Merge tag 'drm-intel-next-2019-05-24' of git://anongit.freedesktop.org/drm/drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "i915_active.h"
33 #include "i915_drv.h"
34 #include "i915_globals.h"
35 #include "intel_pm.h"
36
37 struct execute_cb {
38         struct list_head link;
39         struct irq_work work;
40         struct i915_sw_fence *fence;
41         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
42         struct i915_request *signal;
43 };
44
45 static struct i915_global_request {
46         struct i915_global base;
47         struct kmem_cache *slab_requests;
48         struct kmem_cache *slab_dependencies;
49         struct kmem_cache *slab_execute_cbs;
50 } global;
51
52 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
53 {
54         return "i915";
55 }
56
57 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
58 {
59         /*
60          * The timeline struct (as part of the ppgtt underneath a context)
61          * may be freed when the request is no longer in use by the GPU.
62          * We could extend the life of a context to beyond that of all
63          * fences, possibly keeping the hw resource around indefinitely,
64          * or we just give them a false name. Since
65          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
66          * lie seems justifiable.
67          */
68         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
69                 return "signaled";
70
71         return to_request(fence)->gem_context->name ?: "[i915]";
72 }
73
74 static bool i915_fence_signaled(struct dma_fence *fence)
75 {
76         return i915_request_completed(to_request(fence));
77 }
78
79 static bool i915_fence_enable_signaling(struct dma_fence *fence)
80 {
81         return i915_request_enable_breadcrumb(to_request(fence));
82 }
83
84 static signed long i915_fence_wait(struct dma_fence *fence,
85                                    bool interruptible,
86                                    signed long timeout)
87 {
88         return i915_request_wait(to_request(fence),
89                                  interruptible | I915_WAIT_PRIORITY,
90                                  timeout);
91 }
92
93 static void i915_fence_release(struct dma_fence *fence)
94 {
95         struct i915_request *rq = to_request(fence);
96
97         /*
98          * The request is put onto a RCU freelist (i.e. the address
99          * is immediately reused), mark the fences as being freed now.
100          * Otherwise the debugobjects for the fences are only marked as
101          * freed when the slab cache itself is freed, and so we would get
102          * caught trying to reuse dead objects.
103          */
104         i915_sw_fence_fini(&rq->submit);
105         i915_sw_fence_fini(&rq->semaphore);
106
107         kmem_cache_free(global.slab_requests, rq);
108 }
109
110 const struct dma_fence_ops i915_fence_ops = {
111         .get_driver_name = i915_fence_get_driver_name,
112         .get_timeline_name = i915_fence_get_timeline_name,
113         .enable_signaling = i915_fence_enable_signaling,
114         .signaled = i915_fence_signaled,
115         .wait = i915_fence_wait,
116         .release = i915_fence_release,
117 };
118
119 static inline void
120 i915_request_remove_from_client(struct i915_request *request)
121 {
122         struct drm_i915_file_private *file_priv;
123
124         file_priv = request->file_priv;
125         if (!file_priv)
126                 return;
127
128         spin_lock(&file_priv->mm.lock);
129         if (request->file_priv) {
130                 list_del(&request->client_link);
131                 request->file_priv = NULL;
132         }
133         spin_unlock(&file_priv->mm.lock);
134 }
135
136 static void advance_ring(struct i915_request *request)
137 {
138         struct intel_ring *ring = request->ring;
139         unsigned int tail;
140
141         /*
142          * We know the GPU must have read the request to have
143          * sent us the seqno + interrupt, so use the position
144          * of tail of the request to update the last known position
145          * of the GPU head.
146          *
147          * Note this requires that we are always called in request
148          * completion order.
149          */
150         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
151         if (list_is_last(&request->ring_link, &ring->request_list)) {
152                 /*
153                  * We may race here with execlists resubmitting this request
154                  * as we retire it. The resubmission will move the ring->tail
155                  * forwards (to request->wa_tail). We either read the
156                  * current value that was written to hw, or the value that
157                  * is just about to be. Either works, if we miss the last two
158                  * noops - they are safe to be replayed on a reset.
159                  */
160                 tail = READ_ONCE(request->tail);
161                 list_del(&ring->active_link);
162         } else {
163                 tail = request->postfix;
164         }
165         list_del_init(&request->ring_link);
166
167         ring->head = tail;
168 }
169
170 static void free_capture_list(struct i915_request *request)
171 {
172         struct i915_capture_list *capture;
173
174         capture = request->capture_list;
175         while (capture) {
176                 struct i915_capture_list *next = capture->next;
177
178                 kfree(capture);
179                 capture = next;
180         }
181 }
182
183 static void __retire_engine_request(struct intel_engine_cs *engine,
184                                     struct i915_request *rq)
185 {
186         GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n",
187                   __func__, engine->name,
188                   rq->fence.context, rq->fence.seqno,
189                   hwsp_seqno(rq));
190
191         GEM_BUG_ON(!i915_request_completed(rq));
192
193         local_irq_disable();
194
195         spin_lock(&engine->timeline.lock);
196         GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
197         list_del_init(&rq->link);
198         spin_unlock(&engine->timeline.lock);
199
200         spin_lock(&rq->lock);
201         i915_request_mark_complete(rq);
202         if (!i915_request_signaled(rq))
203                 dma_fence_signal_locked(&rq->fence);
204         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
205                 i915_request_cancel_breadcrumb(rq);
206         if (rq->waitboost) {
207                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
208                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
209         }
210         spin_unlock(&rq->lock);
211
212         local_irq_enable();
213
214         /*
215          * The backing object for the context is done after switching to the
216          * *next* context. Therefore we cannot retire the previous context until
217          * the next context has already started running. However, since we
218          * cannot take the required locks at i915_request_submit() we
219          * defer the unpinning of the active context to now, retirement of
220          * the subsequent request.
221          */
222         if (engine->last_retired_context)
223                 intel_context_unpin(engine->last_retired_context);
224         engine->last_retired_context = rq->hw_context;
225 }
226
227 static void __retire_engine_upto(struct intel_engine_cs *engine,
228                                  struct i915_request *rq)
229 {
230         struct i915_request *tmp;
231
232         if (list_empty(&rq->link))
233                 return;
234
235         do {
236                 tmp = list_first_entry(&engine->timeline.requests,
237                                        typeof(*tmp), link);
238
239                 GEM_BUG_ON(tmp->engine != engine);
240                 __retire_engine_request(engine, tmp);
241         } while (tmp != rq);
242 }
243
244 static void i915_request_retire(struct i915_request *request)
245 {
246         struct i915_active_request *active, *next;
247
248         GEM_TRACE("%s fence %llx:%lld, current %d\n",
249                   request->engine->name,
250                   request->fence.context, request->fence.seqno,
251                   hwsp_seqno(request));
252
253         lockdep_assert_held(&request->i915->drm.struct_mutex);
254         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
255         GEM_BUG_ON(!i915_request_completed(request));
256
257         trace_i915_request_retire(request);
258
259         advance_ring(request);
260         free_capture_list(request);
261
262         /*
263          * Walk through the active list, calling retire on each. This allows
264          * objects to track their GPU activity and mark themselves as idle
265          * when their *last* active request is completed (updating state
266          * tracking lists for eviction, active references for GEM, etc).
267          *
268          * As the ->retire() may free the node, we decouple it first and
269          * pass along the auxiliary information (to avoid dereferencing
270          * the node after the callback).
271          */
272         list_for_each_entry_safe(active, next, &request->active_list, link) {
273                 /*
274                  * In microbenchmarks or focusing upon time inside the kernel,
275                  * we may spend an inordinate amount of time simply handling
276                  * the retirement of requests and processing their callbacks.
277                  * Of which, this loop itself is particularly hot due to the
278                  * cache misses when jumping around the list of
279                  * i915_active_request.  So we try to keep this loop as
280                  * streamlined as possible and also prefetch the next
281                  * i915_active_request to try and hide the likely cache miss.
282                  */
283                 prefetchw(next);
284
285                 INIT_LIST_HEAD(&active->link);
286                 RCU_INIT_POINTER(active->request, NULL);
287
288                 active->retire(active, request);
289         }
290
291         i915_request_remove_from_client(request);
292
293         __retire_engine_upto(request->engine, request);
294
295         intel_context_exit(request->hw_context);
296         intel_context_unpin(request->hw_context);
297
298         i915_sched_node_fini(&request->sched);
299         i915_request_put(request);
300 }
301
302 void i915_request_retire_upto(struct i915_request *rq)
303 {
304         struct intel_ring *ring = rq->ring;
305         struct i915_request *tmp;
306
307         GEM_TRACE("%s fence %llx:%lld, current %d\n",
308                   rq->engine->name,
309                   rq->fence.context, rq->fence.seqno,
310                   hwsp_seqno(rq));
311
312         lockdep_assert_held(&rq->i915->drm.struct_mutex);
313         GEM_BUG_ON(!i915_request_completed(rq));
314
315         if (list_empty(&rq->ring_link))
316                 return;
317
318         do {
319                 tmp = list_first_entry(&ring->request_list,
320                                        typeof(*tmp), ring_link);
321
322                 i915_request_retire(tmp);
323         } while (tmp != rq);
324 }
325
326 static void irq_execute_cb(struct irq_work *wrk)
327 {
328         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
329
330         i915_sw_fence_complete(cb->fence);
331         kmem_cache_free(global.slab_execute_cbs, cb);
332 }
333
334 static void irq_execute_cb_hook(struct irq_work *wrk)
335 {
336         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
337
338         cb->hook(container_of(cb->fence, struct i915_request, submit),
339                  &cb->signal->fence);
340         i915_request_put(cb->signal);
341
342         irq_execute_cb(wrk);
343 }
344
345 static void __notify_execute_cb(struct i915_request *rq)
346 {
347         struct execute_cb *cb;
348
349         lockdep_assert_held(&rq->lock);
350
351         if (list_empty(&rq->execute_cb))
352                 return;
353
354         list_for_each_entry(cb, &rq->execute_cb, link)
355                 irq_work_queue(&cb->work);
356
357         /*
358          * XXX Rollback on __i915_request_unsubmit()
359          *
360          * In the future, perhaps when we have an active time-slicing scheduler,
361          * it will be interesting to unsubmit parallel execution and remove
362          * busywaits from the GPU until their master is restarted. This is
363          * quite hairy, we have to carefully rollback the fence and do a
364          * preempt-to-idle cycle on the target engine, all the while the
365          * master execute_cb may refire.
366          */
367         INIT_LIST_HEAD(&rq->execute_cb);
368 }
369
370 static int
371 __i915_request_await_execution(struct i915_request *rq,
372                                struct i915_request *signal,
373                                void (*hook)(struct i915_request *rq,
374                                             struct dma_fence *signal),
375                                gfp_t gfp)
376 {
377         struct execute_cb *cb;
378
379         if (i915_request_is_active(signal)) {
380                 if (hook)
381                         hook(rq, &signal->fence);
382                 return 0;
383         }
384
385         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
386         if (!cb)
387                 return -ENOMEM;
388
389         cb->fence = &rq->submit;
390         i915_sw_fence_await(cb->fence);
391         init_irq_work(&cb->work, irq_execute_cb);
392
393         if (hook) {
394                 cb->hook = hook;
395                 cb->signal = i915_request_get(signal);
396                 cb->work.func = irq_execute_cb_hook;
397         }
398
399         spin_lock_irq(&signal->lock);
400         if (i915_request_is_active(signal)) {
401                 if (hook) {
402                         hook(rq, &signal->fence);
403                         i915_request_put(signal);
404                 }
405                 i915_sw_fence_complete(cb->fence);
406                 kmem_cache_free(global.slab_execute_cbs, cb);
407         } else {
408                 list_add_tail(&cb->link, &signal->execute_cb);
409         }
410         spin_unlock_irq(&signal->lock);
411
412         return 0;
413 }
414
415 static void move_to_timeline(struct i915_request *request,
416                              struct i915_timeline *timeline)
417 {
418         GEM_BUG_ON(request->timeline == &request->engine->timeline);
419         lockdep_assert_held(&request->engine->timeline.lock);
420
421         spin_lock(&request->timeline->lock);
422         list_move_tail(&request->link, &timeline->requests);
423         spin_unlock(&request->timeline->lock);
424 }
425
426 void __i915_request_submit(struct i915_request *request)
427 {
428         struct intel_engine_cs *engine = request->engine;
429
430         GEM_TRACE("%s fence %llx:%lld -> current %d\n",
431                   engine->name,
432                   request->fence.context, request->fence.seqno,
433                   hwsp_seqno(request));
434
435         GEM_BUG_ON(!irqs_disabled());
436         lockdep_assert_held(&engine->timeline.lock);
437
438         if (i915_gem_context_is_banned(request->gem_context))
439                 i915_request_skip(request, -EIO);
440
441         /*
442          * Are we using semaphores when the gpu is already saturated?
443          *
444          * Using semaphores incurs a cost in having the GPU poll a
445          * memory location, busywaiting for it to change. The continual
446          * memory reads can have a noticeable impact on the rest of the
447          * system with the extra bus traffic, stalling the cpu as it too
448          * tries to access memory across the bus (perf stat -e bus-cycles).
449          *
450          * If we installed a semaphore on this request and we only submit
451          * the request after the signaler completed, that indicates the
452          * system is overloaded and using semaphores at this time only
453          * increases the amount of work we are doing. If so, we disable
454          * further use of semaphores until we are idle again, whence we
455          * optimistically try again.
456          */
457         if (request->sched.semaphores &&
458             i915_sw_fence_signaled(&request->semaphore))
459                 request->hw_context->saturated |= request->sched.semaphores;
460
461         /* We may be recursing from the signal callback of another i915 fence */
462         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
463
464         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
465         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
466
467         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
468             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
469             !i915_request_enable_breadcrumb(request))
470                 intel_engine_queue_breadcrumbs(engine);
471
472         __notify_execute_cb(request);
473
474         spin_unlock(&request->lock);
475
476         engine->emit_fini_breadcrumb(request,
477                                      request->ring->vaddr + request->postfix);
478
479         /* Transfer from per-context onto the global per-engine timeline */
480         move_to_timeline(request, &engine->timeline);
481
482         engine->serial++;
483
484         trace_i915_request_execute(request);
485 }
486
487 void i915_request_submit(struct i915_request *request)
488 {
489         struct intel_engine_cs *engine = request->engine;
490         unsigned long flags;
491
492         /* Will be called from irq-context when using foreign fences. */
493         spin_lock_irqsave(&engine->timeline.lock, flags);
494
495         __i915_request_submit(request);
496
497         spin_unlock_irqrestore(&engine->timeline.lock, flags);
498 }
499
500 void __i915_request_unsubmit(struct i915_request *request)
501 {
502         struct intel_engine_cs *engine = request->engine;
503
504         GEM_TRACE("%s fence %llx:%lld, current %d\n",
505                   engine->name,
506                   request->fence.context, request->fence.seqno,
507                   hwsp_seqno(request));
508
509         GEM_BUG_ON(!irqs_disabled());
510         lockdep_assert_held(&engine->timeline.lock);
511
512         /*
513          * Only unwind in reverse order, required so that the per-context list
514          * is kept in seqno/ring order.
515          */
516
517         /* We may be recursing from the signal callback of another i915 fence */
518         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
519
520         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
521                 i915_request_cancel_breadcrumb(request);
522
523         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
524         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
525
526         spin_unlock(&request->lock);
527
528         /* Transfer back from the global per-engine timeline to per-context */
529         move_to_timeline(request, request->timeline);
530
531         /* We've already spun, don't charge on resubmitting. */
532         if (request->sched.semaphores && i915_request_started(request)) {
533                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
534                 request->sched.semaphores = 0;
535         }
536
537         /*
538          * We don't need to wake_up any waiters on request->execute, they
539          * will get woken by any other event or us re-adding this request
540          * to the engine timeline (__i915_request_submit()). The waiters
541          * should be quite adapt at finding that the request now has a new
542          * global_seqno to the one they went to sleep on.
543          */
544 }
545
546 void i915_request_unsubmit(struct i915_request *request)
547 {
548         struct intel_engine_cs *engine = request->engine;
549         unsigned long flags;
550
551         /* Will be called from irq-context when using foreign fences. */
552         spin_lock_irqsave(&engine->timeline.lock, flags);
553
554         __i915_request_unsubmit(request);
555
556         spin_unlock_irqrestore(&engine->timeline.lock, flags);
557 }
558
559 static int __i915_sw_fence_call
560 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
561 {
562         struct i915_request *request =
563                 container_of(fence, typeof(*request), submit);
564
565         switch (state) {
566         case FENCE_COMPLETE:
567                 trace_i915_request_submit(request);
568                 /*
569                  * We need to serialize use of the submit_request() callback
570                  * with its hotplugging performed during an emergency
571                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
572                  * critical section in order to force i915_gem_set_wedged() to
573                  * wait until the submit_request() is completed before
574                  * proceeding.
575                  */
576                 rcu_read_lock();
577                 request->engine->submit_request(request);
578                 rcu_read_unlock();
579                 break;
580
581         case FENCE_FREE:
582                 i915_request_put(request);
583                 break;
584         }
585
586         return NOTIFY_DONE;
587 }
588
589 static int __i915_sw_fence_call
590 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
591 {
592         struct i915_request *request =
593                 container_of(fence, typeof(*request), semaphore);
594
595         switch (state) {
596         case FENCE_COMPLETE:
597                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
598                 break;
599
600         case FENCE_FREE:
601                 i915_request_put(request);
602                 break;
603         }
604
605         return NOTIFY_DONE;
606 }
607
608 static void ring_retire_requests(struct intel_ring *ring)
609 {
610         struct i915_request *rq, *rn;
611
612         list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) {
613                 if (!i915_request_completed(rq))
614                         break;
615
616                 i915_request_retire(rq);
617         }
618 }
619
620 static noinline struct i915_request *
621 request_alloc_slow(struct intel_context *ce, gfp_t gfp)
622 {
623         struct intel_ring *ring = ce->ring;
624         struct i915_request *rq;
625
626         if (list_empty(&ring->request_list))
627                 goto out;
628
629         if (!gfpflags_allow_blocking(gfp))
630                 goto out;
631
632         /* Ratelimit ourselves to prevent oom from malicious clients */
633         rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
634         cond_synchronize_rcu(rq->rcustate);
635
636         /* Retire our old requests in the hope that we free some */
637         ring_retire_requests(ring);
638
639 out:
640         return kmem_cache_alloc(global.slab_requests, gfp);
641 }
642
643 struct i915_request *
644 __i915_request_create(struct intel_context *ce, gfp_t gfp)
645 {
646         struct i915_timeline *tl = ce->ring->timeline;
647         struct i915_request *rq;
648         u32 seqno;
649         int ret;
650
651         might_sleep_if(gfpflags_allow_blocking(gfp));
652
653         /* Check that the caller provided an already pinned context */
654         __intel_context_pin(ce);
655
656         /*
657          * Beware: Dragons be flying overhead.
658          *
659          * We use RCU to look up requests in flight. The lookups may
660          * race with the request being allocated from the slab freelist.
661          * That is the request we are writing to here, may be in the process
662          * of being read by __i915_active_request_get_rcu(). As such,
663          * we have to be very careful when overwriting the contents. During
664          * the RCU lookup, we change chase the request->engine pointer,
665          * read the request->global_seqno and increment the reference count.
666          *
667          * The reference count is incremented atomically. If it is zero,
668          * the lookup knows the request is unallocated and complete. Otherwise,
669          * it is either still in use, or has been reallocated and reset
670          * with dma_fence_init(). This increment is safe for release as we
671          * check that the request we have a reference to and matches the active
672          * request.
673          *
674          * Before we increment the refcount, we chase the request->engine
675          * pointer. We must not call kmem_cache_zalloc() or else we set
676          * that pointer to NULL and cause a crash during the lookup. If
677          * we see the request is completed (based on the value of the
678          * old engine and seqno), the lookup is complete and reports NULL.
679          * If we decide the request is not completed (new engine or seqno),
680          * then we grab a reference and double check that it is still the
681          * active request - which it won't be and restart the lookup.
682          *
683          * Do not use kmem_cache_zalloc() here!
684          */
685         rq = kmem_cache_alloc(global.slab_requests,
686                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
687         if (unlikely(!rq)) {
688                 rq = request_alloc_slow(ce, gfp);
689                 if (!rq) {
690                         ret = -ENOMEM;
691                         goto err_unreserve;
692                 }
693         }
694
695         ret = i915_timeline_get_seqno(tl, rq, &seqno);
696         if (ret)
697                 goto err_free;
698
699         rq->i915 = ce->engine->i915;
700         rq->hw_context = ce;
701         rq->gem_context = ce->gem_context;
702         rq->engine = ce->engine;
703         rq->ring = ce->ring;
704         rq->timeline = tl;
705         GEM_BUG_ON(rq->timeline == &ce->engine->timeline);
706         rq->hwsp_seqno = tl->hwsp_seqno;
707         rq->hwsp_cacheline = tl->hwsp_cacheline;
708         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
709
710         spin_lock_init(&rq->lock);
711         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
712                        tl->fence_context, seqno);
713
714         /* We bump the ref for the fence chain */
715         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
716         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
717
718         i915_sched_node_init(&rq->sched);
719
720         /* No zalloc, must clear what we need by hand */
721         rq->file_priv = NULL;
722         rq->batch = NULL;
723         rq->capture_list = NULL;
724         rq->waitboost = false;
725         rq->execution_mask = ALL_ENGINES;
726
727         INIT_LIST_HEAD(&rq->active_list);
728         INIT_LIST_HEAD(&rq->execute_cb);
729
730         /*
731          * Reserve space in the ring buffer for all the commands required to
732          * eventually emit this request. This is to guarantee that the
733          * i915_request_add() call can't fail. Note that the reserve may need
734          * to be redone if the request is not actually submitted straight
735          * away, e.g. because a GPU scheduler has deferred it.
736          *
737          * Note that due to how we add reserved_space to intel_ring_begin()
738          * we need to double our request to ensure that if we need to wrap
739          * around inside i915_request_add() there is sufficient space at
740          * the beginning of the ring as well.
741          */
742         rq->reserved_space =
743                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
744
745         /*
746          * Record the position of the start of the request so that
747          * should we detect the updated seqno part-way through the
748          * GPU processing the request, we never over-estimate the
749          * position of the head.
750          */
751         rq->head = rq->ring->emit;
752
753         ret = rq->engine->request_alloc(rq);
754         if (ret)
755                 goto err_unwind;
756
757         rq->infix = rq->ring->emit; /* end of header; start of user payload */
758
759         /* Keep a second pin for the dual retirement along engine and ring */
760         __intel_context_pin(ce);
761
762         intel_context_mark_active(ce);
763         return rq;
764
765 err_unwind:
766         ce->ring->emit = rq->head;
767
768         /* Make sure we didn't add ourselves to external state before freeing */
769         GEM_BUG_ON(!list_empty(&rq->active_list));
770         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
771         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
772
773 err_free:
774         kmem_cache_free(global.slab_requests, rq);
775 err_unreserve:
776         intel_context_unpin(ce);
777         return ERR_PTR(ret);
778 }
779
780 struct i915_request *
781 i915_request_create(struct intel_context *ce)
782 {
783         struct i915_request *rq;
784
785         intel_context_timeline_lock(ce);
786
787         /* Move our oldest request to the slab-cache (if not in use!) */
788         rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
789         if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
790             i915_request_completed(rq))
791                 i915_request_retire(rq);
792
793         intel_context_enter(ce);
794         rq = __i915_request_create(ce, GFP_KERNEL);
795         intel_context_exit(ce); /* active reference transferred to request */
796         if (IS_ERR(rq))
797                 goto err_unlock;
798
799         /* Check that we do not interrupt ourselves with a new request */
800         rq->cookie = lockdep_pin_lock(&ce->ring->timeline->mutex);
801
802         return rq;
803
804 err_unlock:
805         intel_context_timeline_unlock(ce);
806         return rq;
807 }
808
809 static int
810 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
811 {
812         if (list_is_first(&signal->ring_link, &signal->ring->request_list))
813                 return 0;
814
815         signal = list_prev_entry(signal, ring_link);
816         if (i915_timeline_sync_is_later(rq->timeline, &signal->fence))
817                 return 0;
818
819         return i915_sw_fence_await_dma_fence(&rq->submit,
820                                              &signal->fence, 0,
821                                              I915_FENCE_GFP);
822 }
823
824 static intel_engine_mask_t
825 already_busywaiting(struct i915_request *rq)
826 {
827         /*
828          * Polling a semaphore causes bus traffic, delaying other users of
829          * both the GPU and CPU. We want to limit the impact on others,
830          * while taking advantage of early submission to reduce GPU
831          * latency. Therefore we restrict ourselves to not using more
832          * than one semaphore from each source, and not using a semaphore
833          * if we have detected the engine is saturated (i.e. would not be
834          * submitted early and cause bus traffic reading an already passed
835          * semaphore).
836          *
837          * See the are-we-too-late? check in __i915_request_submit().
838          */
839         return rq->sched.semaphores | rq->hw_context->saturated;
840 }
841
842 static int
843 emit_semaphore_wait(struct i915_request *to,
844                     struct i915_request *from,
845                     gfp_t gfp)
846 {
847         u32 hwsp_offset;
848         u32 *cs;
849         int err;
850
851         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
852         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
853
854         /* Just emit the first semaphore we see as request space is limited. */
855         if (already_busywaiting(to) & from->engine->mask)
856                 return i915_sw_fence_await_dma_fence(&to->submit,
857                                                      &from->fence, 0,
858                                                      I915_FENCE_GFP);
859
860         err = i915_request_await_start(to, from);
861         if (err < 0)
862                 return err;
863
864         /* Only submit our spinner after the signaler is running! */
865         err = __i915_request_await_execution(to, from, NULL, gfp);
866         if (err)
867                 return err;
868
869         /* We need to pin the signaler's HWSP until we are finished reading. */
870         err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
871         if (err)
872                 return err;
873
874         cs = intel_ring_begin(to, 4);
875         if (IS_ERR(cs))
876                 return PTR_ERR(cs);
877
878         /*
879          * Using greater-than-or-equal here means we have to worry
880          * about seqno wraparound. To side step that issue, we swap
881          * the timeline HWSP upon wrapping, so that everyone listening
882          * for the old (pre-wrap) values do not see the much smaller
883          * (post-wrap) values than they were expecting (and so wait
884          * forever).
885          */
886         *cs++ = MI_SEMAPHORE_WAIT |
887                 MI_SEMAPHORE_GLOBAL_GTT |
888                 MI_SEMAPHORE_POLL |
889                 MI_SEMAPHORE_SAD_GTE_SDD;
890         *cs++ = from->fence.seqno;
891         *cs++ = hwsp_offset;
892         *cs++ = 0;
893
894         intel_ring_advance(to, cs);
895         to->sched.semaphores |= from->engine->mask;
896         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
897         return 0;
898 }
899
900 static int
901 i915_request_await_request(struct i915_request *to, struct i915_request *from)
902 {
903         int ret;
904
905         GEM_BUG_ON(to == from);
906         GEM_BUG_ON(to->timeline == from->timeline);
907
908         if (i915_request_completed(from))
909                 return 0;
910
911         if (to->engine->schedule) {
912                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
913                 if (ret < 0)
914                         return ret;
915         }
916
917         if (to->engine == from->engine) {
918                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
919                                                        &from->submit,
920                                                        I915_FENCE_GFP);
921         } else if (intel_engine_has_semaphores(to->engine) &&
922                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
923                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
924         } else {
925                 ret = i915_sw_fence_await_dma_fence(&to->submit,
926                                                     &from->fence, 0,
927                                                     I915_FENCE_GFP);
928         }
929         if (ret < 0)
930                 return ret;
931
932         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
933                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
934                                                     &from->fence, 0,
935                                                     I915_FENCE_GFP);
936                 if (ret < 0)
937                         return ret;
938         }
939
940         return 0;
941 }
942
943 int
944 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
945 {
946         struct dma_fence **child = &fence;
947         unsigned int nchild = 1;
948         int ret;
949
950         /*
951          * Note that if the fence-array was created in signal-on-any mode,
952          * we should *not* decompose it into its individual fences. However,
953          * we don't currently store which mode the fence-array is operating
954          * in. Fortunately, the only user of signal-on-any is private to
955          * amdgpu and we should not see any incoming fence-array from
956          * sync-file being in signal-on-any mode.
957          */
958         if (dma_fence_is_array(fence)) {
959                 struct dma_fence_array *array = to_dma_fence_array(fence);
960
961                 child = array->fences;
962                 nchild = array->num_fences;
963                 GEM_BUG_ON(!nchild);
964         }
965
966         do {
967                 fence = *child++;
968                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
969                         continue;
970
971                 /*
972                  * Requests on the same timeline are explicitly ordered, along
973                  * with their dependencies, by i915_request_add() which ensures
974                  * that requests are submitted in-order through each ring.
975                  */
976                 if (fence->context == rq->fence.context)
977                         continue;
978
979                 /* Squash repeated waits to the same timelines */
980                 if (fence->context != rq->i915->mm.unordered_timeline &&
981                     i915_timeline_sync_is_later(rq->timeline, fence))
982                         continue;
983
984                 if (dma_fence_is_i915(fence))
985                         ret = i915_request_await_request(rq, to_request(fence));
986                 else
987                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
988                                                             I915_FENCE_TIMEOUT,
989                                                             I915_FENCE_GFP);
990                 if (ret < 0)
991                         return ret;
992
993                 /* Record the latest fence used against each timeline */
994                 if (fence->context != rq->i915->mm.unordered_timeline)
995                         i915_timeline_sync_set(rq->timeline, fence);
996         } while (--nchild);
997
998         return 0;
999 }
1000
1001 int
1002 i915_request_await_execution(struct i915_request *rq,
1003                              struct dma_fence *fence,
1004                              void (*hook)(struct i915_request *rq,
1005                                           struct dma_fence *signal))
1006 {
1007         struct dma_fence **child = &fence;
1008         unsigned int nchild = 1;
1009         int ret;
1010
1011         if (dma_fence_is_array(fence)) {
1012                 struct dma_fence_array *array = to_dma_fence_array(fence);
1013
1014                 /* XXX Error for signal-on-any fence arrays */
1015
1016                 child = array->fences;
1017                 nchild = array->num_fences;
1018                 GEM_BUG_ON(!nchild);
1019         }
1020
1021         do {
1022                 fence = *child++;
1023                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1024                         continue;
1025
1026                 /*
1027                  * We don't squash repeated fence dependencies here as we
1028                  * want to run our callback in all cases.
1029                  */
1030
1031                 if (dma_fence_is_i915(fence))
1032                         ret = __i915_request_await_execution(rq,
1033                                                              to_request(fence),
1034                                                              hook,
1035                                                              I915_FENCE_GFP);
1036                 else
1037                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1038                                                             I915_FENCE_TIMEOUT,
1039                                                             GFP_KERNEL);
1040                 if (ret < 0)
1041                         return ret;
1042         } while (--nchild);
1043
1044         return 0;
1045 }
1046
1047 /**
1048  * i915_request_await_object - set this request to (async) wait upon a bo
1049  * @to: request we are wishing to use
1050  * @obj: object which may be in use on another ring.
1051  * @write: whether the wait is on behalf of a writer
1052  *
1053  * This code is meant to abstract object synchronization with the GPU.
1054  * Conceptually we serialise writes between engines inside the GPU.
1055  * We only allow one engine to write into a buffer at any time, but
1056  * multiple readers. To ensure each has a coherent view of memory, we must:
1057  *
1058  * - If there is an outstanding write request to the object, the new
1059  *   request must wait for it to complete (either CPU or in hw, requests
1060  *   on the same ring will be naturally ordered).
1061  *
1062  * - If we are a write request (pending_write_domain is set), the new
1063  *   request must wait for outstanding read requests to complete.
1064  *
1065  * Returns 0 if successful, else propagates up the lower layer error.
1066  */
1067 int
1068 i915_request_await_object(struct i915_request *to,
1069                           struct drm_i915_gem_object *obj,
1070                           bool write)
1071 {
1072         struct dma_fence *excl;
1073         int ret = 0;
1074
1075         if (write) {
1076                 struct dma_fence **shared;
1077                 unsigned int count, i;
1078
1079                 ret = reservation_object_get_fences_rcu(obj->resv,
1080                                                         &excl, &count, &shared);
1081                 if (ret)
1082                         return ret;
1083
1084                 for (i = 0; i < count; i++) {
1085                         ret = i915_request_await_dma_fence(to, shared[i]);
1086                         if (ret)
1087                                 break;
1088
1089                         dma_fence_put(shared[i]);
1090                 }
1091
1092                 for (; i < count; i++)
1093                         dma_fence_put(shared[i]);
1094                 kfree(shared);
1095         } else {
1096                 excl = reservation_object_get_excl_rcu(obj->resv);
1097         }
1098
1099         if (excl) {
1100                 if (ret == 0)
1101                         ret = i915_request_await_dma_fence(to, excl);
1102
1103                 dma_fence_put(excl);
1104         }
1105
1106         return ret;
1107 }
1108
1109 void i915_request_skip(struct i915_request *rq, int error)
1110 {
1111         void *vaddr = rq->ring->vaddr;
1112         u32 head;
1113
1114         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1115         dma_fence_set_error(&rq->fence, error);
1116
1117         /*
1118          * As this request likely depends on state from the lost
1119          * context, clear out all the user operations leaving the
1120          * breadcrumb at the end (so we get the fence notifications).
1121          */
1122         head = rq->infix;
1123         if (rq->postfix < head) {
1124                 memset(vaddr + head, 0, rq->ring->size - head);
1125                 head = 0;
1126         }
1127         memset(vaddr + head, 0, rq->postfix - head);
1128 }
1129
1130 static struct i915_request *
1131 __i915_request_add_to_timeline(struct i915_request *rq)
1132 {
1133         struct i915_timeline *timeline = rq->timeline;
1134         struct i915_request *prev;
1135
1136         /*
1137          * Dependency tracking and request ordering along the timeline
1138          * is special cased so that we can eliminate redundant ordering
1139          * operations while building the request (we know that the timeline
1140          * itself is ordered, and here we guarantee it).
1141          *
1142          * As we know we will need to emit tracking along the timeline,
1143          * we embed the hooks into our request struct -- at the cost of
1144          * having to have specialised no-allocation interfaces (which will
1145          * be beneficial elsewhere).
1146          *
1147          * A second benefit to open-coding i915_request_await_request is
1148          * that we can apply a slight variant of the rules specialised
1149          * for timelines that jump between engines (such as virtual engines).
1150          * If we consider the case of virtual engine, we must emit a dma-fence
1151          * to prevent scheduling of the second request until the first is
1152          * complete (to maximise our greedy late load balancing) and this
1153          * precludes optimising to use semaphores serialisation of a single
1154          * timeline across engines.
1155          */
1156         prev = rcu_dereference_protected(timeline->last_request.request, 1);
1157         if (prev && !i915_request_completed(prev)) {
1158                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1159                         i915_sw_fence_await_sw_fence(&rq->submit,
1160                                                      &prev->submit,
1161                                                      &rq->submitq);
1162                 else
1163                         __i915_sw_fence_await_dma_fence(&rq->submit,
1164                                                         &prev->fence,
1165                                                         &rq->dmaq);
1166                 if (rq->engine->schedule)
1167                         __i915_sched_node_add_dependency(&rq->sched,
1168                                                          &prev->sched,
1169                                                          &rq->dep,
1170                                                          0);
1171         }
1172
1173         spin_lock_irq(&timeline->lock);
1174         list_add_tail(&rq->link, &timeline->requests);
1175         spin_unlock_irq(&timeline->lock);
1176
1177         /*
1178          * Make sure that no request gazumped us - if it was allocated after
1179          * our i915_request_alloc() and called __i915_request_add() before
1180          * us, the timeline will hold its seqno which is later than ours.
1181          */
1182         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1183         __i915_active_request_set(&timeline->last_request, rq);
1184
1185         return prev;
1186 }
1187
1188 /*
1189  * NB: This function is not allowed to fail. Doing so would mean the the
1190  * request is not being tracked for completion but the work itself is
1191  * going to happen on the hardware. This would be a Bad Thing(tm).
1192  */
1193 struct i915_request *__i915_request_commit(struct i915_request *rq)
1194 {
1195         struct intel_engine_cs *engine = rq->engine;
1196         struct intel_ring *ring = rq->ring;
1197         struct i915_request *prev;
1198         u32 *cs;
1199
1200         GEM_TRACE("%s fence %llx:%lld\n",
1201                   engine->name, rq->fence.context, rq->fence.seqno);
1202
1203         /*
1204          * To ensure that this call will not fail, space for its emissions
1205          * should already have been reserved in the ring buffer. Let the ring
1206          * know that it is time to use that space up.
1207          */
1208         GEM_BUG_ON(rq->reserved_space > ring->space);
1209         rq->reserved_space = 0;
1210
1211         /*
1212          * Record the position of the start of the breadcrumb so that
1213          * should we detect the updated seqno part-way through the
1214          * GPU processing the request, we never over-estimate the
1215          * position of the ring's HEAD.
1216          */
1217         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1218         GEM_BUG_ON(IS_ERR(cs));
1219         rq->postfix = intel_ring_offset(rq, cs);
1220
1221         prev = __i915_request_add_to_timeline(rq);
1222
1223         list_add_tail(&rq->ring_link, &ring->request_list);
1224         if (list_is_first(&rq->ring_link, &ring->request_list))
1225                 list_add(&ring->active_link, &rq->i915->gt.active_rings);
1226         rq->emitted_jiffies = jiffies;
1227
1228         /*
1229          * Let the backend know a new request has arrived that may need
1230          * to adjust the existing execution schedule due to a high priority
1231          * request - i.e. we may want to preempt the current request in order
1232          * to run a high priority dependency chain *before* we can execute this
1233          * request.
1234          *
1235          * This is called before the request is ready to run so that we can
1236          * decide whether to preempt the entire chain so that it is ready to
1237          * run at the earliest possible convenience.
1238          */
1239         local_bh_disable();
1240         i915_sw_fence_commit(&rq->semaphore);
1241         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1242         if (engine->schedule) {
1243                 struct i915_sched_attr attr = rq->gem_context->sched;
1244
1245                 /*
1246                  * Boost actual workloads past semaphores!
1247                  *
1248                  * With semaphores we spin on one engine waiting for another,
1249                  * simply to reduce the latency of starting our work when
1250                  * the signaler completes. However, if there is any other
1251                  * work that we could be doing on this engine instead, that
1252                  * is better utilisation and will reduce the overall duration
1253                  * of the current work. To avoid PI boosting a semaphore
1254                  * far in the distance past over useful work, we keep a history
1255                  * of any semaphore use along our dependency chain.
1256                  */
1257                 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1258                         attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1259
1260                 /*
1261                  * Boost priorities to new clients (new request flows).
1262                  *
1263                  * Allow interactive/synchronous clients to jump ahead of
1264                  * the bulk clients. (FQ_CODEL)
1265                  */
1266                 if (list_empty(&rq->sched.signalers_list))
1267                         attr.priority |= I915_PRIORITY_WAIT;
1268
1269                 engine->schedule(rq, &attr);
1270         }
1271         rcu_read_unlock();
1272         i915_sw_fence_commit(&rq->submit);
1273         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1274
1275         return prev;
1276 }
1277
1278 void i915_request_add(struct i915_request *rq)
1279 {
1280         struct i915_request *prev;
1281
1282         lockdep_assert_held(&rq->timeline->mutex);
1283         lockdep_unpin_lock(&rq->timeline->mutex, rq->cookie);
1284
1285         trace_i915_request_add(rq);
1286
1287         prev = __i915_request_commit(rq);
1288
1289         /*
1290          * In typical scenarios, we do not expect the previous request on
1291          * the timeline to be still tracked by timeline->last_request if it
1292          * has been completed. If the completed request is still here, that
1293          * implies that request retirement is a long way behind submission,
1294          * suggesting that we haven't been retiring frequently enough from
1295          * the combination of retire-before-alloc, waiters and the background
1296          * retirement worker. So if the last request on this timeline was
1297          * already completed, do a catch up pass, flushing the retirement queue
1298          * up to this client. Since we have now moved the heaviest operations
1299          * during retirement onto secondary workers, such as freeing objects
1300          * or contexts, retiring a bunch of requests is mostly list management
1301          * (and cache misses), and so we should not be overly penalizing this
1302          * client by performing excess work, though we may still performing
1303          * work on behalf of others -- but instead we should benefit from
1304          * improved resource management. (Well, that's the theory at least.)
1305          */
1306         if (prev && i915_request_completed(prev))
1307                 i915_request_retire_upto(prev);
1308
1309         mutex_unlock(&rq->timeline->mutex);
1310 }
1311
1312 static unsigned long local_clock_us(unsigned int *cpu)
1313 {
1314         unsigned long t;
1315
1316         /*
1317          * Cheaply and approximately convert from nanoseconds to microseconds.
1318          * The result and subsequent calculations are also defined in the same
1319          * approximate microseconds units. The principal source of timing
1320          * error here is from the simple truncation.
1321          *
1322          * Note that local_clock() is only defined wrt to the current CPU;
1323          * the comparisons are no longer valid if we switch CPUs. Instead of
1324          * blocking preemption for the entire busywait, we can detect the CPU
1325          * switch and use that as indicator of system load and a reason to
1326          * stop busywaiting, see busywait_stop().
1327          */
1328         *cpu = get_cpu();
1329         t = local_clock() >> 10;
1330         put_cpu();
1331
1332         return t;
1333 }
1334
1335 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1336 {
1337         unsigned int this_cpu;
1338
1339         if (time_after(local_clock_us(&this_cpu), timeout))
1340                 return true;
1341
1342         return this_cpu != cpu;
1343 }
1344
1345 static bool __i915_spin_request(const struct i915_request * const rq,
1346                                 int state, unsigned long timeout_us)
1347 {
1348         unsigned int cpu;
1349
1350         /*
1351          * Only wait for the request if we know it is likely to complete.
1352          *
1353          * We don't track the timestamps around requests, nor the average
1354          * request length, so we do not have a good indicator that this
1355          * request will complete within the timeout. What we do know is the
1356          * order in which requests are executed by the context and so we can
1357          * tell if the request has been started. If the request is not even
1358          * running yet, it is a fair assumption that it will not complete
1359          * within our relatively short timeout.
1360          */
1361         if (!i915_request_is_running(rq))
1362                 return false;
1363
1364         /*
1365          * When waiting for high frequency requests, e.g. during synchronous
1366          * rendering split between the CPU and GPU, the finite amount of time
1367          * required to set up the irq and wait upon it limits the response
1368          * rate. By busywaiting on the request completion for a short while we
1369          * can service the high frequency waits as quick as possible. However,
1370          * if it is a slow request, we want to sleep as quickly as possible.
1371          * The tradeoff between waiting and sleeping is roughly the time it
1372          * takes to sleep on a request, on the order of a microsecond.
1373          */
1374
1375         timeout_us += local_clock_us(&cpu);
1376         do {
1377                 if (i915_request_completed(rq))
1378                         return true;
1379
1380                 if (signal_pending_state(state, current))
1381                         break;
1382
1383                 if (busywait_stop(timeout_us, cpu))
1384                         break;
1385
1386                 cpu_relax();
1387         } while (!need_resched());
1388
1389         return false;
1390 }
1391
1392 struct request_wait {
1393         struct dma_fence_cb cb;
1394         struct task_struct *tsk;
1395 };
1396
1397 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1398 {
1399         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1400
1401         wake_up_process(wait->tsk);
1402 }
1403
1404 /**
1405  * i915_request_wait - wait until execution of request has finished
1406  * @rq: the request to wait upon
1407  * @flags: how to wait
1408  * @timeout: how long to wait in jiffies
1409  *
1410  * i915_request_wait() waits for the request to be completed, for a
1411  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1412  * unbounded wait).
1413  *
1414  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1415  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1416  * must not specify that the wait is locked.
1417  *
1418  * Returns the remaining time (in jiffies) if the request completed, which may
1419  * be zero or -ETIME if the request is unfinished after the timeout expires.
1420  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1421  * pending before the request completes.
1422  */
1423 long i915_request_wait(struct i915_request *rq,
1424                        unsigned int flags,
1425                        long timeout)
1426 {
1427         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1428                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1429         struct request_wait wait;
1430
1431         might_sleep();
1432         GEM_BUG_ON(timeout < 0);
1433
1434         if (i915_request_completed(rq))
1435                 return timeout;
1436
1437         if (!timeout)
1438                 return -ETIME;
1439
1440         trace_i915_request_wait_begin(rq, flags);
1441
1442         /*
1443          * Optimistic spin before touching IRQs.
1444          *
1445          * We may use a rather large value here to offset the penalty of
1446          * switching away from the active task. Frequently, the client will
1447          * wait upon an old swapbuffer to throttle itself to remain within a
1448          * frame of the gpu. If the client is running in lockstep with the gpu,
1449          * then it should not be waiting long at all, and a sleep now will incur
1450          * extra scheduler latency in producing the next frame. To try to
1451          * avoid adding the cost of enabling/disabling the interrupt to the
1452          * short wait, we first spin to see if the request would have completed
1453          * in the time taken to setup the interrupt.
1454          *
1455          * We need upto 5us to enable the irq, and upto 20us to hide the
1456          * scheduler latency of a context switch, ignoring the secondary
1457          * impacts from a context switch such as cache eviction.
1458          *
1459          * The scheme used for low-latency IO is called "hybrid interrupt
1460          * polling". The suggestion there is to sleep until just before you
1461          * expect to be woken by the device interrupt and then poll for its
1462          * completion. That requires having a good predictor for the request
1463          * duration, which we currently lack.
1464          */
1465         if (CONFIG_DRM_I915_SPIN_REQUEST &&
1466             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST))
1467                 goto out;
1468
1469         /*
1470          * This client is about to stall waiting for the GPU. In many cases
1471          * this is undesirable and limits the throughput of the system, as
1472          * many clients cannot continue processing user input/output whilst
1473          * blocked. RPS autotuning may take tens of milliseconds to respond
1474          * to the GPU load and thus incurs additional latency for the client.
1475          * We can circumvent that by promoting the GPU frequency to maximum
1476          * before we sleep. This makes the GPU throttle up much more quickly
1477          * (good for benchmarks and user experience, e.g. window animations),
1478          * but at a cost of spending more power processing the workload
1479          * (bad for battery).
1480          */
1481         if (flags & I915_WAIT_PRIORITY) {
1482                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1483                         gen6_rps_boost(rq);
1484                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1485         }
1486
1487         wait.tsk = current;
1488         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1489                 goto out;
1490
1491         for (;;) {
1492                 set_current_state(state);
1493
1494                 if (i915_request_completed(rq))
1495                         break;
1496
1497                 if (signal_pending_state(state, current)) {
1498                         timeout = -ERESTARTSYS;
1499                         break;
1500                 }
1501
1502                 if (!timeout) {
1503                         timeout = -ETIME;
1504                         break;
1505                 }
1506
1507                 timeout = io_schedule_timeout(timeout);
1508         }
1509         __set_current_state(TASK_RUNNING);
1510
1511         dma_fence_remove_callback(&rq->fence, &wait.cb);
1512
1513 out:
1514         trace_i915_request_wait_end(rq);
1515         return timeout;
1516 }
1517
1518 bool i915_retire_requests(struct drm_i915_private *i915)
1519 {
1520         struct intel_ring *ring, *tmp;
1521
1522         lockdep_assert_held(&i915->drm.struct_mutex);
1523
1524         list_for_each_entry_safe(ring, tmp,
1525                                  &i915->gt.active_rings, active_link) {
1526                 intel_ring_get(ring); /* last rq holds reference! */
1527                 ring_retire_requests(ring);
1528                 intel_ring_put(ring);
1529         }
1530
1531         return !list_empty(&i915->gt.active_rings);
1532 }
1533
1534 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1535 #include "selftests/mock_request.c"
1536 #include "selftests/i915_request.c"
1537 #endif
1538
1539 static void i915_global_request_shrink(void)
1540 {
1541         kmem_cache_shrink(global.slab_dependencies);
1542         kmem_cache_shrink(global.slab_execute_cbs);
1543         kmem_cache_shrink(global.slab_requests);
1544 }
1545
1546 static void i915_global_request_exit(void)
1547 {
1548         kmem_cache_destroy(global.slab_dependencies);
1549         kmem_cache_destroy(global.slab_execute_cbs);
1550         kmem_cache_destroy(global.slab_requests);
1551 }
1552
1553 static struct i915_global_request global = { {
1554         .shrink = i915_global_request_shrink,
1555         .exit = i915_global_request_exit,
1556 } };
1557
1558 int __init i915_global_request_init(void)
1559 {
1560         global.slab_requests = KMEM_CACHE(i915_request,
1561                                           SLAB_HWCACHE_ALIGN |
1562                                           SLAB_RECLAIM_ACCOUNT |
1563                                           SLAB_TYPESAFE_BY_RCU);
1564         if (!global.slab_requests)
1565                 return -ENOMEM;
1566
1567         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1568                                              SLAB_HWCACHE_ALIGN |
1569                                              SLAB_RECLAIM_ACCOUNT |
1570                                              SLAB_TYPESAFE_BY_RCU);
1571         if (!global.slab_execute_cbs)
1572                 goto err_requests;
1573
1574         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1575                                               SLAB_HWCACHE_ALIGN |
1576                                               SLAB_RECLAIM_ACCOUNT);
1577         if (!global.slab_dependencies)
1578                 goto err_execute_cbs;
1579
1580         i915_global_register(&global.base);
1581         return 0;
1582
1583 err_execute_cbs:
1584         kmem_cache_destroy(global.slab_execute_cbs);
1585 err_requests:
1586         kmem_cache_destroy(global.slab_requests);
1587         return -ENOMEM;
1588 }