Merge tag 'rproc-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44         struct list_head link;
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_dependencies;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return "i915";
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         /*
66          * The timeline struct (as part of the ppgtt underneath a context)
67          * may be freed when the request is no longer in use by the GPU.
68          * We could extend the life of a context to beyond that of all
69          * fences, possibly keeping the hw resource around indefinitely,
70          * or we just give them a false name. Since
71          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
72          * lie seems justifiable.
73          */
74         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
75                 return "signaled";
76
77         return to_request(fence)->gem_context->name ?: "[i915]";
78 }
79
80 static bool i915_fence_signaled(struct dma_fence *fence)
81 {
82         return i915_request_completed(to_request(fence));
83 }
84
85 static bool i915_fence_enable_signaling(struct dma_fence *fence)
86 {
87         return i915_request_enable_breadcrumb(to_request(fence));
88 }
89
90 static signed long i915_fence_wait(struct dma_fence *fence,
91                                    bool interruptible,
92                                    signed long timeout)
93 {
94         return i915_request_wait(to_request(fence),
95                                  interruptible | I915_WAIT_PRIORITY,
96                                  timeout);
97 }
98
99 static void i915_fence_release(struct dma_fence *fence)
100 {
101         struct i915_request *rq = to_request(fence);
102
103         /*
104          * The request is put onto a RCU freelist (i.e. the address
105          * is immediately reused), mark the fences as being freed now.
106          * Otherwise the debugobjects for the fences are only marked as
107          * freed when the slab cache itself is freed, and so we would get
108          * caught trying to reuse dead objects.
109          */
110         i915_sw_fence_fini(&rq->submit);
111         i915_sw_fence_fini(&rq->semaphore);
112
113         kmem_cache_free(global.slab_requests, rq);
114 }
115
116 const struct dma_fence_ops i915_fence_ops = {
117         .get_driver_name = i915_fence_get_driver_name,
118         .get_timeline_name = i915_fence_get_timeline_name,
119         .enable_signaling = i915_fence_enable_signaling,
120         .signaled = i915_fence_signaled,
121         .wait = i915_fence_wait,
122         .release = i915_fence_release,
123 };
124
125 static void irq_execute_cb(struct irq_work *wrk)
126 {
127         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
128
129         i915_sw_fence_complete(cb->fence);
130         kmem_cache_free(global.slab_execute_cbs, cb);
131 }
132
133 static void irq_execute_cb_hook(struct irq_work *wrk)
134 {
135         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
136
137         cb->hook(container_of(cb->fence, struct i915_request, submit),
138                  &cb->signal->fence);
139         i915_request_put(cb->signal);
140
141         irq_execute_cb(wrk);
142 }
143
144 static void __notify_execute_cb(struct i915_request *rq)
145 {
146         struct execute_cb *cb;
147
148         lockdep_assert_held(&rq->lock);
149
150         if (list_empty(&rq->execute_cb))
151                 return;
152
153         list_for_each_entry(cb, &rq->execute_cb, link)
154                 irq_work_queue(&cb->work);
155
156         /*
157          * XXX Rollback on __i915_request_unsubmit()
158          *
159          * In the future, perhaps when we have an active time-slicing scheduler,
160          * it will be interesting to unsubmit parallel execution and remove
161          * busywaits from the GPU until their master is restarted. This is
162          * quite hairy, we have to carefully rollback the fence and do a
163          * preempt-to-idle cycle on the target engine, all the while the
164          * master execute_cb may refire.
165          */
166         INIT_LIST_HEAD(&rq->execute_cb);
167 }
168
169 static inline void
170 remove_from_client(struct i915_request *request)
171 {
172         struct drm_i915_file_private *file_priv;
173
174         if (!READ_ONCE(request->file_priv))
175                 return;
176
177         rcu_read_lock();
178         file_priv = xchg(&request->file_priv, NULL);
179         if (file_priv) {
180                 spin_lock(&file_priv->mm.lock);
181                 list_del(&request->client_link);
182                 spin_unlock(&file_priv->mm.lock);
183         }
184         rcu_read_unlock();
185 }
186
187 static void free_capture_list(struct i915_request *request)
188 {
189         struct i915_capture_list *capture;
190
191         capture = request->capture_list;
192         while (capture) {
193                 struct i915_capture_list *next = capture->next;
194
195                 kfree(capture);
196                 capture = next;
197         }
198 }
199
200 static void remove_from_engine(struct i915_request *rq)
201 {
202         struct intel_engine_cs *engine, *locked;
203
204         /*
205          * Virtual engines complicate acquiring the engine timeline lock,
206          * as their rq->engine pointer is not stable until under that
207          * engine lock. The simple ploy we use is to take the lock then
208          * check that the rq still belongs to the newly locked engine.
209          */
210         locked = READ_ONCE(rq->engine);
211         spin_lock_irq(&locked->active.lock);
212         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
213                 spin_unlock(&locked->active.lock);
214                 spin_lock(&engine->active.lock);
215                 locked = engine;
216         }
217         list_del(&rq->sched.link);
218         spin_unlock_irq(&locked->active.lock);
219 }
220
221 bool i915_request_retire(struct i915_request *rq)
222 {
223         if (!i915_request_completed(rq))
224                 return false;
225
226         GEM_TRACE("%s fence %llx:%lld, current %d\n",
227                   rq->engine->name,
228                   rq->fence.context, rq->fence.seqno,
229                   hwsp_seqno(rq));
230
231         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232         trace_i915_request_retire(rq);
233
234         /*
235          * We know the GPU must have read the request to have
236          * sent us the seqno + interrupt, so use the position
237          * of tail of the request to update the last known position
238          * of the GPU head.
239          *
240          * Note this requires that we are always called in request
241          * completion order.
242          */
243         GEM_BUG_ON(!list_is_first(&rq->link,
244                                   &i915_request_timeline(rq)->requests));
245         rq->ring->head = rq->postfix;
246
247         /*
248          * We only loosely track inflight requests across preemption,
249          * and so we may find ourselves attempting to retire a _completed_
250          * request that we have removed from the HW and put back on a run
251          * queue.
252          */
253         remove_from_engine(rq);
254
255         spin_lock_irq(&rq->lock);
256         i915_request_mark_complete(rq);
257         if (!i915_request_signaled(rq))
258                 dma_fence_signal_locked(&rq->fence);
259         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
260                 i915_request_cancel_breadcrumb(rq);
261         if (i915_request_has_waitboost(rq)) {
262                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
263                 atomic_dec(&rq->engine->gt->rps.num_waiters);
264         }
265         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
266                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
267                 __notify_execute_cb(rq);
268         }
269         GEM_BUG_ON(!list_empty(&rq->execute_cb));
270         spin_unlock_irq(&rq->lock);
271
272         remove_from_client(rq);
273         list_del(&rq->link);
274
275         intel_context_exit(rq->hw_context);
276         intel_context_unpin(rq->hw_context);
277
278         free_capture_list(rq);
279         i915_sched_node_fini(&rq->sched);
280         i915_request_put(rq);
281
282         return true;
283 }
284
285 void i915_request_retire_upto(struct i915_request *rq)
286 {
287         struct intel_timeline * const tl = i915_request_timeline(rq);
288         struct i915_request *tmp;
289
290         GEM_TRACE("%s fence %llx:%lld, current %d\n",
291                   rq->engine->name,
292                   rq->fence.context, rq->fence.seqno,
293                   hwsp_seqno(rq));
294
295         GEM_BUG_ON(!i915_request_completed(rq));
296
297         do {
298                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299         } while (i915_request_retire(tmp) && tmp != rq);
300 }
301
302 static int
303 __i915_request_await_execution(struct i915_request *rq,
304                                struct i915_request *signal,
305                                void (*hook)(struct i915_request *rq,
306                                             struct dma_fence *signal),
307                                gfp_t gfp)
308 {
309         struct execute_cb *cb;
310
311         if (i915_request_is_active(signal)) {
312                 if (hook)
313                         hook(rq, &signal->fence);
314                 return 0;
315         }
316
317         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318         if (!cb)
319                 return -ENOMEM;
320
321         cb->fence = &rq->submit;
322         i915_sw_fence_await(cb->fence);
323         init_irq_work(&cb->work, irq_execute_cb);
324
325         if (hook) {
326                 cb->hook = hook;
327                 cb->signal = i915_request_get(signal);
328                 cb->work.func = irq_execute_cb_hook;
329         }
330
331         spin_lock_irq(&signal->lock);
332         if (i915_request_is_active(signal)) {
333                 if (hook) {
334                         hook(rq, &signal->fence);
335                         i915_request_put(signal);
336                 }
337                 i915_sw_fence_complete(cb->fence);
338                 kmem_cache_free(global.slab_execute_cbs, cb);
339         } else {
340                 list_add_tail(&cb->link, &signal->execute_cb);
341         }
342         spin_unlock_irq(&signal->lock);
343
344         return 0;
345 }
346
347 bool __i915_request_submit(struct i915_request *request)
348 {
349         struct intel_engine_cs *engine = request->engine;
350         bool result = false;
351
352         GEM_TRACE("%s fence %llx:%lld, current %d\n",
353                   engine->name,
354                   request->fence.context, request->fence.seqno,
355                   hwsp_seqno(request));
356
357         GEM_BUG_ON(!irqs_disabled());
358         lockdep_assert_held(&engine->active.lock);
359
360         /*
361          * With the advent of preempt-to-busy, we frequently encounter
362          * requests that we have unsubmitted from HW, but left running
363          * until the next ack and so have completed in the meantime. On
364          * resubmission of that completed request, we can skip
365          * updating the payload, and execlists can even skip submitting
366          * the request.
367          *
368          * We must remove the request from the caller's priority queue,
369          * and the caller must only call us when the request is in their
370          * priority queue, under the active.lock. This ensures that the
371          * request has *not* yet been retired and we can safely move
372          * the request into the engine->active.list where it will be
373          * dropped upon retiring. (Otherwise if resubmit a *retired*
374          * request, this would be a horrible use-after-free.)
375          */
376         if (i915_request_completed(request))
377                 goto xfer;
378
379         if (i915_gem_context_is_banned(request->gem_context))
380                 i915_request_skip(request, -EIO);
381
382         /*
383          * Are we using semaphores when the gpu is already saturated?
384          *
385          * Using semaphores incurs a cost in having the GPU poll a
386          * memory location, busywaiting for it to change. The continual
387          * memory reads can have a noticeable impact on the rest of the
388          * system with the extra bus traffic, stalling the cpu as it too
389          * tries to access memory across the bus (perf stat -e bus-cycles).
390          *
391          * If we installed a semaphore on this request and we only submit
392          * the request after the signaler completed, that indicates the
393          * system is overloaded and using semaphores at this time only
394          * increases the amount of work we are doing. If so, we disable
395          * further use of semaphores until we are idle again, whence we
396          * optimistically try again.
397          */
398         if (request->sched.semaphores &&
399             i915_sw_fence_signaled(&request->semaphore))
400                 engine->saturated |= request->sched.semaphores;
401
402         engine->emit_fini_breadcrumb(request,
403                                      request->ring->vaddr + request->postfix);
404
405         trace_i915_request_execute(request);
406         engine->serial++;
407         result = true;
408
409 xfer:   /* We may be recursing from the signal callback of another i915 fence */
410         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
411
412         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
413                 list_move_tail(&request->sched.link, &engine->active.requests);
414
415         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
416             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
417             !i915_request_enable_breadcrumb(request))
418                 intel_engine_queue_breadcrumbs(engine);
419
420         __notify_execute_cb(request);
421
422         spin_unlock(&request->lock);
423
424         return result;
425 }
426
427 void i915_request_submit(struct i915_request *request)
428 {
429         struct intel_engine_cs *engine = request->engine;
430         unsigned long flags;
431
432         /* Will be called from irq-context when using foreign fences. */
433         spin_lock_irqsave(&engine->active.lock, flags);
434
435         __i915_request_submit(request);
436
437         spin_unlock_irqrestore(&engine->active.lock, flags);
438 }
439
440 void __i915_request_unsubmit(struct i915_request *request)
441 {
442         struct intel_engine_cs *engine = request->engine;
443
444         GEM_TRACE("%s fence %llx:%lld, current %d\n",
445                   engine->name,
446                   request->fence.context, request->fence.seqno,
447                   hwsp_seqno(request));
448
449         GEM_BUG_ON(!irqs_disabled());
450         lockdep_assert_held(&engine->active.lock);
451
452         /*
453          * Only unwind in reverse order, required so that the per-context list
454          * is kept in seqno/ring order.
455          */
456
457         /* We may be recursing from the signal callback of another i915 fence */
458         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
459
460         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
461                 i915_request_cancel_breadcrumb(request);
462
463         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
464         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
465
466         spin_unlock(&request->lock);
467
468         /* We've already spun, don't charge on resubmitting. */
469         if (request->sched.semaphores && i915_request_started(request)) {
470                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
471                 request->sched.semaphores = 0;
472         }
473
474         /*
475          * We don't need to wake_up any waiters on request->execute, they
476          * will get woken by any other event or us re-adding this request
477          * to the engine timeline (__i915_request_submit()). The waiters
478          * should be quite adapt at finding that the request now has a new
479          * global_seqno to the one they went to sleep on.
480          */
481 }
482
483 void i915_request_unsubmit(struct i915_request *request)
484 {
485         struct intel_engine_cs *engine = request->engine;
486         unsigned long flags;
487
488         /* Will be called from irq-context when using foreign fences. */
489         spin_lock_irqsave(&engine->active.lock, flags);
490
491         __i915_request_unsubmit(request);
492
493         spin_unlock_irqrestore(&engine->active.lock, flags);
494 }
495
496 static int __i915_sw_fence_call
497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
498 {
499         struct i915_request *request =
500                 container_of(fence, typeof(*request), submit);
501
502         switch (state) {
503         case FENCE_COMPLETE:
504                 trace_i915_request_submit(request);
505
506                 if (unlikely(fence->error))
507                         i915_request_skip(request, fence->error);
508
509                 /*
510                  * We need to serialize use of the submit_request() callback
511                  * with its hotplugging performed during an emergency
512                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
513                  * critical section in order to force i915_gem_set_wedged() to
514                  * wait until the submit_request() is completed before
515                  * proceeding.
516                  */
517                 rcu_read_lock();
518                 request->engine->submit_request(request);
519                 rcu_read_unlock();
520                 break;
521
522         case FENCE_FREE:
523                 i915_request_put(request);
524                 break;
525         }
526
527         return NOTIFY_DONE;
528 }
529
530 static int __i915_sw_fence_call
531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
532 {
533         struct i915_request *request =
534                 container_of(fence, typeof(*request), semaphore);
535
536         switch (state) {
537         case FENCE_COMPLETE:
538                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
539                 break;
540
541         case FENCE_FREE:
542                 i915_request_put(request);
543                 break;
544         }
545
546         return NOTIFY_DONE;
547 }
548
549 static void retire_requests(struct intel_timeline *tl)
550 {
551         struct i915_request *rq, *rn;
552
553         list_for_each_entry_safe(rq, rn, &tl->requests, link)
554                 if (!i915_request_retire(rq))
555                         break;
556 }
557
558 static noinline struct i915_request *
559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
560 {
561         struct i915_request *rq;
562
563         if (list_empty(&tl->requests))
564                 goto out;
565
566         if (!gfpflags_allow_blocking(gfp))
567                 goto out;
568
569         /* Move our oldest request to the slab-cache (if not in use!) */
570         rq = list_first_entry(&tl->requests, typeof(*rq), link);
571         i915_request_retire(rq);
572
573         rq = kmem_cache_alloc(global.slab_requests,
574                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
575         if (rq)
576                 return rq;
577
578         /* Ratelimit ourselves to prevent oom from malicious clients */
579         rq = list_last_entry(&tl->requests, typeof(*rq), link);
580         cond_synchronize_rcu(rq->rcustate);
581
582         /* Retire our old requests in the hope that we free some */
583         retire_requests(tl);
584
585 out:
586         return kmem_cache_alloc(global.slab_requests, gfp);
587 }
588
589 struct i915_request *
590 __i915_request_create(struct intel_context *ce, gfp_t gfp)
591 {
592         struct intel_timeline *tl = ce->timeline;
593         struct i915_request *rq;
594         u32 seqno;
595         int ret;
596
597         might_sleep_if(gfpflags_allow_blocking(gfp));
598
599         /* Check that the caller provided an already pinned context */
600         __intel_context_pin(ce);
601
602         /*
603          * Beware: Dragons be flying overhead.
604          *
605          * We use RCU to look up requests in flight. The lookups may
606          * race with the request being allocated from the slab freelist.
607          * That is the request we are writing to here, may be in the process
608          * of being read by __i915_active_request_get_rcu(). As such,
609          * we have to be very careful when overwriting the contents. During
610          * the RCU lookup, we change chase the request->engine pointer,
611          * read the request->global_seqno and increment the reference count.
612          *
613          * The reference count is incremented atomically. If it is zero,
614          * the lookup knows the request is unallocated and complete. Otherwise,
615          * it is either still in use, or has been reallocated and reset
616          * with dma_fence_init(). This increment is safe for release as we
617          * check that the request we have a reference to and matches the active
618          * request.
619          *
620          * Before we increment the refcount, we chase the request->engine
621          * pointer. We must not call kmem_cache_zalloc() or else we set
622          * that pointer to NULL and cause a crash during the lookup. If
623          * we see the request is completed (based on the value of the
624          * old engine and seqno), the lookup is complete and reports NULL.
625          * If we decide the request is not completed (new engine or seqno),
626          * then we grab a reference and double check that it is still the
627          * active request - which it won't be and restart the lookup.
628          *
629          * Do not use kmem_cache_zalloc() here!
630          */
631         rq = kmem_cache_alloc(global.slab_requests,
632                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
633         if (unlikely(!rq)) {
634                 rq = request_alloc_slow(tl, gfp);
635                 if (!rq) {
636                         ret = -ENOMEM;
637                         goto err_unreserve;
638                 }
639         }
640
641         ret = intel_timeline_get_seqno(tl, rq, &seqno);
642         if (ret)
643                 goto err_free;
644
645         rq->i915 = ce->engine->i915;
646         rq->hw_context = ce;
647         rq->gem_context = ce->gem_context;
648         rq->engine = ce->engine;
649         rq->ring = ce->ring;
650         rq->execution_mask = ce->engine->mask;
651
652         rcu_assign_pointer(rq->timeline, tl);
653         rq->hwsp_seqno = tl->hwsp_seqno;
654         rq->hwsp_cacheline = tl->hwsp_cacheline;
655
656         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
657
658         spin_lock_init(&rq->lock);
659         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
660                        tl->fence_context, seqno);
661
662         /* We bump the ref for the fence chain */
663         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
664         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
665
666         i915_sched_node_init(&rq->sched);
667
668         /* No zalloc, must clear what we need by hand */
669         rq->file_priv = NULL;
670         rq->batch = NULL;
671         rq->capture_list = NULL;
672         rq->flags = 0;
673
674         INIT_LIST_HEAD(&rq->execute_cb);
675
676         /*
677          * Reserve space in the ring buffer for all the commands required to
678          * eventually emit this request. This is to guarantee that the
679          * i915_request_add() call can't fail. Note that the reserve may need
680          * to be redone if the request is not actually submitted straight
681          * away, e.g. because a GPU scheduler has deferred it.
682          *
683          * Note that due to how we add reserved_space to intel_ring_begin()
684          * we need to double our request to ensure that if we need to wrap
685          * around inside i915_request_add() there is sufficient space at
686          * the beginning of the ring as well.
687          */
688         rq->reserved_space =
689                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
690
691         /*
692          * Record the position of the start of the request so that
693          * should we detect the updated seqno part-way through the
694          * GPU processing the request, we never over-estimate the
695          * position of the head.
696          */
697         rq->head = rq->ring->emit;
698
699         ret = rq->engine->request_alloc(rq);
700         if (ret)
701                 goto err_unwind;
702
703         rq->infix = rq->ring->emit; /* end of header; start of user payload */
704
705         intel_context_mark_active(ce);
706         return rq;
707
708 err_unwind:
709         ce->ring->emit = rq->head;
710
711         /* Make sure we didn't add ourselves to external state before freeing */
712         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
713         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
714
715 err_free:
716         kmem_cache_free(global.slab_requests, rq);
717 err_unreserve:
718         intel_context_unpin(ce);
719         return ERR_PTR(ret);
720 }
721
722 struct i915_request *
723 i915_request_create(struct intel_context *ce)
724 {
725         struct i915_request *rq;
726         struct intel_timeline *tl;
727
728         tl = intel_context_timeline_lock(ce);
729         if (IS_ERR(tl))
730                 return ERR_CAST(tl);
731
732         /* Move our oldest request to the slab-cache (if not in use!) */
733         rq = list_first_entry(&tl->requests, typeof(*rq), link);
734         if (!list_is_last(&rq->link, &tl->requests))
735                 i915_request_retire(rq);
736
737         intel_context_enter(ce);
738         rq = __i915_request_create(ce, GFP_KERNEL);
739         intel_context_exit(ce); /* active reference transferred to request */
740         if (IS_ERR(rq))
741                 goto err_unlock;
742
743         /* Check that we do not interrupt ourselves with a new request */
744         rq->cookie = lockdep_pin_lock(&tl->mutex);
745
746         return rq;
747
748 err_unlock:
749         intel_context_timeline_unlock(tl);
750         return rq;
751 }
752
753 static int
754 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
755 {
756         struct intel_timeline *tl;
757         struct dma_fence *fence;
758         int err;
759
760         GEM_BUG_ON(i915_request_timeline(rq) ==
761                    rcu_access_pointer(signal->timeline));
762
763         rcu_read_lock();
764         tl = rcu_dereference(signal->timeline);
765         if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
766                 tl = NULL;
767         rcu_read_unlock();
768         if (!tl) /* already started or maybe even completed */
769                 return 0;
770
771         fence = ERR_PTR(-EBUSY);
772         if (mutex_trylock(&tl->mutex)) {
773                 fence = NULL;
774                 if (!i915_request_started(signal) &&
775                     !list_is_first(&signal->link, &tl->requests)) {
776                         signal = list_prev_entry(signal, link);
777                         fence = dma_fence_get(&signal->fence);
778                 }
779                 mutex_unlock(&tl->mutex);
780         }
781         intel_timeline_put(tl);
782         if (IS_ERR_OR_NULL(fence))
783                 return PTR_ERR_OR_ZERO(fence);
784
785         err = 0;
786         if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
787                 err = i915_sw_fence_await_dma_fence(&rq->submit,
788                                                     fence, 0,
789                                                     I915_FENCE_GFP);
790         dma_fence_put(fence);
791
792         return err;
793 }
794
795 static intel_engine_mask_t
796 already_busywaiting(struct i915_request *rq)
797 {
798         /*
799          * Polling a semaphore causes bus traffic, delaying other users of
800          * both the GPU and CPU. We want to limit the impact on others,
801          * while taking advantage of early submission to reduce GPU
802          * latency. Therefore we restrict ourselves to not using more
803          * than one semaphore from each source, and not using a semaphore
804          * if we have detected the engine is saturated (i.e. would not be
805          * submitted early and cause bus traffic reading an already passed
806          * semaphore).
807          *
808          * See the are-we-too-late? check in __i915_request_submit().
809          */
810         return rq->sched.semaphores | rq->engine->saturated;
811 }
812
813 static int
814 emit_semaphore_wait(struct i915_request *to,
815                     struct i915_request *from,
816                     gfp_t gfp)
817 {
818         const int has_token = INTEL_GEN(to->i915) >= 12;
819         u32 hwsp_offset;
820         int len;
821         u32 *cs;
822
823         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
824
825         /* Just emit the first semaphore we see as request space is limited. */
826         if (already_busywaiting(to) & from->engine->mask)
827                 goto await_fence;
828
829         if (i915_request_await_start(to, from) < 0)
830                 goto await_fence;
831
832         /* Only submit our spinner after the signaler is running! */
833         if (__i915_request_await_execution(to, from, NULL, gfp))
834                 goto await_fence;
835
836         /* We need to pin the signaler's HWSP until we are finished reading. */
837         if (intel_timeline_read_hwsp(from, to, &hwsp_offset))
838                 goto await_fence;
839
840         len = 4;
841         if (has_token)
842                 len += 2;
843
844         cs = intel_ring_begin(to, len);
845         if (IS_ERR(cs))
846                 return PTR_ERR(cs);
847
848         /*
849          * Using greater-than-or-equal here means we have to worry
850          * about seqno wraparound. To side step that issue, we swap
851          * the timeline HWSP upon wrapping, so that everyone listening
852          * for the old (pre-wrap) values do not see the much smaller
853          * (post-wrap) values than they were expecting (and so wait
854          * forever).
855          */
856         *cs++ = (MI_SEMAPHORE_WAIT |
857                  MI_SEMAPHORE_GLOBAL_GTT |
858                  MI_SEMAPHORE_POLL |
859                  MI_SEMAPHORE_SAD_GTE_SDD) +
860                 has_token;
861         *cs++ = from->fence.seqno;
862         *cs++ = hwsp_offset;
863         *cs++ = 0;
864         if (has_token) {
865                 *cs++ = 0;
866                 *cs++ = MI_NOOP;
867         }
868
869         intel_ring_advance(to, cs);
870         to->sched.semaphores |= from->engine->mask;
871         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
872         return 0;
873
874 await_fence:
875         return i915_sw_fence_await_dma_fence(&to->submit,
876                                              &from->fence, 0,
877                                              I915_FENCE_GFP);
878 }
879
880 static int
881 i915_request_await_request(struct i915_request *to, struct i915_request *from)
882 {
883         int ret;
884
885         GEM_BUG_ON(to == from);
886         GEM_BUG_ON(to->timeline == from->timeline);
887
888         if (i915_request_completed(from))
889                 return 0;
890
891         if (to->engine->schedule) {
892                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
893                 if (ret < 0)
894                         return ret;
895         }
896
897         if (to->engine == from->engine) {
898                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
899                                                        &from->submit,
900                                                        I915_FENCE_GFP);
901         } else if (intel_engine_has_semaphores(to->engine) &&
902                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
903                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
904         } else {
905                 ret = i915_sw_fence_await_dma_fence(&to->submit,
906                                                     &from->fence, 0,
907                                                     I915_FENCE_GFP);
908         }
909         if (ret < 0)
910                 return ret;
911
912         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
913                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
914                                                     &from->fence, 0,
915                                                     I915_FENCE_GFP);
916                 if (ret < 0)
917                         return ret;
918         }
919
920         return 0;
921 }
922
923 int
924 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
925 {
926         struct dma_fence **child = &fence;
927         unsigned int nchild = 1;
928         int ret;
929
930         /*
931          * Note that if the fence-array was created in signal-on-any mode,
932          * we should *not* decompose it into its individual fences. However,
933          * we don't currently store which mode the fence-array is operating
934          * in. Fortunately, the only user of signal-on-any is private to
935          * amdgpu and we should not see any incoming fence-array from
936          * sync-file being in signal-on-any mode.
937          */
938         if (dma_fence_is_array(fence)) {
939                 struct dma_fence_array *array = to_dma_fence_array(fence);
940
941                 child = array->fences;
942                 nchild = array->num_fences;
943                 GEM_BUG_ON(!nchild);
944         }
945
946         do {
947                 fence = *child++;
948                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
949                         continue;
950
951                 /*
952                  * Requests on the same timeline are explicitly ordered, along
953                  * with their dependencies, by i915_request_add() which ensures
954                  * that requests are submitted in-order through each ring.
955                  */
956                 if (fence->context == rq->fence.context)
957                         continue;
958
959                 /* Squash repeated waits to the same timelines */
960                 if (fence->context &&
961                     intel_timeline_sync_is_later(i915_request_timeline(rq),
962                                                  fence))
963                         continue;
964
965                 if (dma_fence_is_i915(fence))
966                         ret = i915_request_await_request(rq, to_request(fence));
967                 else
968                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
969                                                             fence->context ? I915_FENCE_TIMEOUT : 0,
970                                                             I915_FENCE_GFP);
971                 if (ret < 0)
972                         return ret;
973
974                 /* Record the latest fence used against each timeline */
975                 if (fence->context)
976                         intel_timeline_sync_set(i915_request_timeline(rq),
977                                                 fence);
978         } while (--nchild);
979
980         return 0;
981 }
982
983 int
984 i915_request_await_execution(struct i915_request *rq,
985                              struct dma_fence *fence,
986                              void (*hook)(struct i915_request *rq,
987                                           struct dma_fence *signal))
988 {
989         struct dma_fence **child = &fence;
990         unsigned int nchild = 1;
991         int ret;
992
993         if (dma_fence_is_array(fence)) {
994                 struct dma_fence_array *array = to_dma_fence_array(fence);
995
996                 /* XXX Error for signal-on-any fence arrays */
997
998                 child = array->fences;
999                 nchild = array->num_fences;
1000                 GEM_BUG_ON(!nchild);
1001         }
1002
1003         do {
1004                 fence = *child++;
1005                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1006                         continue;
1007
1008                 /*
1009                  * We don't squash repeated fence dependencies here as we
1010                  * want to run our callback in all cases.
1011                  */
1012
1013                 if (dma_fence_is_i915(fence))
1014                         ret = __i915_request_await_execution(rq,
1015                                                              to_request(fence),
1016                                                              hook,
1017                                                              I915_FENCE_GFP);
1018                 else
1019                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1020                                                             I915_FENCE_TIMEOUT,
1021                                                             GFP_KERNEL);
1022                 if (ret < 0)
1023                         return ret;
1024         } while (--nchild);
1025
1026         return 0;
1027 }
1028
1029 /**
1030  * i915_request_await_object - set this request to (async) wait upon a bo
1031  * @to: request we are wishing to use
1032  * @obj: object which may be in use on another ring.
1033  * @write: whether the wait is on behalf of a writer
1034  *
1035  * This code is meant to abstract object synchronization with the GPU.
1036  * Conceptually we serialise writes between engines inside the GPU.
1037  * We only allow one engine to write into a buffer at any time, but
1038  * multiple readers. To ensure each has a coherent view of memory, we must:
1039  *
1040  * - If there is an outstanding write request to the object, the new
1041  *   request must wait for it to complete (either CPU or in hw, requests
1042  *   on the same ring will be naturally ordered).
1043  *
1044  * - If we are a write request (pending_write_domain is set), the new
1045  *   request must wait for outstanding read requests to complete.
1046  *
1047  * Returns 0 if successful, else propagates up the lower layer error.
1048  */
1049 int
1050 i915_request_await_object(struct i915_request *to,
1051                           struct drm_i915_gem_object *obj,
1052                           bool write)
1053 {
1054         struct dma_fence *excl;
1055         int ret = 0;
1056
1057         if (write) {
1058                 struct dma_fence **shared;
1059                 unsigned int count, i;
1060
1061                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1062                                                         &excl, &count, &shared);
1063                 if (ret)
1064                         return ret;
1065
1066                 for (i = 0; i < count; i++) {
1067                         ret = i915_request_await_dma_fence(to, shared[i]);
1068                         if (ret)
1069                                 break;
1070
1071                         dma_fence_put(shared[i]);
1072                 }
1073
1074                 for (; i < count; i++)
1075                         dma_fence_put(shared[i]);
1076                 kfree(shared);
1077         } else {
1078                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1079         }
1080
1081         if (excl) {
1082                 if (ret == 0)
1083                         ret = i915_request_await_dma_fence(to, excl);
1084
1085                 dma_fence_put(excl);
1086         }
1087
1088         return ret;
1089 }
1090
1091 void i915_request_skip(struct i915_request *rq, int error)
1092 {
1093         void *vaddr = rq->ring->vaddr;
1094         u32 head;
1095
1096         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1097         dma_fence_set_error(&rq->fence, error);
1098
1099         if (rq->infix == rq->postfix)
1100                 return;
1101
1102         /*
1103          * As this request likely depends on state from the lost
1104          * context, clear out all the user operations leaving the
1105          * breadcrumb at the end (so we get the fence notifications).
1106          */
1107         head = rq->infix;
1108         if (rq->postfix < head) {
1109                 memset(vaddr + head, 0, rq->ring->size - head);
1110                 head = 0;
1111         }
1112         memset(vaddr + head, 0, rq->postfix - head);
1113         rq->infix = rq->postfix;
1114 }
1115
1116 static struct i915_request *
1117 __i915_request_add_to_timeline(struct i915_request *rq)
1118 {
1119         struct intel_timeline *timeline = i915_request_timeline(rq);
1120         struct i915_request *prev;
1121
1122         /*
1123          * Dependency tracking and request ordering along the timeline
1124          * is special cased so that we can eliminate redundant ordering
1125          * operations while building the request (we know that the timeline
1126          * itself is ordered, and here we guarantee it).
1127          *
1128          * As we know we will need to emit tracking along the timeline,
1129          * we embed the hooks into our request struct -- at the cost of
1130          * having to have specialised no-allocation interfaces (which will
1131          * be beneficial elsewhere).
1132          *
1133          * A second benefit to open-coding i915_request_await_request is
1134          * that we can apply a slight variant of the rules specialised
1135          * for timelines that jump between engines (such as virtual engines).
1136          * If we consider the case of virtual engine, we must emit a dma-fence
1137          * to prevent scheduling of the second request until the first is
1138          * complete (to maximise our greedy late load balancing) and this
1139          * precludes optimising to use semaphores serialisation of a single
1140          * timeline across engines.
1141          */
1142         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1143                                                   &rq->fence));
1144         if (prev && !i915_request_completed(prev)) {
1145                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1146                         i915_sw_fence_await_sw_fence(&rq->submit,
1147                                                      &prev->submit,
1148                                                      &rq->submitq);
1149                 else
1150                         __i915_sw_fence_await_dma_fence(&rq->submit,
1151                                                         &prev->fence,
1152                                                         &rq->dmaq);
1153                 if (rq->engine->schedule)
1154                         __i915_sched_node_add_dependency(&rq->sched,
1155                                                          &prev->sched,
1156                                                          &rq->dep,
1157                                                          0);
1158         }
1159
1160         list_add_tail(&rq->link, &timeline->requests);
1161
1162         /*
1163          * Make sure that no request gazumped us - if it was allocated after
1164          * our i915_request_alloc() and called __i915_request_add() before
1165          * us, the timeline will hold its seqno which is later than ours.
1166          */
1167         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1168
1169         return prev;
1170 }
1171
1172 /*
1173  * NB: This function is not allowed to fail. Doing so would mean the the
1174  * request is not being tracked for completion but the work itself is
1175  * going to happen on the hardware. This would be a Bad Thing(tm).
1176  */
1177 struct i915_request *__i915_request_commit(struct i915_request *rq)
1178 {
1179         struct intel_engine_cs *engine = rq->engine;
1180         struct intel_ring *ring = rq->ring;
1181         u32 *cs;
1182
1183         GEM_TRACE("%s fence %llx:%lld\n",
1184                   engine->name, rq->fence.context, rq->fence.seqno);
1185
1186         /*
1187          * To ensure that this call will not fail, space for its emissions
1188          * should already have been reserved in the ring buffer. Let the ring
1189          * know that it is time to use that space up.
1190          */
1191         GEM_BUG_ON(rq->reserved_space > ring->space);
1192         rq->reserved_space = 0;
1193         rq->emitted_jiffies = jiffies;
1194
1195         /*
1196          * Record the position of the start of the breadcrumb so that
1197          * should we detect the updated seqno part-way through the
1198          * GPU processing the request, we never over-estimate the
1199          * position of the ring's HEAD.
1200          */
1201         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1202         GEM_BUG_ON(IS_ERR(cs));
1203         rq->postfix = intel_ring_offset(rq, cs);
1204
1205         return __i915_request_add_to_timeline(rq);
1206 }
1207
1208 void __i915_request_queue(struct i915_request *rq,
1209                           const struct i915_sched_attr *attr)
1210 {
1211         /*
1212          * Let the backend know a new request has arrived that may need
1213          * to adjust the existing execution schedule due to a high priority
1214          * request - i.e. we may want to preempt the current request in order
1215          * to run a high priority dependency chain *before* we can execute this
1216          * request.
1217          *
1218          * This is called before the request is ready to run so that we can
1219          * decide whether to preempt the entire chain so that it is ready to
1220          * run at the earliest possible convenience.
1221          */
1222         i915_sw_fence_commit(&rq->semaphore);
1223         if (attr && rq->engine->schedule)
1224                 rq->engine->schedule(rq, attr);
1225         i915_sw_fence_commit(&rq->submit);
1226 }
1227
1228 void i915_request_add(struct i915_request *rq)
1229 {
1230         struct i915_sched_attr attr = rq->gem_context->sched;
1231         struct intel_timeline * const tl = i915_request_timeline(rq);
1232         struct i915_request *prev;
1233
1234         lockdep_assert_held(&tl->mutex);
1235         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1236
1237         trace_i915_request_add(rq);
1238
1239         prev = __i915_request_commit(rq);
1240
1241         /*
1242          * Boost actual workloads past semaphores!
1243          *
1244          * With semaphores we spin on one engine waiting for another,
1245          * simply to reduce the latency of starting our work when
1246          * the signaler completes. However, if there is any other
1247          * work that we could be doing on this engine instead, that
1248          * is better utilisation and will reduce the overall duration
1249          * of the current work. To avoid PI boosting a semaphore
1250          * far in the distance past over useful work, we keep a history
1251          * of any semaphore use along our dependency chain.
1252          */
1253         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1254                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1255
1256         /*
1257          * Boost priorities to new clients (new request flows).
1258          *
1259          * Allow interactive/synchronous clients to jump ahead of
1260          * the bulk clients. (FQ_CODEL)
1261          */
1262         if (list_empty(&rq->sched.signalers_list))
1263                 attr.priority |= I915_PRIORITY_WAIT;
1264
1265         local_bh_disable();
1266         __i915_request_queue(rq, &attr);
1267         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1268
1269         /*
1270          * In typical scenarios, we do not expect the previous request on
1271          * the timeline to be still tracked by timeline->last_request if it
1272          * has been completed. If the completed request is still here, that
1273          * implies that request retirement is a long way behind submission,
1274          * suggesting that we haven't been retiring frequently enough from
1275          * the combination of retire-before-alloc, waiters and the background
1276          * retirement worker. So if the last request on this timeline was
1277          * already completed, do a catch up pass, flushing the retirement queue
1278          * up to this client. Since we have now moved the heaviest operations
1279          * during retirement onto secondary workers, such as freeing objects
1280          * or contexts, retiring a bunch of requests is mostly list management
1281          * (and cache misses), and so we should not be overly penalizing this
1282          * client by performing excess work, though we may still performing
1283          * work on behalf of others -- but instead we should benefit from
1284          * improved resource management. (Well, that's the theory at least.)
1285          */
1286         if (prev &&
1287             i915_request_completed(prev) &&
1288             rcu_access_pointer(prev->timeline) == tl)
1289                 i915_request_retire_upto(prev);
1290
1291         mutex_unlock(&tl->mutex);
1292 }
1293
1294 static unsigned long local_clock_us(unsigned int *cpu)
1295 {
1296         unsigned long t;
1297
1298         /*
1299          * Cheaply and approximately convert from nanoseconds to microseconds.
1300          * The result and subsequent calculations are also defined in the same
1301          * approximate microseconds units. The principal source of timing
1302          * error here is from the simple truncation.
1303          *
1304          * Note that local_clock() is only defined wrt to the current CPU;
1305          * the comparisons are no longer valid if we switch CPUs. Instead of
1306          * blocking preemption for the entire busywait, we can detect the CPU
1307          * switch and use that as indicator of system load and a reason to
1308          * stop busywaiting, see busywait_stop().
1309          */
1310         *cpu = get_cpu();
1311         t = local_clock() >> 10;
1312         put_cpu();
1313
1314         return t;
1315 }
1316
1317 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1318 {
1319         unsigned int this_cpu;
1320
1321         if (time_after(local_clock_us(&this_cpu), timeout))
1322                 return true;
1323
1324         return this_cpu != cpu;
1325 }
1326
1327 static bool __i915_spin_request(const struct i915_request * const rq,
1328                                 int state, unsigned long timeout_us)
1329 {
1330         unsigned int cpu;
1331
1332         /*
1333          * Only wait for the request if we know it is likely to complete.
1334          *
1335          * We don't track the timestamps around requests, nor the average
1336          * request length, so we do not have a good indicator that this
1337          * request will complete within the timeout. What we do know is the
1338          * order in which requests are executed by the context and so we can
1339          * tell if the request has been started. If the request is not even
1340          * running yet, it is a fair assumption that it will not complete
1341          * within our relatively short timeout.
1342          */
1343         if (!i915_request_is_running(rq))
1344                 return false;
1345
1346         /*
1347          * When waiting for high frequency requests, e.g. during synchronous
1348          * rendering split between the CPU and GPU, the finite amount of time
1349          * required to set up the irq and wait upon it limits the response
1350          * rate. By busywaiting on the request completion for a short while we
1351          * can service the high frequency waits as quick as possible. However,
1352          * if it is a slow request, we want to sleep as quickly as possible.
1353          * The tradeoff between waiting and sleeping is roughly the time it
1354          * takes to sleep on a request, on the order of a microsecond.
1355          */
1356
1357         timeout_us += local_clock_us(&cpu);
1358         do {
1359                 if (i915_request_completed(rq))
1360                         return true;
1361
1362                 if (signal_pending_state(state, current))
1363                         break;
1364
1365                 if (busywait_stop(timeout_us, cpu))
1366                         break;
1367
1368                 cpu_relax();
1369         } while (!need_resched());
1370
1371         return false;
1372 }
1373
1374 struct request_wait {
1375         struct dma_fence_cb cb;
1376         struct task_struct *tsk;
1377 };
1378
1379 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1380 {
1381         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1382
1383         wake_up_process(wait->tsk);
1384 }
1385
1386 /**
1387  * i915_request_wait - wait until execution of request has finished
1388  * @rq: the request to wait upon
1389  * @flags: how to wait
1390  * @timeout: how long to wait in jiffies
1391  *
1392  * i915_request_wait() waits for the request to be completed, for a
1393  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1394  * unbounded wait).
1395  *
1396  * Returns the remaining time (in jiffies) if the request completed, which may
1397  * be zero or -ETIME if the request is unfinished after the timeout expires.
1398  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1399  * pending before the request completes.
1400  */
1401 long i915_request_wait(struct i915_request *rq,
1402                        unsigned int flags,
1403                        long timeout)
1404 {
1405         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1406                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1407         struct request_wait wait;
1408
1409         might_sleep();
1410         GEM_BUG_ON(timeout < 0);
1411
1412         if (dma_fence_is_signaled(&rq->fence))
1413                 return timeout;
1414
1415         if (!timeout)
1416                 return -ETIME;
1417
1418         trace_i915_request_wait_begin(rq, flags);
1419
1420         /*
1421          * We must never wait on the GPU while holding a lock as we
1422          * may need to perform a GPU reset. So while we don't need to
1423          * serialise wait/reset with an explicit lock, we do want
1424          * lockdep to detect potential dependency cycles.
1425          */
1426         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1427
1428         /*
1429          * Optimistic spin before touching IRQs.
1430          *
1431          * We may use a rather large value here to offset the penalty of
1432          * switching away from the active task. Frequently, the client will
1433          * wait upon an old swapbuffer to throttle itself to remain within a
1434          * frame of the gpu. If the client is running in lockstep with the gpu,
1435          * then it should not be waiting long at all, and a sleep now will incur
1436          * extra scheduler latency in producing the next frame. To try to
1437          * avoid adding the cost of enabling/disabling the interrupt to the
1438          * short wait, we first spin to see if the request would have completed
1439          * in the time taken to setup the interrupt.
1440          *
1441          * We need upto 5us to enable the irq, and upto 20us to hide the
1442          * scheduler latency of a context switch, ignoring the secondary
1443          * impacts from a context switch such as cache eviction.
1444          *
1445          * The scheme used for low-latency IO is called "hybrid interrupt
1446          * polling". The suggestion there is to sleep until just before you
1447          * expect to be woken by the device interrupt and then poll for its
1448          * completion. That requires having a good predictor for the request
1449          * duration, which we currently lack.
1450          */
1451         if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1452             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1453                 dma_fence_signal(&rq->fence);
1454                 goto out;
1455         }
1456
1457         /*
1458          * This client is about to stall waiting for the GPU. In many cases
1459          * this is undesirable and limits the throughput of the system, as
1460          * many clients cannot continue processing user input/output whilst
1461          * blocked. RPS autotuning may take tens of milliseconds to respond
1462          * to the GPU load and thus incurs additional latency for the client.
1463          * We can circumvent that by promoting the GPU frequency to maximum
1464          * before we sleep. This makes the GPU throttle up much more quickly
1465          * (good for benchmarks and user experience, e.g. window animations),
1466          * but at a cost of spending more power processing the workload
1467          * (bad for battery).
1468          */
1469         if (flags & I915_WAIT_PRIORITY) {
1470                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1471                         intel_rps_boost(rq);
1472                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1473         }
1474
1475         wait.tsk = current;
1476         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1477                 goto out;
1478
1479         for (;;) {
1480                 set_current_state(state);
1481
1482                 if (i915_request_completed(rq)) {
1483                         dma_fence_signal(&rq->fence);
1484                         break;
1485                 }
1486
1487                 if (signal_pending_state(state, current)) {
1488                         timeout = -ERESTARTSYS;
1489                         break;
1490                 }
1491
1492                 if (!timeout) {
1493                         timeout = -ETIME;
1494                         break;
1495                 }
1496
1497                 intel_engine_flush_submission(rq->engine);
1498                 timeout = io_schedule_timeout(timeout);
1499         }
1500         __set_current_state(TASK_RUNNING);
1501
1502         dma_fence_remove_callback(&rq->fence, &wait.cb);
1503
1504 out:
1505         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1506         trace_i915_request_wait_end(rq);
1507         return timeout;
1508 }
1509
1510 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1511 #include "selftests/mock_request.c"
1512 #include "selftests/i915_request.c"
1513 #endif
1514
1515 static void i915_global_request_shrink(void)
1516 {
1517         kmem_cache_shrink(global.slab_dependencies);
1518         kmem_cache_shrink(global.slab_execute_cbs);
1519         kmem_cache_shrink(global.slab_requests);
1520 }
1521
1522 static void i915_global_request_exit(void)
1523 {
1524         kmem_cache_destroy(global.slab_dependencies);
1525         kmem_cache_destroy(global.slab_execute_cbs);
1526         kmem_cache_destroy(global.slab_requests);
1527 }
1528
1529 static struct i915_global_request global = { {
1530         .shrink = i915_global_request_shrink,
1531         .exit = i915_global_request_exit,
1532 } };
1533
1534 int __init i915_global_request_init(void)
1535 {
1536         global.slab_requests = KMEM_CACHE(i915_request,
1537                                           SLAB_HWCACHE_ALIGN |
1538                                           SLAB_RECLAIM_ACCOUNT |
1539                                           SLAB_TYPESAFE_BY_RCU);
1540         if (!global.slab_requests)
1541                 return -ENOMEM;
1542
1543         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1544                                              SLAB_HWCACHE_ALIGN |
1545                                              SLAB_RECLAIM_ACCOUNT |
1546                                              SLAB_TYPESAFE_BY_RCU);
1547         if (!global.slab_execute_cbs)
1548                 goto err_requests;
1549
1550         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1551                                               SLAB_HWCACHE_ALIGN |
1552                                               SLAB_RECLAIM_ACCOUNT);
1553         if (!global.slab_dependencies)
1554                 goto err_execute_cbs;
1555
1556         i915_global_register(&global.base);
1557         return 0;
1558
1559 err_execute_cbs:
1560         kmem_cache_destroy(global.slab_execute_cbs);
1561 err_requests:
1562         kmem_cache_destroy(global.slab_requests);
1563         return -ENOMEM;
1564 }