Merge tag 'drm-fixes-2020-02-14' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44         struct list_head link;
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_dependencies;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return dev_name(to_request(fence)->i915->drm.dev);
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         const struct i915_gem_context *ctx;
66
67         /*
68          * The timeline struct (as part of the ppgtt underneath a context)
69          * may be freed when the request is no longer in use by the GPU.
70          * We could extend the life of a context to beyond that of all
71          * fences, possibly keeping the hw resource around indefinitely,
72          * or we just give them a false name. Since
73          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74          * lie seems justifiable.
75          */
76         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77                 return "signaled";
78
79         ctx = i915_request_gem_context(to_request(fence));
80         if (!ctx)
81                 return "[" DRIVER_NAME "]";
82
83         return ctx->name;
84 }
85
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88         return i915_request_completed(to_request(fence));
89 }
90
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93         return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
96 static signed long i915_fence_wait(struct dma_fence *fence,
97                                    bool interruptible,
98                                    signed long timeout)
99 {
100         return i915_request_wait(to_request(fence),
101                                  interruptible | I915_WAIT_PRIORITY,
102                                  timeout);
103 }
104
105 static void i915_fence_release(struct dma_fence *fence)
106 {
107         struct i915_request *rq = to_request(fence);
108
109         /*
110          * The request is put onto a RCU freelist (i.e. the address
111          * is immediately reused), mark the fences as being freed now.
112          * Otherwise the debugobjects for the fences are only marked as
113          * freed when the slab cache itself is freed, and so we would get
114          * caught trying to reuse dead objects.
115          */
116         i915_sw_fence_fini(&rq->submit);
117         i915_sw_fence_fini(&rq->semaphore);
118
119         kmem_cache_free(global.slab_requests, rq);
120 }
121
122 const struct dma_fence_ops i915_fence_ops = {
123         .get_driver_name = i915_fence_get_driver_name,
124         .get_timeline_name = i915_fence_get_timeline_name,
125         .enable_signaling = i915_fence_enable_signaling,
126         .signaled = i915_fence_signaled,
127         .wait = i915_fence_wait,
128         .release = i915_fence_release,
129 };
130
131 static void irq_execute_cb(struct irq_work *wrk)
132 {
133         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135         i915_sw_fence_complete(cb->fence);
136         kmem_cache_free(global.slab_execute_cbs, cb);
137 }
138
139 static void irq_execute_cb_hook(struct irq_work *wrk)
140 {
141         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142
143         cb->hook(container_of(cb->fence, struct i915_request, submit),
144                  &cb->signal->fence);
145         i915_request_put(cb->signal);
146
147         irq_execute_cb(wrk);
148 }
149
150 static void __notify_execute_cb(struct i915_request *rq)
151 {
152         struct execute_cb *cb;
153
154         lockdep_assert_held(&rq->lock);
155
156         if (list_empty(&rq->execute_cb))
157                 return;
158
159         list_for_each_entry(cb, &rq->execute_cb, link)
160                 irq_work_queue(&cb->work);
161
162         /*
163          * XXX Rollback on __i915_request_unsubmit()
164          *
165          * In the future, perhaps when we have an active time-slicing scheduler,
166          * it will be interesting to unsubmit parallel execution and remove
167          * busywaits from the GPU until their master is restarted. This is
168          * quite hairy, we have to carefully rollback the fence and do a
169          * preempt-to-idle cycle on the target engine, all the while the
170          * master execute_cb may refire.
171          */
172         INIT_LIST_HEAD(&rq->execute_cb);
173 }
174
175 static inline void
176 remove_from_client(struct i915_request *request)
177 {
178         struct drm_i915_file_private *file_priv;
179
180         if (!READ_ONCE(request->file_priv))
181                 return;
182
183         rcu_read_lock();
184         file_priv = xchg(&request->file_priv, NULL);
185         if (file_priv) {
186                 spin_lock(&file_priv->mm.lock);
187                 list_del(&request->client_link);
188                 spin_unlock(&file_priv->mm.lock);
189         }
190         rcu_read_unlock();
191 }
192
193 static void free_capture_list(struct i915_request *request)
194 {
195         struct i915_capture_list *capture;
196
197         capture = fetch_and_zero(&request->capture_list);
198         while (capture) {
199                 struct i915_capture_list *next = capture->next;
200
201                 kfree(capture);
202                 capture = next;
203         }
204 }
205
206 static void remove_from_engine(struct i915_request *rq)
207 {
208         struct intel_engine_cs *engine, *locked;
209
210         /*
211          * Virtual engines complicate acquiring the engine timeline lock,
212          * as their rq->engine pointer is not stable until under that
213          * engine lock. The simple ploy we use is to take the lock then
214          * check that the rq still belongs to the newly locked engine.
215          */
216         locked = READ_ONCE(rq->engine);
217         spin_lock_irq(&locked->active.lock);
218         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219                 spin_unlock(&locked->active.lock);
220                 spin_lock(&engine->active.lock);
221                 locked = engine;
222         }
223         list_del_init(&rq->sched.link);
224         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
225         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
226         spin_unlock_irq(&locked->active.lock);
227 }
228
229 bool i915_request_retire(struct i915_request *rq)
230 {
231         if (!i915_request_completed(rq))
232                 return false;
233
234         RQ_TRACE(rq, "\n");
235
236         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
237         trace_i915_request_retire(rq);
238
239         /*
240          * We know the GPU must have read the request to have
241          * sent us the seqno + interrupt, so use the position
242          * of tail of the request to update the last known position
243          * of the GPU head.
244          *
245          * Note this requires that we are always called in request
246          * completion order.
247          */
248         GEM_BUG_ON(!list_is_first(&rq->link,
249                                   &i915_request_timeline(rq)->requests));
250         rq->ring->head = rq->postfix;
251
252         /*
253          * We only loosely track inflight requests across preemption,
254          * and so we may find ourselves attempting to retire a _completed_
255          * request that we have removed from the HW and put back on a run
256          * queue.
257          */
258         remove_from_engine(rq);
259
260         spin_lock_irq(&rq->lock);
261         i915_request_mark_complete(rq);
262         if (!i915_request_signaled(rq))
263                 dma_fence_signal_locked(&rq->fence);
264         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
265                 i915_request_cancel_breadcrumb(rq);
266         if (i915_request_has_waitboost(rq)) {
267                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
268                 atomic_dec(&rq->engine->gt->rps.num_waiters);
269         }
270         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
271                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
272                 __notify_execute_cb(rq);
273         }
274         GEM_BUG_ON(!list_empty(&rq->execute_cb));
275         spin_unlock_irq(&rq->lock);
276
277         remove_from_client(rq);
278         list_del(&rq->link);
279
280         intel_context_exit(rq->context);
281         intel_context_unpin(rq->context);
282
283         free_capture_list(rq);
284         i915_sched_node_fini(&rq->sched);
285         i915_request_put(rq);
286
287         return true;
288 }
289
290 void i915_request_retire_upto(struct i915_request *rq)
291 {
292         struct intel_timeline * const tl = i915_request_timeline(rq);
293         struct i915_request *tmp;
294
295         RQ_TRACE(rq, "\n");
296
297         GEM_BUG_ON(!i915_request_completed(rq));
298
299         do {
300                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
301         } while (i915_request_retire(tmp) && tmp != rq);
302 }
303
304 static int
305 __await_execution(struct i915_request *rq,
306                   struct i915_request *signal,
307                   void (*hook)(struct i915_request *rq,
308                                struct dma_fence *signal),
309                   gfp_t gfp)
310 {
311         struct execute_cb *cb;
312
313         if (i915_request_is_active(signal)) {
314                 if (hook)
315                         hook(rq, &signal->fence);
316                 return 0;
317         }
318
319         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
320         if (!cb)
321                 return -ENOMEM;
322
323         cb->fence = &rq->submit;
324         i915_sw_fence_await(cb->fence);
325         init_irq_work(&cb->work, irq_execute_cb);
326
327         if (hook) {
328                 cb->hook = hook;
329                 cb->signal = i915_request_get(signal);
330                 cb->work.func = irq_execute_cb_hook;
331         }
332
333         spin_lock_irq(&signal->lock);
334         if (i915_request_is_active(signal)) {
335                 if (hook) {
336                         hook(rq, &signal->fence);
337                         i915_request_put(signal);
338                 }
339                 i915_sw_fence_complete(cb->fence);
340                 kmem_cache_free(global.slab_execute_cbs, cb);
341         } else {
342                 list_add_tail(&cb->link, &signal->execute_cb);
343         }
344         spin_unlock_irq(&signal->lock);
345
346         /* Copy across semaphore status as we need the same behaviour */
347         rq->sched.flags |= signal->sched.flags;
348         return 0;
349 }
350
351 bool __i915_request_submit(struct i915_request *request)
352 {
353         struct intel_engine_cs *engine = request->engine;
354         bool result = false;
355
356         RQ_TRACE(request, "\n");
357
358         GEM_BUG_ON(!irqs_disabled());
359         lockdep_assert_held(&engine->active.lock);
360
361         /*
362          * With the advent of preempt-to-busy, we frequently encounter
363          * requests that we have unsubmitted from HW, but left running
364          * until the next ack and so have completed in the meantime. On
365          * resubmission of that completed request, we can skip
366          * updating the payload, and execlists can even skip submitting
367          * the request.
368          *
369          * We must remove the request from the caller's priority queue,
370          * and the caller must only call us when the request is in their
371          * priority queue, under the active.lock. This ensures that the
372          * request has *not* yet been retired and we can safely move
373          * the request into the engine->active.list where it will be
374          * dropped upon retiring. (Otherwise if resubmit a *retired*
375          * request, this would be a horrible use-after-free.)
376          */
377         if (i915_request_completed(request))
378                 goto xfer;
379
380         if (intel_context_is_banned(request->context))
381                 i915_request_skip(request, -EIO);
382
383         /*
384          * Are we using semaphores when the gpu is already saturated?
385          *
386          * Using semaphores incurs a cost in having the GPU poll a
387          * memory location, busywaiting for it to change. The continual
388          * memory reads can have a noticeable impact on the rest of the
389          * system with the extra bus traffic, stalling the cpu as it too
390          * tries to access memory across the bus (perf stat -e bus-cycles).
391          *
392          * If we installed a semaphore on this request and we only submit
393          * the request after the signaler completed, that indicates the
394          * system is overloaded and using semaphores at this time only
395          * increases the amount of work we are doing. If so, we disable
396          * further use of semaphores until we are idle again, whence we
397          * optimistically try again.
398          */
399         if (request->sched.semaphores &&
400             i915_sw_fence_signaled(&request->semaphore))
401                 engine->saturated |= request->sched.semaphores;
402
403         engine->emit_fini_breadcrumb(request,
404                                      request->ring->vaddr + request->postfix);
405
406         trace_i915_request_execute(request);
407         engine->serial++;
408         result = true;
409
410 xfer:   /* We may be recursing from the signal callback of another i915 fence */
411         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
412
413         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
414                 list_move_tail(&request->sched.link, &engine->active.requests);
415                 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
416         }
417
418         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
419             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
420             !i915_request_enable_breadcrumb(request))
421                 intel_engine_signal_breadcrumbs(engine);
422
423         __notify_execute_cb(request);
424
425         spin_unlock(&request->lock);
426
427         return result;
428 }
429
430 void i915_request_submit(struct i915_request *request)
431 {
432         struct intel_engine_cs *engine = request->engine;
433         unsigned long flags;
434
435         /* Will be called from irq-context when using foreign fences. */
436         spin_lock_irqsave(&engine->active.lock, flags);
437
438         __i915_request_submit(request);
439
440         spin_unlock_irqrestore(&engine->active.lock, flags);
441 }
442
443 void __i915_request_unsubmit(struct i915_request *request)
444 {
445         struct intel_engine_cs *engine = request->engine;
446
447         RQ_TRACE(request, "\n");
448
449         GEM_BUG_ON(!irqs_disabled());
450         lockdep_assert_held(&engine->active.lock);
451
452         /*
453          * Only unwind in reverse order, required so that the per-context list
454          * is kept in seqno/ring order.
455          */
456
457         /* We may be recursing from the signal callback of another i915 fence */
458         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
459
460         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
461                 i915_request_cancel_breadcrumb(request);
462
463         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
464         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
465
466         spin_unlock(&request->lock);
467
468         /* We've already spun, don't charge on resubmitting. */
469         if (request->sched.semaphores && i915_request_started(request)) {
470                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
471                 request->sched.semaphores = 0;
472         }
473
474         /*
475          * We don't need to wake_up any waiters on request->execute, they
476          * will get woken by any other event or us re-adding this request
477          * to the engine timeline (__i915_request_submit()). The waiters
478          * should be quite adapt at finding that the request now has a new
479          * global_seqno to the one they went to sleep on.
480          */
481 }
482
483 void i915_request_unsubmit(struct i915_request *request)
484 {
485         struct intel_engine_cs *engine = request->engine;
486         unsigned long flags;
487
488         /* Will be called from irq-context when using foreign fences. */
489         spin_lock_irqsave(&engine->active.lock, flags);
490
491         __i915_request_unsubmit(request);
492
493         spin_unlock_irqrestore(&engine->active.lock, flags);
494 }
495
496 static int __i915_sw_fence_call
497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
498 {
499         struct i915_request *request =
500                 container_of(fence, typeof(*request), submit);
501
502         switch (state) {
503         case FENCE_COMPLETE:
504                 trace_i915_request_submit(request);
505
506                 if (unlikely(fence->error))
507                         i915_request_skip(request, fence->error);
508
509                 /*
510                  * We need to serialize use of the submit_request() callback
511                  * with its hotplugging performed during an emergency
512                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
513                  * critical section in order to force i915_gem_set_wedged() to
514                  * wait until the submit_request() is completed before
515                  * proceeding.
516                  */
517                 rcu_read_lock();
518                 request->engine->submit_request(request);
519                 rcu_read_unlock();
520                 break;
521
522         case FENCE_FREE:
523                 i915_request_put(request);
524                 break;
525         }
526
527         return NOTIFY_DONE;
528 }
529
530 static int __i915_sw_fence_call
531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
532 {
533         struct i915_request *request =
534                 container_of(fence, typeof(*request), semaphore);
535
536         switch (state) {
537         case FENCE_COMPLETE:
538                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
539                 break;
540
541         case FENCE_FREE:
542                 i915_request_put(request);
543                 break;
544         }
545
546         return NOTIFY_DONE;
547 }
548
549 static void retire_requests(struct intel_timeline *tl)
550 {
551         struct i915_request *rq, *rn;
552
553         list_for_each_entry_safe(rq, rn, &tl->requests, link)
554                 if (!i915_request_retire(rq))
555                         break;
556 }
557
558 static noinline struct i915_request *
559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
560 {
561         struct i915_request *rq;
562
563         if (list_empty(&tl->requests))
564                 goto out;
565
566         if (!gfpflags_allow_blocking(gfp))
567                 goto out;
568
569         /* Move our oldest request to the slab-cache (if not in use!) */
570         rq = list_first_entry(&tl->requests, typeof(*rq), link);
571         i915_request_retire(rq);
572
573         rq = kmem_cache_alloc(global.slab_requests,
574                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
575         if (rq)
576                 return rq;
577
578         /* Ratelimit ourselves to prevent oom from malicious clients */
579         rq = list_last_entry(&tl->requests, typeof(*rq), link);
580         cond_synchronize_rcu(rq->rcustate);
581
582         /* Retire our old requests in the hope that we free some */
583         retire_requests(tl);
584
585 out:
586         return kmem_cache_alloc(global.slab_requests, gfp);
587 }
588
589 static void __i915_request_ctor(void *arg)
590 {
591         struct i915_request *rq = arg;
592
593         spin_lock_init(&rq->lock);
594         i915_sched_node_init(&rq->sched);
595         i915_sw_fence_init(&rq->submit, submit_notify);
596         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
597
598         rq->file_priv = NULL;
599         rq->capture_list = NULL;
600
601         INIT_LIST_HEAD(&rq->execute_cb);
602 }
603
604 struct i915_request *
605 __i915_request_create(struct intel_context *ce, gfp_t gfp)
606 {
607         struct intel_timeline *tl = ce->timeline;
608         struct i915_request *rq;
609         u32 seqno;
610         int ret;
611
612         might_sleep_if(gfpflags_allow_blocking(gfp));
613
614         /* Check that the caller provided an already pinned context */
615         __intel_context_pin(ce);
616
617         /*
618          * Beware: Dragons be flying overhead.
619          *
620          * We use RCU to look up requests in flight. The lookups may
621          * race with the request being allocated from the slab freelist.
622          * That is the request we are writing to here, may be in the process
623          * of being read by __i915_active_request_get_rcu(). As such,
624          * we have to be very careful when overwriting the contents. During
625          * the RCU lookup, we change chase the request->engine pointer,
626          * read the request->global_seqno and increment the reference count.
627          *
628          * The reference count is incremented atomically. If it is zero,
629          * the lookup knows the request is unallocated and complete. Otherwise,
630          * it is either still in use, or has been reallocated and reset
631          * with dma_fence_init(). This increment is safe for release as we
632          * check that the request we have a reference to and matches the active
633          * request.
634          *
635          * Before we increment the refcount, we chase the request->engine
636          * pointer. We must not call kmem_cache_zalloc() or else we set
637          * that pointer to NULL and cause a crash during the lookup. If
638          * we see the request is completed (based on the value of the
639          * old engine and seqno), the lookup is complete and reports NULL.
640          * If we decide the request is not completed (new engine or seqno),
641          * then we grab a reference and double check that it is still the
642          * active request - which it won't be and restart the lookup.
643          *
644          * Do not use kmem_cache_zalloc() here!
645          */
646         rq = kmem_cache_alloc(global.slab_requests,
647                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648         if (unlikely(!rq)) {
649                 rq = request_alloc_slow(tl, gfp);
650                 if (!rq) {
651                         ret = -ENOMEM;
652                         goto err_unreserve;
653                 }
654         }
655
656         ret = intel_timeline_get_seqno(tl, rq, &seqno);
657         if (ret)
658                 goto err_free;
659
660         rq->i915 = ce->engine->i915;
661         rq->context = ce;
662         rq->engine = ce->engine;
663         rq->ring = ce->ring;
664         rq->execution_mask = ce->engine->mask;
665
666         RCU_INIT_POINTER(rq->timeline, tl);
667         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
668         rq->hwsp_seqno = tl->hwsp_seqno;
669
670         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
671
672         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
673                        tl->fence_context, seqno);
674
675         /* We bump the ref for the fence chain */
676         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
677         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
678
679         i915_sched_node_reinit(&rq->sched);
680
681         /* No zalloc, everything must be cleared after use */
682         rq->batch = NULL;
683         GEM_BUG_ON(rq->file_priv);
684         GEM_BUG_ON(rq->capture_list);
685         GEM_BUG_ON(!list_empty(&rq->execute_cb));
686
687         /*
688          * Reserve space in the ring buffer for all the commands required to
689          * eventually emit this request. This is to guarantee that the
690          * i915_request_add() call can't fail. Note that the reserve may need
691          * to be redone if the request is not actually submitted straight
692          * away, e.g. because a GPU scheduler has deferred it.
693          *
694          * Note that due to how we add reserved_space to intel_ring_begin()
695          * we need to double our request to ensure that if we need to wrap
696          * around inside i915_request_add() there is sufficient space at
697          * the beginning of the ring as well.
698          */
699         rq->reserved_space =
700                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
701
702         /*
703          * Record the position of the start of the request so that
704          * should we detect the updated seqno part-way through the
705          * GPU processing the request, we never over-estimate the
706          * position of the head.
707          */
708         rq->head = rq->ring->emit;
709
710         ret = rq->engine->request_alloc(rq);
711         if (ret)
712                 goto err_unwind;
713
714         rq->infix = rq->ring->emit; /* end of header; start of user payload */
715
716         intel_context_mark_active(ce);
717         return rq;
718
719 err_unwind:
720         ce->ring->emit = rq->head;
721
722         /* Make sure we didn't add ourselves to external state before freeing */
723         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
724         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
725
726 err_free:
727         kmem_cache_free(global.slab_requests, rq);
728 err_unreserve:
729         intel_context_unpin(ce);
730         return ERR_PTR(ret);
731 }
732
733 struct i915_request *
734 i915_request_create(struct intel_context *ce)
735 {
736         struct i915_request *rq;
737         struct intel_timeline *tl;
738
739         tl = intel_context_timeline_lock(ce);
740         if (IS_ERR(tl))
741                 return ERR_CAST(tl);
742
743         /* Move our oldest request to the slab-cache (if not in use!) */
744         rq = list_first_entry(&tl->requests, typeof(*rq), link);
745         if (!list_is_last(&rq->link, &tl->requests))
746                 i915_request_retire(rq);
747
748         intel_context_enter(ce);
749         rq = __i915_request_create(ce, GFP_KERNEL);
750         intel_context_exit(ce); /* active reference transferred to request */
751         if (IS_ERR(rq))
752                 goto err_unlock;
753
754         /* Check that we do not interrupt ourselves with a new request */
755         rq->cookie = lockdep_pin_lock(&tl->mutex);
756
757         return rq;
758
759 err_unlock:
760         intel_context_timeline_unlock(tl);
761         return rq;
762 }
763
764 static int
765 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
766 {
767         struct dma_fence *fence;
768         int err;
769
770         GEM_BUG_ON(i915_request_timeline(rq) ==
771                    rcu_access_pointer(signal->timeline));
772
773         fence = NULL;
774         rcu_read_lock();
775         spin_lock_irq(&signal->lock);
776         if (!i915_request_started(signal) &&
777             !list_is_first(&signal->link,
778                            &rcu_dereference(signal->timeline)->requests)) {
779                 struct i915_request *prev = list_prev_entry(signal, link);
780
781                 /*
782                  * Peek at the request before us in the timeline. That
783                  * request will only be valid before it is retired, so
784                  * after acquiring a reference to it, confirm that it is
785                  * still part of the signaler's timeline.
786                  */
787                 if (i915_request_get_rcu(prev)) {
788                         if (list_next_entry(prev, link) == signal)
789                                 fence = &prev->fence;
790                         else
791                                 i915_request_put(prev);
792                 }
793         }
794         spin_unlock_irq(&signal->lock);
795         rcu_read_unlock();
796         if (!fence)
797                 return 0;
798
799         err = 0;
800         if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
801                 err = i915_sw_fence_await_dma_fence(&rq->submit,
802                                                     fence, 0,
803                                                     I915_FENCE_GFP);
804         dma_fence_put(fence);
805
806         return err;
807 }
808
809 static intel_engine_mask_t
810 already_busywaiting(struct i915_request *rq)
811 {
812         /*
813          * Polling a semaphore causes bus traffic, delaying other users of
814          * both the GPU and CPU. We want to limit the impact on others,
815          * while taking advantage of early submission to reduce GPU
816          * latency. Therefore we restrict ourselves to not using more
817          * than one semaphore from each source, and not using a semaphore
818          * if we have detected the engine is saturated (i.e. would not be
819          * submitted early and cause bus traffic reading an already passed
820          * semaphore).
821          *
822          * See the are-we-too-late? check in __i915_request_submit().
823          */
824         return rq->sched.semaphores | rq->engine->saturated;
825 }
826
827 static int
828 __emit_semaphore_wait(struct i915_request *to,
829                       struct i915_request *from,
830                       u32 seqno)
831 {
832         const int has_token = INTEL_GEN(to->i915) >= 12;
833         u32 hwsp_offset;
834         int len, err;
835         u32 *cs;
836
837         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
838
839         /* We need to pin the signaler's HWSP until we are finished reading. */
840         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
841         if (err)
842                 return err;
843
844         len = 4;
845         if (has_token)
846                 len += 2;
847
848         cs = intel_ring_begin(to, len);
849         if (IS_ERR(cs))
850                 return PTR_ERR(cs);
851
852         /*
853          * Using greater-than-or-equal here means we have to worry
854          * about seqno wraparound. To side step that issue, we swap
855          * the timeline HWSP upon wrapping, so that everyone listening
856          * for the old (pre-wrap) values do not see the much smaller
857          * (post-wrap) values than they were expecting (and so wait
858          * forever).
859          */
860         *cs++ = (MI_SEMAPHORE_WAIT |
861                  MI_SEMAPHORE_GLOBAL_GTT |
862                  MI_SEMAPHORE_POLL |
863                  MI_SEMAPHORE_SAD_GTE_SDD) +
864                 has_token;
865         *cs++ = seqno;
866         *cs++ = hwsp_offset;
867         *cs++ = 0;
868         if (has_token) {
869                 *cs++ = 0;
870                 *cs++ = MI_NOOP;
871         }
872
873         intel_ring_advance(to, cs);
874         return 0;
875 }
876
877 static int
878 emit_semaphore_wait(struct i915_request *to,
879                     struct i915_request *from,
880                     gfp_t gfp)
881 {
882         /* Just emit the first semaphore we see as request space is limited. */
883         if (already_busywaiting(to) & from->engine->mask)
884                 goto await_fence;
885
886         if (i915_request_await_start(to, from) < 0)
887                 goto await_fence;
888
889         /* Only submit our spinner after the signaler is running! */
890         if (__await_execution(to, from, NULL, gfp))
891                 goto await_fence;
892
893         if (__emit_semaphore_wait(to, from, from->fence.seqno))
894                 goto await_fence;
895
896         to->sched.semaphores |= from->engine->mask;
897         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
898         return 0;
899
900 await_fence:
901         return i915_sw_fence_await_dma_fence(&to->submit,
902                                              &from->fence, 0,
903                                              I915_FENCE_GFP);
904 }
905
906 static int
907 i915_request_await_request(struct i915_request *to, struct i915_request *from)
908 {
909         int ret;
910
911         GEM_BUG_ON(to == from);
912         GEM_BUG_ON(to->timeline == from->timeline);
913
914         if (i915_request_completed(from))
915                 return 0;
916
917         if (to->engine->schedule) {
918                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
919                 if (ret < 0)
920                         return ret;
921         }
922
923         if (to->engine == from->engine)
924                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
925                                                        &from->submit,
926                                                        I915_FENCE_GFP);
927         else if (intel_context_use_semaphores(to->context))
928                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
929         else
930                 ret = i915_sw_fence_await_dma_fence(&to->submit,
931                                                     &from->fence, 0,
932                                                     I915_FENCE_GFP);
933         if (ret < 0)
934                 return ret;
935
936         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
937                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
938                                                     &from->fence, 0,
939                                                     I915_FENCE_GFP);
940                 if (ret < 0)
941                         return ret;
942         }
943
944         return 0;
945 }
946
947 int
948 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
949 {
950         struct dma_fence **child = &fence;
951         unsigned int nchild = 1;
952         int ret;
953
954         /*
955          * Note that if the fence-array was created in signal-on-any mode,
956          * we should *not* decompose it into its individual fences. However,
957          * we don't currently store which mode the fence-array is operating
958          * in. Fortunately, the only user of signal-on-any is private to
959          * amdgpu and we should not see any incoming fence-array from
960          * sync-file being in signal-on-any mode.
961          */
962         if (dma_fence_is_array(fence)) {
963                 struct dma_fence_array *array = to_dma_fence_array(fence);
964
965                 child = array->fences;
966                 nchild = array->num_fences;
967                 GEM_BUG_ON(!nchild);
968         }
969
970         do {
971                 fence = *child++;
972                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
973                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
974                         continue;
975                 }
976
977                 /*
978                  * Requests on the same timeline are explicitly ordered, along
979                  * with their dependencies, by i915_request_add() which ensures
980                  * that requests are submitted in-order through each ring.
981                  */
982                 if (fence->context == rq->fence.context)
983                         continue;
984
985                 /* Squash repeated waits to the same timelines */
986                 if (fence->context &&
987                     intel_timeline_sync_is_later(i915_request_timeline(rq),
988                                                  fence))
989                         continue;
990
991                 if (dma_fence_is_i915(fence))
992                         ret = i915_request_await_request(rq, to_request(fence));
993                 else
994                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
995                                                             fence->context ? I915_FENCE_TIMEOUT : 0,
996                                                             I915_FENCE_GFP);
997                 if (ret < 0)
998                         return ret;
999
1000                 /* Record the latest fence used against each timeline */
1001                 if (fence->context)
1002                         intel_timeline_sync_set(i915_request_timeline(rq),
1003                                                 fence);
1004         } while (--nchild);
1005
1006         return 0;
1007 }
1008
1009 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1010                                           struct dma_fence *fence)
1011 {
1012         return __intel_timeline_sync_is_later(tl,
1013                                               fence->context,
1014                                               fence->seqno - 1);
1015 }
1016
1017 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1018                                          const struct dma_fence *fence)
1019 {
1020         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1021 }
1022
1023 static int
1024 __i915_request_await_execution(struct i915_request *to,
1025                                struct i915_request *from,
1026                                void (*hook)(struct i915_request *rq,
1027                                             struct dma_fence *signal))
1028 {
1029         int err;
1030
1031         /* Submit both requests at the same time */
1032         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1033         if (err)
1034                 return err;
1035
1036         /* Squash repeated depenendices to the same timelines */
1037         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1038                                           &from->fence))
1039                 return 0;
1040
1041         /* Ensure both start together [after all semaphores in signal] */
1042         if (intel_engine_has_semaphores(to->engine))
1043                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1044         else
1045                 err = i915_request_await_start(to, from);
1046         if (err < 0)
1047                 return err;
1048
1049         /* Couple the dependency tree for PI on this exposed to->fence */
1050         if (to->engine->schedule) {
1051                 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1052                 if (err < 0)
1053                         return err;
1054         }
1055
1056         return intel_timeline_sync_set_start(i915_request_timeline(to),
1057                                              &from->fence);
1058 }
1059
1060 int
1061 i915_request_await_execution(struct i915_request *rq,
1062                              struct dma_fence *fence,
1063                              void (*hook)(struct i915_request *rq,
1064                                           struct dma_fence *signal))
1065 {
1066         struct dma_fence **child = &fence;
1067         unsigned int nchild = 1;
1068         int ret;
1069
1070         if (dma_fence_is_array(fence)) {
1071                 struct dma_fence_array *array = to_dma_fence_array(fence);
1072
1073                 /* XXX Error for signal-on-any fence arrays */
1074
1075                 child = array->fences;
1076                 nchild = array->num_fences;
1077                 GEM_BUG_ON(!nchild);
1078         }
1079
1080         do {
1081                 fence = *child++;
1082                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1083                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1084                         continue;
1085                 }
1086
1087                 /*
1088                  * We don't squash repeated fence dependencies here as we
1089                  * want to run our callback in all cases.
1090                  */
1091
1092                 if (dma_fence_is_i915(fence))
1093                         ret = __i915_request_await_execution(rq,
1094                                                              to_request(fence),
1095                                                              hook);
1096                 else
1097                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1098                                                             I915_FENCE_TIMEOUT,
1099                                                             GFP_KERNEL);
1100                 if (ret < 0)
1101                         return ret;
1102         } while (--nchild);
1103
1104         return 0;
1105 }
1106
1107 /**
1108  * i915_request_await_object - set this request to (async) wait upon a bo
1109  * @to: request we are wishing to use
1110  * @obj: object which may be in use on another ring.
1111  * @write: whether the wait is on behalf of a writer
1112  *
1113  * This code is meant to abstract object synchronization with the GPU.
1114  * Conceptually we serialise writes between engines inside the GPU.
1115  * We only allow one engine to write into a buffer at any time, but
1116  * multiple readers. To ensure each has a coherent view of memory, we must:
1117  *
1118  * - If there is an outstanding write request to the object, the new
1119  *   request must wait for it to complete (either CPU or in hw, requests
1120  *   on the same ring will be naturally ordered).
1121  *
1122  * - If we are a write request (pending_write_domain is set), the new
1123  *   request must wait for outstanding read requests to complete.
1124  *
1125  * Returns 0 if successful, else propagates up the lower layer error.
1126  */
1127 int
1128 i915_request_await_object(struct i915_request *to,
1129                           struct drm_i915_gem_object *obj,
1130                           bool write)
1131 {
1132         struct dma_fence *excl;
1133         int ret = 0;
1134
1135         if (write) {
1136                 struct dma_fence **shared;
1137                 unsigned int count, i;
1138
1139                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1140                                                         &excl, &count, &shared);
1141                 if (ret)
1142                         return ret;
1143
1144                 for (i = 0; i < count; i++) {
1145                         ret = i915_request_await_dma_fence(to, shared[i]);
1146                         if (ret)
1147                                 break;
1148
1149                         dma_fence_put(shared[i]);
1150                 }
1151
1152                 for (; i < count; i++)
1153                         dma_fence_put(shared[i]);
1154                 kfree(shared);
1155         } else {
1156                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1157         }
1158
1159         if (excl) {
1160                 if (ret == 0)
1161                         ret = i915_request_await_dma_fence(to, excl);
1162
1163                 dma_fence_put(excl);
1164         }
1165
1166         return ret;
1167 }
1168
1169 void i915_request_skip(struct i915_request *rq, int error)
1170 {
1171         void *vaddr = rq->ring->vaddr;
1172         u32 head;
1173
1174         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1175         dma_fence_set_error(&rq->fence, error);
1176
1177         if (rq->infix == rq->postfix)
1178                 return;
1179
1180         /*
1181          * As this request likely depends on state from the lost
1182          * context, clear out all the user operations leaving the
1183          * breadcrumb at the end (so we get the fence notifications).
1184          */
1185         head = rq->infix;
1186         if (rq->postfix < head) {
1187                 memset(vaddr + head, 0, rq->ring->size - head);
1188                 head = 0;
1189         }
1190         memset(vaddr + head, 0, rq->postfix - head);
1191         rq->infix = rq->postfix;
1192 }
1193
1194 static struct i915_request *
1195 __i915_request_add_to_timeline(struct i915_request *rq)
1196 {
1197         struct intel_timeline *timeline = i915_request_timeline(rq);
1198         struct i915_request *prev;
1199
1200         /*
1201          * Dependency tracking and request ordering along the timeline
1202          * is special cased so that we can eliminate redundant ordering
1203          * operations while building the request (we know that the timeline
1204          * itself is ordered, and here we guarantee it).
1205          *
1206          * As we know we will need to emit tracking along the timeline,
1207          * we embed the hooks into our request struct -- at the cost of
1208          * having to have specialised no-allocation interfaces (which will
1209          * be beneficial elsewhere).
1210          *
1211          * A second benefit to open-coding i915_request_await_request is
1212          * that we can apply a slight variant of the rules specialised
1213          * for timelines that jump between engines (such as virtual engines).
1214          * If we consider the case of virtual engine, we must emit a dma-fence
1215          * to prevent scheduling of the second request until the first is
1216          * complete (to maximise our greedy late load balancing) and this
1217          * precludes optimising to use semaphores serialisation of a single
1218          * timeline across engines.
1219          */
1220         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1221                                                   &rq->fence));
1222         if (prev && !i915_request_completed(prev)) {
1223                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1224                         i915_sw_fence_await_sw_fence(&rq->submit,
1225                                                      &prev->submit,
1226                                                      &rq->submitq);
1227                 else
1228                         __i915_sw_fence_await_dma_fence(&rq->submit,
1229                                                         &prev->fence,
1230                                                         &rq->dmaq);
1231                 if (rq->engine->schedule)
1232                         __i915_sched_node_add_dependency(&rq->sched,
1233                                                          &prev->sched,
1234                                                          &rq->dep,
1235                                                          0);
1236         }
1237
1238         list_add_tail(&rq->link, &timeline->requests);
1239
1240         /*
1241          * Make sure that no request gazumped us - if it was allocated after
1242          * our i915_request_alloc() and called __i915_request_add() before
1243          * us, the timeline will hold its seqno which is later than ours.
1244          */
1245         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1246
1247         return prev;
1248 }
1249
1250 /*
1251  * NB: This function is not allowed to fail. Doing so would mean the the
1252  * request is not being tracked for completion but the work itself is
1253  * going to happen on the hardware. This would be a Bad Thing(tm).
1254  */
1255 struct i915_request *__i915_request_commit(struct i915_request *rq)
1256 {
1257         struct intel_engine_cs *engine = rq->engine;
1258         struct intel_ring *ring = rq->ring;
1259         u32 *cs;
1260
1261         RQ_TRACE(rq, "\n");
1262
1263         /*
1264          * To ensure that this call will not fail, space for its emissions
1265          * should already have been reserved in the ring buffer. Let the ring
1266          * know that it is time to use that space up.
1267          */
1268         GEM_BUG_ON(rq->reserved_space > ring->space);
1269         rq->reserved_space = 0;
1270         rq->emitted_jiffies = jiffies;
1271
1272         /*
1273          * Record the position of the start of the breadcrumb so that
1274          * should we detect the updated seqno part-way through the
1275          * GPU processing the request, we never over-estimate the
1276          * position of the ring's HEAD.
1277          */
1278         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1279         GEM_BUG_ON(IS_ERR(cs));
1280         rq->postfix = intel_ring_offset(rq, cs);
1281
1282         return __i915_request_add_to_timeline(rq);
1283 }
1284
1285 void __i915_request_queue(struct i915_request *rq,
1286                           const struct i915_sched_attr *attr)
1287 {
1288         /*
1289          * Let the backend know a new request has arrived that may need
1290          * to adjust the existing execution schedule due to a high priority
1291          * request - i.e. we may want to preempt the current request in order
1292          * to run a high priority dependency chain *before* we can execute this
1293          * request.
1294          *
1295          * This is called before the request is ready to run so that we can
1296          * decide whether to preempt the entire chain so that it is ready to
1297          * run at the earliest possible convenience.
1298          */
1299         i915_sw_fence_commit(&rq->semaphore);
1300         if (attr && rq->engine->schedule)
1301                 rq->engine->schedule(rq, attr);
1302         i915_sw_fence_commit(&rq->submit);
1303 }
1304
1305 void i915_request_add(struct i915_request *rq)
1306 {
1307         struct intel_timeline * const tl = i915_request_timeline(rq);
1308         struct i915_sched_attr attr = {};
1309         struct i915_request *prev;
1310
1311         lockdep_assert_held(&tl->mutex);
1312         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1313
1314         trace_i915_request_add(rq);
1315
1316         prev = __i915_request_commit(rq);
1317
1318         if (rcu_access_pointer(rq->context->gem_context))
1319                 attr = i915_request_gem_context(rq)->sched;
1320
1321         /*
1322          * Boost actual workloads past semaphores!
1323          *
1324          * With semaphores we spin on one engine waiting for another,
1325          * simply to reduce the latency of starting our work when
1326          * the signaler completes. However, if there is any other
1327          * work that we could be doing on this engine instead, that
1328          * is better utilisation and will reduce the overall duration
1329          * of the current work. To avoid PI boosting a semaphore
1330          * far in the distance past over useful work, we keep a history
1331          * of any semaphore use along our dependency chain.
1332          */
1333         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1334                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1335
1336         /*
1337          * Boost priorities to new clients (new request flows).
1338          *
1339          * Allow interactive/synchronous clients to jump ahead of
1340          * the bulk clients. (FQ_CODEL)
1341          */
1342         if (list_empty(&rq->sched.signalers_list))
1343                 attr.priority |= I915_PRIORITY_WAIT;
1344
1345         local_bh_disable();
1346         __i915_request_queue(rq, &attr);
1347         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1348
1349         /*
1350          * In typical scenarios, we do not expect the previous request on
1351          * the timeline to be still tracked by timeline->last_request if it
1352          * has been completed. If the completed request is still here, that
1353          * implies that request retirement is a long way behind submission,
1354          * suggesting that we haven't been retiring frequently enough from
1355          * the combination of retire-before-alloc, waiters and the background
1356          * retirement worker. So if the last request on this timeline was
1357          * already completed, do a catch up pass, flushing the retirement queue
1358          * up to this client. Since we have now moved the heaviest operations
1359          * during retirement onto secondary workers, such as freeing objects
1360          * or contexts, retiring a bunch of requests is mostly list management
1361          * (and cache misses), and so we should not be overly penalizing this
1362          * client by performing excess work, though we may still performing
1363          * work on behalf of others -- but instead we should benefit from
1364          * improved resource management. (Well, that's the theory at least.)
1365          */
1366         if (prev &&
1367             i915_request_completed(prev) &&
1368             rcu_access_pointer(prev->timeline) == tl)
1369                 i915_request_retire_upto(prev);
1370
1371         mutex_unlock(&tl->mutex);
1372 }
1373
1374 static unsigned long local_clock_us(unsigned int *cpu)
1375 {
1376         unsigned long t;
1377
1378         /*
1379          * Cheaply and approximately convert from nanoseconds to microseconds.
1380          * The result and subsequent calculations are also defined in the same
1381          * approximate microseconds units. The principal source of timing
1382          * error here is from the simple truncation.
1383          *
1384          * Note that local_clock() is only defined wrt to the current CPU;
1385          * the comparisons are no longer valid if we switch CPUs. Instead of
1386          * blocking preemption for the entire busywait, we can detect the CPU
1387          * switch and use that as indicator of system load and a reason to
1388          * stop busywaiting, see busywait_stop().
1389          */
1390         *cpu = get_cpu();
1391         t = local_clock() >> 10;
1392         put_cpu();
1393
1394         return t;
1395 }
1396
1397 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1398 {
1399         unsigned int this_cpu;
1400
1401         if (time_after(local_clock_us(&this_cpu), timeout))
1402                 return true;
1403
1404         return this_cpu != cpu;
1405 }
1406
1407 static bool __i915_spin_request(const struct i915_request * const rq,
1408                                 int state, unsigned long timeout_us)
1409 {
1410         unsigned int cpu;
1411
1412         /*
1413          * Only wait for the request if we know it is likely to complete.
1414          *
1415          * We don't track the timestamps around requests, nor the average
1416          * request length, so we do not have a good indicator that this
1417          * request will complete within the timeout. What we do know is the
1418          * order in which requests are executed by the context and so we can
1419          * tell if the request has been started. If the request is not even
1420          * running yet, it is a fair assumption that it will not complete
1421          * within our relatively short timeout.
1422          */
1423         if (!i915_request_is_running(rq))
1424                 return false;
1425
1426         /*
1427          * When waiting for high frequency requests, e.g. during synchronous
1428          * rendering split between the CPU and GPU, the finite amount of time
1429          * required to set up the irq and wait upon it limits the response
1430          * rate. By busywaiting on the request completion for a short while we
1431          * can service the high frequency waits as quick as possible. However,
1432          * if it is a slow request, we want to sleep as quickly as possible.
1433          * The tradeoff between waiting and sleeping is roughly the time it
1434          * takes to sleep on a request, on the order of a microsecond.
1435          */
1436
1437         timeout_us += local_clock_us(&cpu);
1438         do {
1439                 if (i915_request_completed(rq))
1440                         return true;
1441
1442                 if (signal_pending_state(state, current))
1443                         break;
1444
1445                 if (busywait_stop(timeout_us, cpu))
1446                         break;
1447
1448                 cpu_relax();
1449         } while (!need_resched());
1450
1451         return false;
1452 }
1453
1454 struct request_wait {
1455         struct dma_fence_cb cb;
1456         struct task_struct *tsk;
1457 };
1458
1459 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1460 {
1461         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1462
1463         wake_up_process(wait->tsk);
1464 }
1465
1466 /**
1467  * i915_request_wait - wait until execution of request has finished
1468  * @rq: the request to wait upon
1469  * @flags: how to wait
1470  * @timeout: how long to wait in jiffies
1471  *
1472  * i915_request_wait() waits for the request to be completed, for a
1473  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1474  * unbounded wait).
1475  *
1476  * Returns the remaining time (in jiffies) if the request completed, which may
1477  * be zero or -ETIME if the request is unfinished after the timeout expires.
1478  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1479  * pending before the request completes.
1480  */
1481 long i915_request_wait(struct i915_request *rq,
1482                        unsigned int flags,
1483                        long timeout)
1484 {
1485         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1486                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1487         struct request_wait wait;
1488
1489         might_sleep();
1490         GEM_BUG_ON(timeout < 0);
1491
1492         if (dma_fence_is_signaled(&rq->fence))
1493                 return timeout;
1494
1495         if (!timeout)
1496                 return -ETIME;
1497
1498         trace_i915_request_wait_begin(rq, flags);
1499
1500         /*
1501          * We must never wait on the GPU while holding a lock as we
1502          * may need to perform a GPU reset. So while we don't need to
1503          * serialise wait/reset with an explicit lock, we do want
1504          * lockdep to detect potential dependency cycles.
1505          */
1506         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1507
1508         /*
1509          * Optimistic spin before touching IRQs.
1510          *
1511          * We may use a rather large value here to offset the penalty of
1512          * switching away from the active task. Frequently, the client will
1513          * wait upon an old swapbuffer to throttle itself to remain within a
1514          * frame of the gpu. If the client is running in lockstep with the gpu,
1515          * then it should not be waiting long at all, and a sleep now will incur
1516          * extra scheduler latency in producing the next frame. To try to
1517          * avoid adding the cost of enabling/disabling the interrupt to the
1518          * short wait, we first spin to see if the request would have completed
1519          * in the time taken to setup the interrupt.
1520          *
1521          * We need upto 5us to enable the irq, and upto 20us to hide the
1522          * scheduler latency of a context switch, ignoring the secondary
1523          * impacts from a context switch such as cache eviction.
1524          *
1525          * The scheme used for low-latency IO is called "hybrid interrupt
1526          * polling". The suggestion there is to sleep until just before you
1527          * expect to be woken by the device interrupt and then poll for its
1528          * completion. That requires having a good predictor for the request
1529          * duration, which we currently lack.
1530          */
1531         if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1532             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1533                 dma_fence_signal(&rq->fence);
1534                 goto out;
1535         }
1536
1537         /*
1538          * This client is about to stall waiting for the GPU. In many cases
1539          * this is undesirable and limits the throughput of the system, as
1540          * many clients cannot continue processing user input/output whilst
1541          * blocked. RPS autotuning may take tens of milliseconds to respond
1542          * to the GPU load and thus incurs additional latency for the client.
1543          * We can circumvent that by promoting the GPU frequency to maximum
1544          * before we sleep. This makes the GPU throttle up much more quickly
1545          * (good for benchmarks and user experience, e.g. window animations),
1546          * but at a cost of spending more power processing the workload
1547          * (bad for battery).
1548          */
1549         if (flags & I915_WAIT_PRIORITY) {
1550                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1551                         intel_rps_boost(rq);
1552                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1553         }
1554
1555         wait.tsk = current;
1556         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1557                 goto out;
1558
1559         for (;;) {
1560                 set_current_state(state);
1561
1562                 if (i915_request_completed(rq)) {
1563                         dma_fence_signal(&rq->fence);
1564                         break;
1565                 }
1566
1567                 if (signal_pending_state(state, current)) {
1568                         timeout = -ERESTARTSYS;
1569                         break;
1570                 }
1571
1572                 if (!timeout) {
1573                         timeout = -ETIME;
1574                         break;
1575                 }
1576
1577                 intel_engine_flush_submission(rq->engine);
1578                 timeout = io_schedule_timeout(timeout);
1579         }
1580         __set_current_state(TASK_RUNNING);
1581
1582         dma_fence_remove_callback(&rq->fence, &wait.cb);
1583
1584 out:
1585         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1586         trace_i915_request_wait_end(rq);
1587         return timeout;
1588 }
1589
1590 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1591 #include "selftests/mock_request.c"
1592 #include "selftests/i915_request.c"
1593 #endif
1594
1595 static void i915_global_request_shrink(void)
1596 {
1597         kmem_cache_shrink(global.slab_dependencies);
1598         kmem_cache_shrink(global.slab_execute_cbs);
1599         kmem_cache_shrink(global.slab_requests);
1600 }
1601
1602 static void i915_global_request_exit(void)
1603 {
1604         kmem_cache_destroy(global.slab_dependencies);
1605         kmem_cache_destroy(global.slab_execute_cbs);
1606         kmem_cache_destroy(global.slab_requests);
1607 }
1608
1609 static struct i915_global_request global = { {
1610         .shrink = i915_global_request_shrink,
1611         .exit = i915_global_request_exit,
1612 } };
1613
1614 int __init i915_global_request_init(void)
1615 {
1616         global.slab_requests =
1617                 kmem_cache_create("i915_request",
1618                                   sizeof(struct i915_request),
1619                                   __alignof__(struct i915_request),
1620                                   SLAB_HWCACHE_ALIGN |
1621                                   SLAB_RECLAIM_ACCOUNT |
1622                                   SLAB_TYPESAFE_BY_RCU,
1623                                   __i915_request_ctor);
1624         if (!global.slab_requests)
1625                 return -ENOMEM;
1626
1627         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1628                                              SLAB_HWCACHE_ALIGN |
1629                                              SLAB_RECLAIM_ACCOUNT |
1630                                              SLAB_TYPESAFE_BY_RCU);
1631         if (!global.slab_execute_cbs)
1632                 goto err_requests;
1633
1634         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1635                                               SLAB_HWCACHE_ALIGN |
1636                                               SLAB_RECLAIM_ACCOUNT);
1637         if (!global.slab_dependencies)
1638                 goto err_execute_cbs;
1639
1640         i915_global_register(&global.base);
1641         return 0;
1642
1643 err_execute_cbs:
1644         kmem_cache_destroy(global.slab_execute_cbs);
1645 err_requests:
1646         kmem_cache_destroy(global.slab_requests);
1647         return -ENOMEM;
1648 }