Merge tag 'irqchip-fixes-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/maz...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/cpuidle.h>
33 #include <linux/slab.h>
34 #include <linux/sysrq.h>
35
36 #include <drm/drm_drv.h>
37 #include <drm/drm_irq.h>
38 #include <drm/i915_drm.h>
39
40 #include "display/intel_fifo_underrun.h"
41 #include "display/intel_hotplug.h"
42 #include "display/intel_lpe_audio.h"
43 #include "display/intel_psr.h"
44
45 #include "i915_drv.h"
46 #include "i915_irq.h"
47 #include "i915_trace.h"
48 #include "intel_drv.h"
49 #include "intel_pm.h"
50
51 /**
52  * DOC: interrupt handling
53  *
54  * These functions provide the basic support for enabling and disabling the
55  * interrupt handling support. There's a lot more functionality in i915_irq.c
56  * and related files, but that will be described in separate chapters.
57  */
58
59 static const u32 hpd_ilk[HPD_NUM_PINS] = {
60         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
61 };
62
63 static const u32 hpd_ivb[HPD_NUM_PINS] = {
64         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
65 };
66
67 static const u32 hpd_bdw[HPD_NUM_PINS] = {
68         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
69 };
70
71 static const u32 hpd_ibx[HPD_NUM_PINS] = {
72         [HPD_CRT] = SDE_CRT_HOTPLUG,
73         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
74         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
75         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
76         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
77 };
78
79 static const u32 hpd_cpt[HPD_NUM_PINS] = {
80         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
81         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
82         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
83         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
84         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
85 };
86
87 static const u32 hpd_spt[HPD_NUM_PINS] = {
88         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
89         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
90         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
91         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
92         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
93 };
94
95 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
96         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
97         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
98         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
99         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
100         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
101         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
102 };
103
104 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
105         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
106         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
107         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
108         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
109         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
110         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
111 };
112
113 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
114         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
115         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
116         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
117         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
118         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
119         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
120 };
121
122 /* BXT hpd list */
123 static const u32 hpd_bxt[HPD_NUM_PINS] = {
124         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
125         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
126         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
127 };
128
129 static const u32 hpd_gen11[HPD_NUM_PINS] = {
130         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
131         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
132         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
133         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
134 };
135
136 static const u32 hpd_icp[HPD_NUM_PINS] = {
137         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
138         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
139         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
140         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
141         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
142         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
143 };
144
145 static const u32 hpd_mcc[HPD_NUM_PINS] = {
146         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
147         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
148         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
149 };
150
151 static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
152                            i915_reg_t iir, i915_reg_t ier)
153 {
154         intel_uncore_write(uncore, imr, 0xffffffff);
155         intel_uncore_posting_read(uncore, imr);
156
157         intel_uncore_write(uncore, ier, 0);
158
159         /* IIR can theoretically queue up two events. Be paranoid. */
160         intel_uncore_write(uncore, iir, 0xffffffff);
161         intel_uncore_posting_read(uncore, iir);
162         intel_uncore_write(uncore, iir, 0xffffffff);
163         intel_uncore_posting_read(uncore, iir);
164 }
165
166 static void gen2_irq_reset(struct intel_uncore *uncore)
167 {
168         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
169         intel_uncore_posting_read16(uncore, GEN2_IMR);
170
171         intel_uncore_write16(uncore, GEN2_IER, 0);
172
173         /* IIR can theoretically queue up two events. Be paranoid. */
174         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
175         intel_uncore_posting_read16(uncore, GEN2_IIR);
176         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
177         intel_uncore_posting_read16(uncore, GEN2_IIR);
178 }
179
180 #define GEN8_IRQ_RESET_NDX(uncore, type, which) \
181 ({ \
182         unsigned int which_ = which; \
183         gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \
184                        GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \
185 })
186
187 #define GEN3_IRQ_RESET(uncore, type) \
188         gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER)
189
190 #define GEN2_IRQ_RESET(uncore) \
191         gen2_irq_reset(uncore)
192
193 /*
194  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
195  */
196 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
197 {
198         u32 val = intel_uncore_read(uncore, reg);
199
200         if (val == 0)
201                 return;
202
203         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
204              i915_mmio_reg_offset(reg), val);
205         intel_uncore_write(uncore, reg, 0xffffffff);
206         intel_uncore_posting_read(uncore, reg);
207         intel_uncore_write(uncore, reg, 0xffffffff);
208         intel_uncore_posting_read(uncore, reg);
209 }
210
211 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
212 {
213         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
214
215         if (val == 0)
216                 return;
217
218         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
219              i915_mmio_reg_offset(GEN2_IIR), val);
220         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
221         intel_uncore_posting_read16(uncore, GEN2_IIR);
222         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
223         intel_uncore_posting_read16(uncore, GEN2_IIR);
224 }
225
226 static void gen3_irq_init(struct intel_uncore *uncore,
227                           i915_reg_t imr, u32 imr_val,
228                           i915_reg_t ier, u32 ier_val,
229                           i915_reg_t iir)
230 {
231         gen3_assert_iir_is_zero(uncore, iir);
232
233         intel_uncore_write(uncore, ier, ier_val);
234         intel_uncore_write(uncore, imr, imr_val);
235         intel_uncore_posting_read(uncore, imr);
236 }
237
238 static void gen2_irq_init(struct intel_uncore *uncore,
239                           u32 imr_val, u32 ier_val)
240 {
241         gen2_assert_iir_is_zero(uncore);
242
243         intel_uncore_write16(uncore, GEN2_IER, ier_val);
244         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
245         intel_uncore_posting_read16(uncore, GEN2_IMR);
246 }
247
248 #define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \
249 ({ \
250         unsigned int which_ = which; \
251         gen3_irq_init((uncore), \
252                       GEN8_##type##_IMR(which_), imr_val, \
253                       GEN8_##type##_IER(which_), ier_val, \
254                       GEN8_##type##_IIR(which_)); \
255 })
256
257 #define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \
258         gen3_irq_init((uncore), \
259                       type##IMR, imr_val, \
260                       type##IER, ier_val, \
261                       type##IIR)
262
263 #define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \
264         gen2_irq_init((uncore), imr_val, ier_val)
265
266 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
267 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
268
269 /* For display hotplug interrupt */
270 static inline void
271 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
272                                      u32 mask,
273                                      u32 bits)
274 {
275         u32 val;
276
277         lockdep_assert_held(&dev_priv->irq_lock);
278         WARN_ON(bits & ~mask);
279
280         val = I915_READ(PORT_HOTPLUG_EN);
281         val &= ~mask;
282         val |= bits;
283         I915_WRITE(PORT_HOTPLUG_EN, val);
284 }
285
286 /**
287  * i915_hotplug_interrupt_update - update hotplug interrupt enable
288  * @dev_priv: driver private
289  * @mask: bits to update
290  * @bits: bits to enable
291  * NOTE: the HPD enable bits are modified both inside and outside
292  * of an interrupt context. To avoid that read-modify-write cycles
293  * interfer, these bits are protected by a spinlock. Since this
294  * function is usually not called from a context where the lock is
295  * held already, this function acquires the lock itself. A non-locking
296  * version is also available.
297  */
298 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
299                                    u32 mask,
300                                    u32 bits)
301 {
302         spin_lock_irq(&dev_priv->irq_lock);
303         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
304         spin_unlock_irq(&dev_priv->irq_lock);
305 }
306
307 static u32
308 gen11_gt_engine_identity(struct drm_i915_private * const i915,
309                          const unsigned int bank, const unsigned int bit);
310
311 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
312                                 const unsigned int bank,
313                                 const unsigned int bit)
314 {
315         void __iomem * const regs = i915->uncore.regs;
316         u32 dw;
317
318         lockdep_assert_held(&i915->irq_lock);
319
320         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
321         if (dw & BIT(bit)) {
322                 /*
323                  * According to the BSpec, DW_IIR bits cannot be cleared without
324                  * first servicing the Selector & Shared IIR registers.
325                  */
326                 gen11_gt_engine_identity(i915, bank, bit);
327
328                 /*
329                  * We locked GT INT DW by reading it. If we want to (try
330                  * to) recover from this succesfully, we need to clear
331                  * our bit, otherwise we are locking the register for
332                  * everybody.
333                  */
334                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
335
336                 return true;
337         }
338
339         return false;
340 }
341
342 /**
343  * ilk_update_display_irq - update DEIMR
344  * @dev_priv: driver private
345  * @interrupt_mask: mask of interrupt bits to update
346  * @enabled_irq_mask: mask of interrupt bits to enable
347  */
348 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
349                             u32 interrupt_mask,
350                             u32 enabled_irq_mask)
351 {
352         u32 new_val;
353
354         lockdep_assert_held(&dev_priv->irq_lock);
355
356         WARN_ON(enabled_irq_mask & ~interrupt_mask);
357
358         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
359                 return;
360
361         new_val = dev_priv->irq_mask;
362         new_val &= ~interrupt_mask;
363         new_val |= (~enabled_irq_mask & interrupt_mask);
364
365         if (new_val != dev_priv->irq_mask) {
366                 dev_priv->irq_mask = new_val;
367                 I915_WRITE(DEIMR, dev_priv->irq_mask);
368                 POSTING_READ(DEIMR);
369         }
370 }
371
372 /**
373  * ilk_update_gt_irq - update GTIMR
374  * @dev_priv: driver private
375  * @interrupt_mask: mask of interrupt bits to update
376  * @enabled_irq_mask: mask of interrupt bits to enable
377  */
378 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
379                               u32 interrupt_mask,
380                               u32 enabled_irq_mask)
381 {
382         lockdep_assert_held(&dev_priv->irq_lock);
383
384         WARN_ON(enabled_irq_mask & ~interrupt_mask);
385
386         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
387                 return;
388
389         dev_priv->gt_irq_mask &= ~interrupt_mask;
390         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
391         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
392 }
393
394 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
395 {
396         ilk_update_gt_irq(dev_priv, mask, mask);
397         intel_uncore_posting_read_fw(&dev_priv->uncore, GTIMR);
398 }
399
400 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
401 {
402         ilk_update_gt_irq(dev_priv, mask, 0);
403 }
404
405 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
406 {
407         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
408
409         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
410 }
411
412 static void write_pm_imr(struct drm_i915_private *dev_priv)
413 {
414         i915_reg_t reg;
415         u32 mask = dev_priv->pm_imr;
416
417         if (INTEL_GEN(dev_priv) >= 11) {
418                 reg = GEN11_GPM_WGBOXPERF_INTR_MASK;
419                 /* pm is in upper half */
420                 mask = mask << 16;
421         } else if (INTEL_GEN(dev_priv) >= 8) {
422                 reg = GEN8_GT_IMR(2);
423         } else {
424                 reg = GEN6_PMIMR;
425         }
426
427         I915_WRITE(reg, mask);
428         POSTING_READ(reg);
429 }
430
431 static void write_pm_ier(struct drm_i915_private *dev_priv)
432 {
433         i915_reg_t reg;
434         u32 mask = dev_priv->pm_ier;
435
436         if (INTEL_GEN(dev_priv) >= 11) {
437                 reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE;
438                 /* pm is in upper half */
439                 mask = mask << 16;
440         } else if (INTEL_GEN(dev_priv) >= 8) {
441                 reg = GEN8_GT_IER(2);
442         } else {
443                 reg = GEN6_PMIER;
444         }
445
446         I915_WRITE(reg, mask);
447 }
448
449 /**
450  * snb_update_pm_irq - update GEN6_PMIMR
451  * @dev_priv: driver private
452  * @interrupt_mask: mask of interrupt bits to update
453  * @enabled_irq_mask: mask of interrupt bits to enable
454  */
455 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
456                               u32 interrupt_mask,
457                               u32 enabled_irq_mask)
458 {
459         u32 new_val;
460
461         WARN_ON(enabled_irq_mask & ~interrupt_mask);
462
463         lockdep_assert_held(&dev_priv->irq_lock);
464
465         new_val = dev_priv->pm_imr;
466         new_val &= ~interrupt_mask;
467         new_val |= (~enabled_irq_mask & interrupt_mask);
468
469         if (new_val != dev_priv->pm_imr) {
470                 dev_priv->pm_imr = new_val;
471                 write_pm_imr(dev_priv);
472         }
473 }
474
475 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
476 {
477         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
478                 return;
479
480         snb_update_pm_irq(dev_priv, mask, mask);
481 }
482
483 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
484 {
485         snb_update_pm_irq(dev_priv, mask, 0);
486 }
487
488 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
489 {
490         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491                 return;
492
493         __gen6_mask_pm_irq(dev_priv, mask);
494 }
495
496 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
497 {
498         i915_reg_t reg = gen6_pm_iir(dev_priv);
499
500         lockdep_assert_held(&dev_priv->irq_lock);
501
502         I915_WRITE(reg, reset_mask);
503         I915_WRITE(reg, reset_mask);
504         POSTING_READ(reg);
505 }
506
507 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
508 {
509         lockdep_assert_held(&dev_priv->irq_lock);
510
511         dev_priv->pm_ier |= enable_mask;
512         write_pm_ier(dev_priv);
513         gen6_unmask_pm_irq(dev_priv, enable_mask);
514         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
515 }
516
517 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
518 {
519         lockdep_assert_held(&dev_priv->irq_lock);
520
521         dev_priv->pm_ier &= ~disable_mask;
522         __gen6_mask_pm_irq(dev_priv, disable_mask);
523         write_pm_ier(dev_priv);
524         /* though a barrier is missing here, but don't really need a one */
525 }
526
527 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
528 {
529         spin_lock_irq(&dev_priv->irq_lock);
530
531         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
532                 ;
533
534         dev_priv->gt_pm.rps.pm_iir = 0;
535
536         spin_unlock_irq(&dev_priv->irq_lock);
537 }
538
539 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
540 {
541         spin_lock_irq(&dev_priv->irq_lock);
542         gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
543         dev_priv->gt_pm.rps.pm_iir = 0;
544         spin_unlock_irq(&dev_priv->irq_lock);
545 }
546
547 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
548 {
549         struct intel_rps *rps = &dev_priv->gt_pm.rps;
550
551         if (READ_ONCE(rps->interrupts_enabled))
552                 return;
553
554         spin_lock_irq(&dev_priv->irq_lock);
555         WARN_ON_ONCE(rps->pm_iir);
556
557         if (INTEL_GEN(dev_priv) >= 11)
558                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
559         else
560                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
561
562         rps->interrupts_enabled = true;
563         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
564
565         spin_unlock_irq(&dev_priv->irq_lock);
566 }
567
568 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
569 {
570         struct intel_rps *rps = &dev_priv->gt_pm.rps;
571
572         if (!READ_ONCE(rps->interrupts_enabled))
573                 return;
574
575         spin_lock_irq(&dev_priv->irq_lock);
576         rps->interrupts_enabled = false;
577
578         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
579
580         gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
581
582         spin_unlock_irq(&dev_priv->irq_lock);
583         synchronize_irq(dev_priv->drm.irq);
584
585         /* Now that we will not be generating any more work, flush any
586          * outstanding tasks. As we are called on the RPS idle path,
587          * we will reset the GPU to minimum frequencies, so the current
588          * state of the worker can be discarded.
589          */
590         cancel_work_sync(&rps->work);
591         if (INTEL_GEN(dev_priv) >= 11)
592                 gen11_reset_rps_interrupts(dev_priv);
593         else
594                 gen6_reset_rps_interrupts(dev_priv);
595 }
596
597 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
598 {
599         assert_rpm_wakelock_held(&dev_priv->runtime_pm);
600
601         spin_lock_irq(&dev_priv->irq_lock);
602         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
603         spin_unlock_irq(&dev_priv->irq_lock);
604 }
605
606 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
607 {
608         assert_rpm_wakelock_held(&dev_priv->runtime_pm);
609
610         spin_lock_irq(&dev_priv->irq_lock);
611         if (!dev_priv->guc.interrupts.enabled) {
612                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
613                                        dev_priv->pm_guc_events);
614                 dev_priv->guc.interrupts.enabled = true;
615                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
616         }
617         spin_unlock_irq(&dev_priv->irq_lock);
618 }
619
620 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
621 {
622         assert_rpm_wakelock_held(&dev_priv->runtime_pm);
623
624         spin_lock_irq(&dev_priv->irq_lock);
625         dev_priv->guc.interrupts.enabled = false;
626
627         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
628
629         spin_unlock_irq(&dev_priv->irq_lock);
630         synchronize_irq(dev_priv->drm.irq);
631
632         gen9_reset_guc_interrupts(dev_priv);
633 }
634
635 void gen11_reset_guc_interrupts(struct drm_i915_private *i915)
636 {
637         spin_lock_irq(&i915->irq_lock);
638         gen11_reset_one_iir(i915, 0, GEN11_GUC);
639         spin_unlock_irq(&i915->irq_lock);
640 }
641
642 void gen11_enable_guc_interrupts(struct drm_i915_private *dev_priv)
643 {
644         spin_lock_irq(&dev_priv->irq_lock);
645         if (!dev_priv->guc.interrupts.enabled) {
646                 u32 events = REG_FIELD_PREP(ENGINE1_MASK,
647                                             GEN11_GUC_INTR_GUC2HOST);
648
649                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GUC));
650                 I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, events);
651                 I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~events);
652                 dev_priv->guc.interrupts.enabled = true;
653         }
654         spin_unlock_irq(&dev_priv->irq_lock);
655 }
656
657 void gen11_disable_guc_interrupts(struct drm_i915_private *dev_priv)
658 {
659         spin_lock_irq(&dev_priv->irq_lock);
660         dev_priv->guc.interrupts.enabled = false;
661
662         I915_WRITE(GEN11_GUC_SG_INTR_MASK, ~0);
663         I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0);
664
665         spin_unlock_irq(&dev_priv->irq_lock);
666         synchronize_irq(dev_priv->drm.irq);
667
668         gen11_reset_guc_interrupts(dev_priv);
669 }
670
671 /**
672  * bdw_update_port_irq - update DE port interrupt
673  * @dev_priv: driver private
674  * @interrupt_mask: mask of interrupt bits to update
675  * @enabled_irq_mask: mask of interrupt bits to enable
676  */
677 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
678                                 u32 interrupt_mask,
679                                 u32 enabled_irq_mask)
680 {
681         u32 new_val;
682         u32 old_val;
683
684         lockdep_assert_held(&dev_priv->irq_lock);
685
686         WARN_ON(enabled_irq_mask & ~interrupt_mask);
687
688         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
689                 return;
690
691         old_val = I915_READ(GEN8_DE_PORT_IMR);
692
693         new_val = old_val;
694         new_val &= ~interrupt_mask;
695         new_val |= (~enabled_irq_mask & interrupt_mask);
696
697         if (new_val != old_val) {
698                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
699                 POSTING_READ(GEN8_DE_PORT_IMR);
700         }
701 }
702
703 /**
704  * bdw_update_pipe_irq - update DE pipe interrupt
705  * @dev_priv: driver private
706  * @pipe: pipe whose interrupt to update
707  * @interrupt_mask: mask of interrupt bits to update
708  * @enabled_irq_mask: mask of interrupt bits to enable
709  */
710 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
711                          enum pipe pipe,
712                          u32 interrupt_mask,
713                          u32 enabled_irq_mask)
714 {
715         u32 new_val;
716
717         lockdep_assert_held(&dev_priv->irq_lock);
718
719         WARN_ON(enabled_irq_mask & ~interrupt_mask);
720
721         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
722                 return;
723
724         new_val = dev_priv->de_irq_mask[pipe];
725         new_val &= ~interrupt_mask;
726         new_val |= (~enabled_irq_mask & interrupt_mask);
727
728         if (new_val != dev_priv->de_irq_mask[pipe]) {
729                 dev_priv->de_irq_mask[pipe] = new_val;
730                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
731                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
732         }
733 }
734
735 /**
736  * ibx_display_interrupt_update - update SDEIMR
737  * @dev_priv: driver private
738  * @interrupt_mask: mask of interrupt bits to update
739  * @enabled_irq_mask: mask of interrupt bits to enable
740  */
741 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
742                                   u32 interrupt_mask,
743                                   u32 enabled_irq_mask)
744 {
745         u32 sdeimr = I915_READ(SDEIMR);
746         sdeimr &= ~interrupt_mask;
747         sdeimr |= (~enabled_irq_mask & interrupt_mask);
748
749         WARN_ON(enabled_irq_mask & ~interrupt_mask);
750
751         lockdep_assert_held(&dev_priv->irq_lock);
752
753         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
754                 return;
755
756         I915_WRITE(SDEIMR, sdeimr);
757         POSTING_READ(SDEIMR);
758 }
759
760 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
761                               enum pipe pipe)
762 {
763         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
764         u32 enable_mask = status_mask << 16;
765
766         lockdep_assert_held(&dev_priv->irq_lock);
767
768         if (INTEL_GEN(dev_priv) < 5)
769                 goto out;
770
771         /*
772          * On pipe A we don't support the PSR interrupt yet,
773          * on pipe B and C the same bit MBZ.
774          */
775         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
776                 return 0;
777         /*
778          * On pipe B and C we don't support the PSR interrupt yet, on pipe
779          * A the same bit is for perf counters which we don't use either.
780          */
781         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
782                 return 0;
783
784         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
785                          SPRITE0_FLIP_DONE_INT_EN_VLV |
786                          SPRITE1_FLIP_DONE_INT_EN_VLV);
787         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
788                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
789         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
790                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
791
792 out:
793         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
794                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
795                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
796                   pipe_name(pipe), enable_mask, status_mask);
797
798         return enable_mask;
799 }
800
801 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
802                           enum pipe pipe, u32 status_mask)
803 {
804         i915_reg_t reg = PIPESTAT(pipe);
805         u32 enable_mask;
806
807         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
808                   "pipe %c: status_mask=0x%x\n",
809                   pipe_name(pipe), status_mask);
810
811         lockdep_assert_held(&dev_priv->irq_lock);
812         WARN_ON(!intel_irqs_enabled(dev_priv));
813
814         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
815                 return;
816
817         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
818         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
819
820         I915_WRITE(reg, enable_mask | status_mask);
821         POSTING_READ(reg);
822 }
823
824 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
825                            enum pipe pipe, u32 status_mask)
826 {
827         i915_reg_t reg = PIPESTAT(pipe);
828         u32 enable_mask;
829
830         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
831                   "pipe %c: status_mask=0x%x\n",
832                   pipe_name(pipe), status_mask);
833
834         lockdep_assert_held(&dev_priv->irq_lock);
835         WARN_ON(!intel_irqs_enabled(dev_priv));
836
837         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
838                 return;
839
840         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
841         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
842
843         I915_WRITE(reg, enable_mask | status_mask);
844         POSTING_READ(reg);
845 }
846
847 static bool i915_has_asle(struct drm_i915_private *dev_priv)
848 {
849         if (!dev_priv->opregion.asle)
850                 return false;
851
852         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
853 }
854
855 /**
856  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
857  * @dev_priv: i915 device private
858  */
859 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
860 {
861         if (!i915_has_asle(dev_priv))
862                 return;
863
864         spin_lock_irq(&dev_priv->irq_lock);
865
866         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
867         if (INTEL_GEN(dev_priv) >= 4)
868                 i915_enable_pipestat(dev_priv, PIPE_A,
869                                      PIPE_LEGACY_BLC_EVENT_STATUS);
870
871         spin_unlock_irq(&dev_priv->irq_lock);
872 }
873
874 /*
875  * This timing diagram depicts the video signal in and
876  * around the vertical blanking period.
877  *
878  * Assumptions about the fictitious mode used in this example:
879  *  vblank_start >= 3
880  *  vsync_start = vblank_start + 1
881  *  vsync_end = vblank_start + 2
882  *  vtotal = vblank_start + 3
883  *
884  *           start of vblank:
885  *           latch double buffered registers
886  *           increment frame counter (ctg+)
887  *           generate start of vblank interrupt (gen4+)
888  *           |
889  *           |          frame start:
890  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
891  *           |          may be shifted forward 1-3 extra lines via PIPECONF
892  *           |          |
893  *           |          |  start of vsync:
894  *           |          |  generate vsync interrupt
895  *           |          |  |
896  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
897  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
898  * ----va---> <-----------------vb--------------------> <--------va-------------
899  *       |          |       <----vs----->                     |
900  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
901  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
902  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
903  *       |          |                                         |
904  *       last visible pixel                                   first visible pixel
905  *                  |                                         increment frame counter (gen3/4)
906  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
907  *
908  * x  = horizontal active
909  * _  = horizontal blanking
910  * hs = horizontal sync
911  * va = vertical active
912  * vb = vertical blanking
913  * vs = vertical sync
914  * vbs = vblank_start (number)
915  *
916  * Summary:
917  * - most events happen at the start of horizontal sync
918  * - frame start happens at the start of horizontal blank, 1-4 lines
919  *   (depending on PIPECONF settings) after the start of vblank
920  * - gen3/4 pixel and frame counter are synchronized with the start
921  *   of horizontal active on the first line of vertical active
922  */
923
924 /* Called from drm generic code, passed a 'crtc', which
925  * we use as a pipe index
926  */
927 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
928 {
929         struct drm_i915_private *dev_priv = to_i915(dev);
930         struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
931         const struct drm_display_mode *mode = &vblank->hwmode;
932         i915_reg_t high_frame, low_frame;
933         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
934         unsigned long irqflags;
935
936         /*
937          * On i965gm TV output the frame counter only works up to
938          * the point when we enable the TV encoder. After that the
939          * frame counter ceases to work and reads zero. We need a
940          * vblank wait before enabling the TV encoder and so we
941          * have to enable vblank interrupts while the frame counter
942          * is still in a working state. However the core vblank code
943          * does not like us returning non-zero frame counter values
944          * when we've told it that we don't have a working frame
945          * counter. Thus we must stop non-zero values leaking out.
946          */
947         if (!vblank->max_vblank_count)
948                 return 0;
949
950         htotal = mode->crtc_htotal;
951         hsync_start = mode->crtc_hsync_start;
952         vbl_start = mode->crtc_vblank_start;
953         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
954                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
955
956         /* Convert to pixel count */
957         vbl_start *= htotal;
958
959         /* Start of vblank event occurs at start of hsync */
960         vbl_start -= htotal - hsync_start;
961
962         high_frame = PIPEFRAME(pipe);
963         low_frame = PIPEFRAMEPIXEL(pipe);
964
965         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
966
967         /*
968          * High & low register fields aren't synchronized, so make sure
969          * we get a low value that's stable across two reads of the high
970          * register.
971          */
972         do {
973                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
974                 low   = I915_READ_FW(low_frame);
975                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
976         } while (high1 != high2);
977
978         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
979
980         high1 >>= PIPE_FRAME_HIGH_SHIFT;
981         pixel = low & PIPE_PIXEL_MASK;
982         low >>= PIPE_FRAME_LOW_SHIFT;
983
984         /*
985          * The frame counter increments at beginning of active.
986          * Cook up a vblank counter by also checking the pixel
987          * counter against vblank start.
988          */
989         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
990 }
991
992 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
993 {
994         struct drm_i915_private *dev_priv = to_i915(dev);
995
996         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
997 }
998
999 /*
1000  * On certain encoders on certain platforms, pipe
1001  * scanline register will not work to get the scanline,
1002  * since the timings are driven from the PORT or issues
1003  * with scanline register updates.
1004  * This function will use Framestamp and current
1005  * timestamp registers to calculate the scanline.
1006  */
1007 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
1008 {
1009         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1010         struct drm_vblank_crtc *vblank =
1011                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
1012         const struct drm_display_mode *mode = &vblank->hwmode;
1013         u32 vblank_start = mode->crtc_vblank_start;
1014         u32 vtotal = mode->crtc_vtotal;
1015         u32 htotal = mode->crtc_htotal;
1016         u32 clock = mode->crtc_clock;
1017         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
1018
1019         /*
1020          * To avoid the race condition where we might cross into the
1021          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
1022          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
1023          * during the same frame.
1024          */
1025         do {
1026                 /*
1027                  * This field provides read back of the display
1028                  * pipe frame time stamp. The time stamp value
1029                  * is sampled at every start of vertical blank.
1030                  */
1031                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
1032
1033                 /*
1034                  * The TIMESTAMP_CTR register has the current
1035                  * time stamp value.
1036                  */
1037                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
1038
1039                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
1040         } while (scan_post_time != scan_prev_time);
1041
1042         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
1043                                         clock), 1000 * htotal);
1044         scanline = min(scanline, vtotal - 1);
1045         scanline = (scanline + vblank_start) % vtotal;
1046
1047         return scanline;
1048 }
1049
1050 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
1051 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
1052 {
1053         struct drm_device *dev = crtc->base.dev;
1054         struct drm_i915_private *dev_priv = to_i915(dev);
1055         const struct drm_display_mode *mode;
1056         struct drm_vblank_crtc *vblank;
1057         enum pipe pipe = crtc->pipe;
1058         int position, vtotal;
1059
1060         if (!crtc->active)
1061                 return -1;
1062
1063         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
1064         mode = &vblank->hwmode;
1065
1066         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
1067                 return __intel_get_crtc_scanline_from_timestamp(crtc);
1068
1069         vtotal = mode->crtc_vtotal;
1070         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1071                 vtotal /= 2;
1072
1073         if (IS_GEN(dev_priv, 2))
1074                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
1075         else
1076                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1077
1078         /*
1079          * On HSW, the DSL reg (0x70000) appears to return 0 if we
1080          * read it just before the start of vblank.  So try it again
1081          * so we don't accidentally end up spanning a vblank frame
1082          * increment, causing the pipe_update_end() code to squak at us.
1083          *
1084          * The nature of this problem means we can't simply check the ISR
1085          * bit and return the vblank start value; nor can we use the scanline
1086          * debug register in the transcoder as it appears to have the same
1087          * problem.  We may need to extend this to include other platforms,
1088          * but so far testing only shows the problem on HSW.
1089          */
1090         if (HAS_DDI(dev_priv) && !position) {
1091                 int i, temp;
1092
1093                 for (i = 0; i < 100; i++) {
1094                         udelay(1);
1095                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1096                         if (temp != position) {
1097                                 position = temp;
1098                                 break;
1099                         }
1100                 }
1101         }
1102
1103         /*
1104          * See update_scanline_offset() for the details on the
1105          * scanline_offset adjustment.
1106          */
1107         return (position + crtc->scanline_offset) % vtotal;
1108 }
1109
1110 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
1111                                      bool in_vblank_irq, int *vpos, int *hpos,
1112                                      ktime_t *stime, ktime_t *etime,
1113                                      const struct drm_display_mode *mode)
1114 {
1115         struct drm_i915_private *dev_priv = to_i915(dev);
1116         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1117                                                                 pipe);
1118         int position;
1119         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1120         unsigned long irqflags;
1121         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
1122                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
1123                 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1124
1125         if (WARN_ON(!mode->crtc_clock)) {
1126                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1127                                  "pipe %c\n", pipe_name(pipe));
1128                 return false;
1129         }
1130
1131         htotal = mode->crtc_htotal;
1132         hsync_start = mode->crtc_hsync_start;
1133         vtotal = mode->crtc_vtotal;
1134         vbl_start = mode->crtc_vblank_start;
1135         vbl_end = mode->crtc_vblank_end;
1136
1137         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1138                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1139                 vbl_end /= 2;
1140                 vtotal /= 2;
1141         }
1142
1143         /*
1144          * Lock uncore.lock, as we will do multiple timing critical raw
1145          * register reads, potentially with preemption disabled, so the
1146          * following code must not block on uncore.lock.
1147          */
1148         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1149
1150         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1151
1152         /* Get optional system timestamp before query. */
1153         if (stime)
1154                 *stime = ktime_get();
1155
1156         if (use_scanline_counter) {
1157                 /* No obvious pixelcount register. Only query vertical
1158                  * scanout position from Display scan line register.
1159                  */
1160                 position = __intel_get_crtc_scanline(intel_crtc);
1161         } else {
1162                 /* Have access to pixelcount since start of frame.
1163                  * We can split this into vertical and horizontal
1164                  * scanout position.
1165                  */
1166                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1167
1168                 /* convert to pixel counts */
1169                 vbl_start *= htotal;
1170                 vbl_end *= htotal;
1171                 vtotal *= htotal;
1172
1173                 /*
1174                  * In interlaced modes, the pixel counter counts all pixels,
1175                  * so one field will have htotal more pixels. In order to avoid
1176                  * the reported position from jumping backwards when the pixel
1177                  * counter is beyond the length of the shorter field, just
1178                  * clamp the position the length of the shorter field. This
1179                  * matches how the scanline counter based position works since
1180                  * the scanline counter doesn't count the two half lines.
1181                  */
1182                 if (position >= vtotal)
1183                         position = vtotal - 1;
1184
1185                 /*
1186                  * Start of vblank interrupt is triggered at start of hsync,
1187                  * just prior to the first active line of vblank. However we
1188                  * consider lines to start at the leading edge of horizontal
1189                  * active. So, should we get here before we've crossed into
1190                  * the horizontal active of the first line in vblank, we would
1191                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1192                  * always add htotal-hsync_start to the current pixel position.
1193                  */
1194                 position = (position + htotal - hsync_start) % vtotal;
1195         }
1196
1197         /* Get optional system timestamp after query. */
1198         if (etime)
1199                 *etime = ktime_get();
1200
1201         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1202
1203         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1204
1205         /*
1206          * While in vblank, position will be negative
1207          * counting up towards 0 at vbl_end. And outside
1208          * vblank, position will be positive counting
1209          * up since vbl_end.
1210          */
1211         if (position >= vbl_start)
1212                 position -= vbl_end;
1213         else
1214                 position += vtotal - vbl_end;
1215
1216         if (use_scanline_counter) {
1217                 *vpos = position;
1218                 *hpos = 0;
1219         } else {
1220                 *vpos = position / htotal;
1221                 *hpos = position - (*vpos * htotal);
1222         }
1223
1224         return true;
1225 }
1226
1227 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1228 {
1229         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1230         unsigned long irqflags;
1231         int position;
1232
1233         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1234         position = __intel_get_crtc_scanline(crtc);
1235         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1236
1237         return position;
1238 }
1239
1240 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1241 {
1242         struct intel_uncore *uncore = &dev_priv->uncore;
1243         u32 busy_up, busy_down, max_avg, min_avg;
1244         u8 new_delay;
1245
1246         spin_lock(&mchdev_lock);
1247
1248         intel_uncore_write16(uncore,
1249                              MEMINTRSTS,
1250                              intel_uncore_read(uncore, MEMINTRSTS));
1251
1252         new_delay = dev_priv->ips.cur_delay;
1253
1254         intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1255         busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1256         busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1257         max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1258         min_avg = intel_uncore_read(uncore, RCBMINAVG);
1259
1260         /* Handle RCS change request from hw */
1261         if (busy_up > max_avg) {
1262                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1263                         new_delay = dev_priv->ips.cur_delay - 1;
1264                 if (new_delay < dev_priv->ips.max_delay)
1265                         new_delay = dev_priv->ips.max_delay;
1266         } else if (busy_down < min_avg) {
1267                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1268                         new_delay = dev_priv->ips.cur_delay + 1;
1269                 if (new_delay > dev_priv->ips.min_delay)
1270                         new_delay = dev_priv->ips.min_delay;
1271         }
1272
1273         if (ironlake_set_drps(dev_priv, new_delay))
1274                 dev_priv->ips.cur_delay = new_delay;
1275
1276         spin_unlock(&mchdev_lock);
1277
1278         return;
1279 }
1280
1281 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1282                         struct intel_rps_ei *ei)
1283 {
1284         ei->ktime = ktime_get_raw();
1285         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1286         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1287 }
1288
1289 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1290 {
1291         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1292 }
1293
1294 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1295 {
1296         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1297         const struct intel_rps_ei *prev = &rps->ei;
1298         struct intel_rps_ei now;
1299         u32 events = 0;
1300
1301         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1302                 return 0;
1303
1304         vlv_c0_read(dev_priv, &now);
1305
1306         if (prev->ktime) {
1307                 u64 time, c0;
1308                 u32 render, media;
1309
1310                 time = ktime_us_delta(now.ktime, prev->ktime);
1311
1312                 time *= dev_priv->czclk_freq;
1313
1314                 /* Workload can be split between render + media,
1315                  * e.g. SwapBuffers being blitted in X after being rendered in
1316                  * mesa. To account for this we need to combine both engines
1317                  * into our activity counter.
1318                  */
1319                 render = now.render_c0 - prev->render_c0;
1320                 media = now.media_c0 - prev->media_c0;
1321                 c0 = max(render, media);
1322                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1323
1324                 if (c0 > time * rps->power.up_threshold)
1325                         events = GEN6_PM_RP_UP_THRESHOLD;
1326                 else if (c0 < time * rps->power.down_threshold)
1327                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1328         }
1329
1330         rps->ei = now;
1331         return events;
1332 }
1333
1334 static void gen6_pm_rps_work(struct work_struct *work)
1335 {
1336         struct drm_i915_private *dev_priv =
1337                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1338         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1339         bool client_boost = false;
1340         int new_delay, adj, min, max;
1341         u32 pm_iir = 0;
1342
1343         spin_lock_irq(&dev_priv->irq_lock);
1344         if (rps->interrupts_enabled) {
1345                 pm_iir = fetch_and_zero(&rps->pm_iir);
1346                 client_boost = atomic_read(&rps->num_waiters);
1347         }
1348         spin_unlock_irq(&dev_priv->irq_lock);
1349
1350         /* Make sure we didn't queue anything we're not going to process. */
1351         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1352         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1353                 goto out;
1354
1355         mutex_lock(&rps->lock);
1356
1357         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1358
1359         adj = rps->last_adj;
1360         new_delay = rps->cur_freq;
1361         min = rps->min_freq_softlimit;
1362         max = rps->max_freq_softlimit;
1363         if (client_boost)
1364                 max = rps->max_freq;
1365         if (client_boost && new_delay < rps->boost_freq) {
1366                 new_delay = rps->boost_freq;
1367                 adj = 0;
1368         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1369                 if (adj > 0)
1370                         adj *= 2;
1371                 else /* CHV needs even encode values */
1372                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1373
1374                 if (new_delay >= rps->max_freq_softlimit)
1375                         adj = 0;
1376         } else if (client_boost) {
1377                 adj = 0;
1378         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1379                 if (rps->cur_freq > rps->efficient_freq)
1380                         new_delay = rps->efficient_freq;
1381                 else if (rps->cur_freq > rps->min_freq_softlimit)
1382                         new_delay = rps->min_freq_softlimit;
1383                 adj = 0;
1384         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1385                 if (adj < 0)
1386                         adj *= 2;
1387                 else /* CHV needs even encode values */
1388                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1389
1390                 if (new_delay <= rps->min_freq_softlimit)
1391                         adj = 0;
1392         } else { /* unknown event */
1393                 adj = 0;
1394         }
1395
1396         rps->last_adj = adj;
1397
1398         /*
1399          * Limit deboosting and boosting to keep ourselves at the extremes
1400          * when in the respective power modes (i.e. slowly decrease frequencies
1401          * while in the HIGH_POWER zone and slowly increase frequencies while
1402          * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1403          * to the next level quickly, and conversely if busy we expect to
1404          * hit a waitboost and rapidly switch into max power.
1405          */
1406         if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1407             (adj > 0 && rps->power.mode == LOW_POWER))
1408                 rps->last_adj = 0;
1409
1410         /* sysfs frequency interfaces may have snuck in while servicing the
1411          * interrupt
1412          */
1413         new_delay += adj;
1414         new_delay = clamp_t(int, new_delay, min, max);
1415
1416         if (intel_set_rps(dev_priv, new_delay)) {
1417                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1418                 rps->last_adj = 0;
1419         }
1420
1421         mutex_unlock(&rps->lock);
1422
1423 out:
1424         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1425         spin_lock_irq(&dev_priv->irq_lock);
1426         if (rps->interrupts_enabled)
1427                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1428         spin_unlock_irq(&dev_priv->irq_lock);
1429 }
1430
1431
1432 /**
1433  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1434  * occurred.
1435  * @work: workqueue struct
1436  *
1437  * Doesn't actually do anything except notify userspace. As a consequence of
1438  * this event, userspace should try to remap the bad rows since statistically
1439  * it is likely the same row is more likely to go bad again.
1440  */
1441 static void ivybridge_parity_work(struct work_struct *work)
1442 {
1443         struct drm_i915_private *dev_priv =
1444                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1445         u32 error_status, row, bank, subbank;
1446         char *parity_event[6];
1447         u32 misccpctl;
1448         u8 slice = 0;
1449
1450         /* We must turn off DOP level clock gating to access the L3 registers.
1451          * In order to prevent a get/put style interface, acquire struct mutex
1452          * any time we access those registers.
1453          */
1454         mutex_lock(&dev_priv->drm.struct_mutex);
1455
1456         /* If we've screwed up tracking, just let the interrupt fire again */
1457         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1458                 goto out;
1459
1460         misccpctl = I915_READ(GEN7_MISCCPCTL);
1461         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1462         POSTING_READ(GEN7_MISCCPCTL);
1463
1464         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1465                 i915_reg_t reg;
1466
1467                 slice--;
1468                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1469                         break;
1470
1471                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1472
1473                 reg = GEN7_L3CDERRST1(slice);
1474
1475                 error_status = I915_READ(reg);
1476                 row = GEN7_PARITY_ERROR_ROW(error_status);
1477                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1478                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1479
1480                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1481                 POSTING_READ(reg);
1482
1483                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1484                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1485                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1486                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1487                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1488                 parity_event[5] = NULL;
1489
1490                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1491                                    KOBJ_CHANGE, parity_event);
1492
1493                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1494                           slice, row, bank, subbank);
1495
1496                 kfree(parity_event[4]);
1497                 kfree(parity_event[3]);
1498                 kfree(parity_event[2]);
1499                 kfree(parity_event[1]);
1500         }
1501
1502         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1503
1504 out:
1505         WARN_ON(dev_priv->l3_parity.which_slice);
1506         spin_lock_irq(&dev_priv->irq_lock);
1507         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1508         spin_unlock_irq(&dev_priv->irq_lock);
1509
1510         mutex_unlock(&dev_priv->drm.struct_mutex);
1511 }
1512
1513 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1514                                                u32 iir)
1515 {
1516         if (!HAS_L3_DPF(dev_priv))
1517                 return;
1518
1519         spin_lock(&dev_priv->irq_lock);
1520         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1521         spin_unlock(&dev_priv->irq_lock);
1522
1523         iir &= GT_PARITY_ERROR(dev_priv);
1524         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1525                 dev_priv->l3_parity.which_slice |= 1 << 1;
1526
1527         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1528                 dev_priv->l3_parity.which_slice |= 1 << 0;
1529
1530         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1531 }
1532
1533 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1534                                u32 gt_iir)
1535 {
1536         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1537                 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1538         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1539                 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1540 }
1541
1542 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1543                                u32 gt_iir)
1544 {
1545         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1546                 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1547         if (gt_iir & GT_BSD_USER_INTERRUPT)
1548                 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1549         if (gt_iir & GT_BLT_USER_INTERRUPT)
1550                 intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]);
1551
1552         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1553                       GT_BSD_CS_ERROR_INTERRUPT |
1554                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1555                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1556
1557         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1558                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1559 }
1560
1561 static void
1562 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1563 {
1564         bool tasklet = false;
1565
1566         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1567                 tasklet = true;
1568
1569         if (iir & GT_RENDER_USER_INTERRUPT) {
1570                 intel_engine_breadcrumbs_irq(engine);
1571                 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
1572         }
1573
1574         if (tasklet)
1575                 tasklet_hi_schedule(&engine->execlists.tasklet);
1576 }
1577
1578 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1579                             u32 master_ctl, u32 gt_iir[4])
1580 {
1581         void __iomem * const regs = i915->uncore.regs;
1582
1583 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1584                       GEN8_GT_BCS_IRQ | \
1585                       GEN8_GT_VCS0_IRQ | \
1586                       GEN8_GT_VCS1_IRQ | \
1587                       GEN8_GT_VECS_IRQ | \
1588                       GEN8_GT_PM_IRQ | \
1589                       GEN8_GT_GUC_IRQ)
1590
1591         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1592                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1593                 if (likely(gt_iir[0]))
1594                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1595         }
1596
1597         if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1598                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1599                 if (likely(gt_iir[1]))
1600                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1601         }
1602
1603         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1604                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1605                 if (likely(gt_iir[2]))
1606                         raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1607         }
1608
1609         if (master_ctl & GEN8_GT_VECS_IRQ) {
1610                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1611                 if (likely(gt_iir[3]))
1612                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1613         }
1614 }
1615
1616 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1617                                 u32 master_ctl, u32 gt_iir[4])
1618 {
1619         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1620                 gen8_cs_irq_handler(i915->engine[RCS0],
1621                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1622                 gen8_cs_irq_handler(i915->engine[BCS0],
1623                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1624         }
1625
1626         if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1627                 gen8_cs_irq_handler(i915->engine[VCS0],
1628                                     gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT);
1629                 gen8_cs_irq_handler(i915->engine[VCS1],
1630                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1631         }
1632
1633         if (master_ctl & GEN8_GT_VECS_IRQ) {
1634                 gen8_cs_irq_handler(i915->engine[VECS0],
1635                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1636         }
1637
1638         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1639                 gen6_rps_irq_handler(i915, gt_iir[2]);
1640                 gen9_guc_irq_handler(i915, gt_iir[2]);
1641         }
1642 }
1643
1644 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1645 {
1646         switch (pin) {
1647         case HPD_PORT_C:
1648                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1649         case HPD_PORT_D:
1650                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1651         case HPD_PORT_E:
1652                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1653         case HPD_PORT_F:
1654                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1655         default:
1656                 return false;
1657         }
1658 }
1659
1660 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1661 {
1662         switch (pin) {
1663         case HPD_PORT_A:
1664                 return val & PORTA_HOTPLUG_LONG_DETECT;
1665         case HPD_PORT_B:
1666                 return val & PORTB_HOTPLUG_LONG_DETECT;
1667         case HPD_PORT_C:
1668                 return val & PORTC_HOTPLUG_LONG_DETECT;
1669         default:
1670                 return false;
1671         }
1672 }
1673
1674 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1675 {
1676         switch (pin) {
1677         case HPD_PORT_A:
1678                 return val & ICP_DDIA_HPD_LONG_DETECT;
1679         case HPD_PORT_B:
1680                 return val & ICP_DDIB_HPD_LONG_DETECT;
1681         default:
1682                 return false;
1683         }
1684 }
1685
1686 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1687 {
1688         switch (pin) {
1689         case HPD_PORT_C:
1690                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1691         case HPD_PORT_D:
1692                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1693         case HPD_PORT_E:
1694                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1695         case HPD_PORT_F:
1696                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1697         default:
1698                 return false;
1699         }
1700 }
1701
1702 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1703 {
1704         switch (pin) {
1705         case HPD_PORT_E:
1706                 return val & PORTE_HOTPLUG_LONG_DETECT;
1707         default:
1708                 return false;
1709         }
1710 }
1711
1712 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1713 {
1714         switch (pin) {
1715         case HPD_PORT_A:
1716                 return val & PORTA_HOTPLUG_LONG_DETECT;
1717         case HPD_PORT_B:
1718                 return val & PORTB_HOTPLUG_LONG_DETECT;
1719         case HPD_PORT_C:
1720                 return val & PORTC_HOTPLUG_LONG_DETECT;
1721         case HPD_PORT_D:
1722                 return val & PORTD_HOTPLUG_LONG_DETECT;
1723         default:
1724                 return false;
1725         }
1726 }
1727
1728 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1729 {
1730         switch (pin) {
1731         case HPD_PORT_A:
1732                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1733         default:
1734                 return false;
1735         }
1736 }
1737
1738 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1739 {
1740         switch (pin) {
1741         case HPD_PORT_B:
1742                 return val & PORTB_HOTPLUG_LONG_DETECT;
1743         case HPD_PORT_C:
1744                 return val & PORTC_HOTPLUG_LONG_DETECT;
1745         case HPD_PORT_D:
1746                 return val & PORTD_HOTPLUG_LONG_DETECT;
1747         default:
1748                 return false;
1749         }
1750 }
1751
1752 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1753 {
1754         switch (pin) {
1755         case HPD_PORT_B:
1756                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1757         case HPD_PORT_C:
1758                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1759         case HPD_PORT_D:
1760                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1761         default:
1762                 return false;
1763         }
1764 }
1765
1766 /*
1767  * Get a bit mask of pins that have triggered, and which ones may be long.
1768  * This can be called multiple times with the same masks to accumulate
1769  * hotplug detection results from several registers.
1770  *
1771  * Note that the caller is expected to zero out the masks initially.
1772  */
1773 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1774                                u32 *pin_mask, u32 *long_mask,
1775                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1776                                const u32 hpd[HPD_NUM_PINS],
1777                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1778 {
1779         enum hpd_pin pin;
1780
1781         for_each_hpd_pin(pin) {
1782                 if ((hpd[pin] & hotplug_trigger) == 0)
1783                         continue;
1784
1785                 *pin_mask |= BIT(pin);
1786
1787                 if (long_pulse_detect(pin, dig_hotplug_reg))
1788                         *long_mask |= BIT(pin);
1789         }
1790
1791         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1792                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1793
1794 }
1795
1796 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1797 {
1798         wake_up_all(&dev_priv->gmbus_wait_queue);
1799 }
1800
1801 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1802 {
1803         wake_up_all(&dev_priv->gmbus_wait_queue);
1804 }
1805
1806 #if defined(CONFIG_DEBUG_FS)
1807 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808                                          enum pipe pipe,
1809                                          u32 crc0, u32 crc1,
1810                                          u32 crc2, u32 crc3,
1811                                          u32 crc4)
1812 {
1813         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1814         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1815         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1816
1817         trace_intel_pipe_crc(crtc, crcs);
1818
1819         spin_lock(&pipe_crc->lock);
1820         /*
1821          * For some not yet identified reason, the first CRC is
1822          * bonkers. So let's just wait for the next vblank and read
1823          * out the buggy result.
1824          *
1825          * On GEN8+ sometimes the second CRC is bonkers as well, so
1826          * don't trust that one either.
1827          */
1828         if (pipe_crc->skipped <= 0 ||
1829             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1830                 pipe_crc->skipped++;
1831                 spin_unlock(&pipe_crc->lock);
1832                 return;
1833         }
1834         spin_unlock(&pipe_crc->lock);
1835
1836         drm_crtc_add_crc_entry(&crtc->base, true,
1837                                 drm_crtc_accurate_vblank_count(&crtc->base),
1838                                 crcs);
1839 }
1840 #else
1841 static inline void
1842 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1843                              enum pipe pipe,
1844                              u32 crc0, u32 crc1,
1845                              u32 crc2, u32 crc3,
1846                              u32 crc4) {}
1847 #endif
1848
1849
1850 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1851                                      enum pipe pipe)
1852 {
1853         display_pipe_crc_irq_handler(dev_priv, pipe,
1854                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1855                                      0, 0, 0, 0);
1856 }
1857
1858 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1859                                      enum pipe pipe)
1860 {
1861         display_pipe_crc_irq_handler(dev_priv, pipe,
1862                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1863                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1864                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1865                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1866                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1867 }
1868
1869 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1870                                       enum pipe pipe)
1871 {
1872         u32 res1, res2;
1873
1874         if (INTEL_GEN(dev_priv) >= 3)
1875                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1876         else
1877                 res1 = 0;
1878
1879         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1880                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1881         else
1882                 res2 = 0;
1883
1884         display_pipe_crc_irq_handler(dev_priv, pipe,
1885                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1886                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1887                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1888                                      res1, res2);
1889 }
1890
1891 /* The RPS events need forcewake, so we add them to a work queue and mask their
1892  * IMR bits until the work is done. Other interrupts can be processed without
1893  * the work queue. */
1894 static void gen11_rps_irq_handler(struct drm_i915_private *i915, u32 pm_iir)
1895 {
1896         struct intel_rps *rps = &i915->gt_pm.rps;
1897         const u32 events = i915->pm_rps_events & pm_iir;
1898
1899         lockdep_assert_held(&i915->irq_lock);
1900
1901         if (unlikely(!events))
1902                 return;
1903
1904         gen6_mask_pm_irq(i915, events);
1905
1906         if (!rps->interrupts_enabled)
1907                 return;
1908
1909         rps->pm_iir |= events;
1910         schedule_work(&rps->work);
1911 }
1912
1913 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1914 {
1915         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1916
1917         if (pm_iir & dev_priv->pm_rps_events) {
1918                 spin_lock(&dev_priv->irq_lock);
1919                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1920                 if (rps->interrupts_enabled) {
1921                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1922                         schedule_work(&rps->work);
1923                 }
1924                 spin_unlock(&dev_priv->irq_lock);
1925         }
1926
1927         if (INTEL_GEN(dev_priv) >= 8)
1928                 return;
1929
1930         if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1931                 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1932
1933         if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1934                 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1935 }
1936
1937 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1938 {
1939         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1940                 intel_guc_to_host_event_handler(&dev_priv->guc);
1941 }
1942
1943 static void gen11_guc_irq_handler(struct drm_i915_private *i915, u16 iir)
1944 {
1945         if (iir & GEN11_GUC_INTR_GUC2HOST)
1946                 intel_guc_to_host_event_handler(&i915->guc);
1947 }
1948
1949 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1950 {
1951         enum pipe pipe;
1952
1953         for_each_pipe(dev_priv, pipe) {
1954                 I915_WRITE(PIPESTAT(pipe),
1955                            PIPESTAT_INT_STATUS_MASK |
1956                            PIPE_FIFO_UNDERRUN_STATUS);
1957
1958                 dev_priv->pipestat_irq_mask[pipe] = 0;
1959         }
1960 }
1961
1962 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1963                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1964 {
1965         int pipe;
1966
1967         spin_lock(&dev_priv->irq_lock);
1968
1969         if (!dev_priv->display_irqs_enabled) {
1970                 spin_unlock(&dev_priv->irq_lock);
1971                 return;
1972         }
1973
1974         for_each_pipe(dev_priv, pipe) {
1975                 i915_reg_t reg;
1976                 u32 status_mask, enable_mask, iir_bit = 0;
1977
1978                 /*
1979                  * PIPESTAT bits get signalled even when the interrupt is
1980                  * disabled with the mask bits, and some of the status bits do
1981                  * not generate interrupts at all (like the underrun bit). Hence
1982                  * we need to be careful that we only handle what we want to
1983                  * handle.
1984                  */
1985
1986                 /* fifo underruns are filterered in the underrun handler. */
1987                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1988
1989                 switch (pipe) {
1990                 case PIPE_A:
1991                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1992                         break;
1993                 case PIPE_B:
1994                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1995                         break;
1996                 case PIPE_C:
1997                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1998                         break;
1999                 }
2000                 if (iir & iir_bit)
2001                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
2002
2003                 if (!status_mask)
2004                         continue;
2005
2006                 reg = PIPESTAT(pipe);
2007                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
2008                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
2009
2010                 /*
2011                  * Clear the PIPE*STAT regs before the IIR
2012                  *
2013                  * Toggle the enable bits to make sure we get an
2014                  * edge in the ISR pipe event bit if we don't clear
2015                  * all the enabled status bits. Otherwise the edge
2016                  * triggered IIR on i965/g4x wouldn't notice that
2017                  * an interrupt is still pending.
2018                  */
2019                 if (pipe_stats[pipe]) {
2020                         I915_WRITE(reg, pipe_stats[pipe]);
2021                         I915_WRITE(reg, enable_mask);
2022                 }
2023         }
2024         spin_unlock(&dev_priv->irq_lock);
2025 }
2026
2027 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2028                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
2029 {
2030         enum pipe pipe;
2031
2032         for_each_pipe(dev_priv, pipe) {
2033                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
2034                         drm_handle_vblank(&dev_priv->drm, pipe);
2035
2036                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2037                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2038
2039                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2040                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2041         }
2042 }
2043
2044 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2045                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
2046 {
2047         bool blc_event = false;
2048         enum pipe pipe;
2049
2050         for_each_pipe(dev_priv, pipe) {
2051                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
2052                         drm_handle_vblank(&dev_priv->drm, pipe);
2053
2054                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2055                         blc_event = true;
2056
2057                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2058                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2059
2060                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2061                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2062         }
2063
2064         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2065                 intel_opregion_asle_intr(dev_priv);
2066 }
2067
2068 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2069                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
2070 {
2071         bool blc_event = false;
2072         enum pipe pipe;
2073
2074         for_each_pipe(dev_priv, pipe) {
2075                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2076                         drm_handle_vblank(&dev_priv->drm, pipe);
2077
2078                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2079                         blc_event = true;
2080
2081                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2082                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2083
2084                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2085                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2086         }
2087
2088         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2089                 intel_opregion_asle_intr(dev_priv);
2090
2091         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2092                 gmbus_irq_handler(dev_priv);
2093 }
2094
2095 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2096                                             u32 pipe_stats[I915_MAX_PIPES])
2097 {
2098         enum pipe pipe;
2099
2100         for_each_pipe(dev_priv, pipe) {
2101                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2102                         drm_handle_vblank(&dev_priv->drm, pipe);
2103
2104                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2105                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2106
2107                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2108                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2109         }
2110
2111         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2112                 gmbus_irq_handler(dev_priv);
2113 }
2114
2115 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2116 {
2117         u32 hotplug_status = 0, hotplug_status_mask;
2118         int i;
2119
2120         if (IS_G4X(dev_priv) ||
2121             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2122                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2123                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2124         else
2125                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2126
2127         /*
2128          * We absolutely have to clear all the pending interrupt
2129          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2130          * interrupt bit won't have an edge, and the i965/g4x
2131          * edge triggered IIR will not notice that an interrupt
2132          * is still pending. We can't use PORT_HOTPLUG_EN to
2133          * guarantee the edge as the act of toggling the enable
2134          * bits can itself generate a new hotplug interrupt :(
2135          */
2136         for (i = 0; i < 10; i++) {
2137                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2138
2139                 if (tmp == 0)
2140                         return hotplug_status;
2141
2142                 hotplug_status |= tmp;
2143                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2144         }
2145
2146         WARN_ONCE(1,
2147                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2148                   I915_READ(PORT_HOTPLUG_STAT));
2149
2150         return hotplug_status;
2151 }
2152
2153 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2154                                  u32 hotplug_status)
2155 {
2156         u32 pin_mask = 0, long_mask = 0;
2157
2158         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2159             IS_CHERRYVIEW(dev_priv)) {
2160                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2161
2162                 if (hotplug_trigger) {
2163                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2164                                            hotplug_trigger, hotplug_trigger,
2165                                            hpd_status_g4x,
2166                                            i9xx_port_hotplug_long_detect);
2167
2168                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2169                 }
2170
2171                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2172                         dp_aux_irq_handler(dev_priv);
2173         } else {
2174                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2175
2176                 if (hotplug_trigger) {
2177                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2178                                            hotplug_trigger, hotplug_trigger,
2179                                            hpd_status_i915,
2180                                            i9xx_port_hotplug_long_detect);
2181                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2182                 }
2183         }
2184 }
2185
2186 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2187 {
2188         struct drm_device *dev = arg;
2189         struct drm_i915_private *dev_priv = to_i915(dev);
2190         irqreturn_t ret = IRQ_NONE;
2191
2192         if (!intel_irqs_enabled(dev_priv))
2193                 return IRQ_NONE;
2194
2195         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2196         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2197
2198         do {
2199                 u32 iir, gt_iir, pm_iir;
2200                 u32 pipe_stats[I915_MAX_PIPES] = {};
2201                 u32 hotplug_status = 0;
2202                 u32 ier = 0;
2203
2204                 gt_iir = I915_READ(GTIIR);
2205                 pm_iir = I915_READ(GEN6_PMIIR);
2206                 iir = I915_READ(VLV_IIR);
2207
2208                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2209                         break;
2210
2211                 ret = IRQ_HANDLED;
2212
2213                 /*
2214                  * Theory on interrupt generation, based on empirical evidence:
2215                  *
2216                  * x = ((VLV_IIR & VLV_IER) ||
2217                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2218                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2219                  *
2220                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2221                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2222                  * guarantee the CPU interrupt will be raised again even if we
2223                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2224                  * bits this time around.
2225                  */
2226                 I915_WRITE(VLV_MASTER_IER, 0);
2227                 ier = I915_READ(VLV_IER);
2228                 I915_WRITE(VLV_IER, 0);
2229
2230                 if (gt_iir)
2231                         I915_WRITE(GTIIR, gt_iir);
2232                 if (pm_iir)
2233                         I915_WRITE(GEN6_PMIIR, pm_iir);
2234
2235                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2236                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2237
2238                 /* Call regardless, as some status bits might not be
2239                  * signalled in iir */
2240                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2241
2242                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2243                            I915_LPE_PIPE_B_INTERRUPT))
2244                         intel_lpe_audio_irq_handler(dev_priv);
2245
2246                 /*
2247                  * VLV_IIR is single buffered, and reflects the level
2248                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2249                  */
2250                 if (iir)
2251                         I915_WRITE(VLV_IIR, iir);
2252
2253                 I915_WRITE(VLV_IER, ier);
2254                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2255
2256                 if (gt_iir)
2257                         snb_gt_irq_handler(dev_priv, gt_iir);
2258                 if (pm_iir)
2259                         gen6_rps_irq_handler(dev_priv, pm_iir);
2260
2261                 if (hotplug_status)
2262                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2263
2264                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2265         } while (0);
2266
2267         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2268
2269         return ret;
2270 }
2271
2272 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2273 {
2274         struct drm_device *dev = arg;
2275         struct drm_i915_private *dev_priv = to_i915(dev);
2276         irqreturn_t ret = IRQ_NONE;
2277
2278         if (!intel_irqs_enabled(dev_priv))
2279                 return IRQ_NONE;
2280
2281         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2282         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2283
2284         do {
2285                 u32 master_ctl, iir;
2286                 u32 pipe_stats[I915_MAX_PIPES] = {};
2287                 u32 hotplug_status = 0;
2288                 u32 gt_iir[4];
2289                 u32 ier = 0;
2290
2291                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2292                 iir = I915_READ(VLV_IIR);
2293
2294                 if (master_ctl == 0 && iir == 0)
2295                         break;
2296
2297                 ret = IRQ_HANDLED;
2298
2299                 /*
2300                  * Theory on interrupt generation, based on empirical evidence:
2301                  *
2302                  * x = ((VLV_IIR & VLV_IER) ||
2303                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2304                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2305                  *
2306                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2307                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2308                  * guarantee the CPU interrupt will be raised again even if we
2309                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2310                  * bits this time around.
2311                  */
2312                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2313                 ier = I915_READ(VLV_IER);
2314                 I915_WRITE(VLV_IER, 0);
2315
2316                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2317
2318                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2319                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2320
2321                 /* Call regardless, as some status bits might not be
2322                  * signalled in iir */
2323                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2324
2325                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2326                            I915_LPE_PIPE_B_INTERRUPT |
2327                            I915_LPE_PIPE_C_INTERRUPT))
2328                         intel_lpe_audio_irq_handler(dev_priv);
2329
2330                 /*
2331                  * VLV_IIR is single buffered, and reflects the level
2332                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2333                  */
2334                 if (iir)
2335                         I915_WRITE(VLV_IIR, iir);
2336
2337                 I915_WRITE(VLV_IER, ier);
2338                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2339
2340                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2341
2342                 if (hotplug_status)
2343                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2344
2345                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2346         } while (0);
2347
2348         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2349
2350         return ret;
2351 }
2352
2353 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2354                                 u32 hotplug_trigger,
2355                                 const u32 hpd[HPD_NUM_PINS])
2356 {
2357         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2358
2359         /*
2360          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2361          * unless we touch the hotplug register, even if hotplug_trigger is
2362          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2363          * errors.
2364          */
2365         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2366         if (!hotplug_trigger) {
2367                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2368                         PORTD_HOTPLUG_STATUS_MASK |
2369                         PORTC_HOTPLUG_STATUS_MASK |
2370                         PORTB_HOTPLUG_STATUS_MASK;
2371                 dig_hotplug_reg &= ~mask;
2372         }
2373
2374         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2375         if (!hotplug_trigger)
2376                 return;
2377
2378         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2379                            dig_hotplug_reg, hpd,
2380                            pch_port_hotplug_long_detect);
2381
2382         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2383 }
2384
2385 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2386 {
2387         int pipe;
2388         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2389
2390         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2391
2392         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2393                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2394                                SDE_AUDIO_POWER_SHIFT);
2395                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2396                                  port_name(port));
2397         }
2398
2399         if (pch_iir & SDE_AUX_MASK)
2400                 dp_aux_irq_handler(dev_priv);
2401
2402         if (pch_iir & SDE_GMBUS)
2403                 gmbus_irq_handler(dev_priv);
2404
2405         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2406                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2407
2408         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2409                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2410
2411         if (pch_iir & SDE_POISON)
2412                 DRM_ERROR("PCH poison interrupt\n");
2413
2414         if (pch_iir & SDE_FDI_MASK)
2415                 for_each_pipe(dev_priv, pipe)
2416                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2417                                          pipe_name(pipe),
2418                                          I915_READ(FDI_RX_IIR(pipe)));
2419
2420         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2421                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2422
2423         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2424                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2425
2426         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2427                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2428
2429         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2430                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2431 }
2432
2433 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2434 {
2435         u32 err_int = I915_READ(GEN7_ERR_INT);
2436         enum pipe pipe;
2437
2438         if (err_int & ERR_INT_POISON)
2439                 DRM_ERROR("Poison interrupt\n");
2440
2441         for_each_pipe(dev_priv, pipe) {
2442                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2443                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2444
2445                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2446                         if (IS_IVYBRIDGE(dev_priv))
2447                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2448                         else
2449                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2450                 }
2451         }
2452
2453         I915_WRITE(GEN7_ERR_INT, err_int);
2454 }
2455
2456 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2457 {
2458         u32 serr_int = I915_READ(SERR_INT);
2459         enum pipe pipe;
2460
2461         if (serr_int & SERR_INT_POISON)
2462                 DRM_ERROR("PCH poison interrupt\n");
2463
2464         for_each_pipe(dev_priv, pipe)
2465                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2466                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2467
2468         I915_WRITE(SERR_INT, serr_int);
2469 }
2470
2471 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2472 {
2473         int pipe;
2474         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2475
2476         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2477
2478         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2479                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2480                                SDE_AUDIO_POWER_SHIFT_CPT);
2481                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2482                                  port_name(port));
2483         }
2484
2485         if (pch_iir & SDE_AUX_MASK_CPT)
2486                 dp_aux_irq_handler(dev_priv);
2487
2488         if (pch_iir & SDE_GMBUS_CPT)
2489                 gmbus_irq_handler(dev_priv);
2490
2491         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2492                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2493
2494         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2495                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2496
2497         if (pch_iir & SDE_FDI_MASK_CPT)
2498                 for_each_pipe(dev_priv, pipe)
2499                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2500                                          pipe_name(pipe),
2501                                          I915_READ(FDI_RX_IIR(pipe)));
2502
2503         if (pch_iir & SDE_ERROR_CPT)
2504                 cpt_serr_int_handler(dev_priv);
2505 }
2506
2507 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2508                             const u32 *pins)
2509 {
2510         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2511         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2512         u32 pin_mask = 0, long_mask = 0;
2513
2514         if (ddi_hotplug_trigger) {
2515                 u32 dig_hotplug_reg;
2516
2517                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2518                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2519
2520                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2521                                    ddi_hotplug_trigger,
2522                                    dig_hotplug_reg, pins,
2523                                    icp_ddi_port_hotplug_long_detect);
2524         }
2525
2526         if (tc_hotplug_trigger) {
2527                 u32 dig_hotplug_reg;
2528
2529                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2530                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2531
2532                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2533                                    tc_hotplug_trigger,
2534                                    dig_hotplug_reg, pins,
2535                                    icp_tc_port_hotplug_long_detect);
2536         }
2537
2538         if (pin_mask)
2539                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2540
2541         if (pch_iir & SDE_GMBUS_ICP)
2542                 gmbus_irq_handler(dev_priv);
2543 }
2544
2545 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2546 {
2547         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2548                 ~SDE_PORTE_HOTPLUG_SPT;
2549         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2550         u32 pin_mask = 0, long_mask = 0;
2551
2552         if (hotplug_trigger) {
2553                 u32 dig_hotplug_reg;
2554
2555                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2556                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2557
2558                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2559                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2560                                    spt_port_hotplug_long_detect);
2561         }
2562
2563         if (hotplug2_trigger) {
2564                 u32 dig_hotplug_reg;
2565
2566                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2567                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2568
2569                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2570                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2571                                    spt_port_hotplug2_long_detect);
2572         }
2573
2574         if (pin_mask)
2575                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2576
2577         if (pch_iir & SDE_GMBUS_CPT)
2578                 gmbus_irq_handler(dev_priv);
2579 }
2580
2581 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2582                                 u32 hotplug_trigger,
2583                                 const u32 hpd[HPD_NUM_PINS])
2584 {
2585         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2586
2587         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2588         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2589
2590         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2591                            dig_hotplug_reg, hpd,
2592                            ilk_port_hotplug_long_detect);
2593
2594         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2595 }
2596
2597 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2598                                     u32 de_iir)
2599 {
2600         enum pipe pipe;
2601         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2602
2603         if (hotplug_trigger)
2604                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2605
2606         if (de_iir & DE_AUX_CHANNEL_A)
2607                 dp_aux_irq_handler(dev_priv);
2608
2609         if (de_iir & DE_GSE)
2610                 intel_opregion_asle_intr(dev_priv);
2611
2612         if (de_iir & DE_POISON)
2613                 DRM_ERROR("Poison interrupt\n");
2614
2615         for_each_pipe(dev_priv, pipe) {
2616                 if (de_iir & DE_PIPE_VBLANK(pipe))
2617                         drm_handle_vblank(&dev_priv->drm, pipe);
2618
2619                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2620                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2621
2622                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2623                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2624         }
2625
2626         /* check event from PCH */
2627         if (de_iir & DE_PCH_EVENT) {
2628                 u32 pch_iir = I915_READ(SDEIIR);
2629
2630                 if (HAS_PCH_CPT(dev_priv))
2631                         cpt_irq_handler(dev_priv, pch_iir);
2632                 else
2633                         ibx_irq_handler(dev_priv, pch_iir);
2634
2635                 /* should clear PCH hotplug event before clear CPU irq */
2636                 I915_WRITE(SDEIIR, pch_iir);
2637         }
2638
2639         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2640                 ironlake_rps_change_irq_handler(dev_priv);
2641 }
2642
2643 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2644                                     u32 de_iir)
2645 {
2646         enum pipe pipe;
2647         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2648
2649         if (hotplug_trigger)
2650                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2651
2652         if (de_iir & DE_ERR_INT_IVB)
2653                 ivb_err_int_handler(dev_priv);
2654
2655         if (de_iir & DE_EDP_PSR_INT_HSW) {
2656                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2657
2658                 intel_psr_irq_handler(dev_priv, psr_iir);
2659                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2660         }
2661
2662         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2663                 dp_aux_irq_handler(dev_priv);
2664
2665         if (de_iir & DE_GSE_IVB)
2666                 intel_opregion_asle_intr(dev_priv);
2667
2668         for_each_pipe(dev_priv, pipe) {
2669                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2670                         drm_handle_vblank(&dev_priv->drm, pipe);
2671         }
2672
2673         /* check event from PCH */
2674         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2675                 u32 pch_iir = I915_READ(SDEIIR);
2676
2677                 cpt_irq_handler(dev_priv, pch_iir);
2678
2679                 /* clear PCH hotplug event before clear CPU irq */
2680                 I915_WRITE(SDEIIR, pch_iir);
2681         }
2682 }
2683
2684 /*
2685  * To handle irqs with the minimum potential races with fresh interrupts, we:
2686  * 1 - Disable Master Interrupt Control.
2687  * 2 - Find the source(s) of the interrupt.
2688  * 3 - Clear the Interrupt Identity bits (IIR).
2689  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2690  * 5 - Re-enable Master Interrupt Control.
2691  */
2692 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2693 {
2694         struct drm_device *dev = arg;
2695         struct drm_i915_private *dev_priv = to_i915(dev);
2696         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2697         irqreturn_t ret = IRQ_NONE;
2698
2699         if (!intel_irqs_enabled(dev_priv))
2700                 return IRQ_NONE;
2701
2702         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2703         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2704
2705         /* disable master interrupt before clearing iir  */
2706         de_ier = I915_READ(DEIER);
2707         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2708
2709         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2710          * interrupts will will be stored on its back queue, and then we'll be
2711          * able to process them after we restore SDEIER (as soon as we restore
2712          * it, we'll get an interrupt if SDEIIR still has something to process
2713          * due to its back queue). */
2714         if (!HAS_PCH_NOP(dev_priv)) {
2715                 sde_ier = I915_READ(SDEIER);
2716                 I915_WRITE(SDEIER, 0);
2717         }
2718
2719         /* Find, clear, then process each source of interrupt */
2720
2721         gt_iir = I915_READ(GTIIR);
2722         if (gt_iir) {
2723                 I915_WRITE(GTIIR, gt_iir);
2724                 ret = IRQ_HANDLED;
2725                 if (INTEL_GEN(dev_priv) >= 6)
2726                         snb_gt_irq_handler(dev_priv, gt_iir);
2727                 else
2728                         ilk_gt_irq_handler(dev_priv, gt_iir);
2729         }
2730
2731         de_iir = I915_READ(DEIIR);
2732         if (de_iir) {
2733                 I915_WRITE(DEIIR, de_iir);
2734                 ret = IRQ_HANDLED;
2735                 if (INTEL_GEN(dev_priv) >= 7)
2736                         ivb_display_irq_handler(dev_priv, de_iir);
2737                 else
2738                         ilk_display_irq_handler(dev_priv, de_iir);
2739         }
2740
2741         if (INTEL_GEN(dev_priv) >= 6) {
2742                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2743                 if (pm_iir) {
2744                         I915_WRITE(GEN6_PMIIR, pm_iir);
2745                         ret = IRQ_HANDLED;
2746                         gen6_rps_irq_handler(dev_priv, pm_iir);
2747                 }
2748         }
2749
2750         I915_WRITE(DEIER, de_ier);
2751         if (!HAS_PCH_NOP(dev_priv))
2752                 I915_WRITE(SDEIER, sde_ier);
2753
2754         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2755         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2756
2757         return ret;
2758 }
2759
2760 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2761                                 u32 hotplug_trigger,
2762                                 const u32 hpd[HPD_NUM_PINS])
2763 {
2764         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2765
2766         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2767         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2768
2769         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2770                            dig_hotplug_reg, hpd,
2771                            bxt_port_hotplug_long_detect);
2772
2773         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2774 }
2775
2776 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2777 {
2778         u32 pin_mask = 0, long_mask = 0;
2779         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2780         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2781
2782         if (trigger_tc) {
2783                 u32 dig_hotplug_reg;
2784
2785                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2786                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2787
2788                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2789                                    dig_hotplug_reg, hpd_gen11,
2790                                    gen11_port_hotplug_long_detect);
2791         }
2792
2793         if (trigger_tbt) {
2794                 u32 dig_hotplug_reg;
2795
2796                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2797                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2798
2799                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2800                                    dig_hotplug_reg, hpd_gen11,
2801                                    gen11_port_hotplug_long_detect);
2802         }
2803
2804         if (pin_mask)
2805                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2806         else
2807                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2808 }
2809
2810 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2811 {
2812         u32 mask = GEN8_AUX_CHANNEL_A;
2813
2814         if (INTEL_GEN(dev_priv) >= 9)
2815                 mask |= GEN9_AUX_CHANNEL_B |
2816                         GEN9_AUX_CHANNEL_C |
2817                         GEN9_AUX_CHANNEL_D;
2818
2819         if (IS_CNL_WITH_PORT_F(dev_priv))
2820                 mask |= CNL_AUX_CHANNEL_F;
2821
2822         if (INTEL_GEN(dev_priv) >= 11)
2823                 mask |= ICL_AUX_CHANNEL_E |
2824                         CNL_AUX_CHANNEL_F;
2825
2826         return mask;
2827 }
2828
2829 static irqreturn_t
2830 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2831 {
2832         irqreturn_t ret = IRQ_NONE;
2833         u32 iir;
2834         enum pipe pipe;
2835
2836         if (master_ctl & GEN8_DE_MISC_IRQ) {
2837                 iir = I915_READ(GEN8_DE_MISC_IIR);
2838                 if (iir) {
2839                         bool found = false;
2840
2841                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2842                         ret = IRQ_HANDLED;
2843
2844                         if (iir & GEN8_DE_MISC_GSE) {
2845                                 intel_opregion_asle_intr(dev_priv);
2846                                 found = true;
2847                         }
2848
2849                         if (iir & GEN8_DE_EDP_PSR) {
2850                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2851
2852                                 intel_psr_irq_handler(dev_priv, psr_iir);
2853                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2854                                 found = true;
2855                         }
2856
2857                         if (!found)
2858                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2859                 }
2860                 else
2861                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2862         }
2863
2864         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2865                 iir = I915_READ(GEN11_DE_HPD_IIR);
2866                 if (iir) {
2867                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2868                         ret = IRQ_HANDLED;
2869                         gen11_hpd_irq_handler(dev_priv, iir);
2870                 } else {
2871                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2872                 }
2873         }
2874
2875         if (master_ctl & GEN8_DE_PORT_IRQ) {
2876                 iir = I915_READ(GEN8_DE_PORT_IIR);
2877                 if (iir) {
2878                         u32 tmp_mask;
2879                         bool found = false;
2880
2881                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2882                         ret = IRQ_HANDLED;
2883
2884                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2885                                 dp_aux_irq_handler(dev_priv);
2886                                 found = true;
2887                         }
2888
2889                         if (IS_GEN9_LP(dev_priv)) {
2890                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2891                                 if (tmp_mask) {
2892                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2893                                                             hpd_bxt);
2894                                         found = true;
2895                                 }
2896                         } else if (IS_BROADWELL(dev_priv)) {
2897                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2898                                 if (tmp_mask) {
2899                                         ilk_hpd_irq_handler(dev_priv,
2900                                                             tmp_mask, hpd_bdw);
2901                                         found = true;
2902                                 }
2903                         }
2904
2905                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2906                                 gmbus_irq_handler(dev_priv);
2907                                 found = true;
2908                         }
2909
2910                         if (!found)
2911                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2912                 }
2913                 else
2914                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2915         }
2916
2917         for_each_pipe(dev_priv, pipe) {
2918                 u32 fault_errors;
2919
2920                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2921                         continue;
2922
2923                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2924                 if (!iir) {
2925                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2926                         continue;
2927                 }
2928
2929                 ret = IRQ_HANDLED;
2930                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2931
2932                 if (iir & GEN8_PIPE_VBLANK)
2933                         drm_handle_vblank(&dev_priv->drm, pipe);
2934
2935                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2936                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2937
2938                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2939                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2940
2941                 fault_errors = iir;
2942                 if (INTEL_GEN(dev_priv) >= 9)
2943                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2944                 else
2945                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2946
2947                 if (fault_errors)
2948                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2949                                   pipe_name(pipe),
2950                                   fault_errors);
2951         }
2952
2953         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2954             master_ctl & GEN8_DE_PCH_IRQ) {
2955                 /*
2956                  * FIXME(BDW): Assume for now that the new interrupt handling
2957                  * scheme also closed the SDE interrupt handling race we've seen
2958                  * on older pch-split platforms. But this needs testing.
2959                  */
2960                 iir = I915_READ(SDEIIR);
2961                 if (iir) {
2962                         I915_WRITE(SDEIIR, iir);
2963                         ret = IRQ_HANDLED;
2964
2965                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2966                                 icp_irq_handler(dev_priv, iir, hpd_mcc);
2967                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2968                                 icp_irq_handler(dev_priv, iir, hpd_icp);
2969                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2970                                 spt_irq_handler(dev_priv, iir);
2971                         else
2972                                 cpt_irq_handler(dev_priv, iir);
2973                 } else {
2974                         /*
2975                          * Like on previous PCH there seems to be something
2976                          * fishy going on with forwarding PCH interrupts.
2977                          */
2978                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2979                 }
2980         }
2981
2982         return ret;
2983 }
2984
2985 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2986 {
2987         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2988
2989         /*
2990          * Now with master disabled, get a sample of level indications
2991          * for this interrupt. Indications will be cleared on related acks.
2992          * New indications can and will light up during processing,
2993          * and will generate new interrupt after enabling master.
2994          */
2995         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2996 }
2997
2998 static inline void gen8_master_intr_enable(void __iomem * const regs)
2999 {
3000         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3001 }
3002
3003 static irqreturn_t gen8_irq_handler(int irq, void *arg)
3004 {
3005         struct drm_i915_private *dev_priv = to_i915(arg);
3006         void __iomem * const regs = dev_priv->uncore.regs;
3007         u32 master_ctl;
3008         u32 gt_iir[4];
3009
3010         if (!intel_irqs_enabled(dev_priv))
3011                 return IRQ_NONE;
3012
3013         master_ctl = gen8_master_intr_disable(regs);
3014         if (!master_ctl) {
3015                 gen8_master_intr_enable(regs);
3016                 return IRQ_NONE;
3017         }
3018
3019         /* Find, clear, then process each source of interrupt */
3020         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
3021
3022         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3023         if (master_ctl & ~GEN8_GT_IRQS) {
3024                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3025                 gen8_de_irq_handler(dev_priv, master_ctl);
3026                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3027         }
3028
3029         gen8_master_intr_enable(regs);
3030
3031         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
3032
3033         return IRQ_HANDLED;
3034 }
3035
3036 static u32
3037 gen11_gt_engine_identity(struct drm_i915_private * const i915,
3038                          const unsigned int bank, const unsigned int bit)
3039 {
3040         void __iomem * const regs = i915->uncore.regs;
3041         u32 timeout_ts;
3042         u32 ident;
3043
3044         lockdep_assert_held(&i915->irq_lock);
3045
3046         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
3047
3048         /*
3049          * NB: Specs do not specify how long to spin wait,
3050          * so we do ~100us as an educated guess.
3051          */
3052         timeout_ts = (local_clock() >> 10) + 100;
3053         do {
3054                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
3055         } while (!(ident & GEN11_INTR_DATA_VALID) &&
3056                  !time_after32(local_clock() >> 10, timeout_ts));
3057
3058         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
3059                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3060                           bank, bit, ident);
3061                 return 0;
3062         }
3063
3064         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3065                       GEN11_INTR_DATA_VALID);
3066
3067         return ident;
3068 }
3069
3070 static void
3071 gen11_other_irq_handler(struct drm_i915_private * const i915,
3072                         const u8 instance, const u16 iir)
3073 {
3074         if (instance == OTHER_GUC_INSTANCE)
3075                 return gen11_guc_irq_handler(i915, iir);
3076
3077         if (instance == OTHER_GTPM_INSTANCE)
3078                 return gen11_rps_irq_handler(i915, iir);
3079
3080         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3081                   instance, iir);
3082 }
3083
3084 static void
3085 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3086                          const u8 class, const u8 instance, const u16 iir)
3087 {
3088         struct intel_engine_cs *engine;
3089
3090         if (instance <= MAX_ENGINE_INSTANCE)
3091                 engine = i915->engine_class[class][instance];
3092         else
3093                 engine = NULL;
3094
3095         if (likely(engine))
3096                 return gen8_cs_irq_handler(engine, iir);
3097
3098         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3099                   class, instance);
3100 }
3101
3102 static void
3103 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3104                           const u32 identity)
3105 {
3106         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3107         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3108         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3109
3110         if (unlikely(!intr))
3111                 return;
3112
3113         if (class <= COPY_ENGINE_CLASS)
3114                 return gen11_engine_irq_handler(i915, class, instance, intr);
3115
3116         if (class == OTHER_CLASS)
3117                 return gen11_other_irq_handler(i915, instance, intr);
3118
3119         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3120                   class, instance, intr);
3121 }
3122
3123 static void
3124 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3125                       const unsigned int bank)
3126 {
3127         void __iomem * const regs = i915->uncore.regs;
3128         unsigned long intr_dw;
3129         unsigned int bit;
3130
3131         lockdep_assert_held(&i915->irq_lock);
3132
3133         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3134
3135         for_each_set_bit(bit, &intr_dw, 32) {
3136                 const u32 ident = gen11_gt_engine_identity(i915, bank, bit);
3137
3138                 gen11_gt_identity_handler(i915, ident);
3139         }
3140
3141         /* Clear must be after shared has been served for engine */
3142         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3143 }
3144
3145 static void
3146 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3147                      const u32 master_ctl)
3148 {
3149         unsigned int bank;
3150
3151         spin_lock(&i915->irq_lock);
3152
3153         for (bank = 0; bank < 2; bank++) {
3154                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3155                         gen11_gt_bank_handler(i915, bank);
3156         }
3157
3158         spin_unlock(&i915->irq_lock);
3159 }
3160
3161 static u32
3162 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3163 {
3164         void __iomem * const regs = dev_priv->uncore.regs;
3165         u32 iir;
3166
3167         if (!(master_ctl & GEN11_GU_MISC_IRQ))
3168                 return 0;
3169
3170         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3171         if (likely(iir))
3172                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3173
3174         return iir;
3175 }
3176
3177 static void
3178 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3179 {
3180         if (iir & GEN11_GU_MISC_GSE)
3181                 intel_opregion_asle_intr(dev_priv);
3182 }
3183
3184 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3185 {
3186         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3187
3188         /*
3189          * Now with master disabled, get a sample of level indications
3190          * for this interrupt. Indications will be cleared on related acks.
3191          * New indications can and will light up during processing,
3192          * and will generate new interrupt after enabling master.
3193          */
3194         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3195 }
3196
3197 static inline void gen11_master_intr_enable(void __iomem * const regs)
3198 {
3199         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3200 }
3201
3202 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3203 {
3204         struct drm_i915_private * const i915 = to_i915(arg);
3205         void __iomem * const regs = i915->uncore.regs;
3206         u32 master_ctl;
3207         u32 gu_misc_iir;
3208
3209         if (!intel_irqs_enabled(i915))
3210                 return IRQ_NONE;
3211
3212         master_ctl = gen11_master_intr_disable(regs);
3213         if (!master_ctl) {
3214                 gen11_master_intr_enable(regs);
3215                 return IRQ_NONE;
3216         }
3217
3218         /* Find, clear, then process each source of interrupt. */
3219         gen11_gt_irq_handler(i915, master_ctl);
3220
3221         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3222         if (master_ctl & GEN11_DISPLAY_IRQ) {
3223                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3224
3225                 disable_rpm_wakeref_asserts(&i915->runtime_pm);
3226                 /*
3227                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3228                  * for the display related bits.
3229                  */
3230                 gen8_de_irq_handler(i915, disp_ctl);
3231                 enable_rpm_wakeref_asserts(&i915->runtime_pm);
3232         }
3233
3234         gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3235
3236         gen11_master_intr_enable(regs);
3237
3238         gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3239
3240         return IRQ_HANDLED;
3241 }
3242
3243 /* Called from drm generic code, passed 'crtc' which
3244  * we use as a pipe index
3245  */
3246 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3247 {
3248         struct drm_i915_private *dev_priv = to_i915(dev);
3249         unsigned long irqflags;
3250
3251         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3252         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3253         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3254
3255         return 0;
3256 }
3257
3258 static int i945gm_enable_vblank(struct drm_device *dev, unsigned int pipe)
3259 {
3260         struct drm_i915_private *dev_priv = to_i915(dev);
3261
3262         if (dev_priv->i945gm_vblank.enabled++ == 0)
3263                 schedule_work(&dev_priv->i945gm_vblank.work);
3264
3265         return i8xx_enable_vblank(dev, pipe);
3266 }
3267
3268 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3269 {
3270         struct drm_i915_private *dev_priv = to_i915(dev);
3271         unsigned long irqflags;
3272
3273         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3274         i915_enable_pipestat(dev_priv, pipe,
3275                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3276         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3277
3278         return 0;
3279 }
3280
3281 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3282 {
3283         struct drm_i915_private *dev_priv = to_i915(dev);
3284         unsigned long irqflags;
3285         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3286                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3287
3288         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3289         ilk_enable_display_irq(dev_priv, bit);
3290         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3291
3292         /* Even though there is no DMC, frame counter can get stuck when
3293          * PSR is active as no frames are generated.
3294          */
3295         if (HAS_PSR(dev_priv))
3296                 drm_vblank_restore(dev, pipe);
3297
3298         return 0;
3299 }
3300
3301 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3302 {
3303         struct drm_i915_private *dev_priv = to_i915(dev);
3304         unsigned long irqflags;
3305
3306         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3307         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3308         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3309
3310         /* Even if there is no DMC, frame counter can get stuck when
3311          * PSR is active as no frames are generated, so check only for PSR.
3312          */
3313         if (HAS_PSR(dev_priv))
3314                 drm_vblank_restore(dev, pipe);
3315
3316         return 0;
3317 }
3318
3319 /* Called from drm generic code, passed 'crtc' which
3320  * we use as a pipe index
3321  */
3322 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3323 {
3324         struct drm_i915_private *dev_priv = to_i915(dev);
3325         unsigned long irqflags;
3326
3327         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3329         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3330 }
3331
3332 static void i945gm_disable_vblank(struct drm_device *dev, unsigned int pipe)
3333 {
3334         struct drm_i915_private *dev_priv = to_i915(dev);
3335
3336         i8xx_disable_vblank(dev, pipe);
3337
3338         if (--dev_priv->i945gm_vblank.enabled == 0)
3339                 schedule_work(&dev_priv->i945gm_vblank.work);
3340 }
3341
3342 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3343 {
3344         struct drm_i915_private *dev_priv = to_i915(dev);
3345         unsigned long irqflags;
3346
3347         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3348         i915_disable_pipestat(dev_priv, pipe,
3349                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3350         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3351 }
3352
3353 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3354 {
3355         struct drm_i915_private *dev_priv = to_i915(dev);
3356         unsigned long irqflags;
3357         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3358                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3359
3360         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3361         ilk_disable_display_irq(dev_priv, bit);
3362         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3363 }
3364
3365 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3366 {
3367         struct drm_i915_private *dev_priv = to_i915(dev);
3368         unsigned long irqflags;
3369
3370         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3371         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3372         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3373 }
3374
3375 static void i945gm_vblank_work_func(struct work_struct *work)
3376 {
3377         struct drm_i915_private *dev_priv =
3378                 container_of(work, struct drm_i915_private, i945gm_vblank.work);
3379
3380         /*
3381          * Vblank interrupts fail to wake up the device from C3,
3382          * hence we want to prevent C3 usage while vblank interrupts
3383          * are enabled.
3384          */
3385         pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3386                               READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3387                               dev_priv->i945gm_vblank.c3_disable_latency :
3388                               PM_QOS_DEFAULT_VALUE);
3389 }
3390
3391 static int cstate_disable_latency(const char *name)
3392 {
3393         const struct cpuidle_driver *drv;
3394         int i;
3395
3396         drv = cpuidle_get_driver();
3397         if (!drv)
3398                 return 0;
3399
3400         for (i = 0; i < drv->state_count; i++) {
3401                 const struct cpuidle_state *state = &drv->states[i];
3402
3403                 if (!strcmp(state->name, name))
3404                         return state->exit_latency ?
3405                                 state->exit_latency - 1 : 0;
3406         }
3407
3408         return 0;
3409 }
3410
3411 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3412 {
3413         INIT_WORK(&dev_priv->i945gm_vblank.work,
3414                   i945gm_vblank_work_func);
3415
3416         dev_priv->i945gm_vblank.c3_disable_latency =
3417                 cstate_disable_latency("C3");
3418         pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3419                            PM_QOS_CPU_DMA_LATENCY,
3420                            PM_QOS_DEFAULT_VALUE);
3421 }
3422
3423 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3424 {
3425         cancel_work_sync(&dev_priv->i945gm_vblank.work);
3426         pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3427 }
3428
3429 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3430 {
3431         struct intel_uncore *uncore = &dev_priv->uncore;
3432
3433         if (HAS_PCH_NOP(dev_priv))
3434                 return;
3435
3436         GEN3_IRQ_RESET(uncore, SDE);
3437
3438         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3439                 I915_WRITE(SERR_INT, 0xffffffff);
3440 }
3441
3442 /*
3443  * SDEIER is also touched by the interrupt handler to work around missed PCH
3444  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3445  * instead we unconditionally enable all PCH interrupt sources here, but then
3446  * only unmask them as needed with SDEIMR.
3447  *
3448  * This function needs to be called before interrupts are enabled.
3449  */
3450 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3451 {
3452         struct drm_i915_private *dev_priv = to_i915(dev);
3453
3454         if (HAS_PCH_NOP(dev_priv))
3455                 return;
3456
3457         WARN_ON(I915_READ(SDEIER) != 0);
3458         I915_WRITE(SDEIER, 0xffffffff);
3459         POSTING_READ(SDEIER);
3460 }
3461
3462 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3463 {
3464         struct intel_uncore *uncore = &dev_priv->uncore;
3465
3466         GEN3_IRQ_RESET(uncore, GT);
3467         if (INTEL_GEN(dev_priv) >= 6)
3468                 GEN3_IRQ_RESET(uncore, GEN6_PM);
3469 }
3470
3471 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3472 {
3473         struct intel_uncore *uncore = &dev_priv->uncore;
3474
3475         if (IS_CHERRYVIEW(dev_priv))
3476                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3477         else
3478                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3479
3480         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3481         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3482
3483         i9xx_pipestat_irq_reset(dev_priv);
3484
3485         GEN3_IRQ_RESET(uncore, VLV_);
3486         dev_priv->irq_mask = ~0u;
3487 }
3488
3489 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3490 {
3491         struct intel_uncore *uncore = &dev_priv->uncore;
3492
3493         u32 pipestat_mask;
3494         u32 enable_mask;
3495         enum pipe pipe;
3496
3497         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3498
3499         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3500         for_each_pipe(dev_priv, pipe)
3501                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3502
3503         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3504                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3505                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3506                 I915_LPE_PIPE_A_INTERRUPT |
3507                 I915_LPE_PIPE_B_INTERRUPT;
3508
3509         if (IS_CHERRYVIEW(dev_priv))
3510                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3511                         I915_LPE_PIPE_C_INTERRUPT;
3512
3513         WARN_ON(dev_priv->irq_mask != ~0u);
3514
3515         dev_priv->irq_mask = ~enable_mask;
3516
3517         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3518 }
3519
3520 /* drm_dma.h hooks
3521 */
3522 static void ironlake_irq_reset(struct drm_device *dev)
3523 {
3524         struct drm_i915_private *dev_priv = to_i915(dev);
3525         struct intel_uncore *uncore = &dev_priv->uncore;
3526
3527         GEN3_IRQ_RESET(uncore, DE);
3528         if (IS_GEN(dev_priv, 7))
3529                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3530
3531         if (IS_HASWELL(dev_priv)) {
3532                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3533                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3534         }
3535
3536         gen5_gt_irq_reset(dev_priv);
3537
3538         ibx_irq_reset(dev_priv);
3539 }
3540
3541 static void valleyview_irq_reset(struct drm_device *dev)
3542 {
3543         struct drm_i915_private *dev_priv = to_i915(dev);
3544
3545         I915_WRITE(VLV_MASTER_IER, 0);
3546         POSTING_READ(VLV_MASTER_IER);
3547
3548         gen5_gt_irq_reset(dev_priv);
3549
3550         spin_lock_irq(&dev_priv->irq_lock);
3551         if (dev_priv->display_irqs_enabled)
3552                 vlv_display_irq_reset(dev_priv);
3553         spin_unlock_irq(&dev_priv->irq_lock);
3554 }
3555
3556 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3557 {
3558         struct intel_uncore *uncore = &dev_priv->uncore;
3559
3560         GEN8_IRQ_RESET_NDX(uncore, GT, 0);
3561         GEN8_IRQ_RESET_NDX(uncore, GT, 1);
3562         GEN8_IRQ_RESET_NDX(uncore, GT, 2);
3563         GEN8_IRQ_RESET_NDX(uncore, GT, 3);
3564 }
3565
3566 static void gen8_irq_reset(struct drm_device *dev)
3567 {
3568         struct drm_i915_private *dev_priv = to_i915(dev);
3569         struct intel_uncore *uncore = &dev_priv->uncore;
3570         int pipe;
3571
3572         gen8_master_intr_disable(dev_priv->uncore.regs);
3573
3574         gen8_gt_irq_reset(dev_priv);
3575
3576         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3577         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3578
3579         for_each_pipe(dev_priv, pipe)
3580                 if (intel_display_power_is_enabled(dev_priv,
3581                                                    POWER_DOMAIN_PIPE(pipe)))
3582                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3583
3584         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3585         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3586         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3587
3588         if (HAS_PCH_SPLIT(dev_priv))
3589                 ibx_irq_reset(dev_priv);
3590 }
3591
3592 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3593 {
3594         /* Disable RCS, BCS, VCS and VECS class engines. */
3595         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3596         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3597
3598         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3599         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3600         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3601         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3602         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3603         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3604
3605         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3606         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3607         I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0);
3608         I915_WRITE(GEN11_GUC_SG_INTR_MASK,  ~0);
3609 }
3610
3611 static void gen11_irq_reset(struct drm_device *dev)
3612 {
3613         struct drm_i915_private *dev_priv = dev->dev_private;
3614         struct intel_uncore *uncore = &dev_priv->uncore;
3615         int pipe;
3616
3617         gen11_master_intr_disable(dev_priv->uncore.regs);
3618
3619         gen11_gt_irq_reset(dev_priv);
3620
3621         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3622
3623         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3624         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3625
3626         for_each_pipe(dev_priv, pipe)
3627                 if (intel_display_power_is_enabled(dev_priv,
3628                                                    POWER_DOMAIN_PIPE(pipe)))
3629                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3630
3631         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3632         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3633         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3634         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3635         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3636
3637         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3638                 GEN3_IRQ_RESET(uncore, SDE);
3639 }
3640
3641 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3642                                      u8 pipe_mask)
3643 {
3644         struct intel_uncore *uncore = &dev_priv->uncore;
3645
3646         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3647         enum pipe pipe;
3648
3649         spin_lock_irq(&dev_priv->irq_lock);
3650
3651         if (!intel_irqs_enabled(dev_priv)) {
3652                 spin_unlock_irq(&dev_priv->irq_lock);
3653                 return;
3654         }
3655
3656         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3657                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3658                                   dev_priv->de_irq_mask[pipe],
3659                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3660
3661         spin_unlock_irq(&dev_priv->irq_lock);
3662 }
3663
3664 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3665                                      u8 pipe_mask)
3666 {
3667         struct intel_uncore *uncore = &dev_priv->uncore;
3668         enum pipe pipe;
3669
3670         spin_lock_irq(&dev_priv->irq_lock);
3671
3672         if (!intel_irqs_enabled(dev_priv)) {
3673                 spin_unlock_irq(&dev_priv->irq_lock);
3674                 return;
3675         }
3676
3677         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3678                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3679
3680         spin_unlock_irq(&dev_priv->irq_lock);
3681
3682         /* make sure we're done processing display irqs */
3683         synchronize_irq(dev_priv->drm.irq);
3684 }
3685
3686 static void cherryview_irq_reset(struct drm_device *dev)
3687 {
3688         struct drm_i915_private *dev_priv = to_i915(dev);
3689         struct intel_uncore *uncore = &dev_priv->uncore;
3690
3691         I915_WRITE(GEN8_MASTER_IRQ, 0);
3692         POSTING_READ(GEN8_MASTER_IRQ);
3693
3694         gen8_gt_irq_reset(dev_priv);
3695
3696         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3697
3698         spin_lock_irq(&dev_priv->irq_lock);
3699         if (dev_priv->display_irqs_enabled)
3700                 vlv_display_irq_reset(dev_priv);
3701         spin_unlock_irq(&dev_priv->irq_lock);
3702 }
3703
3704 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3705                                   const u32 hpd[HPD_NUM_PINS])
3706 {
3707         struct intel_encoder *encoder;
3708         u32 enabled_irqs = 0;
3709
3710         for_each_intel_encoder(&dev_priv->drm, encoder)
3711                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3712                         enabled_irqs |= hpd[encoder->hpd_pin];
3713
3714         return enabled_irqs;
3715 }
3716
3717 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3718 {
3719         u32 hotplug;
3720
3721         /*
3722          * Enable digital hotplug on the PCH, and configure the DP short pulse
3723          * duration to 2ms (which is the minimum in the Display Port spec).
3724          * The pulse duration bits are reserved on LPT+.
3725          */
3726         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3727         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3728                      PORTC_PULSE_DURATION_MASK |
3729                      PORTD_PULSE_DURATION_MASK);
3730         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3731         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3732         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3733         /*
3734          * When CPU and PCH are on the same package, port A
3735          * HPD must be enabled in both north and south.
3736          */
3737         if (HAS_PCH_LPT_LP(dev_priv))
3738                 hotplug |= PORTA_HOTPLUG_ENABLE;
3739         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3740 }
3741
3742 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3743 {
3744         u32 hotplug_irqs, enabled_irqs;
3745
3746         if (HAS_PCH_IBX(dev_priv)) {
3747                 hotplug_irqs = SDE_HOTPLUG_MASK;
3748                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3749         } else {
3750                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3751                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3752         }
3753
3754         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3755
3756         ibx_hpd_detection_setup(dev_priv);
3757 }
3758
3759 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3760 {
3761         u32 hotplug;
3762
3763         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3764         hotplug |= ICP_DDIA_HPD_ENABLE |
3765                    ICP_DDIB_HPD_ENABLE;
3766         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3767
3768         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3769         hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3770                    ICP_TC_HPD_ENABLE(PORT_TC2) |
3771                    ICP_TC_HPD_ENABLE(PORT_TC3) |
3772                    ICP_TC_HPD_ENABLE(PORT_TC4);
3773         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3774 }
3775
3776 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3777 {
3778         u32 hotplug_irqs, enabled_irqs;
3779
3780         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3781         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3782
3783         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3784
3785         icp_hpd_detection_setup(dev_priv);
3786 }
3787
3788 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3789 {
3790         u32 hotplug;
3791
3792         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3793         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3794                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3795                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3796                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3797         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3798
3799         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3800         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3801                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3802                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3803                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3804         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3805 }
3806
3807 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3808 {
3809         u32 hotplug_irqs, enabled_irqs;
3810         u32 val;
3811
3812         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3813         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3814
3815         val = I915_READ(GEN11_DE_HPD_IMR);
3816         val &= ~hotplug_irqs;
3817         I915_WRITE(GEN11_DE_HPD_IMR, val);
3818         POSTING_READ(GEN11_DE_HPD_IMR);
3819
3820         gen11_hpd_detection_setup(dev_priv);
3821
3822         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3823                 icp_hpd_irq_setup(dev_priv);
3824 }
3825
3826 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3827 {
3828         u32 val, hotplug;
3829
3830         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3831         if (HAS_PCH_CNP(dev_priv)) {
3832                 val = I915_READ(SOUTH_CHICKEN1);
3833                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3834                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3835                 I915_WRITE(SOUTH_CHICKEN1, val);
3836         }
3837
3838         /* Enable digital hotplug on the PCH */
3839         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3840         hotplug |= PORTA_HOTPLUG_ENABLE |
3841                    PORTB_HOTPLUG_ENABLE |
3842                    PORTC_HOTPLUG_ENABLE |
3843                    PORTD_HOTPLUG_ENABLE;
3844         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3845
3846         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3847         hotplug |= PORTE_HOTPLUG_ENABLE;
3848         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3849 }
3850
3851 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3852 {
3853         u32 hotplug_irqs, enabled_irqs;
3854
3855         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3856         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3857
3858         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3859
3860         spt_hpd_detection_setup(dev_priv);
3861 }
3862
3863 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3864 {
3865         u32 hotplug;
3866
3867         /*
3868          * Enable digital hotplug on the CPU, and configure the DP short pulse
3869          * duration to 2ms (which is the minimum in the Display Port spec)
3870          * The pulse duration bits are reserved on HSW+.
3871          */
3872         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3873         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3874         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3875                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3876         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3877 }
3878
3879 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3880 {
3881         u32 hotplug_irqs, enabled_irqs;
3882
3883         if (INTEL_GEN(dev_priv) >= 8) {
3884                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3885                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3886
3887                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3888         } else if (INTEL_GEN(dev_priv) >= 7) {
3889                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3890                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3891
3892                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3893         } else {
3894                 hotplug_irqs = DE_DP_A_HOTPLUG;
3895                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3896
3897                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3898         }
3899
3900         ilk_hpd_detection_setup(dev_priv);
3901
3902         ibx_hpd_irq_setup(dev_priv);
3903 }
3904
3905 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3906                                       u32 enabled_irqs)
3907 {
3908         u32 hotplug;
3909
3910         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3911         hotplug |= PORTA_HOTPLUG_ENABLE |
3912                    PORTB_HOTPLUG_ENABLE |
3913                    PORTC_HOTPLUG_ENABLE;
3914
3915         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3916                       hotplug, enabled_irqs);
3917         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3918
3919         /*
3920          * For BXT invert bit has to be set based on AOB design
3921          * for HPD detection logic, update it based on VBT fields.
3922          */
3923         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3924             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3925                 hotplug |= BXT_DDIA_HPD_INVERT;
3926         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3927             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3928                 hotplug |= BXT_DDIB_HPD_INVERT;
3929         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3930             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3931                 hotplug |= BXT_DDIC_HPD_INVERT;
3932
3933         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3934 }
3935
3936 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3937 {
3938         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3939 }
3940
3941 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3942 {
3943         u32 hotplug_irqs, enabled_irqs;
3944
3945         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3946         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3947
3948         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3949
3950         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3951 }
3952
3953 static void ibx_irq_postinstall(struct drm_device *dev)
3954 {
3955         struct drm_i915_private *dev_priv = to_i915(dev);
3956         u32 mask;
3957
3958         if (HAS_PCH_NOP(dev_priv))
3959                 return;
3960
3961         if (HAS_PCH_IBX(dev_priv))
3962                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3963         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3964                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3965         else
3966                 mask = SDE_GMBUS_CPT;
3967
3968         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3969         I915_WRITE(SDEIMR, ~mask);
3970
3971         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3972             HAS_PCH_LPT(dev_priv))
3973                 ibx_hpd_detection_setup(dev_priv);
3974         else
3975                 spt_hpd_detection_setup(dev_priv);
3976 }
3977
3978 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3979 {
3980         struct drm_i915_private *dev_priv = to_i915(dev);
3981         struct intel_uncore *uncore = &dev_priv->uncore;
3982         u32 pm_irqs, gt_irqs;
3983
3984         pm_irqs = gt_irqs = 0;
3985
3986         dev_priv->gt_irq_mask = ~0;
3987         if (HAS_L3_DPF(dev_priv)) {
3988                 /* L3 parity interrupt is always unmasked. */
3989                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3990                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3991         }
3992
3993         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3994         if (IS_GEN(dev_priv, 5)) {
3995                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3996         } else {
3997                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3998         }
3999
4000         GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs);
4001
4002         if (INTEL_GEN(dev_priv) >= 6) {
4003                 /*
4004                  * RPS interrupts will get enabled/disabled on demand when RPS
4005                  * itself is enabled/disabled.
4006                  */
4007                 if (HAS_ENGINE(dev_priv, VECS0)) {
4008                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4009                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4010                 }
4011
4012                 dev_priv->pm_imr = 0xffffffff;
4013                 GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->pm_imr, pm_irqs);
4014         }
4015 }
4016
4017 static int ironlake_irq_postinstall(struct drm_device *dev)
4018 {
4019         struct drm_i915_private *dev_priv = to_i915(dev);
4020         struct intel_uncore *uncore = &dev_priv->uncore;
4021         u32 display_mask, extra_mask;
4022
4023         if (INTEL_GEN(dev_priv) >= 7) {
4024                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4025                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4026                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4027                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4028                               DE_DP_A_HOTPLUG_IVB);
4029         } else {
4030                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4031                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4032                                 DE_PIPEA_CRC_DONE | DE_POISON);
4033                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4034                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4035                               DE_DP_A_HOTPLUG);
4036         }
4037
4038         if (IS_HASWELL(dev_priv)) {
4039                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
4040                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4041                 display_mask |= DE_EDP_PSR_INT_HSW;
4042         }
4043
4044         dev_priv->irq_mask = ~display_mask;
4045
4046         ibx_irq_pre_postinstall(dev);
4047
4048         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
4049                       display_mask | extra_mask);
4050
4051         gen5_gt_irq_postinstall(dev);
4052
4053         ilk_hpd_detection_setup(dev_priv);
4054
4055         ibx_irq_postinstall(dev);
4056
4057         if (IS_IRONLAKE_M(dev_priv)) {
4058                 /* Enable PCU event interrupts
4059                  *
4060                  * spinlocking not required here for correctness since interrupt
4061                  * setup is guaranteed to run in single-threaded context. But we
4062                  * need it to make the assert_spin_locked happy. */
4063                 spin_lock_irq(&dev_priv->irq_lock);
4064                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4065                 spin_unlock_irq(&dev_priv->irq_lock);
4066         }
4067
4068         return 0;
4069 }
4070
4071 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4072 {
4073         lockdep_assert_held(&dev_priv->irq_lock);
4074
4075         if (dev_priv->display_irqs_enabled)
4076                 return;
4077
4078         dev_priv->display_irqs_enabled = true;
4079
4080         if (intel_irqs_enabled(dev_priv)) {
4081                 vlv_display_irq_reset(dev_priv);
4082                 vlv_display_irq_postinstall(dev_priv);
4083         }
4084 }
4085
4086 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4087 {
4088         lockdep_assert_held(&dev_priv->irq_lock);
4089
4090         if (!dev_priv->display_irqs_enabled)
4091                 return;
4092
4093         dev_priv->display_irqs_enabled = false;
4094
4095         if (intel_irqs_enabled(dev_priv))
4096                 vlv_display_irq_reset(dev_priv);
4097 }
4098
4099
4100 static int valleyview_irq_postinstall(struct drm_device *dev)
4101 {
4102         struct drm_i915_private *dev_priv = to_i915(dev);
4103
4104         gen5_gt_irq_postinstall(dev);
4105
4106         spin_lock_irq(&dev_priv->irq_lock);
4107         if (dev_priv->display_irqs_enabled)
4108                 vlv_display_irq_postinstall(dev_priv);
4109         spin_unlock_irq(&dev_priv->irq_lock);
4110
4111         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4112         POSTING_READ(VLV_MASTER_IER);
4113
4114         return 0;
4115 }
4116
4117 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4118 {
4119         struct intel_uncore *uncore = &dev_priv->uncore;
4120
4121         /* These are interrupts we'll toggle with the ring mask register */
4122         u32 gt_interrupts[] = {
4123                 (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4124                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4125                  GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4126                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT),
4127
4128                 (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4129                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4130                  GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4131                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT),
4132
4133                 0,
4134
4135                 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4136                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT)
4137         };
4138
4139         dev_priv->pm_ier = 0x0;
4140         dev_priv->pm_imr = ~dev_priv->pm_ier;
4141         GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4142         GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4143         /*
4144          * RPS interrupts will get enabled/disabled on demand when RPS itself
4145          * is enabled/disabled. Same wil be the case for GuC interrupts.
4146          */
4147         GEN8_IRQ_INIT_NDX(uncore, GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4148         GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4149 }
4150
4151 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4152 {
4153         struct intel_uncore *uncore = &dev_priv->uncore;
4154
4155         u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4156         u32 de_pipe_enables;
4157         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4158         u32 de_port_enables;
4159         u32 de_misc_masked = GEN8_DE_EDP_PSR;
4160         enum pipe pipe;
4161
4162         if (INTEL_GEN(dev_priv) <= 10)
4163                 de_misc_masked |= GEN8_DE_MISC_GSE;
4164
4165         if (INTEL_GEN(dev_priv) >= 9) {
4166                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4167                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4168                                   GEN9_AUX_CHANNEL_D;
4169                 if (IS_GEN9_LP(dev_priv))
4170                         de_port_masked |= BXT_DE_PORT_GMBUS;
4171         } else {
4172                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4173         }
4174
4175         if (INTEL_GEN(dev_priv) >= 11)
4176                 de_port_masked |= ICL_AUX_CHANNEL_E;
4177
4178         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4179                 de_port_masked |= CNL_AUX_CHANNEL_F;
4180
4181         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4182                                            GEN8_PIPE_FIFO_UNDERRUN;
4183
4184         de_port_enables = de_port_masked;
4185         if (IS_GEN9_LP(dev_priv))
4186                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4187         else if (IS_BROADWELL(dev_priv))
4188                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4189
4190         gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
4191         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4192
4193         for_each_pipe(dev_priv, pipe) {
4194                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4195
4196                 if (intel_display_power_is_enabled(dev_priv,
4197                                 POWER_DOMAIN_PIPE(pipe)))
4198                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
4199                                           dev_priv->de_irq_mask[pipe],
4200                                           de_pipe_enables);
4201         }
4202
4203         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4204         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4205
4206         if (INTEL_GEN(dev_priv) >= 11) {
4207                 u32 de_hpd_masked = 0;
4208                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4209                                      GEN11_DE_TBT_HOTPLUG_MASK;
4210
4211                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
4212                               de_hpd_enables);
4213                 gen11_hpd_detection_setup(dev_priv);
4214         } else if (IS_GEN9_LP(dev_priv)) {
4215                 bxt_hpd_detection_setup(dev_priv);
4216         } else if (IS_BROADWELL(dev_priv)) {
4217                 ilk_hpd_detection_setup(dev_priv);
4218         }
4219 }
4220
4221 static int gen8_irq_postinstall(struct drm_device *dev)
4222 {
4223         struct drm_i915_private *dev_priv = to_i915(dev);
4224
4225         if (HAS_PCH_SPLIT(dev_priv))
4226                 ibx_irq_pre_postinstall(dev);
4227
4228         gen8_gt_irq_postinstall(dev_priv);
4229         gen8_de_irq_postinstall(dev_priv);
4230
4231         if (HAS_PCH_SPLIT(dev_priv))
4232                 ibx_irq_postinstall(dev);
4233
4234         gen8_master_intr_enable(dev_priv->uncore.regs);
4235
4236         return 0;
4237 }
4238
4239 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4240 {
4241         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4242
4243         BUILD_BUG_ON(irqs & 0xffff0000);
4244
4245         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4246         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4247         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4248
4249         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4250         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4251         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4252         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4253         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4254         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4255
4256         /*
4257          * RPS interrupts will get enabled/disabled on demand when RPS itself
4258          * is enabled/disabled.
4259          */
4260         dev_priv->pm_ier = 0x0;
4261         dev_priv->pm_imr = ~dev_priv->pm_ier;
4262         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4263         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4264
4265         /* Same thing for GuC interrupts */
4266         I915_WRITE(GEN11_GUC_SG_INTR_ENABLE, 0);
4267         I915_WRITE(GEN11_GUC_SG_INTR_MASK,  ~0);
4268 }
4269
4270 static void icp_irq_postinstall(struct drm_device *dev)
4271 {
4272         struct drm_i915_private *dev_priv = to_i915(dev);
4273         u32 mask = SDE_GMBUS_ICP;
4274
4275         WARN_ON(I915_READ(SDEIER) != 0);
4276         I915_WRITE(SDEIER, 0xffffffff);
4277         POSTING_READ(SDEIER);
4278
4279         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
4280         I915_WRITE(SDEIMR, ~mask);
4281
4282         icp_hpd_detection_setup(dev_priv);
4283 }
4284
4285 static int gen11_irq_postinstall(struct drm_device *dev)
4286 {
4287         struct drm_i915_private *dev_priv = dev->dev_private;
4288         struct intel_uncore *uncore = &dev_priv->uncore;
4289         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4290
4291         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4292                 icp_irq_postinstall(dev);
4293
4294         gen11_gt_irq_postinstall(dev_priv);
4295         gen8_de_irq_postinstall(dev_priv);
4296
4297         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4298
4299         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4300
4301         gen11_master_intr_enable(dev_priv->uncore.regs);
4302         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4303
4304         return 0;
4305 }
4306
4307 static int cherryview_irq_postinstall(struct drm_device *dev)
4308 {
4309         struct drm_i915_private *dev_priv = to_i915(dev);
4310
4311         gen8_gt_irq_postinstall(dev_priv);
4312
4313         spin_lock_irq(&dev_priv->irq_lock);
4314         if (dev_priv->display_irqs_enabled)
4315                 vlv_display_irq_postinstall(dev_priv);
4316         spin_unlock_irq(&dev_priv->irq_lock);
4317
4318         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4319         POSTING_READ(GEN8_MASTER_IRQ);
4320
4321         return 0;
4322 }
4323
4324 static void i8xx_irq_reset(struct drm_device *dev)
4325 {
4326         struct drm_i915_private *dev_priv = to_i915(dev);
4327         struct intel_uncore *uncore = &dev_priv->uncore;
4328
4329         i9xx_pipestat_irq_reset(dev_priv);
4330
4331         GEN2_IRQ_RESET(uncore);
4332 }
4333
4334 static int i8xx_irq_postinstall(struct drm_device *dev)
4335 {
4336         struct drm_i915_private *dev_priv = to_i915(dev);
4337         struct intel_uncore *uncore = &dev_priv->uncore;
4338         u16 enable_mask;
4339
4340         intel_uncore_write16(uncore,
4341                              EMR,
4342                              ~(I915_ERROR_PAGE_TABLE |
4343                                I915_ERROR_MEMORY_REFRESH));
4344
4345         /* Unmask the interrupts that we always want on. */
4346         dev_priv->irq_mask =
4347                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4348                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4349                   I915_MASTER_ERROR_INTERRUPT);
4350
4351         enable_mask =
4352                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4353                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4354                 I915_MASTER_ERROR_INTERRUPT |
4355                 I915_USER_INTERRUPT;
4356
4357         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
4358
4359         /* Interrupt setup is already guaranteed to be single-threaded, this is
4360          * just to make the assert_spin_locked check happy. */
4361         spin_lock_irq(&dev_priv->irq_lock);
4362         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4363         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4364         spin_unlock_irq(&dev_priv->irq_lock);
4365
4366         return 0;
4367 }
4368
4369 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
4370                                u16 *eir, u16 *eir_stuck)
4371 {
4372         struct intel_uncore *uncore = &i915->uncore;
4373         u16 emr;
4374
4375         *eir = intel_uncore_read16(uncore, EIR);
4376
4377         if (*eir)
4378                 intel_uncore_write16(uncore, EIR, *eir);
4379
4380         *eir_stuck = intel_uncore_read16(uncore, EIR);
4381         if (*eir_stuck == 0)
4382                 return;
4383
4384         /*
4385          * Toggle all EMR bits to make sure we get an edge
4386          * in the ISR master error bit if we don't clear
4387          * all the EIR bits. Otherwise the edge triggered
4388          * IIR on i965/g4x wouldn't notice that an interrupt
4389          * is still pending. Also some EIR bits can't be
4390          * cleared except by handling the underlying error
4391          * (or by a GPU reset) so we mask any bit that
4392          * remains set.
4393          */
4394         emr = intel_uncore_read16(uncore, EMR);
4395         intel_uncore_write16(uncore, EMR, 0xffff);
4396         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
4397 }
4398
4399 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4400                                    u16 eir, u16 eir_stuck)
4401 {
4402         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4403
4404         if (eir_stuck)
4405                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4406 }
4407
4408 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4409                                u32 *eir, u32 *eir_stuck)
4410 {
4411         u32 emr;
4412
4413         *eir = I915_READ(EIR);
4414
4415         I915_WRITE(EIR, *eir);
4416
4417         *eir_stuck = I915_READ(EIR);
4418         if (*eir_stuck == 0)
4419                 return;
4420
4421         /*
4422          * Toggle all EMR bits to make sure we get an edge
4423          * in the ISR master error bit if we don't clear
4424          * all the EIR bits. Otherwise the edge triggered
4425          * IIR on i965/g4x wouldn't notice that an interrupt
4426          * is still pending. Also some EIR bits can't be
4427          * cleared except by handling the underlying error
4428          * (or by a GPU reset) so we mask any bit that
4429          * remains set.
4430          */
4431         emr = I915_READ(EMR);
4432         I915_WRITE(EMR, 0xffffffff);
4433         I915_WRITE(EMR, emr | *eir_stuck);
4434 }
4435
4436 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4437                                    u32 eir, u32 eir_stuck)
4438 {
4439         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4440
4441         if (eir_stuck)
4442                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4443 }
4444
4445 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4446 {
4447         struct drm_device *dev = arg;
4448         struct drm_i915_private *dev_priv = to_i915(dev);
4449         irqreturn_t ret = IRQ_NONE;
4450
4451         if (!intel_irqs_enabled(dev_priv))
4452                 return IRQ_NONE;
4453
4454         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4455         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4456
4457         do {
4458                 u32 pipe_stats[I915_MAX_PIPES] = {};
4459                 u16 eir = 0, eir_stuck = 0;
4460                 u16 iir;
4461
4462                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4463                 if (iir == 0)
4464                         break;
4465
4466                 ret = IRQ_HANDLED;
4467
4468                 /* Call regardless, as some status bits might not be
4469                  * signalled in iir */
4470                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4471
4472                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4473                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4474
4475                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4476
4477                 if (iir & I915_USER_INTERRUPT)
4478                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4479
4480                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4481                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4482
4483                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4484         } while (0);
4485
4486         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4487
4488         return ret;
4489 }
4490
4491 static void i915_irq_reset(struct drm_device *dev)
4492 {
4493         struct drm_i915_private *dev_priv = to_i915(dev);
4494         struct intel_uncore *uncore = &dev_priv->uncore;
4495
4496         if (I915_HAS_HOTPLUG(dev_priv)) {
4497                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4498                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4499         }
4500
4501         i9xx_pipestat_irq_reset(dev_priv);
4502
4503         GEN3_IRQ_RESET(uncore, GEN2_);
4504 }
4505
4506 static int i915_irq_postinstall(struct drm_device *dev)
4507 {
4508         struct drm_i915_private *dev_priv = to_i915(dev);
4509         struct intel_uncore *uncore = &dev_priv->uncore;
4510         u32 enable_mask;
4511
4512         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4513                           I915_ERROR_MEMORY_REFRESH));
4514
4515         /* Unmask the interrupts that we always want on. */
4516         dev_priv->irq_mask =
4517                 ~(I915_ASLE_INTERRUPT |
4518                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4519                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4520                   I915_MASTER_ERROR_INTERRUPT);
4521
4522         enable_mask =
4523                 I915_ASLE_INTERRUPT |
4524                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4525                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4526                 I915_MASTER_ERROR_INTERRUPT |
4527                 I915_USER_INTERRUPT;
4528
4529         if (I915_HAS_HOTPLUG(dev_priv)) {
4530                 /* Enable in IER... */
4531                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4532                 /* and unmask in IMR */
4533                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4534         }
4535
4536         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4537
4538         /* Interrupt setup is already guaranteed to be single-threaded, this is
4539          * just to make the assert_spin_locked check happy. */
4540         spin_lock_irq(&dev_priv->irq_lock);
4541         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4542         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4543         spin_unlock_irq(&dev_priv->irq_lock);
4544
4545         i915_enable_asle_pipestat(dev_priv);
4546
4547         return 0;
4548 }
4549
4550 static irqreturn_t i915_irq_handler(int irq, void *arg)
4551 {
4552         struct drm_device *dev = arg;
4553         struct drm_i915_private *dev_priv = to_i915(dev);
4554         irqreturn_t ret = IRQ_NONE;
4555
4556         if (!intel_irqs_enabled(dev_priv))
4557                 return IRQ_NONE;
4558
4559         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4560         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4561
4562         do {
4563                 u32 pipe_stats[I915_MAX_PIPES] = {};
4564                 u32 eir = 0, eir_stuck = 0;
4565                 u32 hotplug_status = 0;
4566                 u32 iir;
4567
4568                 iir = I915_READ(GEN2_IIR);
4569                 if (iir == 0)
4570                         break;
4571
4572                 ret = IRQ_HANDLED;
4573
4574                 if (I915_HAS_HOTPLUG(dev_priv) &&
4575                     iir & I915_DISPLAY_PORT_INTERRUPT)
4576                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4577
4578                 /* Call regardless, as some status bits might not be
4579                  * signalled in iir */
4580                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4581
4582                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4583                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4584
4585                 I915_WRITE(GEN2_IIR, iir);
4586
4587                 if (iir & I915_USER_INTERRUPT)
4588                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4589
4590                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4591                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4592
4593                 if (hotplug_status)
4594                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4595
4596                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4597         } while (0);
4598
4599         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4600
4601         return ret;
4602 }
4603
4604 static void i965_irq_reset(struct drm_device *dev)
4605 {
4606         struct drm_i915_private *dev_priv = to_i915(dev);
4607         struct intel_uncore *uncore = &dev_priv->uncore;
4608
4609         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4610         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4611
4612         i9xx_pipestat_irq_reset(dev_priv);
4613
4614         GEN3_IRQ_RESET(uncore, GEN2_);
4615 }
4616
4617 static int i965_irq_postinstall(struct drm_device *dev)
4618 {
4619         struct drm_i915_private *dev_priv = to_i915(dev);
4620         struct intel_uncore *uncore = &dev_priv->uncore;
4621         u32 enable_mask;
4622         u32 error_mask;
4623
4624         /*
4625          * Enable some error detection, note the instruction error mask
4626          * bit is reserved, so we leave it masked.
4627          */
4628         if (IS_G4X(dev_priv)) {
4629                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4630                                GM45_ERROR_MEM_PRIV |
4631                                GM45_ERROR_CP_PRIV |
4632                                I915_ERROR_MEMORY_REFRESH);
4633         } else {
4634                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4635                                I915_ERROR_MEMORY_REFRESH);
4636         }
4637         I915_WRITE(EMR, error_mask);
4638
4639         /* Unmask the interrupts that we always want on. */
4640         dev_priv->irq_mask =
4641                 ~(I915_ASLE_INTERRUPT |
4642                   I915_DISPLAY_PORT_INTERRUPT |
4643                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4644                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4645                   I915_MASTER_ERROR_INTERRUPT);
4646
4647         enable_mask =
4648                 I915_ASLE_INTERRUPT |
4649                 I915_DISPLAY_PORT_INTERRUPT |
4650                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4651                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4652                 I915_MASTER_ERROR_INTERRUPT |
4653                 I915_USER_INTERRUPT;
4654
4655         if (IS_G4X(dev_priv))
4656                 enable_mask |= I915_BSD_USER_INTERRUPT;
4657
4658         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4659
4660         /* Interrupt setup is already guaranteed to be single-threaded, this is
4661          * just to make the assert_spin_locked check happy. */
4662         spin_lock_irq(&dev_priv->irq_lock);
4663         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4664         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4665         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4666         spin_unlock_irq(&dev_priv->irq_lock);
4667
4668         i915_enable_asle_pipestat(dev_priv);
4669
4670         return 0;
4671 }
4672
4673 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4674 {
4675         u32 hotplug_en;
4676
4677         lockdep_assert_held(&dev_priv->irq_lock);
4678
4679         /* Note HDMI and DP share hotplug bits */
4680         /* enable bits are the same for all generations */
4681         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4682         /* Programming the CRT detection parameters tends
4683            to generate a spurious hotplug event about three
4684            seconds later.  So just do it once.
4685         */
4686         if (IS_G4X(dev_priv))
4687                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4688         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4689
4690         /* Ignore TV since it's buggy */
4691         i915_hotplug_interrupt_update_locked(dev_priv,
4692                                              HOTPLUG_INT_EN_MASK |
4693                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4694                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4695                                              hotplug_en);
4696 }
4697
4698 static irqreturn_t i965_irq_handler(int irq, void *arg)
4699 {
4700         struct drm_device *dev = arg;
4701         struct drm_i915_private *dev_priv = to_i915(dev);
4702         irqreturn_t ret = IRQ_NONE;
4703
4704         if (!intel_irqs_enabled(dev_priv))
4705                 return IRQ_NONE;
4706
4707         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4708         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4709
4710         do {
4711                 u32 pipe_stats[I915_MAX_PIPES] = {};
4712                 u32 eir = 0, eir_stuck = 0;
4713                 u32 hotplug_status = 0;
4714                 u32 iir;
4715
4716                 iir = I915_READ(GEN2_IIR);
4717                 if (iir == 0)
4718                         break;
4719
4720                 ret = IRQ_HANDLED;
4721
4722                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4723                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4724
4725                 /* Call regardless, as some status bits might not be
4726                  * signalled in iir */
4727                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4728
4729                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4730                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4731
4732                 I915_WRITE(GEN2_IIR, iir);
4733
4734                 if (iir & I915_USER_INTERRUPT)
4735                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4736
4737                 if (iir & I915_BSD_USER_INTERRUPT)
4738                         intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4739
4740                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4741                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4742
4743                 if (hotplug_status)
4744                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4745
4746                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4747         } while (0);
4748
4749         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4750
4751         return ret;
4752 }
4753
4754 /**
4755  * intel_irq_init - initializes irq support
4756  * @dev_priv: i915 device instance
4757  *
4758  * This function initializes all the irq support including work items, timers
4759  * and all the vtables. It does not setup the interrupt itself though.
4760  */
4761 void intel_irq_init(struct drm_i915_private *dev_priv)
4762 {
4763         struct drm_device *dev = &dev_priv->drm;
4764         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4765         int i;
4766
4767         if (IS_I945GM(dev_priv))
4768                 i945gm_vblank_work_init(dev_priv);
4769
4770         intel_hpd_init_work(dev_priv);
4771
4772         INIT_WORK(&rps->work, gen6_pm_rps_work);
4773
4774         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4775         for (i = 0; i < MAX_L3_SLICES; ++i)
4776                 dev_priv->l3_parity.remap_info[i] = NULL;
4777
4778         if (HAS_GUC_SCHED(dev_priv) && INTEL_GEN(dev_priv) < 11)
4779                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4780
4781         /* Let's track the enabled rps events */
4782         if (IS_VALLEYVIEW(dev_priv))
4783                 /* WaGsvRC0ResidencyMethod:vlv */
4784                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4785         else
4786                 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4787                                            GEN6_PM_RP_DOWN_THRESHOLD |
4788                                            GEN6_PM_RP_DOWN_TIMEOUT);
4789
4790         /* We share the register with other engine */
4791         if (INTEL_GEN(dev_priv) > 9)
4792                 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4793
4794         rps->pm_intrmsk_mbz = 0;
4795
4796         /*
4797          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4798          * if GEN6_PM_UP_EI_EXPIRED is masked.
4799          *
4800          * TODO: verify if this can be reproduced on VLV,CHV.
4801          */
4802         if (INTEL_GEN(dev_priv) <= 7)
4803                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4804
4805         if (INTEL_GEN(dev_priv) >= 8)
4806                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4807
4808         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4809                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4810         else if (INTEL_GEN(dev_priv) >= 3)
4811                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4812
4813         dev->vblank_disable_immediate = true;
4814
4815         /* Most platforms treat the display irq block as an always-on
4816          * power domain. vlv/chv can disable it at runtime and need
4817          * special care to avoid writing any of the display block registers
4818          * outside of the power domain. We defer setting up the display irqs
4819          * in this case to the runtime pm.
4820          */
4821         dev_priv->display_irqs_enabled = true;
4822         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4823                 dev_priv->display_irqs_enabled = false;
4824
4825         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4826         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4827          * detection, as short HPD storms will occur as a natural part of
4828          * sideband messaging with MST.
4829          * On older platforms however, IRQ storms can occur with both long and
4830          * short pulses, as seen on some G4x systems.
4831          */
4832         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4833
4834         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4835         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4836
4837         if (IS_CHERRYVIEW(dev_priv)) {
4838                 dev->driver->irq_handler = cherryview_irq_handler;
4839                 dev->driver->irq_preinstall = cherryview_irq_reset;
4840                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4841                 dev->driver->irq_uninstall = cherryview_irq_reset;
4842                 dev->driver->enable_vblank = i965_enable_vblank;
4843                 dev->driver->disable_vblank = i965_disable_vblank;
4844                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4845         } else if (IS_VALLEYVIEW(dev_priv)) {
4846                 dev->driver->irq_handler = valleyview_irq_handler;
4847                 dev->driver->irq_preinstall = valleyview_irq_reset;
4848                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4849                 dev->driver->irq_uninstall = valleyview_irq_reset;
4850                 dev->driver->enable_vblank = i965_enable_vblank;
4851                 dev->driver->disable_vblank = i965_disable_vblank;
4852                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4853         } else if (INTEL_GEN(dev_priv) >= 11) {
4854                 dev->driver->irq_handler = gen11_irq_handler;
4855                 dev->driver->irq_preinstall = gen11_irq_reset;
4856                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4857                 dev->driver->irq_uninstall = gen11_irq_reset;
4858                 dev->driver->enable_vblank = gen8_enable_vblank;
4859                 dev->driver->disable_vblank = gen8_disable_vblank;
4860                 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4861         } else if (INTEL_GEN(dev_priv) >= 8) {
4862                 dev->driver->irq_handler = gen8_irq_handler;
4863                 dev->driver->irq_preinstall = gen8_irq_reset;
4864                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4865                 dev->driver->irq_uninstall = gen8_irq_reset;
4866                 dev->driver->enable_vblank = gen8_enable_vblank;
4867                 dev->driver->disable_vblank = gen8_disable_vblank;
4868                 if (IS_GEN9_LP(dev_priv))
4869                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4870                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4871                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4872                 else
4873                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4874         } else if (HAS_PCH_SPLIT(dev_priv)) {
4875                 dev->driver->irq_handler = ironlake_irq_handler;
4876                 dev->driver->irq_preinstall = ironlake_irq_reset;
4877                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4878                 dev->driver->irq_uninstall = ironlake_irq_reset;
4879                 dev->driver->enable_vblank = ironlake_enable_vblank;
4880                 dev->driver->disable_vblank = ironlake_disable_vblank;
4881                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4882         } else {
4883                 if (IS_GEN(dev_priv, 2)) {
4884                         dev->driver->irq_preinstall = i8xx_irq_reset;
4885                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4886                         dev->driver->irq_handler = i8xx_irq_handler;
4887                         dev->driver->irq_uninstall = i8xx_irq_reset;
4888                         dev->driver->enable_vblank = i8xx_enable_vblank;
4889                         dev->driver->disable_vblank = i8xx_disable_vblank;
4890                 } else if (IS_I945GM(dev_priv)) {
4891                         dev->driver->irq_preinstall = i915_irq_reset;
4892                         dev->driver->irq_postinstall = i915_irq_postinstall;
4893                         dev->driver->irq_uninstall = i915_irq_reset;
4894                         dev->driver->irq_handler = i915_irq_handler;
4895                         dev->driver->enable_vblank = i945gm_enable_vblank;
4896                         dev->driver->disable_vblank = i945gm_disable_vblank;
4897                 } else if (IS_GEN(dev_priv, 3)) {
4898                         dev->driver->irq_preinstall = i915_irq_reset;
4899                         dev->driver->irq_postinstall = i915_irq_postinstall;
4900                         dev->driver->irq_uninstall = i915_irq_reset;
4901                         dev->driver->irq_handler = i915_irq_handler;
4902                         dev->driver->enable_vblank = i8xx_enable_vblank;
4903                         dev->driver->disable_vblank = i8xx_disable_vblank;
4904                 } else {
4905                         dev->driver->irq_preinstall = i965_irq_reset;
4906                         dev->driver->irq_postinstall = i965_irq_postinstall;
4907                         dev->driver->irq_uninstall = i965_irq_reset;
4908                         dev->driver->irq_handler = i965_irq_handler;
4909                         dev->driver->enable_vblank = i965_enable_vblank;
4910                         dev->driver->disable_vblank = i965_disable_vblank;
4911                 }
4912                 if (I915_HAS_HOTPLUG(dev_priv))
4913                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4914         }
4915 }
4916
4917 /**
4918  * intel_irq_fini - deinitializes IRQ support
4919  * @i915: i915 device instance
4920  *
4921  * This function deinitializes all the IRQ support.
4922  */
4923 void intel_irq_fini(struct drm_i915_private *i915)
4924 {
4925         int i;
4926
4927         if (IS_I945GM(i915))
4928                 i945gm_vblank_work_fini(i915);
4929
4930         for (i = 0; i < MAX_L3_SLICES; ++i)
4931                 kfree(i915->l3_parity.remap_info[i]);
4932 }
4933
4934 /**
4935  * intel_irq_install - enables the hardware interrupt
4936  * @dev_priv: i915 device instance
4937  *
4938  * This function enables the hardware interrupt handling, but leaves the hotplug
4939  * handling still disabled. It is called after intel_irq_init().
4940  *
4941  * In the driver load and resume code we need working interrupts in a few places
4942  * but don't want to deal with the hassle of concurrent probe and hotplug
4943  * workers. Hence the split into this two-stage approach.
4944  */
4945 int intel_irq_install(struct drm_i915_private *dev_priv)
4946 {
4947         /*
4948          * We enable some interrupt sources in our postinstall hooks, so mark
4949          * interrupts as enabled _before_ actually enabling them to avoid
4950          * special cases in our ordering checks.
4951          */
4952         dev_priv->runtime_pm.irqs_enabled = true;
4953
4954         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4955 }
4956
4957 /**
4958  * intel_irq_uninstall - finilizes all irq handling
4959  * @dev_priv: i915 device instance
4960  *
4961  * This stops interrupt and hotplug handling and unregisters and frees all
4962  * resources acquired in the init functions.
4963  */
4964 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4965 {
4966         drm_irq_uninstall(&dev_priv->drm);
4967         intel_hpd_cancel_work(dev_priv);
4968         dev_priv->runtime_pm.irqs_enabled = false;
4969 }
4970
4971 /**
4972  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4973  * @dev_priv: i915 device instance
4974  *
4975  * This function is used to disable interrupts at runtime, both in the runtime
4976  * pm and the system suspend/resume code.
4977  */
4978 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4979 {
4980         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4981         dev_priv->runtime_pm.irqs_enabled = false;
4982         synchronize_irq(dev_priv->drm.irq);
4983 }
4984
4985 /**
4986  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4987  * @dev_priv: i915 device instance
4988  *
4989  * This function is used to enable interrupts at runtime, both in the runtime
4990  * pm and the system suspend/resume code.
4991  */
4992 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4993 {
4994         dev_priv->runtime_pm.irqs_enabled = true;
4995         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4996         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4997 }