Merge drm/drm-next into drm-intel-gt-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_engine.h"
37 #include "gt/intel_engine_heartbeat.h"
38 #include "gt/intel_gpu_commands.h"
39 #include "gt/intel_reset.h"
40 #include "gt/intel_ring.h"
41 #include "gt/intel_rps.h"
42
43 #include "i915_active.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47
48 struct execute_cb {
49         struct irq_work work;
50         struct i915_sw_fence *fence;
51         struct i915_request *signal;
52 };
53
54 static struct kmem_cache *slab_requests;
55 static struct kmem_cache *slab_execute_cbs;
56
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59         return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64         const struct i915_gem_context *ctx;
65
66         /*
67          * The timeline struct (as part of the ppgtt underneath a context)
68          * may be freed when the request is no longer in use by the GPU.
69          * We could extend the life of a context to beyond that of all
70          * fences, possibly keeping the hw resource around indefinitely,
71          * or we just give them a false name. Since
72          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73          * lie seems justifiable.
74          */
75         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76                 return "signaled";
77
78         ctx = i915_request_gem_context(to_request(fence));
79         if (!ctx)
80                 return "[" DRIVER_NAME "]";
81
82         return ctx->name;
83 }
84
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87         return i915_request_completed(to_request(fence));
88 }
89
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92         return i915_request_enable_breadcrumb(to_request(fence));
93 }
94
95 static signed long i915_fence_wait(struct dma_fence *fence,
96                                    bool interruptible,
97                                    signed long timeout)
98 {
99         return i915_request_wait(to_request(fence),
100                                  interruptible | I915_WAIT_PRIORITY,
101                                  timeout);
102 }
103
104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106         return slab_requests;
107 }
108
109 static void i915_fence_release(struct dma_fence *fence)
110 {
111         struct i915_request *rq = to_request(fence);
112
113         GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
114                    rq->guc_prio != GUC_PRIO_FINI);
115
116         /*
117          * The request is put onto a RCU freelist (i.e. the address
118          * is immediately reused), mark the fences as being freed now.
119          * Otherwise the debugobjects for the fences are only marked as
120          * freed when the slab cache itself is freed, and so we would get
121          * caught trying to reuse dead objects.
122          */
123         i915_sw_fence_fini(&rq->submit);
124         i915_sw_fence_fini(&rq->semaphore);
125
126         /*
127          * Keep one request on each engine for reserved use under mempressure,
128          * do not use with virtual engines as this really is only needed for
129          * kernel contexts.
130          */
131         if (!intel_engine_is_virtual(rq->engine) &&
132             !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
133                 intel_context_put(rq->context);
134                 return;
135         }
136
137         intel_context_put(rq->context);
138
139         kmem_cache_free(slab_requests, rq);
140 }
141
142 const struct dma_fence_ops i915_fence_ops = {
143         .get_driver_name = i915_fence_get_driver_name,
144         .get_timeline_name = i915_fence_get_timeline_name,
145         .enable_signaling = i915_fence_enable_signaling,
146         .signaled = i915_fence_signaled,
147         .wait = i915_fence_wait,
148         .release = i915_fence_release,
149 };
150
151 static void irq_execute_cb(struct irq_work *wrk)
152 {
153         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
154
155         i915_sw_fence_complete(cb->fence);
156         kmem_cache_free(slab_execute_cbs, cb);
157 }
158
159 static __always_inline void
160 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
161 {
162         struct execute_cb *cb, *cn;
163
164         if (llist_empty(&rq->execute_cb))
165                 return;
166
167         llist_for_each_entry_safe(cb, cn,
168                                   llist_del_all(&rq->execute_cb),
169                                   work.node.llist)
170                 fn(&cb->work);
171 }
172
173 static void __notify_execute_cb_irq(struct i915_request *rq)
174 {
175         __notify_execute_cb(rq, irq_work_queue);
176 }
177
178 static bool irq_work_imm(struct irq_work *wrk)
179 {
180         wrk->func(wrk);
181         return false;
182 }
183
184 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
185 {
186         __notify_execute_cb(rq, irq_work_imm);
187 }
188
189 static void free_capture_list(struct i915_request *request)
190 {
191         struct i915_capture_list *capture;
192
193         capture = fetch_and_zero(&request->capture_list);
194         while (capture) {
195                 struct i915_capture_list *next = capture->next;
196
197                 kfree(capture);
198                 capture = next;
199         }
200 }
201
202 static void __i915_request_fill(struct i915_request *rq, u8 val)
203 {
204         void *vaddr = rq->ring->vaddr;
205         u32 head;
206
207         head = rq->infix;
208         if (rq->postfix < head) {
209                 memset(vaddr + head, val, rq->ring->size - head);
210                 head = 0;
211         }
212         memset(vaddr + head, val, rq->postfix - head);
213 }
214
215 /**
216  * i915_request_active_engine
217  * @rq: request to inspect
218  * @active: pointer in which to return the active engine
219  *
220  * Fills the currently active engine to the @active pointer if the request
221  * is active and still not completed.
222  *
223  * Returns true if request was active or false otherwise.
224  */
225 bool
226 i915_request_active_engine(struct i915_request *rq,
227                            struct intel_engine_cs **active)
228 {
229         struct intel_engine_cs *engine, *locked;
230         bool ret = false;
231
232         /*
233          * Serialise with __i915_request_submit() so that it sees
234          * is-banned?, or we know the request is already inflight.
235          *
236          * Note that rq->engine is unstable, and so we double
237          * check that we have acquired the lock on the final engine.
238          */
239         locked = READ_ONCE(rq->engine);
240         spin_lock_irq(&locked->sched_engine->lock);
241         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
242                 spin_unlock(&locked->sched_engine->lock);
243                 locked = engine;
244                 spin_lock(&locked->sched_engine->lock);
245         }
246
247         if (i915_request_is_active(rq)) {
248                 if (!__i915_request_is_complete(rq))
249                         *active = locked;
250                 ret = true;
251         }
252
253         spin_unlock_irq(&locked->sched_engine->lock);
254
255         return ret;
256 }
257
258 static void __rq_init_watchdog(struct i915_request *rq)
259 {
260         rq->watchdog.timer.function = NULL;
261 }
262
263 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
264 {
265         struct i915_request *rq =
266                 container_of(hrtimer, struct i915_request, watchdog.timer);
267         struct intel_gt *gt = rq->engine->gt;
268
269         if (!i915_request_completed(rq)) {
270                 if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
271                         schedule_work(&gt->watchdog.work);
272         } else {
273                 i915_request_put(rq);
274         }
275
276         return HRTIMER_NORESTART;
277 }
278
279 static void __rq_arm_watchdog(struct i915_request *rq)
280 {
281         struct i915_request_watchdog *wdg = &rq->watchdog;
282         struct intel_context *ce = rq->context;
283
284         if (!ce->watchdog.timeout_us)
285                 return;
286
287         i915_request_get(rq);
288
289         hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
290         wdg->timer.function = __rq_watchdog_expired;
291         hrtimer_start_range_ns(&wdg->timer,
292                                ns_to_ktime(ce->watchdog.timeout_us *
293                                            NSEC_PER_USEC),
294                                NSEC_PER_MSEC,
295                                HRTIMER_MODE_REL);
296 }
297
298 static void __rq_cancel_watchdog(struct i915_request *rq)
299 {
300         struct i915_request_watchdog *wdg = &rq->watchdog;
301
302         if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
303                 i915_request_put(rq);
304 }
305
306 bool i915_request_retire(struct i915_request *rq)
307 {
308         if (!__i915_request_is_complete(rq))
309                 return false;
310
311         RQ_TRACE(rq, "\n");
312
313         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
314         trace_i915_request_retire(rq);
315         i915_request_mark_complete(rq);
316
317         __rq_cancel_watchdog(rq);
318
319         /*
320          * We know the GPU must have read the request to have
321          * sent us the seqno + interrupt, so use the position
322          * of tail of the request to update the last known position
323          * of the GPU head.
324          *
325          * Note this requires that we are always called in request
326          * completion order.
327          */
328         GEM_BUG_ON(!list_is_first(&rq->link,
329                                   &i915_request_timeline(rq)->requests));
330         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
331                 /* Poison before we release our space in the ring */
332                 __i915_request_fill(rq, POISON_FREE);
333         rq->ring->head = rq->postfix;
334
335         if (!i915_request_signaled(rq)) {
336                 spin_lock_irq(&rq->lock);
337                 dma_fence_signal_locked(&rq->fence);
338                 spin_unlock_irq(&rq->lock);
339         }
340
341         if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
342                 intel_rps_dec_waiters(&rq->engine->gt->rps);
343
344         /*
345          * We only loosely track inflight requests across preemption,
346          * and so we may find ourselves attempting to retire a _completed_
347          * request that we have removed from the HW and put back on a run
348          * queue.
349          *
350          * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
351          * after removing the breadcrumb and signaling it, so that we do not
352          * inadvertently attach the breadcrumb to a completed request.
353          */
354         rq->engine->remove_active_request(rq);
355         GEM_BUG_ON(!llist_empty(&rq->execute_cb));
356
357         __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
358
359         intel_context_exit(rq->context);
360         intel_context_unpin(rq->context);
361
362         free_capture_list(rq);
363         i915_sched_node_fini(&rq->sched);
364         i915_request_put(rq);
365
366         return true;
367 }
368
369 void i915_request_retire_upto(struct i915_request *rq)
370 {
371         struct intel_timeline * const tl = i915_request_timeline(rq);
372         struct i915_request *tmp;
373
374         RQ_TRACE(rq, "\n");
375         GEM_BUG_ON(!__i915_request_is_complete(rq));
376
377         do {
378                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
379                 GEM_BUG_ON(!i915_request_completed(tmp));
380         } while (i915_request_retire(tmp) && tmp != rq);
381 }
382
383 static struct i915_request * const *
384 __engine_active(struct intel_engine_cs *engine)
385 {
386         return READ_ONCE(engine->execlists.active);
387 }
388
389 static bool __request_in_flight(const struct i915_request *signal)
390 {
391         struct i915_request * const *port, *rq;
392         bool inflight = false;
393
394         if (!i915_request_is_ready(signal))
395                 return false;
396
397         /*
398          * Even if we have unwound the request, it may still be on
399          * the GPU (preempt-to-busy). If that request is inside an
400          * unpreemptible critical section, it will not be removed. Some
401          * GPU functions may even be stuck waiting for the paired request
402          * (__await_execution) to be submitted and cannot be preempted
403          * until the bond is executing.
404          *
405          * As we know that there are always preemption points between
406          * requests, we know that only the currently executing request
407          * may be still active even though we have cleared the flag.
408          * However, we can't rely on our tracking of ELSP[0] to know
409          * which request is currently active and so maybe stuck, as
410          * the tracking maybe an event behind. Instead assume that
411          * if the context is still inflight, then it is still active
412          * even if the active flag has been cleared.
413          *
414          * To further complicate matters, if there a pending promotion, the HW
415          * may either perform a context switch to the second inflight execlists,
416          * or it may switch to the pending set of execlists. In the case of the
417          * latter, it may send the ACK and we process the event copying the
418          * pending[] over top of inflight[], _overwriting_ our *active. Since
419          * this implies the HW is arbitrating and not struck in *active, we do
420          * not worry about complete accuracy, but we do require no read/write
421          * tearing of the pointer [the read of the pointer must be valid, even
422          * as the array is being overwritten, for which we require the writes
423          * to avoid tearing.]
424          *
425          * Note that the read of *execlists->active may race with the promotion
426          * of execlists->pending[] to execlists->inflight[], overwritting
427          * the value at *execlists->active. This is fine. The promotion implies
428          * that we received an ACK from the HW, and so the context is not
429          * stuck -- if we do not see ourselves in *active, the inflight status
430          * is valid. If instead we see ourselves being copied into *active,
431          * we are inflight and may signal the callback.
432          */
433         if (!intel_context_inflight(signal->context))
434                 return false;
435
436         rcu_read_lock();
437         for (port = __engine_active(signal->engine);
438              (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
439              port++) {
440                 if (rq->context == signal->context) {
441                         inflight = i915_seqno_passed(rq->fence.seqno,
442                                                      signal->fence.seqno);
443                         break;
444                 }
445         }
446         rcu_read_unlock();
447
448         return inflight;
449 }
450
451 static int
452 __await_execution(struct i915_request *rq,
453                   struct i915_request *signal,
454                   gfp_t gfp)
455 {
456         struct execute_cb *cb;
457
458         if (i915_request_is_active(signal))
459                 return 0;
460
461         cb = kmem_cache_alloc(slab_execute_cbs, gfp);
462         if (!cb)
463                 return -ENOMEM;
464
465         cb->fence = &rq->submit;
466         i915_sw_fence_await(cb->fence);
467         init_irq_work(&cb->work, irq_execute_cb);
468
469         /*
470          * Register the callback first, then see if the signaler is already
471          * active. This ensures that if we race with the
472          * __notify_execute_cb from i915_request_submit() and we are not
473          * included in that list, we get a second bite of the cherry and
474          * execute it ourselves. After this point, a future
475          * i915_request_submit() will notify us.
476          *
477          * In i915_request_retire() we set the ACTIVE bit on a completed
478          * request (then flush the execute_cb). So by registering the
479          * callback first, then checking the ACTIVE bit, we serialise with
480          * the completed/retired request.
481          */
482         if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
483                 if (i915_request_is_active(signal) ||
484                     __request_in_flight(signal))
485                         i915_request_notify_execute_cb_imm(signal);
486         }
487
488         return 0;
489 }
490
491 static bool fatal_error(int error)
492 {
493         switch (error) {
494         case 0: /* not an error! */
495         case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
496         case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
497                 return false;
498         default:
499                 return true;
500         }
501 }
502
503 void __i915_request_skip(struct i915_request *rq)
504 {
505         GEM_BUG_ON(!fatal_error(rq->fence.error));
506
507         if (rq->infix == rq->postfix)
508                 return;
509
510         RQ_TRACE(rq, "error: %d\n", rq->fence.error);
511
512         /*
513          * As this request likely depends on state from the lost
514          * context, clear out all the user operations leaving the
515          * breadcrumb at the end (so we get the fence notifications).
516          */
517         __i915_request_fill(rq, 0);
518         rq->infix = rq->postfix;
519 }
520
521 bool i915_request_set_error_once(struct i915_request *rq, int error)
522 {
523         int old;
524
525         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
526
527         if (i915_request_signaled(rq))
528                 return false;
529
530         old = READ_ONCE(rq->fence.error);
531         do {
532                 if (fatal_error(old))
533                         return false;
534         } while (!try_cmpxchg(&rq->fence.error, &old, error));
535
536         return true;
537 }
538
539 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
540 {
541         if (__i915_request_is_complete(rq))
542                 return NULL;
543
544         GEM_BUG_ON(i915_request_signaled(rq));
545
546         /* As soon as the request is completed, it may be retired */
547         rq = i915_request_get(rq);
548
549         i915_request_set_error_once(rq, -EIO);
550         i915_request_mark_complete(rq);
551
552         return rq;
553 }
554
555 bool __i915_request_submit(struct i915_request *request)
556 {
557         struct intel_engine_cs *engine = request->engine;
558         bool result = false;
559
560         RQ_TRACE(request, "\n");
561
562         GEM_BUG_ON(!irqs_disabled());
563         lockdep_assert_held(&engine->sched_engine->lock);
564
565         /*
566          * With the advent of preempt-to-busy, we frequently encounter
567          * requests that we have unsubmitted from HW, but left running
568          * until the next ack and so have completed in the meantime. On
569          * resubmission of that completed request, we can skip
570          * updating the payload, and execlists can even skip submitting
571          * the request.
572          *
573          * We must remove the request from the caller's priority queue,
574          * and the caller must only call us when the request is in their
575          * priority queue, under the sched_engine->lock. This ensures that the
576          * request has *not* yet been retired and we can safely move
577          * the request into the engine->active.list where it will be
578          * dropped upon retiring. (Otherwise if resubmit a *retired*
579          * request, this would be a horrible use-after-free.)
580          */
581         if (__i915_request_is_complete(request)) {
582                 list_del_init(&request->sched.link);
583                 goto active;
584         }
585
586         if (unlikely(intel_context_is_banned(request->context)))
587                 i915_request_set_error_once(request, -EIO);
588
589         if (unlikely(fatal_error(request->fence.error)))
590                 __i915_request_skip(request);
591
592         /*
593          * Are we using semaphores when the gpu is already saturated?
594          *
595          * Using semaphores incurs a cost in having the GPU poll a
596          * memory location, busywaiting for it to change. The continual
597          * memory reads can have a noticeable impact on the rest of the
598          * system with the extra bus traffic, stalling the cpu as it too
599          * tries to access memory across the bus (perf stat -e bus-cycles).
600          *
601          * If we installed a semaphore on this request and we only submit
602          * the request after the signaler completed, that indicates the
603          * system is overloaded and using semaphores at this time only
604          * increases the amount of work we are doing. If so, we disable
605          * further use of semaphores until we are idle again, whence we
606          * optimistically try again.
607          */
608         if (request->sched.semaphores &&
609             i915_sw_fence_signaled(&request->semaphore))
610                 engine->saturated |= request->sched.semaphores;
611
612         engine->emit_fini_breadcrumb(request,
613                                      request->ring->vaddr + request->postfix);
614
615         trace_i915_request_execute(request);
616         if (engine->bump_serial)
617                 engine->bump_serial(engine);
618         else
619                 engine->serial++;
620
621         result = true;
622
623         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
624         engine->add_active_request(request);
625 active:
626         clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
627         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
628
629         /*
630          * XXX Rollback bonded-execution on __i915_request_unsubmit()?
631          *
632          * In the future, perhaps when we have an active time-slicing scheduler,
633          * it will be interesting to unsubmit parallel execution and remove
634          * busywaits from the GPU until their master is restarted. This is
635          * quite hairy, we have to carefully rollback the fence and do a
636          * preempt-to-idle cycle on the target engine, all the while the
637          * master execute_cb may refire.
638          */
639         __notify_execute_cb_irq(request);
640
641         /* We may be recursing from the signal callback of another i915 fence */
642         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643                 i915_request_enable_breadcrumb(request);
644
645         return result;
646 }
647
648 void i915_request_submit(struct i915_request *request)
649 {
650         struct intel_engine_cs *engine = request->engine;
651         unsigned long flags;
652
653         /* Will be called from irq-context when using foreign fences. */
654         spin_lock_irqsave(&engine->sched_engine->lock, flags);
655
656         __i915_request_submit(request);
657
658         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
659 }
660
661 void __i915_request_unsubmit(struct i915_request *request)
662 {
663         struct intel_engine_cs *engine = request->engine;
664
665         /*
666          * Only unwind in reverse order, required so that the per-context list
667          * is kept in seqno/ring order.
668          */
669         RQ_TRACE(request, "\n");
670
671         GEM_BUG_ON(!irqs_disabled());
672         lockdep_assert_held(&engine->sched_engine->lock);
673
674         /*
675          * Before we remove this breadcrumb from the signal list, we have
676          * to ensure that a concurrent dma_fence_enable_signaling() does not
677          * attach itself. We first mark the request as no longer active and
678          * make sure that is visible to other cores, and then remove the
679          * breadcrumb if attached.
680          */
681         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
682         clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
683         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
684                 i915_request_cancel_breadcrumb(request);
685
686         /* We've already spun, don't charge on resubmitting. */
687         if (request->sched.semaphores && __i915_request_has_started(request))
688                 request->sched.semaphores = 0;
689
690         /*
691          * We don't need to wake_up any waiters on request->execute, they
692          * will get woken by any other event or us re-adding this request
693          * to the engine timeline (__i915_request_submit()). The waiters
694          * should be quite adapt at finding that the request now has a new
695          * global_seqno to the one they went to sleep on.
696          */
697 }
698
699 void i915_request_unsubmit(struct i915_request *request)
700 {
701         struct intel_engine_cs *engine = request->engine;
702         unsigned long flags;
703
704         /* Will be called from irq-context when using foreign fences. */
705         spin_lock_irqsave(&engine->sched_engine->lock, flags);
706
707         __i915_request_unsubmit(request);
708
709         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
710 }
711
712 void i915_request_cancel(struct i915_request *rq, int error)
713 {
714         if (!i915_request_set_error_once(rq, error))
715                 return;
716
717         set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
718
719         intel_context_cancel_request(rq->context, rq);
720 }
721
722 static int __i915_sw_fence_call
723 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
724 {
725         struct i915_request *request =
726                 container_of(fence, typeof(*request), submit);
727
728         switch (state) {
729         case FENCE_COMPLETE:
730                 trace_i915_request_submit(request);
731
732                 if (unlikely(fence->error))
733                         i915_request_set_error_once(request, fence->error);
734                 else
735                         __rq_arm_watchdog(request);
736
737                 /*
738                  * We need to serialize use of the submit_request() callback
739                  * with its hotplugging performed during an emergency
740                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
741                  * critical section in order to force i915_gem_set_wedged() to
742                  * wait until the submit_request() is completed before
743                  * proceeding.
744                  */
745                 rcu_read_lock();
746                 request->engine->submit_request(request);
747                 rcu_read_unlock();
748                 break;
749
750         case FENCE_FREE:
751                 i915_request_put(request);
752                 break;
753         }
754
755         return NOTIFY_DONE;
756 }
757
758 static int __i915_sw_fence_call
759 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
760 {
761         struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
762
763         switch (state) {
764         case FENCE_COMPLETE:
765                 break;
766
767         case FENCE_FREE:
768                 i915_request_put(rq);
769                 break;
770         }
771
772         return NOTIFY_DONE;
773 }
774
775 static void retire_requests(struct intel_timeline *tl)
776 {
777         struct i915_request *rq, *rn;
778
779         list_for_each_entry_safe(rq, rn, &tl->requests, link)
780                 if (!i915_request_retire(rq))
781                         break;
782 }
783
784 static noinline struct i915_request *
785 request_alloc_slow(struct intel_timeline *tl,
786                    struct i915_request **rsvd,
787                    gfp_t gfp)
788 {
789         struct i915_request *rq;
790
791         /* If we cannot wait, dip into our reserves */
792         if (!gfpflags_allow_blocking(gfp)) {
793                 rq = xchg(rsvd, NULL);
794                 if (!rq) /* Use the normal failure path for one final WARN */
795                         goto out;
796
797                 return rq;
798         }
799
800         if (list_empty(&tl->requests))
801                 goto out;
802
803         /* Move our oldest request to the slab-cache (if not in use!) */
804         rq = list_first_entry(&tl->requests, typeof(*rq), link);
805         i915_request_retire(rq);
806
807         rq = kmem_cache_alloc(slab_requests,
808                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
809         if (rq)
810                 return rq;
811
812         /* Ratelimit ourselves to prevent oom from malicious clients */
813         rq = list_last_entry(&tl->requests, typeof(*rq), link);
814         cond_synchronize_rcu(rq->rcustate);
815
816         /* Retire our old requests in the hope that we free some */
817         retire_requests(tl);
818
819 out:
820         return kmem_cache_alloc(slab_requests, gfp);
821 }
822
823 static void __i915_request_ctor(void *arg)
824 {
825         struct i915_request *rq = arg;
826
827         spin_lock_init(&rq->lock);
828         i915_sched_node_init(&rq->sched);
829         i915_sw_fence_init(&rq->submit, submit_notify);
830         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
831
832         rq->capture_list = NULL;
833
834         init_llist_head(&rq->execute_cb);
835 }
836
837 struct i915_request *
838 __i915_request_create(struct intel_context *ce, gfp_t gfp)
839 {
840         struct intel_timeline *tl = ce->timeline;
841         struct i915_request *rq;
842         u32 seqno;
843         int ret;
844
845         might_alloc(gfp);
846
847         /* Check that the caller provided an already pinned context */
848         __intel_context_pin(ce);
849
850         /*
851          * Beware: Dragons be flying overhead.
852          *
853          * We use RCU to look up requests in flight. The lookups may
854          * race with the request being allocated from the slab freelist.
855          * That is the request we are writing to here, may be in the process
856          * of being read by __i915_active_request_get_rcu(). As such,
857          * we have to be very careful when overwriting the contents. During
858          * the RCU lookup, we change chase the request->engine pointer,
859          * read the request->global_seqno and increment the reference count.
860          *
861          * The reference count is incremented atomically. If it is zero,
862          * the lookup knows the request is unallocated and complete. Otherwise,
863          * it is either still in use, or has been reallocated and reset
864          * with dma_fence_init(). This increment is safe for release as we
865          * check that the request we have a reference to and matches the active
866          * request.
867          *
868          * Before we increment the refcount, we chase the request->engine
869          * pointer. We must not call kmem_cache_zalloc() or else we set
870          * that pointer to NULL and cause a crash during the lookup. If
871          * we see the request is completed (based on the value of the
872          * old engine and seqno), the lookup is complete and reports NULL.
873          * If we decide the request is not completed (new engine or seqno),
874          * then we grab a reference and double check that it is still the
875          * active request - which it won't be and restart the lookup.
876          *
877          * Do not use kmem_cache_zalloc() here!
878          */
879         rq = kmem_cache_alloc(slab_requests,
880                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
881         if (unlikely(!rq)) {
882                 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
883                 if (!rq) {
884                         ret = -ENOMEM;
885                         goto err_unreserve;
886                 }
887         }
888
889         /*
890          * Hold a reference to the intel_context over life of an i915_request.
891          * Without this an i915_request can exist after the context has been
892          * destroyed (e.g. request retired, context closed, but user space holds
893          * a reference to the request from an out fence). In the case of GuC
894          * submission + virtual engine, the engine that the request references
895          * is also destroyed which can trigger bad pointer dref in fence ops
896          * (e.g. i915_fence_get_driver_name). We could likely change these
897          * functions to avoid touching the engine but let's just be safe and
898          * hold the intel_context reference. In execlist mode the request always
899          * eventually points to a physical engine so this isn't an issue.
900          */
901         rq->context = intel_context_get(ce);
902         rq->engine = ce->engine;
903         rq->ring = ce->ring;
904         rq->execution_mask = ce->engine->mask;
905
906         ret = intel_timeline_get_seqno(tl, rq, &seqno);
907         if (ret)
908                 goto err_free;
909
910         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
911                        tl->fence_context, seqno);
912
913         RCU_INIT_POINTER(rq->timeline, tl);
914         rq->hwsp_seqno = tl->hwsp_seqno;
915         GEM_BUG_ON(__i915_request_is_complete(rq));
916
917         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
918
919         rq->guc_prio = GUC_PRIO_INIT;
920
921         /* We bump the ref for the fence chain */
922         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
923         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
924
925         i915_sched_node_reinit(&rq->sched);
926
927         /* No zalloc, everything must be cleared after use */
928         rq->batch = NULL;
929         __rq_init_watchdog(rq);
930         GEM_BUG_ON(rq->capture_list);
931         GEM_BUG_ON(!llist_empty(&rq->execute_cb));
932
933         /*
934          * Reserve space in the ring buffer for all the commands required to
935          * eventually emit this request. This is to guarantee that the
936          * i915_request_add() call can't fail. Note that the reserve may need
937          * to be redone if the request is not actually submitted straight
938          * away, e.g. because a GPU scheduler has deferred it.
939          *
940          * Note that due to how we add reserved_space to intel_ring_begin()
941          * we need to double our request to ensure that if we need to wrap
942          * around inside i915_request_add() there is sufficient space at
943          * the beginning of the ring as well.
944          */
945         rq->reserved_space =
946                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
947
948         /*
949          * Record the position of the start of the request so that
950          * should we detect the updated seqno part-way through the
951          * GPU processing the request, we never over-estimate the
952          * position of the head.
953          */
954         rq->head = rq->ring->emit;
955
956         ret = rq->engine->request_alloc(rq);
957         if (ret)
958                 goto err_unwind;
959
960         rq->infix = rq->ring->emit; /* end of header; start of user payload */
961
962         intel_context_mark_active(ce);
963         list_add_tail_rcu(&rq->link, &tl->requests);
964
965         return rq;
966
967 err_unwind:
968         ce->ring->emit = rq->head;
969
970         /* Make sure we didn't add ourselves to external state before freeing */
971         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
972         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
973
974 err_free:
975         intel_context_put(ce);
976         kmem_cache_free(slab_requests, rq);
977 err_unreserve:
978         intel_context_unpin(ce);
979         return ERR_PTR(ret);
980 }
981
982 struct i915_request *
983 i915_request_create(struct intel_context *ce)
984 {
985         struct i915_request *rq;
986         struct intel_timeline *tl;
987
988         tl = intel_context_timeline_lock(ce);
989         if (IS_ERR(tl))
990                 return ERR_CAST(tl);
991
992         /* Move our oldest request to the slab-cache (if not in use!) */
993         rq = list_first_entry(&tl->requests, typeof(*rq), link);
994         if (!list_is_last(&rq->link, &tl->requests))
995                 i915_request_retire(rq);
996
997         intel_context_enter(ce);
998         rq = __i915_request_create(ce, GFP_KERNEL);
999         intel_context_exit(ce); /* active reference transferred to request */
1000         if (IS_ERR(rq))
1001                 goto err_unlock;
1002
1003         /* Check that we do not interrupt ourselves with a new request */
1004         rq->cookie = lockdep_pin_lock(&tl->mutex);
1005
1006         return rq;
1007
1008 err_unlock:
1009         intel_context_timeline_unlock(tl);
1010         return rq;
1011 }
1012
1013 static int
1014 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1015 {
1016         struct dma_fence *fence;
1017         int err;
1018
1019         if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1020                 return 0;
1021
1022         if (i915_request_started(signal))
1023                 return 0;
1024
1025         /*
1026          * The caller holds a reference on @signal, but we do not serialise
1027          * against it being retired and removed from the lists.
1028          *
1029          * We do not hold a reference to the request before @signal, and
1030          * so must be very careful to ensure that it is not _recycled_ as
1031          * we follow the link backwards.
1032          */
1033         fence = NULL;
1034         rcu_read_lock();
1035         do {
1036                 struct list_head *pos = READ_ONCE(signal->link.prev);
1037                 struct i915_request *prev;
1038
1039                 /* Confirm signal has not been retired, the link is valid */
1040                 if (unlikely(__i915_request_has_started(signal)))
1041                         break;
1042
1043                 /* Is signal the earliest request on its timeline? */
1044                 if (pos == &rcu_dereference(signal->timeline)->requests)
1045                         break;
1046
1047                 /*
1048                  * Peek at the request before us in the timeline. That
1049                  * request will only be valid before it is retired, so
1050                  * after acquiring a reference to it, confirm that it is
1051                  * still part of the signaler's timeline.
1052                  */
1053                 prev = list_entry(pos, typeof(*prev), link);
1054                 if (!i915_request_get_rcu(prev))
1055                         break;
1056
1057                 /* After the strong barrier, confirm prev is still attached */
1058                 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1059                         i915_request_put(prev);
1060                         break;
1061                 }
1062
1063                 fence = &prev->fence;
1064         } while (0);
1065         rcu_read_unlock();
1066         if (!fence)
1067                 return 0;
1068
1069         err = 0;
1070         if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1071                 err = i915_sw_fence_await_dma_fence(&rq->submit,
1072                                                     fence, 0,
1073                                                     I915_FENCE_GFP);
1074         dma_fence_put(fence);
1075
1076         return err;
1077 }
1078
1079 static intel_engine_mask_t
1080 already_busywaiting(struct i915_request *rq)
1081 {
1082         /*
1083          * Polling a semaphore causes bus traffic, delaying other users of
1084          * both the GPU and CPU. We want to limit the impact on others,
1085          * while taking advantage of early submission to reduce GPU
1086          * latency. Therefore we restrict ourselves to not using more
1087          * than one semaphore from each source, and not using a semaphore
1088          * if we have detected the engine is saturated (i.e. would not be
1089          * submitted early and cause bus traffic reading an already passed
1090          * semaphore).
1091          *
1092          * See the are-we-too-late? check in __i915_request_submit().
1093          */
1094         return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1095 }
1096
1097 static int
1098 __emit_semaphore_wait(struct i915_request *to,
1099                       struct i915_request *from,
1100                       u32 seqno)
1101 {
1102         const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1103         u32 hwsp_offset;
1104         int len, err;
1105         u32 *cs;
1106
1107         GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1108         GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1109
1110         /* We need to pin the signaler's HWSP until we are finished reading. */
1111         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1112         if (err)
1113                 return err;
1114
1115         len = 4;
1116         if (has_token)
1117                 len += 2;
1118
1119         cs = intel_ring_begin(to, len);
1120         if (IS_ERR(cs))
1121                 return PTR_ERR(cs);
1122
1123         /*
1124          * Using greater-than-or-equal here means we have to worry
1125          * about seqno wraparound. To side step that issue, we swap
1126          * the timeline HWSP upon wrapping, so that everyone listening
1127          * for the old (pre-wrap) values do not see the much smaller
1128          * (post-wrap) values than they were expecting (and so wait
1129          * forever).
1130          */
1131         *cs++ = (MI_SEMAPHORE_WAIT |
1132                  MI_SEMAPHORE_GLOBAL_GTT |
1133                  MI_SEMAPHORE_POLL |
1134                  MI_SEMAPHORE_SAD_GTE_SDD) +
1135                 has_token;
1136         *cs++ = seqno;
1137         *cs++ = hwsp_offset;
1138         *cs++ = 0;
1139         if (has_token) {
1140                 *cs++ = 0;
1141                 *cs++ = MI_NOOP;
1142         }
1143
1144         intel_ring_advance(to, cs);
1145         return 0;
1146 }
1147
1148 static bool
1149 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1150 {
1151         return to->engine->gt->ggtt == from->engine->gt->ggtt;
1152 }
1153
1154 static int
1155 emit_semaphore_wait(struct i915_request *to,
1156                     struct i915_request *from,
1157                     gfp_t gfp)
1158 {
1159         const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1160         struct i915_sw_fence *wait = &to->submit;
1161
1162         if (!can_use_semaphore_wait(to, from))
1163                 goto await_fence;
1164
1165         if (!intel_context_use_semaphores(to->context))
1166                 goto await_fence;
1167
1168         if (i915_request_has_initial_breadcrumb(to))
1169                 goto await_fence;
1170
1171         /*
1172          * If this or its dependents are waiting on an external fence
1173          * that may fail catastrophically, then we want to avoid using
1174          * sempahores as they bypass the fence signaling metadata, and we
1175          * lose the fence->error propagation.
1176          */
1177         if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1178                 goto await_fence;
1179
1180         /* Just emit the first semaphore we see as request space is limited. */
1181         if (already_busywaiting(to) & mask)
1182                 goto await_fence;
1183
1184         if (i915_request_await_start(to, from) < 0)
1185                 goto await_fence;
1186
1187         /* Only submit our spinner after the signaler is running! */
1188         if (__await_execution(to, from, gfp))
1189                 goto await_fence;
1190
1191         if (__emit_semaphore_wait(to, from, from->fence.seqno))
1192                 goto await_fence;
1193
1194         to->sched.semaphores |= mask;
1195         wait = &to->semaphore;
1196
1197 await_fence:
1198         return i915_sw_fence_await_dma_fence(wait,
1199                                              &from->fence, 0,
1200                                              I915_FENCE_GFP);
1201 }
1202
1203 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1204                                           struct dma_fence *fence)
1205 {
1206         return __intel_timeline_sync_is_later(tl,
1207                                               fence->context,
1208                                               fence->seqno - 1);
1209 }
1210
1211 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1212                                          const struct dma_fence *fence)
1213 {
1214         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1215 }
1216
1217 static int
1218 __i915_request_await_execution(struct i915_request *to,
1219                                struct i915_request *from)
1220 {
1221         int err;
1222
1223         GEM_BUG_ON(intel_context_is_barrier(from->context));
1224
1225         /* Submit both requests at the same time */
1226         err = __await_execution(to, from, I915_FENCE_GFP);
1227         if (err)
1228                 return err;
1229
1230         /* Squash repeated depenendices to the same timelines */
1231         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1232                                           &from->fence))
1233                 return 0;
1234
1235         /*
1236          * Wait until the start of this request.
1237          *
1238          * The execution cb fires when we submit the request to HW. But in
1239          * many cases this may be long before the request itself is ready to
1240          * run (consider that we submit 2 requests for the same context, where
1241          * the request of interest is behind an indefinite spinner). So we hook
1242          * up to both to reduce our queues and keep the execution lag minimised
1243          * in the worst case, though we hope that the await_start is elided.
1244          */
1245         err = i915_request_await_start(to, from);
1246         if (err < 0)
1247                 return err;
1248
1249         /*
1250          * Ensure both start together [after all semaphores in signal]
1251          *
1252          * Now that we are queued to the HW at roughly the same time (thanks
1253          * to the execute cb) and are ready to run at roughly the same time
1254          * (thanks to the await start), our signaler may still be indefinitely
1255          * delayed by waiting on a semaphore from a remote engine. If our
1256          * signaler depends on a semaphore, so indirectly do we, and we do not
1257          * want to start our payload until our signaler also starts theirs.
1258          * So we wait.
1259          *
1260          * However, there is also a second condition for which we need to wait
1261          * for the precise start of the signaler. Consider that the signaler
1262          * was submitted in a chain of requests following another context
1263          * (with just an ordinary intra-engine fence dependency between the
1264          * two). In this case the signaler is queued to HW, but not for
1265          * immediate execution, and so we must wait until it reaches the
1266          * active slot.
1267          */
1268         if (can_use_semaphore_wait(to, from) &&
1269             intel_engine_has_semaphores(to->engine) &&
1270             !i915_request_has_initial_breadcrumb(to)) {
1271                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1272                 if (err < 0)
1273                         return err;
1274         }
1275
1276         /* Couple the dependency tree for PI on this exposed to->fence */
1277         if (to->engine->sched_engine->schedule) {
1278                 err = i915_sched_node_add_dependency(&to->sched,
1279                                                      &from->sched,
1280                                                      I915_DEPENDENCY_WEAK);
1281                 if (err < 0)
1282                         return err;
1283         }
1284
1285         return intel_timeline_sync_set_start(i915_request_timeline(to),
1286                                              &from->fence);
1287 }
1288
1289 static void mark_external(struct i915_request *rq)
1290 {
1291         /*
1292          * The downside of using semaphores is that we lose metadata passing
1293          * along the signaling chain. This is particularly nasty when we
1294          * need to pass along a fatal error such as EFAULT or EDEADLK. For
1295          * fatal errors we want to scrub the request before it is executed,
1296          * which means that we cannot preload the request onto HW and have
1297          * it wait upon a semaphore.
1298          */
1299         rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1300 }
1301
1302 static int
1303 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1304 {
1305         mark_external(rq);
1306         return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1307                                              i915_fence_context_timeout(rq->engine->i915,
1308                                                                         fence->context),
1309                                              I915_FENCE_GFP);
1310 }
1311
1312 static int
1313 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1314 {
1315         struct dma_fence *iter;
1316         int err = 0;
1317
1318         if (!to_dma_fence_chain(fence))
1319                 return __i915_request_await_external(rq, fence);
1320
1321         dma_fence_chain_for_each(iter, fence) {
1322                 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1323
1324                 if (!dma_fence_is_i915(chain->fence)) {
1325                         err = __i915_request_await_external(rq, iter);
1326                         break;
1327                 }
1328
1329                 err = i915_request_await_dma_fence(rq, chain->fence);
1330                 if (err < 0)
1331                         break;
1332         }
1333
1334         dma_fence_put(iter);
1335         return err;
1336 }
1337
1338 static inline bool is_parallel_rq(struct i915_request *rq)
1339 {
1340         return intel_context_is_parallel(rq->context);
1341 }
1342
1343 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1344 {
1345         return intel_context_to_parent(rq->context);
1346 }
1347
1348 static bool is_same_parallel_context(struct i915_request *to,
1349                                      struct i915_request *from)
1350 {
1351         if (is_parallel_rq(to))
1352                 return request_to_parent(to) == request_to_parent(from);
1353
1354         return false;
1355 }
1356
1357 int
1358 i915_request_await_execution(struct i915_request *rq,
1359                              struct dma_fence *fence)
1360 {
1361         struct dma_fence **child = &fence;
1362         unsigned int nchild = 1;
1363         int ret;
1364
1365         if (dma_fence_is_array(fence)) {
1366                 struct dma_fence_array *array = to_dma_fence_array(fence);
1367
1368                 /* XXX Error for signal-on-any fence arrays */
1369
1370                 child = array->fences;
1371                 nchild = array->num_fences;
1372                 GEM_BUG_ON(!nchild);
1373         }
1374
1375         do {
1376                 fence = *child++;
1377                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1378                         continue;
1379
1380                 if (fence->context == rq->fence.context)
1381                         continue;
1382
1383                 /*
1384                  * We don't squash repeated fence dependencies here as we
1385                  * want to run our callback in all cases.
1386                  */
1387
1388                 if (dma_fence_is_i915(fence)) {
1389                         if (is_same_parallel_context(rq, to_request(fence)))
1390                                 continue;
1391                         ret = __i915_request_await_execution(rq,
1392                                                              to_request(fence));
1393                 } else {
1394                         ret = i915_request_await_external(rq, fence);
1395                 }
1396                 if (ret < 0)
1397                         return ret;
1398         } while (--nchild);
1399
1400         return 0;
1401 }
1402
1403 static int
1404 await_request_submit(struct i915_request *to, struct i915_request *from)
1405 {
1406         /*
1407          * If we are waiting on a virtual engine, then it may be
1408          * constrained to execute on a single engine *prior* to submission.
1409          * When it is submitted, it will be first submitted to the virtual
1410          * engine and then passed to the physical engine. We cannot allow
1411          * the waiter to be submitted immediately to the physical engine
1412          * as it may then bypass the virtual request.
1413          */
1414         if (to->engine == READ_ONCE(from->engine))
1415                 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1416                                                         &from->submit,
1417                                                         I915_FENCE_GFP);
1418         else
1419                 return __i915_request_await_execution(to, from);
1420 }
1421
1422 static int
1423 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1424 {
1425         int ret;
1426
1427         GEM_BUG_ON(to == from);
1428         GEM_BUG_ON(to->timeline == from->timeline);
1429
1430         if (i915_request_completed(from)) {
1431                 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1432                 return 0;
1433         }
1434
1435         if (to->engine->sched_engine->schedule) {
1436                 ret = i915_sched_node_add_dependency(&to->sched,
1437                                                      &from->sched,
1438                                                      I915_DEPENDENCY_EXTERNAL);
1439                 if (ret < 0)
1440                         return ret;
1441         }
1442
1443         if (!intel_engine_uses_guc(to->engine) &&
1444             is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1445                 ret = await_request_submit(to, from);
1446         else
1447                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1448         if (ret < 0)
1449                 return ret;
1450
1451         return 0;
1452 }
1453
1454 int
1455 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1456 {
1457         struct dma_fence **child = &fence;
1458         unsigned int nchild = 1;
1459         int ret;
1460
1461         /*
1462          * Note that if the fence-array was created in signal-on-any mode,
1463          * we should *not* decompose it into its individual fences. However,
1464          * we don't currently store which mode the fence-array is operating
1465          * in. Fortunately, the only user of signal-on-any is private to
1466          * amdgpu and we should not see any incoming fence-array from
1467          * sync-file being in signal-on-any mode.
1468          */
1469         if (dma_fence_is_array(fence)) {
1470                 struct dma_fence_array *array = to_dma_fence_array(fence);
1471
1472                 child = array->fences;
1473                 nchild = array->num_fences;
1474                 GEM_BUG_ON(!nchild);
1475         }
1476
1477         do {
1478                 fence = *child++;
1479                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1480                         continue;
1481
1482                 /*
1483                  * Requests on the same timeline are explicitly ordered, along
1484                  * with their dependencies, by i915_request_add() which ensures
1485                  * that requests are submitted in-order through each ring.
1486                  */
1487                 if (fence->context == rq->fence.context)
1488                         continue;
1489
1490                 /* Squash repeated waits to the same timelines */
1491                 if (fence->context &&
1492                     intel_timeline_sync_is_later(i915_request_timeline(rq),
1493                                                  fence))
1494                         continue;
1495
1496                 if (dma_fence_is_i915(fence)) {
1497                         if (is_same_parallel_context(rq, to_request(fence)))
1498                                 continue;
1499                         ret = i915_request_await_request(rq, to_request(fence));
1500                 } else {
1501                         ret = i915_request_await_external(rq, fence);
1502                 }
1503                 if (ret < 0)
1504                         return ret;
1505
1506                 /* Record the latest fence used against each timeline */
1507                 if (fence->context)
1508                         intel_timeline_sync_set(i915_request_timeline(rq),
1509                                                 fence);
1510         } while (--nchild);
1511
1512         return 0;
1513 }
1514
1515 /**
1516  * i915_request_await_object - set this request to (async) wait upon a bo
1517  * @to: request we are wishing to use
1518  * @obj: object which may be in use on another ring.
1519  * @write: whether the wait is on behalf of a writer
1520  *
1521  * This code is meant to abstract object synchronization with the GPU.
1522  * Conceptually we serialise writes between engines inside the GPU.
1523  * We only allow one engine to write into a buffer at any time, but
1524  * multiple readers. To ensure each has a coherent view of memory, we must:
1525  *
1526  * - If there is an outstanding write request to the object, the new
1527  *   request must wait for it to complete (either CPU or in hw, requests
1528  *   on the same ring will be naturally ordered).
1529  *
1530  * - If we are a write request (pending_write_domain is set), the new
1531  *   request must wait for outstanding read requests to complete.
1532  *
1533  * Returns 0 if successful, else propagates up the lower layer error.
1534  */
1535 int
1536 i915_request_await_object(struct i915_request *to,
1537                           struct drm_i915_gem_object *obj,
1538                           bool write)
1539 {
1540         struct dma_resv_iter cursor;
1541         struct dma_fence *fence;
1542         int ret = 0;
1543
1544         dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) {
1545                 ret = i915_request_await_dma_fence(to, fence);
1546                 if (ret)
1547                         break;
1548         }
1549
1550         return ret;
1551 }
1552
1553 static struct i915_request *
1554 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1555                                         struct intel_timeline *timeline)
1556 {
1557         struct i915_request *prev;
1558
1559         GEM_BUG_ON(!is_parallel_rq(rq));
1560
1561         prev = request_to_parent(rq)->parallel.last_rq;
1562         if (prev) {
1563                 if (!__i915_request_is_complete(prev)) {
1564                         i915_sw_fence_await_sw_fence(&rq->submit,
1565                                                      &prev->submit,
1566                                                      &rq->submitq);
1567
1568                         if (rq->engine->sched_engine->schedule)
1569                                 __i915_sched_node_add_dependency(&rq->sched,
1570                                                                  &prev->sched,
1571                                                                  &rq->dep,
1572                                                                  0);
1573                 }
1574                 i915_request_put(prev);
1575         }
1576
1577         request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1578
1579         return to_request(__i915_active_fence_set(&timeline->last_request,
1580                                                   &rq->fence));
1581 }
1582
1583 static struct i915_request *
1584 __i915_request_ensure_ordering(struct i915_request *rq,
1585                                struct intel_timeline *timeline)
1586 {
1587         struct i915_request *prev;
1588
1589         GEM_BUG_ON(is_parallel_rq(rq));
1590
1591         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1592                                                   &rq->fence));
1593
1594         if (prev && !__i915_request_is_complete(prev)) {
1595                 bool uses_guc = intel_engine_uses_guc(rq->engine);
1596                 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1597                                           rq->engine->mask);
1598                 bool same_context = prev->context == rq->context;
1599
1600                 /*
1601                  * The requests are supposed to be kept in order. However,
1602                  * we need to be wary in case the timeline->last_request
1603                  * is used as a barrier for external modification to this
1604                  * context.
1605                  */
1606                 GEM_BUG_ON(same_context &&
1607                            i915_seqno_passed(prev->fence.seqno,
1608                                              rq->fence.seqno));
1609
1610                 if ((same_context && uses_guc) || (!uses_guc && pow2))
1611                         i915_sw_fence_await_sw_fence(&rq->submit,
1612                                                      &prev->submit,
1613                                                      &rq->submitq);
1614                 else
1615                         __i915_sw_fence_await_dma_fence(&rq->submit,
1616                                                         &prev->fence,
1617                                                         &rq->dmaq);
1618                 if (rq->engine->sched_engine->schedule)
1619                         __i915_sched_node_add_dependency(&rq->sched,
1620                                                          &prev->sched,
1621                                                          &rq->dep,
1622                                                          0);
1623         }
1624
1625         return prev;
1626 }
1627
1628 static struct i915_request *
1629 __i915_request_add_to_timeline(struct i915_request *rq)
1630 {
1631         struct intel_timeline *timeline = i915_request_timeline(rq);
1632         struct i915_request *prev;
1633
1634         /*
1635          * Dependency tracking and request ordering along the timeline
1636          * is special cased so that we can eliminate redundant ordering
1637          * operations while building the request (we know that the timeline
1638          * itself is ordered, and here we guarantee it).
1639          *
1640          * As we know we will need to emit tracking along the timeline,
1641          * we embed the hooks into our request struct -- at the cost of
1642          * having to have specialised no-allocation interfaces (which will
1643          * be beneficial elsewhere).
1644          *
1645          * A second benefit to open-coding i915_request_await_request is
1646          * that we can apply a slight variant of the rules specialised
1647          * for timelines that jump between engines (such as virtual engines).
1648          * If we consider the case of virtual engine, we must emit a dma-fence
1649          * to prevent scheduling of the second request until the first is
1650          * complete (to maximise our greedy late load balancing) and this
1651          * precludes optimising to use semaphores serialisation of a single
1652          * timeline across engines.
1653          *
1654          * We do not order parallel submission requests on the timeline as each
1655          * parallel submission context has its own timeline and the ordering
1656          * rules for parallel requests are that they must be submitted in the
1657          * order received from the execbuf IOCTL. So rather than using the
1658          * timeline we store a pointer to last request submitted in the
1659          * relationship in the gem context and insert a submission fence
1660          * between that request and request passed into this function or
1661          * alternatively we use completion fence if gem context has a single
1662          * timeline and this is the first submission of an execbuf IOCTL.
1663          */
1664         if (likely(!is_parallel_rq(rq)))
1665                 prev = __i915_request_ensure_ordering(rq, timeline);
1666         else
1667                 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1668
1669         /*
1670          * Make sure that no request gazumped us - if it was allocated after
1671          * our i915_request_alloc() and called __i915_request_add() before
1672          * us, the timeline will hold its seqno which is later than ours.
1673          */
1674         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1675
1676         return prev;
1677 }
1678
1679 /*
1680  * NB: This function is not allowed to fail. Doing so would mean the the
1681  * request is not being tracked for completion but the work itself is
1682  * going to happen on the hardware. This would be a Bad Thing(tm).
1683  */
1684 struct i915_request *__i915_request_commit(struct i915_request *rq)
1685 {
1686         struct intel_engine_cs *engine = rq->engine;
1687         struct intel_ring *ring = rq->ring;
1688         u32 *cs;
1689
1690         RQ_TRACE(rq, "\n");
1691
1692         /*
1693          * To ensure that this call will not fail, space for its emissions
1694          * should already have been reserved in the ring buffer. Let the ring
1695          * know that it is time to use that space up.
1696          */
1697         GEM_BUG_ON(rq->reserved_space > ring->space);
1698         rq->reserved_space = 0;
1699         rq->emitted_jiffies = jiffies;
1700
1701         /*
1702          * Record the position of the start of the breadcrumb so that
1703          * should we detect the updated seqno part-way through the
1704          * GPU processing the request, we never over-estimate the
1705          * position of the ring's HEAD.
1706          */
1707         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1708         GEM_BUG_ON(IS_ERR(cs));
1709         rq->postfix = intel_ring_offset(rq, cs);
1710
1711         return __i915_request_add_to_timeline(rq);
1712 }
1713
1714 void __i915_request_queue_bh(struct i915_request *rq)
1715 {
1716         i915_sw_fence_commit(&rq->semaphore);
1717         i915_sw_fence_commit(&rq->submit);
1718 }
1719
1720 void __i915_request_queue(struct i915_request *rq,
1721                           const struct i915_sched_attr *attr)
1722 {
1723         /*
1724          * Let the backend know a new request has arrived that may need
1725          * to adjust the existing execution schedule due to a high priority
1726          * request - i.e. we may want to preempt the current request in order
1727          * to run a high priority dependency chain *before* we can execute this
1728          * request.
1729          *
1730          * This is called before the request is ready to run so that we can
1731          * decide whether to preempt the entire chain so that it is ready to
1732          * run at the earliest possible convenience.
1733          */
1734         if (attr && rq->engine->sched_engine->schedule)
1735                 rq->engine->sched_engine->schedule(rq, attr);
1736
1737         local_bh_disable();
1738         __i915_request_queue_bh(rq);
1739         local_bh_enable(); /* kick tasklets */
1740 }
1741
1742 void i915_request_add(struct i915_request *rq)
1743 {
1744         struct intel_timeline * const tl = i915_request_timeline(rq);
1745         struct i915_sched_attr attr = {};
1746         struct i915_gem_context *ctx;
1747
1748         lockdep_assert_held(&tl->mutex);
1749         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1750
1751         trace_i915_request_add(rq);
1752         __i915_request_commit(rq);
1753
1754         /* XXX placeholder for selftests */
1755         rcu_read_lock();
1756         ctx = rcu_dereference(rq->context->gem_context);
1757         if (ctx)
1758                 attr = ctx->sched;
1759         rcu_read_unlock();
1760
1761         __i915_request_queue(rq, &attr);
1762
1763         mutex_unlock(&tl->mutex);
1764 }
1765
1766 static unsigned long local_clock_ns(unsigned int *cpu)
1767 {
1768         unsigned long t;
1769
1770         /*
1771          * Cheaply and approximately convert from nanoseconds to microseconds.
1772          * The result and subsequent calculations are also defined in the same
1773          * approximate microseconds units. The principal source of timing
1774          * error here is from the simple truncation.
1775          *
1776          * Note that local_clock() is only defined wrt to the current CPU;
1777          * the comparisons are no longer valid if we switch CPUs. Instead of
1778          * blocking preemption for the entire busywait, we can detect the CPU
1779          * switch and use that as indicator of system load and a reason to
1780          * stop busywaiting, see busywait_stop().
1781          */
1782         *cpu = get_cpu();
1783         t = local_clock();
1784         put_cpu();
1785
1786         return t;
1787 }
1788
1789 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1790 {
1791         unsigned int this_cpu;
1792
1793         if (time_after(local_clock_ns(&this_cpu), timeout))
1794                 return true;
1795
1796         return this_cpu != cpu;
1797 }
1798
1799 static bool __i915_spin_request(struct i915_request * const rq, int state)
1800 {
1801         unsigned long timeout_ns;
1802         unsigned int cpu;
1803
1804         /*
1805          * Only wait for the request if we know it is likely to complete.
1806          *
1807          * We don't track the timestamps around requests, nor the average
1808          * request length, so we do not have a good indicator that this
1809          * request will complete within the timeout. What we do know is the
1810          * order in which requests are executed by the context and so we can
1811          * tell if the request has been started. If the request is not even
1812          * running yet, it is a fair assumption that it will not complete
1813          * within our relatively short timeout.
1814          */
1815         if (!i915_request_is_running(rq))
1816                 return false;
1817
1818         /*
1819          * When waiting for high frequency requests, e.g. during synchronous
1820          * rendering split between the CPU and GPU, the finite amount of time
1821          * required to set up the irq and wait upon it limits the response
1822          * rate. By busywaiting on the request completion for a short while we
1823          * can service the high frequency waits as quick as possible. However,
1824          * if it is a slow request, we want to sleep as quickly as possible.
1825          * The tradeoff between waiting and sleeping is roughly the time it
1826          * takes to sleep on a request, on the order of a microsecond.
1827          */
1828
1829         timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1830         timeout_ns += local_clock_ns(&cpu);
1831         do {
1832                 if (dma_fence_is_signaled(&rq->fence))
1833                         return true;
1834
1835                 if (signal_pending_state(state, current))
1836                         break;
1837
1838                 if (busywait_stop(timeout_ns, cpu))
1839                         break;
1840
1841                 cpu_relax();
1842         } while (!need_resched());
1843
1844         return false;
1845 }
1846
1847 struct request_wait {
1848         struct dma_fence_cb cb;
1849         struct task_struct *tsk;
1850 };
1851
1852 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1853 {
1854         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1855
1856         wake_up_process(fetch_and_zero(&wait->tsk));
1857 }
1858
1859 /**
1860  * i915_request_wait - wait until execution of request has finished
1861  * @rq: the request to wait upon
1862  * @flags: how to wait
1863  * @timeout: how long to wait in jiffies
1864  *
1865  * i915_request_wait() waits for the request to be completed, for a
1866  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1867  * unbounded wait).
1868  *
1869  * Returns the remaining time (in jiffies) if the request completed, which may
1870  * be zero or -ETIME if the request is unfinished after the timeout expires.
1871  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1872  * pending before the request completes.
1873  */
1874 long i915_request_wait(struct i915_request *rq,
1875                        unsigned int flags,
1876                        long timeout)
1877 {
1878         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1879                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1880         struct request_wait wait;
1881
1882         might_sleep();
1883         GEM_BUG_ON(timeout < 0);
1884
1885         if (dma_fence_is_signaled(&rq->fence))
1886                 return timeout;
1887
1888         if (!timeout)
1889                 return -ETIME;
1890
1891         trace_i915_request_wait_begin(rq, flags);
1892
1893         /*
1894          * We must never wait on the GPU while holding a lock as we
1895          * may need to perform a GPU reset. So while we don't need to
1896          * serialise wait/reset with an explicit lock, we do want
1897          * lockdep to detect potential dependency cycles.
1898          */
1899         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1900
1901         /*
1902          * Optimistic spin before touching IRQs.
1903          *
1904          * We may use a rather large value here to offset the penalty of
1905          * switching away from the active task. Frequently, the client will
1906          * wait upon an old swapbuffer to throttle itself to remain within a
1907          * frame of the gpu. If the client is running in lockstep with the gpu,
1908          * then it should not be waiting long at all, and a sleep now will incur
1909          * extra scheduler latency in producing the next frame. To try to
1910          * avoid adding the cost of enabling/disabling the interrupt to the
1911          * short wait, we first spin to see if the request would have completed
1912          * in the time taken to setup the interrupt.
1913          *
1914          * We need upto 5us to enable the irq, and upto 20us to hide the
1915          * scheduler latency of a context switch, ignoring the secondary
1916          * impacts from a context switch such as cache eviction.
1917          *
1918          * The scheme used for low-latency IO is called "hybrid interrupt
1919          * polling". The suggestion there is to sleep until just before you
1920          * expect to be woken by the device interrupt and then poll for its
1921          * completion. That requires having a good predictor for the request
1922          * duration, which we currently lack.
1923          */
1924         if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
1925             __i915_spin_request(rq, state))
1926                 goto out;
1927
1928         /*
1929          * This client is about to stall waiting for the GPU. In many cases
1930          * this is undesirable and limits the throughput of the system, as
1931          * many clients cannot continue processing user input/output whilst
1932          * blocked. RPS autotuning may take tens of milliseconds to respond
1933          * to the GPU load and thus incurs additional latency for the client.
1934          * We can circumvent that by promoting the GPU frequency to maximum
1935          * before we sleep. This makes the GPU throttle up much more quickly
1936          * (good for benchmarks and user experience, e.g. window animations),
1937          * but at a cost of spending more power processing the workload
1938          * (bad for battery).
1939          */
1940         if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1941                 intel_rps_boost(rq);
1942
1943         wait.tsk = current;
1944         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1945                 goto out;
1946
1947         /*
1948          * Flush the submission tasklet, but only if it may help this request.
1949          *
1950          * We sometimes experience some latency between the HW interrupts and
1951          * tasklet execution (mostly due to ksoftirqd latency, but it can also
1952          * be due to lazy CS events), so lets run the tasklet manually if there
1953          * is a chance it may submit this request. If the request is not ready
1954          * to run, as it is waiting for other fences to be signaled, flushing
1955          * the tasklet is busy work without any advantage for this client.
1956          *
1957          * If the HW is being lazy, this is the last chance before we go to
1958          * sleep to catch any pending events. We will check periodically in
1959          * the heartbeat to flush the submission tasklets as a last resort
1960          * for unhappy HW.
1961          */
1962         if (i915_request_is_ready(rq))
1963                 __intel_engine_flush_submission(rq->engine, false);
1964
1965         for (;;) {
1966                 set_current_state(state);
1967
1968                 if (dma_fence_is_signaled(&rq->fence))
1969                         break;
1970
1971                 if (signal_pending_state(state, current)) {
1972                         timeout = -ERESTARTSYS;
1973                         break;
1974                 }
1975
1976                 if (!timeout) {
1977                         timeout = -ETIME;
1978                         break;
1979                 }
1980
1981                 timeout = io_schedule_timeout(timeout);
1982         }
1983         __set_current_state(TASK_RUNNING);
1984
1985         if (READ_ONCE(wait.tsk))
1986                 dma_fence_remove_callback(&rq->fence, &wait.cb);
1987         GEM_BUG_ON(!list_empty(&wait.cb.node));
1988
1989 out:
1990         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1991         trace_i915_request_wait_end(rq);
1992         return timeout;
1993 }
1994
1995 static int print_sched_attr(const struct i915_sched_attr *attr,
1996                             char *buf, int x, int len)
1997 {
1998         if (attr->priority == I915_PRIORITY_INVALID)
1999                 return x;
2000
2001         x += snprintf(buf + x, len - x,
2002                       " prio=%d", attr->priority);
2003
2004         return x;
2005 }
2006
2007 static char queue_status(const struct i915_request *rq)
2008 {
2009         if (i915_request_is_active(rq))
2010                 return 'E';
2011
2012         if (i915_request_is_ready(rq))
2013                 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2014
2015         return 'U';
2016 }
2017
2018 static const char *run_status(const struct i915_request *rq)
2019 {
2020         if (__i915_request_is_complete(rq))
2021                 return "!";
2022
2023         if (__i915_request_has_started(rq))
2024                 return "*";
2025
2026         if (!i915_sw_fence_signaled(&rq->semaphore))
2027                 return "&";
2028
2029         return "";
2030 }
2031
2032 static const char *fence_status(const struct i915_request *rq)
2033 {
2034         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2035                 return "+";
2036
2037         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2038                 return "-";
2039
2040         return "";
2041 }
2042
2043 void i915_request_show(struct drm_printer *m,
2044                        const struct i915_request *rq,
2045                        const char *prefix,
2046                        int indent)
2047 {
2048         const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2049         char buf[80] = "";
2050         int x = 0;
2051
2052         /*
2053          * The prefix is used to show the queue status, for which we use
2054          * the following flags:
2055          *
2056          *  U [Unready]
2057          *    - initial status upon being submitted by the user
2058          *
2059          *    - the request is not ready for execution as it is waiting
2060          *      for external fences
2061          *
2062          *  R [Ready]
2063          *    - all fences the request was waiting on have been signaled,
2064          *      and the request is now ready for execution and will be
2065          *      in a backend queue
2066          *
2067          *    - a ready request may still need to wait on semaphores
2068          *      [internal fences]
2069          *
2070          *  V [Ready/virtual]
2071          *    - same as ready, but queued over multiple backends
2072          *
2073          *  E [Executing]
2074          *    - the request has been transferred from the backend queue and
2075          *      submitted for execution on HW
2076          *
2077          *    - a completed request may still be regarded as executing, its
2078          *      status may not be updated until it is retired and removed
2079          *      from the lists
2080          */
2081
2082         x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2083
2084         drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2085                    prefix, indent, "                ",
2086                    queue_status(rq),
2087                    rq->fence.context, rq->fence.seqno,
2088                    run_status(rq),
2089                    fence_status(rq),
2090                    buf,
2091                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2092                    name);
2093 }
2094
2095 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2096 {
2097         u32 ring = ENGINE_READ(engine, RING_START);
2098
2099         return ring == i915_ggtt_offset(rq->ring->vma);
2100 }
2101
2102 static bool match_ring(struct i915_request *rq)
2103 {
2104         struct intel_engine_cs *engine;
2105         bool found;
2106         int i;
2107
2108         if (!intel_engine_is_virtual(rq->engine))
2109                 return engine_match_ring(rq->engine, rq);
2110
2111         found = false;
2112         i = 0;
2113         while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2114                 found = engine_match_ring(engine, rq);
2115                 if (found)
2116                         break;
2117         }
2118
2119         return found;
2120 }
2121
2122 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2123 {
2124         if (i915_request_completed(rq))
2125                 return I915_REQUEST_COMPLETE;
2126
2127         if (!i915_request_started(rq))
2128                 return I915_REQUEST_PENDING;
2129
2130         if (match_ring(rq))
2131                 return I915_REQUEST_ACTIVE;
2132
2133         return I915_REQUEST_QUEUED;
2134 }
2135
2136 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2137 #include "selftests/mock_request.c"
2138 #include "selftests/i915_request.c"
2139 #endif
2140
2141 void i915_request_module_exit(void)
2142 {
2143         kmem_cache_destroy(slab_execute_cbs);
2144         kmem_cache_destroy(slab_requests);
2145 }
2146
2147 int __init i915_request_module_init(void)
2148 {
2149         slab_requests =
2150                 kmem_cache_create("i915_request",
2151                                   sizeof(struct i915_request),
2152                                   __alignof__(struct i915_request),
2153                                   SLAB_HWCACHE_ALIGN |
2154                                   SLAB_RECLAIM_ACCOUNT |
2155                                   SLAB_TYPESAFE_BY_RCU,
2156                                   __i915_request_ctor);
2157         if (!slab_requests)
2158                 return -ENOMEM;
2159
2160         slab_execute_cbs = KMEM_CACHE(execute_cb,
2161                                              SLAB_HWCACHE_ALIGN |
2162                                              SLAB_RECLAIM_ACCOUNT |
2163                                              SLAB_TYPESAFE_BY_RCU);
2164         if (!slab_execute_cbs)
2165                 goto err_requests;
2166
2167         return 0;
2168
2169 err_requests:
2170         kmem_cache_destroy(slab_requests);
2171         return -ENOMEM;
2172 }