Merge tag 'armsoc-late' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_scheduler.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2018 Intel Corporation
5  */
6
7 #include <linux/mutex.h>
8
9 #include "i915_drv.h"
10 #include "i915_request.h"
11 #include "i915_scheduler.h"
12
13 static DEFINE_SPINLOCK(schedule_lock);
14
15 static const struct i915_request *
16 node_to_request(const struct i915_sched_node *node)
17 {
18         return container_of(node, const struct i915_request, sched);
19 }
20
21 static inline bool node_signaled(const struct i915_sched_node *node)
22 {
23         return i915_request_completed(node_to_request(node));
24 }
25
26 void i915_sched_node_init(struct i915_sched_node *node)
27 {
28         INIT_LIST_HEAD(&node->signalers_list);
29         INIT_LIST_HEAD(&node->waiters_list);
30         INIT_LIST_HEAD(&node->link);
31         node->attr.priority = I915_PRIORITY_INVALID;
32 }
33
34 static struct i915_dependency *
35 i915_dependency_alloc(struct drm_i915_private *i915)
36 {
37         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
38 }
39
40 static void
41 i915_dependency_free(struct drm_i915_private *i915,
42                      struct i915_dependency *dep)
43 {
44         kmem_cache_free(i915->dependencies, dep);
45 }
46
47 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
48                                       struct i915_sched_node *signal,
49                                       struct i915_dependency *dep,
50                                       unsigned long flags)
51 {
52         bool ret = false;
53
54         spin_lock(&schedule_lock);
55
56         if (!node_signaled(signal)) {
57                 INIT_LIST_HEAD(&dep->dfs_link);
58                 list_add(&dep->wait_link, &signal->waiters_list);
59                 list_add(&dep->signal_link, &node->signalers_list);
60                 dep->signaler = signal;
61                 dep->flags = flags;
62
63                 ret = true;
64         }
65
66         spin_unlock(&schedule_lock);
67
68         return ret;
69 }
70
71 int i915_sched_node_add_dependency(struct drm_i915_private *i915,
72                                    struct i915_sched_node *node,
73                                    struct i915_sched_node *signal)
74 {
75         struct i915_dependency *dep;
76
77         dep = i915_dependency_alloc(i915);
78         if (!dep)
79                 return -ENOMEM;
80
81         if (!__i915_sched_node_add_dependency(node, signal, dep,
82                                               I915_DEPENDENCY_ALLOC))
83                 i915_dependency_free(i915, dep);
84
85         return 0;
86 }
87
88 void i915_sched_node_fini(struct drm_i915_private *i915,
89                           struct i915_sched_node *node)
90 {
91         struct i915_dependency *dep, *tmp;
92
93         GEM_BUG_ON(!list_empty(&node->link));
94
95         spin_lock(&schedule_lock);
96
97         /*
98          * Everyone we depended upon (the fences we wait to be signaled)
99          * should retire before us and remove themselves from our list.
100          * However, retirement is run independently on each timeline and
101          * so we may be called out-of-order.
102          */
103         list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
104                 GEM_BUG_ON(!node_signaled(dep->signaler));
105                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
106
107                 list_del(&dep->wait_link);
108                 if (dep->flags & I915_DEPENDENCY_ALLOC)
109                         i915_dependency_free(i915, dep);
110         }
111
112         /* Remove ourselves from everyone who depends upon us */
113         list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
114                 GEM_BUG_ON(dep->signaler != node);
115                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
116
117                 list_del(&dep->signal_link);
118                 if (dep->flags & I915_DEPENDENCY_ALLOC)
119                         i915_dependency_free(i915, dep);
120         }
121
122         spin_unlock(&schedule_lock);
123 }
124
125 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
126 {
127         return rb_entry(rb, struct i915_priolist, node);
128 }
129
130 static void assert_priolists(struct intel_engine_execlists * const execlists,
131                              long queue_priority)
132 {
133         struct rb_node *rb;
134         long last_prio, i;
135
136         if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
137                 return;
138
139         GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
140                    rb_first(&execlists->queue.rb_root));
141
142         last_prio = (queue_priority >> I915_USER_PRIORITY_SHIFT) + 1;
143         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
144                 const struct i915_priolist *p = to_priolist(rb);
145
146                 GEM_BUG_ON(p->priority >= last_prio);
147                 last_prio = p->priority;
148
149                 GEM_BUG_ON(!p->used);
150                 for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
151                         if (list_empty(&p->requests[i]))
152                                 continue;
153
154                         GEM_BUG_ON(!(p->used & BIT(i)));
155                 }
156         }
157 }
158
159 struct list_head *
160 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
161 {
162         struct intel_engine_execlists * const execlists = &engine->execlists;
163         struct i915_priolist *p;
164         struct rb_node **parent, *rb;
165         bool first = true;
166         int idx, i;
167
168         lockdep_assert_held(&engine->timeline.lock);
169         assert_priolists(execlists, INT_MAX);
170
171         /* buckets sorted from highest [in slot 0] to lowest priority */
172         idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
173         prio >>= I915_USER_PRIORITY_SHIFT;
174         if (unlikely(execlists->no_priolist))
175                 prio = I915_PRIORITY_NORMAL;
176
177 find_priolist:
178         /* most positive priority is scheduled first, equal priorities fifo */
179         rb = NULL;
180         parent = &execlists->queue.rb_root.rb_node;
181         while (*parent) {
182                 rb = *parent;
183                 p = to_priolist(rb);
184                 if (prio > p->priority) {
185                         parent = &rb->rb_left;
186                 } else if (prio < p->priority) {
187                         parent = &rb->rb_right;
188                         first = false;
189                 } else {
190                         goto out;
191                 }
192         }
193
194         if (prio == I915_PRIORITY_NORMAL) {
195                 p = &execlists->default_priolist;
196         } else {
197                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
198                 /* Convert an allocation failure to a priority bump */
199                 if (unlikely(!p)) {
200                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
201
202                         /* To maintain ordering with all rendering, after an
203                          * allocation failure we have to disable all scheduling.
204                          * Requests will then be executed in fifo, and schedule
205                          * will ensure that dependencies are emitted in fifo.
206                          * There will be still some reordering with existing
207                          * requests, so if userspace lied about their
208                          * dependencies that reordering may be visible.
209                          */
210                         execlists->no_priolist = true;
211                         goto find_priolist;
212                 }
213         }
214
215         p->priority = prio;
216         for (i = 0; i < ARRAY_SIZE(p->requests); i++)
217                 INIT_LIST_HEAD(&p->requests[i]);
218         rb_link_node(&p->node, rb, parent);
219         rb_insert_color_cached(&p->node, &execlists->queue, first);
220         p->used = 0;
221
222 out:
223         p->used |= BIT(idx);
224         return &p->requests[idx];
225 }
226
227 static struct intel_engine_cs *
228 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
229 {
230         struct intel_engine_cs *engine = node_to_request(node)->engine;
231
232         GEM_BUG_ON(!locked);
233
234         if (engine != locked) {
235                 spin_unlock(&locked->timeline.lock);
236                 spin_lock(&engine->timeline.lock);
237         }
238
239         return engine;
240 }
241
242 static void __i915_schedule(struct i915_request *rq,
243                             const struct i915_sched_attr *attr)
244 {
245         struct list_head *uninitialized_var(pl);
246         struct intel_engine_cs *engine, *last;
247         struct i915_dependency *dep, *p;
248         struct i915_dependency stack;
249         const int prio = attr->priority;
250         LIST_HEAD(dfs);
251
252         /* Needed in order to use the temporary link inside i915_dependency */
253         lockdep_assert_held(&schedule_lock);
254         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
255
256         if (i915_request_completed(rq))
257                 return;
258
259         if (prio <= READ_ONCE(rq->sched.attr.priority))
260                 return;
261
262         stack.signaler = &rq->sched;
263         list_add(&stack.dfs_link, &dfs);
264
265         /*
266          * Recursively bump all dependent priorities to match the new request.
267          *
268          * A naive approach would be to use recursion:
269          * static void update_priorities(struct i915_sched_node *node, prio) {
270          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
271          *              update_priorities(dep->signal, prio)
272          *      queue_request(node);
273          * }
274          * but that may have unlimited recursion depth and so runs a very
275          * real risk of overunning the kernel stack. Instead, we build
276          * a flat list of all dependencies starting with the current request.
277          * As we walk the list of dependencies, we add all of its dependencies
278          * to the end of the list (this may include an already visited
279          * request) and continue to walk onwards onto the new dependencies. The
280          * end result is a topological list of requests in reverse order, the
281          * last element in the list is the request we must execute first.
282          */
283         list_for_each_entry(dep, &dfs, dfs_link) {
284                 struct i915_sched_node *node = dep->signaler;
285
286                 /*
287                  * Within an engine, there can be no cycle, but we may
288                  * refer to the same dependency chain multiple times
289                  * (redundant dependencies are not eliminated) and across
290                  * engines.
291                  */
292                 list_for_each_entry(p, &node->signalers_list, signal_link) {
293                         GEM_BUG_ON(p == dep); /* no cycles! */
294
295                         if (node_signaled(p->signaler))
296                                 continue;
297
298                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
299                         if (prio > READ_ONCE(p->signaler->attr.priority))
300                                 list_move_tail(&p->dfs_link, &dfs);
301                 }
302         }
303
304         /*
305          * If we didn't need to bump any existing priorities, and we haven't
306          * yet submitted this request (i.e. there is no potential race with
307          * execlists_submit_request()), we can set our own priority and skip
308          * acquiring the engine locks.
309          */
310         if (rq->sched.attr.priority == I915_PRIORITY_INVALID) {
311                 GEM_BUG_ON(!list_empty(&rq->sched.link));
312                 rq->sched.attr = *attr;
313
314                 if (stack.dfs_link.next == stack.dfs_link.prev)
315                         return;
316
317                 __list_del_entry(&stack.dfs_link);
318         }
319
320         last = NULL;
321         engine = rq->engine;
322         spin_lock_irq(&engine->timeline.lock);
323
324         /* Fifo and depth-first replacement ensure our deps execute before us */
325         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
326                 struct i915_sched_node *node = dep->signaler;
327
328                 INIT_LIST_HEAD(&dep->dfs_link);
329
330                 engine = sched_lock_engine(node, engine);
331
332                 /* Recheck after acquiring the engine->timeline.lock */
333                 if (prio <= node->attr.priority || node_signaled(node))
334                         continue;
335
336                 node->attr.priority = prio;
337                 if (!list_empty(&node->link)) {
338                         if (last != engine) {
339                                 pl = i915_sched_lookup_priolist(engine, prio);
340                                 last = engine;
341                         }
342                         list_move_tail(&node->link, pl);
343                 } else {
344                         /*
345                          * If the request is not in the priolist queue because
346                          * it is not yet runnable, then it doesn't contribute
347                          * to our preemption decisions. On the other hand,
348                          * if the request is on the HW, it too is not in the
349                          * queue; but in that case we may still need to reorder
350                          * the inflight requests.
351                          */
352                         if (!i915_sw_fence_done(&node_to_request(node)->submit))
353                                 continue;
354                 }
355
356                 if (prio <= engine->execlists.queue_priority)
357                         continue;
358
359                 /*
360                  * If we are already the currently executing context, don't
361                  * bother evaluating if we should preempt ourselves.
362                  */
363                 if (node_to_request(node)->global_seqno &&
364                     i915_seqno_passed(port_request(engine->execlists.port)->global_seqno,
365                                       node_to_request(node)->global_seqno))
366                         continue;
367
368                 /* Defer (tasklet) submission until after all of our updates. */
369                 engine->execlists.queue_priority = prio;
370                 tasklet_hi_schedule(&engine->execlists.tasklet);
371         }
372
373         spin_unlock_irq(&engine->timeline.lock);
374 }
375
376 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
377 {
378         spin_lock(&schedule_lock);
379         __i915_schedule(rq, attr);
380         spin_unlock(&schedule_lock);
381 }
382
383 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
384 {
385         struct i915_sched_attr attr;
386
387         GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
388
389         if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID)
390                 return;
391
392         spin_lock_bh(&schedule_lock);
393
394         attr = rq->sched.attr;
395         attr.priority |= bump;
396         __i915_schedule(rq, &attr);
397
398         spin_unlock_bh(&schedule_lock);
399 }