drm/i915: Protect request peeking with RCU
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_scheduler.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2018 Intel Corporation
5  */
6
7 #include <linux/mutex.h>
8
9 #include "i915_drv.h"
10 #include "i915_globals.h"
11 #include "i915_request.h"
12 #include "i915_scheduler.h"
13
14 static struct i915_global_scheduler {
15         struct i915_global base;
16         struct kmem_cache *slab_dependencies;
17         struct kmem_cache *slab_priorities;
18 } global;
19
20 static DEFINE_SPINLOCK(schedule_lock);
21
22 static const struct i915_request *
23 node_to_request(const struct i915_sched_node *node)
24 {
25         return container_of(node, const struct i915_request, sched);
26 }
27
28 static inline bool node_started(const struct i915_sched_node *node)
29 {
30         return i915_request_started(node_to_request(node));
31 }
32
33 static inline bool node_signaled(const struct i915_sched_node *node)
34 {
35         return i915_request_completed(node_to_request(node));
36 }
37
38 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
39 {
40         return rb_entry(rb, struct i915_priolist, node);
41 }
42
43 static void assert_priolists(struct intel_engine_execlists * const execlists)
44 {
45         struct rb_node *rb;
46         long last_prio, i;
47
48         if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
49                 return;
50
51         GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
52                    rb_first(&execlists->queue.rb_root));
53
54         last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
55         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
56                 const struct i915_priolist *p = to_priolist(rb);
57
58                 GEM_BUG_ON(p->priority >= last_prio);
59                 last_prio = p->priority;
60
61                 GEM_BUG_ON(!p->used);
62                 for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
63                         if (list_empty(&p->requests[i]))
64                                 continue;
65
66                         GEM_BUG_ON(!(p->used & BIT(i)));
67                 }
68         }
69 }
70
71 struct list_head *
72 i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
73 {
74         struct intel_engine_execlists * const execlists = &engine->execlists;
75         struct i915_priolist *p;
76         struct rb_node **parent, *rb;
77         bool first = true;
78         int idx, i;
79
80         lockdep_assert_held(&engine->active.lock);
81         assert_priolists(execlists);
82
83         /* buckets sorted from highest [in slot 0] to lowest priority */
84         idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
85         prio >>= I915_USER_PRIORITY_SHIFT;
86         if (unlikely(execlists->no_priolist))
87                 prio = I915_PRIORITY_NORMAL;
88
89 find_priolist:
90         /* most positive priority is scheduled first, equal priorities fifo */
91         rb = NULL;
92         parent = &execlists->queue.rb_root.rb_node;
93         while (*parent) {
94                 rb = *parent;
95                 p = to_priolist(rb);
96                 if (prio > p->priority) {
97                         parent = &rb->rb_left;
98                 } else if (prio < p->priority) {
99                         parent = &rb->rb_right;
100                         first = false;
101                 } else {
102                         goto out;
103                 }
104         }
105
106         if (prio == I915_PRIORITY_NORMAL) {
107                 p = &execlists->default_priolist;
108         } else {
109                 p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
110                 /* Convert an allocation failure to a priority bump */
111                 if (unlikely(!p)) {
112                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
113
114                         /* To maintain ordering with all rendering, after an
115                          * allocation failure we have to disable all scheduling.
116                          * Requests will then be executed in fifo, and schedule
117                          * will ensure that dependencies are emitted in fifo.
118                          * There will be still some reordering with existing
119                          * requests, so if userspace lied about their
120                          * dependencies that reordering may be visible.
121                          */
122                         execlists->no_priolist = true;
123                         goto find_priolist;
124                 }
125         }
126
127         p->priority = prio;
128         for (i = 0; i < ARRAY_SIZE(p->requests); i++)
129                 INIT_LIST_HEAD(&p->requests[i]);
130         rb_link_node(&p->node, rb, parent);
131         rb_insert_color_cached(&p->node, &execlists->queue, first);
132         p->used = 0;
133
134 out:
135         p->used |= BIT(idx);
136         return &p->requests[idx];
137 }
138
139 void __i915_priolist_free(struct i915_priolist *p)
140 {
141         kmem_cache_free(global.slab_priorities, p);
142 }
143
144 struct sched_cache {
145         struct list_head *priolist;
146 };
147
148 static struct intel_engine_cs *
149 sched_lock_engine(const struct i915_sched_node *node,
150                   struct intel_engine_cs *locked,
151                   struct sched_cache *cache)
152 {
153         const struct i915_request *rq = node_to_request(node);
154         struct intel_engine_cs *engine;
155
156         GEM_BUG_ON(!locked);
157
158         /*
159          * Virtual engines complicate acquiring the engine timeline lock,
160          * as their rq->engine pointer is not stable until under that
161          * engine lock. The simple ploy we use is to take the lock then
162          * check that the rq still belongs to the newly locked engine.
163          */
164         while (locked != (engine = READ_ONCE(rq->engine))) {
165                 spin_unlock(&locked->active.lock);
166                 memset(cache, 0, sizeof(*cache));
167                 spin_lock(&engine->active.lock);
168                 locked = engine;
169         }
170
171         GEM_BUG_ON(locked != engine);
172         return locked;
173 }
174
175 static inline int rq_prio(const struct i915_request *rq)
176 {
177         return rq->sched.attr.priority | __NO_PREEMPTION;
178 }
179
180 static inline bool need_preempt(int prio, int active)
181 {
182         /*
183          * Allow preemption of low -> normal -> high, but we do
184          * not allow low priority tasks to preempt other low priority
185          * tasks under the impression that latency for low priority
186          * tasks does not matter (as much as background throughput),
187          * so kiss.
188          */
189         return prio >= max(I915_PRIORITY_NORMAL, active);
190 }
191
192 static void kick_submission(struct intel_engine_cs *engine,
193                             const struct i915_request *rq,
194                             int prio)
195 {
196         const struct i915_request *inflight;
197
198         /*
199          * We only need to kick the tasklet once for the high priority
200          * new context we add into the queue.
201          */
202         if (prio <= engine->execlists.queue_priority_hint)
203                 return;
204
205         rcu_read_lock();
206
207         /* Nothing currently active? We're overdue for a submission! */
208         inflight = execlists_active(&engine->execlists);
209         if (!inflight)
210                 goto unlock;
211
212         /*
213          * If we are already the currently executing context, don't
214          * bother evaluating if we should preempt ourselves.
215          */
216         if (inflight->hw_context == rq->hw_context)
217                 goto unlock;
218
219         engine->execlists.queue_priority_hint = prio;
220         if (need_preempt(prio, rq_prio(inflight)))
221                 tasklet_hi_schedule(&engine->execlists.tasklet);
222
223 unlock:
224         rcu_read_unlock();
225 }
226
227 static void __i915_schedule(struct i915_sched_node *node,
228                             const struct i915_sched_attr *attr)
229 {
230         struct intel_engine_cs *engine;
231         struct i915_dependency *dep, *p;
232         struct i915_dependency stack;
233         const int prio = attr->priority;
234         struct sched_cache cache;
235         LIST_HEAD(dfs);
236
237         /* Needed in order to use the temporary link inside i915_dependency */
238         lockdep_assert_held(&schedule_lock);
239         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
240
241         if (prio <= READ_ONCE(node->attr.priority))
242                 return;
243
244         if (node_signaled(node))
245                 return;
246
247         stack.signaler = node;
248         list_add(&stack.dfs_link, &dfs);
249
250         /*
251          * Recursively bump all dependent priorities to match the new request.
252          *
253          * A naive approach would be to use recursion:
254          * static void update_priorities(struct i915_sched_node *node, prio) {
255          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
256          *              update_priorities(dep->signal, prio)
257          *      queue_request(node);
258          * }
259          * but that may have unlimited recursion depth and so runs a very
260          * real risk of overunning the kernel stack. Instead, we build
261          * a flat list of all dependencies starting with the current request.
262          * As we walk the list of dependencies, we add all of its dependencies
263          * to the end of the list (this may include an already visited
264          * request) and continue to walk onwards onto the new dependencies. The
265          * end result is a topological list of requests in reverse order, the
266          * last element in the list is the request we must execute first.
267          */
268         list_for_each_entry(dep, &dfs, dfs_link) {
269                 struct i915_sched_node *node = dep->signaler;
270
271                 /* If we are already flying, we know we have no signalers */
272                 if (node_started(node))
273                         continue;
274
275                 /*
276                  * Within an engine, there can be no cycle, but we may
277                  * refer to the same dependency chain multiple times
278                  * (redundant dependencies are not eliminated) and across
279                  * engines.
280                  */
281                 list_for_each_entry(p, &node->signalers_list, signal_link) {
282                         GEM_BUG_ON(p == dep); /* no cycles! */
283
284                         if (node_signaled(p->signaler))
285                                 continue;
286
287                         if (prio > READ_ONCE(p->signaler->attr.priority))
288                                 list_move_tail(&p->dfs_link, &dfs);
289                 }
290         }
291
292         /*
293          * If we didn't need to bump any existing priorities, and we haven't
294          * yet submitted this request (i.e. there is no potential race with
295          * execlists_submit_request()), we can set our own priority and skip
296          * acquiring the engine locks.
297          */
298         if (node->attr.priority == I915_PRIORITY_INVALID) {
299                 GEM_BUG_ON(!list_empty(&node->link));
300                 node->attr = *attr;
301
302                 if (stack.dfs_link.next == stack.dfs_link.prev)
303                         return;
304
305                 __list_del_entry(&stack.dfs_link);
306         }
307
308         memset(&cache, 0, sizeof(cache));
309         engine = node_to_request(node)->engine;
310         spin_lock(&engine->active.lock);
311
312         /* Fifo and depth-first replacement ensure our deps execute before us */
313         engine = sched_lock_engine(node, engine, &cache);
314         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
315                 INIT_LIST_HEAD(&dep->dfs_link);
316
317                 node = dep->signaler;
318                 engine = sched_lock_engine(node, engine, &cache);
319                 lockdep_assert_held(&engine->active.lock);
320
321                 /* Recheck after acquiring the engine->timeline.lock */
322                 if (prio <= node->attr.priority || node_signaled(node))
323                         continue;
324
325                 GEM_BUG_ON(node_to_request(node)->engine != engine);
326
327                 node->attr.priority = prio;
328
329                 if (list_empty(&node->link)) {
330                         /*
331                          * If the request is not in the priolist queue because
332                          * it is not yet runnable, then it doesn't contribute
333                          * to our preemption decisions. On the other hand,
334                          * if the request is on the HW, it too is not in the
335                          * queue; but in that case we may still need to reorder
336                          * the inflight requests.
337                          */
338                         continue;
339                 }
340
341                 if (!intel_engine_is_virtual(engine) &&
342                     !i915_request_is_active(node_to_request(node))) {
343                         if (!cache.priolist)
344                                 cache.priolist =
345                                         i915_sched_lookup_priolist(engine,
346                                                                    prio);
347                         list_move_tail(&node->link, cache.priolist);
348                 }
349
350                 /* Defer (tasklet) submission until after all of our updates. */
351                 kick_submission(engine, node_to_request(node), prio);
352         }
353
354         spin_unlock(&engine->active.lock);
355 }
356
357 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
358 {
359         spin_lock_irq(&schedule_lock);
360         __i915_schedule(&rq->sched, attr);
361         spin_unlock_irq(&schedule_lock);
362 }
363
364 static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
365 {
366         struct i915_sched_attr attr = node->attr;
367
368         attr.priority |= bump;
369         __i915_schedule(node, &attr);
370 }
371
372 void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
373 {
374         unsigned long flags;
375
376         GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
377         if (READ_ONCE(rq->sched.attr.priority) & bump)
378                 return;
379
380         spin_lock_irqsave(&schedule_lock, flags);
381         __bump_priority(&rq->sched, bump);
382         spin_unlock_irqrestore(&schedule_lock, flags);
383 }
384
385 void i915_sched_node_init(struct i915_sched_node *node)
386 {
387         INIT_LIST_HEAD(&node->signalers_list);
388         INIT_LIST_HEAD(&node->waiters_list);
389         INIT_LIST_HEAD(&node->link);
390         node->attr.priority = I915_PRIORITY_INVALID;
391         node->semaphores = 0;
392         node->flags = 0;
393 }
394
395 static struct i915_dependency *
396 i915_dependency_alloc(void)
397 {
398         return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
399 }
400
401 static void
402 i915_dependency_free(struct i915_dependency *dep)
403 {
404         kmem_cache_free(global.slab_dependencies, dep);
405 }
406
407 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
408                                       struct i915_sched_node *signal,
409                                       struct i915_dependency *dep,
410                                       unsigned long flags)
411 {
412         bool ret = false;
413
414         spin_lock_irq(&schedule_lock);
415
416         if (!node_signaled(signal)) {
417                 INIT_LIST_HEAD(&dep->dfs_link);
418                 list_add(&dep->wait_link, &signal->waiters_list);
419                 list_add(&dep->signal_link, &node->signalers_list);
420                 dep->signaler = signal;
421                 dep->waiter = node;
422                 dep->flags = flags;
423
424                 /* Keep track of whether anyone on this chain has a semaphore */
425                 if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
426                     !node_started(signal))
427                         node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
428
429                 /*
430                  * As we do not allow WAIT to preempt inflight requests,
431                  * once we have executed a request, along with triggering
432                  * any execution callbacks, we must preserve its ordering
433                  * within the non-preemptible FIFO.
434                  */
435                 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
436                 if (flags & I915_DEPENDENCY_EXTERNAL)
437                         __bump_priority(signal, __NO_PREEMPTION);
438
439                 ret = true;
440         }
441
442         spin_unlock_irq(&schedule_lock);
443
444         return ret;
445 }
446
447 int i915_sched_node_add_dependency(struct i915_sched_node *node,
448                                    struct i915_sched_node *signal)
449 {
450         struct i915_dependency *dep;
451
452         dep = i915_dependency_alloc();
453         if (!dep)
454                 return -ENOMEM;
455
456         if (!__i915_sched_node_add_dependency(node, signal, dep,
457                                               I915_DEPENDENCY_EXTERNAL |
458                                               I915_DEPENDENCY_ALLOC))
459                 i915_dependency_free(dep);
460
461         return 0;
462 }
463
464 void i915_sched_node_fini(struct i915_sched_node *node)
465 {
466         struct i915_dependency *dep, *tmp;
467
468         spin_lock_irq(&schedule_lock);
469
470         /*
471          * Everyone we depended upon (the fences we wait to be signaled)
472          * should retire before us and remove themselves from our list.
473          * However, retirement is run independently on each timeline and
474          * so we may be called out-of-order.
475          */
476         list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
477                 GEM_BUG_ON(!node_signaled(dep->signaler));
478                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
479
480                 list_del(&dep->wait_link);
481                 if (dep->flags & I915_DEPENDENCY_ALLOC)
482                         i915_dependency_free(dep);
483         }
484
485         /* Remove ourselves from everyone who depends upon us */
486         list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
487                 GEM_BUG_ON(dep->signaler != node);
488                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
489
490                 list_del(&dep->signal_link);
491                 if (dep->flags & I915_DEPENDENCY_ALLOC)
492                         i915_dependency_free(dep);
493         }
494
495         spin_unlock_irq(&schedule_lock);
496 }
497
498 static void i915_global_scheduler_shrink(void)
499 {
500         kmem_cache_shrink(global.slab_dependencies);
501         kmem_cache_shrink(global.slab_priorities);
502 }
503
504 static void i915_global_scheduler_exit(void)
505 {
506         kmem_cache_destroy(global.slab_dependencies);
507         kmem_cache_destroy(global.slab_priorities);
508 }
509
510 static struct i915_global_scheduler global = { {
511         .shrink = i915_global_scheduler_shrink,
512         .exit = i915_global_scheduler_exit,
513 } };
514
515 int __init i915_global_scheduler_init(void)
516 {
517         global.slab_dependencies = KMEM_CACHE(i915_dependency,
518                                               SLAB_HWCACHE_ALIGN);
519         if (!global.slab_dependencies)
520                 return -ENOMEM;
521
522         global.slab_priorities = KMEM_CACHE(i915_priolist,
523                                             SLAB_HWCACHE_ALIGN);
524         if (!global.slab_priorities)
525                 goto err_priorities;
526
527         i915_global_register(&global.base);
528         return 0;
529
530 err_priorities:
531         kmem_cache_destroy(global.slab_priorities);
532         return -ENOMEM;
533 }