Merge tag 'gvt-next-2020-03-10' of https://github.com/intel/gvt-linux into drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44         struct list_head link;
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_execute_cbs;
55 } global;
56
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59         return dev_name(to_request(fence)->i915->drm.dev);
60 }
61
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64         const struct i915_gem_context *ctx;
65
66         /*
67          * The timeline struct (as part of the ppgtt underneath a context)
68          * may be freed when the request is no longer in use by the GPU.
69          * We could extend the life of a context to beyond that of all
70          * fences, possibly keeping the hw resource around indefinitely,
71          * or we just give them a false name. Since
72          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73          * lie seems justifiable.
74          */
75         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76                 return "signaled";
77
78         ctx = i915_request_gem_context(to_request(fence));
79         if (!ctx)
80                 return "[" DRIVER_NAME "]";
81
82         return ctx->name;
83 }
84
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87         return i915_request_completed(to_request(fence));
88 }
89
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92         return i915_request_enable_breadcrumb(to_request(fence));
93 }
94
95 static signed long i915_fence_wait(struct dma_fence *fence,
96                                    bool interruptible,
97                                    signed long timeout)
98 {
99         return i915_request_wait(to_request(fence),
100                                  interruptible | I915_WAIT_PRIORITY,
101                                  timeout);
102 }
103
104 static void i915_fence_release(struct dma_fence *fence)
105 {
106         struct i915_request *rq = to_request(fence);
107
108         /*
109          * The request is put onto a RCU freelist (i.e. the address
110          * is immediately reused), mark the fences as being freed now.
111          * Otherwise the debugobjects for the fences are only marked as
112          * freed when the slab cache itself is freed, and so we would get
113          * caught trying to reuse dead objects.
114          */
115         i915_sw_fence_fini(&rq->submit);
116         i915_sw_fence_fini(&rq->semaphore);
117
118         kmem_cache_free(global.slab_requests, rq);
119 }
120
121 const struct dma_fence_ops i915_fence_ops = {
122         .get_driver_name = i915_fence_get_driver_name,
123         .get_timeline_name = i915_fence_get_timeline_name,
124         .enable_signaling = i915_fence_enable_signaling,
125         .signaled = i915_fence_signaled,
126         .wait = i915_fence_wait,
127         .release = i915_fence_release,
128 };
129
130 static void irq_execute_cb(struct irq_work *wrk)
131 {
132         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
133
134         i915_sw_fence_complete(cb->fence);
135         kmem_cache_free(global.slab_execute_cbs, cb);
136 }
137
138 static void irq_execute_cb_hook(struct irq_work *wrk)
139 {
140         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141
142         cb->hook(container_of(cb->fence, struct i915_request, submit),
143                  &cb->signal->fence);
144         i915_request_put(cb->signal);
145
146         irq_execute_cb(wrk);
147 }
148
149 static void __notify_execute_cb(struct i915_request *rq)
150 {
151         struct execute_cb *cb;
152
153         lockdep_assert_held(&rq->lock);
154
155         if (list_empty(&rq->execute_cb))
156                 return;
157
158         list_for_each_entry(cb, &rq->execute_cb, link)
159                 irq_work_queue(&cb->work);
160
161         /*
162          * XXX Rollback on __i915_request_unsubmit()
163          *
164          * In the future, perhaps when we have an active time-slicing scheduler,
165          * it will be interesting to unsubmit parallel execution and remove
166          * busywaits from the GPU until their master is restarted. This is
167          * quite hairy, we have to carefully rollback the fence and do a
168          * preempt-to-idle cycle on the target engine, all the while the
169          * master execute_cb may refire.
170          */
171         INIT_LIST_HEAD(&rq->execute_cb);
172 }
173
174 static inline void
175 remove_from_client(struct i915_request *request)
176 {
177         struct drm_i915_file_private *file_priv;
178
179         if (!READ_ONCE(request->file_priv))
180                 return;
181
182         rcu_read_lock();
183         file_priv = xchg(&request->file_priv, NULL);
184         if (file_priv) {
185                 spin_lock(&file_priv->mm.lock);
186                 list_del(&request->client_link);
187                 spin_unlock(&file_priv->mm.lock);
188         }
189         rcu_read_unlock();
190 }
191
192 static void free_capture_list(struct i915_request *request)
193 {
194         struct i915_capture_list *capture;
195
196         capture = fetch_and_zero(&request->capture_list);
197         while (capture) {
198                 struct i915_capture_list *next = capture->next;
199
200                 kfree(capture);
201                 capture = next;
202         }
203 }
204
205 static void __i915_request_fill(struct i915_request *rq, u8 val)
206 {
207         void *vaddr = rq->ring->vaddr;
208         u32 head;
209
210         head = rq->infix;
211         if (rq->postfix < head) {
212                 memset(vaddr + head, val, rq->ring->size - head);
213                 head = 0;
214         }
215         memset(vaddr + head, val, rq->postfix - head);
216 }
217
218 static void remove_from_engine(struct i915_request *rq)
219 {
220         struct intel_engine_cs *engine, *locked;
221
222         /*
223          * Virtual engines complicate acquiring the engine timeline lock,
224          * as their rq->engine pointer is not stable until under that
225          * engine lock. The simple ploy we use is to take the lock then
226          * check that the rq still belongs to the newly locked engine.
227          */
228         locked = READ_ONCE(rq->engine);
229         spin_lock_irq(&locked->active.lock);
230         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
231                 spin_unlock(&locked->active.lock);
232                 spin_lock(&engine->active.lock);
233                 locked = engine;
234         }
235         list_del_init(&rq->sched.link);
236         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
237         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
238         spin_unlock_irq(&locked->active.lock);
239 }
240
241 bool i915_request_retire(struct i915_request *rq)
242 {
243         if (!i915_request_completed(rq))
244                 return false;
245
246         RQ_TRACE(rq, "\n");
247
248         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
249         trace_i915_request_retire(rq);
250
251         /*
252          * We know the GPU must have read the request to have
253          * sent us the seqno + interrupt, so use the position
254          * of tail of the request to update the last known position
255          * of the GPU head.
256          *
257          * Note this requires that we are always called in request
258          * completion order.
259          */
260         GEM_BUG_ON(!list_is_first(&rq->link,
261                                   &i915_request_timeline(rq)->requests));
262         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
263                 /* Poison before we release our space in the ring */
264                 __i915_request_fill(rq, POISON_FREE);
265         rq->ring->head = rq->postfix;
266
267         /*
268          * We only loosely track inflight requests across preemption,
269          * and so we may find ourselves attempting to retire a _completed_
270          * request that we have removed from the HW and put back on a run
271          * queue.
272          */
273         remove_from_engine(rq);
274
275         spin_lock_irq(&rq->lock);
276         i915_request_mark_complete(rq);
277         if (!i915_request_signaled(rq))
278                 dma_fence_signal_locked(&rq->fence);
279         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
280                 i915_request_cancel_breadcrumb(rq);
281         if (i915_request_has_waitboost(rq)) {
282                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
283                 atomic_dec(&rq->engine->gt->rps.num_waiters);
284         }
285         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
286                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
287                 __notify_execute_cb(rq);
288         }
289         GEM_BUG_ON(!list_empty(&rq->execute_cb));
290         spin_unlock_irq(&rq->lock);
291
292         remove_from_client(rq);
293         __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
294
295         intel_context_exit(rq->context);
296         intel_context_unpin(rq->context);
297
298         free_capture_list(rq);
299         i915_sched_node_fini(&rq->sched);
300         i915_request_put(rq);
301
302         return true;
303 }
304
305 void i915_request_retire_upto(struct i915_request *rq)
306 {
307         struct intel_timeline * const tl = i915_request_timeline(rq);
308         struct i915_request *tmp;
309
310         RQ_TRACE(rq, "\n");
311
312         GEM_BUG_ON(!i915_request_completed(rq));
313
314         do {
315                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
316         } while (i915_request_retire(tmp) && tmp != rq);
317 }
318
319 static int
320 __await_execution(struct i915_request *rq,
321                   struct i915_request *signal,
322                   void (*hook)(struct i915_request *rq,
323                                struct dma_fence *signal),
324                   gfp_t gfp)
325 {
326         struct execute_cb *cb;
327
328         if (i915_request_is_active(signal)) {
329                 if (hook)
330                         hook(rq, &signal->fence);
331                 return 0;
332         }
333
334         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
335         if (!cb)
336                 return -ENOMEM;
337
338         cb->fence = &rq->submit;
339         i915_sw_fence_await(cb->fence);
340         init_irq_work(&cb->work, irq_execute_cb);
341
342         if (hook) {
343                 cb->hook = hook;
344                 cb->signal = i915_request_get(signal);
345                 cb->work.func = irq_execute_cb_hook;
346         }
347
348         spin_lock_irq(&signal->lock);
349         if (i915_request_is_active(signal)) {
350                 if (hook) {
351                         hook(rq, &signal->fence);
352                         i915_request_put(signal);
353                 }
354                 i915_sw_fence_complete(cb->fence);
355                 kmem_cache_free(global.slab_execute_cbs, cb);
356         } else {
357                 list_add_tail(&cb->link, &signal->execute_cb);
358         }
359         spin_unlock_irq(&signal->lock);
360
361         /* Copy across semaphore status as we need the same behaviour */
362         rq->sched.flags |= signal->sched.flags;
363         return 0;
364 }
365
366 static bool fatal_error(int error)
367 {
368         switch (error) {
369         case 0: /* not an error! */
370         case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
371         case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
372                 return false;
373         default:
374                 return true;
375         }
376 }
377
378 void __i915_request_skip(struct i915_request *rq)
379 {
380         GEM_BUG_ON(!fatal_error(rq->fence.error));
381
382         if (rq->infix == rq->postfix)
383                 return;
384
385         /*
386          * As this request likely depends on state from the lost
387          * context, clear out all the user operations leaving the
388          * breadcrumb at the end (so we get the fence notifications).
389          */
390         __i915_request_fill(rq, 0);
391         rq->infix = rq->postfix;
392 }
393
394 void i915_request_set_error_once(struct i915_request *rq, int error)
395 {
396         int old;
397
398         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
399
400         if (i915_request_signaled(rq))
401                 return;
402
403         old = READ_ONCE(rq->fence.error);
404         do {
405                 if (fatal_error(old))
406                         return;
407         } while (!try_cmpxchg(&rq->fence.error, &old, error));
408 }
409
410 bool __i915_request_submit(struct i915_request *request)
411 {
412         struct intel_engine_cs *engine = request->engine;
413         bool result = false;
414
415         RQ_TRACE(request, "\n");
416
417         GEM_BUG_ON(!irqs_disabled());
418         lockdep_assert_held(&engine->active.lock);
419
420         /*
421          * With the advent of preempt-to-busy, we frequently encounter
422          * requests that we have unsubmitted from HW, but left running
423          * until the next ack and so have completed in the meantime. On
424          * resubmission of that completed request, we can skip
425          * updating the payload, and execlists can even skip submitting
426          * the request.
427          *
428          * We must remove the request from the caller's priority queue,
429          * and the caller must only call us when the request is in their
430          * priority queue, under the active.lock. This ensures that the
431          * request has *not* yet been retired and we can safely move
432          * the request into the engine->active.list where it will be
433          * dropped upon retiring. (Otherwise if resubmit a *retired*
434          * request, this would be a horrible use-after-free.)
435          */
436         if (i915_request_completed(request))
437                 goto xfer;
438
439         if (unlikely(intel_context_is_banned(request->context)))
440                 i915_request_set_error_once(request, -EIO);
441         if (unlikely(fatal_error(request->fence.error)))
442                 __i915_request_skip(request);
443
444         /*
445          * Are we using semaphores when the gpu is already saturated?
446          *
447          * Using semaphores incurs a cost in having the GPU poll a
448          * memory location, busywaiting for it to change. The continual
449          * memory reads can have a noticeable impact on the rest of the
450          * system with the extra bus traffic, stalling the cpu as it too
451          * tries to access memory across the bus (perf stat -e bus-cycles).
452          *
453          * If we installed a semaphore on this request and we only submit
454          * the request after the signaler completed, that indicates the
455          * system is overloaded and using semaphores at this time only
456          * increases the amount of work we are doing. If so, we disable
457          * further use of semaphores until we are idle again, whence we
458          * optimistically try again.
459          */
460         if (request->sched.semaphores &&
461             i915_sw_fence_signaled(&request->semaphore))
462                 engine->saturated |= request->sched.semaphores;
463
464         engine->emit_fini_breadcrumb(request,
465                                      request->ring->vaddr + request->postfix);
466
467         trace_i915_request_execute(request);
468         engine->serial++;
469         result = true;
470
471 xfer:   /* We may be recursing from the signal callback of another i915 fence */
472         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
473
474         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
475                 list_move_tail(&request->sched.link, &engine->active.requests);
476                 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
477         }
478
479         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
480             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
481             !i915_request_enable_breadcrumb(request))
482                 intel_engine_signal_breadcrumbs(engine);
483
484         __notify_execute_cb(request);
485
486         spin_unlock(&request->lock);
487
488         return result;
489 }
490
491 void i915_request_submit(struct i915_request *request)
492 {
493         struct intel_engine_cs *engine = request->engine;
494         unsigned long flags;
495
496         /* Will be called from irq-context when using foreign fences. */
497         spin_lock_irqsave(&engine->active.lock, flags);
498
499         __i915_request_submit(request);
500
501         spin_unlock_irqrestore(&engine->active.lock, flags);
502 }
503
504 void __i915_request_unsubmit(struct i915_request *request)
505 {
506         struct intel_engine_cs *engine = request->engine;
507
508         RQ_TRACE(request, "\n");
509
510         GEM_BUG_ON(!irqs_disabled());
511         lockdep_assert_held(&engine->active.lock);
512
513         /*
514          * Only unwind in reverse order, required so that the per-context list
515          * is kept in seqno/ring order.
516          */
517
518         /* We may be recursing from the signal callback of another i915 fence */
519         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
520
521         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
522                 i915_request_cancel_breadcrumb(request);
523
524         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
525         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
526
527         spin_unlock(&request->lock);
528
529         /* We've already spun, don't charge on resubmitting. */
530         if (request->sched.semaphores && i915_request_started(request)) {
531                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
532                 request->sched.semaphores = 0;
533         }
534
535         /*
536          * We don't need to wake_up any waiters on request->execute, they
537          * will get woken by any other event or us re-adding this request
538          * to the engine timeline (__i915_request_submit()). The waiters
539          * should be quite adapt at finding that the request now has a new
540          * global_seqno to the one they went to sleep on.
541          */
542 }
543
544 void i915_request_unsubmit(struct i915_request *request)
545 {
546         struct intel_engine_cs *engine = request->engine;
547         unsigned long flags;
548
549         /* Will be called from irq-context when using foreign fences. */
550         spin_lock_irqsave(&engine->active.lock, flags);
551
552         __i915_request_unsubmit(request);
553
554         spin_unlock_irqrestore(&engine->active.lock, flags);
555 }
556
557 static int __i915_sw_fence_call
558 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
559 {
560         struct i915_request *request =
561                 container_of(fence, typeof(*request), submit);
562
563         switch (state) {
564         case FENCE_COMPLETE:
565                 trace_i915_request_submit(request);
566
567                 if (unlikely(fence->error))
568                         i915_request_set_error_once(request, fence->error);
569
570                 /*
571                  * We need to serialize use of the submit_request() callback
572                  * with its hotplugging performed during an emergency
573                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
574                  * critical section in order to force i915_gem_set_wedged() to
575                  * wait until the submit_request() is completed before
576                  * proceeding.
577                  */
578                 rcu_read_lock();
579                 request->engine->submit_request(request);
580                 rcu_read_unlock();
581                 break;
582
583         case FENCE_FREE:
584                 i915_request_put(request);
585                 break;
586         }
587
588         return NOTIFY_DONE;
589 }
590
591 static int __i915_sw_fence_call
592 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
593 {
594         struct i915_request *request =
595                 container_of(fence, typeof(*request), semaphore);
596
597         switch (state) {
598         case FENCE_COMPLETE:
599                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
600                 break;
601
602         case FENCE_FREE:
603                 i915_request_put(request);
604                 break;
605         }
606
607         return NOTIFY_DONE;
608 }
609
610 static void retire_requests(struct intel_timeline *tl)
611 {
612         struct i915_request *rq, *rn;
613
614         list_for_each_entry_safe(rq, rn, &tl->requests, link)
615                 if (!i915_request_retire(rq))
616                         break;
617 }
618
619 static noinline struct i915_request *
620 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
621 {
622         struct i915_request *rq;
623
624         if (list_empty(&tl->requests))
625                 goto out;
626
627         if (!gfpflags_allow_blocking(gfp))
628                 goto out;
629
630         /* Move our oldest request to the slab-cache (if not in use!) */
631         rq = list_first_entry(&tl->requests, typeof(*rq), link);
632         i915_request_retire(rq);
633
634         rq = kmem_cache_alloc(global.slab_requests,
635                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
636         if (rq)
637                 return rq;
638
639         /* Ratelimit ourselves to prevent oom from malicious clients */
640         rq = list_last_entry(&tl->requests, typeof(*rq), link);
641         cond_synchronize_rcu(rq->rcustate);
642
643         /* Retire our old requests in the hope that we free some */
644         retire_requests(tl);
645
646 out:
647         return kmem_cache_alloc(global.slab_requests, gfp);
648 }
649
650 static void __i915_request_ctor(void *arg)
651 {
652         struct i915_request *rq = arg;
653
654         spin_lock_init(&rq->lock);
655         i915_sched_node_init(&rq->sched);
656         i915_sw_fence_init(&rq->submit, submit_notify);
657         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
658
659         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
660
661         rq->file_priv = NULL;
662         rq->capture_list = NULL;
663
664         INIT_LIST_HEAD(&rq->execute_cb);
665 }
666
667 struct i915_request *
668 __i915_request_create(struct intel_context *ce, gfp_t gfp)
669 {
670         struct intel_timeline *tl = ce->timeline;
671         struct i915_request *rq;
672         u32 seqno;
673         int ret;
674
675         might_sleep_if(gfpflags_allow_blocking(gfp));
676
677         /* Check that the caller provided an already pinned context */
678         __intel_context_pin(ce);
679
680         /*
681          * Beware: Dragons be flying overhead.
682          *
683          * We use RCU to look up requests in flight. The lookups may
684          * race with the request being allocated from the slab freelist.
685          * That is the request we are writing to here, may be in the process
686          * of being read by __i915_active_request_get_rcu(). As such,
687          * we have to be very careful when overwriting the contents. During
688          * the RCU lookup, we change chase the request->engine pointer,
689          * read the request->global_seqno and increment the reference count.
690          *
691          * The reference count is incremented atomically. If it is zero,
692          * the lookup knows the request is unallocated and complete. Otherwise,
693          * it is either still in use, or has been reallocated and reset
694          * with dma_fence_init(). This increment is safe for release as we
695          * check that the request we have a reference to and matches the active
696          * request.
697          *
698          * Before we increment the refcount, we chase the request->engine
699          * pointer. We must not call kmem_cache_zalloc() or else we set
700          * that pointer to NULL and cause a crash during the lookup. If
701          * we see the request is completed (based on the value of the
702          * old engine and seqno), the lookup is complete and reports NULL.
703          * If we decide the request is not completed (new engine or seqno),
704          * then we grab a reference and double check that it is still the
705          * active request - which it won't be and restart the lookup.
706          *
707          * Do not use kmem_cache_zalloc() here!
708          */
709         rq = kmem_cache_alloc(global.slab_requests,
710                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
711         if (unlikely(!rq)) {
712                 rq = request_alloc_slow(tl, gfp);
713                 if (!rq) {
714                         ret = -ENOMEM;
715                         goto err_unreserve;
716                 }
717         }
718
719         rq->i915 = ce->engine->i915;
720         rq->context = ce;
721         rq->engine = ce->engine;
722         rq->ring = ce->ring;
723         rq->execution_mask = ce->engine->mask;
724
725         kref_init(&rq->fence.refcount);
726         rq->fence.flags = 0;
727         rq->fence.error = 0;
728         INIT_LIST_HEAD(&rq->fence.cb_list);
729
730         ret = intel_timeline_get_seqno(tl, rq, &seqno);
731         if (ret)
732                 goto err_free;
733
734         rq->fence.context = tl->fence_context;
735         rq->fence.seqno = seqno;
736
737         RCU_INIT_POINTER(rq->timeline, tl);
738         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
739         rq->hwsp_seqno = tl->hwsp_seqno;
740         GEM_BUG_ON(i915_request_completed(rq));
741
742         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
743
744         /* We bump the ref for the fence chain */
745         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
746         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
747
748         i915_sched_node_reinit(&rq->sched);
749
750         /* No zalloc, everything must be cleared after use */
751         rq->batch = NULL;
752         GEM_BUG_ON(rq->file_priv);
753         GEM_BUG_ON(rq->capture_list);
754         GEM_BUG_ON(!list_empty(&rq->execute_cb));
755
756         /*
757          * Reserve space in the ring buffer for all the commands required to
758          * eventually emit this request. This is to guarantee that the
759          * i915_request_add() call can't fail. Note that the reserve may need
760          * to be redone if the request is not actually submitted straight
761          * away, e.g. because a GPU scheduler has deferred it.
762          *
763          * Note that due to how we add reserved_space to intel_ring_begin()
764          * we need to double our request to ensure that if we need to wrap
765          * around inside i915_request_add() there is sufficient space at
766          * the beginning of the ring as well.
767          */
768         rq->reserved_space =
769                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
770
771         /*
772          * Record the position of the start of the request so that
773          * should we detect the updated seqno part-way through the
774          * GPU processing the request, we never over-estimate the
775          * position of the head.
776          */
777         rq->head = rq->ring->emit;
778
779         ret = rq->engine->request_alloc(rq);
780         if (ret)
781                 goto err_unwind;
782
783         rq->infix = rq->ring->emit; /* end of header; start of user payload */
784
785         intel_context_mark_active(ce);
786         list_add_tail_rcu(&rq->link, &tl->requests);
787
788         return rq;
789
790 err_unwind:
791         ce->ring->emit = rq->head;
792
793         /* Make sure we didn't add ourselves to external state before freeing */
794         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
795         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
796
797 err_free:
798         kmem_cache_free(global.slab_requests, rq);
799 err_unreserve:
800         intel_context_unpin(ce);
801         return ERR_PTR(ret);
802 }
803
804 struct i915_request *
805 i915_request_create(struct intel_context *ce)
806 {
807         struct i915_request *rq;
808         struct intel_timeline *tl;
809
810         tl = intel_context_timeline_lock(ce);
811         if (IS_ERR(tl))
812                 return ERR_CAST(tl);
813
814         /* Move our oldest request to the slab-cache (if not in use!) */
815         rq = list_first_entry(&tl->requests, typeof(*rq), link);
816         if (!list_is_last(&rq->link, &tl->requests))
817                 i915_request_retire(rq);
818
819         intel_context_enter(ce);
820         rq = __i915_request_create(ce, GFP_KERNEL);
821         intel_context_exit(ce); /* active reference transferred to request */
822         if (IS_ERR(rq))
823                 goto err_unlock;
824
825         /* Check that we do not interrupt ourselves with a new request */
826         rq->cookie = lockdep_pin_lock(&tl->mutex);
827
828         return rq;
829
830 err_unlock:
831         intel_context_timeline_unlock(tl);
832         return rq;
833 }
834
835 static int
836 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
837 {
838         struct dma_fence *fence;
839         int err;
840
841         if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
842                 return 0;
843
844         if (i915_request_started(signal))
845                 return 0;
846
847         fence = NULL;
848         rcu_read_lock();
849         spin_lock_irq(&signal->lock);
850         do {
851                 struct list_head *pos = READ_ONCE(signal->link.prev);
852                 struct i915_request *prev;
853
854                 /* Confirm signal has not been retired, the link is valid */
855                 if (unlikely(i915_request_started(signal)))
856                         break;
857
858                 /* Is signal the earliest request on its timeline? */
859                 if (pos == &rcu_dereference(signal->timeline)->requests)
860                         break;
861
862                 /*
863                  * Peek at the request before us in the timeline. That
864                  * request will only be valid before it is retired, so
865                  * after acquiring a reference to it, confirm that it is
866                  * still part of the signaler's timeline.
867                  */
868                 prev = list_entry(pos, typeof(*prev), link);
869                 if (!i915_request_get_rcu(prev))
870                         break;
871
872                 /* After the strong barrier, confirm prev is still attached */
873                 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
874                         i915_request_put(prev);
875                         break;
876                 }
877
878                 fence = &prev->fence;
879         } while (0);
880         spin_unlock_irq(&signal->lock);
881         rcu_read_unlock();
882         if (!fence)
883                 return 0;
884
885         err = 0;
886         if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
887                 err = i915_sw_fence_await_dma_fence(&rq->submit,
888                                                     fence, 0,
889                                                     I915_FENCE_GFP);
890         dma_fence_put(fence);
891
892         return err;
893 }
894
895 static intel_engine_mask_t
896 already_busywaiting(struct i915_request *rq)
897 {
898         /*
899          * Polling a semaphore causes bus traffic, delaying other users of
900          * both the GPU and CPU. We want to limit the impact on others,
901          * while taking advantage of early submission to reduce GPU
902          * latency. Therefore we restrict ourselves to not using more
903          * than one semaphore from each source, and not using a semaphore
904          * if we have detected the engine is saturated (i.e. would not be
905          * submitted early and cause bus traffic reading an already passed
906          * semaphore).
907          *
908          * See the are-we-too-late? check in __i915_request_submit().
909          */
910         return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
911 }
912
913 static int
914 __emit_semaphore_wait(struct i915_request *to,
915                       struct i915_request *from,
916                       u32 seqno)
917 {
918         const int has_token = INTEL_GEN(to->i915) >= 12;
919         u32 hwsp_offset;
920         int len, err;
921         u32 *cs;
922
923         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
924
925         /* We need to pin the signaler's HWSP until we are finished reading. */
926         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
927         if (err)
928                 return err;
929
930         len = 4;
931         if (has_token)
932                 len += 2;
933
934         cs = intel_ring_begin(to, len);
935         if (IS_ERR(cs))
936                 return PTR_ERR(cs);
937
938         /*
939          * Using greater-than-or-equal here means we have to worry
940          * about seqno wraparound. To side step that issue, we swap
941          * the timeline HWSP upon wrapping, so that everyone listening
942          * for the old (pre-wrap) values do not see the much smaller
943          * (post-wrap) values than they were expecting (and so wait
944          * forever).
945          */
946         *cs++ = (MI_SEMAPHORE_WAIT |
947                  MI_SEMAPHORE_GLOBAL_GTT |
948                  MI_SEMAPHORE_POLL |
949                  MI_SEMAPHORE_SAD_GTE_SDD) +
950                 has_token;
951         *cs++ = seqno;
952         *cs++ = hwsp_offset;
953         *cs++ = 0;
954         if (has_token) {
955                 *cs++ = 0;
956                 *cs++ = MI_NOOP;
957         }
958
959         intel_ring_advance(to, cs);
960         return 0;
961 }
962
963 static int
964 emit_semaphore_wait(struct i915_request *to,
965                     struct i915_request *from,
966                     gfp_t gfp)
967 {
968         if (!intel_context_use_semaphores(to->context))
969                 goto await_fence;
970
971         if (!rcu_access_pointer(from->hwsp_cacheline))
972                 goto await_fence;
973
974         /* Just emit the first semaphore we see as request space is limited. */
975         if (already_busywaiting(to) & from->engine->mask)
976                 goto await_fence;
977
978         if (i915_request_await_start(to, from) < 0)
979                 goto await_fence;
980
981         /* Only submit our spinner after the signaler is running! */
982         if (__await_execution(to, from, NULL, gfp))
983                 goto await_fence;
984
985         if (__emit_semaphore_wait(to, from, from->fence.seqno))
986                 goto await_fence;
987
988         to->sched.semaphores |= from->engine->mask;
989         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
990         return 0;
991
992 await_fence:
993         return i915_sw_fence_await_dma_fence(&to->submit,
994                                              &from->fence, 0,
995                                              I915_FENCE_GFP);
996 }
997
998 static int
999 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1000 {
1001         int ret;
1002
1003         GEM_BUG_ON(to == from);
1004         GEM_BUG_ON(to->timeline == from->timeline);
1005
1006         if (i915_request_completed(from))
1007                 return 0;
1008
1009         if (to->engine->schedule) {
1010                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
1011                 if (ret < 0)
1012                         return ret;
1013         }
1014
1015         if (to->engine == from->engine)
1016                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1017                                                        &from->submit,
1018                                                        I915_FENCE_GFP);
1019         else
1020                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1021         if (ret < 0)
1022                 return ret;
1023
1024         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
1025                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
1026                                                     &from->fence, 0,
1027                                                     I915_FENCE_GFP);
1028                 if (ret < 0)
1029                         return ret;
1030         }
1031
1032         return 0;
1033 }
1034
1035 int
1036 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1037 {
1038         struct dma_fence **child = &fence;
1039         unsigned int nchild = 1;
1040         int ret;
1041
1042         /*
1043          * Note that if the fence-array was created in signal-on-any mode,
1044          * we should *not* decompose it into its individual fences. However,
1045          * we don't currently store which mode the fence-array is operating
1046          * in. Fortunately, the only user of signal-on-any is private to
1047          * amdgpu and we should not see any incoming fence-array from
1048          * sync-file being in signal-on-any mode.
1049          */
1050         if (dma_fence_is_array(fence)) {
1051                 struct dma_fence_array *array = to_dma_fence_array(fence);
1052
1053                 child = array->fences;
1054                 nchild = array->num_fences;
1055                 GEM_BUG_ON(!nchild);
1056         }
1057
1058         do {
1059                 fence = *child++;
1060                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1061                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1062                         continue;
1063                 }
1064
1065                 /*
1066                  * Requests on the same timeline are explicitly ordered, along
1067                  * with their dependencies, by i915_request_add() which ensures
1068                  * that requests are submitted in-order through each ring.
1069                  */
1070                 if (fence->context == rq->fence.context)
1071                         continue;
1072
1073                 /* Squash repeated waits to the same timelines */
1074                 if (fence->context &&
1075                     intel_timeline_sync_is_later(i915_request_timeline(rq),
1076                                                  fence))
1077                         continue;
1078
1079                 if (dma_fence_is_i915(fence))
1080                         ret = i915_request_await_request(rq, to_request(fence));
1081                 else
1082                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1083                                                             fence->context ? I915_FENCE_TIMEOUT : 0,
1084                                                             I915_FENCE_GFP);
1085                 if (ret < 0)
1086                         return ret;
1087
1088                 /* Record the latest fence used against each timeline */
1089                 if (fence->context)
1090                         intel_timeline_sync_set(i915_request_timeline(rq),
1091                                                 fence);
1092         } while (--nchild);
1093
1094         return 0;
1095 }
1096
1097 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1098                                           struct dma_fence *fence)
1099 {
1100         return __intel_timeline_sync_is_later(tl,
1101                                               fence->context,
1102                                               fence->seqno - 1);
1103 }
1104
1105 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1106                                          const struct dma_fence *fence)
1107 {
1108         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1109 }
1110
1111 static int
1112 __i915_request_await_execution(struct i915_request *to,
1113                                struct i915_request *from,
1114                                void (*hook)(struct i915_request *rq,
1115                                             struct dma_fence *signal))
1116 {
1117         int err;
1118
1119         GEM_BUG_ON(intel_context_is_barrier(from->context));
1120
1121         /* Submit both requests at the same time */
1122         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1123         if (err)
1124                 return err;
1125
1126         /* Squash repeated depenendices to the same timelines */
1127         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1128                                           &from->fence))
1129                 return 0;
1130
1131         /*
1132          * Wait until the start of this request.
1133          *
1134          * The execution cb fires when we submit the request to HW. But in
1135          * many cases this may be long before the request itself is ready to
1136          * run (consider that we submit 2 requests for the same context, where
1137          * the request of interest is behind an indefinite spinner). So we hook
1138          * up to both to reduce our queues and keep the execution lag minimised
1139          * in the worst case, though we hope that the await_start is elided.
1140          */
1141         err = i915_request_await_start(to, from);
1142         if (err < 0)
1143                 return err;
1144
1145         /*
1146          * Ensure both start together [after all semaphores in signal]
1147          *
1148          * Now that we are queued to the HW at roughly the same time (thanks
1149          * to the execute cb) and are ready to run at roughly the same time
1150          * (thanks to the await start), our signaler may still be indefinitely
1151          * delayed by waiting on a semaphore from a remote engine. If our
1152          * signaler depends on a semaphore, so indirectly do we, and we do not
1153          * want to start our payload until our signaler also starts theirs.
1154          * So we wait.
1155          *
1156          * However, there is also a second condition for which we need to wait
1157          * for the precise start of the signaler. Consider that the signaler
1158          * was submitted in a chain of requests following another context
1159          * (with just an ordinary intra-engine fence dependency between the
1160          * two). In this case the signaler is queued to HW, but not for
1161          * immediate execution, and so we must wait until it reaches the
1162          * active slot.
1163          */
1164         if (intel_engine_has_semaphores(to->engine)) {
1165                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1166                 if (err < 0)
1167                         return err;
1168         }
1169
1170         /* Couple the dependency tree for PI on this exposed to->fence */
1171         if (to->engine->schedule) {
1172                 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1173                 if (err < 0)
1174                         return err;
1175         }
1176
1177         return intel_timeline_sync_set_start(i915_request_timeline(to),
1178                                              &from->fence);
1179 }
1180
1181 int
1182 i915_request_await_execution(struct i915_request *rq,
1183                              struct dma_fence *fence,
1184                              void (*hook)(struct i915_request *rq,
1185                                           struct dma_fence *signal))
1186 {
1187         struct dma_fence **child = &fence;
1188         unsigned int nchild = 1;
1189         int ret;
1190
1191         if (dma_fence_is_array(fence)) {
1192                 struct dma_fence_array *array = to_dma_fence_array(fence);
1193
1194                 /* XXX Error for signal-on-any fence arrays */
1195
1196                 child = array->fences;
1197                 nchild = array->num_fences;
1198                 GEM_BUG_ON(!nchild);
1199         }
1200
1201         do {
1202                 fence = *child++;
1203                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1204                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1205                         continue;
1206                 }
1207
1208                 /*
1209                  * We don't squash repeated fence dependencies here as we
1210                  * want to run our callback in all cases.
1211                  */
1212
1213                 if (dma_fence_is_i915(fence))
1214                         ret = __i915_request_await_execution(rq,
1215                                                              to_request(fence),
1216                                                              hook);
1217                 else
1218                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1219                                                             I915_FENCE_TIMEOUT,
1220                                                             GFP_KERNEL);
1221                 if (ret < 0)
1222                         return ret;
1223         } while (--nchild);
1224
1225         return 0;
1226 }
1227
1228 /**
1229  * i915_request_await_object - set this request to (async) wait upon a bo
1230  * @to: request we are wishing to use
1231  * @obj: object which may be in use on another ring.
1232  * @write: whether the wait is on behalf of a writer
1233  *
1234  * This code is meant to abstract object synchronization with the GPU.
1235  * Conceptually we serialise writes between engines inside the GPU.
1236  * We only allow one engine to write into a buffer at any time, but
1237  * multiple readers. To ensure each has a coherent view of memory, we must:
1238  *
1239  * - If there is an outstanding write request to the object, the new
1240  *   request must wait for it to complete (either CPU or in hw, requests
1241  *   on the same ring will be naturally ordered).
1242  *
1243  * - If we are a write request (pending_write_domain is set), the new
1244  *   request must wait for outstanding read requests to complete.
1245  *
1246  * Returns 0 if successful, else propagates up the lower layer error.
1247  */
1248 int
1249 i915_request_await_object(struct i915_request *to,
1250                           struct drm_i915_gem_object *obj,
1251                           bool write)
1252 {
1253         struct dma_fence *excl;
1254         int ret = 0;
1255
1256         if (write) {
1257                 struct dma_fence **shared;
1258                 unsigned int count, i;
1259
1260                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1261                                                         &excl, &count, &shared);
1262                 if (ret)
1263                         return ret;
1264
1265                 for (i = 0; i < count; i++) {
1266                         ret = i915_request_await_dma_fence(to, shared[i]);
1267                         if (ret)
1268                                 break;
1269
1270                         dma_fence_put(shared[i]);
1271                 }
1272
1273                 for (; i < count; i++)
1274                         dma_fence_put(shared[i]);
1275                 kfree(shared);
1276         } else {
1277                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1278         }
1279
1280         if (excl) {
1281                 if (ret == 0)
1282                         ret = i915_request_await_dma_fence(to, excl);
1283
1284                 dma_fence_put(excl);
1285         }
1286
1287         return ret;
1288 }
1289
1290 static struct i915_request *
1291 __i915_request_add_to_timeline(struct i915_request *rq)
1292 {
1293         struct intel_timeline *timeline = i915_request_timeline(rq);
1294         struct i915_request *prev;
1295
1296         /*
1297          * Dependency tracking and request ordering along the timeline
1298          * is special cased so that we can eliminate redundant ordering
1299          * operations while building the request (we know that the timeline
1300          * itself is ordered, and here we guarantee it).
1301          *
1302          * As we know we will need to emit tracking along the timeline,
1303          * we embed the hooks into our request struct -- at the cost of
1304          * having to have specialised no-allocation interfaces (which will
1305          * be beneficial elsewhere).
1306          *
1307          * A second benefit to open-coding i915_request_await_request is
1308          * that we can apply a slight variant of the rules specialised
1309          * for timelines that jump between engines (such as virtual engines).
1310          * If we consider the case of virtual engine, we must emit a dma-fence
1311          * to prevent scheduling of the second request until the first is
1312          * complete (to maximise our greedy late load balancing) and this
1313          * precludes optimising to use semaphores serialisation of a single
1314          * timeline across engines.
1315          */
1316         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1317                                                   &rq->fence));
1318         if (prev && !i915_request_completed(prev)) {
1319                 /*
1320                  * The requests are supposed to be kept in order. However,
1321                  * we need to be wary in case the timeline->last_request
1322                  * is used as a barrier for external modification to this
1323                  * context.
1324                  */
1325                 GEM_BUG_ON(prev->context == rq->context &&
1326                            i915_seqno_passed(prev->fence.seqno,
1327                                              rq->fence.seqno));
1328
1329                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1330                         i915_sw_fence_await_sw_fence(&rq->submit,
1331                                                      &prev->submit,
1332                                                      &rq->submitq);
1333                 else
1334                         __i915_sw_fence_await_dma_fence(&rq->submit,
1335                                                         &prev->fence,
1336                                                         &rq->dmaq);
1337                 if (rq->engine->schedule)
1338                         __i915_sched_node_add_dependency(&rq->sched,
1339                                                          &prev->sched,
1340                                                          &rq->dep,
1341                                                          0);
1342         }
1343
1344         /*
1345          * Make sure that no request gazumped us - if it was allocated after
1346          * our i915_request_alloc() and called __i915_request_add() before
1347          * us, the timeline will hold its seqno which is later than ours.
1348          */
1349         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1350
1351         return prev;
1352 }
1353
1354 /*
1355  * NB: This function is not allowed to fail. Doing so would mean the the
1356  * request is not being tracked for completion but the work itself is
1357  * going to happen on the hardware. This would be a Bad Thing(tm).
1358  */
1359 struct i915_request *__i915_request_commit(struct i915_request *rq)
1360 {
1361         struct intel_engine_cs *engine = rq->engine;
1362         struct intel_ring *ring = rq->ring;
1363         u32 *cs;
1364
1365         RQ_TRACE(rq, "\n");
1366
1367         /*
1368          * To ensure that this call will not fail, space for its emissions
1369          * should already have been reserved in the ring buffer. Let the ring
1370          * know that it is time to use that space up.
1371          */
1372         GEM_BUG_ON(rq->reserved_space > ring->space);
1373         rq->reserved_space = 0;
1374         rq->emitted_jiffies = jiffies;
1375
1376         /*
1377          * Record the position of the start of the breadcrumb so that
1378          * should we detect the updated seqno part-way through the
1379          * GPU processing the request, we never over-estimate the
1380          * position of the ring's HEAD.
1381          */
1382         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1383         GEM_BUG_ON(IS_ERR(cs));
1384         rq->postfix = intel_ring_offset(rq, cs);
1385
1386         return __i915_request_add_to_timeline(rq);
1387 }
1388
1389 void __i915_request_queue(struct i915_request *rq,
1390                           const struct i915_sched_attr *attr)
1391 {
1392         /*
1393          * Let the backend know a new request has arrived that may need
1394          * to adjust the existing execution schedule due to a high priority
1395          * request - i.e. we may want to preempt the current request in order
1396          * to run a high priority dependency chain *before* we can execute this
1397          * request.
1398          *
1399          * This is called before the request is ready to run so that we can
1400          * decide whether to preempt the entire chain so that it is ready to
1401          * run at the earliest possible convenience.
1402          */
1403         i915_sw_fence_commit(&rq->semaphore);
1404         if (attr && rq->engine->schedule)
1405                 rq->engine->schedule(rq, attr);
1406         i915_sw_fence_commit(&rq->submit);
1407 }
1408
1409 void i915_request_add(struct i915_request *rq)
1410 {
1411         struct intel_timeline * const tl = i915_request_timeline(rq);
1412         struct i915_sched_attr attr = {};
1413         struct i915_gem_context *ctx;
1414
1415         lockdep_assert_held(&tl->mutex);
1416         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1417
1418         trace_i915_request_add(rq);
1419         __i915_request_commit(rq);
1420
1421         /* XXX placeholder for selftests */
1422         rcu_read_lock();
1423         ctx = rcu_dereference(rq->context->gem_context);
1424         if (ctx)
1425                 attr = ctx->sched;
1426         rcu_read_unlock();
1427
1428         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1429                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1430         if (list_empty(&rq->sched.signalers_list))
1431                 attr.priority |= I915_PRIORITY_WAIT;
1432
1433         local_bh_disable();
1434         __i915_request_queue(rq, &attr);
1435         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1436
1437         mutex_unlock(&tl->mutex);
1438 }
1439
1440 static unsigned long local_clock_ns(unsigned int *cpu)
1441 {
1442         unsigned long t;
1443
1444         /*
1445          * Cheaply and approximately convert from nanoseconds to microseconds.
1446          * The result and subsequent calculations are also defined in the same
1447          * approximate microseconds units. The principal source of timing
1448          * error here is from the simple truncation.
1449          *
1450          * Note that local_clock() is only defined wrt to the current CPU;
1451          * the comparisons are no longer valid if we switch CPUs. Instead of
1452          * blocking preemption for the entire busywait, we can detect the CPU
1453          * switch and use that as indicator of system load and a reason to
1454          * stop busywaiting, see busywait_stop().
1455          */
1456         *cpu = get_cpu();
1457         t = local_clock();
1458         put_cpu();
1459
1460         return t;
1461 }
1462
1463 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1464 {
1465         unsigned int this_cpu;
1466
1467         if (time_after(local_clock_ns(&this_cpu), timeout))
1468                 return true;
1469
1470         return this_cpu != cpu;
1471 }
1472
1473 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1474 {
1475         unsigned long timeout_ns;
1476         unsigned int cpu;
1477
1478         /*
1479          * Only wait for the request if we know it is likely to complete.
1480          *
1481          * We don't track the timestamps around requests, nor the average
1482          * request length, so we do not have a good indicator that this
1483          * request will complete within the timeout. What we do know is the
1484          * order in which requests are executed by the context and so we can
1485          * tell if the request has been started. If the request is not even
1486          * running yet, it is a fair assumption that it will not complete
1487          * within our relatively short timeout.
1488          */
1489         if (!i915_request_is_running(rq))
1490                 return false;
1491
1492         /*
1493          * When waiting for high frequency requests, e.g. during synchronous
1494          * rendering split between the CPU and GPU, the finite amount of time
1495          * required to set up the irq and wait upon it limits the response
1496          * rate. By busywaiting on the request completion for a short while we
1497          * can service the high frequency waits as quick as possible. However,
1498          * if it is a slow request, we want to sleep as quickly as possible.
1499          * The tradeoff between waiting and sleeping is roughly the time it
1500          * takes to sleep on a request, on the order of a microsecond.
1501          */
1502
1503         timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1504         timeout_ns += local_clock_ns(&cpu);
1505         do {
1506                 if (i915_request_completed(rq))
1507                         return true;
1508
1509                 if (signal_pending_state(state, current))
1510                         break;
1511
1512                 if (busywait_stop(timeout_ns, cpu))
1513                         break;
1514
1515                 cpu_relax();
1516         } while (!need_resched());
1517
1518         return false;
1519 }
1520
1521 struct request_wait {
1522         struct dma_fence_cb cb;
1523         struct task_struct *tsk;
1524 };
1525
1526 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1527 {
1528         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1529
1530         wake_up_process(wait->tsk);
1531 }
1532
1533 /**
1534  * i915_request_wait - wait until execution of request has finished
1535  * @rq: the request to wait upon
1536  * @flags: how to wait
1537  * @timeout: how long to wait in jiffies
1538  *
1539  * i915_request_wait() waits for the request to be completed, for a
1540  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1541  * unbounded wait).
1542  *
1543  * Returns the remaining time (in jiffies) if the request completed, which may
1544  * be zero or -ETIME if the request is unfinished after the timeout expires.
1545  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1546  * pending before the request completes.
1547  */
1548 long i915_request_wait(struct i915_request *rq,
1549                        unsigned int flags,
1550                        long timeout)
1551 {
1552         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1553                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1554         struct request_wait wait;
1555
1556         might_sleep();
1557         GEM_BUG_ON(timeout < 0);
1558
1559         if (dma_fence_is_signaled(&rq->fence))
1560                 return timeout;
1561
1562         if (!timeout)
1563                 return -ETIME;
1564
1565         trace_i915_request_wait_begin(rq, flags);
1566
1567         /*
1568          * We must never wait on the GPU while holding a lock as we
1569          * may need to perform a GPU reset. So while we don't need to
1570          * serialise wait/reset with an explicit lock, we do want
1571          * lockdep to detect potential dependency cycles.
1572          */
1573         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1574
1575         /*
1576          * Optimistic spin before touching IRQs.
1577          *
1578          * We may use a rather large value here to offset the penalty of
1579          * switching away from the active task. Frequently, the client will
1580          * wait upon an old swapbuffer to throttle itself to remain within a
1581          * frame of the gpu. If the client is running in lockstep with the gpu,
1582          * then it should not be waiting long at all, and a sleep now will incur
1583          * extra scheduler latency in producing the next frame. To try to
1584          * avoid adding the cost of enabling/disabling the interrupt to the
1585          * short wait, we first spin to see if the request would have completed
1586          * in the time taken to setup the interrupt.
1587          *
1588          * We need upto 5us to enable the irq, and upto 20us to hide the
1589          * scheduler latency of a context switch, ignoring the secondary
1590          * impacts from a context switch such as cache eviction.
1591          *
1592          * The scheme used for low-latency IO is called "hybrid interrupt
1593          * polling". The suggestion there is to sleep until just before you
1594          * expect to be woken by the device interrupt and then poll for its
1595          * completion. That requires having a good predictor for the request
1596          * duration, which we currently lack.
1597          */
1598         if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1599             __i915_spin_request(rq, state)) {
1600                 dma_fence_signal(&rq->fence);
1601                 goto out;
1602         }
1603
1604         /*
1605          * This client is about to stall waiting for the GPU. In many cases
1606          * this is undesirable and limits the throughput of the system, as
1607          * many clients cannot continue processing user input/output whilst
1608          * blocked. RPS autotuning may take tens of milliseconds to respond
1609          * to the GPU load and thus incurs additional latency for the client.
1610          * We can circumvent that by promoting the GPU frequency to maximum
1611          * before we sleep. This makes the GPU throttle up much more quickly
1612          * (good for benchmarks and user experience, e.g. window animations),
1613          * but at a cost of spending more power processing the workload
1614          * (bad for battery).
1615          */
1616         if (flags & I915_WAIT_PRIORITY) {
1617                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1618                         intel_rps_boost(rq);
1619                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1620         }
1621
1622         wait.tsk = current;
1623         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1624                 goto out;
1625
1626         for (;;) {
1627                 set_current_state(state);
1628
1629                 if (i915_request_completed(rq)) {
1630                         dma_fence_signal(&rq->fence);
1631                         break;
1632                 }
1633
1634                 intel_engine_flush_submission(rq->engine);
1635
1636                 if (signal_pending_state(state, current)) {
1637                         timeout = -ERESTARTSYS;
1638                         break;
1639                 }
1640
1641                 if (!timeout) {
1642                         timeout = -ETIME;
1643                         break;
1644                 }
1645
1646                 timeout = io_schedule_timeout(timeout);
1647         }
1648         __set_current_state(TASK_RUNNING);
1649
1650         dma_fence_remove_callback(&rq->fence, &wait.cb);
1651
1652 out:
1653         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1654         trace_i915_request_wait_end(rq);
1655         return timeout;
1656 }
1657
1658 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1659 #include "selftests/mock_request.c"
1660 #include "selftests/i915_request.c"
1661 #endif
1662
1663 static void i915_global_request_shrink(void)
1664 {
1665         kmem_cache_shrink(global.slab_execute_cbs);
1666         kmem_cache_shrink(global.slab_requests);
1667 }
1668
1669 static void i915_global_request_exit(void)
1670 {
1671         kmem_cache_destroy(global.slab_execute_cbs);
1672         kmem_cache_destroy(global.slab_requests);
1673 }
1674
1675 static struct i915_global_request global = { {
1676         .shrink = i915_global_request_shrink,
1677         .exit = i915_global_request_exit,
1678 } };
1679
1680 int __init i915_global_request_init(void)
1681 {
1682         global.slab_requests =
1683                 kmem_cache_create("i915_request",
1684                                   sizeof(struct i915_request),
1685                                   __alignof__(struct i915_request),
1686                                   SLAB_HWCACHE_ALIGN |
1687                                   SLAB_RECLAIM_ACCOUNT |
1688                                   SLAB_TYPESAFE_BY_RCU,
1689                                   __i915_request_ctor);
1690         if (!global.slab_requests)
1691                 return -ENOMEM;
1692
1693         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1694                                              SLAB_HWCACHE_ALIGN |
1695                                              SLAB_RECLAIM_ACCOUNT |
1696                                              SLAB_TYPESAFE_BY_RCU);
1697         if (!global.slab_execute_cbs)
1698                 goto err_requests;
1699
1700         i915_global_register(&global.base);
1701         return 0;
1702
1703 err_requests:
1704         kmem_cache_destroy(global.slab_requests);
1705         return -ENOMEM;
1706 }