Merge tag 'devicetree-for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34
35 #include "i915_active.h"
36 #include "i915_drv.h"
37 #include "i915_globals.h"
38 #include "intel_pm.h"
39
40 struct execute_cb {
41         struct list_head link;
42         struct irq_work work;
43         struct i915_sw_fence *fence;
44         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
45         struct i915_request *signal;
46 };
47
48 static struct i915_global_request {
49         struct i915_global base;
50         struct kmem_cache *slab_requests;
51         struct kmem_cache *slab_dependencies;
52         struct kmem_cache *slab_execute_cbs;
53 } global;
54
55 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
56 {
57         return "i915";
58 }
59
60 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
61 {
62         /*
63          * The timeline struct (as part of the ppgtt underneath a context)
64          * may be freed when the request is no longer in use by the GPU.
65          * We could extend the life of a context to beyond that of all
66          * fences, possibly keeping the hw resource around indefinitely,
67          * or we just give them a false name. Since
68          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
69          * lie seems justifiable.
70          */
71         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
72                 return "signaled";
73
74         return to_request(fence)->gem_context->name ?: "[i915]";
75 }
76
77 static bool i915_fence_signaled(struct dma_fence *fence)
78 {
79         return i915_request_completed(to_request(fence));
80 }
81
82 static bool i915_fence_enable_signaling(struct dma_fence *fence)
83 {
84         return i915_request_enable_breadcrumb(to_request(fence));
85 }
86
87 static signed long i915_fence_wait(struct dma_fence *fence,
88                                    bool interruptible,
89                                    signed long timeout)
90 {
91         return i915_request_wait(to_request(fence),
92                                  interruptible | I915_WAIT_PRIORITY,
93                                  timeout);
94 }
95
96 static void i915_fence_release(struct dma_fence *fence)
97 {
98         struct i915_request *rq = to_request(fence);
99
100         /*
101          * The request is put onto a RCU freelist (i.e. the address
102          * is immediately reused), mark the fences as being freed now.
103          * Otherwise the debugobjects for the fences are only marked as
104          * freed when the slab cache itself is freed, and so we would get
105          * caught trying to reuse dead objects.
106          */
107         i915_sw_fence_fini(&rq->submit);
108         i915_sw_fence_fini(&rq->semaphore);
109
110         kmem_cache_free(global.slab_requests, rq);
111 }
112
113 const struct dma_fence_ops i915_fence_ops = {
114         .get_driver_name = i915_fence_get_driver_name,
115         .get_timeline_name = i915_fence_get_timeline_name,
116         .enable_signaling = i915_fence_enable_signaling,
117         .signaled = i915_fence_signaled,
118         .wait = i915_fence_wait,
119         .release = i915_fence_release,
120 };
121
122 static inline void
123 i915_request_remove_from_client(struct i915_request *request)
124 {
125         struct drm_i915_file_private *file_priv;
126
127         file_priv = request->file_priv;
128         if (!file_priv)
129                 return;
130
131         spin_lock(&file_priv->mm.lock);
132         if (request->file_priv) {
133                 list_del(&request->client_link);
134                 request->file_priv = NULL;
135         }
136         spin_unlock(&file_priv->mm.lock);
137 }
138
139 static void advance_ring(struct i915_request *request)
140 {
141         struct intel_ring *ring = request->ring;
142         unsigned int tail;
143
144         /*
145          * We know the GPU must have read the request to have
146          * sent us the seqno + interrupt, so use the position
147          * of tail of the request to update the last known position
148          * of the GPU head.
149          *
150          * Note this requires that we are always called in request
151          * completion order.
152          */
153         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
154         if (list_is_last(&request->ring_link, &ring->request_list)) {
155                 /*
156                  * We may race here with execlists resubmitting this request
157                  * as we retire it. The resubmission will move the ring->tail
158                  * forwards (to request->wa_tail). We either read the
159                  * current value that was written to hw, or the value that
160                  * is just about to be. Either works, if we miss the last two
161                  * noops - they are safe to be replayed on a reset.
162                  */
163                 tail = READ_ONCE(request->tail);
164                 list_del(&ring->active_link);
165         } else {
166                 tail = request->postfix;
167         }
168         list_del_init(&request->ring_link);
169
170         ring->head = tail;
171 }
172
173 static void free_capture_list(struct i915_request *request)
174 {
175         struct i915_capture_list *capture;
176
177         capture = request->capture_list;
178         while (capture) {
179                 struct i915_capture_list *next = capture->next;
180
181                 kfree(capture);
182                 capture = next;
183         }
184 }
185
186 static bool i915_request_retire(struct i915_request *rq)
187 {
188         struct i915_active_request *active, *next;
189
190         lockdep_assert_held(&rq->i915->drm.struct_mutex);
191         if (!i915_request_completed(rq))
192                 return false;
193
194         GEM_TRACE("%s fence %llx:%lld, current %d\n",
195                   rq->engine->name,
196                   rq->fence.context, rq->fence.seqno,
197                   hwsp_seqno(rq));
198
199         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
200         trace_i915_request_retire(rq);
201
202         advance_ring(rq);
203
204         /*
205          * Walk through the active list, calling retire on each. This allows
206          * objects to track their GPU activity and mark themselves as idle
207          * when their *last* active request is completed (updating state
208          * tracking lists for eviction, active references for GEM, etc).
209          *
210          * As the ->retire() may free the node, we decouple it first and
211          * pass along the auxiliary information (to avoid dereferencing
212          * the node after the callback).
213          */
214         list_for_each_entry_safe(active, next, &rq->active_list, link) {
215                 /*
216                  * In microbenchmarks or focusing upon time inside the kernel,
217                  * we may spend an inordinate amount of time simply handling
218                  * the retirement of requests and processing their callbacks.
219                  * Of which, this loop itself is particularly hot due to the
220                  * cache misses when jumping around the list of
221                  * i915_active_request.  So we try to keep this loop as
222                  * streamlined as possible and also prefetch the next
223                  * i915_active_request to try and hide the likely cache miss.
224                  */
225                 prefetchw(next);
226
227                 INIT_LIST_HEAD(&active->link);
228                 RCU_INIT_POINTER(active->request, NULL);
229
230                 active->retire(active, rq);
231         }
232
233         local_irq_disable();
234
235         spin_lock(&rq->engine->active.lock);
236         list_del(&rq->sched.link);
237         spin_unlock(&rq->engine->active.lock);
238
239         spin_lock(&rq->lock);
240         i915_request_mark_complete(rq);
241         if (!i915_request_signaled(rq))
242                 dma_fence_signal_locked(&rq->fence);
243         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
244                 i915_request_cancel_breadcrumb(rq);
245         if (rq->waitboost) {
246                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
247                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
248         }
249         spin_unlock(&rq->lock);
250
251         local_irq_enable();
252
253         intel_context_exit(rq->hw_context);
254         intel_context_unpin(rq->hw_context);
255
256         i915_request_remove_from_client(rq);
257         list_del(&rq->link);
258
259         free_capture_list(rq);
260         i915_sched_node_fini(&rq->sched);
261         i915_request_put(rq);
262
263         return true;
264 }
265
266 void i915_request_retire_upto(struct i915_request *rq)
267 {
268         struct intel_ring *ring = rq->ring;
269         struct i915_request *tmp;
270
271         GEM_TRACE("%s fence %llx:%lld, current %d\n",
272                   rq->engine->name,
273                   rq->fence.context, rq->fence.seqno,
274                   hwsp_seqno(rq));
275
276         lockdep_assert_held(&rq->i915->drm.struct_mutex);
277         GEM_BUG_ON(!i915_request_completed(rq));
278
279         if (list_empty(&rq->ring_link))
280                 return;
281
282         do {
283                 tmp = list_first_entry(&ring->request_list,
284                                        typeof(*tmp), ring_link);
285         } while (i915_request_retire(tmp) && tmp != rq);
286 }
287
288 static void irq_execute_cb(struct irq_work *wrk)
289 {
290         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
291
292         i915_sw_fence_complete(cb->fence);
293         kmem_cache_free(global.slab_execute_cbs, cb);
294 }
295
296 static void irq_execute_cb_hook(struct irq_work *wrk)
297 {
298         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
299
300         cb->hook(container_of(cb->fence, struct i915_request, submit),
301                  &cb->signal->fence);
302         i915_request_put(cb->signal);
303
304         irq_execute_cb(wrk);
305 }
306
307 static void __notify_execute_cb(struct i915_request *rq)
308 {
309         struct execute_cb *cb;
310
311         lockdep_assert_held(&rq->lock);
312
313         if (list_empty(&rq->execute_cb))
314                 return;
315
316         list_for_each_entry(cb, &rq->execute_cb, link)
317                 irq_work_queue(&cb->work);
318
319         /*
320          * XXX Rollback on __i915_request_unsubmit()
321          *
322          * In the future, perhaps when we have an active time-slicing scheduler,
323          * it will be interesting to unsubmit parallel execution and remove
324          * busywaits from the GPU until their master is restarted. This is
325          * quite hairy, we have to carefully rollback the fence and do a
326          * preempt-to-idle cycle on the target engine, all the while the
327          * master execute_cb may refire.
328          */
329         INIT_LIST_HEAD(&rq->execute_cb);
330 }
331
332 static int
333 __i915_request_await_execution(struct i915_request *rq,
334                                struct i915_request *signal,
335                                void (*hook)(struct i915_request *rq,
336                                             struct dma_fence *signal),
337                                gfp_t gfp)
338 {
339         struct execute_cb *cb;
340
341         if (i915_request_is_active(signal)) {
342                 if (hook)
343                         hook(rq, &signal->fence);
344                 return 0;
345         }
346
347         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
348         if (!cb)
349                 return -ENOMEM;
350
351         cb->fence = &rq->submit;
352         i915_sw_fence_await(cb->fence);
353         init_irq_work(&cb->work, irq_execute_cb);
354
355         if (hook) {
356                 cb->hook = hook;
357                 cb->signal = i915_request_get(signal);
358                 cb->work.func = irq_execute_cb_hook;
359         }
360
361         spin_lock_irq(&signal->lock);
362         if (i915_request_is_active(signal)) {
363                 if (hook) {
364                         hook(rq, &signal->fence);
365                         i915_request_put(signal);
366                 }
367                 i915_sw_fence_complete(cb->fence);
368                 kmem_cache_free(global.slab_execute_cbs, cb);
369         } else {
370                 list_add_tail(&cb->link, &signal->execute_cb);
371         }
372         spin_unlock_irq(&signal->lock);
373
374         return 0;
375 }
376
377 void __i915_request_submit(struct i915_request *request)
378 {
379         struct intel_engine_cs *engine = request->engine;
380
381         GEM_TRACE("%s fence %llx:%lld, current %d\n",
382                   engine->name,
383                   request->fence.context, request->fence.seqno,
384                   hwsp_seqno(request));
385
386         GEM_BUG_ON(!irqs_disabled());
387         lockdep_assert_held(&engine->active.lock);
388
389         if (i915_gem_context_is_banned(request->gem_context))
390                 i915_request_skip(request, -EIO);
391
392         /*
393          * Are we using semaphores when the gpu is already saturated?
394          *
395          * Using semaphores incurs a cost in having the GPU poll a
396          * memory location, busywaiting for it to change. The continual
397          * memory reads can have a noticeable impact on the rest of the
398          * system with the extra bus traffic, stalling the cpu as it too
399          * tries to access memory across the bus (perf stat -e bus-cycles).
400          *
401          * If we installed a semaphore on this request and we only submit
402          * the request after the signaler completed, that indicates the
403          * system is overloaded and using semaphores at this time only
404          * increases the amount of work we are doing. If so, we disable
405          * further use of semaphores until we are idle again, whence we
406          * optimistically try again.
407          */
408         if (request->sched.semaphores &&
409             i915_sw_fence_signaled(&request->semaphore))
410                 engine->saturated |= request->sched.semaphores;
411
412         /* We may be recursing from the signal callback of another i915 fence */
413         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
414
415         list_move_tail(&request->sched.link, &engine->active.requests);
416
417         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
418         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
419
420         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
421             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
422             !i915_request_enable_breadcrumb(request))
423                 intel_engine_queue_breadcrumbs(engine);
424
425         __notify_execute_cb(request);
426
427         spin_unlock(&request->lock);
428
429         engine->emit_fini_breadcrumb(request,
430                                      request->ring->vaddr + request->postfix);
431
432         engine->serial++;
433
434         trace_i915_request_execute(request);
435 }
436
437 void i915_request_submit(struct i915_request *request)
438 {
439         struct intel_engine_cs *engine = request->engine;
440         unsigned long flags;
441
442         /* Will be called from irq-context when using foreign fences. */
443         spin_lock_irqsave(&engine->active.lock, flags);
444
445         __i915_request_submit(request);
446
447         spin_unlock_irqrestore(&engine->active.lock, flags);
448 }
449
450 void __i915_request_unsubmit(struct i915_request *request)
451 {
452         struct intel_engine_cs *engine = request->engine;
453
454         GEM_TRACE("%s fence %llx:%lld, current %d\n",
455                   engine->name,
456                   request->fence.context, request->fence.seqno,
457                   hwsp_seqno(request));
458
459         GEM_BUG_ON(!irqs_disabled());
460         lockdep_assert_held(&engine->active.lock);
461
462         /*
463          * Only unwind in reverse order, required so that the per-context list
464          * is kept in seqno/ring order.
465          */
466
467         /* We may be recursing from the signal callback of another i915 fence */
468         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
469
470         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
471                 i915_request_cancel_breadcrumb(request);
472
473         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
474         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
475
476         spin_unlock(&request->lock);
477
478         /* We've already spun, don't charge on resubmitting. */
479         if (request->sched.semaphores && i915_request_started(request)) {
480                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
481                 request->sched.semaphores = 0;
482         }
483
484         /*
485          * We don't need to wake_up any waiters on request->execute, they
486          * will get woken by any other event or us re-adding this request
487          * to the engine timeline (__i915_request_submit()). The waiters
488          * should be quite adapt at finding that the request now has a new
489          * global_seqno to the one they went to sleep on.
490          */
491 }
492
493 void i915_request_unsubmit(struct i915_request *request)
494 {
495         struct intel_engine_cs *engine = request->engine;
496         unsigned long flags;
497
498         /* Will be called from irq-context when using foreign fences. */
499         spin_lock_irqsave(&engine->active.lock, flags);
500
501         __i915_request_unsubmit(request);
502
503         spin_unlock_irqrestore(&engine->active.lock, flags);
504 }
505
506 static int __i915_sw_fence_call
507 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
508 {
509         struct i915_request *request =
510                 container_of(fence, typeof(*request), submit);
511
512         switch (state) {
513         case FENCE_COMPLETE:
514                 trace_i915_request_submit(request);
515                 /*
516                  * We need to serialize use of the submit_request() callback
517                  * with its hotplugging performed during an emergency
518                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
519                  * critical section in order to force i915_gem_set_wedged() to
520                  * wait until the submit_request() is completed before
521                  * proceeding.
522                  */
523                 rcu_read_lock();
524                 request->engine->submit_request(request);
525                 rcu_read_unlock();
526                 break;
527
528         case FENCE_FREE:
529                 i915_request_put(request);
530                 break;
531         }
532
533         return NOTIFY_DONE;
534 }
535
536 static int __i915_sw_fence_call
537 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
538 {
539         struct i915_request *request =
540                 container_of(fence, typeof(*request), semaphore);
541
542         switch (state) {
543         case FENCE_COMPLETE:
544                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
545                 break;
546
547         case FENCE_FREE:
548                 i915_request_put(request);
549                 break;
550         }
551
552         return NOTIFY_DONE;
553 }
554
555 static void ring_retire_requests(struct intel_ring *ring)
556 {
557         struct i915_request *rq, *rn;
558
559         list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link)
560                 if (!i915_request_retire(rq))
561                         break;
562 }
563
564 static noinline struct i915_request *
565 request_alloc_slow(struct intel_context *ce, gfp_t gfp)
566 {
567         struct intel_ring *ring = ce->ring;
568         struct i915_request *rq;
569
570         if (list_empty(&ring->request_list))
571                 goto out;
572
573         if (!gfpflags_allow_blocking(gfp))
574                 goto out;
575
576         /* Move our oldest request to the slab-cache (if not in use!) */
577         rq = list_first_entry(&ring->request_list, typeof(*rq), ring_link);
578         i915_request_retire(rq);
579
580         rq = kmem_cache_alloc(global.slab_requests,
581                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
582         if (rq)
583                 return rq;
584
585         /* Ratelimit ourselves to prevent oom from malicious clients */
586         rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
587         cond_synchronize_rcu(rq->rcustate);
588
589         /* Retire our old requests in the hope that we free some */
590         ring_retire_requests(ring);
591
592 out:
593         return kmem_cache_alloc(global.slab_requests, gfp);
594 }
595
596 struct i915_request *
597 __i915_request_create(struct intel_context *ce, gfp_t gfp)
598 {
599         struct i915_timeline *tl = ce->ring->timeline;
600         struct i915_request *rq;
601         u32 seqno;
602         int ret;
603
604         might_sleep_if(gfpflags_allow_blocking(gfp));
605
606         /* Check that the caller provided an already pinned context */
607         __intel_context_pin(ce);
608
609         /*
610          * Beware: Dragons be flying overhead.
611          *
612          * We use RCU to look up requests in flight. The lookups may
613          * race with the request being allocated from the slab freelist.
614          * That is the request we are writing to here, may be in the process
615          * of being read by __i915_active_request_get_rcu(). As such,
616          * we have to be very careful when overwriting the contents. During
617          * the RCU lookup, we change chase the request->engine pointer,
618          * read the request->global_seqno and increment the reference count.
619          *
620          * The reference count is incremented atomically. If it is zero,
621          * the lookup knows the request is unallocated and complete. Otherwise,
622          * it is either still in use, or has been reallocated and reset
623          * with dma_fence_init(). This increment is safe for release as we
624          * check that the request we have a reference to and matches the active
625          * request.
626          *
627          * Before we increment the refcount, we chase the request->engine
628          * pointer. We must not call kmem_cache_zalloc() or else we set
629          * that pointer to NULL and cause a crash during the lookup. If
630          * we see the request is completed (based on the value of the
631          * old engine and seqno), the lookup is complete and reports NULL.
632          * If we decide the request is not completed (new engine or seqno),
633          * then we grab a reference and double check that it is still the
634          * active request - which it won't be and restart the lookup.
635          *
636          * Do not use kmem_cache_zalloc() here!
637          */
638         rq = kmem_cache_alloc(global.slab_requests,
639                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
640         if (unlikely(!rq)) {
641                 rq = request_alloc_slow(ce, gfp);
642                 if (!rq) {
643                         ret = -ENOMEM;
644                         goto err_unreserve;
645                 }
646         }
647
648         ret = i915_timeline_get_seqno(tl, rq, &seqno);
649         if (ret)
650                 goto err_free;
651
652         rq->i915 = ce->engine->i915;
653         rq->hw_context = ce;
654         rq->gem_context = ce->gem_context;
655         rq->engine = ce->engine;
656         rq->ring = ce->ring;
657         rq->timeline = tl;
658         rq->hwsp_seqno = tl->hwsp_seqno;
659         rq->hwsp_cacheline = tl->hwsp_cacheline;
660         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
661
662         spin_lock_init(&rq->lock);
663         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
664                        tl->fence_context, seqno);
665
666         /* We bump the ref for the fence chain */
667         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
668         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
669
670         i915_sched_node_init(&rq->sched);
671
672         /* No zalloc, must clear what we need by hand */
673         rq->file_priv = NULL;
674         rq->batch = NULL;
675         rq->capture_list = NULL;
676         rq->waitboost = false;
677         rq->execution_mask = ALL_ENGINES;
678
679         INIT_LIST_HEAD(&rq->active_list);
680         INIT_LIST_HEAD(&rq->execute_cb);
681
682         /*
683          * Reserve space in the ring buffer for all the commands required to
684          * eventually emit this request. This is to guarantee that the
685          * i915_request_add() call can't fail. Note that the reserve may need
686          * to be redone if the request is not actually submitted straight
687          * away, e.g. because a GPU scheduler has deferred it.
688          *
689          * Note that due to how we add reserved_space to intel_ring_begin()
690          * we need to double our request to ensure that if we need to wrap
691          * around inside i915_request_add() there is sufficient space at
692          * the beginning of the ring as well.
693          */
694         rq->reserved_space =
695                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
696
697         /*
698          * Record the position of the start of the request so that
699          * should we detect the updated seqno part-way through the
700          * GPU processing the request, we never over-estimate the
701          * position of the head.
702          */
703         rq->head = rq->ring->emit;
704
705         ret = rq->engine->request_alloc(rq);
706         if (ret)
707                 goto err_unwind;
708
709         rq->infix = rq->ring->emit; /* end of header; start of user payload */
710
711         intel_context_mark_active(ce);
712         return rq;
713
714 err_unwind:
715         ce->ring->emit = rq->head;
716
717         /* Make sure we didn't add ourselves to external state before freeing */
718         GEM_BUG_ON(!list_empty(&rq->active_list));
719         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
720         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
721
722 err_free:
723         kmem_cache_free(global.slab_requests, rq);
724 err_unreserve:
725         intel_context_unpin(ce);
726         return ERR_PTR(ret);
727 }
728
729 struct i915_request *
730 i915_request_create(struct intel_context *ce)
731 {
732         struct i915_request *rq;
733         int err;
734
735         err = intel_context_timeline_lock(ce);
736         if (err)
737                 return ERR_PTR(err);
738
739         /* Move our oldest request to the slab-cache (if not in use!) */
740         rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
741         if (!list_is_last(&rq->ring_link, &ce->ring->request_list))
742                 i915_request_retire(rq);
743
744         intel_context_enter(ce);
745         rq = __i915_request_create(ce, GFP_KERNEL);
746         intel_context_exit(ce); /* active reference transferred to request */
747         if (IS_ERR(rq))
748                 goto err_unlock;
749
750         /* Check that we do not interrupt ourselves with a new request */
751         rq->cookie = lockdep_pin_lock(&ce->ring->timeline->mutex);
752
753         return rq;
754
755 err_unlock:
756         intel_context_timeline_unlock(ce);
757         return rq;
758 }
759
760 static int
761 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
762 {
763         if (list_is_first(&signal->ring_link, &signal->ring->request_list))
764                 return 0;
765
766         signal = list_prev_entry(signal, ring_link);
767         if (i915_timeline_sync_is_later(rq->timeline, &signal->fence))
768                 return 0;
769
770         return i915_sw_fence_await_dma_fence(&rq->submit,
771                                              &signal->fence, 0,
772                                              I915_FENCE_GFP);
773 }
774
775 static intel_engine_mask_t
776 already_busywaiting(struct i915_request *rq)
777 {
778         /*
779          * Polling a semaphore causes bus traffic, delaying other users of
780          * both the GPU and CPU. We want to limit the impact on others,
781          * while taking advantage of early submission to reduce GPU
782          * latency. Therefore we restrict ourselves to not using more
783          * than one semaphore from each source, and not using a semaphore
784          * if we have detected the engine is saturated (i.e. would not be
785          * submitted early and cause bus traffic reading an already passed
786          * semaphore).
787          *
788          * See the are-we-too-late? check in __i915_request_submit().
789          */
790         return rq->sched.semaphores | rq->engine->saturated;
791 }
792
793 static int
794 emit_semaphore_wait(struct i915_request *to,
795                     struct i915_request *from,
796                     gfp_t gfp)
797 {
798         u32 hwsp_offset;
799         u32 *cs;
800         int err;
801
802         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
803         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
804
805         /* Just emit the first semaphore we see as request space is limited. */
806         if (already_busywaiting(to) & from->engine->mask)
807                 return i915_sw_fence_await_dma_fence(&to->submit,
808                                                      &from->fence, 0,
809                                                      I915_FENCE_GFP);
810
811         err = i915_request_await_start(to, from);
812         if (err < 0)
813                 return err;
814
815         /* Only submit our spinner after the signaler is running! */
816         err = __i915_request_await_execution(to, from, NULL, gfp);
817         if (err)
818                 return err;
819
820         /* We need to pin the signaler's HWSP until we are finished reading. */
821         err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
822         if (err)
823                 return err;
824
825         cs = intel_ring_begin(to, 4);
826         if (IS_ERR(cs))
827                 return PTR_ERR(cs);
828
829         /*
830          * Using greater-than-or-equal here means we have to worry
831          * about seqno wraparound. To side step that issue, we swap
832          * the timeline HWSP upon wrapping, so that everyone listening
833          * for the old (pre-wrap) values do not see the much smaller
834          * (post-wrap) values than they were expecting (and so wait
835          * forever).
836          */
837         *cs++ = MI_SEMAPHORE_WAIT |
838                 MI_SEMAPHORE_GLOBAL_GTT |
839                 MI_SEMAPHORE_POLL |
840                 MI_SEMAPHORE_SAD_GTE_SDD;
841         *cs++ = from->fence.seqno;
842         *cs++ = hwsp_offset;
843         *cs++ = 0;
844
845         intel_ring_advance(to, cs);
846         to->sched.semaphores |= from->engine->mask;
847         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
848         return 0;
849 }
850
851 static int
852 i915_request_await_request(struct i915_request *to, struct i915_request *from)
853 {
854         int ret;
855
856         GEM_BUG_ON(to == from);
857         GEM_BUG_ON(to->timeline == from->timeline);
858
859         if (i915_request_completed(from))
860                 return 0;
861
862         if (to->engine->schedule) {
863                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
864                 if (ret < 0)
865                         return ret;
866         }
867
868         if (to->engine == from->engine) {
869                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
870                                                        &from->submit,
871                                                        I915_FENCE_GFP);
872         } else if (intel_engine_has_semaphores(to->engine) &&
873                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
874                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
875         } else {
876                 ret = i915_sw_fence_await_dma_fence(&to->submit,
877                                                     &from->fence, 0,
878                                                     I915_FENCE_GFP);
879         }
880         if (ret < 0)
881                 return ret;
882
883         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
884                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
885                                                     &from->fence, 0,
886                                                     I915_FENCE_GFP);
887                 if (ret < 0)
888                         return ret;
889         }
890
891         return 0;
892 }
893
894 int
895 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
896 {
897         struct dma_fence **child = &fence;
898         unsigned int nchild = 1;
899         int ret;
900
901         /*
902          * Note that if the fence-array was created in signal-on-any mode,
903          * we should *not* decompose it into its individual fences. However,
904          * we don't currently store which mode the fence-array is operating
905          * in. Fortunately, the only user of signal-on-any is private to
906          * amdgpu and we should not see any incoming fence-array from
907          * sync-file being in signal-on-any mode.
908          */
909         if (dma_fence_is_array(fence)) {
910                 struct dma_fence_array *array = to_dma_fence_array(fence);
911
912                 child = array->fences;
913                 nchild = array->num_fences;
914                 GEM_BUG_ON(!nchild);
915         }
916
917         do {
918                 fence = *child++;
919                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
920                         continue;
921
922                 /*
923                  * Requests on the same timeline are explicitly ordered, along
924                  * with their dependencies, by i915_request_add() which ensures
925                  * that requests are submitted in-order through each ring.
926                  */
927                 if (fence->context == rq->fence.context)
928                         continue;
929
930                 /* Squash repeated waits to the same timelines */
931                 if (fence->context != rq->i915->mm.unordered_timeline &&
932                     i915_timeline_sync_is_later(rq->timeline, fence))
933                         continue;
934
935                 if (dma_fence_is_i915(fence))
936                         ret = i915_request_await_request(rq, to_request(fence));
937                 else
938                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
939                                                             I915_FENCE_TIMEOUT,
940                                                             I915_FENCE_GFP);
941                 if (ret < 0)
942                         return ret;
943
944                 /* Record the latest fence used against each timeline */
945                 if (fence->context != rq->i915->mm.unordered_timeline)
946                         i915_timeline_sync_set(rq->timeline, fence);
947         } while (--nchild);
948
949         return 0;
950 }
951
952 int
953 i915_request_await_execution(struct i915_request *rq,
954                              struct dma_fence *fence,
955                              void (*hook)(struct i915_request *rq,
956                                           struct dma_fence *signal))
957 {
958         struct dma_fence **child = &fence;
959         unsigned int nchild = 1;
960         int ret;
961
962         if (dma_fence_is_array(fence)) {
963                 struct dma_fence_array *array = to_dma_fence_array(fence);
964
965                 /* XXX Error for signal-on-any fence arrays */
966
967                 child = array->fences;
968                 nchild = array->num_fences;
969                 GEM_BUG_ON(!nchild);
970         }
971
972         do {
973                 fence = *child++;
974                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
975                         continue;
976
977                 /*
978                  * We don't squash repeated fence dependencies here as we
979                  * want to run our callback in all cases.
980                  */
981
982                 if (dma_fence_is_i915(fence))
983                         ret = __i915_request_await_execution(rq,
984                                                              to_request(fence),
985                                                              hook,
986                                                              I915_FENCE_GFP);
987                 else
988                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
989                                                             I915_FENCE_TIMEOUT,
990                                                             GFP_KERNEL);
991                 if (ret < 0)
992                         return ret;
993         } while (--nchild);
994
995         return 0;
996 }
997
998 /**
999  * i915_request_await_object - set this request to (async) wait upon a bo
1000  * @to: request we are wishing to use
1001  * @obj: object which may be in use on another ring.
1002  * @write: whether the wait is on behalf of a writer
1003  *
1004  * This code is meant to abstract object synchronization with the GPU.
1005  * Conceptually we serialise writes between engines inside the GPU.
1006  * We only allow one engine to write into a buffer at any time, but
1007  * multiple readers. To ensure each has a coherent view of memory, we must:
1008  *
1009  * - If there is an outstanding write request to the object, the new
1010  *   request must wait for it to complete (either CPU or in hw, requests
1011  *   on the same ring will be naturally ordered).
1012  *
1013  * - If we are a write request (pending_write_domain is set), the new
1014  *   request must wait for outstanding read requests to complete.
1015  *
1016  * Returns 0 if successful, else propagates up the lower layer error.
1017  */
1018 int
1019 i915_request_await_object(struct i915_request *to,
1020                           struct drm_i915_gem_object *obj,
1021                           bool write)
1022 {
1023         struct dma_fence *excl;
1024         int ret = 0;
1025
1026         if (write) {
1027                 struct dma_fence **shared;
1028                 unsigned int count, i;
1029
1030                 ret = reservation_object_get_fences_rcu(obj->base.resv,
1031                                                         &excl, &count, &shared);
1032                 if (ret)
1033                         return ret;
1034
1035                 for (i = 0; i < count; i++) {
1036                         ret = i915_request_await_dma_fence(to, shared[i]);
1037                         if (ret)
1038                                 break;
1039
1040                         dma_fence_put(shared[i]);
1041                 }
1042
1043                 for (; i < count; i++)
1044                         dma_fence_put(shared[i]);
1045                 kfree(shared);
1046         } else {
1047                 excl = reservation_object_get_excl_rcu(obj->base.resv);
1048         }
1049
1050         if (excl) {
1051                 if (ret == 0)
1052                         ret = i915_request_await_dma_fence(to, excl);
1053
1054                 dma_fence_put(excl);
1055         }
1056
1057         return ret;
1058 }
1059
1060 void i915_request_skip(struct i915_request *rq, int error)
1061 {
1062         void *vaddr = rq->ring->vaddr;
1063         u32 head;
1064
1065         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1066         dma_fence_set_error(&rq->fence, error);
1067
1068         /*
1069          * As this request likely depends on state from the lost
1070          * context, clear out all the user operations leaving the
1071          * breadcrumb at the end (so we get the fence notifications).
1072          */
1073         head = rq->infix;
1074         if (rq->postfix < head) {
1075                 memset(vaddr + head, 0, rq->ring->size - head);
1076                 head = 0;
1077         }
1078         memset(vaddr + head, 0, rq->postfix - head);
1079 }
1080
1081 static struct i915_request *
1082 __i915_request_add_to_timeline(struct i915_request *rq)
1083 {
1084         struct i915_timeline *timeline = rq->timeline;
1085         struct i915_request *prev;
1086
1087         /*
1088          * Dependency tracking and request ordering along the timeline
1089          * is special cased so that we can eliminate redundant ordering
1090          * operations while building the request (we know that the timeline
1091          * itself is ordered, and here we guarantee it).
1092          *
1093          * As we know we will need to emit tracking along the timeline,
1094          * we embed the hooks into our request struct -- at the cost of
1095          * having to have specialised no-allocation interfaces (which will
1096          * be beneficial elsewhere).
1097          *
1098          * A second benefit to open-coding i915_request_await_request is
1099          * that we can apply a slight variant of the rules specialised
1100          * for timelines that jump between engines (such as virtual engines).
1101          * If we consider the case of virtual engine, we must emit a dma-fence
1102          * to prevent scheduling of the second request until the first is
1103          * complete (to maximise our greedy late load balancing) and this
1104          * precludes optimising to use semaphores serialisation of a single
1105          * timeline across engines.
1106          */
1107         prev = rcu_dereference_protected(timeline->last_request.request, 1);
1108         if (prev && !i915_request_completed(prev)) {
1109                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1110                         i915_sw_fence_await_sw_fence(&rq->submit,
1111                                                      &prev->submit,
1112                                                      &rq->submitq);
1113                 else
1114                         __i915_sw_fence_await_dma_fence(&rq->submit,
1115                                                         &prev->fence,
1116                                                         &rq->dmaq);
1117                 if (rq->engine->schedule)
1118                         __i915_sched_node_add_dependency(&rq->sched,
1119                                                          &prev->sched,
1120                                                          &rq->dep,
1121                                                          0);
1122         }
1123
1124         list_add_tail(&rq->link, &timeline->requests);
1125
1126         /*
1127          * Make sure that no request gazumped us - if it was allocated after
1128          * our i915_request_alloc() and called __i915_request_add() before
1129          * us, the timeline will hold its seqno which is later than ours.
1130          */
1131         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1132         __i915_active_request_set(&timeline->last_request, rq);
1133
1134         return prev;
1135 }
1136
1137 /*
1138  * NB: This function is not allowed to fail. Doing so would mean the the
1139  * request is not being tracked for completion but the work itself is
1140  * going to happen on the hardware. This would be a Bad Thing(tm).
1141  */
1142 struct i915_request *__i915_request_commit(struct i915_request *rq)
1143 {
1144         struct intel_engine_cs *engine = rq->engine;
1145         struct intel_ring *ring = rq->ring;
1146         struct i915_request *prev;
1147         u32 *cs;
1148
1149         GEM_TRACE("%s fence %llx:%lld\n",
1150                   engine->name, rq->fence.context, rq->fence.seqno);
1151
1152         /*
1153          * To ensure that this call will not fail, space for its emissions
1154          * should already have been reserved in the ring buffer. Let the ring
1155          * know that it is time to use that space up.
1156          */
1157         GEM_BUG_ON(rq->reserved_space > ring->space);
1158         rq->reserved_space = 0;
1159
1160         /*
1161          * Record the position of the start of the breadcrumb so that
1162          * should we detect the updated seqno part-way through the
1163          * GPU processing the request, we never over-estimate the
1164          * position of the ring's HEAD.
1165          */
1166         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1167         GEM_BUG_ON(IS_ERR(cs));
1168         rq->postfix = intel_ring_offset(rq, cs);
1169
1170         prev = __i915_request_add_to_timeline(rq);
1171
1172         list_add_tail(&rq->ring_link, &ring->request_list);
1173         if (list_is_first(&rq->ring_link, &ring->request_list))
1174                 list_add(&ring->active_link, &rq->i915->gt.active_rings);
1175         rq->emitted_jiffies = jiffies;
1176
1177         /*
1178          * Let the backend know a new request has arrived that may need
1179          * to adjust the existing execution schedule due to a high priority
1180          * request - i.e. we may want to preempt the current request in order
1181          * to run a high priority dependency chain *before* we can execute this
1182          * request.
1183          *
1184          * This is called before the request is ready to run so that we can
1185          * decide whether to preempt the entire chain so that it is ready to
1186          * run at the earliest possible convenience.
1187          */
1188         local_bh_disable();
1189         i915_sw_fence_commit(&rq->semaphore);
1190         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1191         if (engine->schedule) {
1192                 struct i915_sched_attr attr = rq->gem_context->sched;
1193
1194                 /*
1195                  * Boost actual workloads past semaphores!
1196                  *
1197                  * With semaphores we spin on one engine waiting for another,
1198                  * simply to reduce the latency of starting our work when
1199                  * the signaler completes. However, if there is any other
1200                  * work that we could be doing on this engine instead, that
1201                  * is better utilisation and will reduce the overall duration
1202                  * of the current work. To avoid PI boosting a semaphore
1203                  * far in the distance past over useful work, we keep a history
1204                  * of any semaphore use along our dependency chain.
1205                  */
1206                 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1207                         attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1208
1209                 /*
1210                  * Boost priorities to new clients (new request flows).
1211                  *
1212                  * Allow interactive/synchronous clients to jump ahead of
1213                  * the bulk clients. (FQ_CODEL)
1214                  */
1215                 if (list_empty(&rq->sched.signalers_list))
1216                         attr.priority |= I915_PRIORITY_WAIT;
1217
1218                 engine->schedule(rq, &attr);
1219         }
1220         rcu_read_unlock();
1221         i915_sw_fence_commit(&rq->submit);
1222         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1223
1224         return prev;
1225 }
1226
1227 void i915_request_add(struct i915_request *rq)
1228 {
1229         struct i915_request *prev;
1230
1231         lockdep_assert_held(&rq->timeline->mutex);
1232         lockdep_unpin_lock(&rq->timeline->mutex, rq->cookie);
1233
1234         trace_i915_request_add(rq);
1235
1236         prev = __i915_request_commit(rq);
1237
1238         /*
1239          * In typical scenarios, we do not expect the previous request on
1240          * the timeline to be still tracked by timeline->last_request if it
1241          * has been completed. If the completed request is still here, that
1242          * implies that request retirement is a long way behind submission,
1243          * suggesting that we haven't been retiring frequently enough from
1244          * the combination of retire-before-alloc, waiters and the background
1245          * retirement worker. So if the last request on this timeline was
1246          * already completed, do a catch up pass, flushing the retirement queue
1247          * up to this client. Since we have now moved the heaviest operations
1248          * during retirement onto secondary workers, such as freeing objects
1249          * or contexts, retiring a bunch of requests is mostly list management
1250          * (and cache misses), and so we should not be overly penalizing this
1251          * client by performing excess work, though we may still performing
1252          * work on behalf of others -- but instead we should benefit from
1253          * improved resource management. (Well, that's the theory at least.)
1254          */
1255         if (prev && i915_request_completed(prev))
1256                 i915_request_retire_upto(prev);
1257
1258         mutex_unlock(&rq->timeline->mutex);
1259 }
1260
1261 static unsigned long local_clock_us(unsigned int *cpu)
1262 {
1263         unsigned long t;
1264
1265         /*
1266          * Cheaply and approximately convert from nanoseconds to microseconds.
1267          * The result and subsequent calculations are also defined in the same
1268          * approximate microseconds units. The principal source of timing
1269          * error here is from the simple truncation.
1270          *
1271          * Note that local_clock() is only defined wrt to the current CPU;
1272          * the comparisons are no longer valid if we switch CPUs. Instead of
1273          * blocking preemption for the entire busywait, we can detect the CPU
1274          * switch and use that as indicator of system load and a reason to
1275          * stop busywaiting, see busywait_stop().
1276          */
1277         *cpu = get_cpu();
1278         t = local_clock() >> 10;
1279         put_cpu();
1280
1281         return t;
1282 }
1283
1284 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1285 {
1286         unsigned int this_cpu;
1287
1288         if (time_after(local_clock_us(&this_cpu), timeout))
1289                 return true;
1290
1291         return this_cpu != cpu;
1292 }
1293
1294 static bool __i915_spin_request(const struct i915_request * const rq,
1295                                 int state, unsigned long timeout_us)
1296 {
1297         unsigned int cpu;
1298
1299         /*
1300          * Only wait for the request if we know it is likely to complete.
1301          *
1302          * We don't track the timestamps around requests, nor the average
1303          * request length, so we do not have a good indicator that this
1304          * request will complete within the timeout. What we do know is the
1305          * order in which requests are executed by the context and so we can
1306          * tell if the request has been started. If the request is not even
1307          * running yet, it is a fair assumption that it will not complete
1308          * within our relatively short timeout.
1309          */
1310         if (!i915_request_is_running(rq))
1311                 return false;
1312
1313         /*
1314          * When waiting for high frequency requests, e.g. during synchronous
1315          * rendering split between the CPU and GPU, the finite amount of time
1316          * required to set up the irq and wait upon it limits the response
1317          * rate. By busywaiting on the request completion for a short while we
1318          * can service the high frequency waits as quick as possible. However,
1319          * if it is a slow request, we want to sleep as quickly as possible.
1320          * The tradeoff between waiting and sleeping is roughly the time it
1321          * takes to sleep on a request, on the order of a microsecond.
1322          */
1323
1324         timeout_us += local_clock_us(&cpu);
1325         do {
1326                 if (i915_request_completed(rq))
1327                         return true;
1328
1329                 if (signal_pending_state(state, current))
1330                         break;
1331
1332                 if (busywait_stop(timeout_us, cpu))
1333                         break;
1334
1335                 cpu_relax();
1336         } while (!need_resched());
1337
1338         return false;
1339 }
1340
1341 struct request_wait {
1342         struct dma_fence_cb cb;
1343         struct task_struct *tsk;
1344 };
1345
1346 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1347 {
1348         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1349
1350         wake_up_process(wait->tsk);
1351 }
1352
1353 /**
1354  * i915_request_wait - wait until execution of request has finished
1355  * @rq: the request to wait upon
1356  * @flags: how to wait
1357  * @timeout: how long to wait in jiffies
1358  *
1359  * i915_request_wait() waits for the request to be completed, for a
1360  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1361  * unbounded wait).
1362  *
1363  * Returns the remaining time (in jiffies) if the request completed, which may
1364  * be zero or -ETIME if the request is unfinished after the timeout expires.
1365  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1366  * pending before the request completes.
1367  */
1368 long i915_request_wait(struct i915_request *rq,
1369                        unsigned int flags,
1370                        long timeout)
1371 {
1372         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1373                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1374         struct request_wait wait;
1375
1376         might_sleep();
1377         GEM_BUG_ON(timeout < 0);
1378
1379         if (dma_fence_is_signaled(&rq->fence))
1380                 return timeout;
1381
1382         if (!timeout)
1383                 return -ETIME;
1384
1385         trace_i915_request_wait_begin(rq, flags);
1386
1387         /*
1388          * We must never wait on the GPU while holding a lock as we
1389          * may need to perform a GPU reset. So while we don't need to
1390          * serialise wait/reset with an explicit lock, we do want
1391          * lockdep to detect potential dependency cycles.
1392          */
1393         mutex_acquire(&rq->i915->gpu_error.wedge_mutex.dep_map,
1394                       0, 0, _THIS_IP_);
1395
1396         /*
1397          * Optimistic spin before touching IRQs.
1398          *
1399          * We may use a rather large value here to offset the penalty of
1400          * switching away from the active task. Frequently, the client will
1401          * wait upon an old swapbuffer to throttle itself to remain within a
1402          * frame of the gpu. If the client is running in lockstep with the gpu,
1403          * then it should not be waiting long at all, and a sleep now will incur
1404          * extra scheduler latency in producing the next frame. To try to
1405          * avoid adding the cost of enabling/disabling the interrupt to the
1406          * short wait, we first spin to see if the request would have completed
1407          * in the time taken to setup the interrupt.
1408          *
1409          * We need upto 5us to enable the irq, and upto 20us to hide the
1410          * scheduler latency of a context switch, ignoring the secondary
1411          * impacts from a context switch such as cache eviction.
1412          *
1413          * The scheme used for low-latency IO is called "hybrid interrupt
1414          * polling". The suggestion there is to sleep until just before you
1415          * expect to be woken by the device interrupt and then poll for its
1416          * completion. That requires having a good predictor for the request
1417          * duration, which we currently lack.
1418          */
1419         if (CONFIG_DRM_I915_SPIN_REQUEST &&
1420             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1421                 dma_fence_signal(&rq->fence);
1422                 goto out;
1423         }
1424
1425         /*
1426          * This client is about to stall waiting for the GPU. In many cases
1427          * this is undesirable and limits the throughput of the system, as
1428          * many clients cannot continue processing user input/output whilst
1429          * blocked. RPS autotuning may take tens of milliseconds to respond
1430          * to the GPU load and thus incurs additional latency for the client.
1431          * We can circumvent that by promoting the GPU frequency to maximum
1432          * before we sleep. This makes the GPU throttle up much more quickly
1433          * (good for benchmarks and user experience, e.g. window animations),
1434          * but at a cost of spending more power processing the workload
1435          * (bad for battery).
1436          */
1437         if (flags & I915_WAIT_PRIORITY) {
1438                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1439                         gen6_rps_boost(rq);
1440                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1441         }
1442
1443         wait.tsk = current;
1444         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1445                 goto out;
1446
1447         for (;;) {
1448                 set_current_state(state);
1449
1450                 if (i915_request_completed(rq))
1451                         break;
1452
1453                 if (signal_pending_state(state, current)) {
1454                         timeout = -ERESTARTSYS;
1455                         break;
1456                 }
1457
1458                 if (!timeout) {
1459                         timeout = -ETIME;
1460                         break;
1461                 }
1462
1463                 timeout = io_schedule_timeout(timeout);
1464         }
1465         __set_current_state(TASK_RUNNING);
1466
1467         dma_fence_remove_callback(&rq->fence, &wait.cb);
1468
1469 out:
1470         mutex_release(&rq->i915->gpu_error.wedge_mutex.dep_map, 0, _THIS_IP_);
1471         trace_i915_request_wait_end(rq);
1472         return timeout;
1473 }
1474
1475 bool i915_retire_requests(struct drm_i915_private *i915)
1476 {
1477         struct intel_ring *ring, *tmp;
1478
1479         lockdep_assert_held(&i915->drm.struct_mutex);
1480
1481         list_for_each_entry_safe(ring, tmp,
1482                                  &i915->gt.active_rings, active_link) {
1483                 intel_ring_get(ring); /* last rq holds reference! */
1484                 ring_retire_requests(ring);
1485                 intel_ring_put(ring);
1486         }
1487
1488         return !list_empty(&i915->gt.active_rings);
1489 }
1490
1491 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1492 #include "selftests/mock_request.c"
1493 #include "selftests/i915_request.c"
1494 #endif
1495
1496 static void i915_global_request_shrink(void)
1497 {
1498         kmem_cache_shrink(global.slab_dependencies);
1499         kmem_cache_shrink(global.slab_execute_cbs);
1500         kmem_cache_shrink(global.slab_requests);
1501 }
1502
1503 static void i915_global_request_exit(void)
1504 {
1505         kmem_cache_destroy(global.slab_dependencies);
1506         kmem_cache_destroy(global.slab_execute_cbs);
1507         kmem_cache_destroy(global.slab_requests);
1508 }
1509
1510 static struct i915_global_request global = { {
1511         .shrink = i915_global_request_shrink,
1512         .exit = i915_global_request_exit,
1513 } };
1514
1515 int __init i915_global_request_init(void)
1516 {
1517         global.slab_requests = KMEM_CACHE(i915_request,
1518                                           SLAB_HWCACHE_ALIGN |
1519                                           SLAB_RECLAIM_ACCOUNT |
1520                                           SLAB_TYPESAFE_BY_RCU);
1521         if (!global.slab_requests)
1522                 return -ENOMEM;
1523
1524         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1525                                              SLAB_HWCACHE_ALIGN |
1526                                              SLAB_RECLAIM_ACCOUNT |
1527                                              SLAB_TYPESAFE_BY_RCU);
1528         if (!global.slab_execute_cbs)
1529                 goto err_requests;
1530
1531         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1532                                               SLAB_HWCACHE_ALIGN |
1533                                               SLAB_RECLAIM_ACCOUNT);
1534         if (!global.slab_dependencies)
1535                 goto err_execute_cbs;
1536
1537         i915_global_register(&global.base);
1538         return 0;
1539
1540 err_execute_cbs:
1541         kmem_cache_destroy(global.slab_execute_cbs);
1542 err_requests:
1543         kmem_cache_destroy(global.slab_requests);
1544         return -ENOMEM;
1545 }