Merge tag 'staging-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34
35 #include "i915_active.h"
36 #include "i915_drv.h"
37 #include "i915_globals.h"
38 #include "i915_trace.h"
39 #include "intel_pm.h"
40
41 struct execute_cb {
42         struct list_head link;
43         struct irq_work work;
44         struct i915_sw_fence *fence;
45         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46         struct i915_request *signal;
47 };
48
49 static struct i915_global_request {
50         struct i915_global base;
51         struct kmem_cache *slab_requests;
52         struct kmem_cache *slab_dependencies;
53         struct kmem_cache *slab_execute_cbs;
54 } global;
55
56 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 {
58         return "i915";
59 }
60
61 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62 {
63         /*
64          * The timeline struct (as part of the ppgtt underneath a context)
65          * may be freed when the request is no longer in use by the GPU.
66          * We could extend the life of a context to beyond that of all
67          * fences, possibly keeping the hw resource around indefinitely,
68          * or we just give them a false name. Since
69          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70          * lie seems justifiable.
71          */
72         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73                 return "signaled";
74
75         return to_request(fence)->gem_context->name ?: "[i915]";
76 }
77
78 static bool i915_fence_signaled(struct dma_fence *fence)
79 {
80         return i915_request_completed(to_request(fence));
81 }
82
83 static bool i915_fence_enable_signaling(struct dma_fence *fence)
84 {
85         return i915_request_enable_breadcrumb(to_request(fence));
86 }
87
88 static signed long i915_fence_wait(struct dma_fence *fence,
89                                    bool interruptible,
90                                    signed long timeout)
91 {
92         return i915_request_wait(to_request(fence),
93                                  interruptible | I915_WAIT_PRIORITY,
94                                  timeout);
95 }
96
97 static void i915_fence_release(struct dma_fence *fence)
98 {
99         struct i915_request *rq = to_request(fence);
100
101         /*
102          * The request is put onto a RCU freelist (i.e. the address
103          * is immediately reused), mark the fences as being freed now.
104          * Otherwise the debugobjects for the fences are only marked as
105          * freed when the slab cache itself is freed, and so we would get
106          * caught trying to reuse dead objects.
107          */
108         i915_sw_fence_fini(&rq->submit);
109         i915_sw_fence_fini(&rq->semaphore);
110
111         kmem_cache_free(global.slab_requests, rq);
112 }
113
114 const struct dma_fence_ops i915_fence_ops = {
115         .get_driver_name = i915_fence_get_driver_name,
116         .get_timeline_name = i915_fence_get_timeline_name,
117         .enable_signaling = i915_fence_enable_signaling,
118         .signaled = i915_fence_signaled,
119         .wait = i915_fence_wait,
120         .release = i915_fence_release,
121 };
122
123 static void irq_execute_cb(struct irq_work *wrk)
124 {
125         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126
127         i915_sw_fence_complete(cb->fence);
128         kmem_cache_free(global.slab_execute_cbs, cb);
129 }
130
131 static void irq_execute_cb_hook(struct irq_work *wrk)
132 {
133         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135         cb->hook(container_of(cb->fence, struct i915_request, submit),
136                  &cb->signal->fence);
137         i915_request_put(cb->signal);
138
139         irq_execute_cb(wrk);
140 }
141
142 static void __notify_execute_cb(struct i915_request *rq)
143 {
144         struct execute_cb *cb;
145
146         lockdep_assert_held(&rq->lock);
147
148         if (list_empty(&rq->execute_cb))
149                 return;
150
151         list_for_each_entry(cb, &rq->execute_cb, link)
152                 irq_work_queue(&cb->work);
153
154         /*
155          * XXX Rollback on __i915_request_unsubmit()
156          *
157          * In the future, perhaps when we have an active time-slicing scheduler,
158          * it will be interesting to unsubmit parallel execution and remove
159          * busywaits from the GPU until their master is restarted. This is
160          * quite hairy, we have to carefully rollback the fence and do a
161          * preempt-to-idle cycle on the target engine, all the while the
162          * master execute_cb may refire.
163          */
164         INIT_LIST_HEAD(&rq->execute_cb);
165 }
166
167 static inline void
168 remove_from_client(struct i915_request *request)
169 {
170         struct drm_i915_file_private *file_priv;
171
172         file_priv = READ_ONCE(request->file_priv);
173         if (!file_priv)
174                 return;
175
176         spin_lock(&file_priv->mm.lock);
177         if (request->file_priv) {
178                 list_del(&request->client_link);
179                 request->file_priv = NULL;
180         }
181         spin_unlock(&file_priv->mm.lock);
182 }
183
184 static void free_capture_list(struct i915_request *request)
185 {
186         struct i915_capture_list *capture;
187
188         capture = request->capture_list;
189         while (capture) {
190                 struct i915_capture_list *next = capture->next;
191
192                 kfree(capture);
193                 capture = next;
194         }
195 }
196
197 static void remove_from_engine(struct i915_request *rq)
198 {
199         struct intel_engine_cs *engine, *locked;
200
201         /*
202          * Virtual engines complicate acquiring the engine timeline lock,
203          * as their rq->engine pointer is not stable until under that
204          * engine lock. The simple ploy we use is to take the lock then
205          * check that the rq still belongs to the newly locked engine.
206          */
207         locked = READ_ONCE(rq->engine);
208         spin_lock(&locked->active.lock);
209         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
210                 spin_unlock(&locked->active.lock);
211                 spin_lock(&engine->active.lock);
212                 locked = engine;
213         }
214         list_del(&rq->sched.link);
215         spin_unlock(&locked->active.lock);
216 }
217
218 static bool i915_request_retire(struct i915_request *rq)
219 {
220         struct i915_active_request *active, *next;
221
222         lockdep_assert_held(&rq->timeline->mutex);
223         if (!i915_request_completed(rq))
224                 return false;
225
226         GEM_TRACE("%s fence %llx:%lld, current %d\n",
227                   rq->engine->name,
228                   rq->fence.context, rq->fence.seqno,
229                   hwsp_seqno(rq));
230
231         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232         trace_i915_request_retire(rq);
233
234         /*
235          * We know the GPU must have read the request to have
236          * sent us the seqno + interrupt, so use the position
237          * of tail of the request to update the last known position
238          * of the GPU head.
239          *
240          * Note this requires that we are always called in request
241          * completion order.
242          */
243         GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
244         rq->ring->head = rq->postfix;
245
246         /*
247          * Walk through the active list, calling retire on each. This allows
248          * objects to track their GPU activity and mark themselves as idle
249          * when their *last* active request is completed (updating state
250          * tracking lists for eviction, active references for GEM, etc).
251          *
252          * As the ->retire() may free the node, we decouple it first and
253          * pass along the auxiliary information (to avoid dereferencing
254          * the node after the callback).
255          */
256         list_for_each_entry_safe(active, next, &rq->active_list, link) {
257                 /*
258                  * In microbenchmarks or focusing upon time inside the kernel,
259                  * we may spend an inordinate amount of time simply handling
260                  * the retirement of requests and processing their callbacks.
261                  * Of which, this loop itself is particularly hot due to the
262                  * cache misses when jumping around the list of
263                  * i915_active_request.  So we try to keep this loop as
264                  * streamlined as possible and also prefetch the next
265                  * i915_active_request to try and hide the likely cache miss.
266                  */
267                 prefetchw(next);
268
269                 INIT_LIST_HEAD(&active->link);
270                 RCU_INIT_POINTER(active->request, NULL);
271
272                 active->retire(active, rq);
273         }
274
275         local_irq_disable();
276
277         /*
278          * We only loosely track inflight requests across preemption,
279          * and so we may find ourselves attempting to retire a _completed_
280          * request that we have removed from the HW and put back on a run
281          * queue.
282          */
283         remove_from_engine(rq);
284
285         spin_lock(&rq->lock);
286         i915_request_mark_complete(rq);
287         if (!i915_request_signaled(rq))
288                 dma_fence_signal_locked(&rq->fence);
289         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290                 i915_request_cancel_breadcrumb(rq);
291         if (i915_request_has_waitboost(rq)) {
292                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
293                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
294         }
295         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297                 __notify_execute_cb(rq);
298         }
299         GEM_BUG_ON(!list_empty(&rq->execute_cb));
300         spin_unlock(&rq->lock);
301
302         local_irq_enable();
303
304         remove_from_client(rq);
305         list_del(&rq->link);
306
307         intel_context_exit(rq->hw_context);
308         intel_context_unpin(rq->hw_context);
309
310         free_capture_list(rq);
311         i915_sched_node_fini(&rq->sched);
312         i915_request_put(rq);
313
314         return true;
315 }
316
317 void i915_request_retire_upto(struct i915_request *rq)
318 {
319         struct intel_timeline * const tl = rq->timeline;
320         struct i915_request *tmp;
321
322         GEM_TRACE("%s fence %llx:%lld, current %d\n",
323                   rq->engine->name,
324                   rq->fence.context, rq->fence.seqno,
325                   hwsp_seqno(rq));
326
327         lockdep_assert_held(&tl->mutex);
328         GEM_BUG_ON(!i915_request_completed(rq));
329
330         do {
331                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
332         } while (i915_request_retire(tmp) && tmp != rq);
333 }
334
335 static int
336 __i915_request_await_execution(struct i915_request *rq,
337                                struct i915_request *signal,
338                                void (*hook)(struct i915_request *rq,
339                                             struct dma_fence *signal),
340                                gfp_t gfp)
341 {
342         struct execute_cb *cb;
343
344         if (i915_request_is_active(signal)) {
345                 if (hook)
346                         hook(rq, &signal->fence);
347                 return 0;
348         }
349
350         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
351         if (!cb)
352                 return -ENOMEM;
353
354         cb->fence = &rq->submit;
355         i915_sw_fence_await(cb->fence);
356         init_irq_work(&cb->work, irq_execute_cb);
357
358         if (hook) {
359                 cb->hook = hook;
360                 cb->signal = i915_request_get(signal);
361                 cb->work.func = irq_execute_cb_hook;
362         }
363
364         spin_lock_irq(&signal->lock);
365         if (i915_request_is_active(signal)) {
366                 if (hook) {
367                         hook(rq, &signal->fence);
368                         i915_request_put(signal);
369                 }
370                 i915_sw_fence_complete(cb->fence);
371                 kmem_cache_free(global.slab_execute_cbs, cb);
372         } else {
373                 list_add_tail(&cb->link, &signal->execute_cb);
374         }
375         spin_unlock_irq(&signal->lock);
376
377         return 0;
378 }
379
380 bool __i915_request_submit(struct i915_request *request)
381 {
382         struct intel_engine_cs *engine = request->engine;
383         bool result = false;
384
385         GEM_TRACE("%s fence %llx:%lld, current %d\n",
386                   engine->name,
387                   request->fence.context, request->fence.seqno,
388                   hwsp_seqno(request));
389
390         GEM_BUG_ON(!irqs_disabled());
391         lockdep_assert_held(&engine->active.lock);
392
393         /*
394          * With the advent of preempt-to-busy, we frequently encounter
395          * requests that we have unsubmitted from HW, but left running
396          * until the next ack and so have completed in the meantime. On
397          * resubmission of that completed request, we can skip
398          * updating the payload, and execlists can even skip submitting
399          * the request.
400          *
401          * We must remove the request from the caller's priority queue,
402          * and the caller must only call us when the request is in their
403          * priority queue, under the active.lock. This ensures that the
404          * request has *not* yet been retired and we can safely move
405          * the request into the engine->active.list where it will be
406          * dropped upon retiring. (Otherwise if resubmit a *retired*
407          * request, this would be a horrible use-after-free.)
408          */
409         if (i915_request_completed(request))
410                 goto xfer;
411
412         if (i915_gem_context_is_banned(request->gem_context))
413                 i915_request_skip(request, -EIO);
414
415         /*
416          * Are we using semaphores when the gpu is already saturated?
417          *
418          * Using semaphores incurs a cost in having the GPU poll a
419          * memory location, busywaiting for it to change. The continual
420          * memory reads can have a noticeable impact on the rest of the
421          * system with the extra bus traffic, stalling the cpu as it too
422          * tries to access memory across the bus (perf stat -e bus-cycles).
423          *
424          * If we installed a semaphore on this request and we only submit
425          * the request after the signaler completed, that indicates the
426          * system is overloaded and using semaphores at this time only
427          * increases the amount of work we are doing. If so, we disable
428          * further use of semaphores until we are idle again, whence we
429          * optimistically try again.
430          */
431         if (request->sched.semaphores &&
432             i915_sw_fence_signaled(&request->semaphore))
433                 engine->saturated |= request->sched.semaphores;
434
435         engine->emit_fini_breadcrumb(request,
436                                      request->ring->vaddr + request->postfix);
437
438         trace_i915_request_execute(request);
439         engine->serial++;
440         result = true;
441
442 xfer:   /* We may be recursing from the signal callback of another i915 fence */
443         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
444
445         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
446                 list_move_tail(&request->sched.link, &engine->active.requests);
447
448         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
449             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
450             !i915_request_enable_breadcrumb(request))
451                 intel_engine_queue_breadcrumbs(engine);
452
453         __notify_execute_cb(request);
454
455         spin_unlock(&request->lock);
456
457         return result;
458 }
459
460 void i915_request_submit(struct i915_request *request)
461 {
462         struct intel_engine_cs *engine = request->engine;
463         unsigned long flags;
464
465         /* Will be called from irq-context when using foreign fences. */
466         spin_lock_irqsave(&engine->active.lock, flags);
467
468         __i915_request_submit(request);
469
470         spin_unlock_irqrestore(&engine->active.lock, flags);
471 }
472
473 void __i915_request_unsubmit(struct i915_request *request)
474 {
475         struct intel_engine_cs *engine = request->engine;
476
477         GEM_TRACE("%s fence %llx:%lld, current %d\n",
478                   engine->name,
479                   request->fence.context, request->fence.seqno,
480                   hwsp_seqno(request));
481
482         GEM_BUG_ON(!irqs_disabled());
483         lockdep_assert_held(&engine->active.lock);
484
485         /*
486          * Only unwind in reverse order, required so that the per-context list
487          * is kept in seqno/ring order.
488          */
489
490         /* We may be recursing from the signal callback of another i915 fence */
491         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492
493         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494                 i915_request_cancel_breadcrumb(request);
495
496         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
497         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
498
499         spin_unlock(&request->lock);
500
501         /* We've already spun, don't charge on resubmitting. */
502         if (request->sched.semaphores && i915_request_started(request)) {
503                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
504                 request->sched.semaphores = 0;
505         }
506
507         /*
508          * We don't need to wake_up any waiters on request->execute, they
509          * will get woken by any other event or us re-adding this request
510          * to the engine timeline (__i915_request_submit()). The waiters
511          * should be quite adapt at finding that the request now has a new
512          * global_seqno to the one they went to sleep on.
513          */
514 }
515
516 void i915_request_unsubmit(struct i915_request *request)
517 {
518         struct intel_engine_cs *engine = request->engine;
519         unsigned long flags;
520
521         /* Will be called from irq-context when using foreign fences. */
522         spin_lock_irqsave(&engine->active.lock, flags);
523
524         __i915_request_unsubmit(request);
525
526         spin_unlock_irqrestore(&engine->active.lock, flags);
527 }
528
529 static int __i915_sw_fence_call
530 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
531 {
532         struct i915_request *request =
533                 container_of(fence, typeof(*request), submit);
534
535         switch (state) {
536         case FENCE_COMPLETE:
537                 trace_i915_request_submit(request);
538
539                 if (unlikely(fence->error))
540                         i915_request_skip(request, fence->error);
541
542                 /*
543                  * We need to serialize use of the submit_request() callback
544                  * with its hotplugging performed during an emergency
545                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
546                  * critical section in order to force i915_gem_set_wedged() to
547                  * wait until the submit_request() is completed before
548                  * proceeding.
549                  */
550                 rcu_read_lock();
551                 request->engine->submit_request(request);
552                 rcu_read_unlock();
553                 break;
554
555         case FENCE_FREE:
556                 i915_request_put(request);
557                 break;
558         }
559
560         return NOTIFY_DONE;
561 }
562
563 static int __i915_sw_fence_call
564 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565 {
566         struct i915_request *request =
567                 container_of(fence, typeof(*request), semaphore);
568
569         switch (state) {
570         case FENCE_COMPLETE:
571                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
572                 break;
573
574         case FENCE_FREE:
575                 i915_request_put(request);
576                 break;
577         }
578
579         return NOTIFY_DONE;
580 }
581
582 static void retire_requests(struct intel_timeline *tl)
583 {
584         struct i915_request *rq, *rn;
585
586         list_for_each_entry_safe(rq, rn, &tl->requests, link)
587                 if (!i915_request_retire(rq))
588                         break;
589 }
590
591 static noinline struct i915_request *
592 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
593 {
594         struct i915_request *rq;
595
596         if (list_empty(&tl->requests))
597                 goto out;
598
599         if (!gfpflags_allow_blocking(gfp))
600                 goto out;
601
602         /* Move our oldest request to the slab-cache (if not in use!) */
603         rq = list_first_entry(&tl->requests, typeof(*rq), link);
604         i915_request_retire(rq);
605
606         rq = kmem_cache_alloc(global.slab_requests,
607                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
608         if (rq)
609                 return rq;
610
611         /* Ratelimit ourselves to prevent oom from malicious clients */
612         rq = list_last_entry(&tl->requests, typeof(*rq), link);
613         cond_synchronize_rcu(rq->rcustate);
614
615         /* Retire our old requests in the hope that we free some */
616         retire_requests(tl);
617
618 out:
619         return kmem_cache_alloc(global.slab_requests, gfp);
620 }
621
622 struct i915_request *
623 __i915_request_create(struct intel_context *ce, gfp_t gfp)
624 {
625         struct intel_timeline *tl = ce->timeline;
626         struct i915_request *rq;
627         u32 seqno;
628         int ret;
629
630         might_sleep_if(gfpflags_allow_blocking(gfp));
631
632         /* Check that the caller provided an already pinned context */
633         __intel_context_pin(ce);
634
635         /*
636          * Beware: Dragons be flying overhead.
637          *
638          * We use RCU to look up requests in flight. The lookups may
639          * race with the request being allocated from the slab freelist.
640          * That is the request we are writing to here, may be in the process
641          * of being read by __i915_active_request_get_rcu(). As such,
642          * we have to be very careful when overwriting the contents. During
643          * the RCU lookup, we change chase the request->engine pointer,
644          * read the request->global_seqno and increment the reference count.
645          *
646          * The reference count is incremented atomically. If it is zero,
647          * the lookup knows the request is unallocated and complete. Otherwise,
648          * it is either still in use, or has been reallocated and reset
649          * with dma_fence_init(). This increment is safe for release as we
650          * check that the request we have a reference to and matches the active
651          * request.
652          *
653          * Before we increment the refcount, we chase the request->engine
654          * pointer. We must not call kmem_cache_zalloc() or else we set
655          * that pointer to NULL and cause a crash during the lookup. If
656          * we see the request is completed (based on the value of the
657          * old engine and seqno), the lookup is complete and reports NULL.
658          * If we decide the request is not completed (new engine or seqno),
659          * then we grab a reference and double check that it is still the
660          * active request - which it won't be and restart the lookup.
661          *
662          * Do not use kmem_cache_zalloc() here!
663          */
664         rq = kmem_cache_alloc(global.slab_requests,
665                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
666         if (unlikely(!rq)) {
667                 rq = request_alloc_slow(tl, gfp);
668                 if (!rq) {
669                         ret = -ENOMEM;
670                         goto err_unreserve;
671                 }
672         }
673
674         ret = intel_timeline_get_seqno(tl, rq, &seqno);
675         if (ret)
676                 goto err_free;
677
678         rq->i915 = ce->engine->i915;
679         rq->hw_context = ce;
680         rq->gem_context = ce->gem_context;
681         rq->engine = ce->engine;
682         rq->ring = ce->ring;
683         rq->timeline = tl;
684         rq->hwsp_seqno = tl->hwsp_seqno;
685         rq->hwsp_cacheline = tl->hwsp_cacheline;
686         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
687
688         spin_lock_init(&rq->lock);
689         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
690                        tl->fence_context, seqno);
691
692         /* We bump the ref for the fence chain */
693         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
694         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
695
696         i915_sched_node_init(&rq->sched);
697
698         /* No zalloc, must clear what we need by hand */
699         rq->file_priv = NULL;
700         rq->batch = NULL;
701         rq->capture_list = NULL;
702         rq->flags = 0;
703         rq->execution_mask = ALL_ENGINES;
704
705         INIT_LIST_HEAD(&rq->active_list);
706         INIT_LIST_HEAD(&rq->execute_cb);
707
708         /*
709          * Reserve space in the ring buffer for all the commands required to
710          * eventually emit this request. This is to guarantee that the
711          * i915_request_add() call can't fail. Note that the reserve may need
712          * to be redone if the request is not actually submitted straight
713          * away, e.g. because a GPU scheduler has deferred it.
714          *
715          * Note that due to how we add reserved_space to intel_ring_begin()
716          * we need to double our request to ensure that if we need to wrap
717          * around inside i915_request_add() there is sufficient space at
718          * the beginning of the ring as well.
719          */
720         rq->reserved_space =
721                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
722
723         /*
724          * Record the position of the start of the request so that
725          * should we detect the updated seqno part-way through the
726          * GPU processing the request, we never over-estimate the
727          * position of the head.
728          */
729         rq->head = rq->ring->emit;
730
731         ret = rq->engine->request_alloc(rq);
732         if (ret)
733                 goto err_unwind;
734
735         rq->infix = rq->ring->emit; /* end of header; start of user payload */
736
737         intel_context_mark_active(ce);
738         return rq;
739
740 err_unwind:
741         ce->ring->emit = rq->head;
742
743         /* Make sure we didn't add ourselves to external state before freeing */
744         GEM_BUG_ON(!list_empty(&rq->active_list));
745         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
746         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747
748 err_free:
749         kmem_cache_free(global.slab_requests, rq);
750 err_unreserve:
751         intel_context_unpin(ce);
752         return ERR_PTR(ret);
753 }
754
755 struct i915_request *
756 i915_request_create(struct intel_context *ce)
757 {
758         struct i915_request *rq;
759         struct intel_timeline *tl;
760
761         tl = intel_context_timeline_lock(ce);
762         if (IS_ERR(tl))
763                 return ERR_CAST(tl);
764
765         /* Move our oldest request to the slab-cache (if not in use!) */
766         rq = list_first_entry(&tl->requests, typeof(*rq), link);
767         if (!list_is_last(&rq->link, &tl->requests))
768                 i915_request_retire(rq);
769
770         intel_context_enter(ce);
771         rq = __i915_request_create(ce, GFP_KERNEL);
772         intel_context_exit(ce); /* active reference transferred to request */
773         if (IS_ERR(rq))
774                 goto err_unlock;
775
776         /* Check that we do not interrupt ourselves with a new request */
777         rq->cookie = lockdep_pin_lock(&tl->mutex);
778
779         return rq;
780
781 err_unlock:
782         intel_context_timeline_unlock(tl);
783         return rq;
784 }
785
786 static int
787 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
788 {
789         if (list_is_first(&signal->link, &signal->timeline->requests))
790                 return 0;
791
792         signal = list_prev_entry(signal, link);
793         if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
794                 return 0;
795
796         return i915_sw_fence_await_dma_fence(&rq->submit,
797                                              &signal->fence, 0,
798                                              I915_FENCE_GFP);
799 }
800
801 static intel_engine_mask_t
802 already_busywaiting(struct i915_request *rq)
803 {
804         /*
805          * Polling a semaphore causes bus traffic, delaying other users of
806          * both the GPU and CPU. We want to limit the impact on others,
807          * while taking advantage of early submission to reduce GPU
808          * latency. Therefore we restrict ourselves to not using more
809          * than one semaphore from each source, and not using a semaphore
810          * if we have detected the engine is saturated (i.e. would not be
811          * submitted early and cause bus traffic reading an already passed
812          * semaphore).
813          *
814          * See the are-we-too-late? check in __i915_request_submit().
815          */
816         return rq->sched.semaphores | rq->engine->saturated;
817 }
818
819 static int
820 emit_semaphore_wait(struct i915_request *to,
821                     struct i915_request *from,
822                     gfp_t gfp)
823 {
824         u32 hwsp_offset;
825         u32 *cs;
826         int err;
827
828         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
829         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
830
831         /* Just emit the first semaphore we see as request space is limited. */
832         if (already_busywaiting(to) & from->engine->mask)
833                 return i915_sw_fence_await_dma_fence(&to->submit,
834                                                      &from->fence, 0,
835                                                      I915_FENCE_GFP);
836
837         err = i915_request_await_start(to, from);
838         if (err < 0)
839                 return err;
840
841         /* Only submit our spinner after the signaler is running! */
842         err = __i915_request_await_execution(to, from, NULL, gfp);
843         if (err)
844                 return err;
845
846         /* We need to pin the signaler's HWSP until we are finished reading. */
847         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
848         if (err)
849                 return err;
850
851         cs = intel_ring_begin(to, 4);
852         if (IS_ERR(cs))
853                 return PTR_ERR(cs);
854
855         /*
856          * Using greater-than-or-equal here means we have to worry
857          * about seqno wraparound. To side step that issue, we swap
858          * the timeline HWSP upon wrapping, so that everyone listening
859          * for the old (pre-wrap) values do not see the much smaller
860          * (post-wrap) values than they were expecting (and so wait
861          * forever).
862          */
863         *cs++ = MI_SEMAPHORE_WAIT |
864                 MI_SEMAPHORE_GLOBAL_GTT |
865                 MI_SEMAPHORE_POLL |
866                 MI_SEMAPHORE_SAD_GTE_SDD;
867         *cs++ = from->fence.seqno;
868         *cs++ = hwsp_offset;
869         *cs++ = 0;
870
871         intel_ring_advance(to, cs);
872         to->sched.semaphores |= from->engine->mask;
873         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
874         return 0;
875 }
876
877 static int
878 i915_request_await_request(struct i915_request *to, struct i915_request *from)
879 {
880         int ret;
881
882         GEM_BUG_ON(to == from);
883         GEM_BUG_ON(to->timeline == from->timeline);
884
885         if (i915_request_completed(from))
886                 return 0;
887
888         if (to->engine->schedule) {
889                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
890                 if (ret < 0)
891                         return ret;
892         }
893
894         if (to->engine == from->engine) {
895                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
896                                                        &from->submit,
897                                                        I915_FENCE_GFP);
898         } else if (intel_engine_has_semaphores(to->engine) &&
899                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
900                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
901         } else {
902                 ret = i915_sw_fence_await_dma_fence(&to->submit,
903                                                     &from->fence, 0,
904                                                     I915_FENCE_GFP);
905         }
906         if (ret < 0)
907                 return ret;
908
909         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
910                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
911                                                     &from->fence, 0,
912                                                     I915_FENCE_GFP);
913                 if (ret < 0)
914                         return ret;
915         }
916
917         return 0;
918 }
919
920 int
921 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
922 {
923         struct dma_fence **child = &fence;
924         unsigned int nchild = 1;
925         int ret;
926
927         /*
928          * Note that if the fence-array was created in signal-on-any mode,
929          * we should *not* decompose it into its individual fences. However,
930          * we don't currently store which mode the fence-array is operating
931          * in. Fortunately, the only user of signal-on-any is private to
932          * amdgpu and we should not see any incoming fence-array from
933          * sync-file being in signal-on-any mode.
934          */
935         if (dma_fence_is_array(fence)) {
936                 struct dma_fence_array *array = to_dma_fence_array(fence);
937
938                 child = array->fences;
939                 nchild = array->num_fences;
940                 GEM_BUG_ON(!nchild);
941         }
942
943         do {
944                 fence = *child++;
945                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
946                         continue;
947
948                 /*
949                  * Requests on the same timeline are explicitly ordered, along
950                  * with their dependencies, by i915_request_add() which ensures
951                  * that requests are submitted in-order through each ring.
952                  */
953                 if (fence->context == rq->fence.context)
954                         continue;
955
956                 /* Squash repeated waits to the same timelines */
957                 if (fence->context &&
958                     intel_timeline_sync_is_later(rq->timeline, fence))
959                         continue;
960
961                 if (dma_fence_is_i915(fence))
962                         ret = i915_request_await_request(rq, to_request(fence));
963                 else
964                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
965                                                             I915_FENCE_TIMEOUT,
966                                                             I915_FENCE_GFP);
967                 if (ret < 0)
968                         return ret;
969
970                 /* Record the latest fence used against each timeline */
971                 if (fence->context)
972                         intel_timeline_sync_set(rq->timeline, fence);
973         } while (--nchild);
974
975         return 0;
976 }
977
978 int
979 i915_request_await_execution(struct i915_request *rq,
980                              struct dma_fence *fence,
981                              void (*hook)(struct i915_request *rq,
982                                           struct dma_fence *signal))
983 {
984         struct dma_fence **child = &fence;
985         unsigned int nchild = 1;
986         int ret;
987
988         if (dma_fence_is_array(fence)) {
989                 struct dma_fence_array *array = to_dma_fence_array(fence);
990
991                 /* XXX Error for signal-on-any fence arrays */
992
993                 child = array->fences;
994                 nchild = array->num_fences;
995                 GEM_BUG_ON(!nchild);
996         }
997
998         do {
999                 fence = *child++;
1000                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1001                         continue;
1002
1003                 /*
1004                  * We don't squash repeated fence dependencies here as we
1005                  * want to run our callback in all cases.
1006                  */
1007
1008                 if (dma_fence_is_i915(fence))
1009                         ret = __i915_request_await_execution(rq,
1010                                                              to_request(fence),
1011                                                              hook,
1012                                                              I915_FENCE_GFP);
1013                 else
1014                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1015                                                             I915_FENCE_TIMEOUT,
1016                                                             GFP_KERNEL);
1017                 if (ret < 0)
1018                         return ret;
1019         } while (--nchild);
1020
1021         return 0;
1022 }
1023
1024 /**
1025  * i915_request_await_object - set this request to (async) wait upon a bo
1026  * @to: request we are wishing to use
1027  * @obj: object which may be in use on another ring.
1028  * @write: whether the wait is on behalf of a writer
1029  *
1030  * This code is meant to abstract object synchronization with the GPU.
1031  * Conceptually we serialise writes between engines inside the GPU.
1032  * We only allow one engine to write into a buffer at any time, but
1033  * multiple readers. To ensure each has a coherent view of memory, we must:
1034  *
1035  * - If there is an outstanding write request to the object, the new
1036  *   request must wait for it to complete (either CPU or in hw, requests
1037  *   on the same ring will be naturally ordered).
1038  *
1039  * - If we are a write request (pending_write_domain is set), the new
1040  *   request must wait for outstanding read requests to complete.
1041  *
1042  * Returns 0 if successful, else propagates up the lower layer error.
1043  */
1044 int
1045 i915_request_await_object(struct i915_request *to,
1046                           struct drm_i915_gem_object *obj,
1047                           bool write)
1048 {
1049         struct dma_fence *excl;
1050         int ret = 0;
1051
1052         if (write) {
1053                 struct dma_fence **shared;
1054                 unsigned int count, i;
1055
1056                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1057                                                         &excl, &count, &shared);
1058                 if (ret)
1059                         return ret;
1060
1061                 for (i = 0; i < count; i++) {
1062                         ret = i915_request_await_dma_fence(to, shared[i]);
1063                         if (ret)
1064                                 break;
1065
1066                         dma_fence_put(shared[i]);
1067                 }
1068
1069                 for (; i < count; i++)
1070                         dma_fence_put(shared[i]);
1071                 kfree(shared);
1072         } else {
1073                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1074         }
1075
1076         if (excl) {
1077                 if (ret == 0)
1078                         ret = i915_request_await_dma_fence(to, excl);
1079
1080                 dma_fence_put(excl);
1081         }
1082
1083         return ret;
1084 }
1085
1086 void i915_request_skip(struct i915_request *rq, int error)
1087 {
1088         void *vaddr = rq->ring->vaddr;
1089         u32 head;
1090
1091         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1092         dma_fence_set_error(&rq->fence, error);
1093
1094         if (rq->infix == rq->postfix)
1095                 return;
1096
1097         /*
1098          * As this request likely depends on state from the lost
1099          * context, clear out all the user operations leaving the
1100          * breadcrumb at the end (so we get the fence notifications).
1101          */
1102         head = rq->infix;
1103         if (rq->postfix < head) {
1104                 memset(vaddr + head, 0, rq->ring->size - head);
1105                 head = 0;
1106         }
1107         memset(vaddr + head, 0, rq->postfix - head);
1108         rq->infix = rq->postfix;
1109 }
1110
1111 static struct i915_request *
1112 __i915_request_add_to_timeline(struct i915_request *rq)
1113 {
1114         struct intel_timeline *timeline = rq->timeline;
1115         struct i915_request *prev;
1116
1117         /*
1118          * Dependency tracking and request ordering along the timeline
1119          * is special cased so that we can eliminate redundant ordering
1120          * operations while building the request (we know that the timeline
1121          * itself is ordered, and here we guarantee it).
1122          *
1123          * As we know we will need to emit tracking along the timeline,
1124          * we embed the hooks into our request struct -- at the cost of
1125          * having to have specialised no-allocation interfaces (which will
1126          * be beneficial elsewhere).
1127          *
1128          * A second benefit to open-coding i915_request_await_request is
1129          * that we can apply a slight variant of the rules specialised
1130          * for timelines that jump between engines (such as virtual engines).
1131          * If we consider the case of virtual engine, we must emit a dma-fence
1132          * to prevent scheduling of the second request until the first is
1133          * complete (to maximise our greedy late load balancing) and this
1134          * precludes optimising to use semaphores serialisation of a single
1135          * timeline across engines.
1136          */
1137         prev = rcu_dereference_protected(timeline->last_request.request,
1138                                          lockdep_is_held(&timeline->mutex));
1139         if (prev && !i915_request_completed(prev)) {
1140                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1141                         i915_sw_fence_await_sw_fence(&rq->submit,
1142                                                      &prev->submit,
1143                                                      &rq->submitq);
1144                 else
1145                         __i915_sw_fence_await_dma_fence(&rq->submit,
1146                                                         &prev->fence,
1147                                                         &rq->dmaq);
1148                 if (rq->engine->schedule)
1149                         __i915_sched_node_add_dependency(&rq->sched,
1150                                                          &prev->sched,
1151                                                          &rq->dep,
1152                                                          0);
1153         }
1154
1155         list_add_tail(&rq->link, &timeline->requests);
1156
1157         /*
1158          * Make sure that no request gazumped us - if it was allocated after
1159          * our i915_request_alloc() and called __i915_request_add() before
1160          * us, the timeline will hold its seqno which is later than ours.
1161          */
1162         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1163         __i915_active_request_set(&timeline->last_request, rq);
1164
1165         return prev;
1166 }
1167
1168 /*
1169  * NB: This function is not allowed to fail. Doing so would mean the the
1170  * request is not being tracked for completion but the work itself is
1171  * going to happen on the hardware. This would be a Bad Thing(tm).
1172  */
1173 struct i915_request *__i915_request_commit(struct i915_request *rq)
1174 {
1175         struct intel_engine_cs *engine = rq->engine;
1176         struct intel_ring *ring = rq->ring;
1177         u32 *cs;
1178
1179         GEM_TRACE("%s fence %llx:%lld\n",
1180                   engine->name, rq->fence.context, rq->fence.seqno);
1181
1182         /*
1183          * To ensure that this call will not fail, space for its emissions
1184          * should already have been reserved in the ring buffer. Let the ring
1185          * know that it is time to use that space up.
1186          */
1187         GEM_BUG_ON(rq->reserved_space > ring->space);
1188         rq->reserved_space = 0;
1189         rq->emitted_jiffies = jiffies;
1190
1191         /*
1192          * Record the position of the start of the breadcrumb so that
1193          * should we detect the updated seqno part-way through the
1194          * GPU processing the request, we never over-estimate the
1195          * position of the ring's HEAD.
1196          */
1197         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1198         GEM_BUG_ON(IS_ERR(cs));
1199         rq->postfix = intel_ring_offset(rq, cs);
1200
1201         return __i915_request_add_to_timeline(rq);
1202 }
1203
1204 void __i915_request_queue(struct i915_request *rq,
1205                           const struct i915_sched_attr *attr)
1206 {
1207         /*
1208          * Let the backend know a new request has arrived that may need
1209          * to adjust the existing execution schedule due to a high priority
1210          * request - i.e. we may want to preempt the current request in order
1211          * to run a high priority dependency chain *before* we can execute this
1212          * request.
1213          *
1214          * This is called before the request is ready to run so that we can
1215          * decide whether to preempt the entire chain so that it is ready to
1216          * run at the earliest possible convenience.
1217          */
1218         i915_sw_fence_commit(&rq->semaphore);
1219         if (attr && rq->engine->schedule)
1220                 rq->engine->schedule(rq, attr);
1221         i915_sw_fence_commit(&rq->submit);
1222 }
1223
1224 void i915_request_add(struct i915_request *rq)
1225 {
1226         struct i915_sched_attr attr = rq->gem_context->sched;
1227         struct intel_timeline * const tl = rq->timeline;
1228         struct i915_request *prev;
1229
1230         lockdep_assert_held(&tl->mutex);
1231         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1232
1233         trace_i915_request_add(rq);
1234
1235         prev = __i915_request_commit(rq);
1236
1237         /*
1238          * Boost actual workloads past semaphores!
1239          *
1240          * With semaphores we spin on one engine waiting for another,
1241          * simply to reduce the latency of starting our work when
1242          * the signaler completes. However, if there is any other
1243          * work that we could be doing on this engine instead, that
1244          * is better utilisation and will reduce the overall duration
1245          * of the current work. To avoid PI boosting a semaphore
1246          * far in the distance past over useful work, we keep a history
1247          * of any semaphore use along our dependency chain.
1248          */
1249         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1250                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1251
1252         /*
1253          * Boost priorities to new clients (new request flows).
1254          *
1255          * Allow interactive/synchronous clients to jump ahead of
1256          * the bulk clients. (FQ_CODEL)
1257          */
1258         if (list_empty(&rq->sched.signalers_list))
1259                 attr.priority |= I915_PRIORITY_WAIT;
1260
1261         local_bh_disable();
1262         __i915_request_queue(rq, &attr);
1263         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1264
1265         /*
1266          * In typical scenarios, we do not expect the previous request on
1267          * the timeline to be still tracked by timeline->last_request if it
1268          * has been completed. If the completed request is still here, that
1269          * implies that request retirement is a long way behind submission,
1270          * suggesting that we haven't been retiring frequently enough from
1271          * the combination of retire-before-alloc, waiters and the background
1272          * retirement worker. So if the last request on this timeline was
1273          * already completed, do a catch up pass, flushing the retirement queue
1274          * up to this client. Since we have now moved the heaviest operations
1275          * during retirement onto secondary workers, such as freeing objects
1276          * or contexts, retiring a bunch of requests is mostly list management
1277          * (and cache misses), and so we should not be overly penalizing this
1278          * client by performing excess work, though we may still performing
1279          * work on behalf of others -- but instead we should benefit from
1280          * improved resource management. (Well, that's the theory at least.)
1281          */
1282         if (prev && i915_request_completed(prev) && prev->timeline == tl)
1283                 i915_request_retire_upto(prev);
1284
1285         mutex_unlock(&tl->mutex);
1286 }
1287
1288 static unsigned long local_clock_us(unsigned int *cpu)
1289 {
1290         unsigned long t;
1291
1292         /*
1293          * Cheaply and approximately convert from nanoseconds to microseconds.
1294          * The result and subsequent calculations are also defined in the same
1295          * approximate microseconds units. The principal source of timing
1296          * error here is from the simple truncation.
1297          *
1298          * Note that local_clock() is only defined wrt to the current CPU;
1299          * the comparisons are no longer valid if we switch CPUs. Instead of
1300          * blocking preemption for the entire busywait, we can detect the CPU
1301          * switch and use that as indicator of system load and a reason to
1302          * stop busywaiting, see busywait_stop().
1303          */
1304         *cpu = get_cpu();
1305         t = local_clock() >> 10;
1306         put_cpu();
1307
1308         return t;
1309 }
1310
1311 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1312 {
1313         unsigned int this_cpu;
1314
1315         if (time_after(local_clock_us(&this_cpu), timeout))
1316                 return true;
1317
1318         return this_cpu != cpu;
1319 }
1320
1321 static bool __i915_spin_request(const struct i915_request * const rq,
1322                                 int state, unsigned long timeout_us)
1323 {
1324         unsigned int cpu;
1325
1326         /*
1327          * Only wait for the request if we know it is likely to complete.
1328          *
1329          * We don't track the timestamps around requests, nor the average
1330          * request length, so we do not have a good indicator that this
1331          * request will complete within the timeout. What we do know is the
1332          * order in which requests are executed by the context and so we can
1333          * tell if the request has been started. If the request is not even
1334          * running yet, it is a fair assumption that it will not complete
1335          * within our relatively short timeout.
1336          */
1337         if (!i915_request_is_running(rq))
1338                 return false;
1339
1340         /*
1341          * When waiting for high frequency requests, e.g. during synchronous
1342          * rendering split between the CPU and GPU, the finite amount of time
1343          * required to set up the irq and wait upon it limits the response
1344          * rate. By busywaiting on the request completion for a short while we
1345          * can service the high frequency waits as quick as possible. However,
1346          * if it is a slow request, we want to sleep as quickly as possible.
1347          * The tradeoff between waiting and sleeping is roughly the time it
1348          * takes to sleep on a request, on the order of a microsecond.
1349          */
1350
1351         timeout_us += local_clock_us(&cpu);
1352         do {
1353                 if (i915_request_completed(rq))
1354                         return true;
1355
1356                 if (signal_pending_state(state, current))
1357                         break;
1358
1359                 if (busywait_stop(timeout_us, cpu))
1360                         break;
1361
1362                 cpu_relax();
1363         } while (!need_resched());
1364
1365         return false;
1366 }
1367
1368 struct request_wait {
1369         struct dma_fence_cb cb;
1370         struct task_struct *tsk;
1371 };
1372
1373 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1374 {
1375         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1376
1377         wake_up_process(wait->tsk);
1378 }
1379
1380 /**
1381  * i915_request_wait - wait until execution of request has finished
1382  * @rq: the request to wait upon
1383  * @flags: how to wait
1384  * @timeout: how long to wait in jiffies
1385  *
1386  * i915_request_wait() waits for the request to be completed, for a
1387  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1388  * unbounded wait).
1389  *
1390  * Returns the remaining time (in jiffies) if the request completed, which may
1391  * be zero or -ETIME if the request is unfinished after the timeout expires.
1392  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1393  * pending before the request completes.
1394  */
1395 long i915_request_wait(struct i915_request *rq,
1396                        unsigned int flags,
1397                        long timeout)
1398 {
1399         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1400                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1401         struct request_wait wait;
1402
1403         might_sleep();
1404         GEM_BUG_ON(timeout < 0);
1405
1406         if (dma_fence_is_signaled(&rq->fence))
1407                 return timeout;
1408
1409         if (!timeout)
1410                 return -ETIME;
1411
1412         trace_i915_request_wait_begin(rq, flags);
1413
1414         /*
1415          * We must never wait on the GPU while holding a lock as we
1416          * may need to perform a GPU reset. So while we don't need to
1417          * serialise wait/reset with an explicit lock, we do want
1418          * lockdep to detect potential dependency cycles.
1419          */
1420         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1421
1422         /*
1423          * Optimistic spin before touching IRQs.
1424          *
1425          * We may use a rather large value here to offset the penalty of
1426          * switching away from the active task. Frequently, the client will
1427          * wait upon an old swapbuffer to throttle itself to remain within a
1428          * frame of the gpu. If the client is running in lockstep with the gpu,
1429          * then it should not be waiting long at all, and a sleep now will incur
1430          * extra scheduler latency in producing the next frame. To try to
1431          * avoid adding the cost of enabling/disabling the interrupt to the
1432          * short wait, we first spin to see if the request would have completed
1433          * in the time taken to setup the interrupt.
1434          *
1435          * We need upto 5us to enable the irq, and upto 20us to hide the
1436          * scheduler latency of a context switch, ignoring the secondary
1437          * impacts from a context switch such as cache eviction.
1438          *
1439          * The scheme used for low-latency IO is called "hybrid interrupt
1440          * polling". The suggestion there is to sleep until just before you
1441          * expect to be woken by the device interrupt and then poll for its
1442          * completion. That requires having a good predictor for the request
1443          * duration, which we currently lack.
1444          */
1445         if (CONFIG_DRM_I915_SPIN_REQUEST &&
1446             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1447                 dma_fence_signal(&rq->fence);
1448                 goto out;
1449         }
1450
1451         /*
1452          * This client is about to stall waiting for the GPU. In many cases
1453          * this is undesirable and limits the throughput of the system, as
1454          * many clients cannot continue processing user input/output whilst
1455          * blocked. RPS autotuning may take tens of milliseconds to respond
1456          * to the GPU load and thus incurs additional latency for the client.
1457          * We can circumvent that by promoting the GPU frequency to maximum
1458          * before we sleep. This makes the GPU throttle up much more quickly
1459          * (good for benchmarks and user experience, e.g. window animations),
1460          * but at a cost of spending more power processing the workload
1461          * (bad for battery).
1462          */
1463         if (flags & I915_WAIT_PRIORITY) {
1464                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1465                         gen6_rps_boost(rq);
1466                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1467         }
1468
1469         wait.tsk = current;
1470         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1471                 goto out;
1472
1473         for (;;) {
1474                 set_current_state(state);
1475
1476                 if (i915_request_completed(rq)) {
1477                         dma_fence_signal(&rq->fence);
1478                         break;
1479                 }
1480
1481                 if (signal_pending_state(state, current)) {
1482                         timeout = -ERESTARTSYS;
1483                         break;
1484                 }
1485
1486                 if (!timeout) {
1487                         timeout = -ETIME;
1488                         break;
1489                 }
1490
1491                 timeout = io_schedule_timeout(timeout);
1492         }
1493         __set_current_state(TASK_RUNNING);
1494
1495         dma_fence_remove_callback(&rq->fence, &wait.cb);
1496
1497 out:
1498         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1499         trace_i915_request_wait_end(rq);
1500         return timeout;
1501 }
1502
1503 bool i915_retire_requests(struct drm_i915_private *i915)
1504 {
1505         struct intel_gt_timelines *timelines = &i915->gt.timelines;
1506         struct intel_timeline *tl, *tn;
1507         unsigned long flags;
1508         LIST_HEAD(free);
1509
1510         spin_lock_irqsave(&timelines->lock, flags);
1511         list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1512                 if (!mutex_trylock(&tl->mutex))
1513                         continue;
1514
1515                 intel_timeline_get(tl);
1516                 GEM_BUG_ON(!tl->active_count);
1517                 tl->active_count++; /* pin the list element */
1518                 spin_unlock_irqrestore(&timelines->lock, flags);
1519
1520                 retire_requests(tl);
1521
1522                 spin_lock_irqsave(&timelines->lock, flags);
1523
1524                 /* Resume iteration after dropping lock */
1525                 list_safe_reset_next(tl, tn, link);
1526                 if (!--tl->active_count)
1527                         list_del(&tl->link);
1528
1529                 mutex_unlock(&tl->mutex);
1530
1531                 /* Defer the final release to after the spinlock */
1532                 if (refcount_dec_and_test(&tl->kref.refcount)) {
1533                         GEM_BUG_ON(tl->active_count);
1534                         list_add(&tl->link, &free);
1535                 }
1536         }
1537         spin_unlock_irqrestore(&timelines->lock, flags);
1538
1539         list_for_each_entry_safe(tl, tn, &free, link)
1540                 __intel_timeline_free(&tl->kref);
1541
1542         return !list_empty(&timelines->active_list);
1543 }
1544
1545 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1546 #include "selftests/mock_request.c"
1547 #include "selftests/i915_request.c"
1548 #endif
1549
1550 static void i915_global_request_shrink(void)
1551 {
1552         kmem_cache_shrink(global.slab_dependencies);
1553         kmem_cache_shrink(global.slab_execute_cbs);
1554         kmem_cache_shrink(global.slab_requests);
1555 }
1556
1557 static void i915_global_request_exit(void)
1558 {
1559         kmem_cache_destroy(global.slab_dependencies);
1560         kmem_cache_destroy(global.slab_execute_cbs);
1561         kmem_cache_destroy(global.slab_requests);
1562 }
1563
1564 static struct i915_global_request global = { {
1565         .shrink = i915_global_request_shrink,
1566         .exit = i915_global_request_exit,
1567 } };
1568
1569 int __init i915_global_request_init(void)
1570 {
1571         global.slab_requests = KMEM_CACHE(i915_request,
1572                                           SLAB_HWCACHE_ALIGN |
1573                                           SLAB_RECLAIM_ACCOUNT |
1574                                           SLAB_TYPESAFE_BY_RCU);
1575         if (!global.slab_requests)
1576                 return -ENOMEM;
1577
1578         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1579                                              SLAB_HWCACHE_ALIGN |
1580                                              SLAB_RECLAIM_ACCOUNT |
1581                                              SLAB_TYPESAFE_BY_RCU);
1582         if (!global.slab_execute_cbs)
1583                 goto err_requests;
1584
1585         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1586                                               SLAB_HWCACHE_ALIGN |
1587                                               SLAB_RECLAIM_ACCOUNT);
1588         if (!global.slab_dependencies)
1589                 goto err_execute_cbs;
1590
1591         i915_global_register(&global.base);
1592         return 0;
1593
1594 err_execute_cbs:
1595         kmem_cache_destroy(global.slab_execute_cbs);
1596 err_requests:
1597         kmem_cache_destroy(global.slab_requests);
1598         return -ENOMEM;
1599 }