 5 },
253         .m = { .min = 79, .max = 127 },
254         .m1 = { .min = 12, .max = 22 },
255         .m2 = { .min = 5, .max = 9 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 225000,
259                 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 1760000, .max = 3510000 },
265         .n = { .min = 1, .max = 3 },
266         .m = { .min = 79, .max = 118 },
267         .m1 = { .min = 12, .max = 22 },
268         .m2 = { .min = 5, .max = 9 },
269         .p = { .min = 28, .max = 112 },
270         .p1 = { .min = 2, .max = 8 },
271         .p2 = { .dot_limit = 225000,
272                 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 3 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 14, .max = 56 },
283         .p1 = { .min = 2, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 2 },
293         .m = { .min = 79, .max = 126 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 126 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 42 },
310         .p1 = { .min = 2, .max = 6 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316          /*
317           * These are the data rate limits (measured in fast clocks)
318           * since those are the strictest limits we have. The fast
319           * clock and actual rate limits are more relaxed, so checking
320           * them would make no difference.
321           */
322         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m1 = { .min = 2, .max = 3 },
326         .m2 = { .min = 11, .max = 156 },
327         .p1 = { .min = 2, .max = 3 },
328         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333         clock->m = clock->m1 * clock->m2;
334         clock->p = clock->p1 * clock->p2;
335         if (WARN_ON(clock->n == 0 || clock->p == 0))
336                 return;
337         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342  * Returns whether any output on the specified pipe is of the specified type
343  */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346         struct drm_device *dev = crtc->dev;
347         struct intel_encoder *encoder;
348
349         for_each_encoder_on_crtc(dev, crtc, encoder)
350                 if (encoder->type == type)
351                         return true;
352
353         return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357                                                 int refclk)
358 {
359         struct drm_device *dev = crtc->dev;
360         const intel_limit_t *limit;
361
362         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363                 if (intel_is_dual_link_lvds(dev)) {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_dual_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_dual_lvds;
368                 } else {
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_single_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_single_lvds;
373                 }
374         } else
375                 limit = &intel_limits_ironlake_dac;
376
377         return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382         struct drm_device *dev = crtc->dev;
383         const intel_limit_t *limit;
384
385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386                 if (intel_is_dual_link_lvds(dev))
387                         limit = &intel_limits_g4x_dual_channel_lvds;
388                 else
389                         limit = &intel_limits_g4x_single_channel_lvds;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392                 limit = &intel_limits_g4x_hdmi;
393         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394                 limit = &intel_limits_g4x_sdvo;
395         } else /* The option is for other outputs */
396                 limit = &intel_limits_i9xx_sdvo;
397
398         return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403         struct drm_device *dev = crtc->dev;
404         const intel_limit_t *limit;
405
406         if (HAS_PCH_SPLIT(dev))
407                 limit = intel_ironlake_limit(crtc, refclk);
408         else if (IS_G4X(dev)) {
409                 limit = intel_g4x_limit(crtc);
410         } else if (IS_PINEVIEW(dev)) {
411                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412                         limit = &intel_limits_pineview_lvds;
413                 else
414                         limit = &intel_limits_pineview_sdvo;
415         } else if (IS_VALLEYVIEW(dev)) {
416                 limit = &intel_limits_vlv;
417         } else if (!IS_GEN2(dev)) {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i9xx_lvds;
420                 else
421                         limit = &intel_limits_i9xx_sdvo;
422         } else {
423                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424                         limit = &intel_limits_i8xx_lvds;
425                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426                         limit = &intel_limits_i8xx_dvo;
427                 else
428                         limit = &intel_limits_i8xx_dac;
429         }
430         return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436         clock->m = clock->m2 + 2;
437         clock->p = clock->p1 * clock->p2;
438         if (WARN_ON(clock->n == 0 || clock->p == 0))
439                 return;
440         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = i9xx_dpll_compute_m(clock);
452         clock->p = clock->p1 * clock->p2;
453         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454                 return;
455         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461  * Returns whether the given set of divisors are valid for a given refclk with
462  * the given connectors.
463  */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466                                const intel_limit_t *limit,
467                                const intel_clock_t *clock)
468 {
469         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
470                 INTELPllInvalid("n out of range\n");
471         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
472                 INTELPllInvalid("p1 out of range\n");
473         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
474                 INTELPllInvalid("m2 out of range\n");
475         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
476                 INTELPllInvalid("m1 out of range\n");
477
478         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479                 if (clock->m1 <= clock->m2)
480                         INTELPllInvalid("m1 <= m2\n");
481
482         if (!IS_VALLEYVIEW(dev)) {
483                 if (clock->p < limit->p.min || limit->p.max < clock->p)
484                         INTELPllInvalid("p out of range\n");
485                 if (clock->m < limit->m.min || limit->m.max < clock->m)
486                         INTELPllInvalid("m out of range\n");
487         }
488
489         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490                 INTELPllInvalid("vco out of range\n");
491         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492          * connector, etc., rather than just a single range.
493          */
494         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495                 INTELPllInvalid("dot out of range\n");
496
497         return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502                     int target, int refclk, intel_clock_t *match_clock,
503                     intel_clock_t *best_clock)
504 {
505         struct drm_device *dev = crtc->dev;
506         intel_clock_t clock;
507         int err = target;
508
509         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510                 /*
511                  * For LVDS just rely on its current settings for dual-channel.
512                  * We haven't figured out how to reliably set up different
513                  * single/dual channel state, if we even can.
514                  */
515                 if (intel_is_dual_link_lvds(dev))
516                         clock.p2 = limit->p2.p2_fast;
517                 else
518                         clock.p2 = limit->p2.p2_slow;
519         } else {
520                 if (target < limit->p2.dot_limit)
521                         clock.p2 = limit->p2.p2_slow;
522                 else
523                         clock.p2 = limit->p2.p2_fast;
524         }
525
526         memset(best_clock, 0, sizeof(*best_clock));
527
528         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529              clock.m1++) {
530                 for (clock.m2 = limit->m2.min;
531                      clock.m2 <= limit->m2.max; clock.m2++) {
532                         if (clock.m2 >= clock.m1)
533                                 break;
534                         for (clock.n = limit->n.min;
535                              clock.n <= limit->n.max; clock.n++) {
536                                 for (clock.p1 = limit->p1.min;
537                                         clock.p1 <= limit->p1.max; clock.p1++) {
538                                         int this_err;
539
540                                         i9xx_clock(refclk, &clock);
541                                         if (!intel_PLL_is_valid(dev, limit,
542                                                                 &clock))
543                                                 continue;
544                                         if (match_clock &&
545                                             clock.p != match_clock->p)
546                                                 continue;
547
548                                         this_err = abs(clock.dot - target);
549                                         if (this_err < err) {
550                                                 *best_clock = clock;
551                                                 err = this_err;
552                                         }
553                                 }
554                         }
555                 }
556         }
557
558         return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563                    int target, int refclk, intel_clock_t *match_clock,
564                    intel_clock_t *best_clock)
565 {
566         struct drm_device *dev = crtc->dev;
567         intel_clock_t clock;
568         int err = target;
569
570         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571                 /*
572                  * For LVDS just rely on its current settings for dual-channel.
573                  * We haven't figured out how to reliably set up different
574                  * single/dual channel state, if we even can.
575                  */
576                 if (intel_is_dual_link_lvds(dev))
577                         clock.p2 = limit->p2.p2_fast;
578                 else
579                         clock.p2 = limit->p2.p2_slow;
580         } else {
581                 if (target < limit->p2.dot_limit)
582                         clock.p2 = limit->p2.p2_slow;
583                 else
584                         clock.p2 = limit->p2.p2_fast;
585         }
586
587         memset(best_clock, 0, sizeof(*best_clock));
588
589         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590              clock.m1++) {
591                 for (clock.m2 = limit->m2.min;
592                      clock.m2 <= limit->m2.max; clock.m2++) {
593                         for (clock.n = limit->n.min;
594                              clock.n <= limit->n.max; clock.n++) {
595                                 for (clock.p1 = limit->p1.min;
596                                         clock.p1 <= limit->p1.max; clock.p1++) {
597                                         int this_err;
598
599                                         pineview_clock(refclk, &clock);
600                                         if (!intel_PLL_is_valid(dev, limit,
601                                                                 &clock))
602                                                 continue;
603                                         if (match_clock &&
604                                             clock.p != match_clock->p)
605                                                 continue;
606
607                                         this_err = abs(clock.dot - target);
608                                         if (this_err < err) {
609                                                 *best_clock = clock;
610                                                 err = this_err;
611                                         }
612                                 }
613                         }
614                 }
615         }
616
617         return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622                    int target, int refclk, intel_clock_t *match_clock,
623                    intel_clock_t *best_clock)
624 {
625         struct drm_device *dev = crtc->dev;
626         intel_clock_t clock;
627         int max_n;
628         bool found;
629         /* approximately equals target * 0.00585 */
630         int err_most = (target >> 8) + (target >> 9);
631         found = false;
632
633         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634                 if (intel_is_dual_link_lvds(dev))
635                         clock.p2 = limit->p2.p2_fast;
636                 else
637                         clock.p2 = limit->p2.p2_slow;
638         } else {
639                 if (target < limit->p2.dot_limit)
640                         clock.p2 = limit->p2.p2_slow;
641                 else
642                         clock.p2 = limit->p2.p2_fast;
643         }
644
645         memset(best_clock, 0, sizeof(*best_clock));
646         max_n = limit->n.max;
647         /* based on hardware requirement, prefer smaller n to precision */
648         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649                 /* based on hardware requirement, prefere larger m1,m2 */
650                 for (clock.m1 = limit->m1.max;
651                      clock.m1 >= limit->m1.min; clock.m1--) {
652                         for (clock.m2 = limit->m2.max;
653                              clock.m2 >= limit->m2.min; clock.m2--) {
654                                 for (clock.p1 = limit->p1.max;
655                                      clock.p1 >= limit->p1.min; clock.p1--) {
656                                         int this_err;
657
658                                         i9xx_clock(refclk, &clock);
659                                         if (!intel_PLL_is_valid(dev, limit,
660                                                                 &clock))
661                                                 continue;
662
663                                         this_err = abs(clock.dot - target);
664                                         if (this_err < err_most) {
665                                                 *best_clock = clock;
666                                                 err_most = this_err;
667                                                 max_n = clock.n;
668                                                 found = true;
669                                         }
670                                 }
671                         }
672                 }
673         }
674         return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679                    int target, int refclk, intel_clock_t *match_clock,
680                    intel_clock_t *best_clock)
681 {
682         struct drm_device *dev = crtc->dev;
683         intel_clock_t clock;
684         unsigned int bestppm = 1000000;
685         /* min update 19.2 MHz */
686         int max_n = min(limit->n.max, refclk / 19200);
687         bool found = false;
688
689         target *= 5; /* fast clock */
690
691         memset(best_clock, 0, sizeof(*best_clock));
692
693         /* based on hardware requirement, prefer smaller n to precision */
694         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698                                 clock.p = clock.p1 * clock.p2;
699                                 /* based on hardware requirement, prefer bigger m1,m2 values */
700                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701                                         unsigned int ppm, diff;
702
703                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704                                                                      refclk * clock.m1);
705
706                                         vlv_clock(refclk, &clock);
707
708                                         if (!intel_PLL_is_valid(dev, limit,
709                                                                 &clock))
710                                                 continue;
711
712                                         diff = abs(clock.dot - target);
713                                         ppm = div_u64(1000000ULL * diff, target);
714
715                                         if (ppm < 100 && clock.p > best_clock->p) {
716                                                 bestppm = 0;
717                                                 *best_clock = clock;
718                                                 found = true;
719                                         }
720
721                                         if (bestppm >= 10 && ppm < bestppm - 10) {
722                                                 bestppm = ppm;
723                                                 *best_clock = clock;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730
731         return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         /* Be paranoid as we can arrive here with only partial
739          * state retrieved from the hardware during setup.
740          *
741          * We can ditch the adjusted_mode.crtc_clock check as soon
742          * as Haswell has gained clock readout/fastboot support.
743          *
744          * We can ditch the crtc->primary->fb check as soon as we can
745          * properly reconstruct framebuffers.
746          */
747         return intel_crtc->active && crtc->primary->fb &&
748                 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752                                              enum pipe pipe)
753 {
754         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757         return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765         frame = I915_READ(frame_reg);
766
767         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768                 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772  * intel_wait_for_vblank - wait for vblank on a given pipe
773  * @dev: drm device
774  * @pipe: pipe to wait for
775  *
776  * Wait for vblank to occur on a given pipe.  Needed for various bits of
777  * mode setting code.
778  */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         int pipestat_reg = PIPESTAT(pipe);
783
784         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785                 g4x_wait_for_vblank(dev, pipe);
786                 return;
787         }
788
789         /* Clear existing vblank status. Note this will clear any other
790          * sticky status fields as well.
791          *
792          * This races with i915_driver_irq_handler() with the result
793          * that either function could miss a vblank event.  Here it is not
794          * fatal, as we will either wait upon the next vblank interrupt or
795          * timeout.  Generally speaking intel_wait_for_vblank() is only
796          * called during modeset at which time the GPU should be idle and
797          * should *not* be performing page flips and thus not waiting on
798          * vblanks...
799          * Currently, the result of us stealing a vblank from the irq
800          * handler is that a single frame will be skipped during swapbuffers.
801          */
802         I915_WRITE(pipestat_reg,
803                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805         /* Wait for vblank interrupt bit to set */
806         if (wait_for(I915_READ(pipestat_reg) &
807                      PIPE_VBLANK_INTERRUPT_STATUS,
808                      50))
809                 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 reg = PIPEDSL(pipe);
816         u32 line1, line2;
817         u32 line_mask;
818
819         if (IS_GEN2(dev))
820                 line_mask = DSL_LINEMASK_GEN2;
821         else
822                 line_mask = DSL_LINEMASK_GEN3;
823
824         line1 = I915_READ(reg) & line_mask;
825         mdelay(5);
826         line2 = I915_READ(reg) & line_mask;
827
828         return line1 == line2;
829 }
830
831 /*
832  * intel_wait_for_pipe_off - wait for pipe to turn off
833  * @dev: drm device
834  * @pipe: pipe to wait for
835  *
836  * After disabling a pipe, we can't wait for vblank in the usual way,
837  * spinning on the vblank interrupt status bit, since we won't actually
838  * see an interrupt when the pipe is disabled.
839  *
840  * On Gen4 and above:
841  *   wait for the pipe register state bit to turn off
842  *
843  * Otherwise:
844  *   wait for the display line value to settle (it usually
845  *   ends up stopping at the start of the next frame).
846  *
847  */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852                                                                       pipe);
853
854         if (INTEL_INFO(dev)->gen >= 4) {
855                 int reg = PIPECONF(cpu_transcoder);
856
857                 /* Wait for the Pipe State to go off */
858                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859                              100))
860                         WARN(1, "pipe_off wait timed out\n");
861         } else {
862                 /* Wait for the display line to settle */
863                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864                         WARN(1, "pipe_off wait timed out\n");
865         }
866 }
867
868 /*
869  * ibx_digital_port_connected - is the specified port connected?
870  * @dev_priv: i915 private structure
871  * @port: the port to test
872  *
873  * Returns true if @port is connected, false otherwise.
874  */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876                                 struct intel_digital_port *port)
877 {
878         u32 bit;
879
880         if (HAS_PCH_IBX(dev_priv->dev)) {
881                 switch(port->port) {
882                 case PORT_B:
883                         bit = SDE_PORTB_HOTPLUG;
884                         break;
885                 case PORT_C:
886                         bit = SDE_PORTC_HOTPLUG;
887                         break;
888                 case PORT_D:
889                         bit = SDE_PORTD_HOTPLUG;
890                         break;
891                 default:
892                         return true;
893                 }
894         } else {
895                 switch(port->port) {
896                 case PORT_B:
897                         bit = SDE_PORTB_HOTPLUG_CPT;
898                         break;
899                 case PORT_C:
900                         bit = SDE_PORTC_HOTPLUG_CPT;
901                         break;
902                 case PORT_D:
903                         bit = SDE_PORTD_HOTPLUG_CPT;
904                         break;
905                 default:
906                         return true;
907                 }
908         }
909
910         return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915         return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920                 enum pipe pipe, bool state)
921 {
922         int reg;
923         u32 val;
924         bool cur_state;
925
926         reg = DPLL(pipe);
927         val = I915_READ(reg);
928         cur_state = !!(val & DPLL_VCO_ENABLE);
929         WARN(cur_state != state,
930              "PLL state assertion failure (expected %s, current %s)\n",
931              state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937         u32 val;
938         bool cur_state;
939
940         mutex_lock(&dev_priv->dpio_lock);
941         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942         mutex_unlock(&dev_priv->dpio_lock);
943
944         cur_state = val & DSI_PLL_VCO_EN;
945         WARN(cur_state != state,
946              "DSI PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957         if (crtc->config.shared_dpll < 0)
958                 return NULL;
959
960         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965                         struct intel_shared_dpll *pll,
966                         bool state)
967 {
968         bool cur_state;
969         struct intel_dpll_hw_state hw_state;
970
971         if (HAS_PCH_LPT(dev_priv->dev)) {
972                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973                 return;
974         }
975
976         if (WARN (!pll,
977                   "asserting DPLL %s with no DPLL\n", state_string(state)))
978                 return;
979
980         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981         WARN(cur_state != state,
982              "%s assertion failure (expected %s, current %s)\n",
983              pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987                           enum pipe pipe, bool state)
988 {
989         int reg;
990         u32 val;
991         bool cur_state;
992         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993                                                                       pipe);
994
995         if (HAS_DDI(dev_priv->dev)) {
996                 /* DDI does not have a specific FDI_TX register */
997                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998                 val = I915_READ(reg);
999                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000         } else {
1001                 reg = FDI_TX_CTL(pipe);
1002                 val = I915_READ(reg);
1003                 cur_state = !!(val & FDI_TX_ENABLE);
1004         }
1005         WARN(cur_state != state,
1006              "FDI TX state assertion failure (expected %s, current %s)\n",
1007              state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013                           enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = FDI_RX_CTL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & FDI_RX_ENABLE);
1022         WARN(cur_state != state,
1023              "FDI RX state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030                                       enum pipe pipe)
1031 {
1032         int reg;
1033         u32 val;
1034
1035         /* ILK FDI PLL is always enabled */
1036         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037                 return;
1038
1039         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040         if (HAS_DDI(dev_priv->dev))
1041                 return;
1042
1043         reg = FDI_TX_CTL(pipe);
1044         val = I915_READ(reg);
1045         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049                        enum pipe pipe, bool state)
1050 {
1051         int reg;
1052         u32 val;
1053         bool cur_state;
1054
1055         reg = FDI_RX_CTL(pipe);
1056         val = I915_READ(reg);
1057         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058         WARN(cur_state != state,
1059              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060              state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064                                   enum pipe pipe)
1065 {
1066         int pp_reg, lvds_reg;
1067         u32 val;
1068         enum pipe panel_pipe = PIPE_A;
1069         bool locked = true;
1070
1071         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072                 pp_reg = PCH_PP_CONTROL;
1073                 lvds_reg = PCH_LVDS;
1074         } else {
1075                 pp_reg = PP_CONTROL;
1076                 lvds_reg = LVDS;
1077         }
1078
1079         val = I915_READ(pp_reg);
1080         if (!(val & PANEL_POWER_ON) ||
1081             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082                 locked = false;
1083
1084         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085                 panel_pipe = PIPE_B;
1086
1087         WARN(panel_pipe == pipe && locked,
1088              "panel assertion failure, pipe %c regs locked\n",
1089              pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093                           enum pipe pipe, bool state)
1094 {
1095         struct drm_device *dev = dev_priv->dev;
1096         bool cur_state;
1097
1098         if (IS_845G(dev) || IS_I865G(dev))
1099                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102         else
1103                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105         WARN(cur_state != state,
1106              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107              pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113                  enum pipe pipe, bool state)
1114 {
1115         int reg;
1116         u32 val;
1117         bool cur_state;
1118         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119                                                                       pipe);
1120
1121         /* if we need the pipe A quirk it must be always on */
1122         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123                 state = true;
1124
1125         if (!intel_display_power_enabled(dev_priv,
1126                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127                 cur_state = false;
1128         } else {
1129                 reg = PIPECONF(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & PIPECONF_ENABLE);
1132         }
1133
1134         WARN(cur_state != state,
1135              "pipe %c assertion failure (expected %s, current %s)\n",
1136              pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140                          enum plane plane, bool state)
1141 {
1142         int reg;
1143         u32 val;
1144         bool cur_state;
1145
1146         reg = DSPCNTR(plane);
1147         val = I915_READ(reg);
1148         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149         WARN(cur_state != state,
1150              "plane %c assertion failure (expected %s, current %s)\n",
1151              plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158                                    enum pipe pipe)
1159 {
1160         struct drm_device *dev = dev_priv->dev;
1161         int reg, i;
1162         u32 val;
1163         int cur_pipe;
1164
1165         /* Primary planes are fixed to pipes on gen4+ */
1166         if (INTEL_INFO(dev)->gen >= 4) {
1167                 reg = DSPCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN(val & DISPLAY_PLANE_ENABLE,
1170                      "plane %c assertion failure, should be disabled but not\n",
1171                      plane_name(pipe));
1172                 return;
1173         }
1174
1175         /* Need to check both planes against the pipe */
1176         for_each_pipe(i) {
1177                 reg = DSPCNTR(i);
1178                 val = I915_READ(reg);
1179                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180                         DISPPLANE_SEL_PIPE_SHIFT;
1181                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183                      plane_name(i), pipe_name(pipe));
1184         }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188                                     enum pipe pipe)
1189 {
1190         struct drm_device *dev = dev_priv->dev;
1191         int reg, sprite;
1192         u32 val;
1193
1194         if (IS_VALLEYVIEW(dev)) {
1195                 for_each_sprite(pipe, sprite) {
1196                         reg = SPCNTR(pipe, sprite);
1197                         val = I915_READ(reg);
1198                         WARN(val & SP_ENABLE,
1199                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200                              sprite_name(pipe, sprite), pipe_name(pipe));
1201                 }
1202         } else if (INTEL_INFO(dev)->gen >= 7) {
1203                 reg = SPRCTL(pipe);
1204                 val = I915_READ(reg);
1205                 WARN(val & SPRITE_ENABLE,
1206                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207                      plane_name(pipe), pipe_name(pipe));
1208         } else if (INTEL_INFO(dev)->gen >= 5) {
1209                 reg = DVSCNTR(pipe);
1210                 val = I915_READ(reg);
1211                 WARN(val & DVS_ENABLE,
1212                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213                      plane_name(pipe), pipe_name(pipe));
1214         }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219         u32 val;
1220         bool enabled;
1221
1222         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367         if (!IS_VALLEYVIEW(dev))
1368                 return;
1369
1370         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377         if (!IS_VALLEYVIEW(dev))
1378                 return;
1379
1380         /*
1381          * Enable the CRI clock source so we can get at the display and the
1382          * reference clock for VGA hotplug / manual detection.
1383          */
1384         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385                    DPLL_REFA_CLK_ENABLE_VLV |
1386                    DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388         /*
1389          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1391          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392          *   b. The other bits such as sfr settings / modesel may all be set
1393          *      to 0.
1394          *
1395          * This should only be done on init and resume from S3 with both
1396          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397          */
1398         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418         POSTING_READ(reg);
1419         udelay(150);
1420
1421         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425         POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427         /* We do this three times for luck */
1428         I915_WRITE(reg, dpll);
1429         POSTING_READ(reg);
1430         udelay(150); /* wait for warmup */
1431         I915_WRITE(reg, dpll);
1432         POSTING_READ(reg);
1433         udelay(150); /* wait for warmup */
1434         I915_WRITE(reg, dpll);
1435         POSTING_READ(reg);
1436         udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441         struct drm_device *dev = crtc->base.dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         int reg = DPLL(crtc->pipe);
1444         u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446         assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448         /* No really, not for ILK+ */
1449         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451         /* PLL is protected by panel, make sure we can write it */
1452         if (IS_MOBILE(dev) && !IS_I830(dev))
1453                 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455         I915_WRITE(reg, dpll);
1456
1457         /* Wait for the clocks to stabilize. */
1458         POSTING_READ(reg);
1459         udelay(150);
1460
1461         if (INTEL_INFO(dev)->gen >= 4) {
1462                 I915_WRITE(DPLL_MD(crtc->pipe),
1463                            crtc->config.dpll_hw_state.dpll_md);
1464         } else {
1465                 /* The pixel multiplier can only be updated once the
1466                  * DPLL is enabled and the clocks are stable.
1467                  *
1468                  * So write it again.
1469                  */
1470                 I915_WRITE(reg, dpll);
1471         }
1472
1473         /* We do this three times for luck */
1474         I915_WRITE(reg, dpll);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477         I915_WRITE(reg, dpll);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, dpll);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486  * i9xx_disable_pll - disable a PLL
1487  * @dev_priv: i915 private structure
1488  * @pipe: pipe PLL to disable
1489  *
1490  * Disable the PLL for @pipe, making sure the pipe is off first.
1491  *
1492  * Note!  This is for pre-ILK only.
1493  */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496         /* Don't disable pipe A or pipe A PLLs if needed */
1497         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498                 return;
1499
1500         /* Make sure the pipe isn't still relying on us */
1501         assert_pipe_disabled(dev_priv, pipe);
1502
1503         I915_WRITE(DPLL(pipe), 0);
1504         POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509         u32 val = 0;
1510
1511         /* Make sure the pipe isn't still relying on us */
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /*
1515          * Leave integrated clock source and reference clock enabled for pipe B.
1516          * The latter is needed for VGA hotplug / manual detection.
1517          */
1518         if (pipe == PIPE_B)
1519                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520         I915_WRITE(DPLL(pipe), val);
1521         POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525                 struct intel_digital_port *dport)
1526 {
1527         u32 port_mask;
1528
1529         switch (dport->port) {
1530         case PORT_B:
1531                 port_mask = DPLL_PORTB_READY_MASK;
1532                 break;
1533         case PORT_C:
1534                 port_mask = DPLL_PORTC_READY_MASK;
1535                 break;
1536         default:
1537                 BUG();
1538         }
1539
1540         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542                      port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546  * ironlake_enable_shared_dpll - enable PCH PLL
1547  * @dev_priv: i915 private structure
1548  * @pipe: pipe PLL to enable
1549  *
1550  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551  * drives the transcoder clock.
1552  */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555         struct drm_device *dev = crtc->base.dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559         /* PCH PLLs only available on ILK, SNB and IVB */
1560         BUG_ON(INTEL_INFO(dev)->gen < 5);
1561         if (WARN_ON(pll == NULL))
1562                 return;
1563
1564         if (WARN_ON(pll->refcount == 0))
1565                 return;
1566
1567         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568                       pll->name, pll->active, pll->on,
1569                       crtc->base.base.id);
1570
1571         if (pll->active++) {
1572                 WARN_ON(!pll->on);
1573                 assert_shared_dpll_enabled(dev_priv, pll);
1574                 return;
1575         }
1576         WARN_ON(pll->on);
1577
1578         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579         pll->enable(dev_priv, pll);
1580         pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585         struct drm_device *dev = crtc->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589         /* PCH only available on ILK+ */
1590         BUG_ON(INTEL_INFO(dev)->gen < 5);
1591         if (WARN_ON(pll == NULL))
1592                return;
1593
1594         if (WARN_ON(pll->refcount == 0))
1595                 return;
1596
1597         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598                       pll->name, pll->active, pll->on,
1599                       crtc->base.base.id);
1600
1601         if (WARN_ON(pll->active == 0)) {
1602                 assert_shared_dpll_disabled(dev_priv, pll);
1603                 return;
1604         }
1605
1606         assert_shared_dpll_enabled(dev_priv, pll);
1607         WARN_ON(!pll->on);
1608         if (--pll->active)
1609                 return;
1610
1611         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612         pll->disable(dev_priv, pll);
1613         pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617                                            enum pipe pipe)
1618 {
1619         struct drm_device *dev = dev_priv->dev;
1620         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622         uint32_t reg, val, pipeconf_val;
1623
1624         /* PCH only available on ILK+ */
1625         BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627         /* Make sure PCH DPLL is enabled */
1628         assert_shared_dpll_enabled(dev_priv,
1629                                    intel_crtc_to_shared_dpll(intel_crtc));
1630
1631         /* FDI must be feeding us bits for PCH ports */
1632         assert_fdi_tx_enabled(dev_priv, pipe);
1633         assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635         if (HAS_PCH_CPT(dev)) {
1636                 /* Workaround: Set the timing override bit before enabling the
1637                  * pch transcoder. */
1638                 reg = TRANS_CHICKEN2(pipe);
1639                 val = I915_READ(reg);
1640                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641                 I915_WRITE(reg, val);
1642         }
1643
1644         reg = PCH_TRANSCONF(pipe);
1645         val = I915_READ(reg);
1646         pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648         if (HAS_PCH_IBX(dev_priv->dev)) {
1649                 /*
1650                  * make the BPC in transcoder be consistent with
1651                  * that in pipeconf reg.
1652                  */
1653                 val &= ~PIPECONF_BPC_MASK;
1654                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655         }
1656
1657         val &= ~TRANS_INTERLACE_MASK;
1658         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659                 if (HAS_PCH_IBX(dev_priv->dev) &&
1660                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661                         val |= TRANS_LEGACY_INTERLACED_ILK;
1662                 else
1663                         val |= TRANS_INTERLACED;
1664         else
1665                 val |= TRANS_PROGRESSIVE;
1666
1667         I915_WRITE(reg, val | TRANS_ENABLE);
1668         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673                                       enum transcoder cpu_transcoder)
1674 {
1675         u32 val, pipeconf_val;
1676
1677         /* PCH only available on ILK+ */
1678         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680         /* FDI must be feeding us bits for PCH ports */
1681         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684         /* Workaround: set timing override bit. */
1685         val = I915_READ(_TRANSA_CHICKEN2);
1686         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687         I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689         val = TRANS_ENABLE;
1690         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693             PIPECONF_INTERLACED_ILK)
1694                 val |= TRANS_INTERLACED;
1695         else
1696                 val |= TRANS_PROGRESSIVE;
1697
1698         I915_WRITE(LPT_TRANSCONF, val);
1699         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700                 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704                                             enum pipe pipe)
1705 {
1706         struct drm_device *dev = dev_priv->dev;
1707         uint32_t reg, val;
1708
1709         /* FDI relies on the transcoder */
1710         assert_fdi_tx_disabled(dev_priv, pipe);
1711         assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713         /* Ports must be off as well */
1714         assert_pch_ports_disabled(dev_priv, pipe);
1715
1716         reg = PCH_TRANSCONF(pipe);
1717         val = I915_READ(reg);
1718         val &= ~TRANS_ENABLE;
1719         I915_WRITE(reg, val);
1720         /* wait for PCH transcoder off, transcoder state */
1721         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724         if (!HAS_PCH_IBX(dev)) {
1725                 /* Workaround: Clear the timing override chicken bit again. */
1726                 reg = TRANS_CHICKEN2(pipe);
1727                 val = I915_READ(reg);
1728                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729                 I915_WRITE(reg, val);
1730         }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735         u32 val;
1736
1737         val = I915_READ(LPT_TRANSCONF);
1738         val &= ~TRANS_ENABLE;
1739         I915_WRITE(LPT_TRANSCONF, val);
1740         /* wait for PCH transcoder off, transcoder state */
1741         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742                 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744         /* Workaround: clear timing override bit. */
1745         val = I915_READ(_TRANSA_CHICKEN2);
1746         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747         I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751  * intel_enable_pipe - enable a pipe, asserting requirements
1752  * @crtc: crtc responsible for the pipe
1753  *
1754  * Enable @crtc's pipe, making sure that various hardware specific requirements
1755  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756  */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759         struct drm_device *dev = crtc->base.dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         enum pipe pipe = crtc->pipe;
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         enum pipe pch_transcoder;
1765         int reg;
1766         u32 val;
1767
1768         assert_planes_disabled(dev_priv, pipe);
1769         assert_cursor_disabled(dev_priv, pipe);
1770         assert_sprites_disabled(dev_priv, pipe);
1771
1772         if (HAS_PCH_LPT(dev_priv->dev))
1773                 pch_transcoder = TRANSCODER_A;
1774         else
1775                 pch_transcoder = pipe;
1776
1777         /*
1778          * A pipe without a PLL won't actually be able to drive bits from
1779          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1780          * need the check.
1781          */
1782         if (!HAS_PCH_SPLIT(dev_priv->dev))
1783                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784                         assert_dsi_pll_enabled(dev_priv);
1785                 else
1786                         assert_pll_enabled(dev_priv, pipe);
1787         else {
1788                 if (crtc->config.has_pch_encoder) {
1789                         /* if driving the PCH, we need FDI enabled */
1790                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791                         assert_fdi_tx_pll_enabled(dev_priv,
1792                                                   (enum pipe) cpu_transcoder);
1793                 }
1794                 /* FIXME: assert CPU port conditions for SNB+ */
1795         }
1796
1797         reg = PIPECONF(cpu_transcoder);
1798         val = I915_READ(reg);
1799         if (val & PIPECONF_ENABLE) {
1800                 WARN_ON(!(pipe == PIPE_A &&
1801                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802                 return;
1803         }
1804
1805         I915_WRITE(reg, val | PIPECONF_ENABLE);
1806         POSTING_READ(reg);
1807
1808         /*
1809          * There's no guarantee the pipe will really start running now. It
1810          * depends on the Gen, the output type and the relative order between
1811          * pipe and plane enabling. Avoid waiting on HSW+ since it's not
1812          * necessary.
1813          * TODO: audit the previous gens.
1814          */
1815         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
1816                 intel_wait_for_vblank(dev_priv->dev, pipe);
1817 }
1818
1819 /**
1820  * intel_disable_pipe - disable a pipe, asserting requirements
1821  * @dev_priv: i915 private structure
1822  * @pipe: pipe to disable
1823  *
1824  * Disable @pipe, making sure that various hardware specific requirements
1825  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1826  *
1827  * @pipe should be %PIPE_A or %PIPE_B.
1828  *
1829  * Will wait until the pipe has shut down before returning.
1830  */
1831 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1832                                enum pipe pipe)
1833 {
1834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835                                                                       pipe);
1836         int reg;
1837         u32 val;
1838
1839         /*
1840          * Make sure planes won't keep trying to pump pixels to us,
1841          * or we might hang the display.
1842          */
1843         assert_planes_disabled(dev_priv, pipe);
1844         assert_cursor_disabled(dev_priv, pipe);
1845         assert_sprites_disabled(dev_priv, pipe);
1846
1847         /* Don't disable pipe A or pipe A PLLs if needed */
1848         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1849                 return;
1850
1851         reg = PIPECONF(cpu_transcoder);
1852         val = I915_READ(reg);
1853         if ((val & PIPECONF_ENABLE) == 0)
1854                 return;
1855
1856         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1857         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1858 }
1859
1860 /*
1861  * Plane regs are double buffered, going from enabled->disabled needs a
1862  * trigger in order to latch.  The display address reg provides this.
1863  */
1864 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1865                                enum plane plane)
1866 {
1867         struct drm_device *dev = dev_priv->dev;
1868         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1869
1870         I915_WRITE(reg, I915_READ(reg));
1871         POSTING_READ(reg);
1872 }
1873
1874 /**
1875  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1876  * @dev_priv: i915 private structure
1877  * @plane: plane to enable
1878  * @pipe: pipe being fed
1879  *
1880  * Enable @plane on @pipe, making sure that @pipe is running first.
1881  */
1882 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1883                                           enum plane plane, enum pipe pipe)
1884 {
1885         struct intel_crtc *intel_crtc =
1886                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1887         int reg;
1888         u32 val;
1889
1890         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1891         assert_pipe_enabled(dev_priv, pipe);
1892
1893         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1894
1895         intel_crtc->primary_enabled = true;
1896
1897         reg = DSPCNTR(plane);
1898         val = I915_READ(reg);
1899         if (val & DISPLAY_PLANE_ENABLE)
1900                 return;
1901
1902         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1903         intel_flush_primary_plane(dev_priv, plane);
1904         intel_wait_for_vblank(dev_priv->dev, pipe);
1905 }
1906
1907 /**
1908  * intel_disable_primary_hw_plane - disable the primary hardware plane
1909  * @dev_priv: i915 private structure
1910  * @plane: plane to disable
1911  * @pipe: pipe consuming the data
1912  *
1913  * Disable @plane; should be an independent operation.
1914  */
1915 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1916                                            enum plane plane, enum pipe pipe)
1917 {
1918         struct intel_crtc *intel_crtc =
1919                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1920         int reg;
1921         u32 val;
1922
1923         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1924
1925         intel_crtc->primary_enabled = false;
1926
1927         reg = DSPCNTR(plane);
1928         val = I915_READ(reg);
1929         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930                 return;
1931
1932         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1933         intel_flush_primary_plane(dev_priv, plane);
1934         intel_wait_for_vblank(dev_priv->dev, pipe);
1935 }
1936
1937 static bool need_vtd_wa(struct drm_device *dev)
1938 {
1939 #ifdef CONFIG_INTEL_IOMMU
1940         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1941                 return true;
1942 #endif
1943         return false;
1944 }
1945
1946 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1947 {
1948         int tile_height;
1949
1950         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1951         return ALIGN(height, tile_height);
1952 }
1953
1954 int
1955 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1956                            struct drm_i915_gem_object *obj,
1957                            struct intel_ring_buffer *pipelined)
1958 {
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         u32 alignment;
1961         int ret;
1962
1963         switch (obj->tiling_mode) {
1964         case I915_TILING_NONE:
1965                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1966                         alignment = 128 * 1024;
1967                 else if (INTEL_INFO(dev)->gen >= 4)
1968                         alignment = 4 * 1024;
1969                 else
1970                         alignment = 64 * 1024;
1971                 break;
1972         case I915_TILING_X:
1973                 /* pin() will align the object as required by fence */
1974                 alignment = 0;
1975                 break;
1976         case I915_TILING_Y:
1977                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1978                 return -EINVAL;
1979         default:
1980                 BUG();
1981         }
1982
1983         /* Note that the w/a also requires 64 PTE of padding following the
1984          * bo. We currently fill all unused PTE with the shadow page and so
1985          * we should always have valid PTE following the scanout preventing
1986          * the VT-d warning.
1987          */
1988         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1989                 alignment = 256 * 1024;
1990
1991         dev_priv->mm.interruptible = false;
1992         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1993         if (ret)
1994                 goto err_interruptible;
1995
1996         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1997          * fence, whereas 965+ only requires a fence if using
1998          * framebuffer compression.  For simplicity, we always install
1999          * a fence as the cost is not that onerous.
2000          */
2001         ret = i915_gem_object_get_fence(obj);
2002         if (ret)
2003                 goto err_unpin;
2004
2005         i915_gem_object_pin_fence(obj);
2006
2007         dev_priv->mm.interruptible = true;
2008         return 0;
2009
2010 err_unpin:
2011         i915_gem_object_unpin_from_display_plane(obj);
2012 err_interruptible:
2013         dev_priv->mm.interruptible = true;
2014         return ret;
2015 }
2016
2017 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2018 {
2019         i915_gem_object_unpin_fence(obj);
2020         i915_gem_object_unpin_from_display_plane(obj);
2021 }
2022
2023 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2024  * is assumed to be a power-of-two. */
2025 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2026                                              unsigned int tiling_mode,
2027                                              unsigned int cpp,
2028                                              unsigned int pitch)
2029 {
2030         if (tiling_mode != I915_TILING_NONE) {
2031                 unsigned int tile_rows, tiles;
2032
2033                 tile_rows = *y / 8;
2034                 *y %= 8;
2035
2036                 tiles = *x / (512/cpp);
2037                 *x %= 512/cpp;
2038
2039                 return tile_rows * pitch * 8 + tiles * 4096;
2040         } else {
2041                 unsigned int offset;
2042
2043                 offset = *y * pitch + *x * cpp;
2044                 *y = 0;
2045                 *x = (offset & 4095) / cpp;
2046                 return offset & -4096;
2047         }
2048 }
2049
2050 int intel_format_to_fourcc(int format)
2051 {
2052         switch (format) {
2053         case DISPPLANE_8BPP:
2054                 return DRM_FORMAT_C8;
2055         case DISPPLANE_BGRX555:
2056                 return DRM_FORMAT_XRGB1555;
2057         case DISPPLANE_BGRX565:
2058                 return DRM_FORMAT_RGB565;
2059         default:
2060         case DISPPLANE_BGRX888:
2061                 return DRM_FORMAT_XRGB8888;
2062         case DISPPLANE_RGBX888:
2063                 return DRM_FORMAT_XBGR8888;
2064         case DISPPLANE_BGRX101010:
2065                 return DRM_FORMAT_XRGB2101010;
2066         case DISPPLANE_RGBX101010:
2067                 return DRM_FORMAT_XBGR2101010;
2068         }
2069 }
2070
2071 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2072                                   struct intel_plane_config *plane_config)
2073 {
2074         struct drm_device *dev = crtc->base.dev;
2075         struct drm_i915_gem_object *obj = NULL;
2076         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2077         u32 base = plane_config->base;
2078
2079         if (plane_config->size == 0)
2080                 return false;
2081
2082         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2083                                                              plane_config->size);
2084         if (!obj)
2085                 return false;
2086
2087         if (plane_config->tiled) {
2088                 obj->tiling_mode = I915_TILING_X;
2089                 obj->stride = crtc->base.primary->fb->pitches[0];
2090         }
2091
2092         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2093         mode_cmd.width = crtc->base.primary->fb->width;
2094         mode_cmd.height = crtc->base.primary->fb->height;
2095         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2096
2097         mutex_lock(&dev->struct_mutex);
2098
2099         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2100                                    &mode_cmd, obj)) {
2101                 DRM_DEBUG_KMS("intel fb init failed\n");
2102                 goto out_unref_obj;
2103         }
2104
2105         mutex_unlock(&dev->struct_mutex);
2106
2107         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2108         return true;
2109
2110 out_unref_obj:
2111         drm_gem_object_unreference(&obj->base);
2112         mutex_unlock(&dev->struct_mutex);
2113         return false;
2114 }
2115
2116 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2117                                  struct intel_plane_config *plane_config)
2118 {
2119         struct drm_device *dev = intel_crtc->base.dev;
2120         struct drm_crtc *c;
2121         struct intel_crtc *i;
2122         struct intel_framebuffer *fb;
2123
2124         if (!intel_crtc->base.primary->fb)
2125                 return;
2126
2127         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2128                 return;
2129
2130         kfree(intel_crtc->base.primary->fb);
2131         intel_crtc->base.primary->fb = NULL;
2132
2133         /*
2134          * Failed to alloc the obj, check to see if we should share
2135          * an fb with another CRTC instead
2136          */
2137         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2138                 i = to_intel_crtc(c);
2139
2140                 if (c == &intel_crtc->base)
2141                         continue;
2142
2143                 if (!i->active || !c->primary->fb)
2144                         continue;
2145
2146                 fb = to_intel_framebuffer(c->primary->fb);
2147                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2148                         drm_framebuffer_reference(c->primary->fb);
2149                         intel_crtc->base.primary->fb = c->primary->fb;
2150                         break;
2151                 }
2152         }
2153 }
2154
2155 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2156                                      struct drm_framebuffer *fb,
2157                                      int x, int y)
2158 {
2159         struct drm_device *dev = crtc->dev;
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162         struct intel_framebuffer *intel_fb;
2163         struct drm_i915_gem_object *obj;
2164         int plane = intel_crtc->plane;
2165         unsigned long linear_offset;
2166         u32 dspcntr;
2167         u32 reg;
2168
2169         switch (plane) {
2170         case 0:
2171         case 1:
2172                 break;
2173         default:
2174                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2175                 return -EINVAL;
2176         }
2177
2178         intel_fb = to_intel_framebuffer(fb);
2179         obj = intel_fb->obj;
2180
2181         reg = DSPCNTR(plane);
2182         dspcntr = I915_READ(reg);
2183         /* Mask out pixel format bits in case we change it */
2184         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185         switch (fb->pixel_format) {
2186         case DRM_FORMAT_C8:
2187                 dspcntr |= DISPPLANE_8BPP;
2188                 break;
2189         case DRM_FORMAT_XRGB1555:
2190         case DRM_FORMAT_ARGB1555:
2191                 dspcntr |= DISPPLANE_BGRX555;
2192                 break;
2193         case DRM_FORMAT_RGB565:
2194                 dspcntr |= DISPPLANE_BGRX565;
2195                 break;
2196         case DRM_FORMAT_XRGB8888:
2197         case DRM_FORMAT_ARGB8888:
2198                 dspcntr |= DISPPLANE_BGRX888;
2199                 break;
2200         case DRM_FORMAT_XBGR8888:
2201         case DRM_FORMAT_ABGR8888:
2202                 dspcntr |= DISPPLANE_RGBX888;
2203                 break;
2204         case DRM_FORMAT_XRGB2101010:
2205         case DRM_FORMAT_ARGB2101010:
2206                 dspcntr |= DISPPLANE_BGRX101010;
2207                 break;
2208         case DRM_FORMAT_XBGR2101010:
2209         case DRM_FORMAT_ABGR2101010:
2210                 dspcntr |= DISPPLANE_RGBX101010;
2211                 break;
2212         default:
2213                 BUG();
2214         }
2215
2216         if (INTEL_INFO(dev)->gen >= 4) {
2217                 if (obj->tiling_mode != I915_TILING_NONE)
2218                         dspcntr |= DISPPLANE_TILED;
2219                 else
2220                         dspcntr &= ~DISPPLANE_TILED;
2221         }
2222
2223         if (IS_G4X(dev))
2224                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2225
2226         I915_WRITE(reg, dspcntr);
2227
2228         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2229
2230         if (INTEL_INFO(dev)->gen >= 4) {
2231                 intel_crtc->dspaddr_offset =
2232                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2233                                                        fb->bits_per_pixel / 8,
2234                                                        fb->pitches[0]);
2235                 linear_offset -= intel_crtc->dspaddr_offset;
2236         } else {
2237                 intel_crtc->dspaddr_offset = linear_offset;
2238         }
2239
2240         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2241                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2242                       fb->pitches[0]);
2243         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2244         if (INTEL_INFO(dev)->gen >= 4) {
2245                 I915_WRITE(DSPSURF(plane),
2246                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2247                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2248                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2249         } else
2250                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2251         POSTING_READ(reg);
2252
2253         return 0;
2254 }
2255
2256 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2257                                          struct drm_framebuffer *fb,
2258                                          int x, int y)
2259 {
2260         struct drm_device *dev = crtc->dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263         struct intel_framebuffer *intel_fb;
2264         struct drm_i915_gem_object *obj;
2265         int plane = intel_crtc->plane;
2266         unsigned long linear_offset;
2267         u32 dspcntr;
2268         u32 reg;
2269
2270         switch (plane) {
2271         case 0:
2272         case 1:
2273         case 2:
2274                 break;
2275         default:
2276                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2277                 return -EINVAL;
2278         }
2279
2280         intel_fb = to_intel_framebuffer(fb);
2281         obj = intel_fb->obj;
2282
2283         reg = DSPCNTR(plane);
2284         dspcntr = I915_READ(reg);
2285         /* Mask out pixel format bits in case we change it */
2286         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2287         switch (fb->pixel_format) {
2288         case DRM_FORMAT_C8:
2289                 dspcntr |= DISPPLANE_8BPP;
2290                 break;
2291         case DRM_FORMAT_RGB565:
2292                 dspcntr |= DISPPLANE_BGRX565;
2293                 break;
2294         case DRM_FORMAT_XRGB8888:
2295         case DRM_FORMAT_ARGB8888:
2296                 dspcntr |= DISPPLANE_BGRX888;
2297                 break;
2298         case DRM_FORMAT_XBGR8888:
2299         case DRM_FORMAT_ABGR8888:
2300                 dspcntr |= DISPPLANE_RGBX888;
2301                 break;
2302         case DRM_FORMAT_XRGB2101010:
2303         case DRM_FORMAT_ARGB2101010:
2304                 dspcntr |= DISPPLANE_BGRX101010;
2305                 break;
2306         case DRM_FORMAT_XBGR2101010:
2307         case DRM_FORMAT_ABGR2101010:
2308                 dspcntr |= DISPPLANE_RGBX101010;
2309                 break;
2310         default:
2311                 BUG();
2312         }
2313
2314         if (obj->tiling_mode != I915_TILING_NONE)
2315                 dspcntr |= DISPPLANE_TILED;
2316         else
2317                 dspcntr &= ~DISPPLANE_TILED;
2318
2319         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2321         else
2322                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2323
2324         I915_WRITE(reg, dspcntr);
2325
2326         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327         intel_crtc->dspaddr_offset =
2328                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2329                                                fb->bits_per_pixel / 8,
2330                                                fb->pitches[0]);
2331         linear_offset -= intel_crtc->dspaddr_offset;
2332
2333         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2334                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2335                       fb->pitches[0]);
2336         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2337         I915_WRITE(DSPSURF(plane),
2338                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2339         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2340                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2341         } else {
2342                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2343                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2344         }
2345         POSTING_READ(reg);
2346
2347         return 0;
2348 }
2349
2350 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2351 static int
2352 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2353                            int x, int y, enum mode_set_atomic state)
2354 {
2355         struct drm_device *dev = crtc->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358         if (dev_priv->display.disable_fbc)
2359                 dev_priv->display.disable_fbc(dev);
2360         intel_increase_pllclock(crtc);
2361
2362         return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2363 }
2364
2365 void intel_display_handle_reset(struct drm_device *dev)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct drm_crtc *crtc;
2369
2370         /*
2371          * Flips in the rings have been nuked by the reset,
2372          * so complete all pending flips so that user space
2373          * will get its events and not get stuck.
2374          *
2375          * Also update the base address of all primary
2376          * planes to the the last fb to make sure we're
2377          * showing the correct fb after a reset.
2378          *
2379          * Need to make two loops over the crtcs so that we
2380          * don't try to grab a crtc mutex before the
2381          * pending_flip_queue really got woken up.
2382          */
2383
2384         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386                 enum plane plane = intel_crtc->plane;
2387
2388                 intel_prepare_page_flip(dev, plane);
2389                 intel_finish_page_flip_plane(dev, plane);
2390         }
2391
2392         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2393                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394
2395                 mutex_lock(&crtc->mutex);
2396                 /*
2397                  * FIXME: Once we have proper support for primary planes (and
2398                  * disabling them without disabling the entire crtc) allow again
2399                  * a NULL crtc->primary->fb.
2400                  */
2401                 if (intel_crtc->active && crtc->primary->fb)
2402                         dev_priv->display.update_primary_plane(crtc,
2403                                                                crtc->primary->fb,
2404                                                                crtc->x,
2405                                                                crtc->y);
2406                 mutex_unlock(&crtc->mutex);
2407         }
2408 }
2409
2410 static int
2411 intel_finish_fb(struct drm_framebuffer *old_fb)
2412 {
2413         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2414         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2415         bool was_interruptible = dev_priv->mm.interruptible;
2416         int ret;
2417
2418         /* Big Hammer, we also need to ensure that any pending
2419          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2420          * current scanout is retired before unpinning the old
2421          * framebuffer.
2422          *
2423          * This should only fail upon a hung GPU, in which case we
2424          * can safely continue.
2425          */
2426         dev_priv->mm.interruptible = false;
2427         ret = i915_gem_object_finish_gpu(obj);
2428         dev_priv->mm.interruptible = was_interruptible;
2429
2430         return ret;
2431 }
2432
2433 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2434 {
2435         struct drm_device *dev = crtc->dev;
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438         unsigned long flags;
2439         bool pending;
2440
2441         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2442             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2443                 return false;
2444
2445         spin_lock_irqsave(&dev->event_lock, flags);
2446         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2447         spin_unlock_irqrestore(&dev->event_lock, flags);
2448
2449         return pending;
2450 }
2451
2452 static int
2453 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2454                     struct drm_framebuffer *fb)
2455 {
2456         struct drm_device *dev = crtc->dev;
2457         struct drm_i915_private *dev_priv = dev->dev_private;
2458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459         struct drm_framebuffer *old_fb;
2460         int ret;
2461
2462         if (intel_crtc_has_pending_flip(crtc)) {
2463                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2464                 return -EBUSY;
2465         }
2466
2467         /* no fb bound */
2468         if (!fb) {
2469                 DRM_ERROR("No FB bound\n");
2470                 return 0;
2471         }
2472
2473         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2474                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2475                           plane_name(intel_crtc->plane),
2476                           INTEL_INFO(dev)->num_pipes);
2477                 return -EINVAL;
2478         }
2479
2480         mutex_lock(&dev->struct_mutex);
2481         ret = intel_pin_and_fence_fb_obj(dev,
2482                                          to_intel_framebuffer(fb)->obj,
2483                                          NULL);
2484         mutex_unlock(&dev->struct_mutex);
2485         if (ret != 0) {
2486                 DRM_ERROR("pin & fence failed\n");
2487                 return ret;
2488         }
2489
2490         /*
2491          * Update pipe size and adjust fitter if needed: the reason for this is
2492          * that in compute_mode_changes we check the native mode (not the pfit
2493          * mode) to see if we can flip rather than do a full mode set. In the
2494          * fastboot case, we'll flip, but if we don't update the pipesrc and
2495          * pfit state, we'll end up with a big fb scanned out into the wrong
2496          * sized surface.
2497          *
2498          * To fix this properly, we need to hoist the checks up into
2499          * compute_mode_changes (or above), check the actual pfit state and
2500          * whether the platform allows pfit disable with pipe active, and only
2501          * then update the pipesrc and pfit state, even on the flip path.
2502          */
2503         if (i915.fastboot) {
2504                 const struct drm_display_mode *adjusted_mode =
2505                         &intel_crtc->config.adjusted_mode;
2506
2507                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2508                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2509                            (adjusted_mode->crtc_vdisplay - 1));
2510                 if (!intel_crtc->config.pch_pfit.enabled &&
2511                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2512                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2513                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2514                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2515                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2516                 }
2517                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2518                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2519         }
2520
2521         ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522         if (ret) {
2523                 mutex_lock(&dev->struct_mutex);
2524                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2525                 mutex_unlock(&dev->struct_mutex);
2526                 DRM_ERROR("failed to update base address\n");
2527                 return ret;
2528         }
2529
2530         old_fb = crtc->primary->fb;
2531         crtc->primary->fb = fb;
2532         crtc->x = x;
2533         crtc->y = y;
2534
2535         if (old_fb) {
2536                 if (intel_crtc->active && old_fb != fb)
2537                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2538                 mutex_lock(&dev->struct_mutex);
2539                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2540                 mutex_unlock(&dev->struct_mutex);
2541         }
2542
2543         mutex_lock(&dev->struct_mutex);
2544         intel_update_fbc(dev);
2545         intel_edp_psr_update(dev);
2546         mutex_unlock(&dev->struct_mutex);
2547
2548         return 0;
2549 }
2550
2551 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2552 {
2553         struct drm_device *dev = crtc->dev;
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556         int pipe = intel_crtc->pipe;
2557         u32 reg, temp;
2558
2559         /* enable normal train */
2560         reg = FDI_TX_CTL(pipe);
2561         temp = I915_READ(reg);
2562         if (IS_IVYBRIDGE(dev)) {
2563                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2564                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2565         } else {
2566                 temp &= ~FDI_LINK_TRAIN_NONE;
2567                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2568         }
2569         I915_WRITE(reg, temp);
2570
2571         reg = FDI_RX_CTL(pipe);
2572         temp = I915_READ(reg);
2573         if (HAS_PCH_CPT(dev)) {
2574                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2576         } else {
2577                 temp &= ~FDI_LINK_TRAIN_NONE;
2578                 temp |= FDI_LINK_TRAIN_NONE;
2579         }
2580         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2581
2582         /* wait one idle pattern time */
2583         POSTING_READ(reg);
2584         udelay(1000);
2585
2586         /* IVB wants error correction enabled */
2587         if (IS_IVYBRIDGE(dev))
2588                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2589                            FDI_FE_ERRC_ENABLE);
2590 }
2591
2592 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2593 {
2594         return crtc->base.enabled && crtc->active &&
2595                 crtc->config.has_pch_encoder;
2596 }
2597
2598 static void ivb_modeset_global_resources(struct drm_device *dev)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *pipe_B_crtc =
2602                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2603         struct intel_crtc *pipe_C_crtc =
2604                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2605         uint32_t temp;
2606
2607         /*
2608          * When everything is off disable fdi C so that we could enable fdi B
2609          * with all lanes. Note that we don't care about enabled pipes without
2610          * an enabled pch encoder.
2611          */
2612         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2613             !pipe_has_enabled_pch(pipe_C_crtc)) {
2614                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2615                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2616
2617                 temp = I915_READ(SOUTH_CHICKEN1);
2618                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2619                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2620                 I915_WRITE(SOUTH_CHICKEN1, temp);
2621         }
2622 }
2623
2624 /* The FDI link training functions for ILK/Ibexpeak. */
2625 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2626 {
2627         struct drm_device *dev = crtc->dev;
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630         int pipe = intel_crtc->pipe;
2631         int plane = intel_crtc->plane;
2632         u32 reg, temp, tries;
2633
2634         /* FDI needs bits from pipe & plane first */
2635         assert_pipe_enabled(dev_priv, pipe);
2636         assert_plane_enabled(dev_priv, plane);
2637
2638         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639            for train result */
2640         reg = FDI_RX_IMR(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_RX_SYMBOL_LOCK;
2643         temp &= ~FDI_RX_BIT_LOCK;
2644         I915_WRITE(reg, temp);
2645         I915_READ(reg);
2646         udelay(150);
2647
2648         /* enable CPU FDI TX and PCH FDI RX */
2649         reg = FDI_TX_CTL(pipe);
2650         temp = I915_READ(reg);
2651         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2652         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2653         temp &= ~FDI_LINK_TRAIN_NONE;
2654         temp |= FDI_LINK_TRAIN_PATTERN_1;
2655         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         temp &= ~FDI_LINK_TRAIN_NONE;
2660         temp |= FDI_LINK_TRAIN_PATTERN_1;
2661         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2662
2663         POSTING_READ(reg);
2664         udelay(150);
2665
2666         /* Ironlake workaround, enable clock pointer after FDI enable*/
2667         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2668         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2669                    FDI_RX_PHASE_SYNC_POINTER_EN);
2670
2671         reg = FDI_RX_IIR(pipe);
2672         for (tries = 0; tries < 5; tries++) {
2673                 temp = I915_READ(reg);
2674                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676                 if ((temp & FDI_RX_BIT_LOCK)) {
2677                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2678                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2679                         break;
2680                 }
2681         }
2682         if (tries == 5)
2683                 DRM_ERROR("FDI train 1 fail!\n");
2684
2685         /* Train 2 */
2686         reg = FDI_TX_CTL(pipe);
2687         temp = I915_READ(reg);
2688         temp &= ~FDI_LINK_TRAIN_NONE;
2689         temp |= FDI_LINK_TRAIN_PATTERN_2;
2690         I915_WRITE(reg, temp);
2691
2692         reg = FDI_RX_CTL(pipe);
2693         temp = I915_READ(reg);
2694         temp &= ~FDI_LINK_TRAIN_NONE;
2695         temp |= FDI_LINK_TRAIN_PATTERN_2;
2696         I915_WRITE(reg, temp);
2697
2698         POSTING_READ(reg);
2699         udelay(150);
2700
2701         reg = FDI_RX_IIR(pipe);
2702         for (tries = 0; tries < 5; tries++) {
2703                 temp = I915_READ(reg);
2704                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706                 if (temp & FDI_RX_SYMBOL_LOCK) {
2707                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2709                         break;
2710                 }
2711         }
2712         if (tries == 5)
2713                 DRM_ERROR("FDI train 2 fail!\n");
2714
2715         DRM_DEBUG_KMS("FDI train done\n");
2716
2717 }
2718
2719 static const int snb_b_fdi_train_param[] = {
2720         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2721         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2722         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2723         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2724 };
2725
2726 /* The FDI link training functions for SNB/Cougarpoint. */
2727 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2728 {
2729         struct drm_device *dev = crtc->dev;
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732         int pipe = intel_crtc->pipe;
2733         u32 reg, temp, i, retry;
2734
2735         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2736            for train result */
2737         reg = FDI_RX_IMR(pipe);
2738         temp = I915_READ(reg);
2739         temp &= ~FDI_RX_SYMBOL_LOCK;
2740         temp &= ~FDI_RX_BIT_LOCK;
2741         I915_WRITE(reg, temp);
2742
2743         POSTING_READ(reg);
2744         udelay(150);
2745
2746         /* enable CPU FDI TX and PCH FDI RX */
2747         reg = FDI_TX_CTL(pipe);
2748         temp = I915_READ(reg);
2749         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2750         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2751         temp &= ~FDI_LINK_TRAIN_NONE;
2752         temp |= FDI_LINK_TRAIN_PATTERN_1;
2753         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2754         /* SNB-B */
2755         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2756         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2757
2758         I915_WRITE(FDI_RX_MISC(pipe),
2759                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2760
2761         reg = FDI_RX_CTL(pipe);
2762         temp = I915_READ(reg);
2763         if (HAS_PCH_CPT(dev)) {
2764                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2765                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2766         } else {
2767                 temp &= ~FDI_LINK_TRAIN_NONE;
2768                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2769         }
2770         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772         POSTING_READ(reg);
2773         udelay(150);
2774
2775         for (i = 0; i < 4; i++) {
2776                 reg = FDI_TX_CTL(pipe);
2777                 temp = I915_READ(reg);
2778                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779                 temp |= snb_b_fdi_train_param[i];
2780                 I915_WRITE(reg, temp);
2781
2782                 POSTING_READ(reg);
2783                 udelay(500);
2784
2785                 for (retry = 0; retry < 5; retry++) {
2786                         reg = FDI_RX_IIR(pipe);
2787                         temp = I915_READ(reg);
2788                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789                         if (temp & FDI_RX_BIT_LOCK) {
2790                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2792                                 break;
2793                         }
2794                         udelay(50);
2795                 }
2796                 if (retry < 5)
2797                         break;
2798         }
2799         if (i == 4)
2800                 DRM_ERROR("FDI train 1 fail!\n");
2801
2802         /* Train 2 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_2;
2807         if (IS_GEN6(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2809                 /* SNB-B */
2810                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2811         }
2812         I915_WRITE(reg, temp);
2813
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         if (HAS_PCH_CPT(dev)) {
2817                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2818                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2819         } else {
2820                 temp &= ~FDI_LINK_TRAIN_NONE;
2821                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2822         }
2823         I915_WRITE(reg, temp);
2824
2825         POSTING_READ(reg);
2826         udelay(150);
2827
2828         for (i = 0; i < 4; i++) {
2829                 reg = FDI_TX_CTL(pipe);
2830                 temp = I915_READ(reg);
2831                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2832                 temp |= snb_b_fdi_train_param[i];
2833                 I915_WRITE(reg, temp);
2834
2835                 POSTING_READ(reg);
2836                 udelay(500);
2837
2838                 for (retry = 0; retry < 5; retry++) {
2839                         reg = FDI_RX_IIR(pipe);
2840                         temp = I915_READ(reg);
2841                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2842                         if (temp & FDI_RX_SYMBOL_LOCK) {
2843                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2844                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2845                                 break;
2846                         }
2847                         udelay(50);
2848                 }
2849                 if (retry < 5)
2850                         break;
2851         }
2852         if (i == 4)
2853                 DRM_ERROR("FDI train 2 fail!\n");
2854
2855         DRM_DEBUG_KMS("FDI train done.\n");
2856 }
2857
2858 /* Manual link training for Ivy Bridge A0 parts */
2859 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2860 {
2861         struct drm_device *dev = crtc->dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864         int pipe = intel_crtc->pipe;
2865         u32 reg, temp, i, j;
2866
2867         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2868            for train result */
2869         reg = FDI_RX_IMR(pipe);
2870         temp = I915_READ(reg);
2871         temp &= ~FDI_RX_SYMBOL_LOCK;
2872         temp &= ~FDI_RX_BIT_LOCK;
2873         I915_WRITE(reg, temp);
2874
2875         POSTING_READ(reg);
2876         udelay(150);
2877
2878         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2879                       I915_READ(FDI_RX_IIR(pipe)));
2880
2881         /* Try each vswing and preemphasis setting twice before moving on */
2882         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2883                 /* disable first in case we need to retry */
2884                 reg = FDI_TX_CTL(pipe);
2885                 temp = I915_READ(reg);
2886                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2887                 temp &= ~FDI_TX_ENABLE;
2888                 I915_WRITE(reg, temp);
2889
2890                 reg = FDI_RX_CTL(pipe);
2891                 temp = I915_READ(reg);
2892                 temp &= ~FDI_LINK_TRAIN_AUTO;
2893                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2894                 temp &= ~FDI_RX_ENABLE;
2895                 I915_WRITE(reg, temp);
2896
2897                 /* enable CPU FDI TX and PCH FDI RX */
2898                 reg = FDI_TX_CTL(pipe);
2899                 temp = I915_READ(reg);
2900                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2901                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2902                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2903                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2904                 temp |= snb_b_fdi_train_param[j/2];
2905                 temp |= FDI_COMPOSITE_SYNC;
2906                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2907
2908                 I915_WRITE(FDI_RX_MISC(pipe),
2909                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2910
2911                 reg = FDI_RX_CTL(pipe);
2912                 temp = I915_READ(reg);
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914                 temp |= FDI_COMPOSITE_SYNC;
2915                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2916
2917                 POSTING_READ(reg);
2918                 udelay(1); /* should be 0.5us */
2919
2920                 for (i = 0; i < 4; i++) {
2921                         reg = FDI_RX_IIR(pipe);
2922                         temp = I915_READ(reg);
2923                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925                         if (temp & FDI_RX_BIT_LOCK ||
2926                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2927                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2928                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2929                                               i);
2930                                 break;
2931                         }
2932                         udelay(1); /* should be 0.5us */
2933                 }
2934                 if (i == 4) {
2935                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2936                         continue;
2937                 }
2938
2939                 /* Train 2 */
2940                 reg = FDI_TX_CTL(pipe);
2941                 temp = I915_READ(reg);
2942                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2943                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2944                 I915_WRITE(reg, temp);
2945
2946                 reg = FDI_RX_CTL(pipe);
2947                 temp = I915_READ(reg);
2948                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2950                 I915_WRITE(reg, temp);
2951
2952                 POSTING_READ(reg);
2953                 udelay(2); /* should be 1.5us */
2954
2955                 for (i = 0; i < 4; i++) {
2956                         reg = FDI_RX_IIR(pipe);
2957                         temp = I915_READ(reg);
2958                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2959
2960                         if (temp & FDI_RX_SYMBOL_LOCK ||
2961                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2962                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2963                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2964                                               i);
2965                                 goto train_done;
2966                         }
2967                         udelay(2); /* should be 1.5us */
2968                 }
2969                 if (i == 4)
2970                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2971         }
2972
2973 train_done:
2974         DRM_DEBUG_KMS("FDI train done.\n");
2975 }
2976
2977 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2978 {
2979         struct drm_device *dev = intel_crtc->base.dev;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         int pipe = intel_crtc->pipe;
2982         u32 reg, temp;
2983
2984
2985         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2986         reg = FDI_RX_CTL(pipe);
2987         temp = I915_READ(reg);
2988         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2989         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2990         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2991         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2992
2993         POSTING_READ(reg);
2994         udelay(200);
2995
2996         /* Switch from Rawclk to PCDclk */
2997         temp = I915_READ(reg);
2998         I915_WRITE(reg, temp | FDI_PCDCLK);
2999
3000         POSTING_READ(reg);
3001         udelay(200);
3002
3003         /* Enable CPU FDI TX PLL, always on for Ironlake */
3004         reg = FDI_TX_CTL(pipe);
3005         temp = I915_READ(reg);
3006         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3007                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3008
3009                 POSTING_READ(reg);
3010                 udelay(100);
3011         }
3012 }
3013
3014 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3015 {
3016         struct drm_device *dev = intel_crtc->base.dev;
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         int pipe = intel_crtc->pipe;
3019         u32 reg, temp;
3020
3021         /* Switch from PCDclk to Rawclk */
3022         reg = FDI_RX_CTL(pipe);
3023         temp = I915_READ(reg);
3024         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3025
3026         /* Disable CPU FDI TX PLL */
3027         reg = FDI_TX_CTL(pipe);
3028         temp = I915_READ(reg);
3029         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3030
3031         POSTING_READ(reg);
3032         udelay(100);
3033
3034         reg = FDI_RX_CTL(pipe);
3035         temp = I915_READ(reg);
3036         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3037
3038         /* Wait for the clocks to turn off. */
3039         POSTING_READ(reg);
3040         udelay(100);
3041 }
3042
3043 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3044 {
3045         struct drm_device *dev = crtc->dev;
3046         struct drm_i915_private *dev_priv = dev->dev_private;
3047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048         int pipe = intel_crtc->pipe;
3049         u32 reg, temp;
3050
3051         /* disable CPU FDI tx and PCH FDI rx */
3052         reg = FDI_TX_CTL(pipe);
3053         temp = I915_READ(reg);
3054         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3055         POSTING_READ(reg);
3056
3057         reg = FDI_RX_CTL(pipe);
3058         temp = I915_READ(reg);
3059         temp &= ~(0x7 << 16);
3060         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3062
3063         POSTING_READ(reg);
3064         udelay(100);
3065
3066         /* Ironlake workaround, disable clock pointer after downing FDI */
3067         if (HAS_PCH_IBX(dev)) {
3068                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3069         }
3070
3071         /* still set train pattern 1 */
3072         reg = FDI_TX_CTL(pipe);
3073         temp = I915_READ(reg);
3074         temp &= ~FDI_LINK_TRAIN_NONE;
3075         temp |= FDI_LINK_TRAIN_PATTERN_1;
3076         I915_WRITE(reg, temp);
3077
3078         reg = FDI_RX_CTL(pipe);
3079         temp = I915_READ(reg);
3080         if (HAS_PCH_CPT(dev)) {
3081                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3082                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3083         } else {
3084                 temp &= ~FDI_LINK_TRAIN_NONE;
3085                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3086         }
3087         /* BPC in FDI rx is consistent with that in PIPECONF */
3088         temp &= ~(0x07 << 16);
3089         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3090         I915_WRITE(reg, temp);
3091
3092         POSTING_READ(reg);
3093         udelay(100);
3094 }
3095
3096 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3097 {
3098         struct intel_crtc *crtc;
3099
3100         /* Note that we don't need to be called with mode_config.lock here
3101          * as our list of CRTC objects is static for the lifetime of the
3102          * device and so cannot disappear as we iterate. Similarly, we can
3103          * happily treat the predicates as racy, atomic checks as userspace
3104          * cannot claim and pin a new fb without at least acquring the
3105          * struct_mutex and so serialising with us.
3106          */
3107         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3108                 if (atomic_read(&crtc->unpin_work_count) == 0)
3109                         continue;
3110
3111                 if (crtc->unpin_work)
3112                         intel_wait_for_vblank(dev, crtc->pipe);
3113
3114                 return true;
3115         }
3116
3117         return false;
3118 }
3119
3120 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124
3125         if (crtc->primary->fb == NULL)
3126                 return;
3127
3128         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3129
3130         wait_event(dev_priv->pending_flip_queue,
3131                    !intel_crtc_has_pending_flip(crtc));
3132
3133         mutex_lock(&dev->struct_mutex);
3134         intel_finish_fb(crtc->primary->fb);
3135         mutex_unlock(&dev->struct_mutex);
3136 }
3137
3138 /* Program iCLKIP clock to the desired frequency */
3139 static void lpt_program_iclkip(struct drm_crtc *crtc)
3140 {
3141         struct drm_device *dev = crtc->dev;
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3144         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3145         u32 temp;
3146
3147         mutex_lock(&dev_priv->dpio_lock);
3148
3149         /* It is necessary to ungate the pixclk gate prior to programming
3150          * the divisors, and gate it back when it is done.
3151          */
3152         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3153
3154         /* Disable SSCCTL */
3155         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3156                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3157                                 SBI_SSCCTL_DISABLE,
3158                         SBI_ICLK);
3159
3160         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3161         if (clock == 20000) {
3162                 auxdiv = 1;
3163                 divsel = 0x41;
3164                 phaseinc = 0x20;
3165         } else {
3166                 /* The iCLK virtual clock root frequency is in MHz,
3167                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3168                  * divisors, it is necessary to divide one by another, so we
3169                  * convert the virtual clock precision to KHz here for higher
3170                  * precision.
3171                  */
3172                 u32 iclk_virtual_root_freq = 172800 * 1000;
3173                 u32 iclk_pi_range = 64;
3174                 u32 desired_divisor, msb_divisor_value, pi_value;
3175
3176                 desired_divisor = (iclk_virtual_root_freq / clock);
3177                 msb_divisor_value = desired_divisor / iclk_pi_range;
3178                 pi_value = desired_divisor % iclk_pi_range;
3179
3180                 auxdiv = 0;
3181                 divsel = msb_divisor_value - 2;
3182                 phaseinc = pi_value;
3183         }
3184
3185         /* This should not happen with any sane values */
3186         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3187                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3188         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3189                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3190
3191         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3192                         clock,
3193                         auxdiv,
3194                         divsel,
3195                         phasedir,
3196                         phaseinc);
3197
3198         /* Program SSCDIVINTPHASE6 */
3199         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3200         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3201         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3202         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3203         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3204         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3205         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3206         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3207
3208         /* Program SSCAUXDIV */
3209         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3210         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3211         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3212         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3213
3214         /* Enable modulator and associated divider */
3215         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3216         temp &= ~SBI_SSCCTL_DISABLE;
3217         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3218
3219         /* Wait for initialization time */
3220         udelay(24);
3221
3222         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3223
3224         mutex_unlock(&dev_priv->dpio_lock);
3225 }
3226
3227 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3228                                                 enum pipe pch_transcoder)
3229 {
3230         struct drm_device *dev = crtc->base.dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3233
3234         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3235                    I915_READ(HTOTAL(cpu_transcoder)));
3236         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3237                    I915_READ(HBLANK(cpu_transcoder)));
3238         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3239                    I915_READ(HSYNC(cpu_transcoder)));
3240
3241         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3242                    I915_READ(VTOTAL(cpu_transcoder)));
3243         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3244                    I915_READ(VBLANK(cpu_transcoder)));
3245         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3246                    I915_READ(VSYNC(cpu_transcoder)));
3247         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3248                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3249 }
3250
3251 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3252 {
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         uint32_t temp;
3255
3256         temp = I915_READ(SOUTH_CHICKEN1);
3257         if (temp & FDI_BC_BIFURCATION_SELECT)
3258                 return;
3259
3260         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3261         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3262
3263         temp |= FDI_BC_BIFURCATION_SELECT;
3264         DRM_DEBUG_KMS("enabling fdi C rx\n");
3265         I915_WRITE(SOUTH_CHICKEN1, temp);
3266         POSTING_READ(SOUTH_CHICKEN1);
3267 }
3268
3269 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3270 {
3271         struct drm_device *dev = intel_crtc->base.dev;
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274         switch (intel_crtc->pipe) {
3275         case PIPE_A:
3276                 break;
3277         case PIPE_B:
3278                 if (intel_crtc->config.fdi_lanes > 2)
3279                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3280                 else
3281                         cpt_enable_fdi_bc_bifurcation(dev);
3282
3283                 break;
3284         case PIPE_C:
3285                 cpt_enable_fdi_bc_bifurcation(dev);
3286
3287                 break;
3288         default:
3289                 BUG();
3290         }
3291 }
3292
3293 /*
3294  * Enable PCH resources required for PCH ports:
3295  *   - PCH PLLs
3296  *   - FDI training & RX/TX
3297  *   - update transcoder timings
3298  *   - DP transcoding bits
3299  *   - transcoder
3300  */
3301 static void ironlake_pch_enable(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct drm_i915_private *dev_priv = dev->dev_private;
3305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306         int pipe = intel_crtc->pipe;
3307         u32 reg, temp;
3308
3309         assert_pch_transcoder_disabled(dev_priv, pipe);
3310
3311         if (IS_IVYBRIDGE(dev))
3312                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3313
3314         /* Write the TU size bits before fdi link training, so that error
3315          * detection works. */
3316         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3317                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3318
3319         /* For PCH output, training FDI link */
3320         dev_priv->display.fdi_link_train(crtc);
3321
3322         /* We need to program the right clock selection before writing the pixel
3323          * mutliplier into the DPLL. */
3324         if (HAS_PCH_CPT(dev)) {
3325                 u32 sel;
3326
3327                 temp = I915_READ(PCH_DPLL_SEL);
3328                 temp |= TRANS_DPLL_ENABLE(pipe);
3329                 sel = TRANS_DPLLB_SEL(pipe);
3330                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3331                         temp |= sel;
3332                 else
3333                         temp &= ~sel;
3334                 I915_WRITE(PCH_DPLL_SEL, temp);
3335         }
3336
3337         /* XXX: pch pll's can be enabled any time before we enable the PCH
3338          * transcoder, and we actually should do this to not upset any PCH
3339          * transcoder that already use the clock when we share it.
3340          *
3341          * Note that enable_shared_dpll tries to do the right thing, but
3342          * get_shared_dpll unconditionally resets the pll - we need that to have
3343          * the right LVDS enable sequence. */
3344         ironlake_enable_shared_dpll(intel_crtc);
3345
3346         /* set transcoder timing, panel must allow it */
3347         assert_panel_unlocked(dev_priv, pipe);
3348         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3349
3350         intel_fdi_normal_train(crtc);
3351
3352         /* For PCH DP, enable TRANS_DP_CTL */
3353         if (HAS_PCH_CPT(dev) &&
3354             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3355              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3356                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3357                 reg = TRANS_DP_CTL(pipe);
3358                 temp = I915_READ(reg);
3359                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3360                           TRANS_DP_SYNC_MASK |
3361                           TRANS_DP_BPC_MASK);
3362                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3363                          TRANS_DP_ENH_FRAMING);
3364                 temp |= bpc << 9; /* same format but at 11:9 */
3365
3366                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3367                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3368                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3369                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3370
3371                 switch (intel_trans_dp_port_sel(crtc)) {
3372                 case PCH_DP_B:
3373                         temp |= TRANS_DP_PORT_SEL_B;
3374                         break;
3375                 case PCH_DP_C:
3376                         temp |= TRANS_DP_PORT_SEL_C;
3377                         break;
3378                 case PCH_DP_D:
3379                         temp |= TRANS_DP_PORT_SEL_D;
3380                         break;
3381                 default:
3382                         BUG();
3383                 }
3384
3385                 I915_WRITE(reg, temp);
3386         }
3387
3388         ironlake_enable_pch_transcoder(dev_priv, pipe);
3389 }
3390
3391 static void lpt_pch_enable(struct drm_crtc *crtc)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3397
3398         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3399
3400         lpt_program_iclkip(crtc);
3401
3402         /* Set transcoder timing. */
3403         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3404
3405         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3406 }
3407
3408 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3409 {
3410         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3411
3412         if (pll == NULL)
3413                 return;
3414
3415         if (pll->refcount == 0) {
3416                 WARN(1, "bad %s refcount\n", pll->name);
3417                 return;
3418         }
3419
3420         if (--pll->refcount == 0) {
3421                 WARN_ON(pll->on);
3422                 WARN_ON(pll->active);
3423         }
3424
3425         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3426 }
3427
3428 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3429 {
3430         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3431         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3432         enum intel_dpll_id i;
3433
3434         if (pll) {
3435                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3436                               crtc->base.base.id, pll->name);
3437                 intel_put_shared_dpll(crtc);
3438         }
3439
3440         if (HAS_PCH_IBX(dev_priv->dev)) {
3441                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3442                 i = (enum intel_dpll_id) crtc->pipe;
3443                 pll = &dev_priv->shared_dplls[i];
3444
3445                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3446                               crtc->base.base.id, pll->name);
3447
3448                 goto found;
3449         }
3450
3451         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3452                 pll = &dev_priv->shared_dplls[i];
3453
3454                 /* Only want to check enabled timings first */
3455                 if (pll->refcount == 0)
3456                         continue;
3457
3458                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3459                            sizeof(pll->hw_state)) == 0) {
3460                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3461                                       crtc->base.base.id,
3462                                       pll->name, pll->refcount, pll->active);
3463
3464                         goto found;
3465                 }
3466         }
3467
3468         /* Ok no matching timings, maybe there's a free one? */
3469         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3470                 pll = &dev_priv->shared_dplls[i];
3471                 if (pll->refcount == 0) {
3472                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3473                                       crtc->base.base.id, pll->name);
3474                         goto found;
3475                 }
3476         }
3477
3478         return NULL;
3479
3480 found:
3481         crtc->config.shared_dpll = i;
3482         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3483                          pipe_name(crtc->pipe));
3484
3485         if (pll->active == 0) {
3486                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3487                        sizeof(pll->hw_state));
3488
3489                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3490                 WARN_ON(pll->on);
3491                 assert_shared_dpll_disabled(dev_priv, pll);
3492
3493                 pll->mode_set(dev_priv, pll);
3494         }
3495         pll->refcount++;
3496
3497         return pll;
3498 }
3499
3500 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         int dslreg = PIPEDSL(pipe);
3504         u32 temp;
3505
3506         temp = I915_READ(dslreg);
3507         udelay(500);
3508         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3509                 if (wait_for(I915_READ(dslreg) != temp, 5))
3510                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3511         }
3512 }
3513
3514 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3515 {
3516         struct drm_device *dev = crtc->base.dev;
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         int pipe = crtc->pipe;
3519
3520         if (crtc->config.pch_pfit.enabled) {
3521                 /* Force use of hard-coded filter coefficients
3522                  * as some pre-programmed values are broken,
3523                  * e.g. x201.
3524                  */
3525                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3526                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3527                                                  PF_PIPE_SEL_IVB(pipe));
3528                 else
3529                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3530                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3531                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3532         }
3533 }
3534
3535 static void intel_enable_planes(struct drm_crtc *crtc)
3536 {
3537         struct drm_device *dev = crtc->dev;
3538         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3539         struct drm_plane *plane;
3540         struct intel_plane *intel_plane;
3541
3542         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3543                 intel_plane = to_intel_plane(plane);
3544                 if (intel_plane->pipe == pipe)
3545                         intel_plane_restore(&intel_plane->base);
3546         }
3547 }
3548
3549 static void intel_disable_planes(struct drm_crtc *crtc)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3553         struct drm_plane *plane;
3554         struct intel_plane *intel_plane;
3555
3556         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3557                 intel_plane = to_intel_plane(plane);
3558                 if (intel_plane->pipe == pipe)
3559                         intel_plane_disable(&intel_plane->base);
3560         }
3561 }
3562
3563 void hsw_enable_ips(struct intel_crtc *crtc)
3564 {
3565         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3566
3567         if (!crtc->config.ips_enabled)
3568                 return;
3569
3570         /* We can only enable IPS after we enable a plane and wait for a vblank.
3571          * We guarantee that the plane is enabled by calling intel_enable_ips
3572          * only after intel_enable_plane. And intel_enable_plane already waits
3573          * for a vblank, so all we need to do here is to enable the IPS bit. */
3574         assert_plane_enabled(dev_priv, crtc->plane);
3575         if (IS_BROADWELL(crtc->base.dev)) {
3576                 mutex_lock(&dev_priv->rps.hw_lock);
3577                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3578                 mutex_unlock(&dev_priv->rps.hw_lock);
3579                 /* Quoting Art Runyan: "its not safe to expect any particular
3580                  * value in IPS_CTL bit 31 after enabling IPS through the
3581                  * mailbox." Moreover, the mailbox may return a bogus state,
3582                  * so we need to just enable it and continue on.
3583                  */
3584         } else {
3585                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3586                 /* The bit only becomes 1 in the next vblank, so this wait here
3587                  * is essentially intel_wait_for_vblank. If we don't have this
3588                  * and don't wait for vblanks until the end of crtc_enable, then
3589                  * the HW state readout code will complain that the expected
3590                  * IPS_CTL value is not the one we read. */
3591                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3592                         DRM_ERROR("Timed out waiting for IPS enable\n");
3593         }
3594 }
3595
3596 void hsw_disable_ips(struct intel_crtc *crtc)
3597 {
3598         struct drm_device *dev = crtc->base.dev;
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600
3601         if (!crtc->config.ips_enabled)
3602                 return;
3603
3604         assert_plane_enabled(dev_priv, crtc->plane);
3605         if (IS_BROADWELL(crtc->base.dev)) {
3606                 mutex_lock(&dev_priv->rps.hw_lock);
3607                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3608                 mutex_unlock(&dev_priv->rps.hw_lock);
3609         } else {
3610                 I915_WRITE(IPS_CTL, 0);
3611                 POSTING_READ(IPS_CTL);
3612         }
3613
3614         /* We need to wait for a vblank before we can disable the plane. */
3615         intel_wait_for_vblank(dev, crtc->pipe);
3616 }
3617
3618 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3619 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3620 {
3621         struct drm_device *dev = crtc->dev;
3622         struct drm_i915_private *dev_priv = dev->dev_private;
3623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3624         enum pipe pipe = intel_crtc->pipe;
3625         int palreg = PALETTE(pipe);
3626         int i;
3627         bool reenable_ips = false;
3628
3629         /* The clocks have to be on to load the palette. */
3630         if (!crtc->enabled || !intel_crtc->active)
3631                 return;
3632
3633         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3634                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3635                         assert_dsi_pll_enabled(dev_priv);
3636                 else
3637                         assert_pll_enabled(dev_priv, pipe);
3638         }
3639
3640         /* use legacy palette for Ironlake */
3641         if (HAS_PCH_SPLIT(dev))
3642                 palreg = LGC_PALETTE(pipe);
3643
3644         /* Workaround : Do not read or write the pipe palette/gamma data while
3645          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3646          */
3647         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3648             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3649              GAMMA_MODE_MODE_SPLIT)) {
3650                 hsw_disable_ips(intel_crtc);
3651                 reenable_ips = true;
3652         }
3653
3654         for (i = 0; i < 256; i++) {
3655                 I915_WRITE(palreg + 4 * i,
3656                            (intel_crtc->lut_r[i] << 16) |
3657                            (intel_crtc->lut_g[i] << 8) |
3658                            intel_crtc->lut_b[i]);
3659         }
3660
3661         if (reenable_ips)
3662                 hsw_enable_ips(intel_crtc);
3663 }
3664
3665 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3666 {
3667         struct drm_device *dev = crtc->dev;
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3670         struct intel_encoder *encoder;
3671         int pipe = intel_crtc->pipe;
3672         int plane = intel_crtc->plane;
3673
3674         WARN_ON(!crtc->enabled);
3675
3676         if (intel_crtc->active)
3677                 return;
3678
3679         intel_crtc->active = true;
3680
3681         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3682         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3683
3684         for_each_encoder_on_crtc(dev, crtc, encoder)
3685                 if (encoder->pre_enable)
3686                         encoder->pre_enable(encoder);
3687
3688         if (intel_crtc->config.has_pch_encoder) {
3689                 /* Note: FDI PLL enabling _must_ be done before we enable the
3690                  * cpu pipes, hence this is separate from all the other fdi/pch
3691                  * enabling. */
3692                 ironlake_fdi_pll_enable(intel_crtc);
3693         } else {
3694                 assert_fdi_tx_disabled(dev_priv, pipe);
3695                 assert_fdi_rx_disabled(dev_priv, pipe);
3696         }
3697
3698         ironlake_pfit_enable(intel_crtc);
3699
3700         /*
3701          * On ILK+ LUT must be loaded before the pipe is running but with
3702          * clocks enabled
3703          */
3704         intel_crtc_load_lut(crtc);
3705
3706         intel_update_watermarks(crtc);
3707         intel_enable_pipe(intel_crtc);
3708         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3709         intel_enable_planes(crtc);
3710         intel_crtc_update_cursor(crtc, true);
3711
3712         if (intel_crtc->config.has_pch_encoder)
3713                 ironlake_pch_enable(crtc);
3714
3715         mutex_lock(&dev->struct_mutex);
3716         intel_update_fbc(dev);
3717         mutex_unlock(&dev->struct_mutex);
3718
3719         for_each_encoder_on_crtc(dev, crtc, encoder)
3720                 encoder->enable(encoder);
3721
3722         if (HAS_PCH_CPT(dev))
3723                 cpt_verify_modeset(dev, intel_crtc->pipe);
3724
3725         /*
3726          * There seems to be a race in PCH platform hw (at least on some
3727          * outputs) where an enabled pipe still completes any pageflip right
3728          * away (as if the pipe is off) instead of waiting for vblank. As soon
3729          * as the first vblank happend, everything works as expected. Hence just
3730          * wait for one vblank before returning to avoid strange things
3731          * happening.
3732          */
3733         intel_wait_for_vblank(dev, intel_crtc->pipe);
3734 }
3735
3736 /* IPS only exists on ULT machines and is tied to pipe A. */
3737 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3738 {
3739         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3740 }
3741
3742 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3743 {
3744         struct drm_device *dev = crtc->dev;
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3747         int pipe = intel_crtc->pipe;
3748         int plane = intel_crtc->plane;
3749
3750         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3751         intel_enable_planes(crtc);
3752         intel_crtc_update_cursor(crtc, true);
3753
3754         hsw_enable_ips(intel_crtc);
3755
3756         mutex_lock(&dev->struct_mutex);
3757         intel_update_fbc(dev);
3758         mutex_unlock(&dev->struct_mutex);
3759 }
3760
3761 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3762 {
3763         struct drm_device *dev = crtc->dev;
3764         struct drm_i915_private *dev_priv = dev->dev_private;
3765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3766         int pipe = intel_crtc->pipe;
3767         int plane = intel_crtc->plane;
3768
3769         intel_crtc_wait_for_pending_flips(crtc);
3770         drm_vblank_off(dev, pipe);
3771
3772         /* FBC must be disabled before disabling the plane on HSW. */
3773         if (dev_priv->fbc.plane == plane)
3774                 intel_disable_fbc(dev);
3775
3776         hsw_disable_ips(intel_crtc);
3777
3778         intel_crtc_update_cursor(crtc, false);
3779         intel_disable_planes(crtc);
3780         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3781 }
3782
3783 /*
3784  * This implements the workaround described in the "notes" section of the mode
3785  * set sequence documentation. When going from no pipes or single pipe to
3786  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3787  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3788  */
3789 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3790 {
3791         struct drm_device *dev = crtc->base.dev;
3792         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3793
3794         /* We want to get the other_active_crtc only if there's only 1 other
3795          * active crtc. */
3796         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3797                 if (!crtc_it->active || crtc_it == crtc)
3798                         continue;
3799
3800                 if (other_active_crtc)
3801                         return;
3802
3803                 other_active_crtc = crtc_it;
3804         }
3805         if (!other_active_crtc)
3806                 return;
3807
3808         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3809         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3810 }
3811
3812 static void haswell_crtc_enable(struct drm_crtc *crtc)
3813 {
3814         struct drm_device *dev = crtc->dev;
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817         struct intel_encoder *encoder;
3818         int pipe = intel_crtc->pipe;
3819
3820         WARN_ON(!crtc->enabled);
3821
3822         if (intel_crtc->active)
3823                 return;
3824
3825         intel_crtc->active = true;
3826
3827         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3828         if (intel_crtc->config.has_pch_encoder)
3829                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3830
3831         if (intel_crtc->config.has_pch_encoder)
3832                 dev_priv->display.fdi_link_train(crtc);
3833
3834         for_each_encoder_on_crtc(dev, crtc, encoder)
3835                 if (encoder->pre_enable)
3836                         encoder->pre_enable(encoder);
3837
3838         intel_ddi_enable_pipe_clock(intel_crtc);
3839
3840         ironlake_pfit_enable(intel_crtc);
3841
3842         /*
3843          * On ILK+ LUT must be loaded before the pipe is running but with
3844          * clocks enabled
3845          */
3846         intel_crtc_load_lut(crtc);
3847
3848         intel_ddi_set_pipe_settings(crtc);
3849         intel_ddi_enable_transcoder_func(crtc);
3850
3851         intel_update_watermarks(crtc);
3852         intel_enable_pipe(intel_crtc);
3853
3854         if (intel_crtc->config.has_pch_encoder)
3855                 lpt_pch_enable(crtc);
3856
3857         for_each_encoder_on_crtc(dev, crtc, encoder) {
3858                 encoder->enable(encoder);
3859                 intel_opregion_notify_encoder(encoder, true);
3860         }
3861
3862         /* If we change the relative order between pipe/planes enabling, we need
3863          * to change the workaround. */
3864         haswell_mode_set_planes_workaround(intel_crtc);
3865         haswell_crtc_enable_planes(crtc);
3866 }
3867
3868 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3869 {
3870         struct drm_device *dev = crtc->base.dev;
3871         struct drm_i915_private *dev_priv = dev->dev_private;
3872         int pipe = crtc->pipe;
3873
3874         /* To avoid upsetting the power well on haswell only disable the pfit if
3875          * it's in use. The hw state code will make sure we get this right. */
3876         if (crtc->config.pch_pfit.enabled) {
3877                 I915_WRITE(PF_CTL(pipe), 0);
3878                 I915_WRITE(PF_WIN_POS(pipe), 0);
3879                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3880         }
3881 }
3882
3883 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3884 {
3885         struct drm_device *dev = crtc->dev;
3886         struct drm_i915_private *dev_priv = dev->dev_private;
3887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3888         struct intel_encoder *encoder;
3889         int pipe = intel_crtc->pipe;
3890         int plane = intel_crtc->plane;
3891         u32 reg, temp;
3892
3893
3894         if (!intel_crtc->active)
3895                 return;
3896
3897         for_each_encoder_on_crtc(dev, crtc, encoder)
3898                 encoder->disable(encoder);
3899
3900         intel_crtc_wait_for_pending_flips(crtc);
3901         drm_vblank_off(dev, pipe);
3902
3903         if (dev_priv->fbc.plane == plane)
3904                 intel_disable_fbc(dev);
3905
3906         intel_crtc_update_cursor(crtc, false);
3907         intel_disable_planes(crtc);
3908         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3909
3910         if (intel_crtc->config.has_pch_encoder)
3911                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3912
3913         intel_disable_pipe(dev_priv, pipe);
3914
3915         ironlake_pfit_disable(intel_crtc);
3916
3917         for_each_encoder_on_crtc(dev, crtc, encoder)
3918                 if (encoder->post_disable)
3919                         encoder->post_disable(encoder);
3920
3921         if (intel_crtc->config.has_pch_encoder) {
3922                 ironlake_fdi_disable(crtc);
3923
3924                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3925                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3926
3927                 if (HAS_PCH_CPT(dev)) {
3928                         /* disable TRANS_DP_CTL */
3929                         reg = TRANS_DP_CTL(pipe);
3930                         temp = I915_READ(reg);
3931                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3932                                   TRANS_DP_PORT_SEL_MASK);
3933                         temp |= TRANS_DP_PORT_SEL_NONE;
3934                         I915_WRITE(reg, temp);
3935
3936                         /* disable DPLL_SEL */
3937                         temp = I915_READ(PCH_DPLL_SEL);
3938                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3939                         I915_WRITE(PCH_DPLL_SEL, temp);
3940                 }
3941
3942                 /* disable PCH DPLL */
3943                 intel_disable_shared_dpll(intel_crtc);
3944
3945                 ironlake_fdi_pll_disable(intel_crtc);
3946         }
3947
3948         intel_crtc->active = false;
3949         intel_update_watermarks(crtc);
3950
3951         mutex_lock(&dev->struct_mutex);
3952         intel_update_fbc(dev);
3953         mutex_unlock(&dev->struct_mutex);
3954 }
3955
3956 static void haswell_crtc_disable(struct drm_crtc *crtc)
3957 {
3958         struct drm_device *dev = crtc->dev;
3959         struct drm_i915_private *dev_priv = dev->dev_private;
3960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3961         struct intel_encoder *encoder;
3962         int pipe = intel_crtc->pipe;
3963         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3964
3965         if (!intel_crtc->active)
3966                 return;
3967
3968         haswell_crtc_disable_planes(crtc);
3969
3970         for_each_encoder_on_crtc(dev, crtc, encoder) {
3971                 intel_opregion_notify_encoder(encoder, false);
3972                 encoder->disable(encoder);
3973         }
3974
3975         if (intel_crtc->config.has_pch_encoder)
3976                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3977         intel_disable_pipe(dev_priv, pipe);
3978
3979         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3980
3981         ironlake_pfit_disable(intel_crtc);
3982
3983         intel_ddi_disable_pipe_clock(intel_crtc);
3984
3985         for_each_encoder_on_crtc(dev, crtc, encoder)
3986                 if (encoder->post_disable)
3987                         encoder->post_disable(encoder);
3988
3989         if (intel_crtc->config.has_pch_encoder) {
3990                 lpt_disable_pch_transcoder(dev_priv);
3991                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3992                 intel_ddi_fdi_disable(crtc);
3993         }
3994
3995         intel_crtc->active = false;
3996         intel_update_watermarks(crtc);
3997
3998         mutex_lock(&dev->struct_mutex);
3999         intel_update_fbc(dev);
4000         mutex_unlock(&dev->struct_mutex);
4001 }
4002
4003 static void ironlake_crtc_off(struct drm_crtc *crtc)
4004 {
4005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4006         intel_put_shared_dpll(intel_crtc);
4007 }
4008
4009 static void haswell_crtc_off(struct drm_crtc *crtc)
4010 {
4011         intel_ddi_put_crtc_pll(crtc);
4012 }
4013
4014 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4015 {
4016         if (!enable && intel_crtc->overlay) {
4017                 struct drm_device *dev = intel_crtc->base.dev;
4018                 struct drm_i915_private *dev_priv = dev->dev_private;
4019
4020                 mutex_lock(&dev->struct_mutex);
4021                 dev_priv->mm.interruptible = false;
4022                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4023                 dev_priv->mm.interruptible = true;
4024                 mutex_unlock(&dev->struct_mutex);
4025         }
4026
4027         /* Let userspace switch the overlay on again. In most cases userspace
4028          * has to recompute where to put it anyway.
4029          */
4030 }
4031
4032 /**
4033  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
4034  * cursor plane briefly if not already running after enabling the display
4035  * plane.
4036  * This workaround avoids occasional blank screens when self refresh is
4037  * enabled.
4038  */
4039 static void
4040 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
4041 {
4042         u32 cntl = I915_READ(CURCNTR(pipe));
4043
4044         if ((cntl & CURSOR_MODE) == 0) {
4045                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4046
4047                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4048                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4049                 intel_wait_for_vblank(dev_priv->dev, pipe);
4050                 I915_WRITE(CURCNTR(pipe), cntl);
4051                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4052                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4053         }
4054 }
4055
4056 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4057 {
4058         struct drm_device *dev = crtc->base.dev;
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060         struct intel_crtc_config *pipe_config = &crtc->config;
4061
4062         if (!crtc->config.gmch_pfit.control)
4063                 return;
4064
4065         /*
4066          * The panel fitter should only be adjusted whilst the pipe is disabled,
4067          * according to register description and PRM.
4068          */
4069         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4070         assert_pipe_disabled(dev_priv, crtc->pipe);
4071
4072         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4073         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4074
4075         /* Border color in case we don't scale up to the full screen. Black by
4076          * default, change to something else for debugging. */
4077         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4078 }
4079
4080 #define for_each_power_domain(domain, mask)                             \
4081         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4082                 if ((1 << (domain)) & (mask))
4083
4084 enum intel_display_power_domain
4085 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4086 {
4087         struct drm_device *dev = intel_encoder->base.dev;
4088         struct intel_digital_port *intel_dig_port;
4089
4090         switch (intel_encoder->type) {
4091         case INTEL_OUTPUT_UNKNOWN:
4092                 /* Only DDI platforms should ever use this output type */
4093                 WARN_ON_ONCE(!HAS_DDI(dev));
4094         case INTEL_OUTPUT_DISPLAYPORT:
4095         case INTEL_OUTPUT_HDMI:
4096         case INTEL_OUTPUT_EDP:
4097                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4098                 switch (intel_dig_port->port) {
4099                 case PORT_A:
4100                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4101                 case PORT_B:
4102                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4103                 case PORT_C:
4104                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4105                 case PORT_D:
4106                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4107                 default:
4108                         WARN_ON_ONCE(1);
4109                         return POWER_DOMAIN_PORT_OTHER;
4110                 }
4111         case INTEL_OUTPUT_ANALOG:
4112                 return POWER_DOMAIN_PORT_CRT;
4113         case INTEL_OUTPUT_DSI:
4114                 return POWER_DOMAIN_PORT_DSI;
4115         default:
4116                 return POWER_DOMAIN_PORT_OTHER;
4117         }
4118 }
4119
4120 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4121 {
4122         struct drm_device *dev = crtc->dev;
4123         struct intel_encoder *intel_encoder;
4124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125         enum pipe pipe = intel_crtc->pipe;
4126         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4127         unsigned long mask;
4128         enum transcoder transcoder;
4129
4130         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4131
4132         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4133         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4134         if (pfit_enabled)
4135                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4136
4137         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4138                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4139
4140         return mask;
4141 }
4142
4143 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4144                                   bool enable)
4145 {
4146         if (dev_priv->power_domains.init_power_on == enable)
4147                 return;
4148
4149         if (enable)
4150                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4151         else
4152                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4153
4154         dev_priv->power_domains.init_power_on = enable;
4155 }
4156
4157 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4158 {
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4161         struct intel_crtc *crtc;
4162
4163         /*
4164          * First get all needed power domains, then put all unneeded, to avoid
4165          * any unnecessary toggling of the power wells.
4166          */
4167         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4168                 enum intel_display_power_domain domain;
4169
4170                 if (!crtc->base.enabled)
4171                         continue;
4172
4173                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4174
4175                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4176                         intel_display_power_get(dev_priv, domain);
4177         }
4178
4179         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4180                 enum intel_display_power_domain domain;
4181
4182                 for_each_power_domain(domain, crtc->enabled_power_domains)
4183                         intel_display_power_put(dev_priv, domain);
4184
4185                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4186         }
4187
4188         intel_display_set_init_power(dev_priv, false);
4189 }
4190
4191 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4192 {
4193         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4194
4195         /* Obtain SKU information */
4196         mutex_lock(&dev_priv->dpio_lock);
4197         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4198                 CCK_FUSE_HPLL_FREQ_MASK;
4199         mutex_unlock(&dev_priv->dpio_lock);
4200
4201         return vco_freq[hpll_freq];
4202 }
4203
4204 /* Adjust CDclk dividers to allow high res or save power if possible */
4205 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4206 {
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         u32 val, cmd;
4209
4210         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4211                 cmd = 2;
4212         else if (cdclk == 266)
4213                 cmd = 1;
4214         else
4215                 cmd = 0;
4216
4217         mutex_lock(&dev_priv->rps.hw_lock);
4218         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4219         val &= ~DSPFREQGUAR_MASK;
4220         val |= (cmd << DSPFREQGUAR_SHIFT);
4221         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4222         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4223                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4224                      50)) {
4225                 DRM_ERROR("timed out waiting for CDclk change\n");
4226         }
4227         mutex_unlock(&dev_priv->rps.hw_lock);
4228
4229         if (cdclk == 400) {
4230                 u32 divider, vco;
4231
4232                 vco = valleyview_get_vco(dev_priv);
4233                 divider = ((vco << 1) / cdclk) - 1;
4234
4235                 mutex_lock(&dev_priv->dpio_lock);
4236                 /* adjust cdclk divider */
4237                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4238                 val &= ~0xf;
4239                 val |= divider;
4240                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4241                 mutex_unlock(&dev_priv->dpio_lock);
4242         }
4243
4244         mutex_lock(&dev_priv->dpio_lock);
4245         /* adjust self-refresh exit latency value */
4246         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4247         val &= ~0x7f;
4248
4249         /*
4250          * For high bandwidth configs, we set a higher latency in the bunit
4251          * so that the core display fetch happens in time to avoid underruns.
4252          */
4253         if (cdclk == 400)
4254                 val |= 4500 / 250; /* 4.5 usec */
4255         else
4256                 val |= 3000 / 250; /* 3.0 usec */
4257         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4258         mutex_unlock(&dev_priv->dpio_lock);
4259
4260         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4261         intel_i2c_reset(dev);
4262 }
4263
4264 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4265 {
4266         int cur_cdclk, vco;
4267         int divider;
4268
4269         vco = valleyview_get_vco(dev_priv);
4270
4271         mutex_lock(&dev_priv->dpio_lock);
4272         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4273         mutex_unlock(&dev_priv->dpio_lock);
4274
4275         divider &= 0xf;
4276
4277         cur_cdclk = (vco << 1) / (divider + 1);
4278
4279         return cur_cdclk;
4280 }
4281
4282 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4283                                  int max_pixclk)
4284 {
4285         int cur_cdclk;
4286
4287         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4288
4289         /*
4290          * Really only a few cases to deal with, as only 4 CDclks are supported:
4291          *   200MHz
4292          *   267MHz
4293          *   320MHz
4294          *   400MHz
4295          * So we check to see whether we're above 90% of the lower bin and
4296          * adjust if needed.
4297          */
4298         if (max_pixclk > 288000) {
4299                 return 400;
4300         } else if (max_pixclk > 240000) {
4301                 return 320;
4302         } else
4303                 return 266;
4304         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4305 }
4306
4307 /* compute the max pixel clock for new configuration */
4308 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4309 {
4310         struct drm_device *dev = dev_priv->dev;
4311         struct intel_crtc *intel_crtc;
4312         int max_pixclk = 0;
4313
4314         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4315                             base.head) {
4316                 if (intel_crtc->new_enabled)
4317                         max_pixclk = max(max_pixclk,
4318                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4319         }
4320
4321         return max_pixclk;
4322 }
4323
4324 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4325                                             unsigned *prepare_pipes)
4326 {
4327         struct drm_i915_private *dev_priv = dev->dev_private;
4328         struct intel_crtc *intel_crtc;
4329         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4330         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4331
4332         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4333                 return;
4334
4335         /* disable/enable all currently active pipes while we change cdclk */
4336         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4337                             base.head)
4338                 if (intel_crtc->base.enabled)
4339                         *prepare_pipes |= (1 << intel_crtc->pipe);
4340 }
4341
4342 static void valleyview_modeset_global_resources(struct drm_device *dev)
4343 {
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4346         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4347         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4348
4349         if (req_cdclk != cur_cdclk)
4350                 valleyview_set_cdclk(dev, req_cdclk);
4351         modeset_update_crtc_power_domains(dev);
4352 }
4353
4354 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4355 {
4356         struct drm_device *dev = crtc->dev;
4357         struct drm_i915_private *dev_priv = dev->dev_private;
4358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4359         struct intel_encoder *encoder;
4360         int pipe = intel_crtc->pipe;
4361         int plane = intel_crtc->plane;
4362         bool is_dsi;
4363
4364         WARN_ON(!crtc->enabled);
4365
4366         if (intel_crtc->active)
4367                 return;
4368
4369         intel_crtc->active = true;
4370
4371         for_each_encoder_on_crtc(dev, crtc, encoder)
4372                 if (encoder->pre_pll_enable)
4373                         encoder->pre_pll_enable(encoder);
4374
4375         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4376
4377         if (!is_dsi)
4378                 vlv_enable_pll(intel_crtc);
4379
4380         for_each_encoder_on_crtc(dev, crtc, encoder)
4381                 if (encoder->pre_enable)
4382                         encoder->pre_enable(encoder);
4383
4384         i9xx_pfit_enable(intel_crtc);
4385
4386         intel_crtc_load_lut(crtc);
4387
4388         intel_update_watermarks(crtc);
4389         intel_enable_pipe(intel_crtc);
4390         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4391         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4392         intel_enable_planes(crtc);
4393         intel_crtc_update_cursor(crtc, true);
4394
4395         intel_update_fbc(dev);
4396
4397         for_each_encoder_on_crtc(dev, crtc, encoder)
4398                 encoder->enable(encoder);
4399 }
4400
4401 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4402 {
4403         struct drm_device *dev = crtc->dev;
4404         struct drm_i915_private *dev_priv = dev->dev_private;
4405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4406         struct intel_encoder *encoder;
4407         int pipe = intel_crtc->pipe;
4408         int plane = intel_crtc->plane;
4409
4410         WARN_ON(!crtc->enabled);
4411
4412         if (intel_crtc->active)
4413                 return;
4414
4415         intel_crtc->active = true;
4416
4417         for_each_encoder_on_crtc(dev, crtc, encoder)
4418                 if (encoder->pre_enable)
4419                         encoder->pre_enable(encoder);
4420
4421         i9xx_enable_pll(intel_crtc);
4422
4423         i9xx_pfit_enable(intel_crtc);
4424
4425         intel_crtc_load_lut(crtc);
4426
4427         intel_update_watermarks(crtc);
4428         intel_enable_pipe(intel_crtc);
4429         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4430         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4431         intel_enable_planes(crtc);
4432         /* The fixup needs to happen before cursor is enabled */
4433         if (IS_G4X(dev))
4434                 g4x_fixup_plane(dev_priv, pipe);
4435         intel_crtc_update_cursor(crtc, true);
4436
4437         /* Give the overlay scaler a chance to enable if it's on this pipe */
4438         intel_crtc_dpms_overlay(intel_crtc, true);
4439
4440         intel_update_fbc(dev);
4441
4442         for_each_encoder_on_crtc(dev, crtc, encoder)
4443                 encoder->enable(encoder);
4444 }
4445
4446 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4447 {
4448         struct drm_device *dev = crtc->base.dev;
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451         if (!crtc->config.gmch_pfit.control)
4452                 return;
4453
4454         assert_pipe_disabled(dev_priv, crtc->pipe);
4455
4456         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4457                          I915_READ(PFIT_CONTROL));
4458         I915_WRITE(PFIT_CONTROL, 0);
4459 }
4460
4461 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4462 {
4463         struct drm_device *dev = crtc->dev;
4464         struct drm_i915_private *dev_priv = dev->dev_private;
4465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4466         struct intel_encoder *encoder;
4467         int pipe = intel_crtc->pipe;
4468         int plane = intel_crtc->plane;
4469
4470         if (!intel_crtc->active)
4471                 return;
4472
4473         for_each_encoder_on_crtc(dev, crtc, encoder)
4474                 encoder->disable(encoder);
4475
4476         /* Give the overlay scaler a chance to disable if it's on this pipe */
4477         intel_crtc_wait_for_pending_flips(crtc);
4478         drm_vblank_off(dev, pipe);
4479
4480         if (dev_priv->fbc.plane == plane)
4481                 intel_disable_fbc(dev);
4482
4483         intel_crtc_dpms_overlay(intel_crtc, false);
4484         intel_crtc_update_cursor(crtc, false);
4485         intel_disable_planes(crtc);
4486         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4487
4488         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4489         intel_disable_pipe(dev_priv, pipe);
4490
4491         i9xx_pfit_disable(intel_crtc);
4492
4493         for_each_encoder_on_crtc(dev, crtc, encoder)
4494                 if (encoder->post_disable)
4495                         encoder->post_disable(encoder);
4496
4497         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4498                 vlv_disable_pll(dev_priv, pipe);
4499         else if (!IS_VALLEYVIEW(dev))
4500                 i9xx_disable_pll(dev_priv, pipe);
4501
4502         intel_crtc->active = false;
4503         intel_update_watermarks(crtc);
4504
4505         intel_update_fbc(dev);
4506 }
4507
4508 static void i9xx_crtc_off(struct drm_crtc *crtc)
4509 {
4510 }
4511
4512 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4513                                     bool enabled)
4514 {
4515         struct drm_device *dev = crtc->dev;
4516         struct drm_i915_master_private *master_priv;
4517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4518         int pipe = intel_crtc->pipe;
4519
4520         if (!dev->primary->master)
4521                 return;
4522
4523         master_priv = dev->primary->master->driver_priv;
4524         if (!master_priv->sarea_priv)
4525                 return;
4526
4527         switch (pipe) {
4528         case 0:
4529                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4530                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4531                 break;
4532         case 1:
4533                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4534                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4535                 break;
4536         default:
4537                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4538                 break;
4539         }
4540 }
4541
4542 /**
4543  * Sets the power management mode of the pipe and plane.
4544  */
4545 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4546 {
4547         struct drm_device *dev = crtc->dev;
4548         struct drm_i915_private *dev_priv = dev->dev_private;
4549         struct intel_encoder *intel_encoder;
4550         bool enable = false;
4551
4552         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4553                 enable |= intel_encoder->connectors_active;
4554
4555         if (enable)
4556                 dev_priv->display.crtc_enable(crtc);
4557         else
4558                 dev_priv->display.crtc_disable(crtc);
4559
4560         intel_crtc_update_sarea(crtc, enable);
4561 }
4562
4563 static void intel_crtc_disable(struct drm_crtc *crtc)
4564 {
4565         struct drm_device *dev = crtc->dev;
4566         struct drm_connector *connector;
4567         struct drm_i915_private *dev_priv = dev->dev_private;
4568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4569
4570         /* crtc should still be enabled when we disable it. */
4571         WARN_ON(!crtc->enabled);
4572
4573         dev_priv->display.crtc_disable(crtc);
4574         intel_crtc->eld_vld = false;
4575         intel_crtc_update_sarea(crtc, false);
4576         dev_priv->display.off(crtc);
4577
4578         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4579         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4580         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4581
4582         if (crtc->primary->fb) {
4583                 mutex_lock(&dev->struct_mutex);
4584                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4585                 mutex_unlock(&dev->struct_mutex);
4586                 crtc->primary->fb = NULL;
4587         }
4588
4589         /* Update computed state. */
4590         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4591                 if (!connector->encoder || !connector->encoder->crtc)
4592                         continue;
4593
4594                 if (connector->encoder->crtc != crtc)
4595                         continue;
4596
4597                 connector->dpms = DRM_MODE_DPMS_OFF;
4598                 to_intel_encoder(connector->encoder)->connectors_active = false;
4599         }
4600 }
4601
4602 void intel_encoder_destroy(struct drm_encoder *encoder)
4603 {
4604         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4605
4606         drm_encoder_cleanup(encoder);
4607         kfree(intel_encoder);
4608 }
4609
4610 /* Simple dpms helper for encoders with just one connector, no cloning and only
4611  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4612  * state of the entire output pipe. */
4613 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4614 {
4615         if (mode == DRM_MODE_DPMS_ON) {
4616                 encoder->connectors_active = true;
4617
4618                 intel_crtc_update_dpms(encoder->base.crtc);
4619         } else {
4620                 encoder->connectors_active = false;
4621
4622                 intel_crtc_update_dpms(encoder->base.crtc);
4623         }
4624 }
4625
4626 /* Cross check the actual hw state with our own modeset state tracking (and it's
4627  * internal consistency). */
4628 static void intel_connector_check_state(struct intel_connector *connector)
4629 {
4630         if (connector->get_hw_state(connector)) {
4631                 struct intel_encoder *encoder = connector->encoder;
4632                 struct drm_crtc *crtc;
4633                 bool encoder_enabled;
4634                 enum pipe pipe;
4635
4636                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4637                               connector->base.base.id,
4638                               drm_get_connector_name(&connector->base));
4639
4640                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4641                      "wrong connector dpms state\n");
4642                 WARN(connector->base.encoder != &encoder->base,
4643                      "active connector not linked to encoder\n");
4644                 WARN(!encoder->connectors_active,
4645                      "encoder->connectors_active not set\n");
4646
4647                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4648                 WARN(!encoder_enabled, "encoder not enabled\n");
4649                 if (WARN_ON(!encoder->base.crtc))
4650                         return;
4651
4652                 crtc = encoder->base.crtc;
4653
4654                 WARN(!crtc->enabled, "crtc not enabled\n");
4655                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4656                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4657                      "encoder active on the wrong pipe\n");
4658         }
4659 }
4660
4661 /* Even simpler default implementation, if there's really no special case to
4662  * consider. */
4663 void intel_connector_dpms(struct drm_connector *connector, int mode)
4664 {
4665         /* All the simple cases only support two dpms states. */
4666         if (mode != DRM_MODE_DPMS_ON)
4667                 mode = DRM_MODE_DPMS_OFF;
4668
4669         if (mode == connector->dpms)
4670                 return;
4671
4672         connector->dpms = mode;
4673
4674         /* Only need to change hw state when actually enabled */
4675         if (connector->encoder)
4676                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4677
4678         intel_modeset_check_state(connector->dev);
4679 }
4680
4681 /* Simple connector->get_hw_state implementation for encoders that support only
4682  * one connector and no cloning and hence the encoder state determines the state
4683  * of the connector. */
4684 bool intel_connector_get_hw_state(struct intel_connector *connector)
4685 {
4686         enum pipe pipe = 0;
4687         struct intel_encoder *encoder = connector->encoder;
4688
4689         return encoder->get_hw_state(encoder, &pipe);
4690 }
4691
4692 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4693                                      struct intel_crtc_config *pipe_config)
4694 {
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         struct intel_crtc *pipe_B_crtc =
4697                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4698
4699         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4700                       pipe_name(pipe), pipe_config->fdi_lanes);
4701         if (pipe_config->fdi_lanes > 4) {
4702                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4703                               pipe_name(pipe), pipe_config->fdi_lanes);
4704                 return false;
4705         }
4706
4707         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4708                 if (pipe_config->fdi_lanes > 2) {
4709                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4710                                       pipe_config->fdi_lanes);
4711                         return false;
4712                 } else {
4713                         return true;
4714                 }
4715         }
4716
4717         if (INTEL_INFO(dev)->num_pipes == 2)
4718                 return true;
4719
4720         /* Ivybridge 3 pipe is really complicated */
4721         switch (pipe) {
4722         case PIPE_A:
4723                 return true;
4724         case PIPE_B:
4725                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4726                     pipe_config->fdi_lanes > 2) {
4727                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4728                                       pipe_name(pipe), pipe_config->fdi_lanes);
4729                         return false;
4730                 }
4731                 return true;
4732         case PIPE_C:
4733                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4734                     pipe_B_crtc->config.fdi_lanes <= 2) {
4735                         if (pipe_config->fdi_lanes > 2) {
4736                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4737                                               pipe_name(pipe), pipe_config->fdi_lanes);
4738                                 return false;
4739                         }
4740                 } else {
4741                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4742                         return false;
4743                 }
4744                 return true;
4745         default:
4746                 BUG();
4747         }
4748 }
4749
4750 #define RETRY 1
4751 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4752                                        struct intel_crtc_config *pipe_config)
4753 {
4754         struct drm_device *dev = intel_crtc->base.dev;
4755         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4756         int lane, link_bw, fdi_dotclock;
4757         bool setup_ok, needs_recompute = false;
4758
4759 retry:
4760         /* FDI is a binary signal running at ~2.7GHz, encoding
4761          * each output octet as 10 bits. The actual frequency
4762          * is stored as a divider into a 100MHz clock, and the
4763          * mode pixel clock is stored in units of 1KHz.
4764          * Hence the bw of each lane in terms of the mode signal
4765          * is:
4766          */
4767         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4768
4769         fdi_dotclock = adjusted_mode->crtc_clock;
4770
4771         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4772                                            pipe_config->pipe_bpp);
4773
4774         pipe_config->fdi_lanes = lane;
4775
4776         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4777                                link_bw, &pipe_config->fdi_m_n);
4778
4779         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4780                                             intel_crtc->pipe, pipe_config);
4781         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4782                 pipe_config->pipe_bpp -= 2*3;
4783                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4784                               pipe_config->pipe_bpp);
4785                 needs_recompute = true;
4786                 pipe_config->bw_constrained = true;
4787
4788                 goto retry;
4789         }
4790
4791         if (needs_recompute)
4792                 return RETRY;
4793
4794         return setup_ok ? 0 : -EINVAL;
4795 }
4796
4797 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4798                                    struct intel_crtc_config *pipe_config)
4799 {
4800         pipe_config->ips_enabled = i915.enable_ips &&
4801                                    hsw_crtc_supports_ips(crtc) &&
4802                                    pipe_config->pipe_bpp <= 24;
4803 }
4804
4805 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4806                                      struct intel_crtc_config *pipe_config)
4807 {
4808         struct drm_device *dev = crtc->base.dev;
4809         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4810
4811         /* FIXME should check pixel clock limits on all platforms */
4812         if (INTEL_INFO(dev)->gen < 4) {
4813                 struct drm_i915_private *dev_priv = dev->dev_private;
4814                 int clock_limit =
4815                         dev_priv->display.get_display_clock_speed(dev);
4816
4817                 /*
4818                  * Enable pixel doubling when the dot clock
4819                  * is > 90% of the (display) core speed.
4820                  *
4821                  * GDG double wide on either pipe,
4822                  * otherwise pipe A only.
4823                  */
4824                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4825                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4826                         clock_limit *= 2;
4827                         pipe_config->double_wide = true;
4828                 }
4829
4830                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4831                         return -EINVAL;
4832         }
4833
4834         /*
4835          * Pipe horizontal size must be even in:
4836          * - DVO ganged mode
4837          * - LVDS dual channel mode
4838          * - Double wide pipe
4839          */
4840         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4841              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4842                 pipe_config->pipe_src_w &= ~1;
4843
4844         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4845          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4846          */
4847         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4848                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4849                 return -EINVAL;
4850
4851         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4852                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4853         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4854                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4855                  * for lvds. */
4856                 pipe_config->pipe_bpp = 8*3;
4857         }
4858
4859         if (HAS_IPS(dev))
4860                 hsw_compute_ips_config(crtc, pipe_config);
4861
4862         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4863          * clock survives for now. */
4864         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4865                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4866
4867         if (pipe_config->has_pch_encoder)
4868                 return ironlake_fdi_compute_config(crtc, pipe_config);
4869
4870         return 0;
4871 }
4872
4873 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4874 {
4875         return 400000; /* FIXME */
4876 }
4877
4878 static int i945_get_display_clock_speed(struct drm_device *dev)
4879 {
4880         return 400000;
4881 }
4882
4883 static int i915_get_display_clock_speed(struct drm_device *dev)
4884 {
4885         return 333000;
4886 }
4887
4888 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4889 {
4890         return 200000;
4891 }
4892
4893 static int pnv_get_display_clock_speed(struct drm_device *dev)
4894 {
4895         u16 gcfgc = 0;
4896
4897         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4898
4899         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4900         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4901                 return 267000;
4902         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4903                 return 333000;
4904         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4905                 return 444000;
4906         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4907                 return 200000;
4908         default:
4909                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4910         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4911                 return 133000;
4912         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4913                 return 167000;
4914         }
4915 }
4916
4917 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4918 {
4919         u16 gcfgc = 0;
4920
4921         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4922
4923         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4924                 return 133000;
4925         else {
4926                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4927                 case GC_DISPLAY_CLOCK_333_MHZ:
4928                         return 333000;
4929                 default:
4930                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4931                         return 190000;
4932                 }
4933         }
4934 }
4935
4936 static int i865_get_display_clock_speed(struct drm_device *dev)
4937 {
4938         return 266000;
4939 }
4940
4941 static int i855_get_display_clock_speed(struct drm_device *dev)
4942 {
4943         u16 hpllcc = 0;
4944         /* Assume that the hardware is in the high speed state.  This
4945          * should be the default.
4946          */
4947         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4948         case GC_CLOCK_133_200:
4949         case GC_CLOCK_100_200:
4950                 return 200000;
4951         case GC_CLOCK_166_250:
4952                 return 250000;
4953         case GC_CLOCK_100_133:
4954                 return 133000;
4955         }
4956
4957         /* Shouldn't happen */
4958         return 0;
4959 }
4960
4961 static int i830_get_display_clock_speed(struct drm_device *dev)
4962 {
4963         return 133000;
4964 }
4965
4966 static void
4967 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4968 {
4969         while (*num > DATA_LINK_M_N_MASK ||
4970                *den > DATA_LINK_M_N_MASK) {
4971                 *num >>= 1;
4972                 *den >>= 1;
4973         }
4974 }
4975
4976 static void compute_m_n(unsigned int m, unsigned int n,
4977                         uint32_t *ret_m, uint32_t *ret_n)
4978 {
4979         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4980         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4981         intel_reduce_m_n_ratio(ret_m, ret_n);
4982 }
4983
4984 void
4985 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4986                        int pixel_clock, int link_clock,
4987                        struct intel_link_m_n *m_n)
4988 {
4989         m_n->tu = 64;
4990
4991         compute_m_n(bits_per_pixel * pixel_clock,
4992                     link_clock * nlanes * 8,
4993                     &m_n->gmch_m, &m_n->gmch_n);
4994
4995         compute_m_n(pixel_clock, link_clock,
4996                     &m_n->link_m, &m_n->link_n);
4997 }
4998
4999 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5000 {
5001         if (i915.panel_use_ssc >= 0)
5002                 return i915.panel_use_ssc != 0;
5003         return dev_priv->vbt.lvds_use_ssc
5004                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5005 }
5006
5007 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5008 {
5009         struct drm_device *dev = crtc->dev;
5010         struct drm_i915_private *dev_priv = dev->dev_private;
5011         int refclk;
5012
5013         if (IS_VALLEYVIEW(dev)) {
5014                 refclk = 100000;
5015         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5016             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5017                 refclk = dev_priv->vbt.lvds_ssc_freq;
5018                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5019         } else if (!IS_GEN2(dev)) {
5020                 refclk = 96000;
5021         } else {
5022                 refclk = 48000;
5023         }
5024
5025         return refclk;
5026 }
5027
5028 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5029 {
5030         return (1 << dpll->n) << 16 | dpll->m2;
5031 }
5032
5033 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5034 {
5035         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5036 }
5037
5038 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5039                                      intel_clock_t *reduced_clock)
5040 {
5041         struct drm_device *dev = crtc->base.dev;
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043         int pipe = crtc->pipe;
5044         u32 fp, fp2 = 0;
5045
5046         if (IS_PINEVIEW(dev)) {
5047                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5048                 if (reduced_clock)
5049                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5050         } else {
5051                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5052                 if (reduced_clock)
5053                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5054         }
5055
5056         I915_WRITE(FP0(pipe), fp);
5057         crtc->config.dpll_hw_state.fp0 = fp;
5058
5059         crtc->lowfreq_avail = false;
5060         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5061             reduced_clock && i915.powersave) {
5062                 I915_WRITE(FP1(pipe), fp2);
5063                 crtc->config.dpll_hw_state.fp1 = fp2;
5064                 crtc->lowfreq_avail = true;
5065         } else {
5066                 I915_WRITE(FP1(pipe), fp);
5067                 crtc->config.dpll_hw_state.fp1 = fp;
5068         }
5069 }
5070
5071 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5072                 pipe)
5073 {
5074         u32 reg_val;
5075
5076         /*
5077          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5078          * and set it to a reasonable value instead.
5079          */
5080         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5081         reg_val &= 0xffffff00;
5082         reg_val |= 0x00000030;
5083         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5084
5085         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5086         reg_val &= 0x8cffffff;
5087         reg_val = 0x8c000000;
5088         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5089
5090         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5091         reg_val &= 0xffffff00;
5092         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5093
5094         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5095         reg_val &= 0x00ffffff;
5096         reg_val |= 0xb0000000;
5097         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5098 }
5099
5100 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5101                                          struct intel_link_m_n *m_n)
5102 {
5103         struct drm_device *dev = crtc->base.dev;
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         int pipe = crtc->pipe;
5106
5107         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5108         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5109         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5110         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5111 }
5112
5113 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5114                                          struct intel_link_m_n *m_n)
5115 {
5116         struct drm_device *dev = crtc->base.dev;
5117         struct drm_i915_private *dev_priv = dev->dev_private;
5118         int pipe = crtc->pipe;
5119         enum transcoder transcoder = crtc->config.cpu_transcoder;
5120
5121         if (INTEL_INFO(dev)->gen >= 5) {
5122                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5123                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5124                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5125                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5126         } else {
5127                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5128                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5129                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5130                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5131         }
5132 }
5133
5134 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5135 {
5136         if (crtc->config.has_pch_encoder)
5137                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5138         else
5139                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5140 }
5141
5142 static void vlv_update_pll(struct intel_crtc *crtc)
5143 {
5144         struct drm_device *dev = crtc->base.dev;
5145         struct drm_i915_private *dev_priv = dev->dev_private;
5146         int pipe = crtc->pipe;
5147         u32 dpll, mdiv;
5148         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5149         u32 coreclk, reg_val, dpll_md;
5150
5151         mutex_lock(&dev_priv->dpio_lock);
5152
5153         bestn = crtc->config.dpll.n;
5154         bestm1 = crtc->config.dpll.m1;
5155         bestm2 = crtc->config.dpll.m2;
5156         bestp1 = crtc->config.dpll.p1;
5157         bestp2 = crtc->config.dpll.p2;
5158
5159         /* See eDP HDMI DPIO driver vbios notes doc */
5160
5161         /* PLL B needs special handling */
5162         if (pipe)
5163                 vlv_pllb_recal_opamp(dev_priv, pipe);
5164
5165         /* Set up Tx target for periodic Rcomp update */
5166         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5167
5168         /* Disable target IRef on PLL */
5169         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5170         reg_val &= 0x00ffffff;
5171         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5172
5173         /* Disable fast lock */
5174         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5175
5176         /* Set idtafcrecal before PLL is enabled */
5177         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5178         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5179         mdiv |= ((bestn << DPIO_N_SHIFT));
5180         mdiv |= (1 << DPIO_K_SHIFT);
5181
5182         /*
5183          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5184          * but we don't support that).
5185          * Note: don't use the DAC post divider as it seems unstable.
5186          */
5187         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5188         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5189
5190         mdiv |= DPIO_ENABLE_CALIBRATION;
5191         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5192
5193         /* Set HBR and RBR LPF coefficients */
5194         if (crtc->config.port_clock == 162000 ||
5195             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5196             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5197                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5198                                  0x009f0003);
5199         else
5200                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5201                                  0x00d0000f);
5202
5203         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5204             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5205                 /* Use SSC source */
5206                 if (!pipe)
5207                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5208                                          0x0df40000);
5209                 else
5210                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5211                                          0x0df70000);
5212         } else { /* HDMI or VGA */
5213                 /* Use bend source */
5214                 if (!pipe)
5215                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5216                                          0x0df70000);
5217                 else
5218                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5219                                          0x0df40000);
5220         }
5221
5222         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5223         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5224         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5225             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5226                 coreclk |= 0x01000000;
5227         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5228
5229         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5230
5231         /*
5232          * Enable DPIO clock input. We should never disable the reference
5233          * clock for pipe B, since VGA hotplug / manual detection depends
5234          * on it.
5235          */
5236         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5237                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5238         /* We should never disable this, set it here for state tracking */
5239         if (pipe == PIPE_B)
5240                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5241         dpll |= DPLL_VCO_ENABLE;
5242         crtc->config.dpll_hw_state.dpll = dpll;
5243
5244         dpll_md = (crtc->config.pixel_multiplier - 1)
5245                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5246         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5247
5248         if (crtc->config.has_dp_encoder)
5249                 intel_dp_set_m_n(crtc);
5250
5251         mutex_unlock(&dev_priv->dpio_lock);
5252 }
5253
5254 static void i9xx_update_pll(struct intel_crtc *crtc,
5255                             intel_clock_t *reduced_clock,
5256                             int num_connectors)
5257 {
5258         struct drm_device *dev = crtc->base.dev;
5259         struct drm_i915_private *dev_priv = dev->dev_private;
5260         u32 dpll;
5261         bool is_sdvo;
5262         struct dpll *clock = &crtc->config.dpll;
5263
5264         i9xx_update_pll_dividers(crtc, reduced_clock);
5265
5266         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5267                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5268
5269         dpll = DPLL_VGA_MODE_DIS;
5270
5271         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5272                 dpll |= DPLLB_MODE_LVDS;
5273         else
5274                 dpll |= DPLLB_MODE_DAC_SERIAL;
5275
5276         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5277                 dpll |= (crtc->config.pixel_multiplier - 1)
5278                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5279         }
5280
5281         if (is_sdvo)
5282                 dpll |= DPLL_SDVO_HIGH_SPEED;
5283
5284         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5285                 dpll |= DPLL_SDVO_HIGH_SPEED;
5286
5287         /* compute bitmask from p1 value */
5288         if (IS_PINEVIEW(dev))
5289                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5290         else {
5291                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5292                 if (IS_G4X(dev) && reduced_clock)
5293                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5294         }
5295         switch (clock->p2) {
5296         case 5:
5297                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5298                 break;
5299         case 7:
5300                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5301                 break;
5302         case 10:
5303                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5304                 break;
5305         case 14:
5306                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5307                 break;
5308         }
5309         if (INTEL_INFO(dev)->gen >= 4)
5310                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5311
5312         if (crtc->config.sdvo_tv_clock)
5313                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5314         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5315                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5316                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5317         else
5318                 dpll |= PLL_REF_INPUT_DREFCLK;
5319
5320         dpll |= DPLL_VCO_ENABLE;
5321         crtc->config.dpll_hw_state.dpll = dpll;
5322
5323         if (INTEL_INFO(dev)->gen >= 4) {
5324                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5325                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5326                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5327         }
5328
5329         if (crtc->config.has_dp_encoder)
5330                 intel_dp_set_m_n(crtc);
5331 }
5332
5333 static void i8xx_update_pll(struct intel_crtc *crtc,
5334                             intel_clock_t *reduced_clock,
5335                             int num_connectors)
5336 {
5337         struct drm_device *dev = crtc->base.dev;
5338         struct drm_i915_private *dev_priv = dev->dev_private;
5339         u32 dpll;
5340         struct dpll *clock = &crtc->config.dpll;
5341
5342         i9xx_update_pll_dividers(crtc, reduced_clock);
5343
5344         dpll = DPLL_VGA_MODE_DIS;
5345
5346         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5347                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5348         } else {
5349                 if (clock->p1 == 2)
5350                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5351                 else
5352                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5353                 if (clock->p2 == 4)
5354                         dpll |= PLL_P2_DIVIDE_BY_4;
5355         }
5356
5357         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5358                 dpll |= DPLL_DVO_2X_MODE;
5359
5360         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5361                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5362                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5363         else
5364                 dpll |= PLL_REF_INPUT_DREFCLK;
5365
5366         dpll |= DPLL_VCO_ENABLE;
5367         crtc->config.dpll_hw_state.dpll = dpll;
5368 }
5369
5370 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5371 {
5372         struct drm_device *dev = intel_crtc->base.dev;
5373         struct drm_i915_private *dev_priv = dev->dev_private;
5374         enum pipe pipe = intel_crtc->pipe;
5375         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5376         struct drm_display_mode *adjusted_mode =
5377                 &intel_crtc->config.adjusted_mode;
5378         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5379
5380         /* We need to be careful not to changed the adjusted mode, for otherwise
5381          * the hw state checker will get angry at the mismatch. */
5382         crtc_vtotal = adjusted_mode->crtc_vtotal;
5383         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5384
5385         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5386                 /* the chip adds 2 halflines automatically */
5387                 crtc_vtotal -= 1;
5388                 crtc_vblank_end -= 1;
5389                 vsyncshift = adjusted_mode->crtc_hsync_start
5390                              - adjusted_mode->crtc_htotal / 2;
5391         } else {
5392                 vsyncshift = 0;
5393         }
5394
5395         if (INTEL_INFO(dev)->gen > 3)
5396                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5397
5398         I915_WRITE(HTOTAL(cpu_transcoder),
5399                    (adjusted_mode->crtc_hdisplay - 1) |
5400                    ((adjusted_mode->crtc_htotal - 1) << 16));
5401         I915_WRITE(HBLANK(cpu_transcoder),
5402                    (adjusted_mode->crtc_hblank_start - 1) |
5403                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5404         I915_WRITE(HSYNC(cpu_transcoder),
5405                    (adjusted_mode->crtc_hsync_start - 1) |
5406                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5407
5408         I915_WRITE(VTOTAL(cpu_transcoder),
5409                    (adjusted_mode->crtc_vdisplay - 1) |
5410                    ((crtc_vtotal - 1) << 16));
5411         I915_WRITE(VBLANK(cpu_transcoder),
5412                    (adjusted_mode->crtc_vblank_start - 1) |
5413                    ((crtc_vblank_end - 1) << 16));
5414         I915_WRITE(VSYNC(cpu_transcoder),
5415                    (adjusted_mode->crtc_vsync_start - 1) |
5416                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5417
5418         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5419          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5420          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5421          * bits. */
5422         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5423             (pipe == PIPE_B || pipe == PIPE_C))
5424                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5425
5426         /* pipesrc controls the size that is scaled from, which should
5427          * always be the user's requested size.
5428          */
5429         I915_WRITE(PIPESRC(pipe),
5430                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5431                    (intel_crtc->config.pipe_src_h - 1));
5432 }
5433
5434 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5435                                    struct intel_crtc_config *pipe_config)
5436 {
5437         struct drm_device *dev = crtc->base.dev;
5438         struct drm_i915_private *dev_priv = dev->dev_private;
5439         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5440         uint32_t tmp;
5441
5442         tmp = I915_READ(HTOTAL(cpu_transcoder));
5443         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5444         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5445         tmp = I915_READ(HBLANK(cpu_transcoder));
5446         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5447         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5448         tmp = I915_READ(HSYNC(cpu_transcoder));
5449         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5450         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5451
5452         tmp = I915_READ(VTOTAL(cpu_transcoder));
5453         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5454         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5455         tmp = I915_READ(VBLANK(cpu_transcoder));
5456         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5457         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5458         tmp = I915_READ(VSYNC(cpu_transcoder));
5459         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5460         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5461
5462         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5463                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5464                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5465                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5466         }
5467
5468         tmp = I915_READ(PIPESRC(crtc->pipe));
5469         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5470         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5471
5472         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5473         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5474 }
5475
5476 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5477                                  struct intel_crtc_config *pipe_config)
5478 {
5479         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5480         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5481         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5482         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5483
5484         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5485         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5486         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5487         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5488
5489         mode->flags = pipe_config->adjusted_mode.flags;
5490
5491         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5492         mode->flags |= pipe_config->adjusted_mode.flags;
5493 }
5494
5495 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5496 {
5497         struct drm_device *dev = intel_crtc->base.dev;
5498         struct drm_i915_private *dev_priv = dev->dev_private;
5499         uint32_t pipeconf;
5500
5501         pipeconf = 0;
5502
5503         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5504             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5505                 pipeconf |= PIPECONF_ENABLE;
5506
5507         if (intel_crtc->config.double_wide)
5508                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5509
5510         /* only g4x and later have fancy bpc/dither controls */
5511         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5512                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5513                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5514                         pipeconf |= PIPECONF_DITHER_EN |
5515                                     PIPECONF_DITHER_TYPE_SP;
5516
5517                 switch (intel_crtc->config.pipe_bpp) {
5518                 case 18:
5519                         pipeconf |= PIPECONF_6BPC;
5520                         break;
5521                 case 24:
5522                         pipeconf |= PIPECONF_8BPC;
5523                         break;
5524                 case 30:
5525                         pipeconf |= PIPECONF_10BPC;
5526                         break;
5527                 default:
5528                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5529                         BUG();
5530                 }
5531         }
5532
5533         if (HAS_PIPE_CXSR(dev)) {
5534                 if (intel_crtc->lowfreq_avail) {
5535                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5536                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5537                 } else {
5538                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5539                 }
5540         }
5541
5542         if (!IS_GEN2(dev) &&
5543             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5544                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5545         else
5546                 pipeconf |= PIPECONF_PROGRESSIVE;
5547
5548         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5549                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5550
5551         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5552         POSTING_READ(PIPECONF(intel_crtc->pipe));
5553 }
5554
5555 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5556                               int x, int y,
5557                               struct drm_framebuffer *fb)
5558 {
5559         struct drm_device *dev = crtc->dev;
5560         struct drm_i915_private *dev_priv = dev->dev_private;
5561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5562         int pipe = intel_crtc->pipe;
5563         int plane = intel_crtc->plane;
5564         int refclk, num_connectors = 0;
5565         intel_clock_t clock, reduced_clock;
5566         u32 dspcntr;
5567         bool ok, has_reduced_clock = false;
5568         bool is_lvds = false, is_dsi = false;
5569         struct intel_encoder *encoder;
5570         const intel_limit_t *limit;
5571         int ret;
5572
5573         for_each_encoder_on_crtc(dev, crtc, encoder) {
5574                 switch (encoder->type) {
5575                 case INTEL_OUTPUT_LVDS:
5576                         is_lvds = true;
5577                         break;
5578                 case INTEL_OUTPUT_DSI:
5579                         is_dsi = true;
5580                         break;
5581                 }
5582
5583                 num_connectors++;
5584         }
5585
5586         if (is_dsi)
5587                 goto skip_dpll;
5588
5589         if (!intel_crtc->config.clock_set) {
5590                 refclk = i9xx_get_refclk(crtc, num_connectors);
5591
5592                 /*
5593                  * Returns a set of divisors for the desired target clock with
5594                  * the given refclk, or FALSE.  The returned values represent
5595                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5596                  * 2) / p1 / p2.
5597                  */
5598                 limit = intel_limit(crtc, refclk);
5599                 ok = dev_priv->display.find_dpll(limit, crtc,
5600                                                  intel_crtc->config.port_clock,
5601                                                  refclk, NULL, &clock);
5602                 if (!ok) {
5603                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5604                         return -EINVAL;
5605                 }
5606
5607                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5608                         /*
5609                          * Ensure we match the reduced clock's P to the target
5610                          * clock.  If the clocks don't match, we can't switch
5611                          * the display clock by using the FP0/FP1. In such case
5612                          * we will disable the LVDS downclock feature.
5613                          */
5614                         has_reduced_clock =
5615                                 dev_priv->display.find_dpll(limit, crtc,
5616                                                             dev_priv->lvds_downclock,
5617                                                             refclk, &clock,
5618                                                             &reduced_clock);
5619                 }
5620                 /* Compat-code for transition, will disappear. */
5621                 intel_crtc->config.dpll.n = clock.n;
5622                 intel_crtc->config.dpll.m1 = clock.m1;
5623                 intel_crtc->config.dpll.m2 = clock.m2;
5624                 intel_crtc->config.dpll.p1 = clock.p1;
5625                 intel_crtc->config.dpll.p2 = clock.p2;
5626         }
5627
5628         if (IS_GEN2(dev)) {
5629                 i8xx_update_pll(intel_crtc,
5630                                 has_reduced_clock ? &reduced_clock : NULL,
5631                                 num_connectors);
5632         } else if (IS_VALLEYVIEW(dev)) {
5633                 vlv_update_pll(intel_crtc);
5634         } else {
5635                 i9xx_update_pll(intel_crtc,
5636                                 has_reduced_clock ? &reduced_clock : NULL,
5637                                 num_connectors);
5638         }
5639
5640 skip_dpll:
5641         /* Set up the display plane register */
5642         dspcntr = DISPPLANE_GAMMA_ENABLE;
5643
5644         if (!IS_VALLEYVIEW(dev)) {
5645                 if (pipe == 0)
5646                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5647                 else
5648                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5649         }
5650
5651         intel_set_pipe_timings(intel_crtc);
5652
5653         /* pipesrc and dspsize control the size that is scaled from,
5654          * which should always be the user's requested size.
5655          */
5656         I915_WRITE(DSPSIZE(plane),
5657                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5658                    (intel_crtc->config.pipe_src_w - 1));
5659         I915_WRITE(DSPPOS(plane), 0);
5660
5661         i9xx_set_pipeconf(intel_crtc);
5662
5663         I915_WRITE(DSPCNTR(plane), dspcntr);
5664         POSTING_READ(DSPCNTR(plane));
5665
5666         ret = intel_pipe_set_base(crtc, x, y, fb);
5667
5668         return ret;
5669 }
5670
5671 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5672                                  struct intel_crtc_config *pipe_config)
5673 {
5674         struct drm_device *dev = crtc->base.dev;
5675         struct drm_i915_private *dev_priv = dev->dev_private;
5676         uint32_t tmp;
5677
5678         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5679                 return;
5680
5681         tmp = I915_READ(PFIT_CONTROL);
5682         if (!(tmp & PFIT_ENABLE))
5683                 return;
5684
5685         /* Check whether the pfit is attached to our pipe. */
5686         if (INTEL_INFO(dev)->gen < 4) {
5687                 if (crtc->pipe != PIPE_B)
5688                         return;
5689         } else {
5690                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5691                         return;
5692         }
5693
5694         pipe_config->gmch_pfit.control = tmp;
5695         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5696         if (INTEL_INFO(dev)->gen < 5)
5697                 pipe_config->gmch_pfit.lvds_border_bits =
5698                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5699 }
5700
5701 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5702                                struct intel_crtc_config *pipe_config)
5703 {
5704         struct drm_device *dev = crtc->base.dev;
5705         struct drm_i915_private *dev_priv = dev->dev_private;
5706         int pipe = pipe_config->cpu_transcoder;
5707         intel_clock_t clock;
5708         u32 mdiv;
5709         int refclk = 100000;
5710
5711         mutex_lock(&dev_priv->dpio_lock);
5712         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5713         mutex_unlock(&dev_priv->dpio_lock);
5714
5715         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5716         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5717         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5718         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5719         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5720
5721         vlv_clock(refclk, &clock);
5722
5723         /* clock.dot is the fast clock */
5724         pipe_config->port_clock = clock.dot / 5;
5725 }
5726
5727 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5728                                   struct intel_plane_config *plane_config)
5729 {
5730         struct drm_device *dev = crtc->base.dev;
5731         struct drm_i915_private *dev_priv = dev->dev_private;
5732         u32 val, base, offset;
5733         int pipe = crtc->pipe, plane = crtc->plane;
5734         int fourcc, pixel_format;
5735         int aligned_height;
5736
5737         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5738         if (!crtc->base.primary->fb) {
5739                 DRM_DEBUG_KMS("failed to alloc fb\n");
5740                 return;
5741         }
5742
5743         val = I915_READ(DSPCNTR(plane));
5744
5745         if (INTEL_INFO(dev)->gen >= 4)
5746                 if (val & DISPPLANE_TILED)
5747                         plane_config->tiled = true;
5748
5749         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5750         fourcc = intel_format_to_fourcc(pixel_format);
5751         crtc->base.primary->fb->pixel_format = fourcc;
5752         crtc->base.primary->fb->bits_per_pixel =
5753                 drm_format_plane_cpp(fourcc, 0) * 8;
5754
5755         if (INTEL_INFO(dev)->gen >= 4) {
5756                 if (plane_config->tiled)
5757                         offset = I915_READ(DSPTILEOFF(plane));
5758                 else
5759                         offset = I915_READ(DSPLINOFF(plane));
5760                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5761         } else {
5762                 base = I915_READ(DSPADDR(plane));
5763         }
5764         plane_config->base = base;
5765
5766         val = I915_READ(PIPESRC(pipe));
5767         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
5768         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
5769
5770         val = I915_READ(DSPSTRIDE(pipe));
5771         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
5772
5773         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
5774                                             plane_config->tiled);
5775
5776         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
5777                                    aligned_height, PAGE_SIZE);
5778
5779         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5780                       pipe, plane, crtc->base.primary->fb->width,
5781                       crtc->base.primary->fb->height,
5782                       crtc->base.primary->fb->bits_per_pixel, base,
5783                       crtc->base.primary->fb->pitches[0],
5784                       plane_config->size);
5785
5786 }
5787
5788 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5789                                  struct intel_crtc_config *pipe_config)
5790 {
5791         struct drm_device *dev = crtc->base.dev;
5792         struct drm_i915_private *dev_priv = dev->dev_private;
5793         uint32_t tmp;
5794
5795         if (!intel_display_power_enabled(dev_priv,
5796                                          POWER_DOMAIN_PIPE(crtc->pipe)))
5797                 return false;
5798
5799         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5800         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5801
5802         tmp = I915_READ(PIPECONF(crtc->pipe));
5803         if (!(tmp & PIPECONF_ENABLE))
5804                 return false;
5805
5806         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5807                 switch (tmp & PIPECONF_BPC_MASK) {
5808                 case PIPECONF_6BPC:
5809                         pipe_config->pipe_bpp = 18;
5810                         break;
5811                 case PIPECONF_8BPC:
5812                         pipe_config->pipe_bpp = 24;
5813                         break;
5814                 case PIPECONF_10BPC:
5815                         pipe_config->pipe_bpp = 30;
5816                         break;
5817                 default:
5818                         break;
5819                 }
5820         }
5821
5822         if (INTEL_INFO(dev)->gen < 4)
5823                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5824
5825         intel_get_pipe_timings(crtc, pipe_config);
5826
5827         i9xx_get_pfit_config(crtc, pipe_config);
5828
5829         if (INTEL_INFO(dev)->gen >= 4) {
5830                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5831                 pipe_config->pixel_multiplier =
5832                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5833                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5834                 pipe_config->dpll_hw_state.dpll_md = tmp;
5835         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5836                 tmp = I915_READ(DPLL(crtc->pipe));
5837                 pipe_config->pixel_multiplier =
5838                         ((tmp & SDVO_MULTIPLIER_MASK)
5839                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5840         } else {
5841                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5842                  * port and will be fixed up in the encoder->get_config
5843                  * function. */
5844                 pipe_config->pixel_multiplier = 1;
5845         }
5846         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5847         if (!IS_VALLEYVIEW(dev)) {
5848                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5849                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5850         } else {
5851                 /* Mask out read-only status bits. */
5852                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5853                                                      DPLL_PORTC_READY_MASK |
5854                                                      DPLL_PORTB_READY_MASK);
5855         }
5856
5857         if (IS_VALLEYVIEW(dev))
5858                 vlv_crtc_clock_get(crtc, pipe_config);
5859         else
5860                 i9xx_crtc_clock_get(crtc, pipe_config);
5861
5862         return true;
5863 }
5864
5865 static void ironlake_init_pch_refclk(struct drm_device *dev)
5866 {
5867         struct drm_i915_private *dev_priv = dev->dev_private;
5868         struct drm_mode_config *mode_config = &dev->mode_config;
5869         struct intel_encoder *encoder;
5870         u32 val, final;
5871         bool has_lvds = false;
5872         bool has_cpu_edp = false;
5873         bool has_panel = false;
5874         bool has_ck505 = false;
5875         bool can_ssc = false;
5876
5877         /* We need to take the global config into account */
5878         list_for_each_entry(encoder, &mode_config->encoder_list,
5879                             base.head) {
5880                 switch (encoder->type) {
5881                 case INTEL_OUTPUT_LVDS:
5882                         has_panel = true;
5883                         has_lvds = true;
5884                         break;
5885                 case INTEL_OUTPUT_EDP:
5886                         has_panel = true;
5887                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5888                                 has_cpu_edp = true;
5889                         break;
5890                 }
5891         }
5892
5893         if (HAS_PCH_IBX(dev)) {
5894                 has_ck505 = dev_priv->vbt.display_clock_mode;
5895                 can_ssc = has_ck505;
5896         } else {
5897                 has_ck505 = false;
5898                 can_ssc = true;
5899         }
5900
5901         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5902                       has_panel, has_lvds, has_ck505);
5903
5904         /* Ironlake: try to setup display ref clock before DPLL
5905          * enabling. This is only under driver's control after
5906          * PCH B stepping, previous chipset stepping should be
5907          * ignoring this setting.
5908          */
5909         val = I915_READ(PCH_DREF_CONTROL);
5910
5911         /* As we must carefully and slowly disable/enable each source in turn,
5912          * compute the final state we want first and check if we need to
5913          * make any changes at all.
5914          */
5915         final = val;
5916         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5917         if (has_ck505)
5918                 final |= DREF_NONSPREAD_CK505_ENABLE;
5919         else
5920                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5921
5922         final &= ~DREF_SSC_SOURCE_MASK;
5923         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5924         final &= ~DREF_SSC1_ENABLE;
5925
5926         if (has_panel) {
5927                 final |= DREF_SSC_SOURCE_ENABLE;
5928
5929                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5930                         final |= DREF_SSC1_ENABLE;
5931
5932                 if (has_cpu_edp) {
5933                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5934                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5935                         else
5936                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5937                 } else
5938                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5939         } else {
5940                 final |= DREF_SSC_SOURCE_DISABLE;
5941                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5942         }
5943
5944         if (final == val)
5945                 return;
5946
5947         /* Always enable nonspread source */
5948         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5949
5950         if (has_ck505)
5951                 val |= DREF_NONSPREAD_CK505_ENABLE;
5952         else
5953                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5954
5955         if (has_panel) {
5956                 val &= ~DREF_SSC_SOURCE_MASK;
5957                 val |= DREF_SSC_SOURCE_ENABLE;
5958
5959                 /* SSC must be turned on before enabling the CPU output  */
5960                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5961                         DRM_DEBUG_KMS("Using SSC on panel\n");
5962                         val |= DREF_SSC1_ENABLE;
5963                 } else
5964                         val &= ~DREF_SSC1_ENABLE;
5965
5966                 /* Get SSC going before enabling the outputs */
5967                 I915_WRITE(PCH_DREF_CONTROL, val);
5968                 POSTING_READ(PCH_DREF_CONTROL);
5969                 udelay(200);
5970
5971                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5972
5973                 /* Enable CPU source on CPU attached eDP */
5974                 if (has_cpu_edp) {
5975                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5976                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5977                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5978                         }
5979                         else
5980                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5981                 } else
5982                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5983
5984                 I915_WRITE(PCH_DREF_CONTROL, val);
5985                 POSTING_READ(PCH_DREF_CONTROL);
5986                 udelay(200);
5987         } else {
5988                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5989
5990                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5991
5992                 /* Turn off CPU output */
5993                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5994
5995                 I915_WRITE(PCH_DREF_CONTROL, val);
5996                 POSTING_READ(PCH_DREF_CONTROL);
5997                 udelay(200);
5998
5999                 /* Turn off the SSC source */
6000                 val &= ~DREF_SSC_SOURCE_MASK;
6001                 val |= DREF_SSC_SOURCE_DISABLE;
6002
6003                 /* Turn off SSC1 */
6004                 val &= ~DREF_SSC1_ENABLE;
6005
6006                 I915_WRITE(PCH_DREF_CONTROL, val);
6007                 POSTING_READ(PCH_DREF_CONTROL);
6008                 udelay(200);
6009         }
6010
6011         BUG_ON(val != final);
6012 }
6013
6014 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6015 {
6016         uint32_t tmp;
6017
6018         tmp = I915_READ(SOUTH_CHICKEN2);
6019         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6020         I915_WRITE(SOUTH_CHICKEN2, tmp);
6021
6022         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6023                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6024                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6025
6026         tmp = I915_READ(SOUTH_CHICKEN2);
6027         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6028         I915_WRITE(SOUTH_CHICKEN2, tmp);
6029
6030         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6031                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6032                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6033 }
6034
6035 /* WaMPhyProgramming:hsw */
6036 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6037 {
6038         uint32_t tmp;
6039
6040         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6041         tmp &= ~(0xFF << 24);
6042         tmp |= (0x12 << 24);
6043         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6044
6045         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6046         tmp |= (1 << 11);
6047         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6048
6049         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6050         tmp |= (1 << 11);
6051         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6052
6053         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6054         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6055         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6056
6057         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6058         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6059         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6060
6061         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6062         tmp &= ~(7 << 13);
6063         tmp |= (5 << 13);
6064         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6065
6066         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6067         tmp &= ~(7 << 13);
6068         tmp |= (5 << 13);
6069         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6070
6071         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6072         tmp &= ~0xFF;
6073         tmp |= 0x1C;
6074         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6075
6076         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6077         tmp &= ~0xFF;
6078         tmp |= 0x1C;
6079         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6080
6081         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6082         tmp &= ~(0xFF << 16);
6083         tmp |= (0x1C << 16);
6084         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6085
6086         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6087         tmp &= ~(0xFF << 16);
6088         tmp |= (0x1C << 16);
6089         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6090
6091         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6092         tmp |= (1 << 27);
6093         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6094
6095         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6096         tmp |= (1 << 27);
6097         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6098
6099         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6100         tmp &= ~(0xF << 28);
6101         tmp |= (4 << 28);
6102         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6103
6104         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6105         tmp &= ~(0xF << 28);
6106         tmp |= (4 << 28);
6107         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6108 }
6109
6110 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6111  * Programming" based on the parameters passed:
6112  * - Sequence to enable CLKOUT_DP
6113  * - Sequence to enable CLKOUT_DP without spread
6114  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6115  */
6116 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6117                                  bool with_fdi)
6118 {
6119         struct drm_i915_private *dev_priv = dev->dev_private;
6120         uint32_t reg, tmp;
6121
6122         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6123                 with_spread = true;
6124         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6125                  with_fdi, "LP PCH doesn't have FDI\n"))
6126                 with_fdi = false;
6127
6128         mutex_lock(&dev_priv->dpio_lock);
6129
6130         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6131         tmp &= ~SBI_SSCCTL_DISABLE;
6132         tmp |= SBI_SSCCTL_PATHALT;
6133         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6134
6135         udelay(24);
6136
6137         if (with_spread) {
6138                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6139                 tmp &= ~SBI_SSCCTL_PATHALT;
6140                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6141
6142                 if (with_fdi) {
6143                         lpt_reset_fdi_mphy(dev_priv);
6144                         lpt_program_fdi_mphy(dev_priv);
6145                 }
6146         }
6147
6148         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6149                SBI_GEN0 : SBI_DBUFF0;
6150         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6151         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6152         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6153
6154         mutex_unlock(&dev_priv->dpio_lock);
6155 }
6156
6157 /* Sequence to disable CLKOUT_DP */
6158 static void lpt_disable_clkout_dp(struct drm_device *dev)
6159 {
6160         struct drm_i915_private *dev_priv = dev->dev_private;
6161         uint32_t reg, tmp;
6162
6163         mutex_lock(&dev_priv->dpio_lock);
6164
6165         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6166                SBI_GEN0 : SBI_DBUFF0;
6167         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6168         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6169         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6170
6171         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6172         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6173                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6174                         tmp |= SBI_SSCCTL_PATHALT;
6175                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6176                         udelay(32);
6177                 }
6178                 tmp |= SBI_SSCCTL_DISABLE;
6179                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6180         }
6181
6182         mutex_unlock(&dev_priv->dpio_lock);
6183 }
6184
6185 static void lpt_init_pch_refclk(struct drm_device *dev)
6186 {
6187         struct drm_mode_config *mode_config = &dev->mode_config;
6188         struct intel_encoder *encoder;
6189         bool has_vga = false;
6190
6191         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6192                 switch (encoder->type) {
6193                 case INTEL_OUTPUT_ANALOG:
6194                         has_vga = true;
6195                         break;
6196                 }
6197         }
6198
6199         if (has_vga)
6200                 lpt_enable_clkout_dp(dev, true, true);
6201         else
6202                 lpt_disable_clkout_dp(dev);
6203 }
6204
6205 /*
6206  * Initialize reference clocks when the driver loads
6207  */
6208 void intel_init_pch_refclk(struct drm_device *dev)
6209 {
6210         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6211                 ironlake_init_pch_refclk(dev);
6212         else if (HAS_PCH_LPT(dev))
6213                 lpt_init_pch_refclk(dev);
6214 }
6215
6216 static int ironlake_get_refclk(struct drm_crtc *crtc)
6217 {
6218         struct drm_device *dev = crtc->dev;
6219         struct drm_i915_private *dev_priv = dev->dev_private;
6220         struct intel_encoder *encoder;
6221         int num_connectors = 0;
6222         bool is_lvds = false;
6223
6224         for_each_encoder_on_crtc(dev, crtc, encoder) {
6225                 switch (encoder->type) {
6226                 case INTEL_OUTPUT_LVDS:
6227                         is_lvds = true;
6228                         break;
6229                 }
6230                 num_connectors++;
6231         }
6232
6233         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6234                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6235                               dev_priv->vbt.lvds_ssc_freq);
6236                 return dev_priv->vbt.lvds_ssc_freq;
6237         }
6238
6239         return 120000;
6240 }
6241
6242 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6243 {
6244         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6246         int pipe = intel_crtc->pipe;
6247         uint32_t val;
6248
6249         val = 0;
6250
6251         switch (intel_crtc->config.pipe_bpp) {
6252         case 18:
6253                 val |= PIPECONF_6BPC;
6254                 break;
6255         case 24:
6256                 val |= PIPECONF_8BPC;
6257                 break;
6258         case 30:
6259                 val |= PIPECONF_10BPC;
6260                 break;
6261         case 36:
6262                 val |= PIPECONF_12BPC;
6263                 break;
6264         default:
6265                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6266                 BUG();
6267         }
6268
6269         if (intel_crtc->config.dither)
6270                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6271
6272         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6273                 val |= PIPECONF_INTERLACED_ILK;
6274         else
6275                 val |= PIPECONF_PROGRESSIVE;
6276
6277         if (intel_crtc->config.limited_color_range)
6278                 val |= PIPECONF_COLOR_RANGE_SELECT;
6279
6280         I915_WRITE(PIPECONF(pipe), val);
6281         POSTING_READ(PIPECONF(pipe));
6282 }
6283
6284 /*
6285  * Set up the pipe CSC unit.
6286  *
6287  * Currently only full range RGB to limited range RGB conversion
6288  * is supported, but eventually this should handle various
6289  * RGB<->YCbCr scenarios as well.
6290  */
6291 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6292 {
6293         struct drm_device *dev = crtc->dev;
6294         struct drm_i915_private *dev_priv = dev->dev_private;
6295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6296         int pipe = intel_crtc->pipe;
6297         uint16_t coeff = 0x7800; /* 1.0 */
6298
6299         /*
6300          * TODO: Check what kind of values actually come out of the pipe
6301          * with these coeff/postoff values and adjust to get the best
6302          * accuracy. Perhaps we even need to take the bpc value into
6303          * consideration.
6304          */
6305
6306         if (intel_crtc->config.limited_color_range)
6307                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6308
6309         /*
6310          * GY/GU and RY/RU should be the other way around according
6311          * to BSpec, but reality doesn't agree. Just set them up in
6312          * a way that results in the correct picture.
6313          */
6314         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6315         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6316
6317         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6318         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6319
6320         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6321         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6322
6323         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6324         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6325         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6326
6327         if (INTEL_INFO(dev)->gen > 6) {
6328                 uint16_t postoff = 0;
6329
6330                 if (intel_crtc->config.limited_color_range)
6331                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6332
6333                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6334                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6335                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6336
6337                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6338         } else {
6339                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6340
6341                 if (intel_crtc->config.limited_color_range)
6342                         mode |= CSC_BLACK_SCREEN_OFFSET;
6343
6344                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6345         }
6346 }
6347
6348 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6349 {
6350         struct drm_device *dev = crtc->dev;
6351         struct drm_i915_private *dev_priv = dev->dev_private;
6352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6353         enum pipe pipe = intel_crtc->pipe;
6354         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6355         uint32_t val;
6356
6357         val = 0;
6358
6359         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6360                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6361
6362         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6363                 val |= PIPECONF_INTERLACED_ILK;
6364         else
6365                 val |= PIPECONF_PROGRESSIVE;
6366
6367         I915_WRITE(PIPECONF(cpu_transcoder), val);
6368         POSTING_READ(PIPECONF(cpu_transcoder));
6369
6370         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6371         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6372
6373         if (IS_BROADWELL(dev)) {
6374                 val = 0;
6375
6376                 switch (intel_crtc->config.pipe_bpp) {
6377                 case 18:
6378                         val |= PIPEMISC_DITHER_6_BPC;
6379                         break;
6380                 case 24:
6381                         val |= PIPEMISC_DITHER_8_BPC;
6382                         break;
6383                 case 30:
6384                         val |= PIPEMISC_DITHER_10_BPC;
6385                         break;
6386                 case 36:
6387                         val |= PIPEMISC_DITHER_12_BPC;
6388                         break;
6389                 default:
6390                         /* Case prevented by pipe_config_set_bpp. */
6391                         BUG();
6392                 }
6393
6394                 if (intel_crtc->config.dither)
6395                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6396
6397                 I915_WRITE(PIPEMISC(pipe), val);
6398         }
6399 }
6400
6401 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6402                                     intel_clock_t *clock,
6403                                     bool *has_reduced_clock,
6404                                     intel_clock_t *reduced_clock)
6405 {
6406         struct drm_device *dev = crtc->dev;
6407         struct drm_i915_private *dev_priv = dev->dev_private;
6408         struct intel_encoder *intel_encoder;
6409         int refclk;
6410         const intel_limit_t *limit;
6411         bool ret, is_lvds = false;
6412
6413         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6414                 switch (intel_encoder->type) {
6415                 case INTEL_OUTPUT_LVDS:
6416                         is_lvds = true;
6417                         break;
6418                 }
6419         }
6420
6421         refclk = ironlake_get_refclk(crtc);
6422
6423         /*
6424          * Returns a set of divisors for the desired target clock with the given
6425          * refclk, or FALSE.  The returned values represent the clock equation:
6426          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6427          */
6428         limit = intel_limit(crtc, refclk);
6429         ret = dev_priv->display.find_dpll(limit, crtc,
6430                                           to_intel_crtc(crtc)->config.port_clock,
6431                                           refclk, NULL, clock);
6432         if (!ret)
6433                 return false;
6434
6435         if (is_lvds && dev_priv->lvds_downclock_avail) {
6436                 /*
6437                  * Ensure we match the reduced clock's P to the target clock.
6438                  * If the clocks don't match, we can't switch the display clock
6439                  * by using the FP0/FP1. In such case we will disable the LVDS
6440                  * downclock feature.
6441                 */
6442                 *has_reduced_clock =
6443                         dev_priv->display.find_dpll(limit, crtc,
6444                                                     dev_priv->lvds_downclock,
6445                                                     refclk, clock,
6446                                                     reduced_clock);
6447         }
6448
6449         return true;
6450 }
6451
6452 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6453 {
6454         /*
6455          * Account for spread spectrum to avoid
6456          * oversubscribing the link. Max center spread
6457          * is 2.5%; use 5% for safety's sake.
6458          */
6459         u32 bps = target_clock * bpp * 21 / 20;
6460         return DIV_ROUND_UP(bps, link_bw * 8);
6461 }
6462
6463 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6464 {
6465         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6466 }
6467
6468 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6469                                       u32 *fp,
6470                                       intel_clock_t *reduced_clock, u32 *fp2)
6471 {
6472         struct drm_crtc *crtc = &intel_crtc->base;
6473         struct drm_device *dev = crtc->dev;
6474         struct drm_i915_private *dev_priv = dev->dev_private;
6475         struct intel_encoder *intel_encoder;
6476         uint32_t dpll;
6477         int factor, num_connectors = 0;
6478         bool is_lvds = false, is_sdvo = false;
6479
6480         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6481                 switch (intel_encoder->type) {
6482                 case INTEL_OUTPUT_LVDS:
6483                         is_lvds = true;
6484                         break;
6485                 case INTEL_OUTPUT_SDVO:
6486                 case INTEL_OUTPUT_HDMI:
6487                         is_sdvo = true;
6488                         break;
6489                 }
6490
6491                 num_connectors++;
6492         }
6493
6494         /* Enable autotuning of the PLL clock (if permissible) */
6495         factor = 21;
6496         if (is_lvds) {
6497                 if ((intel_panel_use_ssc(dev_priv) &&
6498                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6499                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6500                         factor = 25;
6501         } else if (intel_crtc->config.sdvo_tv_clock)
6502                 factor = 20;
6503
6504         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6505                 *fp |= FP_CB_TUNE;
6506
6507         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6508                 *fp2 |= FP_CB_TUNE;
6509
6510         dpll = 0;
6511
6512         if (is_lvds)
6513                 dpll |= DPLLB_MODE_LVDS;
6514         else
6515                 dpll |= DPLLB_MODE_DAC_SERIAL;
6516
6517         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6518                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6519
6520         if (is_sdvo)
6521                 dpll |= DPLL_SDVO_HIGH_SPEED;
6522         if (intel_crtc->config.has_dp_encoder)
6523                 dpll |= DPLL_SDVO_HIGH_SPEED;
6524
6525         /* compute bitmask from p1 value */
6526         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6527         /* also FPA1 */
6528         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6529
6530         switch (intel_crtc->config.dpll.p2) {
6531         case 5:
6532                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6533                 break;
6534         case 7:
6535                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6536                 break;
6537         case 10:
6538                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6539                 break;
6540         case 14:
6541                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6542                 break;
6543         }
6544
6545         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6546                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6547         else
6548                 dpll |= PLL_REF_INPUT_DREFCLK;
6549
6550         return dpll | DPLL_VCO_ENABLE;
6551 }
6552
6553 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6554                                   int x, int y,
6555                                   struct drm_framebuffer *fb)
6556 {
6557         struct drm_device *dev = crtc->dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6560         int pipe = intel_crtc->pipe;
6561         int plane = intel_crtc->plane;
6562         int num_connectors = 0;
6563         intel_clock_t clock, reduced_clock;
6564         u32 dpll = 0, fp = 0, fp2 = 0;
6565         bool ok, has_reduced_clock = false;
6566         bool is_lvds = false;
6567         struct intel_encoder *encoder;
6568         struct intel_shared_dpll *pll;
6569         int ret;
6570
6571         for_each_encoder_on_crtc(dev, crtc, encoder) {
6572                 switch (encoder->type) {
6573                 case INTEL_OUTPUT_LVDS:
6574                         is_lvds = true;
6575                         break;
6576                 }
6577
6578                 num_connectors++;
6579         }
6580
6581         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6582              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6583
6584         ok = ironlake_compute_clocks(crtc, &clock,
6585                                      &has_reduced_clock, &reduced_clock);
6586         if (!ok && !intel_crtc->config.clock_set) {
6587                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6588                 return -EINVAL;
6589         }
6590         /* Compat-code for transition, will disappear. */
6591         if (!intel_crtc->config.clock_set) {
6592                 intel_crtc->config.dpll.n = clock.n;
6593                 intel_crtc->config.dpll.m1 = clock.m1;
6594                 intel_crtc->config.dpll.m2 = clock.m2;
6595                 intel_crtc->config.dpll.p1 = clock.p1;
6596                 intel_crtc->config.dpll.p2 = clock.p2;
6597         }
6598
6599         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6600         if (intel_crtc->config.has_pch_encoder) {
6601                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6602                 if (has_reduced_clock)
6603                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6604
6605                 dpll = ironlake_compute_dpll(intel_crtc,
6606                                              &fp, &reduced_clock,
6607                                              has_reduced_clock ? &fp2 : NULL);
6608
6609                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6610                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6611                 if (has_reduced_clock)
6612                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6613                 else
6614                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6615
6616                 pll = intel_get_shared_dpll(intel_crtc);
6617                 if (pll == NULL) {
6618                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6619                                          pipe_name(pipe));
6620                         return -EINVAL;
6621                 }
6622         } else
6623                 intel_put_shared_dpll(intel_crtc);
6624
6625         if (intel_crtc->config.has_dp_encoder)
6626                 intel_dp_set_m_n(intel_crtc);
6627
6628         if (is_lvds && has_reduced_clock && i915.powersave)
6629                 intel_crtc->lowfreq_avail = true;
6630         else
6631                 intel_crtc->lowfreq_avail = false;
6632
6633         intel_set_pipe_timings(intel_crtc);
6634
6635         if (intel_crtc->config.has_pch_encoder) {
6636                 intel_cpu_transcoder_set_m_n(intel_crtc,
6637                                              &intel_crtc->config.fdi_m_n);
6638         }
6639
6640         ironlake_set_pipeconf(crtc);
6641
6642         /* Set up the display plane register */
6643         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6644         POSTING_READ(DSPCNTR(plane));
6645
6646         ret = intel_pipe_set_base(crtc, x, y, fb);
6647
6648         return ret;
6649 }
6650
6651 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6652                                          struct intel_link_m_n *m_n)
6653 {
6654         struct drm_device *dev = crtc->base.dev;
6655         struct drm_i915_private *dev_priv = dev->dev_private;
6656         enum pipe pipe = crtc->pipe;
6657
6658         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6659         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6660         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6661                 & ~TU_SIZE_MASK;
6662         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6663         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6664                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6665 }
6666
6667 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6668                                          enum transcoder transcoder,
6669                                          struct intel_link_m_n *m_n)
6670 {
6671         struct drm_device *dev = crtc->base.dev;
6672         struct drm_i915_private *dev_priv = dev->dev_private;
6673         enum pipe pipe = crtc->pipe;
6674
6675         if (INTEL_INFO(dev)->gen >= 5) {
6676                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6677                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6678                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6679                         & ~TU_SIZE_MASK;
6680                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6681                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6682                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6683         } else {
6684                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6685                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6686                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6687                         & ~TU_SIZE_MASK;
6688                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6689                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6690                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6691         }
6692 }
6693
6694 void intel_dp_get_m_n(struct intel_crtc *crtc,
6695                       struct intel_crtc_config *pipe_config)
6696 {
6697         if (crtc->config.has_pch_encoder)
6698                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6699         else
6700                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6701                                              &pipe_config->dp_m_n);
6702 }
6703
6704 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6705                                         struct intel_crtc_config *pipe_config)
6706 {
6707         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6708                                      &pipe_config->fdi_m_n);
6709 }
6710
6711 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6712                                      struct intel_crtc_config *pipe_config)
6713 {
6714         struct drm_device *dev = crtc->base.dev;
6715         struct drm_i915_private *dev_priv = dev->dev_private;
6716         uint32_t tmp;
6717
6718         tmp = I915_READ(PF_CTL(crtc->pipe));
6719
6720         if (tmp & PF_ENABLE) {
6721                 pipe_config->pch_pfit.enabled = true;
6722                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6723                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6724
6725                 /* We currently do not free assignements of panel fitters on
6726                  * ivb/hsw (since we don't use the higher upscaling modes which
6727                  * differentiates them) so just WARN about this case for now. */
6728                 if (IS_GEN7(dev)) {
6729                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6730                                 PF_PIPE_SEL_IVB(crtc->pipe));
6731                 }
6732         }
6733 }
6734
6735 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6736                                       struct intel_plane_config *plane_config)
6737 {
6738         struct drm_device *dev = crtc->base.dev;
6739         struct drm_i915_private *dev_priv = dev->dev_private;
6740         u32 val, base, offset;
6741         int pipe = crtc->pipe, plane = crtc->plane;
6742         int fourcc, pixel_format;
6743         int aligned_height;
6744
6745         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6746         if (!crtc->base.primary->fb) {
6747                 DRM_DEBUG_KMS("failed to alloc fb\n");
6748                 return;
6749         }
6750
6751         val = I915_READ(DSPCNTR(plane));
6752
6753         if (INTEL_INFO(dev)->gen >= 4)
6754                 if (val & DISPPLANE_TILED)
6755                         plane_config->tiled = true;
6756
6757         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6758         fourcc = intel_format_to_fourcc(pixel_format);
6759         crtc->base.primary->fb->pixel_format = fourcc;
6760         crtc->base.primary->fb->bits_per_pixel =
6761                 drm_format_plane_cpp(fourcc, 0) * 8;
6762
6763         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6764         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6765                 offset = I915_READ(DSPOFFSET(plane));
6766         } else {
6767                 if (plane_config->tiled)
6768                         offset = I915_READ(DSPTILEOFF(plane));
6769                 else
6770                         offset = I915_READ(DSPLINOFF(plane));
6771         }
6772         plane_config->base = base;
6773
6774         val = I915_READ(PIPESRC(pipe));
6775         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6776         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6777
6778         val = I915_READ(DSPSTRIDE(pipe));
6779         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6780
6781         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6782                                             plane_config->tiled);
6783
6784         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6785                                    aligned_height, PAGE_SIZE);
6786
6787         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6788                       pipe, plane, crtc->base.primary->fb->width,
6789                       crtc->base.primary->fb->height,
6790                       crtc->base.primary->fb->bits_per_pixel, base,
6791                       crtc->base.primary->fb->pitches[0],
6792                       plane_config->size);
6793 }
6794
6795 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6796                                      struct intel_crtc_config *pipe_config)
6797 {
6798         struct drm_device *dev = crtc->base.dev;
6799         struct drm_i915_private *dev_priv = dev->dev_private;
6800         uint32_t tmp;
6801
6802         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6803         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6804
6805         tmp = I915_READ(PIPECONF(crtc->pipe));
6806         if (!(tmp & PIPECONF_ENABLE))
6807                 return false;
6808
6809         switch (tmp & PIPECONF_BPC_MASK) {
6810         case PIPECONF_6BPC:
6811                 pipe_config->pipe_bpp = 18;
6812                 break;
6813         case PIPECONF_8BPC:
6814                 pipe_config->pipe_bpp = 24;
6815                 break;
6816         case PIPECONF_10BPC:
6817                 pipe_config->pipe_bpp = 30;
6818                 break;
6819         case PIPECONF_12BPC:
6820                 pipe_config->pipe_bpp = 36;
6821                 break;
6822         default:
6823                 break;
6824         }
6825
6826         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6827                 struct intel_shared_dpll *pll;
6828
6829                 pipe_config->has_pch_encoder = true;
6830
6831                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6832                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6833                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6834
6835                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6836
6837                 if (HAS_PCH_IBX(dev_priv->dev)) {
6838                         pipe_config->shared_dpll =
6839                                 (enum intel_dpll_id) crtc->pipe;
6840                 } else {
6841                         tmp = I915_READ(PCH_DPLL_SEL);
6842                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6843                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6844                         else
6845                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6846                 }
6847
6848                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6849
6850                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6851                                            &pipe_config->dpll_hw_state));
6852
6853                 tmp = pipe_config->dpll_hw_state.dpll;
6854                 pipe_config->pixel_multiplier =
6855                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6856                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6857
6858                 ironlake_pch_clock_get(crtc, pipe_config);
6859         } else {
6860                 pipe_config->pixel_multiplier = 1;
6861         }
6862
6863         intel_get_pipe_timings(crtc, pipe_config);
6864
6865         ironlake_get_pfit_config(crtc, pipe_config);
6866
6867         return true;
6868 }
6869
6870 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6871 {
6872         struct drm_device *dev = dev_priv->dev;
6873         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6874         struct intel_crtc *crtc;
6875         unsigned long irqflags;
6876         uint32_t val;
6877
6878         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6879                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6880                      pipe_name(crtc->pipe));
6881
6882         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6883         WARN(plls->spll_refcount, "SPLL enabled\n");
6884         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6885         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6886         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6887         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6888              "CPU PWM1 enabled\n");
6889         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6890              "CPU PWM2 enabled\n");
6891         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6892              "PCH PWM1 enabled\n");
6893         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6894              "Utility pin enabled\n");
6895         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6896
6897         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6898         val = I915_READ(DEIMR);
6899         WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6900              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6901         val = I915_READ(SDEIMR);
6902         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6903              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6904         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6905 }
6906
6907 /*
6908  * This function implements pieces of two sequences from BSpec:
6909  * - Sequence for display software to disable LCPLL
6910  * - Sequence for display software to allow package C8+
6911  * The steps implemented here are just the steps that actually touch the LCPLL
6912  * register. Callers should take care of disabling all the display engine
6913  * functions, doing the mode unset, fixing interrupts, etc.
6914  */
6915 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6916                               bool switch_to_fclk, bool allow_power_down)
6917 {
6918         uint32_t val;
6919
6920         assert_can_disable_lcpll(dev_priv);
6921
6922         val = I915_READ(LCPLL_CTL);
6923
6924         if (switch_to_fclk) {
6925                 val |= LCPLL_CD_SOURCE_FCLK;
6926                 I915_WRITE(LCPLL_CTL, val);
6927
6928                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6929                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6930                         DRM_ERROR("Switching to FCLK failed\n");
6931
6932                 val = I915_READ(LCPLL_CTL);
6933         }
6934
6935         val |= LCPLL_PLL_DISABLE;
6936         I915_WRITE(LCPLL_CTL, val);
6937         POSTING_READ(LCPLL_CTL);
6938
6939         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6940                 DRM_ERROR("LCPLL still locked\n");
6941
6942         val = I915_READ(D_COMP);
6943         val |= D_COMP_COMP_DISABLE;
6944         mutex_lock(&dev_priv->rps.hw_lock);
6945         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6946                 DRM_ERROR("Failed to disable D_COMP\n");
6947         mutex_unlock(&dev_priv->rps.hw_lock);
6948         POSTING_READ(D_COMP);
6949         ndelay(100);
6950
6951         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6952                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6953
6954         if (allow_power_down) {
6955                 val = I915_READ(LCPLL_CTL);
6956                 val |= LCPLL_POWER_DOWN_ALLOW;
6957                 I915_WRITE(LCPLL_CTL, val);
6958                 POSTING_READ(LCPLL_CTL);
6959         }
6960 }
6961
6962 /*
6963  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6964  * source.
6965  */
6966 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6967 {
6968         uint32_t val;
6969         unsigned long irqflags;
6970
6971         val = I915_READ(LCPLL_CTL);
6972
6973         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6974                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6975                 return;
6976
6977         /*
6978          * Make sure we're not on PC8 state before disabling PC8, otherwise
6979          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6980          *
6981          * The other problem is that hsw_restore_lcpll() is called as part of
6982          * the runtime PM resume sequence, so we can't just call
6983          * gen6_gt_force_wake_get() because that function calls
6984          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6985          * while we are on the resume sequence. So to solve this problem we have
6986          * to call special forcewake code that doesn't touch runtime PM and
6987          * doesn't enable the forcewake delayed work.
6988          */
6989         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6990         if (dev_priv->uncore.forcewake_count++ == 0)
6991                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
6992         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6993
6994         if (val & LCPLL_POWER_DOWN_ALLOW) {
6995                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6996                 I915_WRITE(LCPLL_CTL, val);
6997                 POSTING_READ(LCPLL_CTL);
6998         }
6999
7000         val = I915_READ(D_COMP);
7001         val |= D_COMP_COMP_FORCE;
7002         val &= ~D_COMP_COMP_DISABLE;
7003         mutex_lock(&dev_priv->rps.hw_lock);
7004         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
7005                 DRM_ERROR("Failed to enable D_COMP\n");
7006         mutex_unlock(&dev_priv->rps.hw_lock);
7007         POSTING_READ(D_COMP);
7008
7009         val = I915_READ(LCPLL_CTL);
7010         val &= ~LCPLL_PLL_DISABLE;
7011         I915_WRITE(LCPLL_CTL, val);
7012
7013         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7014                 DRM_ERROR("LCPLL not locked yet\n");
7015
7016         if (val & LCPLL_CD_SOURCE_FCLK) {
7017                 val = I915_READ(LCPLL_CTL);
7018                 val &= ~LCPLL_CD_SOURCE_FCLK;
7019                 I915_WRITE(LCPLL_CTL, val);
7020
7021                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7022                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7023                         DRM_ERROR("Switching back to LCPLL failed\n");
7024         }
7025
7026         /* See the big comment above. */
7027         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7028         if (--dev_priv->uncore.forcewake_count == 0)
7029                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7030         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7031 }
7032
7033 /*
7034  * Package states C8 and deeper are really deep PC states that can only be
7035  * reached when all the devices on the system allow it, so even if the graphics
7036  * device allows PC8+, it doesn't mean the system will actually get to these
7037  * states. Our driver only allows PC8+ when going into runtime PM.
7038  *
7039  * The requirements for PC8+ are that all the outputs are disabled, the power
7040  * well is disabled and most interrupts are disabled, and these are also
7041  * requirements for runtime PM. When these conditions are met, we manually do
7042  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7043  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7044  * hang the machine.
7045  *
7046  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7047  * the state of some registers, so when we come back from PC8+ we need to
7048  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7049  * need to take care of the registers kept by RC6. Notice that this happens even
7050  * if we don't put the device in PCI D3 state (which is what currently happens
7051  * because of the runtime PM support).
7052  *
7053  * For more, read "Display Sequences for Package C8" on the hardware
7054  * documentation.
7055  */
7056 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7057 {
7058         struct drm_device *dev = dev_priv->dev;
7059         uint32_t val;
7060
7061         WARN_ON(!HAS_PC8(dev));
7062
7063         DRM_DEBUG_KMS("Enabling package C8+\n");
7064
7065         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7066                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7067                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7068                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7069         }
7070
7071         lpt_disable_clkout_dp(dev);
7072         hsw_runtime_pm_disable_interrupts(dev);
7073         hsw_disable_lcpll(dev_priv, true, true);
7074 }
7075
7076 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7077 {
7078         struct drm_device *dev = dev_priv->dev;
7079         uint32_t val;
7080
7081         WARN_ON(!HAS_PC8(dev));
7082
7083         DRM_DEBUG_KMS("Disabling package C8+\n");
7084
7085         hsw_restore_lcpll(dev_priv);
7086         hsw_runtime_pm_restore_interrupts(dev);
7087         lpt_init_pch_refclk(dev);
7088
7089         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7090                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7091                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7092                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7093         }
7094
7095         intel_prepare_ddi(dev);
7096         i915_gem_init_swizzling(dev);
7097         mutex_lock(&dev_priv->rps.hw_lock);
7098         gen6_update_ring_freq(dev);
7099         mutex_unlock(&dev_priv->rps.hw_lock);
7100 }
7101
7102 static void haswell_modeset_global_resources(struct drm_device *dev)
7103 {
7104         modeset_update_crtc_power_domains(dev);
7105 }
7106
7107 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7108                                  int x, int y,
7109                                  struct drm_framebuffer *fb)
7110 {
7111         struct drm_device *dev = crtc->dev;
7112         struct drm_i915_private *dev_priv = dev->dev_private;
7113         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7114         int plane = intel_crtc->plane;
7115         int ret;
7116
7117         if (!intel_ddi_pll_select(intel_crtc))
7118                 return -EINVAL;
7119         intel_ddi_pll_enable(intel_crtc);
7120
7121         if (intel_crtc->config.has_dp_encoder)
7122                 intel_dp_set_m_n(intel_crtc);
7123
7124         intel_crtc->lowfreq_avail = false;
7125
7126         intel_set_pipe_timings(intel_crtc);
7127
7128         if (intel_crtc->config.has_pch_encoder) {
7129                 intel_cpu_transcoder_set_m_n(intel_crtc,
7130                                              &intel_crtc->config.fdi_m_n);
7131         }
7132
7133         haswell_set_pipeconf(crtc);
7134
7135         intel_set_pipe_csc(crtc);
7136
7137         /* Set up the display plane register */
7138         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7139         POSTING_READ(DSPCNTR(plane));
7140
7141         ret = intel_pipe_set_base(crtc, x, y, fb);
7142
7143         return ret;
7144 }
7145
7146 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7147                                     struct intel_crtc_config *pipe_config)
7148 {
7149         struct drm_device *dev = crtc->base.dev;
7150         struct drm_i915_private *dev_priv = dev->dev_private;
7151         enum intel_display_power_domain pfit_domain;
7152         uint32_t tmp;
7153
7154         if (!intel_display_power_enabled(dev_priv,
7155                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7156                 return false;
7157
7158         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7159         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7160
7161         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7162         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7163                 enum pipe trans_edp_pipe;
7164                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7165                 default:
7166                         WARN(1, "unknown pipe linked to edp transcoder\n");
7167                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7168                 case TRANS_DDI_EDP_INPUT_A_ON:
7169                         trans_edp_pipe = PIPE_A;
7170                         break;
7171                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7172                         trans_edp_pipe = PIPE_B;
7173                         break;
7174                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7175                         trans_edp_pipe = PIPE_C;
7176                         break;
7177                 }
7178
7179                 if (trans_edp_pipe == crtc->pipe)
7180                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7181         }
7182
7183         if (!intel_display_power_enabled(dev_priv,
7184                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7185                 return false;
7186
7187         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7188         if (!(tmp & PIPECONF_ENABLE))
7189                 return false;
7190
7191         /*
7192          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7193          * DDI E. So just check whether this pipe is wired to DDI E and whether
7194          * the PCH transcoder is on.
7195          */
7196         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7197         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7198             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7199                 pipe_config->has_pch_encoder = true;
7200
7201                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7202                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7203                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7204
7205                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7206         }
7207
7208         intel_get_pipe_timings(crtc, pipe_config);
7209
7210         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7211         if (intel_display_power_enabled(dev_priv, pfit_domain))
7212                 ironlake_get_pfit_config(crtc, pipe_config);
7213
7214         if (IS_HASWELL(dev))
7215                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7216                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7217
7218         pipe_config->pixel_multiplier = 1;
7219
7220         return true;
7221 }
7222
7223 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7224                                int x, int y,
7225                                struct drm_framebuffer *fb)
7226 {
7227         struct drm_device *dev = crtc->dev;
7228         struct drm_i915_private *dev_priv = dev->dev_private;
7229         struct intel_encoder *encoder;
7230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7231         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7232         int pipe = intel_crtc->pipe;
7233         int ret;
7234
7235         drm_vblank_pre_modeset(dev, pipe);
7236
7237         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7238
7239         drm_vblank_post_modeset(dev, pipe);
7240
7241         if (ret != 0)
7242                 return ret;
7243
7244         for_each_encoder_on_crtc(dev, crtc, encoder) {
7245                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7246                         encoder->base.base.id,
7247                         drm_get_encoder_name(&encoder->base),
7248                         mode->base.id, mode->name);
7249                 encoder->mode_set(encoder);
7250         }
7251
7252         return 0;
7253 }
7254
7255 static struct {
7256         int clock;
7257         u32 config;
7258 } hdmi_audio_clock[] = {
7259         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7260         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7261         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7262         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7263         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7264         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7265         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7266         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7267         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7268         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7269 };
7270
7271 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7272 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7273 {
7274         int i;
7275
7276         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7277                 if (mode->clock == hdmi_audio_clock[i].clock)
7278                         break;
7279         }
7280
7281         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7282                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7283                 i = 1;
7284         }
7285
7286         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7287                       hdmi_audio_clock[i].clock,
7288                       hdmi_audio_clock[i].config);
7289
7290         return hdmi_audio_clock[i].config;
7291 }
7292
7293 static bool intel_eld_uptodate(struct drm_connector *connector,
7294                                int reg_eldv, uint32_t bits_eldv,
7295                                int reg_elda, uint32_t bits_elda,
7296                                int reg_edid)
7297 {
7298         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7299         uint8_t *eld = connector->eld;
7300         uint32_t i;
7301
7302         i = I915_READ(reg_eldv);
7303         i &= bits_eldv;
7304
7305         if (!eld[0])
7306                 return !i;
7307
7308         if (!i)
7309                 return false;
7310
7311         i = I915_READ(reg_elda);
7312         i &= ~bits_elda;
7313         I915_WRITE(reg_elda, i);
7314
7315         for (i = 0; i < eld[2]; i++)
7316                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7317                         return false;
7318
7319         return true;
7320 }
7321
7322 static void g4x_write_eld(struct drm_connector *connector,
7323                           struct drm_crtc *crtc,
7324                           struct drm_display_mode *mode)
7325 {
7326         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7327         uint8_t *eld = connector->eld;
7328         uint32_t eldv;
7329         uint32_t len;
7330         uint32_t i;
7331
7332         i = I915_READ(G4X_AUD_VID_DID);
7333
7334         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7335                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7336         else
7337                 eldv = G4X_ELDV_DEVCTG;
7338
7339         if (intel_eld_uptodate(connector,
7340                                G4X_AUD_CNTL_ST, eldv,
7341                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7342                                G4X_HDMIW_HDMIEDID))
7343                 return;
7344
7345         i = I915_READ(G4X_AUD_CNTL_ST);
7346         i &= ~(eldv | G4X_ELD_ADDR);
7347         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7348         I915_WRITE(G4X_AUD_CNTL_ST, i);
7349
7350         if (!eld[0])
7351                 return;
7352
7353         len = min_t(uint8_t, eld[2], len);
7354         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7355         for (i = 0; i < len; i++)
7356                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7357
7358         i = I915_READ(G4X_AUD_CNTL_ST);
7359         i |= eldv;
7360         I915_WRITE(G4X_AUD_CNTL_ST, i);
7361 }
7362
7363 static void haswell_write_eld(struct drm_connector *connector,
7364                               struct drm_crtc *crtc,
7365                               struct drm_display_mode *mode)
7366 {
7367         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7368         uint8_t *eld = connector->eld;
7369         struct drm_device *dev = crtc->dev;
7370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7371         uint32_t eldv;
7372         uint32_t i;
7373         int len;
7374         int pipe = to_intel_crtc(crtc)->pipe;
7375         int tmp;
7376
7377         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7378         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7379         int aud_config = HSW_AUD_CFG(pipe);
7380         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7381
7382
7383         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7384
7385         /* Audio output enable */
7386         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7387         tmp = I915_READ(aud_cntrl_st2);
7388         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7389         I915_WRITE(aud_cntrl_st2, tmp);
7390
7391         /* Wait for 1 vertical blank */
7392         intel_wait_for_vblank(dev, pipe);
7393
7394         /* Set ELD valid state */
7395         tmp = I915_READ(aud_cntrl_st2);
7396         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7397         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7398         I915_WRITE(aud_cntrl_st2, tmp);
7399         tmp = I915_READ(aud_cntrl_st2);
7400         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7401
7402         /* Enable HDMI mode */
7403         tmp = I915_READ(aud_config);
7404         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7405         /* clear N_programing_enable and N_value_index */
7406         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7407         I915_WRITE(aud_config, tmp);
7408
7409         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7410
7411         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7412         intel_crtc->eld_vld = true;
7413
7414         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7415                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7416                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7417                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7418         } else {
7419                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7420         }
7421
7422         if (intel_eld_uptodate(connector,
7423                                aud_cntrl_st2, eldv,
7424                                aud_cntl_st, IBX_ELD_ADDRESS,
7425                                hdmiw_hdmiedid))
7426                 return;
7427
7428         i = I915_READ(aud_cntrl_st2);
7429         i &= ~eldv;
7430         I915_WRITE(aud_cntrl_st2, i);
7431
7432         if (!eld[0])
7433                 return;
7434
7435         i = I915_READ(aud_cntl_st);
7436         i &= ~IBX_ELD_ADDRESS;
7437         I915_WRITE(aud_cntl_st, i);
7438         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7439         DRM_DEBUG_DRIVER("port num:%d\n", i);
7440
7441         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7442         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7443         for (i = 0; i < len; i++)
7444                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7445
7446         i = I915_READ(aud_cntrl_st2);
7447         i |= eldv;
7448         I915_WRITE(aud_cntrl_st2, i);
7449
7450 }
7451
7452 static void ironlake_write_eld(struct drm_connector *connector,
7453                                struct drm_crtc *crtc,
7454                                struct drm_display_mode *mode)
7455 {
7456         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7457         uint8_t *eld = connector->eld;
7458         uint32_t eldv;
7459         uint32_t i;
7460         int len;
7461         int hdmiw_hdmiedid;
7462         int aud_config;
7463         int aud_cntl_st;
7464         int aud_cntrl_st2;
7465         int pipe = to_intel_crtc(crtc)->pipe;
7466
7467         if (HAS_PCH_IBX(connector->dev)) {
7468                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7469                 aud_config = IBX_AUD_CFG(pipe);
7470                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7471                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7472         } else if (IS_VALLEYVIEW(connector->dev)) {
7473                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7474                 aud_config = VLV_AUD_CFG(pipe);
7475                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7476                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7477         } else {
7478                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7479                 aud_config = CPT_AUD_CFG(pipe);
7480                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7481                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7482         }
7483
7484         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7485
7486         if (IS_VALLEYVIEW(connector->dev))  {
7487                 struct intel_encoder *intel_encoder;
7488                 struct intel_digital_port *intel_dig_port;
7489
7490                 intel_encoder = intel_attached_encoder(connector);
7491                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7492                 i = intel_dig_port->port;
7493         } else {
7494                 i = I915_READ(aud_cntl_st);
7495                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7496                 /* DIP_Port_Select, 0x1 = PortB */
7497         }
7498
7499         if (!i) {
7500                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7501                 /* operate blindly on all ports */
7502                 eldv = IBX_ELD_VALIDB;
7503                 eldv |= IBX_ELD_VALIDB << 4;
7504                 eldv |= IBX_ELD_VALIDB << 8;
7505         } else {
7506                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7507                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7508         }
7509
7510         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7511                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7512                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7513                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7514         } else {
7515                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7516         }
7517
7518         if (intel_eld_uptodate(connector,
7519                                aud_cntrl_st2, eldv,
7520                                aud_cntl_st, IBX_ELD_ADDRESS,
7521                                hdmiw_hdmiedid))
7522                 return;
7523
7524         i = I915_READ(aud_cntrl_st2);
7525         i &= ~eldv;
7526         I915_WRITE(aud_cntrl_st2, i);
7527
7528         if (!eld[0])
7529                 return;
7530
7531         i = I915_READ(aud_cntl_st);
7532         i &= ~IBX_ELD_ADDRESS;
7533         I915_WRITE(aud_cntl_st, i);
7534
7535         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7536         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7537         for (i = 0; i < len; i++)
7538                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7539
7540         i = I915_READ(aud_cntrl_st2);
7541         i |= eldv;
7542         I915_WRITE(aud_cntrl_st2, i);
7543 }
7544
7545 void intel_write_eld(struct drm_encoder *encoder,
7546                      struct drm_display_mode *mode)
7547 {
7548         struct drm_crtc *crtc = encoder->crtc;
7549         struct drm_connector *connector;
7550         struct drm_device *dev = encoder->dev;
7551         struct drm_i915_private *dev_priv = dev->dev_private;
7552
7553         connector = drm_select_eld(encoder, mode);
7554         if (!connector)
7555                 return;
7556
7557         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7558                          connector->base.id,
7559                          drm_get_connector_name(connector),
7560                          connector->encoder->base.id,
7561                          drm_get_encoder_name(connector->encoder));
7562
7563         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7564
7565         if (dev_priv->display.write_eld)
7566                 dev_priv->display.write_eld(connector, crtc, mode);
7567 }
7568
7569 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7570 {
7571         struct drm_device *dev = crtc->dev;
7572         struct drm_i915_private *dev_priv = dev->dev_private;
7573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7574         bool visible = base != 0;
7575         u32 cntl;
7576
7577         if (intel_crtc->cursor_visible == visible)
7578                 return;
7579
7580         cntl = I915_READ(_CURACNTR);
7581         if (visible) {
7582                 /* On these chipsets we can only modify the base whilst
7583                  * the cursor is disabled.
7584                  */
7585                 I915_WRITE(_CURABASE, base);
7586
7587                 cntl &= ~(CURSOR_FORMAT_MASK);
7588                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7589                 cntl |= CURSOR_ENABLE |
7590                         CURSOR_GAMMA_ENABLE |
7591                         CURSOR_FORMAT_ARGB;
7592         } else
7593                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7594         I915_WRITE(_CURACNTR, cntl);
7595
7596         intel_crtc->cursor_visible = visible;
7597 }
7598
7599 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7600 {
7601         struct drm_device *dev = crtc->dev;
7602         struct drm_i915_private *dev_priv = dev->dev_private;
7603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7604         int pipe = intel_crtc->pipe;
7605         bool visible = base != 0;
7606
7607         if (intel_crtc->cursor_visible != visible) {
7608                 int16_t width = intel_crtc->cursor_width;
7609                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7610                 if (base) {
7611                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7612                         cntl |= MCURSOR_GAMMA_ENABLE;
7613
7614                         switch (width) {
7615                         case 64:
7616                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7617                                 break;
7618                         case 128:
7619                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7620                                 break;
7621                         case 256:
7622                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7623                                 break;
7624                         default:
7625                                 WARN_ON(1);
7626                                 return;
7627                         }
7628                         cntl |= pipe << 28; /* Connect to correct pipe */
7629                 } else {
7630                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7631                         cntl |= CURSOR_MODE_DISABLE;
7632                 }
7633                 I915_WRITE(CURCNTR(pipe), cntl);
7634
7635                 intel_crtc->cursor_visible = visible;
7636         }
7637         /* and commit changes on next vblank */
7638         POSTING_READ(CURCNTR(pipe));
7639         I915_WRITE(CURBASE(pipe), base);
7640         POSTING_READ(CURBASE(pipe));
7641 }
7642
7643 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7644 {
7645         struct drm_device *dev = crtc->dev;
7646         struct drm_i915_private *dev_priv = dev->dev_private;
7647         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7648         int pipe = intel_crtc->pipe;
7649         bool visible = base != 0;
7650
7651         if (intel_crtc->cursor_visible != visible) {
7652                 int16_t width = intel_crtc->cursor_width;
7653                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7654                 if (base) {
7655                         cntl &= ~CURSOR_MODE;
7656                         cntl |= MCURSOR_GAMMA_ENABLE;
7657                         switch (width) {
7658                         case 64:
7659                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7660                                 break;
7661                         case 128:
7662                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7663                                 break;
7664                         case 256:
7665                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7666                                 break;
7667                         default:
7668                                 WARN_ON(1);
7669                                 return;
7670                         }
7671                 } else {
7672                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7673                         cntl |= CURSOR_MODE_DISABLE;
7674                 }
7675                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7676                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7677                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7678                 }
7679                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7680
7681                 intel_crtc->cursor_visible = visible;
7682         }
7683         /* and commit changes on next vblank */
7684         POSTING_READ(CURCNTR_IVB(pipe));
7685         I915_WRITE(CURBASE_IVB(pipe), base);
7686         POSTING_READ(CURBASE_IVB(pipe));
7687 }
7688
7689 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7690 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7691                                      bool on)
7692 {
7693         struct drm_device *dev = crtc->dev;
7694         struct drm_i915_private *dev_priv = dev->dev_private;
7695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7696         int pipe = intel_crtc->pipe;
7697         int x = intel_crtc->cursor_x;
7698         int y = intel_crtc->cursor_y;
7699         u32 base = 0, pos = 0;
7700         bool visible;
7701
7702         if (on)
7703                 base = intel_crtc->cursor_addr;
7704
7705         if (x >= intel_crtc->config.pipe_src_w)
7706                 base = 0;
7707
7708         if (y >= intel_crtc->config.pipe_src_h)
7709                 base = 0;
7710
7711         if (x < 0) {
7712                 if (x + intel_crtc->cursor_width <= 0)
7713                         base = 0;
7714
7715                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7716                 x = -x;
7717         }
7718         pos |= x << CURSOR_X_SHIFT;
7719
7720         if (y < 0) {
7721                 if (y + intel_crtc->cursor_height <= 0)
7722                         base = 0;
7723
7724                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7725                 y = -y;
7726         }
7727         pos |= y << CURSOR_Y_SHIFT;
7728
7729         visible = base != 0;
7730         if (!visible && !intel_crtc->cursor_visible)
7731                 return;
7732
7733         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7734                 I915_WRITE(CURPOS_IVB(pipe), pos);
7735                 ivb_update_cursor(crtc, base);
7736         } else {
7737                 I915_WRITE(CURPOS(pipe), pos);
7738                 if (IS_845G(dev) || IS_I865G(dev))
7739                         i845_update_cursor(crtc, base);
7740                 else
7741                         i9xx_update_cursor(crtc, base);
7742         }
7743 }
7744
7745 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7746                                  struct drm_file *file,
7747                                  uint32_t handle,
7748                                  uint32_t width, uint32_t height)
7749 {
7750         struct drm_device *dev = crtc->dev;
7751         struct drm_i915_private *dev_priv = dev->dev_private;
7752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7753         struct drm_i915_gem_object *obj;
7754         uint32_t addr;
7755         int ret;
7756
7757         /* if we want to turn off the cursor ignore width and height */
7758         if (!handle) {
7759                 DRM_DEBUG_KMS("cursor off\n");
7760                 addr = 0;
7761                 obj = NULL;
7762                 mutex_lock(&dev->struct_mutex);
7763                 goto finish;
7764         }
7765
7766         /* Check for which cursor types we support */
7767         if (!((width == 64 && height == 64) ||
7768                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
7769                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
7770                 DRM_DEBUG("Cursor dimension not supported\n");
7771                 return -EINVAL;
7772         }
7773
7774         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7775         if (&obj->base == NULL)
7776                 return -ENOENT;
7777
7778         if (obj->base.size < width * height * 4) {
7779                 DRM_DEBUG_KMS("buffer is to small\n");
7780                 ret = -ENOMEM;
7781                 goto fail;
7782         }
7783
7784         /* we only need to pin inside GTT if cursor is non-phy */
7785         mutex_lock(&dev->struct_mutex);
7786         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7787                 unsigned alignment;
7788
7789                 if (obj->tiling_mode) {
7790                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7791                         ret = -EINVAL;
7792                         goto fail_locked;
7793                 }
7794
7795                 /* Note that the w/a also requires 2 PTE of padding following
7796                  * the bo. We currently fill all unused PTE with the shadow
7797                  * page and so we should always have valid PTE following the
7798                  * cursor preventing the VT-d warning.
7799                  */
7800                 alignment = 0;
7801                 if (need_vtd_wa(dev))
7802                         alignment = 64*1024;
7803
7804                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7805                 if (ret) {
7806                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7807                         goto fail_locked;
7808                 }
7809
7810                 ret = i915_gem_object_put_fence(obj);
7811                 if (ret) {
7812                         DRM_DEBUG_KMS("failed to release fence for cursor");
7813                         goto fail_unpin;
7814                 }
7815
7816                 addr = i915_gem_obj_ggtt_offset(obj);
7817         } else {
7818                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7819                 ret = i915_gem_attach_phys_object(dev, obj,
7820                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7821                                                   align);
7822                 if (ret) {
7823                         DRM_DEBUG_KMS("failed to attach phys object\n");
7824                         goto fail_locked;
7825                 }
7826                 addr = obj->phys_obj->handle->busaddr;
7827         }
7828
7829         if (IS_GEN2(dev))
7830                 I915_WRITE(CURSIZE, (height << 12) | width);
7831
7832  finish:
7833         if (intel_crtc->cursor_bo) {
7834                 if (INTEL_INFO(dev)->cursor_needs_physical) {
7835                         if (intel_crtc->cursor_bo != obj)
7836                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7837                 } else
7838                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7839                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7840         }
7841
7842         mutex_unlock(&dev->struct_mutex);
7843
7844         intel_crtc->cursor_addr = addr;
7845         intel_crtc->cursor_bo = obj;
7846         intel_crtc->cursor_width = width;
7847         intel_crtc->cursor_height = height;
7848
7849         if (intel_crtc->active)
7850                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7851
7852         return 0;
7853 fail_unpin:
7854         i915_gem_object_unpin_from_display_plane(obj);
7855 fail_locked:
7856         mutex_unlock(&dev->struct_mutex);
7857 fail:
7858         drm_gem_object_unreference_unlocked(&obj->base);
7859         return ret;
7860 }
7861
7862 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7863 {
7864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7865
7866         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7867         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7868
7869         if (intel_crtc->active)
7870                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7871
7872         return 0;
7873 }
7874
7875 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7876                                  u16 *blue, uint32_t start, uint32_t size)
7877 {
7878         int end = (start + size > 256) ? 256 : start + size, i;
7879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7880
7881         for (i = start; i < end; i++) {
7882                 intel_crtc->lut_r[i] = red[i] >> 8;
7883                 intel_crtc->lut_g[i] = green[i] >> 8;
7884                 intel_crtc->lut_b[i] = blue[i] >> 8;
7885         }
7886
7887         intel_crtc_load_lut(crtc);
7888 }
7889
7890 /* VESA 640x480x72Hz mode to set on the pipe */
7891 static struct drm_display_mode load_detect_mode = {
7892         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7893                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7894 };
7895
7896 struct drm_framebuffer *
7897 __intel_framebuffer_create(struct drm_device *dev,
7898                            struct drm_mode_fb_cmd2 *mode_cmd,
7899                            struct drm_i915_gem_object *obj)
7900 {
7901         struct intel_framebuffer *intel_fb;
7902         int ret;
7903
7904         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7905         if (!intel_fb) {
7906                 drm_gem_object_unreference_unlocked(&obj->base);
7907                 return ERR_PTR(-ENOMEM);
7908         }
7909
7910         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7911         if (ret)
7912                 goto err;
7913
7914         return &intel_fb->base;
7915 err:
7916         drm_gem_object_unreference_unlocked(&obj->base);
7917         kfree(intel_fb);
7918
7919         return ERR_PTR(ret);
7920 }
7921
7922 static struct drm_framebuffer *
7923 intel_framebuffer_create(struct drm_device *dev,
7924                          struct drm_mode_fb_cmd2 *mode_cmd,
7925                          struct drm_i915_gem_object *obj)
7926 {
7927         struct drm_framebuffer *fb;
7928         int ret;
7929
7930         ret = i915_mutex_lock_interruptible(dev);
7931         if (ret)
7932                 return ERR_PTR(ret);
7933         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7934         mutex_unlock(&dev->struct_mutex);
7935
7936         return fb;
7937 }
7938
7939 static u32
7940 intel_framebuffer_pitch_for_width(int width, int bpp)
7941 {
7942         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7943         return ALIGN(pitch, 64);
7944 }
7945
7946 static u32
7947 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7948 {
7949         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7950         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7951 }
7952
7953 static struct drm_framebuffer *
7954 intel_framebuffer_create_for_mode(struct drm_device *dev,
7955                                   struct drm_display_mode *mode,
7956                                   int depth, int bpp)
7957 {
7958         struct drm_i915_gem_object *obj;
7959         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7960
7961         obj = i915_gem_alloc_object(dev,
7962                                     intel_framebuffer_size_for_mode(mode, bpp));
7963         if (obj == NULL)
7964                 return ERR_PTR(-ENOMEM);
7965
7966         mode_cmd.width = mode->hdisplay;
7967         mode_cmd.height = mode->vdisplay;
7968         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7969                                                                 bpp);
7970         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7971
7972         return intel_framebuffer_create(dev, &mode_cmd, obj);
7973 }
7974
7975 static struct drm_framebuffer *
7976 mode_fits_in_fbdev(struct drm_device *dev,
7977                    struct drm_display_mode *mode)
7978 {
7979 #ifdef CONFIG_DRM_I915_FBDEV
7980         struct drm_i915_private *dev_priv = dev->dev_private;
7981         struct drm_i915_gem_object *obj;
7982         struct drm_framebuffer *fb;
7983
7984         if (!dev_priv->fbdev)
7985                 return NULL;
7986
7987         if (!dev_priv->fbdev->fb)
7988                 return NULL;
7989
7990         obj = dev_priv->fbdev->fb->obj;
7991         BUG_ON(!obj);
7992
7993         fb = &dev_priv->fbdev->fb->base;
7994         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7995                                                                fb->bits_per_pixel))
7996                 return NULL;
7997
7998         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7999                 return NULL;
8000
8001         return fb;
8002 #else
8003         return NULL;
8004 #endif
8005 }
8006
8007 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8008                                 struct drm_display_mode *mode,
8009                                 struct intel_load_detect_pipe *old)
8010 {
8011         struct intel_crtc *intel_crtc;
8012         struct intel_encoder *intel_encoder =
8013                 intel_attached_encoder(connector);
8014         struct drm_crtc *possible_crtc;
8015         struct drm_encoder *encoder = &intel_encoder->base;
8016         struct drm_crtc *crtc = NULL;
8017         struct drm_device *dev = encoder->dev;
8018         struct drm_framebuffer *fb;
8019         int i = -1;
8020
8021         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8022                       connector->base.id, drm_get_connector_name(connector),
8023                       encoder->base.id, drm_get_encoder_name(encoder));
8024
8025         /*
8026          * Algorithm gets a little messy:
8027          *
8028          *   - if the connector already has an assigned crtc, use it (but make
8029          *     sure it's on first)
8030          *
8031          *   - try to find the first unused crtc that can drive this connector,
8032          *     and use that if we find one
8033          */
8034
8035         /* See if we already have a CRTC for this connector */
8036         if (encoder->crtc) {
8037                 crtc = encoder->crtc;
8038
8039                 mutex_lock(&crtc->mutex);
8040
8041                 old->dpms_mode = connector->dpms;
8042                 old->load_detect_temp = false;
8043
8044                 /* Make sure the crtc and connector are running */
8045                 if (connector->dpms != DRM_MODE_DPMS_ON)
8046                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8047
8048                 return true;
8049         }
8050
8051         /* Find an unused one (if possible) */
8052         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
8053                 i++;
8054                 if (!(encoder->possible_crtcs & (1 << i)))
8055                         continue;
8056                 if (!possible_crtc->enabled) {
8057                         crtc = possible_crtc;
8058                         break;
8059                 }
8060         }
8061
8062         /*
8063          * If we didn't find an unused CRTC, don't use any.
8064          */
8065         if (!crtc) {
8066                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8067                 return false;
8068         }
8069
8070         mutex_lock(&crtc->mutex);
8071         intel_encoder->new_crtc = to_intel_crtc(crtc);
8072         to_intel_connector(connector)->new_encoder = intel_encoder;
8073
8074         intel_crtc = to_intel_crtc(crtc);
8075         intel_crtc->new_enabled = true;
8076         intel_crtc->new_config = &intel_crtc->config;
8077         old->dpms_mode = connector->dpms;
8078         old->load_detect_temp = true;
8079         old->release_fb = NULL;
8080
8081         if (!mode)
8082                 mode = &load_detect_mode;
8083
8084         /* We need a framebuffer large enough to accommodate all accesses
8085          * that the plane may generate whilst we perform load detection.
8086          * We can not rely on the fbcon either being present (we get called
8087          * during its initialisation to detect all boot displays, or it may
8088          * not even exist) or that it is large enough to satisfy the
8089          * requested mode.
8090          */
8091         fb = mode_fits_in_fbdev(dev, mode);
8092         if (fb == NULL) {
8093                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8094                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8095                 old->release_fb = fb;
8096         } else
8097                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8098         if (IS_ERR(fb)) {
8099                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8100                 goto fail;
8101         }
8102
8103         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8104                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8105                 if (old->release_fb)
8106                         old->release_fb->funcs->destroy(old->release_fb);
8107                 goto fail;
8108         }
8109
8110         /* let the connector get through one full cycle before testing */
8111         intel_wait_for_vblank(dev, intel_crtc->pipe);
8112         return true;
8113
8114  fail:
8115         intel_crtc->new_enabled = crtc->enabled;
8116         if (intel_crtc->new_enabled)
8117                 intel_crtc->new_config = &intel_crtc->config;
8118         else
8119                 intel_crtc->new_config = NULL;
8120         mutex_unlock(&crtc->mutex);
8121         return false;
8122 }
8123
8124 void intel_release_load_detect_pipe(struct drm_connector *connector,
8125                                     struct intel_load_detect_pipe *old)
8126 {
8127         struct intel_encoder *intel_encoder =
8128                 intel_attached_encoder(connector);
8129         struct drm_encoder *encoder = &intel_encoder->base;
8130         struct drm_crtc *crtc = encoder->crtc;
8131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8132
8133         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8134                       connector->base.id, drm_get_connector_name(connector),
8135                       encoder->base.id, drm_get_encoder_name(encoder));
8136
8137         if (old->load_detect_temp) {
8138                 to_intel_connector(connector)->new_encoder = NULL;
8139                 intel_encoder->new_crtc = NULL;
8140                 intel_crtc->new_enabled = false;
8141                 intel_crtc->new_config = NULL;
8142                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8143
8144                 if (old->release_fb) {
8145                         drm_framebuffer_unregister_private(old->release_fb);
8146                         drm_framebuffer_unreference(old->release_fb);
8147                 }
8148
8149                 mutex_unlock(&crtc->mutex);
8150                 return;
8151         }
8152
8153         /* Switch crtc and encoder back off if necessary */
8154         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8155                 connector->funcs->dpms(connector, old->dpms_mode);
8156
8157         mutex_unlock(&crtc->mutex);
8158 }
8159
8160 static int i9xx_pll_refclk(struct drm_device *dev,
8161                            const struct intel_crtc_config *pipe_config)
8162 {
8163         struct drm_i915_private *dev_priv = dev->dev_private;
8164         u32 dpll = pipe_config->dpll_hw_state.dpll;
8165
8166         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8167                 return dev_priv->vbt.lvds_ssc_freq;
8168         else if (HAS_PCH_SPLIT(dev))
8169                 return 120000;
8170         else if (!IS_GEN2(dev))
8171                 return 96000;
8172         else
8173                 return 48000;
8174 }
8175
8176 /* Returns the clock of the currently programmed mode of the given pipe. */
8177 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8178                                 struct intel_crtc_config *pipe_config)
8179 {
8180         struct drm_device *dev = crtc->base.dev;
8181         struct drm_i915_private *dev_priv = dev->dev_private;
8182         int pipe = pipe_config->cpu_transcoder;
8183         u32 dpll = pipe_config->dpll_hw_state.dpll;
8184         u32 fp;
8185         intel_clock_t clock;
8186         int refclk = i9xx_pll_refclk(dev, pipe_config);
8187
8188         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8189                 fp = pipe_config->dpll_hw_state.fp0;
8190         else
8191                 fp = pipe_config->dpll_hw_state.fp1;
8192
8193         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8194         if (IS_PINEVIEW(dev)) {
8195                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8196                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8197         } else {
8198                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8199                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8200         }
8201
8202         if (!IS_GEN2(dev)) {
8203                 if (IS_PINEVIEW(dev))
8204                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8205                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8206                 else
8207                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8208                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8209
8210                 switch (dpll & DPLL_MODE_MASK) {
8211                 case DPLLB_MODE_DAC_SERIAL:
8212                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8213                                 5 : 10;
8214                         break;
8215                 case DPLLB_MODE_LVDS:
8216                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8217                                 7 : 14;
8218                         break;
8219                 default:
8220                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8221                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8222                         return;
8223                 }
8224
8225                 if (IS_PINEVIEW(dev))
8226                         pineview_clock(refclk, &clock);
8227                 else
8228                         i9xx_clock(refclk, &clock);
8229         } else {
8230                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8231                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8232
8233                 if (is_lvds) {
8234                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8235                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8236
8237                         if (lvds & LVDS_CLKB_POWER_UP)
8238                                 clock.p2 = 7;
8239                         else
8240                                 clock.p2 = 14;
8241                 } else {
8242                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8243                                 clock.p1 = 2;
8244                         else {
8245                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8246                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8247                         }
8248                         if (dpll & PLL_P2_DIVIDE_BY_4)
8249                                 clock.p2 = 4;
8250                         else
8251                                 clock.p2 = 2;
8252                 }
8253
8254                 i9xx_clock(refclk, &clock);
8255         }
8256
8257         /*
8258          * This value includes pixel_multiplier. We will use
8259          * port_clock to compute adjusted_mode.crtc_clock in the
8260          * encoder's get_config() function.
8261          */
8262         pipe_config->port_clock = clock.dot;
8263 }
8264
8265 int intel_dotclock_calculate(int link_freq,
8266                              const struct intel_link_m_n *m_n)
8267 {
8268         /*
8269          * The calculation for the data clock is:
8270          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8271          * But we want to avoid losing precison if possible, so:
8272          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8273          *
8274          * and the link clock is simpler:
8275          * link_clock = (m * link_clock) / n
8276          */
8277
8278         if (!m_n->link_n)
8279                 return 0;
8280
8281         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8282 }
8283
8284 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8285                                    struct intel_crtc_config *pipe_config)
8286 {
8287         struct drm_device *dev = crtc->base.dev;
8288
8289         /* read out port_clock from the DPLL */
8290         i9xx_crtc_clock_get(crtc, pipe_config);
8291
8292         /*
8293          * This value does not include pixel_multiplier.
8294          * We will check that port_clock and adjusted_mode.crtc_clock
8295          * agree once we know their relationship in the encoder's
8296          * get_config() function.
8297          */
8298         pipe_config->adjusted_mode.crtc_clock =
8299                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8300                                          &pipe_config->fdi_m_n);
8301 }
8302
8303 /** Returns the currently programmed mode of the given pipe. */
8304 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8305                                              struct drm_crtc *crtc)
8306 {
8307         struct drm_i915_private *dev_priv = dev->dev_private;
8308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8309         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8310         struct drm_display_mode *mode;
8311         struct intel_crtc_config pipe_config;
8312         int htot = I915_READ(HTOTAL(cpu_transcoder));
8313         int hsync = I915_READ(HSYNC(cpu_transcoder));
8314         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8315         int vsync = I915_READ(VSYNC(cpu_transcoder));
8316         enum pipe pipe = intel_crtc->pipe;
8317
8318         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8319         if (!mode)
8320                 return NULL;
8321
8322         /*
8323          * Construct a pipe_config sufficient for getting the clock info
8324          * back out of crtc_clock_get.
8325          *
8326          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8327          * to use a real value here instead.
8328          */
8329         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8330         pipe_config.pixel_multiplier = 1;
8331         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8332         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8333         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8334         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8335
8336         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8337         mode->hdisplay = (htot & 0xffff) + 1;
8338         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8339         mode->hsync_start = (hsync & 0xffff) + 1;
8340         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8341         mode->vdisplay = (vtot & 0xffff) + 1;
8342         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8343         mode->vsync_start = (vsync & 0xffff) + 1;
8344         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8345
8346         drm_mode_set_name(mode);
8347
8348         return mode;
8349 }
8350
8351 static void intel_increase_pllclock(struct drm_crtc *crtc)
8352 {
8353         struct drm_device *dev = crtc->dev;
8354         drm_i915_private_t *dev_priv = dev->dev_private;
8355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8356         int pipe = intel_crtc->pipe;
8357         int dpll_reg = DPLL(pipe);
8358         int dpll;
8359
8360         if (HAS_PCH_SPLIT(dev))
8361                 return;
8362
8363         if (!dev_priv->lvds_downclock_avail)
8364                 return;
8365
8366         dpll = I915_READ(dpll_reg);
8367         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8368                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8369
8370                 assert_panel_unlocked(dev_priv, pipe);
8371
8372                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8373                 I915_WRITE(dpll_reg, dpll);
8374                 intel_wait_for_vblank(dev, pipe);
8375
8376                 dpll = I915_READ(dpll_reg);
8377                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8378                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8379         }
8380 }
8381
8382 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8383 {
8384         struct drm_device *dev = crtc->dev;
8385         drm_i915_private_t *dev_priv = dev->dev_private;
8386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8387
8388         if (HAS_PCH_SPLIT(dev))
8389                 return;
8390
8391         if (!dev_priv->lvds_downclock_avail)
8392                 return;
8393
8394         /*
8395          * Since this is called by a timer, we should never get here in
8396          * the manual case.
8397          */
8398         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8399                 int pipe = intel_crtc->pipe;
8400                 int dpll_reg = DPLL(pipe);
8401                 int dpll;
8402
8403                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8404
8405                 assert_panel_unlocked(dev_priv, pipe);
8406
8407                 dpll = I915_READ(dpll_reg);
8408                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8409                 I915_WRITE(dpll_reg, dpll);
8410                 intel_wait_for_vblank(dev, pipe);
8411                 dpll = I915_READ(dpll_reg);
8412                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8413                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8414         }
8415
8416 }
8417
8418 void intel_mark_busy(struct drm_device *dev)
8419 {
8420         struct drm_i915_private *dev_priv = dev->dev_private;
8421
8422         if (dev_priv->mm.busy)
8423                 return;
8424
8425         intel_runtime_pm_get(dev_priv);
8426         i915_update_gfx_val(dev_priv);
8427         dev_priv->mm.busy = true;
8428 }
8429
8430 void intel_mark_idle(struct drm_device *dev)
8431 {
8432         struct drm_i915_private *dev_priv = dev->dev_private;
8433         struct drm_crtc *crtc;
8434
8435         if (!dev_priv->mm.busy)
8436                 return;
8437
8438         dev_priv->mm.busy = false;
8439
8440         if (!i915.powersave)
8441                 goto out;
8442
8443         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8444                 if (!crtc->primary->fb)
8445                         continue;
8446
8447                 intel_decrease_pllclock(crtc);
8448         }
8449
8450         if (INTEL_INFO(dev)->gen >= 6)
8451                 gen6_rps_idle(dev->dev_private);
8452
8453 out:
8454         intel_runtime_pm_put(dev_priv);
8455 }
8456
8457 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8458                         struct intel_ring_buffer *ring)
8459 {
8460         struct drm_device *dev = obj->base.dev;
8461         struct drm_crtc *crtc;
8462
8463         if (!i915.powersave)
8464                 return;
8465
8466         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8467                 if (!crtc->primary->fb)
8468                         continue;
8469
8470                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8471                         continue;
8472
8473                 intel_increase_pllclock(crtc);
8474                 if (ring && intel_fbc_enabled(dev))
8475                         ring->fbc_dirty = true;
8476         }
8477 }
8478
8479 static void intel_crtc_destroy(struct drm_crtc *crtc)
8480 {
8481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8482         struct drm_device *dev = crtc->dev;
8483         struct intel_unpin_work *work;
8484         unsigned long flags;
8485
8486         spin_lock_irqsave(&dev->event_lock, flags);
8487         work = intel_crtc->unpin_work;
8488         intel_crtc->unpin_work = NULL;
8489         spin_unlock_irqrestore(&dev->event_lock, flags);
8490
8491         if (work) {
8492                 cancel_work_sync(&work->work);
8493                 kfree(work);
8494         }
8495
8496         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8497
8498         drm_crtc_cleanup(crtc);
8499
8500         kfree(intel_crtc);
8501 }
8502
8503 static void intel_unpin_work_fn(struct work_struct *__work)
8504 {
8505         struct intel_unpin_work *work =
8506                 container_of(__work, struct intel_unpin_work, work);
8507         struct drm_device *dev = work->crtc->dev;
8508
8509         mutex_lock(&dev->struct_mutex);
8510         intel_unpin_fb_obj(work->old_fb_obj);
8511         drm_gem_object_unreference(&work->pending_flip_obj->base);
8512         drm_gem_object_unreference(&work->old_fb_obj->base);
8513
8514         intel_update_fbc(dev);
8515         mutex_unlock(&dev->struct_mutex);
8516
8517         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8518         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8519
8520         kfree(work);
8521 }
8522
8523 static void do_intel_finish_page_flip(struct drm_device *dev,
8524                                       struct drm_crtc *crtc)
8525 {
8526         drm_i915_private_t *dev_priv = dev->dev_private;
8527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8528         struct intel_unpin_work *work;
8529         unsigned long flags;
8530
8531         /* Ignore early vblank irqs */
8532         if (intel_crtc == NULL)
8533                 return;
8534
8535         spin_lock_irqsave(&dev->event_lock, flags);
8536         work = intel_crtc->unpin_work;
8537
8538         /* Ensure we don't miss a work->pending update ... */
8539         smp_rmb();
8540
8541         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8542                 spin_unlock_irqrestore(&dev->event_lock, flags);
8543                 return;
8544         }
8545
8546         /* and that the unpin work is consistent wrt ->pending. */
8547         smp_rmb();
8548
8549         intel_crtc->unpin_work = NULL;
8550
8551         if (work->event)
8552                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8553
8554         drm_vblank_put(dev, intel_crtc->pipe);
8555
8556         spin_unlock_irqrestore(&dev->event_lock, flags);
8557
8558         wake_up_all(&dev_priv->pending_flip_queue);
8559
8560         queue_work(dev_priv->wq, &work->work);
8561
8562         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8563 }
8564
8565 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8566 {
8567         drm_i915_private_t *dev_priv = dev->dev_private;
8568         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8569
8570         do_intel_finish_page_flip(dev, crtc);
8571 }
8572
8573 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8574 {
8575         drm_i915_private_t *dev_priv = dev->dev_private;
8576         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8577
8578         do_intel_finish_page_flip(dev, crtc);
8579 }
8580
8581 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8582 {
8583         drm_i915_private_t *dev_priv = dev->dev_private;
8584         struct intel_crtc *intel_crtc =
8585                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8586         unsigned long flags;
8587
8588         /* NB: An MMIO update of the plane base pointer will also
8589          * generate a page-flip completion irq, i.e. every modeset
8590          * is also accompanied by a spurious intel_prepare_page_flip().
8591          */
8592         spin_lock_irqsave(&dev->event_lock, flags);
8593         if (intel_crtc->unpin_work)
8594                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8595         spin_unlock_irqrestore(&dev->event_lock, flags);
8596 }
8597
8598 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8599 {
8600         /* Ensure that the work item is consistent when activating it ... */
8601         smp_wmb();
8602         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8603         /* and that it is marked active as soon as the irq could fire. */
8604         smp_wmb();
8605 }
8606
8607 static int intel_gen2_queue_flip(struct drm_device *dev,
8608                                  struct drm_crtc *crtc,
8609                                  struct drm_framebuffer *fb,
8610                                  struct drm_i915_gem_object *obj,
8611                                  uint32_t flags)
8612 {
8613         struct drm_i915_private *dev_priv = dev->dev_private;
8614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8615         u32 flip_mask;
8616         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8617         int ret;
8618
8619         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8620         if (ret)
8621                 goto err;
8622
8623         ret = intel_ring_begin(ring, 6);
8624         if (ret)
8625                 goto err_unpin;
8626
8627         /* Can't queue multiple flips, so wait for the previous
8628          * one to finish before executing the next.
8629          */
8630         if (intel_crtc->plane)
8631                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8632         else
8633                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8634         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8635         intel_ring_emit(ring, MI_NOOP);
8636         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8637                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8638         intel_ring_emit(ring, fb->pitches[0]);
8639         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8640         intel_ring_emit(ring, 0); /* aux display base address, unused */
8641
8642         intel_mark_page_flip_active(intel_crtc);
8643         __intel_ring_advance(ring);
8644         return 0;
8645
8646 err_unpin:
8647         intel_unpin_fb_obj(obj);
8648 err:
8649         return ret;
8650 }
8651
8652 static int intel_gen3_queue_flip(struct drm_device *dev,
8653                                  struct drm_crtc *crtc,
8654                                  struct drm_framebuffer *fb,
8655                                  struct drm_i915_gem_object *obj,
8656                                  uint32_t flags)
8657 {
8658         struct drm_i915_private *dev_priv = dev->dev_private;
8659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8660         u32 flip_mask;
8661         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8662         int ret;
8663
8664         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8665         if (ret)
8666                 goto err;
8667
8668         ret = intel_ring_begin(ring, 6);
8669         if (ret)
8670                 goto err_unpin;
8671
8672         if (intel_crtc->plane)
8673                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8674         else
8675                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8676         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8677         intel_ring_emit(ring, MI_NOOP);
8678         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8679                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8680         intel_ring_emit(ring, fb->pitches[0]);
8681         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8682         intel_ring_emit(ring, MI_NOOP);
8683
8684         intel_mark_page_flip_active(intel_crtc);
8685         __intel_ring_advance(ring);
8686         return 0;
8687
8688 err_unpin:
8689         intel_unpin_fb_obj(obj);
8690 err:
8691         return ret;
8692 }
8693
8694 static int intel_gen4_queue_flip(struct drm_device *dev,
8695                                  struct drm_crtc *crtc,
8696                                  struct drm_framebuffer *fb,
8697                                  struct drm_i915_gem_object *obj,
8698                                  uint32_t flags)
8699 {
8700         struct drm_i915_private *dev_priv = dev->dev_private;
8701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8702         uint32_t pf, pipesrc;
8703         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8704         int ret;
8705
8706         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8707         if (ret)
8708                 goto err;
8709
8710         ret = intel_ring_begin(ring, 4);
8711         if (ret)
8712                 goto err_unpin;
8713
8714         /* i965+ uses the linear or tiled offsets from the
8715          * Display Registers (which do not change across a page-flip)
8716          * so we need only reprogram the base address.
8717          */
8718         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8719                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8720         intel_ring_emit(ring, fb->pitches[0]);
8721         intel_ring_emit(ring,
8722                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8723                         obj->tiling_mode);
8724
8725         /* XXX Enabling the panel-fitter across page-flip is so far
8726          * untested on non-native modes, so ignore it for now.
8727          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8728          */
8729         pf = 0;
8730         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8731         intel_ring_emit(ring, pf | pipesrc);
8732
8733         intel_mark_page_flip_active(intel_crtc);
8734         __intel_ring_advance(ring);
8735         return 0;
8736
8737 err_unpin:
8738         intel_unpin_fb_obj(obj);
8739 err:
8740         return ret;
8741 }
8742
8743 static int intel_gen6_queue_flip(struct drm_device *dev,
8744                                  struct drm_crtc *crtc,
8745                                  struct drm_framebuffer *fb,
8746                                  struct drm_i915_gem_object *obj,
8747                                  uint32_t flags)
8748 {
8749         struct drm_i915_private *dev_priv = dev->dev_private;
8750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8751         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8752         uint32_t pf, pipesrc;
8753         int ret;
8754
8755         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8756         if (ret)
8757                 goto err;
8758
8759         ret = intel_ring_begin(ring, 4);
8760         if (ret)
8761                 goto err_unpin;
8762
8763         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8764                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8765         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8766         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8767
8768         /* Contrary to the suggestions in the documentation,
8769          * "Enable Panel Fitter" does not seem to be required when page
8770          * flipping with a non-native mode, and worse causes a normal
8771          * modeset to fail.
8772          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8773          */
8774         pf = 0;
8775         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8776         intel_ring_emit(ring, pf | pipesrc);
8777
8778         intel_mark_page_flip_active(intel_crtc);
8779         __intel_ring_advance(ring);
8780         return 0;
8781
8782 err_unpin:
8783         intel_unpin_fb_obj(obj);
8784 err:
8785         return ret;
8786 }
8787
8788 static int intel_gen7_queue_flip(struct drm_device *dev,
8789                                  struct drm_crtc *crtc,
8790                                  struct drm_framebuffer *fb,
8791                                  struct drm_i915_gem_object *obj,
8792                                  uint32_t flags)
8793 {
8794         struct drm_i915_private *dev_priv = dev->dev_private;
8795         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8796         struct intel_ring_buffer *ring;
8797         uint32_t plane_bit = 0;
8798         int len, ret;
8799
8800         ring = obj->ring;
8801         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8802                 ring = &dev_priv->ring[BCS];
8803
8804         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8805         if (ret)
8806                 goto err;
8807
8808         switch(intel_crtc->plane) {
8809         case PLANE_A:
8810                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8811                 break;
8812         case PLANE_B:
8813                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8814                 break;
8815         case PLANE_C:
8816                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8817                 break;
8818         default:
8819                 WARN_ONCE(1, "unknown plane in flip command\n");
8820                 ret = -ENODEV;
8821                 goto err_unpin;
8822         }
8823
8824         len = 4;
8825         if (ring->id == RCS)
8826                 len += 6;
8827
8828         /*
8829          * BSpec MI_DISPLAY_FLIP for IVB:
8830          * "The full packet must be contained within the same cache line."
8831          *
8832          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8833          * cacheline, if we ever start emitting more commands before
8834          * the MI_DISPLAY_FLIP we may need to first emit everything else,
8835          * then do the cacheline alignment, and finally emit the
8836          * MI_DISPLAY_FLIP.
8837          */
8838         ret = intel_ring_cacheline_align(ring);
8839         if (ret)
8840                 goto err_unpin;
8841
8842         ret = intel_ring_begin(ring, len);
8843         if (ret)
8844                 goto err_unpin;
8845
8846         /* Unmask the flip-done completion message. Note that the bspec says that
8847          * we should do this for both the BCS and RCS, and that we must not unmask
8848          * more than one flip event at any time (or ensure that one flip message
8849          * can be sent by waiting for flip-done prior to queueing new flips).
8850          * Experimentation says that BCS works despite DERRMR masking all
8851          * flip-done completion events and that unmasking all planes at once
8852          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8853          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8854          */
8855         if (ring->id == RCS) {
8856                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8857                 intel_ring_emit(ring, DERRMR);
8858                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8859                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8860                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8861                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8862                                 MI_SRM_LRM_GLOBAL_GTT);
8863                 intel_ring_emit(ring, DERRMR);
8864                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8865         }
8866
8867         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8868         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8869         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8870         intel_ring_emit(ring, (MI_NOOP));
8871
8872         intel_mark_page_flip_active(intel_crtc);
8873         __intel_ring_advance(ring);
8874         return 0;
8875
8876 err_unpin:
8877         intel_unpin_fb_obj(obj);
8878 err:
8879         return ret;
8880 }
8881
8882 static int intel_default_queue_flip(struct drm_device *dev,
8883                                     struct drm_crtc *crtc,
8884                                     struct drm_framebuffer *fb,
8885                                     struct drm_i915_gem_object *obj,
8886                                     uint32_t flags)
8887 {
8888         return -ENODEV;
8889 }
8890
8891 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8892                                 struct drm_framebuffer *fb,
8893                                 struct drm_pending_vblank_event *event,
8894                                 uint32_t page_flip_flags)
8895 {
8896         struct drm_device *dev = crtc->dev;
8897         struct drm_i915_private *dev_priv = dev->dev_private;
8898         struct drm_framebuffer *old_fb = crtc->primary->fb;
8899         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8901         struct intel_unpin_work *work;
8902         unsigned long flags;
8903         int ret;
8904
8905         /* Can't change pixel format via MI display flips. */
8906         if (fb->pixel_format != crtc->primary->fb->pixel_format)
8907                 return -EINVAL;
8908
8909         /*
8910          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8911          * Note that pitch changes could also affect these register.
8912          */
8913         if (INTEL_INFO(dev)->gen > 3 &&
8914             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
8915              fb->pitches[0] != crtc->primary->fb->pitches[0]))
8916                 return -EINVAL;
8917
8918         if (i915_terminally_wedged(&dev_priv->gpu_error))
8919                 goto out_hang;
8920
8921         work = kzalloc(sizeof(*work), GFP_KERNEL);
8922         if (work == NULL)
8923                 return -ENOMEM;
8924
8925         work->event = event;
8926         work->crtc = crtc;
8927         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8928         INIT_WORK(&work->work, intel_unpin_work_fn);
8929
8930         ret = drm_vblank_get(dev, intel_crtc->pipe);
8931         if (ret)
8932                 goto free_work;
8933
8934         /* We borrow the event spin lock for protecting unpin_work */
8935         spin_lock_irqsave(&dev->event_lock, flags);
8936         if (intel_crtc->unpin_work) {
8937                 spin_unlock_irqrestore(&dev->event_lock, flags);
8938                 kfree(work);
8939                 drm_vblank_put(dev, intel_crtc->pipe);
8940
8941                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8942                 return -EBUSY;
8943         }
8944         intel_crtc->unpin_work = work;
8945         spin_unlock_irqrestore(&dev->event_lock, flags);
8946
8947         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8948                 flush_workqueue(dev_priv->wq);
8949
8950         ret = i915_mutex_lock_interruptible(dev);
8951         if (ret)
8952                 goto cleanup;
8953
8954         /* Reference the objects for the scheduled work. */
8955         drm_gem_object_reference(&work->old_fb_obj->base);
8956         drm_gem_object_reference(&obj->base);
8957
8958         crtc->primary->fb = fb;
8959
8960         work->pending_flip_obj = obj;
8961
8962         work->enable_stall_check = true;
8963
8964         atomic_inc(&intel_crtc->unpin_work_count);
8965         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8966
8967         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8968         if (ret)
8969                 goto cleanup_pending;
8970
8971         intel_disable_fbc(dev);
8972         intel_mark_fb_busy(obj, NULL);
8973         mutex_unlock(&dev->struct_mutex);
8974
8975         trace_i915_flip_request(intel_crtc->plane, obj);
8976
8977         return 0;
8978
8979 cleanup_pending:
8980         atomic_dec(&intel_crtc->unpin_work_count);
8981         crtc->primary->fb = old_fb;
8982         drm_gem_object_unreference(&work->old_fb_obj->base);
8983         drm_gem_object_unreference(&obj->base);
8984         mutex_unlock(&dev->struct_mutex);
8985
8986 cleanup:
8987         spin_lock_irqsave(&dev->event_lock, flags);
8988         intel_crtc->unpin_work = NULL;
8989         spin_unlock_irqrestore(&dev->event_lock, flags);
8990
8991         drm_vblank_put(dev, intel_crtc->pipe);
8992 free_work:
8993         kfree(work);
8994
8995         if (ret == -EIO) {
8996 out_hang:
8997                 intel_crtc_wait_for_pending_flips(crtc);
8998                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
8999                 if (ret == 0 && event)
9000                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9001         }
9002         return ret;
9003 }
9004
9005 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9006         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9007         .load_lut = intel_crtc_load_lut,
9008 };
9009
9010 /**
9011  * intel_modeset_update_staged_output_state
9012  *
9013  * Updates the staged output configuration state, e.g. after we've read out the
9014  * current hw state.
9015  */
9016 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9017 {
9018         struct intel_crtc *crtc;
9019         struct intel_encoder *encoder;
9020         struct intel_connector *connector;
9021
9022         list_for_each_entry(connector, &dev->mode_config.connector_list,
9023                             base.head) {
9024                 connector->new_encoder =
9025                         to_intel_encoder(connector->base.encoder);
9026         }
9027
9028         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9029                             base.head) {
9030                 encoder->new_crtc =
9031                         to_intel_crtc(encoder->base.crtc);
9032         }
9033
9034         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9035                             base.head) {
9036                 crtc->new_enabled = crtc->base.enabled;
9037
9038                 if (crtc->new_enabled)
9039                         crtc->new_config = &crtc->config;
9040                 else
9041                         crtc->new_config = NULL;
9042         }
9043 }
9044
9045 /**
9046  * intel_modeset_commit_output_state
9047  *
9048  * This function copies the stage display pipe configuration to the real one.
9049  */
9050 static void intel_modeset_commit_output_state(struct drm_device *dev)
9051 {
9052         struct intel_crtc *crtc;
9053         struct intel_encoder *encoder;
9054         struct intel_connector *connector;
9055
9056         list_for_each_entry(connector, &dev->mode_config.connector_list,
9057                             base.head) {
9058                 connector->base.encoder = &connector->new_encoder->base;
9059         }
9060
9061         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9062                             base.head) {
9063                 encoder->base.crtc = &encoder->new_crtc->base;
9064         }
9065
9066         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9067                             base.head) {
9068                 crtc->base.enabled = crtc->new_enabled;
9069         }
9070 }
9071
9072 static void
9073 connected_sink_compute_bpp(struct intel_connector * connector,
9074                            struct intel_crtc_config *pipe_config)
9075 {
9076         int bpp = pipe_config->pipe_bpp;
9077
9078         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9079                 connector->base.base.id,
9080                 drm_get_connector_name(&connector->base));
9081
9082         /* Don't use an invalid EDID bpc value */
9083         if (connector->base.display_info.bpc &&
9084             connector->base.display_info.bpc * 3 < bpp) {
9085                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9086                               bpp, connector->base.display_info.bpc*3);
9087                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9088         }
9089
9090         /* Clamp bpp to 8 on screens without EDID 1.4 */
9091         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9092                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9093                               bpp);
9094                 pipe_config->pipe_bpp = 24;
9095         }
9096 }
9097
9098 static int
9099 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9100                           struct drm_framebuffer *fb,
9101                           struct intel_crtc_config *pipe_config)
9102 {
9103         struct drm_device *dev = crtc->base.dev;
9104         struct intel_connector *connector;
9105         int bpp;
9106
9107         switch (fb->pixel_format) {
9108         case DRM_FORMAT_C8:
9109                 bpp = 8*3; /* since we go through a colormap */
9110                 break;
9111         case DRM_FORMAT_XRGB1555:
9112         case DRM_FORMAT_ARGB1555:
9113                 /* checked in intel_framebuffer_init already */
9114                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9115                         return -EINVAL;
9116         case DRM_FORMAT_RGB565:
9117                 bpp = 6*3; /* min is 18bpp */
9118                 break;
9119         case DRM_FORMAT_XBGR8888:
9120         case DRM_FORMAT_ABGR8888:
9121                 /* checked in intel_framebuffer_init already */
9122                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9123                         return -EINVAL;
9124         case DRM_FORMAT_XRGB8888:
9125         case DRM_FORMAT_ARGB8888:
9126                 bpp = 8*3;
9127                 break;
9128         case DRM_FORMAT_XRGB2101010:
9129         case DRM_FORMAT_ARGB2101010:
9130         case DRM_FORMAT_XBGR2101010:
9131         case DRM_FORMAT_ABGR2101010:
9132                 /* checked in intel_framebuffer_init already */
9133                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9134                         return -EINVAL;
9135                 bpp = 10*3;
9136                 break;
9137         /* TODO: gen4+ supports 16 bpc floating point, too. */
9138         default:
9139                 DRM_DEBUG_KMS("unsupported depth\n");
9140                 return -EINVAL;
9141         }
9142
9143         pipe_config->pipe_bpp = bpp;
9144
9145         /* Clamp display bpp to EDID value */
9146         list_for_each_entry(connector, &dev->mode_config.connector_list,
9147                             base.head) {
9148                 if (!connector->new_encoder ||
9149                     connector->new_encoder->new_crtc != crtc)
9150                         continue;
9151
9152                 connected_sink_compute_bpp(connector, pipe_config);
9153         }
9154
9155         return bpp;
9156 }
9157
9158 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9159 {
9160         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9161                         "type: 0x%x flags: 0x%x\n",
9162                 mode->crtc_clock,
9163                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9164                 mode->crtc_hsync_end, mode->crtc_htotal,
9165                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9166                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9167 }
9168
9169 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9170                                    struct intel_crtc_config *pipe_config,
9171                                    const char *context)
9172 {
9173         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9174                       context, pipe_name(crtc->pipe));
9175
9176         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9177         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9178                       pipe_config->pipe_bpp, pipe_config->dither);
9179         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9180                       pipe_config->has_pch_encoder,
9181                       pipe_config->fdi_lanes,
9182                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9183                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9184                       pipe_config->fdi_m_n.tu);
9185         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9186                       pipe_config->has_dp_encoder,
9187                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9188                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9189                       pipe_config->dp_m_n.tu);
9190         DRM_DEBUG_KMS("requested mode:\n");
9191         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9192         DRM_DEBUG_KMS("adjusted mode:\n");
9193         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9194         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9195         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9196         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9197                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9198         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9199                       pipe_config->gmch_pfit.control,
9200                       pipe_config->gmch_pfit.pgm_ratios,
9201                       pipe_config->gmch_pfit.lvds_border_bits);
9202         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9203                       pipe_config->pch_pfit.pos,
9204                       pipe_config->pch_pfit.size,
9205                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9206         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9207         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9208 }
9209
9210 static bool encoders_cloneable(const struct intel_encoder *a,
9211                                const struct intel_encoder *b)
9212 {
9213         /* masks could be asymmetric, so check both ways */
9214         return a == b || (a->cloneable & (1 << b->type) &&
9215                           b->cloneable & (1 << a->type));
9216 }
9217
9218 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9219                                          struct intel_encoder *encoder)
9220 {
9221         struct drm_device *dev = crtc->base.dev;
9222         struct intel_encoder *source_encoder;
9223
9224         list_for_each_entry(source_encoder,
9225                             &dev->mode_config.encoder_list, base.head) {
9226                 if (source_encoder->new_crtc != crtc)
9227                         continue;
9228
9229                 if (!encoders_cloneable(encoder, source_encoder))
9230                         return false;
9231         }
9232
9233         return true;
9234 }
9235
9236 static bool check_encoder_cloning(struct intel_crtc *crtc)
9237 {
9238         struct drm_device *dev = crtc->base.dev;
9239         struct intel_encoder *encoder;
9240
9241         list_for_each_entry(encoder,
9242                             &dev->mode_config.encoder_list, base.head) {
9243                 if (encoder->new_crtc != crtc)
9244                         continue;
9245
9246                 if (!check_single_encoder_cloning(crtc, encoder))
9247                         return false;
9248         }
9249
9250         return true;
9251 }
9252
9253 static struct intel_crtc_config *
9254 intel_modeset_pipe_config(struct drm_crtc *crtc,
9255                           struct drm_framebuffer *fb,
9256                           struct drm_display_mode *mode)
9257 {
9258         struct drm_device *dev = crtc->dev;
9259         struct intel_encoder *encoder;
9260         struct intel_crtc_config *pipe_config;
9261         int plane_bpp, ret = -EINVAL;
9262         bool retry = true;
9263
9264         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9265                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9266                 return ERR_PTR(-EINVAL);
9267         }
9268
9269         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9270         if (!pipe_config)
9271                 return ERR_PTR(-ENOMEM);
9272
9273         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9274         drm_mode_copy(&pipe_config->requested_mode, mode);
9275
9276         pipe_config->cpu_transcoder =
9277                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9278         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9279
9280         /*
9281          * Sanitize sync polarity flags based on requested ones. If neither
9282          * positive or negative polarity is requested, treat this as meaning
9283          * negative polarity.
9284          */
9285         if (!(pipe_config->adjusted_mode.flags &
9286               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9287                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9288
9289         if (!(pipe_config->adjusted_mode.flags &
9290               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9291                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9292
9293         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9294          * plane pixel format and any sink constraints into account. Returns the
9295          * source plane bpp so that dithering can be selected on mismatches
9296          * after encoders and crtc also have had their say. */
9297         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9298                                               fb, pipe_config);
9299         if (plane_bpp < 0)
9300                 goto fail;
9301
9302         /*
9303          * Determine the real pipe dimensions. Note that stereo modes can
9304          * increase the actual pipe size due to the frame doubling and
9305          * insertion of additional space for blanks between the frame. This
9306          * is stored in the crtc timings. We use the requested mode to do this
9307          * computation to clearly distinguish it from the adjusted mode, which
9308          * can be changed by the connectors in the below retry loop.
9309          */
9310         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9311         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9312         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9313
9314 encoder_retry:
9315         /* Ensure the port clock defaults are reset when retrying. */
9316         pipe_config->port_clock = 0;
9317         pipe_config->pixel_multiplier = 1;
9318
9319         /* Fill in default crtc timings, allow encoders to overwrite them. */
9320         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9321
9322         /* Pass our mode to the connectors and the CRTC to give them a chance to
9323          * adjust it according to limitations or connector properties, and also
9324          * a chance to reject the mode entirely.
9325          */
9326         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9327                             base.head) {
9328
9329                 if (&encoder->new_crtc->base != crtc)
9330                         continue;
9331
9332                 if (!(encoder->compute_config(encoder, pipe_config))) {
9333                         DRM_DEBUG_KMS("Encoder config failure\n");
9334                         goto fail;
9335                 }
9336         }
9337
9338         /* Set default port clock if not overwritten by the encoder. Needs to be
9339          * done afterwards in case the encoder adjusts the mode. */
9340         if (!pipe_config->port_clock)
9341                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9342                         * pipe_config->pixel_multiplier;
9343
9344         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9345         if (ret < 0) {
9346                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9347                 goto fail;
9348         }
9349
9350         if (ret == RETRY) {
9351                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9352                         ret = -EINVAL;
9353                         goto fail;
9354                 }
9355
9356                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9357                 retry = false;
9358                 goto encoder_retry;
9359         }
9360
9361         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9362         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9363                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9364
9365         return pipe_config;
9366 fail:
9367         kfree(pipe_config);
9368         return ERR_PTR(ret);
9369 }
9370
9371 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9372  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9373 static void
9374 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9375                              unsigned *prepare_pipes, unsigned *disable_pipes)
9376 {
9377         struct intel_crtc *intel_crtc;
9378         struct drm_device *dev = crtc->dev;
9379         struct intel_encoder *encoder;
9380         struct intel_connector *connector;
9381         struct drm_crtc *tmp_crtc;
9382
9383         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9384
9385         /* Check which crtcs have changed outputs connected to them, these need
9386          * to be part of the prepare_pipes mask. We don't (yet) support global
9387          * modeset across multiple crtcs, so modeset_pipes will only have one
9388          * bit set at most. */
9389         list_for_each_entry(connector, &dev->mode_config.connector_list,
9390                             base.head) {
9391                 if (connector->base.encoder == &connector->new_encoder->base)
9392                         continue;
9393
9394                 if (connector->base.encoder) {
9395                         tmp_crtc = connector->base.encoder->crtc;
9396
9397                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9398                 }
9399
9400                 if (connector->new_encoder)
9401                         *prepare_pipes |=
9402                                 1 << connector->new_encoder->new_crtc->pipe;
9403         }
9404
9405         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9406                             base.head) {
9407                 if (encoder->base.crtc == &encoder->new_crtc->base)
9408                         continue;
9409
9410                 if (encoder->base.crtc) {
9411                         tmp_crtc = encoder->base.crtc;
9412
9413                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9414                 }
9415
9416                 if (encoder->new_crtc)
9417                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9418         }
9419
9420         /* Check for pipes that will be enabled/disabled ... */
9421         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9422                             base.head) {
9423                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9424                         continue;
9425
9426                 if (!intel_crtc->new_enabled)
9427                         *disable_pipes |= 1 << intel_crtc->pipe;
9428                 else
9429                         *prepare_pipes |= 1 << intel_crtc->pipe;
9430         }
9431
9432
9433         /* set_mode is also used to update properties on life display pipes. */
9434         intel_crtc = to_intel_crtc(crtc);
9435         if (intel_crtc->new_enabled)
9436                 *prepare_pipes |= 1 << intel_crtc->pipe;
9437
9438         /*
9439          * For simplicity do a full modeset on any pipe where the output routing
9440          * changed. We could be more clever, but that would require us to be
9441          * more careful with calling the relevant encoder->mode_set functions.
9442          */
9443         if (*prepare_pipes)
9444                 *modeset_pipes = *prepare_pipes;
9445
9446         /* ... and mask these out. */
9447         *modeset_pipes &= ~(*disable_pipes);
9448         *prepare_pipes &= ~(*disable_pipes);
9449
9450         /*
9451          * HACK: We don't (yet) fully support global modesets. intel_set_config
9452          * obies this rule, but the modeset restore mode of
9453          * intel_modeset_setup_hw_state does not.
9454          */
9455         *modeset_pipes &= 1 << intel_crtc->pipe;
9456         *prepare_pipes &= 1 << intel_crtc->pipe;
9457
9458         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9459                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9460 }
9461
9462 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9463 {
9464         struct drm_encoder *encoder;
9465         struct drm_device *dev = crtc->dev;
9466
9467         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9468                 if (encoder->crtc == crtc)
9469                         return true;
9470
9471         return false;
9472 }
9473
9474 static void
9475 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9476 {
9477         struct intel_encoder *intel_encoder;
9478         struct intel_crtc *intel_crtc;
9479         struct drm_connector *connector;
9480
9481         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9482                             base.head) {
9483                 if (!intel_encoder->base.crtc)
9484                         continue;
9485
9486                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9487
9488                 if (prepare_pipes & (1 << intel_crtc->pipe))
9489                         intel_encoder->connectors_active = false;
9490         }
9491
9492         intel_modeset_commit_output_state(dev);
9493
9494         /* Double check state. */
9495         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9496                             base.head) {
9497                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9498                 WARN_ON(intel_crtc->new_config &&
9499                         intel_crtc->new_config != &intel_crtc->config);
9500                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9501         }
9502
9503         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9504                 if (!connector->encoder || !connector->encoder->crtc)
9505                         continue;
9506
9507                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9508
9509                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9510                         struct drm_property *dpms_property =
9511                                 dev->mode_config.dpms_property;
9512
9513                         connector->dpms = DRM_MODE_DPMS_ON;
9514                         drm_object_property_set_value(&connector->base,
9515                                                          dpms_property,
9516                                                          DRM_MODE_DPMS_ON);
9517
9518                         intel_encoder = to_intel_encoder(connector->encoder);
9519                         intel_encoder->connectors_active = true;
9520                 }
9521         }
9522
9523 }
9524
9525 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9526 {
9527         int diff;
9528
9529         if (clock1 == clock2)
9530                 return true;
9531
9532         if (!clock1 || !clock2)
9533                 return false;
9534
9535         diff = abs(clock1 - clock2);
9536
9537         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9538                 return true;
9539
9540         return false;
9541 }
9542
9543 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9544         list_for_each_entry((intel_crtc), \
9545                             &(dev)->mode_config.crtc_list, \
9546                             base.head) \
9547                 if (mask & (1 <<(intel_crtc)->pipe))
9548
9549 static bool
9550 intel_pipe_config_compare(struct drm_device *dev,
9551                           struct intel_crtc_config *current_config,
9552                           struct intel_crtc_config *pipe_config)
9553 {
9554 #define PIPE_CONF_CHECK_X(name) \
9555         if (current_config->name != pipe_config->name) { \
9556                 DRM_ERROR("mismatch in " #name " " \
9557                           "(expected 0x%08x, found 0x%08x)\n", \
9558                           current_config->name, \
9559                           pipe_config->name); \
9560                 return false; \
9561         }
9562
9563 #define PIPE_CONF_CHECK_I(name) \
9564         if (current_config->name != pipe_config->name) { \
9565                 DRM_ERROR("mismatch in " #name " " \
9566                           "(expected %i, found %i)\n", \
9567                           current_config->name, \
9568                           pipe_config->name); \
9569                 return false; \
9570         }
9571
9572 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9573         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9574                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9575                           "(expected %i, found %i)\n", \
9576                           current_config->name & (mask), \
9577                           pipe_config->name & (mask)); \
9578                 return false; \
9579         }
9580
9581 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9582         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9583                 DRM_ERROR("mismatch in " #name " " \
9584                           "(expected %i, found %i)\n", \
9585                           current_config->name, \
9586                           pipe_config->name); \
9587                 return false; \
9588         }
9589
9590 #define PIPE_CONF_QUIRK(quirk)  \
9591         ((current_config->quirks | pipe_config->quirks) & (quirk))
9592
9593         PIPE_CONF_CHECK_I(cpu_transcoder);
9594
9595         PIPE_CONF_CHECK_I(has_pch_encoder);
9596         PIPE_CONF_CHECK_I(fdi_lanes);
9597         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9598         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9599         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9600         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9601         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9602
9603         PIPE_CONF_CHECK_I(has_dp_encoder);
9604         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9605         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9606         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9607         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9608         PIPE_CONF_CHECK_I(dp_m_n.tu);
9609
9610         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9611         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9612         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9613         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9614         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9615         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9616
9617         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9618         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9619         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9620         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9621         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9622         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9623
9624         PIPE_CONF_CHECK_I(pixel_multiplier);
9625
9626         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9627                               DRM_MODE_FLAG_INTERLACE);
9628
9629         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9630                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9631                                       DRM_MODE_FLAG_PHSYNC);
9632                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9633                                       DRM_MODE_FLAG_NHSYNC);
9634                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9635                                       DRM_MODE_FLAG_PVSYNC);
9636                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9637                                       DRM_MODE_FLAG_NVSYNC);
9638         }
9639
9640         PIPE_CONF_CHECK_I(pipe_src_w);
9641         PIPE_CONF_CHECK_I(pipe_src_h);
9642
9643         PIPE_CONF_CHECK_I(gmch_pfit.control);
9644         /* pfit ratios are autocomputed by the hw on gen4+ */
9645         if (INTEL_INFO(dev)->gen < 4)
9646                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9647         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9648         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9649         if (current_config->pch_pfit.enabled) {
9650                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9651                 PIPE_CONF_CHECK_I(pch_pfit.size);
9652         }
9653
9654         /* BDW+ don't expose a synchronous way to read the state */
9655         if (IS_HASWELL(dev))
9656                 PIPE_CONF_CHECK_I(ips_enabled);
9657
9658         PIPE_CONF_CHECK_I(double_wide);
9659
9660         PIPE_CONF_CHECK_I(shared_dpll);
9661         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9662         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9663         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9664         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9665
9666         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9667                 PIPE_CONF_CHECK_I(pipe_bpp);
9668
9669         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9670         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9671
9672 #undef PIPE_CONF_CHECK_X
9673 #undef PIPE_CONF_CHECK_I
9674 #undef PIPE_CONF_CHECK_FLAGS
9675 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9676 #undef PIPE_CONF_QUIRK
9677
9678         return true;
9679 }
9680
9681 static void
9682 check_connector_state(struct drm_device *dev)
9683 {
9684         struct intel_connector *connector;
9685
9686         list_for_each_entry(connector, &dev->mode_config.connector_list,
9687                             base.head) {
9688                 /* This also checks the encoder/connector hw state with the
9689                  * ->get_hw_state callbacks. */
9690                 intel_connector_check_state(connector);
9691
9692                 WARN(&connector->new_encoder->base != connector->base.encoder,
9693                      "connector's staged encoder doesn't match current encoder\n");
9694         }
9695 }
9696
9697 static void
9698 check_encoder_state(struct drm_device *dev)
9699 {
9700         struct intel_encoder *encoder;
9701         struct intel_connector *connector;
9702
9703         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9704                             base.head) {
9705                 bool enabled = false;
9706                 bool active = false;
9707                 enum pipe pipe, tracked_pipe;
9708
9709                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9710                               encoder->base.base.id,
9711                               drm_get_encoder_name(&encoder->base));
9712
9713                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9714                      "encoder's stage crtc doesn't match current crtc\n");
9715                 WARN(encoder->connectors_active && !encoder->base.crtc,
9716                      "encoder's active_connectors set, but no crtc\n");
9717
9718                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9719                                     base.head) {
9720                         if (connector->base.encoder != &encoder->base)
9721                                 continue;
9722                         enabled = true;
9723                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9724                                 active = true;
9725                 }
9726                 WARN(!!encoder->base.crtc != enabled,
9727                      "encoder's enabled state mismatch "
9728                      "(expected %i, found %i)\n",
9729                      !!encoder->base.crtc, enabled);
9730                 WARN(active && !encoder->base.crtc,
9731                      "active encoder with no crtc\n");
9732
9733                 WARN(encoder->connectors_active != active,
9734                      "encoder's computed active state doesn't match tracked active state "
9735                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9736
9737                 active = encoder->get_hw_state(encoder, &pipe);
9738                 WARN(active != encoder->connectors_active,
9739                      "encoder's hw state doesn't match sw tracking "
9740                      "(expected %i, found %i)\n",
9741                      encoder->connectors_active, active);
9742
9743                 if (!encoder->base.crtc)
9744                         continue;
9745
9746                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9747                 WARN(active && pipe != tracked_pipe,
9748                      "active encoder's pipe doesn't match"
9749                      "(expected %i, found %i)\n",
9750                      tracked_pipe, pipe);
9751
9752         }
9753 }
9754
9755 static void
9756 check_crtc_state(struct drm_device *dev)
9757 {
9758         drm_i915_private_t *dev_priv = dev->dev_private;
9759         struct intel_crtc *crtc;
9760         struct intel_encoder *encoder;
9761         struct intel_crtc_config pipe_config;
9762
9763         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9764                             base.head) {
9765                 bool enabled = false;
9766                 bool active = false;
9767
9768                 memset(&pipe_config, 0, sizeof(pipe_config));
9769
9770                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9771                               crtc->base.base.id);
9772
9773                 WARN(crtc->active && !crtc->base.enabled,
9774                      "active crtc, but not enabled in sw tracking\n");
9775
9776                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9777                                     base.head) {
9778                         if (encoder->base.crtc != &crtc->base)
9779                                 continue;
9780                         enabled = true;
9781                         if (encoder->connectors_active)
9782                                 active = true;
9783                 }
9784
9785                 WARN(active != crtc->active,
9786                      "crtc's computed active state doesn't match tracked active state "
9787                      "(expected %i, found %i)\n", active, crtc->active);
9788                 WARN(enabled != crtc->base.enabled,
9789                      "crtc's computed enabled state doesn't match tracked enabled state "
9790                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9791
9792                 active = dev_priv->display.get_pipe_config(crtc,
9793                                                            &pipe_config);
9794
9795                 /* hw state is inconsistent with the pipe A quirk */
9796                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9797                         active = crtc->active;
9798
9799                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9800                                     base.head) {
9801                         enum pipe pipe;
9802                         if (encoder->base.crtc != &crtc->base)
9803                                 continue;
9804                         if (encoder->get_hw_state(encoder, &pipe))
9805                                 encoder->get_config(encoder, &pipe_config);
9806                 }
9807
9808                 WARN(crtc->active != active,
9809                      "crtc active state doesn't match with hw state "
9810                      "(expected %i, found %i)\n", crtc->active, active);
9811
9812                 if (active &&
9813                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9814                         WARN(1, "pipe state doesn't match!\n");
9815                         intel_dump_pipe_config(crtc, &pipe_config,
9816                                                "[hw state]");
9817                         intel_dump_pipe_config(crtc, &crtc->config,
9818                                                "[sw state]");
9819                 }
9820         }
9821 }
9822
9823 static void
9824 check_shared_dpll_state(struct drm_device *dev)
9825 {
9826         drm_i915_private_t *dev_priv = dev->dev_private;
9827         struct intel_crtc *crtc;
9828         struct intel_dpll_hw_state dpll_hw_state;
9829         int i;
9830
9831         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9832                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9833                 int enabled_crtcs = 0, active_crtcs = 0;
9834                 bool active;
9835
9836                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9837
9838                 DRM_DEBUG_KMS("%s\n", pll->name);
9839
9840                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9841
9842                 WARN(pll->active > pll->refcount,
9843                      "more active pll users than references: %i vs %i\n",
9844                      pll->active, pll->refcount);
9845                 WARN(pll->active && !pll->on,
9846                      "pll in active use but not on in sw tracking\n");
9847                 WARN(pll->on && !pll->active,
9848                      "pll in on but not on in use in sw tracking\n");
9849                 WARN(pll->on != active,
9850                      "pll on state mismatch (expected %i, found %i)\n",
9851                      pll->on, active);
9852
9853                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9854                                     base.head) {
9855                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9856                                 enabled_crtcs++;
9857                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9858                                 active_crtcs++;
9859                 }
9860                 WARN(pll->active != active_crtcs,
9861                      "pll active crtcs mismatch (expected %i, found %i)\n",
9862                      pll->active, active_crtcs);
9863                 WARN(pll->refcount != enabled_crtcs,
9864                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9865                      pll->refcount, enabled_crtcs);
9866
9867                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9868                                        sizeof(dpll_hw_state)),
9869                      "pll hw state mismatch\n");
9870         }
9871 }
9872
9873 void
9874 intel_modeset_check_state(struct drm_device *dev)
9875 {
9876         check_connector_state(dev);
9877         check_encoder_state(dev);
9878         check_crtc_state(dev);
9879         check_shared_dpll_state(dev);
9880 }
9881
9882 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9883                                      int dotclock)
9884 {
9885         /*
9886          * FDI already provided one idea for the dotclock.
9887          * Yell if the encoder disagrees.
9888          */
9889         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9890              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9891              pipe_config->adjusted_mode.crtc_clock, dotclock);
9892 }
9893
9894 static int __intel_set_mode(struct drm_crtc *crtc,
9895                             struct drm_display_mode *mode,
9896                             int x, int y, struct drm_framebuffer *fb)
9897 {
9898         struct drm_device *dev = crtc->dev;
9899         drm_i915_private_t *dev_priv = dev->dev_private;
9900         struct drm_display_mode *saved_mode;
9901         struct intel_crtc_config *pipe_config = NULL;
9902         struct intel_crtc *intel_crtc;
9903         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9904         int ret = 0;
9905
9906         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9907         if (!saved_mode)
9908                 return -ENOMEM;
9909
9910         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9911                                      &prepare_pipes, &disable_pipes);
9912
9913         *saved_mode = crtc->mode;
9914
9915         /* Hack: Because we don't (yet) support global modeset on multiple
9916          * crtcs, we don't keep track of the new mode for more than one crtc.
9917          * Hence simply check whether any bit is set in modeset_pipes in all the
9918          * pieces of code that are not yet converted to deal with mutliple crtcs
9919          * changing their mode at the same time. */
9920         if (modeset_pipes) {
9921                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9922                 if (IS_ERR(pipe_config)) {
9923                         ret = PTR_ERR(pipe_config);
9924                         pipe_config = NULL;
9925
9926                         goto out;
9927                 }
9928                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9929                                        "[modeset]");
9930                 to_intel_crtc(crtc)->new_config = pipe_config;
9931         }
9932
9933         /*
9934          * See if the config requires any additional preparation, e.g.
9935          * to adjust global state with pipes off.  We need to do this
9936          * here so we can get the modeset_pipe updated config for the new
9937          * mode set on this crtc.  For other crtcs we need to use the
9938          * adjusted_mode bits in the crtc directly.
9939          */
9940         if (IS_VALLEYVIEW(dev)) {
9941                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9942
9943                 /* may have added more to prepare_pipes than we should */
9944                 prepare_pipes &= ~disable_pipes;
9945         }
9946
9947         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9948                 intel_crtc_disable(&intel_crtc->base);
9949
9950         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9951                 if (intel_crtc->base.enabled)
9952                         dev_priv->display.crtc_disable(&intel_crtc->base);
9953         }
9954
9955         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9956          * to set it here already despite that we pass it down the callchain.
9957          */
9958         if (modeset_pipes) {
9959                 crtc->mode = *mode;
9960                 /* mode_set/enable/disable functions rely on a correct pipe
9961                  * config. */
9962                 to_intel_crtc(crtc)->config = *pipe_config;
9963                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9964
9965                 /*
9966                  * Calculate and store various constants which
9967                  * are later needed by vblank and swap-completion
9968                  * timestamping. They are derived from true hwmode.
9969                  */
9970                 drm_calc_timestamping_constants(crtc,
9971                                                 &pipe_config->adjusted_mode);
9972         }
9973
9974         /* Only after disabling all output pipelines that will be changed can we
9975          * update the the output configuration. */
9976         intel_modeset_update_state(dev, prepare_pipes);
9977
9978         if (dev_priv->display.modeset_global_resources)
9979                 dev_priv->display.modeset_global_resources(dev);
9980
9981         /* Set up the DPLL and any encoders state that needs to adjust or depend
9982          * on the DPLL.
9983          */
9984         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9985                 ret = intel_crtc_mode_set(&intel_crtc->base,
9986                                           x, y, fb);
9987                 if (ret)
9988                         goto done;
9989         }
9990
9991         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9992         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9993                 dev_priv->display.crtc_enable(&intel_crtc->base);
9994
9995         /* FIXME: add subpixel order */
9996 done:
9997         if (ret && crtc->enabled)
9998                 crtc->mode = *saved_mode;
9999
10000 out:
10001         kfree(pipe_config);
10002         kfree(saved_mode);
10003         return ret;
10004 }
10005
10006 static int intel_set_mode(struct drm_crtc *crtc,
10007                           struct drm_display_mode *mode,
10008                           int x, int y, struct drm_framebuffer *fb)
10009 {
10010         int ret;
10011
10012         ret = __intel_set_mode(crtc, mode, x, y, fb);
10013
10014         if (ret == 0)
10015                 intel_modeset_check_state(crtc->dev);
10016
10017         return ret;
10018 }
10019
10020 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10021 {
10022         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10023 }
10024
10025 #undef for_each_intel_crtc_masked
10026
10027 static void intel_set_config_free(struct intel_set_config *config)
10028 {
10029         if (!config)
10030                 return;
10031
10032         kfree(config->save_connector_encoders);
10033         kfree(config->save_encoder_crtcs);
10034         kfree(config->save_crtc_enabled);
10035         kfree(config);
10036 }
10037
10038 static int intel_set_config_save_state(struct drm_device *dev,
10039                                        struct intel_set_config *config)
10040 {
10041         struct drm_crtc *crtc;
10042         struct drm_encoder *encoder;
10043         struct drm_connector *connector;
10044         int count;
10045
10046         config->save_crtc_enabled =
10047                 kcalloc(dev->mode_config.num_crtc,
10048                         sizeof(bool), GFP_KERNEL);
10049         if (!config->save_crtc_enabled)
10050                 return -ENOMEM;
10051
10052         config->save_encoder_crtcs =
10053                 kcalloc(dev->mode_config.num_encoder,
10054                         sizeof(struct drm_crtc *), GFP_KERNEL);
10055         if (!config->save_encoder_crtcs)
10056                 return -ENOMEM;
10057
10058         config->save_connector_encoders =
10059                 kcalloc(dev->mode_config.num_connector,
10060                         sizeof(struct drm_encoder *), GFP_KERNEL);
10061         if (!config->save_connector_encoders)
10062                 return -ENOMEM;
10063
10064         /* Copy data. Note that driver private data is not affected.
10065          * Should anything bad happen only the expected state is
10066          * restored, not the drivers personal bookkeeping.
10067          */
10068         count = 0;
10069         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10070                 config->save_crtc_enabled[count++] = crtc->enabled;
10071         }
10072
10073         count = 0;
10074         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10075                 config->save_encoder_crtcs[count++] = encoder->crtc;
10076         }
10077
10078         count = 0;
10079         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10080                 config->save_connector_encoders[count++] = connector->encoder;
10081         }
10082
10083         return 0;
10084 }
10085
10086 static void intel_set_config_restore_state(struct drm_device *dev,
10087                                            struct intel_set_config *config)
10088 {
10089         struct intel_crtc *crtc;
10090         struct intel_encoder *encoder;
10091         struct intel_connector *connector;
10092         int count;
10093
10094         count = 0;
10095         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10096                 crtc->new_enabled = config->save_crtc_enabled[count++];
10097
10098                 if (crtc->new_enabled)
10099                         crtc->new_config = &crtc->config;
10100                 else
10101                         crtc->new_config = NULL;
10102         }
10103
10104         count = 0;
10105         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10106                 encoder->new_crtc =
10107                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10108         }
10109
10110         count = 0;
10111         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10112                 connector->new_encoder =
10113                         to_intel_encoder(config->save_connector_encoders[count++]);
10114         }
10115 }
10116
10117 static bool
10118 is_crtc_connector_off(struct drm_mode_set *set)
10119 {
10120         int i;
10121
10122         if (set->num_connectors == 0)
10123                 return false;
10124
10125         if (WARN_ON(set->connectors == NULL))
10126                 return false;
10127
10128         for (i = 0; i < set->num_connectors; i++)
10129                 if (set->connectors[i]->encoder &&
10130                     set->connectors[i]->encoder->crtc == set->crtc &&
10131                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10132                         return true;
10133
10134         return false;
10135 }
10136
10137 static void
10138 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10139                                       struct intel_set_config *config)
10140 {
10141
10142         /* We should be able to check here if the fb has the same properties
10143          * and then just flip_or_move it */
10144         if (is_crtc_connector_off(set)) {
10145                 config->mode_changed = true;
10146         } else if (set->crtc->primary->fb != set->fb) {
10147                 /* If we have no fb then treat it as a full mode set */
10148                 if (set->crtc->primary->fb == NULL) {
10149                         struct intel_crtc *intel_crtc =
10150                                 to_intel_crtc(set->crtc);
10151
10152                         if (intel_crtc->active && i915.fastboot) {
10153                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10154                                 config->fb_changed = true;
10155                         } else {
10156                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10157                                 config->mode_changed = true;
10158                         }
10159                 } else if (set->fb == NULL) {
10160                         config->mode_changed = true;
10161                 } else if (set->fb->pixel_format !=
10162                            set->crtc->primary->fb->pixel_format) {
10163                         config->mode_changed = true;
10164                 } else {
10165                         config->fb_changed = true;
10166                 }
10167         }
10168
10169         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10170                 config->fb_changed = true;
10171
10172         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10173                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10174                 drm_mode_debug_printmodeline(&set->crtc->mode);
10175                 drm_mode_debug_printmodeline(set->mode);
10176                 config->mode_changed = true;
10177         }
10178
10179         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10180                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10181 }
10182
10183 static int
10184 intel_modeset_stage_output_state(struct drm_device *dev,
10185                                  struct drm_mode_set *set,
10186                                  struct intel_set_config *config)
10187 {
10188         struct intel_connector *connector;
10189         struct intel_encoder *encoder;
10190         struct intel_crtc *crtc;
10191         int ro;
10192
10193         /* The upper layers ensure that we either disable a crtc or have a list
10194          * of connectors. For paranoia, double-check this. */
10195         WARN_ON(!set->fb && (set->num_connectors != 0));
10196         WARN_ON(set->fb && (set->num_connectors == 0));
10197
10198         list_for_each_entry(connector, &dev->mode_config.connector_list,
10199                             base.head) {
10200                 /* Otherwise traverse passed in connector list and get encoders
10201                  * for them. */
10202                 for (ro = 0; ro < set->num_connectors; ro++) {
10203                         if (set->connectors[ro] == &connector->base) {
10204                                 connector->new_encoder = connector->encoder;
10205                                 break;
10206                         }
10207                 }
10208
10209                 /* If we disable the crtc, disable all its connectors. Also, if
10210                  * the connector is on the changing crtc but not on the new
10211                  * connector list, disable it. */
10212                 if ((!set->fb || ro == set->num_connectors) &&
10213                     connector->base.encoder &&
10214                     connector->base.encoder->crtc == set->crtc) {
10215                         connector->new_encoder = NULL;
10216
10217                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10218                                 connector->base.base.id,
10219                                 drm_get_connector_name(&connector->base));
10220                 }
10221
10222
10223                 if (&connector->new_encoder->base != connector->base.encoder) {
10224                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10225                         config->mode_changed = true;
10226                 }
10227         }
10228         /* connector->new_encoder is now updated for all connectors. */
10229
10230         /* Update crtc of enabled connectors. */
10231         list_for_each_entry(connector, &dev->mode_config.connector_list,
10232                             base.head) {
10233                 struct drm_crtc *new_crtc;
10234
10235                 if (!connector->new_encoder)
10236                         continue;
10237
10238                 new_crtc = connector->new_encoder->base.crtc;
10239
10240                 for (ro = 0; ro < set->num_connectors; ro++) {
10241                         if (set->connectors[ro] == &connector->base)
10242                                 new_crtc = set->crtc;
10243                 }
10244
10245                 /* Make sure the new CRTC will work with the encoder */
10246                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10247                                          new_crtc)) {
10248                         return -EINVAL;
10249                 }
10250                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10251
10252                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10253                         connector->base.base.id,
10254                         drm_get_connector_name(&connector->base),
10255                         new_crtc->base.id);
10256         }
10257
10258         /* Check for any encoders that needs to be disabled. */
10259         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10260                             base.head) {
10261                 int num_connectors = 0;
10262                 list_for_each_entry(connector,
10263                                     &dev->mode_config.connector_list,
10264                                     base.head) {
10265                         if (connector->new_encoder == encoder) {
10266                                 WARN_ON(!connector->new_encoder->new_crtc);
10267                                 num_connectors++;
10268                         }
10269                 }
10270
10271                 if (num_connectors == 0)
10272                         encoder->new_crtc = NULL;
10273                 else if (num_connectors > 1)
10274                         return -EINVAL;
10275
10276                 /* Only now check for crtc changes so we don't miss encoders
10277                  * that will be disabled. */
10278                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10279                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10280                         config->mode_changed = true;
10281                 }
10282         }
10283         /* Now we've also updated encoder->new_crtc for all encoders. */
10284
10285         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10286                             base.head) {
10287                 crtc->new_enabled = false;
10288
10289                 list_for_each_entry(encoder,
10290                                     &dev->mode_config.encoder_list,
10291                                     base.head) {
10292                         if (encoder->new_crtc == crtc) {
10293                                 crtc->new_enabled = true;
10294                                 break;
10295                         }
10296                 }
10297
10298                 if (crtc->new_enabled != crtc->base.enabled) {
10299                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10300                                       crtc->new_enabled ? "en" : "dis");
10301                         config->mode_changed = true;
10302                 }
10303
10304                 if (crtc->new_enabled)
10305                         crtc->new_config = &crtc->config;
10306                 else
10307                         crtc->new_config = NULL;
10308         }
10309
10310         return 0;
10311 }
10312
10313 static void disable_crtc_nofb(struct intel_crtc *crtc)
10314 {
10315         struct drm_device *dev = crtc->base.dev;
10316         struct intel_encoder *encoder;
10317         struct intel_connector *connector;
10318
10319         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10320                       pipe_name(crtc->pipe));
10321
10322         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10323                 if (connector->new_encoder &&
10324                     connector->new_encoder->new_crtc == crtc)
10325                         connector->new_encoder = NULL;
10326         }
10327
10328         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10329                 if (encoder->new_crtc == crtc)
10330                         encoder->new_crtc = NULL;
10331         }
10332
10333         crtc->new_enabled = false;
10334         crtc->new_config = NULL;
10335 }
10336
10337 static int intel_crtc_set_config(struct drm_mode_set *set)
10338 {
10339         struct drm_device *dev;
10340         struct drm_mode_set save_set;
10341         struct intel_set_config *config;
10342         int ret;
10343
10344         BUG_ON(!set);
10345         BUG_ON(!set->crtc);
10346         BUG_ON(!set->crtc->helper_private);
10347
10348         /* Enforce sane interface api - has been abused by the fb helper. */
10349         BUG_ON(!set->mode && set->fb);
10350         BUG_ON(set->fb && set->num_connectors == 0);
10351
10352         if (set->fb) {
10353                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10354                                 set->crtc->base.id, set->fb->base.id,
10355                                 (int)set->num_connectors, set->x, set->y);
10356         } else {
10357                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10358         }
10359
10360         dev = set->crtc->dev;
10361
10362         ret = -ENOMEM;
10363         config = kzalloc(sizeof(*config), GFP_KERNEL);
10364         if (!config)
10365                 goto out_config;
10366
10367         ret = intel_set_config_save_state(dev, config);
10368         if (ret)
10369                 goto out_config;
10370
10371         save_set.crtc = set->crtc;
10372         save_set.mode = &set->crtc->mode;
10373         save_set.x = set->crtc->x;
10374         save_set.y = set->crtc->y;
10375         save_set.fb = set->crtc->primary->fb;
10376
10377         /* Compute whether we need a full modeset, only an fb base update or no
10378          * change at all. In the future we might also check whether only the
10379          * mode changed, e.g. for LVDS where we only change the panel fitter in
10380          * such cases. */
10381         intel_set_config_compute_mode_changes(set, config);
10382
10383         ret = intel_modeset_stage_output_state(dev, set, config);
10384         if (ret)
10385                 goto fail;
10386
10387         if (config->mode_changed) {
10388                 ret = intel_set_mode(set->crtc, set->mode,
10389                                      set->x, set->y, set->fb);
10390         } else if (config->fb_changed) {
10391                 intel_crtc_wait_for_pending_flips(set->crtc);
10392
10393                 ret = intel_pipe_set_base(set->crtc,
10394                                           set->x, set->y, set->fb);
10395                 /*
10396                  * In the fastboot case this may be our only check of the
10397                  * state after boot.  It would be better to only do it on
10398                  * the first update, but we don't have a nice way of doing that
10399                  * (and really, set_config isn't used much for high freq page
10400                  * flipping, so increasing its cost here shouldn't be a big
10401                  * deal).
10402                  */
10403                 if (i915.fastboot && ret == 0)
10404                         intel_modeset_check_state(set->crtc->dev);
10405         }
10406
10407         if (ret) {
10408                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10409                               set->crtc->base.id, ret);
10410 fail:
10411                 intel_set_config_restore_state(dev, config);
10412
10413                 /*
10414                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10415                  * force the pipe off to avoid oopsing in the modeset code
10416                  * due to fb==NULL. This should only happen during boot since
10417                  * we don't yet reconstruct the FB from the hardware state.
10418                  */
10419                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10420                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10421
10422                 /* Try to restore the config */
10423                 if (config->mode_changed &&
10424                     intel_set_mode(save_set.crtc, save_set.mode,
10425                                    save_set.x, save_set.y, save_set.fb))
10426                         DRM_ERROR("failed to restore config after modeset failure\n");
10427         }
10428
10429 out_config:
10430         intel_set_config_free(config);
10431         return ret;
10432 }
10433
10434 static const struct drm_crtc_funcs intel_crtc_funcs = {
10435         .cursor_set = intel_crtc_cursor_set,
10436         .cursor_move = intel_crtc_cursor_move,
10437         .gamma_set = intel_crtc_gamma_set,
10438         .set_config = intel_crtc_set_config,
10439         .destroy = intel_crtc_destroy,
10440         .page_flip = intel_crtc_page_flip,
10441 };
10442
10443 static void intel_cpu_pll_init(struct drm_device *dev)
10444 {
10445         if (HAS_DDI(dev))
10446                 intel_ddi_pll_init(dev);
10447 }
10448
10449 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10450                                       struct intel_shared_dpll *pll,
10451                                       struct intel_dpll_hw_state *hw_state)
10452 {
10453         uint32_t val;
10454
10455         val = I915_READ(PCH_DPLL(pll->id));
10456         hw_state->dpll = val;
10457         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10458         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10459
10460         return val & DPLL_VCO_ENABLE;
10461 }
10462
10463 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10464                                   struct intel_shared_dpll *pll)
10465 {
10466         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10467         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10468 }
10469
10470 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10471                                 struct intel_shared_dpll *pll)
10472 {
10473         /* PCH refclock must be enabled first */
10474         ibx_assert_pch_refclk_enabled(dev_priv);
10475
10476         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10477
10478         /* Wait for the clocks to stabilize. */
10479         POSTING_READ(PCH_DPLL(pll->id));
10480         udelay(150);
10481
10482         /* The pixel multiplier can only be updated once the
10483          * DPLL is enabled and the clocks are stable.
10484          *
10485          * So write it again.
10486          */
10487         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10488         POSTING_READ(PCH_DPLL(pll->id));
10489         udelay(200);
10490 }
10491
10492 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10493                                  struct intel_shared_dpll *pll)
10494 {
10495         struct drm_device *dev = dev_priv->dev;
10496         struct intel_crtc *crtc;
10497
10498         /* Make sure no transcoder isn't still depending on us. */
10499         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10500                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10501                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10502         }
10503
10504         I915_WRITE(PCH_DPLL(pll->id), 0);
10505         POSTING_READ(PCH_DPLL(pll->id));
10506         udelay(200);
10507 }
10508
10509 static char *ibx_pch_dpll_names[] = {
10510         "PCH DPLL A",
10511         "PCH DPLL B",
10512 };
10513
10514 static void ibx_pch_dpll_init(struct drm_device *dev)
10515 {
10516         struct drm_i915_private *dev_priv = dev->dev_private;
10517         int i;
10518
10519         dev_priv->num_shared_dpll = 2;
10520
10521         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10522                 dev_priv->shared_dplls[i].id = i;
10523                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10524                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10525                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10526                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10527                 dev_priv->shared_dplls[i].get_hw_state =
10528                         ibx_pch_dpll_get_hw_state;
10529         }
10530 }
10531
10532 static void intel_shared_dpll_init(struct drm_device *dev)
10533 {
10534         struct drm_i915_private *dev_priv = dev->dev_private;
10535
10536         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10537                 ibx_pch_dpll_init(dev);
10538         else
10539                 dev_priv->num_shared_dpll = 0;
10540
10541         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10542 }
10543
10544 static void intel_crtc_init(struct drm_device *dev, int pipe)
10545 {
10546         drm_i915_private_t *dev_priv = dev->dev_private;
10547         struct intel_crtc *intel_crtc;
10548         int i;
10549
10550         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10551         if (intel_crtc == NULL)
10552                 return;
10553
10554         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10555
10556         if (IS_GEN2(dev)) {
10557                 intel_crtc->max_cursor_width = GEN2_CURSOR_WIDTH;
10558                 intel_crtc->max_cursor_height = GEN2_CURSOR_HEIGHT;
10559         } else {
10560                 intel_crtc->max_cursor_width = CURSOR_WIDTH;
10561                 intel_crtc->max_cursor_height = CURSOR_HEIGHT;
10562         }
10563         dev->mode_config.cursor_width = intel_crtc->max_cursor_width;
10564         dev->mode_config.cursor_height = intel_crtc->max_cursor_height;
10565
10566         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10567         for (i = 0; i < 256; i++) {
10568                 intel_crtc->lut_r[i] = i;
10569                 intel_crtc->lut_g[i] = i;
10570                 intel_crtc->lut_b[i] = i;
10571         }
10572
10573         /*
10574          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10575          * is hooked to plane B. Hence we want plane A feeding pipe B.
10576          */
10577         intel_crtc->pipe = pipe;
10578         intel_crtc->plane = pipe;
10579         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10580                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10581                 intel_crtc->plane = !pipe;
10582         }
10583
10584         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10585                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10586         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10587         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10588
10589         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10590 }
10591
10592 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10593 {
10594         struct drm_encoder *encoder = connector->base.encoder;
10595
10596         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10597
10598         if (!encoder)
10599                 return INVALID_PIPE;
10600
10601         return to_intel_crtc(encoder->crtc)->pipe;
10602 }
10603
10604 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10605                                 struct drm_file *file)
10606 {
10607         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10608         struct drm_mode_object *drmmode_obj;
10609         struct intel_crtc *crtc;
10610
10611         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10612                 return -ENODEV;
10613
10614         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10615                         DRM_MODE_OBJECT_CRTC);
10616
10617         if (!drmmode_obj) {
10618                 DRM_ERROR("no such CRTC id\n");
10619                 return -ENOENT;
10620         }
10621
10622         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10623         pipe_from_crtc_id->pipe = crtc->pipe;
10624
10625         return 0;
10626 }
10627
10628 static int intel_encoder_clones(struct intel_encoder *encoder)
10629 {
10630         struct drm_device *dev = encoder->base.dev;
10631         struct intel_encoder *source_encoder;
10632         int index_mask = 0;
10633         int entry = 0;
10634
10635         list_for_each_entry(source_encoder,
10636                             &dev->mode_config.encoder_list, base.head) {
10637                 if (encoders_cloneable(encoder, source_encoder))
10638                         index_mask |= (1 << entry);
10639
10640                 entry++;
10641         }
10642
10643         return index_mask;
10644 }
10645
10646 static bool has_edp_a(struct drm_device *dev)
10647 {
10648         struct drm_i915_private *dev_priv = dev->dev_private;
10649
10650         if (!IS_MOBILE(dev))
10651                 return false;
10652
10653         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10654                 return false;
10655
10656         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10657                 return false;
10658
10659         return true;
10660 }
10661
10662 const char *intel_output_name(int output)
10663 {
10664         static const char *names[] = {
10665                 [INTEL_OUTPUT_UNUSED] = "Unused",
10666                 [INTEL_OUTPUT_ANALOG] = "Analog",
10667                 [INTEL_OUTPUT_DVO] = "DVO",
10668                 [INTEL_OUTPUT_SDVO] = "SDVO",
10669                 [INTEL_OUTPUT_LVDS] = "LVDS",
10670                 [INTEL_OUTPUT_TVOUT] = "TV",
10671                 [INTEL_OUTPUT_HDMI] = "HDMI",
10672                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10673                 [INTEL_OUTPUT_EDP] = "eDP",
10674                 [INTEL_OUTPUT_DSI] = "DSI",
10675                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10676         };
10677
10678         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10679                 return "Invalid";
10680
10681         return names[output];
10682 }
10683
10684 static void intel_setup_outputs(struct drm_device *dev)
10685 {
10686         struct drm_i915_private *dev_priv = dev->dev_private;
10687         struct intel_encoder *encoder;
10688         bool dpd_is_edp = false;
10689
10690         intel_lvds_init(dev);
10691
10692         if (!IS_ULT(dev))
10693                 intel_crt_init(dev);
10694
10695         if (HAS_DDI(dev)) {
10696                 int found;
10697
10698                 /* Haswell uses DDI functions to detect digital outputs */
10699                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10700                 /* DDI A only supports eDP */
10701                 if (found)
10702                         intel_ddi_init(dev, PORT_A);
10703
10704                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10705                  * register */
10706                 found = I915_READ(SFUSE_STRAP);
10707
10708                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10709                         intel_ddi_init(dev, PORT_B);
10710                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10711                         intel_ddi_init(dev, PORT_C);
10712                 if (found & SFUSE_STRAP_DDID_DETECTED)
10713                         intel_ddi_init(dev, PORT_D);
10714         } else if (HAS_PCH_SPLIT(dev)) {
10715                 int found;
10716                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10717
10718                 if (has_edp_a(dev))
10719                         intel_dp_init(dev, DP_A, PORT_A);
10720
10721                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10722                         /* PCH SDVOB multiplex with HDMIB */
10723                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10724                         if (!found)
10725                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10726                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10727                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10728                 }
10729
10730                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10731                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10732
10733                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10734                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10735
10736                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10737                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10738
10739                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10740                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10741         } else if (IS_VALLEYVIEW(dev)) {
10742                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10743                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10744                                         PORT_B);
10745                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10746                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10747                 }
10748
10749                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10750                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10751                                         PORT_C);
10752                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10753                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10754                 }
10755
10756                 intel_dsi_init(dev);
10757         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10758                 bool found = false;
10759
10760                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10761                         DRM_DEBUG_KMS("probing SDVOB\n");
10762                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10763                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10764                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10765                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10766                         }
10767
10768                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10769                                 intel_dp_init(dev, DP_B, PORT_B);
10770                 }
10771
10772                 /* Before G4X SDVOC doesn't have its own detect register */
10773
10774                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10775                         DRM_DEBUG_KMS("probing SDVOC\n");
10776                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10777                 }
10778
10779                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10780
10781                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10782                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10783                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10784                         }
10785                         if (SUPPORTS_INTEGRATED_DP(dev))
10786                                 intel_dp_init(dev, DP_C, PORT_C);
10787                 }
10788
10789                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10790                     (I915_READ(DP_D) & DP_DETECTED))
10791                         intel_dp_init(dev, DP_D, PORT_D);
10792         } else if (IS_GEN2(dev))
10793                 intel_dvo_init(dev);
10794
10795         if (SUPPORTS_TV(dev))
10796                 intel_tv_init(dev);
10797
10798         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10799                 encoder->base.possible_crtcs = encoder->crtc_mask;
10800                 encoder->base.possible_clones =
10801                         intel_encoder_clones(encoder);
10802         }
10803
10804         intel_init_pch_refclk(dev);
10805
10806         drm_helper_move_panel_connectors_to_head(dev);
10807 }
10808
10809 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10810 {
10811         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10812
10813         drm_framebuffer_cleanup(fb);
10814         WARN_ON(!intel_fb->obj->framebuffer_references--);
10815         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10816         kfree(intel_fb);
10817 }
10818
10819 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10820                                                 struct drm_file *file,
10821                                                 unsigned int *handle)
10822 {
10823         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10824         struct drm_i915_gem_object *obj = intel_fb->obj;
10825
10826         return drm_gem_handle_create(file, &obj->base, handle);
10827 }
10828
10829 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10830         .destroy = intel_user_framebuffer_destroy,
10831         .create_handle = intel_user_framebuffer_create_handle,
10832 };
10833
10834 static int intel_framebuffer_init(struct drm_device *dev,
10835                                   struct intel_framebuffer *intel_fb,
10836                                   struct drm_mode_fb_cmd2 *mode_cmd,
10837                                   struct drm_i915_gem_object *obj)
10838 {
10839         int aligned_height;
10840         int pitch_limit;
10841         int ret;
10842
10843         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10844
10845         if (obj->tiling_mode == I915_TILING_Y) {
10846                 DRM_DEBUG("hardware does not support tiling Y\n");
10847                 return -EINVAL;
10848         }
10849
10850         if (mode_cmd->pitches[0] & 63) {
10851                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10852                           mode_cmd->pitches[0]);
10853                 return -EINVAL;
10854         }
10855
10856         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10857                 pitch_limit = 32*1024;
10858         } else if (INTEL_INFO(dev)->gen >= 4) {
10859                 if (obj->tiling_mode)
10860                         pitch_limit = 16*1024;
10861                 else
10862                         pitch_limit = 32*1024;
10863         } else if (INTEL_INFO(dev)->gen >= 3) {
10864                 if (obj->tiling_mode)
10865                         pitch_limit = 8*1024;
10866                 else
10867                         pitch_limit = 16*1024;
10868         } else
10869                 /* XXX DSPC is limited to 4k tiled */
10870                 pitch_limit = 8*1024;
10871
10872         if (mode_cmd->pitches[0] > pitch_limit) {
10873                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10874                           obj->tiling_mode ? "tiled" : "linear",
10875                           mode_cmd->pitches[0], pitch_limit);
10876                 return -EINVAL;
10877         }
10878
10879         if (obj->tiling_mode != I915_TILING_NONE &&
10880             mode_cmd->pitches[0] != obj->stride) {
10881                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10882                           mode_cmd->pitches[0], obj->stride);
10883                 return -EINVAL;
10884         }
10885
10886         /* Reject formats not supported by any plane early. */
10887         switch (mode_cmd->pixel_format) {
10888         case DRM_FORMAT_C8:
10889         case DRM_FORMAT_RGB565:
10890         case DRM_FORMAT_XRGB8888:
10891         case DRM_FORMAT_ARGB8888:
10892                 break;
10893         case DRM_FORMAT_XRGB1555:
10894         case DRM_FORMAT_ARGB1555:
10895                 if (INTEL_INFO(dev)->gen > 3) {
10896                         DRM_DEBUG("unsupported pixel format: %s\n",
10897                                   drm_get_format_name(mode_cmd->pixel_format));
10898                         return -EINVAL;
10899                 }
10900                 break;
10901         case DRM_FORMAT_XBGR8888:
10902         case DRM_FORMAT_ABGR8888:
10903         case DRM_FORMAT_XRGB2101010:
10904         case DRM_FORMAT_ARGB2101010:
10905         case DRM_FORMAT_XBGR2101010:
10906         case DRM_FORMAT_ABGR2101010:
10907                 if (INTEL_INFO(dev)->gen < 4) {
10908                         DRM_DEBUG("unsupported pixel format: %s\n",
10909                                   drm_get_format_name(mode_cmd->pixel_format));
10910                         return -EINVAL;
10911                 }
10912                 break;
10913         case DRM_FORMAT_YUYV:
10914         case DRM_FORMAT_UYVY:
10915         case DRM_FORMAT_YVYU:
10916         case DRM_FORMAT_VYUY:
10917                 if (INTEL_INFO(dev)->gen < 5) {
10918                         DRM_DEBUG("unsupported pixel format: %s\n",
10919                                   drm_get_format_name(mode_cmd->pixel_format));
10920                         return -EINVAL;
10921                 }
10922                 break;
10923         default:
10924                 DRM_DEBUG("unsupported pixel format: %s\n",
10925                           drm_get_format_name(mode_cmd->pixel_format));
10926                 return -EINVAL;
10927         }
10928
10929         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10930         if (mode_cmd->offsets[0] != 0)
10931                 return -EINVAL;
10932
10933         aligned_height = intel_align_height(dev, mode_cmd->height,
10934                                             obj->tiling_mode);
10935         /* FIXME drm helper for size checks (especially planar formats)? */
10936         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10937                 return -EINVAL;
10938
10939         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10940         intel_fb->obj = obj;
10941         intel_fb->obj->framebuffer_references++;
10942
10943         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10944         if (ret) {
10945                 DRM_ERROR("framebuffer init failed %d\n", ret);
10946                 return ret;
10947         }
10948
10949         return 0;
10950 }
10951
10952 static struct drm_framebuffer *
10953 intel_user_framebuffer_create(struct drm_device *dev,
10954                               struct drm_file *filp,
10955                               struct drm_mode_fb_cmd2 *mode_cmd)
10956 {
10957         struct drm_i915_gem_object *obj;
10958
10959         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10960                                                 mode_cmd->handles[0]));
10961         if (&obj->base == NULL)
10962                 return ERR_PTR(-ENOENT);
10963
10964         return intel_framebuffer_create(dev, mode_cmd, obj);
10965 }
10966
10967 #ifndef CONFIG_DRM_I915_FBDEV
10968 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10969 {
10970 }
10971 #endif
10972
10973 static const struct drm_mode_config_funcs intel_mode_funcs = {
10974         .fb_create = intel_user_framebuffer_create,
10975         .output_poll_changed = intel_fbdev_output_poll_changed,
10976 };
10977
10978 /* Set up chip specific display functions */
10979 static void intel_init_display(struct drm_device *dev)
10980 {
10981         struct drm_i915_private *dev_priv = dev->dev_private;
10982
10983         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10984                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10985         else if (IS_VALLEYVIEW(dev))
10986                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10987         else if (IS_PINEVIEW(dev))
10988                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10989         else
10990                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10991
10992         if (HAS_DDI(dev)) {
10993                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10994                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10995                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10996                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10997                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10998                 dev_priv->display.off = haswell_crtc_off;
10999                 dev_priv->display.update_primary_plane =
11000                         ironlake_update_primary_plane;
11001         } else if (HAS_PCH_SPLIT(dev)) {
11002                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11003                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11004                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11005                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11006                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11007                 dev_priv->display.off = ironlake_crtc_off;
11008                 dev_priv->display.update_primary_plane =
11009                         ironlake_update_primary_plane;
11010         } else if (IS_VALLEYVIEW(dev)) {
11011                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11012                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11013                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11014                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11015                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11016                 dev_priv->display.off = i9xx_crtc_off;
11017                 dev_priv->display.update_primary_plane =
11018                         i9xx_update_primary_plane;
11019         } else {
11020                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11021                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11022                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11023                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11024                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11025                 dev_priv->display.off = i9xx_crtc_off;
11026                 dev_priv->display.update_primary_plane =
11027                         i9xx_update_primary_plane;
11028         }
11029
11030         /* Returns the core display clock speed */
11031         if (IS_VALLEYVIEW(dev))
11032                 dev_priv->display.get_display_clock_speed =
11033                         valleyview_get_display_clock_speed;
11034         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11035                 dev_priv->display.get_display_clock_speed =
11036                         i945_get_display_clock_speed;
11037         else if (IS_I915G(dev))
11038                 dev_priv->display.get_display_clock_speed =
11039                         i915_get_display_clock_speed;
11040         else if (IS_I945GM(dev) || IS_845G(dev))
11041                 dev_priv->display.get_display_clock_speed =
11042                         i9xx_misc_get_display_clock_speed;
11043         else if (IS_PINEVIEW(dev))
11044                 dev_priv->display.get_display_clock_speed =
11045                         pnv_get_display_clock_speed;
11046         else if (IS_I915GM(dev))
11047                 dev_priv->display.get_display_clock_speed =
11048                         i915gm_get_display_clock_speed;
11049         else if (IS_I865G(dev))
11050                 dev_priv->display.get_display_clock_speed =
11051                         i865_get_display_clock_speed;
11052         else if (IS_I85X(dev))
11053                 dev_priv->display.get_display_clock_speed =
11054                         i855_get_display_clock_speed;
11055         else /* 852, 830 */
11056                 dev_priv->display.get_display_clock_speed =
11057                         i830_get_display_clock_speed;
11058
11059         if (HAS_PCH_SPLIT(dev)) {
11060                 if (IS_GEN5(dev)) {
11061                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11062                         dev_priv->display.write_eld = ironlake_write_eld;
11063                 } else if (IS_GEN6(dev)) {
11064                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11065                         dev_priv->display.write_eld = ironlake_write_eld;
11066                 } else if (IS_IVYBRIDGE(dev)) {
11067                         /* FIXME: detect B0+ stepping and use auto training */
11068                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11069                         dev_priv->display.write_eld = ironlake_write_eld;
11070                         dev_priv->display.modeset_global_resources =
11071                                 ivb_modeset_global_resources;
11072                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11073                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11074                         dev_priv->display.write_eld = haswell_write_eld;
11075                         dev_priv->display.modeset_global_resources =
11076                                 haswell_modeset_global_resources;
11077                 }
11078         } else if (IS_G4X(dev)) {
11079                 dev_priv->display.write_eld = g4x_write_eld;
11080         } else if (IS_VALLEYVIEW(dev)) {
11081                 dev_priv->display.modeset_global_resources =
11082                         valleyview_modeset_global_resources;
11083                 dev_priv->display.write_eld = ironlake_write_eld;
11084         }
11085
11086         /* Default just returns -ENODEV to indicate unsupported */
11087         dev_priv->display.queue_flip = intel_default_queue_flip;
11088
11089         switch (INTEL_INFO(dev)->gen) {
11090         case 2:
11091                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11092                 break;
11093
11094         case 3:
11095                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11096                 break;
11097
11098         case 4:
11099         case 5:
11100                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11101                 break;
11102
11103         case 6:
11104                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11105                 break;
11106         case 7:
11107         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11108                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11109                 break;
11110         }
11111
11112         intel_panel_init_backlight_funcs(dev);
11113 }
11114
11115 /*
11116  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11117  * resume, or other times.  This quirk makes sure that's the case for
11118  * affected systems.
11119  */
11120 static void quirk_pipea_force(struct drm_device *dev)
11121 {
11122         struct drm_i915_private *dev_priv = dev->dev_private;
11123
11124         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11125         DRM_INFO("applying pipe a force quirk\n");
11126 }
11127
11128 /*
11129  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11130  */
11131 static void quirk_ssc_force_disable(struct drm_device *dev)
11132 {
11133         struct drm_i915_private *dev_priv = dev->dev_private;
11134         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11135         DRM_INFO("applying lvds SSC disable quirk\n");
11136 }
11137
11138 /*
11139  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11140  * brightness value
11141  */
11142 static void quirk_invert_brightness(struct drm_device *dev)
11143 {
11144         struct drm_i915_private *dev_priv = dev->dev_private;
11145         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11146         DRM_INFO("applying inverted panel brightness quirk\n");
11147 }
11148
11149 struct intel_quirk {
11150         int device;
11151         int subsystem_vendor;
11152         int subsystem_device;
11153         void (*hook)(struct drm_device *dev);
11154 };
11155
11156 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11157 struct intel_dmi_quirk {
11158         void (*hook)(struct drm_device *dev);
11159         const struct dmi_system_id (*dmi_id_list)[];
11160 };
11161
11162 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11163 {
11164         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11165         return 1;
11166 }
11167
11168 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11169         {
11170                 .dmi_id_list = &(const struct dmi_system_id[]) {
11171                         {
11172                                 .callback = intel_dmi_reverse_brightness,
11173                                 .ident = "NCR Corporation",
11174                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11175                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11176                                 },
11177                         },
11178                         { }  /* terminating entry */
11179                 },
11180                 .hook = quirk_invert_brightness,
11181         },
11182 };
11183
11184 static struct intel_quirk intel_quirks[] = {
11185         /* HP Mini needs pipe A force quirk (LP: #322104) */
11186         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11187
11188         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11189         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11190
11191         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11192         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11193
11194         /* 830 needs to leave pipe A & dpll A up */
11195         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11196
11197         /* Lenovo U160 cannot use SSC on LVDS */
11198         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11199
11200         /* Sony Vaio Y cannot use SSC on LVDS */
11201         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11202
11203         /* Acer Aspire 5734Z must invert backlight brightness */
11204         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11205
11206         /* Acer/eMachines G725 */
11207         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11208
11209         /* Acer/eMachines e725 */
11210         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11211
11212         /* Acer/Packard Bell NCL20 */
11213         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11214
11215         /* Acer Aspire 4736Z */
11216         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11217
11218         /* Acer Aspire 5336 */
11219         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11220 };
11221
11222 static void intel_init_quirks(struct drm_device *dev)
11223 {
11224         struct pci_dev *d = dev->pdev;
11225         int i;
11226
11227         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11228                 struct intel_quirk *q = &intel_quirks[i];
11229
11230                 if (d->device == q->device &&
11231                     (d->subsystem_vendor == q->subsystem_vendor ||
11232                      q->subsystem_vendor == PCI_ANY_ID) &&
11233                     (d->subsystem_device == q->subsystem_device ||
11234                      q->subsystem_device == PCI_ANY_ID))
11235                         q->hook(dev);
11236         }
11237         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11238                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11239                         intel_dmi_quirks[i].hook(dev);
11240         }
11241 }
11242
11243 /* Disable the VGA plane that we never use */
11244 static void i915_disable_vga(struct drm_device *dev)
11245 {
11246         struct drm_i915_private *dev_priv = dev->dev_private;
11247         u8 sr1;
11248         u32 vga_reg = i915_vgacntrl_reg(dev);
11249
11250         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11251         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11252         outb(SR01, VGA_SR_INDEX);
11253         sr1 = inb(VGA_SR_DATA);
11254         outb(sr1 | 1<<5, VGA_SR_DATA);
11255         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11256         udelay(300);
11257
11258         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11259         POSTING_READ(vga_reg);
11260 }
11261
11262 void intel_modeset_init_hw(struct drm_device *dev)
11263 {
11264         intel_prepare_ddi(dev);
11265
11266         intel_init_clock_gating(dev);
11267
11268         intel_reset_dpio(dev);
11269
11270         mutex_lock(&dev->struct_mutex);
11271         intel_enable_gt_powersave(dev);
11272         mutex_unlock(&dev->struct_mutex);
11273 }
11274
11275 void intel_modeset_suspend_hw(struct drm_device *dev)
11276 {
11277         intel_suspend_hw(dev);
11278 }
11279
11280 void intel_modeset_init(struct drm_device *dev)
11281 {
11282         struct drm_i915_private *dev_priv = dev->dev_private;
11283         int sprite, ret;
11284         enum pipe pipe;
11285         struct intel_crtc *crtc;
11286
11287         drm_mode_config_init(dev);
11288
11289         dev->mode_config.min_width = 0;
11290         dev->mode_config.min_height = 0;
11291
11292         dev->mode_config.preferred_depth = 24;
11293         dev->mode_config.prefer_shadow = 1;
11294
11295         dev->mode_config.funcs = &intel_mode_funcs;
11296
11297         intel_init_quirks(dev);
11298
11299         intel_init_pm(dev);
11300
11301         if (INTEL_INFO(dev)->num_pipes == 0)
11302                 return;
11303
11304         intel_init_display(dev);
11305
11306         if (IS_GEN2(dev)) {
11307                 dev->mode_config.max_width = 2048;
11308                 dev->mode_config.max_height = 2048;
11309         } else if (IS_GEN3(dev)) {
11310                 dev->mode_config.max_width = 4096;
11311                 dev->mode_config.max_height = 4096;
11312         } else {
11313                 dev->mode_config.max_width = 8192;
11314                 dev->mode_config.max_height = 8192;
11315         }
11316         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11317
11318         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11319                       INTEL_INFO(dev)->num_pipes,
11320                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11321
11322         for_each_pipe(pipe) {
11323                 intel_crtc_init(dev, pipe);
11324                 for_each_sprite(pipe, sprite) {
11325                         ret = intel_plane_init(dev, pipe, sprite);
11326                         if (ret)
11327                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11328                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11329                 }
11330         }
11331
11332         intel_init_dpio(dev);
11333         intel_reset_dpio(dev);
11334
11335         intel_cpu_pll_init(dev);
11336         intel_shared_dpll_init(dev);
11337
11338         /* Just disable it once at startup */
11339         i915_disable_vga(dev);
11340         intel_setup_outputs(dev);
11341
11342         /* Just in case the BIOS is doing something questionable. */
11343         intel_disable_fbc(dev);
11344
11345         mutex_lock(&dev->mode_config.mutex);
11346         intel_modeset_setup_hw_state(dev, false);
11347         mutex_unlock(&dev->mode_config.mutex);
11348
11349         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11350                             base.head) {
11351                 if (!crtc->active)
11352                         continue;
11353
11354                 /*
11355                  * Note that reserving the BIOS fb up front prevents us
11356                  * from stuffing other stolen allocations like the ring
11357                  * on top.  This prevents some ugliness at boot time, and
11358                  * can even allow for smooth boot transitions if the BIOS
11359                  * fb is large enough for the active pipe configuration.
11360                  */
11361                 if (dev_priv->display.get_plane_config) {
11362                         dev_priv->display.get_plane_config(crtc,
11363                                                            &crtc->plane_config);
11364                         /*
11365                          * If the fb is shared between multiple heads, we'll
11366                          * just get the first one.
11367                          */
11368                         intel_find_plane_obj(crtc, &crtc->plane_config);
11369                 }
11370         }
11371 }
11372
11373 static void
11374 intel_connector_break_all_links(struct intel_connector *connector)
11375 {
11376         connector->base.dpms = DRM_MODE_DPMS_OFF;
11377         connector->base.encoder = NULL;
11378         connector->encoder->connectors_active = false;
11379         connector->encoder->base.crtc = NULL;
11380 }
11381
11382 static void intel_enable_pipe_a(struct drm_device *dev)
11383 {
11384         struct intel_connector *connector;
11385         struct drm_connector *crt = NULL;
11386         struct intel_load_detect_pipe load_detect_temp;
11387
11388         /* We can't just switch on the pipe A, we need to set things up with a
11389          * proper mode and output configuration. As a gross hack, enable pipe A
11390          * by enabling the load detect pipe once. */
11391         list_for_each_entry(connector,
11392                             &dev->mode_config.connector_list,
11393                             base.head) {
11394                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11395                         crt = &connector->base;
11396                         break;
11397                 }
11398         }
11399
11400         if (!crt)
11401                 return;
11402
11403         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11404                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11405
11406
11407 }
11408
11409 static bool
11410 intel_check_plane_mapping(struct intel_crtc *crtc)
11411 {
11412         struct drm_device *dev = crtc->base.dev;
11413         struct drm_i915_private *dev_priv = dev->dev_private;
11414         u32 reg, val;
11415
11416         if (INTEL_INFO(dev)->num_pipes == 1)
11417                 return true;
11418
11419         reg = DSPCNTR(!crtc->plane);
11420         val = I915_READ(reg);
11421
11422         if ((val & DISPLAY_PLANE_ENABLE) &&
11423             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11424                 return false;
11425
11426         return true;
11427 }
11428
11429 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11430 {
11431         struct drm_device *dev = crtc->base.dev;
11432         struct drm_i915_private *dev_priv = dev->dev_private;
11433         u32 reg;
11434
11435         /* Clear any frame start delays used for debugging left by the BIOS */
11436         reg = PIPECONF(crtc->config.cpu_transcoder);
11437         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11438
11439         /* We need to sanitize the plane -> pipe mapping first because this will
11440          * disable the crtc (and hence change the state) if it is wrong. Note
11441          * that gen4+ has a fixed plane -> pipe mapping.  */
11442         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11443                 struct intel_connector *connector;
11444                 bool plane;
11445
11446                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11447                               crtc->base.base.id);
11448
11449                 /* Pipe has the wrong plane attached and the plane is active.
11450                  * Temporarily change the plane mapping and disable everything
11451                  * ...  */
11452                 plane = crtc->plane;
11453                 crtc->plane = !plane;
11454                 dev_priv->display.crtc_disable(&crtc->base);
11455                 crtc->plane = plane;
11456
11457                 /* ... and break all links. */
11458                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11459                                     base.head) {
11460                         if (connector->encoder->base.crtc != &crtc->base)
11461                                 continue;
11462
11463                         intel_connector_break_all_links(connector);
11464                 }
11465
11466                 WARN_ON(crtc->active);
11467                 crtc->base.enabled = false;
11468         }
11469
11470         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11471             crtc->pipe == PIPE_A && !crtc->active) {
11472                 /* BIOS forgot to enable pipe A, this mostly happens after
11473                  * resume. Force-enable the pipe to fix this, the update_dpms
11474                  * call below we restore the pipe to the right state, but leave
11475                  * the required bits on. */
11476                 intel_enable_pipe_a(dev);
11477         }
11478
11479         /* Adjust the state of the output pipe according to whether we
11480          * have active connectors/encoders. */
11481         intel_crtc_update_dpms(&crtc->base);
11482
11483         if (crtc->active != crtc->base.enabled) {
11484                 struct intel_encoder *encoder;
11485
11486                 /* This can happen either due to bugs in the get_hw_state
11487                  * functions or because the pipe is force-enabled due to the
11488                  * pipe A quirk. */
11489                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11490                               crtc->base.base.id,
11491                               crtc->base.enabled ? "enabled" : "disabled",
11492                               crtc->active ? "enabled" : "disabled");
11493
11494                 crtc->base.enabled = crtc->active;
11495
11496                 /* Because we only establish the connector -> encoder ->
11497                  * crtc links if something is active, this means the
11498                  * crtc is now deactivated. Break the links. connector
11499                  * -> encoder links are only establish when things are
11500                  *  actually up, hence no need to break them. */
11501                 WARN_ON(crtc->active);
11502
11503                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11504                         WARN_ON(encoder->connectors_active);
11505                         encoder->base.crtc = NULL;
11506                 }
11507         }
11508 }
11509
11510 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11511 {
11512         struct intel_connector *connector;
11513         struct drm_device *dev = encoder->base.dev;
11514
11515         /* We need to check both for a crtc link (meaning that the
11516          * encoder is active and trying to read from a pipe) and the
11517          * pipe itself being active. */
11518         bool has_active_crtc = encoder->base.crtc &&
11519                 to_intel_crtc(encoder->base.crtc)->active;
11520
11521         if (encoder->connectors_active && !has_active_crtc) {
11522                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11523                               encoder->base.base.id,
11524                               drm_get_encoder_name(&encoder->base));
11525
11526                 /* Connector is active, but has no active pipe. This is
11527                  * fallout from our resume register restoring. Disable
11528                  * the encoder manually again. */
11529                 if (encoder->base.crtc) {
11530                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11531                                       encoder->base.base.id,
11532                                       drm_get_encoder_name(&encoder->base));
11533                         encoder->disable(encoder);
11534                 }
11535
11536                 /* Inconsistent output/port/pipe state happens presumably due to
11537                  * a bug in one of the get_hw_state functions. Or someplace else
11538                  * in our code, like the register restore mess on resume. Clamp
11539                  * things to off as a safer default. */
11540                 list_for_each_entry(connector,
11541                                     &dev->mode_config.connector_list,
11542                                     base.head) {
11543                         if (connector->encoder != encoder)
11544                                 continue;
11545
11546                         intel_connector_break_all_links(connector);
11547                 }
11548         }
11549         /* Enabled encoders without active connectors will be fixed in
11550          * the crtc fixup. */
11551 }
11552
11553 void i915_redisable_vga_power_on(struct drm_device *dev)
11554 {
11555         struct drm_i915_private *dev_priv = dev->dev_private;
11556         u32 vga_reg = i915_vgacntrl_reg(dev);
11557
11558         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11559                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11560                 i915_disable_vga(dev);
11561         }
11562 }
11563
11564 void i915_redisable_vga(struct drm_device *dev)
11565 {
11566         struct drm_i915_private *dev_priv = dev->dev_private;
11567
11568         /* This function can be called both from intel_modeset_setup_hw_state or
11569          * at a very early point in our resume sequence, where the power well
11570          * structures are not yet restored. Since this function is at a very
11571          * paranoid "someone might have enabled VGA while we were not looking"
11572          * level, just check if the power well is enabled instead of trying to
11573          * follow the "don't touch the power well if we don't need it" policy
11574          * the rest of the driver uses. */
11575         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11576                 return;
11577
11578         i915_redisable_vga_power_on(dev);
11579 }
11580
11581 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11582 {
11583         struct drm_i915_private *dev_priv = dev->dev_private;
11584         enum pipe pipe;
11585         struct intel_crtc *crtc;
11586         struct intel_encoder *encoder;
11587         struct intel_connector *connector;
11588         int i;
11589
11590         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11591                             base.head) {
11592                 memset(&crtc->config, 0, sizeof(crtc->config));
11593
11594                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11595                                                                  &crtc->config);
11596
11597                 crtc->base.enabled = crtc->active;
11598                 crtc->primary_enabled = crtc->active;
11599
11600                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11601                               crtc->base.base.id,
11602                               crtc->active ? "enabled" : "disabled");
11603         }
11604
11605         /* FIXME: Smash this into the new shared dpll infrastructure. */
11606         if (HAS_DDI(dev))
11607                 intel_ddi_setup_hw_pll_state(dev);
11608
11609         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11610                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11611
11612                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11613                 pll->active = 0;
11614                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11615                                     base.head) {
11616                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11617                                 pll->active++;
11618                 }
11619                 pll->refcount = pll->active;
11620
11621                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11622                               pll->name, pll->refcount, pll->on);
11623         }
11624
11625         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11626                             base.head) {
11627                 pipe = 0;
11628
11629                 if (encoder->get_hw_state(encoder, &pipe)) {
11630                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11631                         encoder->base.crtc = &crtc->base;
11632                         encoder->get_config(encoder, &crtc->config);
11633                 } else {
11634                         encoder->base.crtc = NULL;
11635                 }
11636
11637                 encoder->connectors_active = false;
11638                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11639                               encoder->base.base.id,
11640                               drm_get_encoder_name(&encoder->base),
11641                               encoder->base.crtc ? "enabled" : "disabled",
11642                               pipe_name(pipe));
11643         }
11644
11645         list_for_each_entry(connector, &dev->mode_config.connector_list,
11646                             base.head) {
11647                 if (connector->get_hw_state(connector)) {
11648                         connector->base.dpms = DRM_MODE_DPMS_ON;
11649                         connector->encoder->connectors_active = true;
11650                         connector->base.encoder = &connector->encoder->base;
11651                 } else {
11652                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11653                         connector->base.encoder = NULL;
11654                 }
11655                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11656                               connector->base.base.id,
11657                               drm_get_connector_name(&connector->base),
11658                               connector->base.encoder ? "enabled" : "disabled");
11659         }
11660 }
11661
11662 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11663  * and i915 state tracking structures. */
11664 void intel_modeset_setup_hw_state(struct drm_device *dev,
11665                                   bool force_restore)
11666 {
11667         struct drm_i915_private *dev_priv = dev->dev_private;
11668         enum pipe pipe;
11669         struct intel_crtc *crtc;
11670         struct intel_encoder *encoder;
11671         int i;
11672
11673         intel_modeset_readout_hw_state(dev);
11674
11675         /*
11676          * Now that we have the config, copy it to each CRTC struct
11677          * Note that this could go away if we move to using crtc_config
11678          * checking everywhere.
11679          */
11680         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11681                             base.head) {
11682                 if (crtc->active && i915.fastboot) {
11683                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11684                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11685                                       crtc->base.base.id);
11686                         drm_mode_debug_printmodeline(&crtc->base.mode);
11687                 }
11688         }
11689
11690         /* HW state is read out, now we need to sanitize this mess. */
11691         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11692                             base.head) {
11693                 intel_sanitize_encoder(encoder);
11694         }
11695
11696         for_each_pipe(pipe) {
11697                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11698                 intel_sanitize_crtc(crtc);
11699                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11700         }
11701
11702         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11703                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11704
11705                 if (!pll->on || pll->active)
11706                         continue;
11707
11708                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11709
11710                 pll->disable(dev_priv, pll);
11711                 pll->on = false;
11712         }
11713
11714         if (HAS_PCH_SPLIT(dev))
11715                 ilk_wm_get_hw_state(dev);
11716
11717         if (force_restore) {
11718                 i915_redisable_vga(dev);
11719
11720                 /*
11721                  * We need to use raw interfaces for restoring state to avoid
11722                  * checking (bogus) intermediate states.
11723                  */
11724                 for_each_pipe(pipe) {
11725                         struct drm_crtc *crtc =
11726                                 dev_priv->pipe_to_crtc_mapping[pipe];
11727
11728                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11729                                          crtc->primary->fb);
11730                 }
11731         } else {
11732                 intel_modeset_update_staged_output_state(dev);
11733         }
11734
11735         intel_modeset_check_state(dev);
11736 }
11737
11738 void intel_modeset_gem_init(struct drm_device *dev)
11739 {
11740         struct drm_crtc *c;
11741         struct intel_framebuffer *fb;
11742
11743         intel_modeset_init_hw(dev);
11744
11745         intel_setup_overlay(dev);
11746
11747         /*
11748          * Make sure any fbs we allocated at startup are properly
11749          * pinned & fenced.  When we do the allocation it's too early
11750          * for this.
11751          */
11752         mutex_lock(&dev->struct_mutex);
11753         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11754                 if (!c->primary->fb)
11755                         continue;
11756
11757                 fb = to_intel_framebuffer(c->primary->fb);
11758                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11759                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
11760                                   to_intel_crtc(c)->pipe);
11761                         drm_framebuffer_unreference(c->primary->fb);
11762                         c->primary->fb = NULL;
11763                 }
11764         }
11765         mutex_unlock(&dev->struct_mutex);
11766 }
11767
11768 void intel_connector_unregister(struct intel_connector *intel_connector)
11769 {
11770         struct drm_connector *connector = &intel_connector->base;
11771
11772         intel_panel_destroy_backlight(connector);
11773         drm_sysfs_connector_remove(connector);
11774 }
11775
11776 void intel_modeset_cleanup(struct drm_device *dev)
11777 {
11778         struct drm_i915_private *dev_priv = dev->dev_private;
11779         struct drm_crtc *crtc;
11780         struct drm_connector *connector;
11781
11782         /*
11783          * Interrupts and polling as the first thing to avoid creating havoc.
11784          * Too much stuff here (turning of rps, connectors, ...) would
11785          * experience fancy races otherwise.
11786          */
11787         drm_irq_uninstall(dev);
11788         cancel_work_sync(&dev_priv->hotplug_work);
11789         /*
11790          * Due to the hpd irq storm handling the hotplug work can re-arm the
11791          * poll handlers. Hence disable polling after hpd handling is shut down.
11792          */
11793         drm_kms_helper_poll_fini(dev);
11794
11795         mutex_lock(&dev->struct_mutex);
11796
11797         intel_unregister_dsm_handler();
11798
11799         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11800                 /* Skip inactive CRTCs */
11801                 if (!crtc->primary->fb)
11802                         continue;
11803
11804                 intel_increase_pllclock(crtc);
11805         }
11806
11807         intel_disable_fbc(dev);
11808
11809         intel_disable_gt_powersave(dev);
11810
11811         ironlake_teardown_rc6(dev);
11812
11813         mutex_unlock(&dev->struct_mutex);
11814
11815         /* flush any delayed tasks or pending work */
11816         flush_scheduled_work();
11817
11818         /* destroy the backlight and sysfs files before encoders/connectors */
11819         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11820                 struct intel_connector *intel_connector;
11821
11822                 intel_connector = to_intel_connector(connector);
11823                 intel_connector->unregister(intel_connector);
11824         }
11825
11826         drm_mode_config_cleanup(dev);
11827
11828         intel_cleanup_overlay(dev);
11829 }
11830
11831 /*
11832  * Return which encoder is currently attached for connector.
11833  */
11834 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11835 {
11836         return &intel_attached_encoder(connector)->base;
11837 }
11838
11839 void intel_connector_attach_encoder(struct intel_connector *connector,
11840                                     struct intel_encoder *encoder)
11841 {
11842         connector->encoder = encoder;
11843         drm_mode_connector_attach_encoder(&connector->base,
11844                                           &encoder->base);
11845 }
11846
11847 /*
11848  * set vga decode state - true == enable VGA decode
11849  */
11850 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11851 {
11852         struct drm_i915_private *dev_priv = dev->dev_private;
11853         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11854         u16 gmch_ctrl;
11855
11856         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11857                 DRM_ERROR("failed to read control word\n");
11858                 return -EIO;
11859         }
11860
11861         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11862                 return 0;
11863
11864         if (state)
11865                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11866         else
11867                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11868
11869         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11870                 DRM_ERROR("failed to write control word\n");
11871                 return -EIO;
11872         }
11873
11874         return 0;
11875 }
11876
11877 struct intel_display_error_state {
11878
11879         u32 power_well_driver;
11880
11881         int num_transcoders;
11882
11883         struct intel_cursor_error_state {
11884                 u32 control;
11885                 u32 position;
11886                 u32 base;
11887                 u32 size;
11888         } cursor[I915_MAX_PIPES];
11889
11890         struct intel_pipe_error_state {
11891                 bool power_domain_on;
11892                 u32 source;
11893         } pipe[I915_MAX_PIPES];
11894
11895         struct intel_plane_error_state {
11896                 u32 control;
11897                 u32 stride;
11898                 u32 size;
11899                 u32 pos;
11900                 u32 addr;
11901                 u32 surface;
11902                 u32 tile_offset;
11903         } plane[I915_MAX_PIPES];
11904
11905         struct intel_transcoder_error_state {
11906                 bool power_domain_on;
11907                 enum transcoder cpu_transcoder;
11908
11909                 u32 conf;
11910
11911                 u32 htotal;
11912                 u32 hblank;
11913                 u32 hsync;
11914                 u32 vtotal;
11915                 u32 vblank;
11916                 u32 vsync;
11917         } transcoder[4];
11918 };
11919
11920 struct intel_display_error_state *
11921 intel_display_capture_error_state(struct drm_device *dev)
11922 {
11923         drm_i915_private_t *dev_priv = dev->dev_private;
11924         struct intel_display_error_state *error;
11925         int transcoders[] = {
11926                 TRANSCODER_A,
11927                 TRANSCODER_B,
11928                 TRANSCODER_C,
11929                 TRANSCODER_EDP,
11930         };
11931         int i;
11932
11933         if (INTEL_INFO(dev)->num_pipes == 0)
11934                 return NULL;
11935
11936         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11937         if (error == NULL)
11938                 return NULL;
11939
11940         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11941                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11942
11943         for_each_pipe(i) {
11944                 error->pipe[i].power_domain_on =
11945                         intel_display_power_enabled_sw(dev_priv,
11946                                                        POWER_DOMAIN_PIPE(i));
11947                 if (!error->pipe[i].power_domain_on)
11948                         continue;
11949
11950                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11951                         error->cursor[i].control = I915_READ(CURCNTR(i));
11952                         error->cursor[i].position = I915_READ(CURPOS(i));
11953                         error->cursor[i].base = I915_READ(CURBASE(i));
11954                 } else {
11955                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11956                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11957                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11958                 }
11959
11960                 error->plane[i].control = I915_READ(DSPCNTR(i));
11961                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11962                 if (INTEL_INFO(dev)->gen <= 3) {
11963                         error->plane[i].size = I915_READ(DSPSIZE(i));
11964                         error->plane[i].pos = I915_READ(DSPPOS(i));
11965                 }
11966                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11967                         error->plane[i].addr = I915_READ(DSPADDR(i));
11968                 if (INTEL_INFO(dev)->gen >= 4) {
11969                         error->plane[i].surface = I915_READ(DSPSURF(i));
11970                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11971                 }
11972
11973                 error->pipe[i].source = I915_READ(PIPESRC(i));
11974         }
11975
11976         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11977         if (HAS_DDI(dev_priv->dev))
11978                 error->num_transcoders++; /* Account for eDP. */
11979
11980         for (i = 0; i < error->num_transcoders; i++) {
11981                 enum transcoder cpu_transcoder = transcoders[i];
11982
11983                 error->transcoder[i].power_domain_on =
11984                         intel_display_power_enabled_sw(dev_priv,
11985                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11986                 if (!error->transcoder[i].power_domain_on)
11987                         continue;
11988
11989                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11990
11991                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11992                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11993                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11994                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11995                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11996                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11997                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11998         }
11999
12000         return error;
12001 }
12002
12003 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12004
12005 void
12006 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12007                                 struct drm_device *dev,
12008                                 struct intel_display_error_state *error)
12009 {
12010         int i;
12011
12012         if (!error)
12013                 return;
12014
12015         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12016         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12017                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12018                            error->power_well_driver);
12019         for_each_pipe(i) {
12020                 err_printf(m, "Pipe [%d]:\n", i);
12021                 err_printf(m, "  Power: %s\n",
12022                            error->pipe[i].power_domain_on ? "on" : "off");
12023                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12024
12025                 err_printf(m, "Plane [%d]:\n", i);
12026                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12027                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12028                 if (INTEL_INFO(dev)->gen <= 3) {
12029                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12030                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12031                 }
12032                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12033                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12034                 if (INTEL_INFO(dev)->gen >= 4) {
12035                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12036                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12037                 }
12038
12039                 err_printf(m, "Cursor [%d]:\n", i);
12040                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12041                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12042                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12043         }
12044
12045         for (i = 0; i < error->num_transcoders; i++) {
12046                 err_printf(m, "CPU transcoder: %c\n",
12047                            transcoder_name(error->transcoder[i].cpu_transcoder));
12048                 err_printf(m, "  Power: %s\n",
12049                            error->transcoder[i].power_domain_on ? "on" : "off");
12050                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12051                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12052                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12053                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12054                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12055                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12056                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12057         }
12058 }