Merge tag 'audit-pr-20180403' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN3_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 #define GEN2_IRQ_RESET(type) do { \
140         I915_WRITE16(type##IMR, 0xffff); \
141         POSTING_READ16(type##IMR); \
142         I915_WRITE16(type##IER, 0); \
143         I915_WRITE16(type##IIR, 0xffff); \
144         POSTING_READ16(type##IIR); \
145         I915_WRITE16(type##IIR, 0xffff); \
146         POSTING_READ16(type##IIR); \
147 } while (0)
148
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153                                     i915_reg_t reg)
154 {
155         u32 val = I915_READ(reg);
156
157         if (val == 0)
158                 return;
159
160         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161              i915_mmio_reg_offset(reg), val);
162         I915_WRITE(reg, 0xffffffff);
163         POSTING_READ(reg);
164         I915_WRITE(reg, 0xffffffff);
165         POSTING_READ(reg);
166 }
167
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u16 val = I915_READ16(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE16(reg, 0xffff);
179         POSTING_READ16(reg);
180         I915_WRITE16(reg, 0xffff);
181         POSTING_READ16(reg);
182 }
183
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188         POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193         I915_WRITE(type##IER, (ier_val)); \
194         I915_WRITE(type##IMR, (imr_val)); \
195         POSTING_READ(type##IMR); \
196 } while (0)
197
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200         I915_WRITE16(type##IER, (ier_val)); \
201         I915_WRITE16(type##IMR, (imr_val)); \
202         POSTING_READ16(type##IMR); \
203 } while (0)
204
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211                                      uint32_t mask,
212                                      uint32_t bits)
213 {
214         uint32_t val;
215
216         lockdep_assert_held(&dev_priv->irq_lock);
217         WARN_ON(bits & ~mask);
218
219         val = I915_READ(PORT_HOTPLUG_EN);
220         val &= ~mask;
221         val |= bits;
222         I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238                                    uint32_t mask,
239                                    uint32_t bits)
240 {
241         spin_lock_irq(&dev_priv->irq_lock);
242         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243         spin_unlock_irq(&dev_priv->irq_lock);
244 }
245
246 /**
247  * ilk_update_display_irq - update DEIMR
248  * @dev_priv: driver private
249  * @interrupt_mask: mask of interrupt bits to update
250  * @enabled_irq_mask: mask of interrupt bits to enable
251  */
252 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
253                             uint32_t interrupt_mask,
254                             uint32_t enabled_irq_mask)
255 {
256         uint32_t new_val;
257
258         lockdep_assert_held(&dev_priv->irq_lock);
259
260         WARN_ON(enabled_irq_mask & ~interrupt_mask);
261
262         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263                 return;
264
265         new_val = dev_priv->irq_mask;
266         new_val &= ~interrupt_mask;
267         new_val |= (~enabled_irq_mask & interrupt_mask);
268
269         if (new_val != dev_priv->irq_mask) {
270                 dev_priv->irq_mask = new_val;
271                 I915_WRITE(DEIMR, dev_priv->irq_mask);
272                 POSTING_READ(DEIMR);
273         }
274 }
275
276 /**
277  * ilk_update_gt_irq - update GTIMR
278  * @dev_priv: driver private
279  * @interrupt_mask: mask of interrupt bits to update
280  * @enabled_irq_mask: mask of interrupt bits to enable
281  */
282 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
283                               uint32_t interrupt_mask,
284                               uint32_t enabled_irq_mask)
285 {
286         lockdep_assert_held(&dev_priv->irq_lock);
287
288         WARN_ON(enabled_irq_mask & ~interrupt_mask);
289
290         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
291                 return;
292
293         dev_priv->gt_irq_mask &= ~interrupt_mask;
294         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
295         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
296 }
297
298 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
299 {
300         ilk_update_gt_irq(dev_priv, mask, mask);
301         POSTING_READ_FW(GTIMR);
302 }
303
304 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
305 {
306         ilk_update_gt_irq(dev_priv, mask, 0);
307 }
308
309 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
310 {
311         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
312 }
313
314 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
315 {
316         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
317 }
318
319 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
320 {
321         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
322 }
323
324 /**
325  * snb_update_pm_irq - update GEN6_PMIMR
326  * @dev_priv: driver private
327  * @interrupt_mask: mask of interrupt bits to update
328  * @enabled_irq_mask: mask of interrupt bits to enable
329  */
330 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
331                               uint32_t interrupt_mask,
332                               uint32_t enabled_irq_mask)
333 {
334         uint32_t new_val;
335
336         WARN_ON(enabled_irq_mask & ~interrupt_mask);
337
338         lockdep_assert_held(&dev_priv->irq_lock);
339
340         new_val = dev_priv->pm_imr;
341         new_val &= ~interrupt_mask;
342         new_val |= (~enabled_irq_mask & interrupt_mask);
343
344         if (new_val != dev_priv->pm_imr) {
345                 dev_priv->pm_imr = new_val;
346                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
347                 POSTING_READ(gen6_pm_imr(dev_priv));
348         }
349 }
350
351 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
352 {
353         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354                 return;
355
356         snb_update_pm_irq(dev_priv, mask, mask);
357 }
358
359 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
360 {
361         snb_update_pm_irq(dev_priv, mask, 0);
362 }
363
364 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
365 {
366         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
367                 return;
368
369         __gen6_mask_pm_irq(dev_priv, mask);
370 }
371
372 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
373 {
374         i915_reg_t reg = gen6_pm_iir(dev_priv);
375
376         lockdep_assert_held(&dev_priv->irq_lock);
377
378         I915_WRITE(reg, reset_mask);
379         I915_WRITE(reg, reset_mask);
380         POSTING_READ(reg);
381 }
382
383 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
384 {
385         lockdep_assert_held(&dev_priv->irq_lock);
386
387         dev_priv->pm_ier |= enable_mask;
388         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
389         gen6_unmask_pm_irq(dev_priv, enable_mask);
390         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
391 }
392
393 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
394 {
395         lockdep_assert_held(&dev_priv->irq_lock);
396
397         dev_priv->pm_ier &= ~disable_mask;
398         __gen6_mask_pm_irq(dev_priv, disable_mask);
399         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
400         /* though a barrier is missing here, but don't really need a one */
401 }
402
403 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
404 {
405         spin_lock_irq(&dev_priv->irq_lock);
406         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
407         dev_priv->gt_pm.rps.pm_iir = 0;
408         spin_unlock_irq(&dev_priv->irq_lock);
409 }
410
411 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
412 {
413         struct intel_rps *rps = &dev_priv->gt_pm.rps;
414
415         if (READ_ONCE(rps->interrupts_enabled))
416                 return;
417
418         if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
419                 return;
420
421         spin_lock_irq(&dev_priv->irq_lock);
422         WARN_ON_ONCE(rps->pm_iir);
423         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
424         rps->interrupts_enabled = true;
425         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
426
427         spin_unlock_irq(&dev_priv->irq_lock);
428 }
429
430 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
431 {
432         struct intel_rps *rps = &dev_priv->gt_pm.rps;
433
434         if (!READ_ONCE(rps->interrupts_enabled))
435                 return;
436
437         if (WARN_ON_ONCE(IS_GEN11(dev_priv)))
438                 return;
439
440         spin_lock_irq(&dev_priv->irq_lock);
441         rps->interrupts_enabled = false;
442
443         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
444
445         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
446
447         spin_unlock_irq(&dev_priv->irq_lock);
448         synchronize_irq(dev_priv->drm.irq);
449
450         /* Now that we will not be generating any more work, flush any
451          * outstanding tasks. As we are called on the RPS idle path,
452          * we will reset the GPU to minimum frequencies, so the current
453          * state of the worker can be discarded.
454          */
455         cancel_work_sync(&rps->work);
456         gen6_reset_rps_interrupts(dev_priv);
457 }
458
459 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
460 {
461         assert_rpm_wakelock_held(dev_priv);
462
463         spin_lock_irq(&dev_priv->irq_lock);
464         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
465         spin_unlock_irq(&dev_priv->irq_lock);
466 }
467
468 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
469 {
470         assert_rpm_wakelock_held(dev_priv);
471
472         spin_lock_irq(&dev_priv->irq_lock);
473         if (!dev_priv->guc.interrupts_enabled) {
474                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
475                                        dev_priv->pm_guc_events);
476                 dev_priv->guc.interrupts_enabled = true;
477                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
478         }
479         spin_unlock_irq(&dev_priv->irq_lock);
480 }
481
482 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
483 {
484         assert_rpm_wakelock_held(dev_priv);
485
486         spin_lock_irq(&dev_priv->irq_lock);
487         dev_priv->guc.interrupts_enabled = false;
488
489         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
490
491         spin_unlock_irq(&dev_priv->irq_lock);
492         synchronize_irq(dev_priv->drm.irq);
493
494         gen9_reset_guc_interrupts(dev_priv);
495 }
496
497 /**
498  * bdw_update_port_irq - update DE port interrupt
499  * @dev_priv: driver private
500  * @interrupt_mask: mask of interrupt bits to update
501  * @enabled_irq_mask: mask of interrupt bits to enable
502  */
503 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
504                                 uint32_t interrupt_mask,
505                                 uint32_t enabled_irq_mask)
506 {
507         uint32_t new_val;
508         uint32_t old_val;
509
510         lockdep_assert_held(&dev_priv->irq_lock);
511
512         WARN_ON(enabled_irq_mask & ~interrupt_mask);
513
514         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
515                 return;
516
517         old_val = I915_READ(GEN8_DE_PORT_IMR);
518
519         new_val = old_val;
520         new_val &= ~interrupt_mask;
521         new_val |= (~enabled_irq_mask & interrupt_mask);
522
523         if (new_val != old_val) {
524                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
525                 POSTING_READ(GEN8_DE_PORT_IMR);
526         }
527 }
528
529 /**
530  * bdw_update_pipe_irq - update DE pipe interrupt
531  * @dev_priv: driver private
532  * @pipe: pipe whose interrupt to update
533  * @interrupt_mask: mask of interrupt bits to update
534  * @enabled_irq_mask: mask of interrupt bits to enable
535  */
536 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
537                          enum pipe pipe,
538                          uint32_t interrupt_mask,
539                          uint32_t enabled_irq_mask)
540 {
541         uint32_t new_val;
542
543         lockdep_assert_held(&dev_priv->irq_lock);
544
545         WARN_ON(enabled_irq_mask & ~interrupt_mask);
546
547         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
548                 return;
549
550         new_val = dev_priv->de_irq_mask[pipe];
551         new_val &= ~interrupt_mask;
552         new_val |= (~enabled_irq_mask & interrupt_mask);
553
554         if (new_val != dev_priv->de_irq_mask[pipe]) {
555                 dev_priv->de_irq_mask[pipe] = new_val;
556                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
557                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
558         }
559 }
560
561 /**
562  * ibx_display_interrupt_update - update SDEIMR
563  * @dev_priv: driver private
564  * @interrupt_mask: mask of interrupt bits to update
565  * @enabled_irq_mask: mask of interrupt bits to enable
566  */
567 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
568                                   uint32_t interrupt_mask,
569                                   uint32_t enabled_irq_mask)
570 {
571         uint32_t sdeimr = I915_READ(SDEIMR);
572         sdeimr &= ~interrupt_mask;
573         sdeimr |= (~enabled_irq_mask & interrupt_mask);
574
575         WARN_ON(enabled_irq_mask & ~interrupt_mask);
576
577         lockdep_assert_held(&dev_priv->irq_lock);
578
579         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
580                 return;
581
582         I915_WRITE(SDEIMR, sdeimr);
583         POSTING_READ(SDEIMR);
584 }
585
586 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
587                               enum pipe pipe)
588 {
589         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
590         u32 enable_mask = status_mask << 16;
591
592         lockdep_assert_held(&dev_priv->irq_lock);
593
594         if (INTEL_GEN(dev_priv) < 5)
595                 goto out;
596
597         /*
598          * On pipe A we don't support the PSR interrupt yet,
599          * on pipe B and C the same bit MBZ.
600          */
601         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
602                 return 0;
603         /*
604          * On pipe B and C we don't support the PSR interrupt yet, on pipe
605          * A the same bit is for perf counters which we don't use either.
606          */
607         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
608                 return 0;
609
610         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
611                          SPRITE0_FLIP_DONE_INT_EN_VLV |
612                          SPRITE1_FLIP_DONE_INT_EN_VLV);
613         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
614                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
615         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
616                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
617
618 out:
619         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                   pipe_name(pipe), enable_mask, status_mask);
623
624         return enable_mask;
625 }
626
627 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
628                           enum pipe pipe, u32 status_mask)
629 {
630         i915_reg_t reg = PIPESTAT(pipe);
631         u32 enable_mask;
632
633         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
634                   "pipe %c: status_mask=0x%x\n",
635                   pipe_name(pipe), status_mask);
636
637         lockdep_assert_held(&dev_priv->irq_lock);
638         WARN_ON(!intel_irqs_enabled(dev_priv));
639
640         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
641                 return;
642
643         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
644         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
645
646         I915_WRITE(reg, enable_mask | status_mask);
647         POSTING_READ(reg);
648 }
649
650 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
651                            enum pipe pipe, u32 status_mask)
652 {
653         i915_reg_t reg = PIPESTAT(pipe);
654         u32 enable_mask;
655
656         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
657                   "pipe %c: status_mask=0x%x\n",
658                   pipe_name(pipe), status_mask);
659
660         lockdep_assert_held(&dev_priv->irq_lock);
661         WARN_ON(!intel_irqs_enabled(dev_priv));
662
663         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
664                 return;
665
666         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
667         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
668
669         I915_WRITE(reg, enable_mask | status_mask);
670         POSTING_READ(reg);
671 }
672
673 /**
674  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
675  * @dev_priv: i915 device private
676  */
677 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
678 {
679         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
680                 return;
681
682         spin_lock_irq(&dev_priv->irq_lock);
683
684         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
685         if (INTEL_GEN(dev_priv) >= 4)
686                 i915_enable_pipestat(dev_priv, PIPE_A,
687                                      PIPE_LEGACY_BLC_EVENT_STATUS);
688
689         spin_unlock_irq(&dev_priv->irq_lock);
690 }
691
692 /*
693  * This timing diagram depicts the video signal in and
694  * around the vertical blanking period.
695  *
696  * Assumptions about the fictitious mode used in this example:
697  *  vblank_start >= 3
698  *  vsync_start = vblank_start + 1
699  *  vsync_end = vblank_start + 2
700  *  vtotal = vblank_start + 3
701  *
702  *           start of vblank:
703  *           latch double buffered registers
704  *           increment frame counter (ctg+)
705  *           generate start of vblank interrupt (gen4+)
706  *           |
707  *           |          frame start:
708  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
709  *           |          may be shifted forward 1-3 extra lines via PIPECONF
710  *           |          |
711  *           |          |  start of vsync:
712  *           |          |  generate vsync interrupt
713  *           |          |  |
714  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
715  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
716  * ----va---> <-----------------vb--------------------> <--------va-------------
717  *       |          |       <----vs----->                     |
718  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
719  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
720  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
721  *       |          |                                         |
722  *       last visible pixel                                   first visible pixel
723  *                  |                                         increment frame counter (gen3/4)
724  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
725  *
726  * x  = horizontal active
727  * _  = horizontal blanking
728  * hs = horizontal sync
729  * va = vertical active
730  * vb = vertical blanking
731  * vs = vertical sync
732  * vbs = vblank_start (number)
733  *
734  * Summary:
735  * - most events happen at the start of horizontal sync
736  * - frame start happens at the start of horizontal blank, 1-4 lines
737  *   (depending on PIPECONF settings) after the start of vblank
738  * - gen3/4 pixel and frame counter are synchronized with the start
739  *   of horizontal active on the first line of vertical active
740  */
741
742 /* Called from drm generic code, passed a 'crtc', which
743  * we use as a pipe index
744  */
745 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
746 {
747         struct drm_i915_private *dev_priv = to_i915(dev);
748         i915_reg_t high_frame, low_frame;
749         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
750         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
751         unsigned long irqflags;
752
753         htotal = mode->crtc_htotal;
754         hsync_start = mode->crtc_hsync_start;
755         vbl_start = mode->crtc_vblank_start;
756         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
757                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
758
759         /* Convert to pixel count */
760         vbl_start *= htotal;
761
762         /* Start of vblank event occurs at start of hsync */
763         vbl_start -= htotal - hsync_start;
764
765         high_frame = PIPEFRAME(pipe);
766         low_frame = PIPEFRAMEPIXEL(pipe);
767
768         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
769
770         /*
771          * High & low register fields aren't synchronized, so make sure
772          * we get a low value that's stable across two reads of the high
773          * register.
774          */
775         do {
776                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
777                 low   = I915_READ_FW(low_frame);
778                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
779         } while (high1 != high2);
780
781         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
782
783         high1 >>= PIPE_FRAME_HIGH_SHIFT;
784         pixel = low & PIPE_PIXEL_MASK;
785         low >>= PIPE_FRAME_LOW_SHIFT;
786
787         /*
788          * The frame counter increments at beginning of active.
789          * Cook up a vblank counter by also checking the pixel
790          * counter against vblank start.
791          */
792         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
793 }
794
795 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
796 {
797         struct drm_i915_private *dev_priv = to_i915(dev);
798
799         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
800 }
801
802 /*
803  * On certain encoders on certain platforms, pipe
804  * scanline register will not work to get the scanline,
805  * since the timings are driven from the PORT or issues
806  * with scanline register updates.
807  * This function will use Framestamp and current
808  * timestamp registers to calculate the scanline.
809  */
810 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
811 {
812         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
813         struct drm_vblank_crtc *vblank =
814                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
815         const struct drm_display_mode *mode = &vblank->hwmode;
816         u32 vblank_start = mode->crtc_vblank_start;
817         u32 vtotal = mode->crtc_vtotal;
818         u32 htotal = mode->crtc_htotal;
819         u32 clock = mode->crtc_clock;
820         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
821
822         /*
823          * To avoid the race condition where we might cross into the
824          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
825          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
826          * during the same frame.
827          */
828         do {
829                 /*
830                  * This field provides read back of the display
831                  * pipe frame time stamp. The time stamp value
832                  * is sampled at every start of vertical blank.
833                  */
834                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
835
836                 /*
837                  * The TIMESTAMP_CTR register has the current
838                  * time stamp value.
839                  */
840                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
841
842                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
843         } while (scan_post_time != scan_prev_time);
844
845         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
846                                         clock), 1000 * htotal);
847         scanline = min(scanline, vtotal - 1);
848         scanline = (scanline + vblank_start) % vtotal;
849
850         return scanline;
851 }
852
853 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
854 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
855 {
856         struct drm_device *dev = crtc->base.dev;
857         struct drm_i915_private *dev_priv = to_i915(dev);
858         const struct drm_display_mode *mode;
859         struct drm_vblank_crtc *vblank;
860         enum pipe pipe = crtc->pipe;
861         int position, vtotal;
862
863         if (!crtc->active)
864                 return -1;
865
866         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
867         mode = &vblank->hwmode;
868
869         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
870                 return __intel_get_crtc_scanline_from_timestamp(crtc);
871
872         vtotal = mode->crtc_vtotal;
873         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
874                 vtotal /= 2;
875
876         if (IS_GEN2(dev_priv))
877                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
878         else
879                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
880
881         /*
882          * On HSW, the DSL reg (0x70000) appears to return 0 if we
883          * read it just before the start of vblank.  So try it again
884          * so we don't accidentally end up spanning a vblank frame
885          * increment, causing the pipe_update_end() code to squak at us.
886          *
887          * The nature of this problem means we can't simply check the ISR
888          * bit and return the vblank start value; nor can we use the scanline
889          * debug register in the transcoder as it appears to have the same
890          * problem.  We may need to extend this to include other platforms,
891          * but so far testing only shows the problem on HSW.
892          */
893         if (HAS_DDI(dev_priv) && !position) {
894                 int i, temp;
895
896                 for (i = 0; i < 100; i++) {
897                         udelay(1);
898                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
899                         if (temp != position) {
900                                 position = temp;
901                                 break;
902                         }
903                 }
904         }
905
906         /*
907          * See update_scanline_offset() for the details on the
908          * scanline_offset adjustment.
909          */
910         return (position + crtc->scanline_offset) % vtotal;
911 }
912
913 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
914                                      bool in_vblank_irq, int *vpos, int *hpos,
915                                      ktime_t *stime, ktime_t *etime,
916                                      const struct drm_display_mode *mode)
917 {
918         struct drm_i915_private *dev_priv = to_i915(dev);
919         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
920                                                                 pipe);
921         int position;
922         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
923         unsigned long irqflags;
924
925         if (WARN_ON(!mode->crtc_clock)) {
926                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
927                                  "pipe %c\n", pipe_name(pipe));
928                 return false;
929         }
930
931         htotal = mode->crtc_htotal;
932         hsync_start = mode->crtc_hsync_start;
933         vtotal = mode->crtc_vtotal;
934         vbl_start = mode->crtc_vblank_start;
935         vbl_end = mode->crtc_vblank_end;
936
937         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
938                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
939                 vbl_end /= 2;
940                 vtotal /= 2;
941         }
942
943         /*
944          * Lock uncore.lock, as we will do multiple timing critical raw
945          * register reads, potentially with preemption disabled, so the
946          * following code must not block on uncore.lock.
947          */
948         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
949
950         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
951
952         /* Get optional system timestamp before query. */
953         if (stime)
954                 *stime = ktime_get();
955
956         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
957                 /* No obvious pixelcount register. Only query vertical
958                  * scanout position from Display scan line register.
959                  */
960                 position = __intel_get_crtc_scanline(intel_crtc);
961         } else {
962                 /* Have access to pixelcount since start of frame.
963                  * We can split this into vertical and horizontal
964                  * scanout position.
965                  */
966                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
967
968                 /* convert to pixel counts */
969                 vbl_start *= htotal;
970                 vbl_end *= htotal;
971                 vtotal *= htotal;
972
973                 /*
974                  * In interlaced modes, the pixel counter counts all pixels,
975                  * so one field will have htotal more pixels. In order to avoid
976                  * the reported position from jumping backwards when the pixel
977                  * counter is beyond the length of the shorter field, just
978                  * clamp the position the length of the shorter field. This
979                  * matches how the scanline counter based position works since
980                  * the scanline counter doesn't count the two half lines.
981                  */
982                 if (position >= vtotal)
983                         position = vtotal - 1;
984
985                 /*
986                  * Start of vblank interrupt is triggered at start of hsync,
987                  * just prior to the first active line of vblank. However we
988                  * consider lines to start at the leading edge of horizontal
989                  * active. So, should we get here before we've crossed into
990                  * the horizontal active of the first line in vblank, we would
991                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
992                  * always add htotal-hsync_start to the current pixel position.
993                  */
994                 position = (position + htotal - hsync_start) % vtotal;
995         }
996
997         /* Get optional system timestamp after query. */
998         if (etime)
999                 *etime = ktime_get();
1000
1001         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1002
1003         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1004
1005         /*
1006          * While in vblank, position will be negative
1007          * counting up towards 0 at vbl_end. And outside
1008          * vblank, position will be positive counting
1009          * up since vbl_end.
1010          */
1011         if (position >= vbl_start)
1012                 position -= vbl_end;
1013         else
1014                 position += vtotal - vbl_end;
1015
1016         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1017                 *vpos = position;
1018                 *hpos = 0;
1019         } else {
1020                 *vpos = position / htotal;
1021                 *hpos = position - (*vpos * htotal);
1022         }
1023
1024         return true;
1025 }
1026
1027 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1028 {
1029         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1030         unsigned long irqflags;
1031         int position;
1032
1033         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1034         position = __intel_get_crtc_scanline(crtc);
1035         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1036
1037         return position;
1038 }
1039
1040 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1041 {
1042         u32 busy_up, busy_down, max_avg, min_avg;
1043         u8 new_delay;
1044
1045         spin_lock(&mchdev_lock);
1046
1047         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1048
1049         new_delay = dev_priv->ips.cur_delay;
1050
1051         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1052         busy_up = I915_READ(RCPREVBSYTUPAVG);
1053         busy_down = I915_READ(RCPREVBSYTDNAVG);
1054         max_avg = I915_READ(RCBMAXAVG);
1055         min_avg = I915_READ(RCBMINAVG);
1056
1057         /* Handle RCS change request from hw */
1058         if (busy_up > max_avg) {
1059                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1060                         new_delay = dev_priv->ips.cur_delay - 1;
1061                 if (new_delay < dev_priv->ips.max_delay)
1062                         new_delay = dev_priv->ips.max_delay;
1063         } else if (busy_down < min_avg) {
1064                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1065                         new_delay = dev_priv->ips.cur_delay + 1;
1066                 if (new_delay > dev_priv->ips.min_delay)
1067                         new_delay = dev_priv->ips.min_delay;
1068         }
1069
1070         if (ironlake_set_drps(dev_priv, new_delay))
1071                 dev_priv->ips.cur_delay = new_delay;
1072
1073         spin_unlock(&mchdev_lock);
1074
1075         return;
1076 }
1077
1078 static void notify_ring(struct intel_engine_cs *engine)
1079 {
1080         struct i915_request *rq = NULL;
1081         struct intel_wait *wait;
1082
1083         if (!engine->breadcrumbs.irq_armed)
1084                 return;
1085
1086         atomic_inc(&engine->irq_count);
1087         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1088
1089         spin_lock(&engine->breadcrumbs.irq_lock);
1090         wait = engine->breadcrumbs.irq_wait;
1091         if (wait) {
1092                 bool wakeup = engine->irq_seqno_barrier;
1093
1094                 /* We use a callback from the dma-fence to submit
1095                  * requests after waiting on our own requests. To
1096                  * ensure minimum delay in queuing the next request to
1097                  * hardware, signal the fence now rather than wait for
1098                  * the signaler to be woken up. We still wake up the
1099                  * waiter in order to handle the irq-seqno coherency
1100                  * issues (we may receive the interrupt before the
1101                  * seqno is written, see __i915_request_irq_complete())
1102                  * and to handle coalescing of multiple seqno updates
1103                  * and many waiters.
1104                  */
1105                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1106                                       wait->seqno)) {
1107                         struct i915_request *waiter = wait->request;
1108
1109                         wakeup = true;
1110                         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1111                                       &waiter->fence.flags) &&
1112                             intel_wait_check_request(wait, waiter))
1113                                 rq = i915_request_get(waiter);
1114                 }
1115
1116                 if (wakeup)
1117                         wake_up_process(wait->tsk);
1118         } else {
1119                 if (engine->breadcrumbs.irq_armed)
1120                         __intel_engine_disarm_breadcrumbs(engine);
1121         }
1122         spin_unlock(&engine->breadcrumbs.irq_lock);
1123
1124         if (rq) {
1125                 dma_fence_signal(&rq->fence);
1126                 GEM_BUG_ON(!i915_request_completed(rq));
1127                 i915_request_put(rq);
1128         }
1129
1130         trace_intel_engine_notify(engine, wait);
1131 }
1132
1133 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1134                         struct intel_rps_ei *ei)
1135 {
1136         ei->ktime = ktime_get_raw();
1137         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1138         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1139 }
1140
1141 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1142 {
1143         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1144 }
1145
1146 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1147 {
1148         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1149         const struct intel_rps_ei *prev = &rps->ei;
1150         struct intel_rps_ei now;
1151         u32 events = 0;
1152
1153         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1154                 return 0;
1155
1156         vlv_c0_read(dev_priv, &now);
1157
1158         if (prev->ktime) {
1159                 u64 time, c0;
1160                 u32 render, media;
1161
1162                 time = ktime_us_delta(now.ktime, prev->ktime);
1163
1164                 time *= dev_priv->czclk_freq;
1165
1166                 /* Workload can be split between render + media,
1167                  * e.g. SwapBuffers being blitted in X after being rendered in
1168                  * mesa. To account for this we need to combine both engines
1169                  * into our activity counter.
1170                  */
1171                 render = now.render_c0 - prev->render_c0;
1172                 media = now.media_c0 - prev->media_c0;
1173                 c0 = max(render, media);
1174                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1175
1176                 if (c0 > time * rps->up_threshold)
1177                         events = GEN6_PM_RP_UP_THRESHOLD;
1178                 else if (c0 < time * rps->down_threshold)
1179                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1180         }
1181
1182         rps->ei = now;
1183         return events;
1184 }
1185
1186 static void gen6_pm_rps_work(struct work_struct *work)
1187 {
1188         struct drm_i915_private *dev_priv =
1189                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1190         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1191         bool client_boost = false;
1192         int new_delay, adj, min, max;
1193         u32 pm_iir = 0;
1194
1195         spin_lock_irq(&dev_priv->irq_lock);
1196         if (rps->interrupts_enabled) {
1197                 pm_iir = fetch_and_zero(&rps->pm_iir);
1198                 client_boost = atomic_read(&rps->num_waiters);
1199         }
1200         spin_unlock_irq(&dev_priv->irq_lock);
1201
1202         /* Make sure we didn't queue anything we're not going to process. */
1203         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1204         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1205                 goto out;
1206
1207         mutex_lock(&dev_priv->pcu_lock);
1208
1209         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1210
1211         adj = rps->last_adj;
1212         new_delay = rps->cur_freq;
1213         min = rps->min_freq_softlimit;
1214         max = rps->max_freq_softlimit;
1215         if (client_boost)
1216                 max = rps->max_freq;
1217         if (client_boost && new_delay < rps->boost_freq) {
1218                 new_delay = rps->boost_freq;
1219                 adj = 0;
1220         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1221                 if (adj > 0)
1222                         adj *= 2;
1223                 else /* CHV needs even encode values */
1224                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1225
1226                 if (new_delay >= rps->max_freq_softlimit)
1227                         adj = 0;
1228         } else if (client_boost) {
1229                 adj = 0;
1230         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1231                 if (rps->cur_freq > rps->efficient_freq)
1232                         new_delay = rps->efficient_freq;
1233                 else if (rps->cur_freq > rps->min_freq_softlimit)
1234                         new_delay = rps->min_freq_softlimit;
1235                 adj = 0;
1236         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1237                 if (adj < 0)
1238                         adj *= 2;
1239                 else /* CHV needs even encode values */
1240                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1241
1242                 if (new_delay <= rps->min_freq_softlimit)
1243                         adj = 0;
1244         } else { /* unknown event */
1245                 adj = 0;
1246         }
1247
1248         rps->last_adj = adj;
1249
1250         /* sysfs frequency interfaces may have snuck in while servicing the
1251          * interrupt
1252          */
1253         new_delay += adj;
1254         new_delay = clamp_t(int, new_delay, min, max);
1255
1256         if (intel_set_rps(dev_priv, new_delay)) {
1257                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1258                 rps->last_adj = 0;
1259         }
1260
1261         mutex_unlock(&dev_priv->pcu_lock);
1262
1263 out:
1264         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1265         spin_lock_irq(&dev_priv->irq_lock);
1266         if (rps->interrupts_enabled)
1267                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1268         spin_unlock_irq(&dev_priv->irq_lock);
1269 }
1270
1271
1272 /**
1273  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1274  * occurred.
1275  * @work: workqueue struct
1276  *
1277  * Doesn't actually do anything except notify userspace. As a consequence of
1278  * this event, userspace should try to remap the bad rows since statistically
1279  * it is likely the same row is more likely to go bad again.
1280  */
1281 static void ivybridge_parity_work(struct work_struct *work)
1282 {
1283         struct drm_i915_private *dev_priv =
1284                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1285         u32 error_status, row, bank, subbank;
1286         char *parity_event[6];
1287         uint32_t misccpctl;
1288         uint8_t slice = 0;
1289
1290         /* We must turn off DOP level clock gating to access the L3 registers.
1291          * In order to prevent a get/put style interface, acquire struct mutex
1292          * any time we access those registers.
1293          */
1294         mutex_lock(&dev_priv->drm.struct_mutex);
1295
1296         /* If we've screwed up tracking, just let the interrupt fire again */
1297         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1298                 goto out;
1299
1300         misccpctl = I915_READ(GEN7_MISCCPCTL);
1301         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1302         POSTING_READ(GEN7_MISCCPCTL);
1303
1304         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1305                 i915_reg_t reg;
1306
1307                 slice--;
1308                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1309                         break;
1310
1311                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1312
1313                 reg = GEN7_L3CDERRST1(slice);
1314
1315                 error_status = I915_READ(reg);
1316                 row = GEN7_PARITY_ERROR_ROW(error_status);
1317                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1318                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1319
1320                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1321                 POSTING_READ(reg);
1322
1323                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1324                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1325                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1326                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1327                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1328                 parity_event[5] = NULL;
1329
1330                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1331                                    KOBJ_CHANGE, parity_event);
1332
1333                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1334                           slice, row, bank, subbank);
1335
1336                 kfree(parity_event[4]);
1337                 kfree(parity_event[3]);
1338                 kfree(parity_event[2]);
1339                 kfree(parity_event[1]);
1340         }
1341
1342         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1343
1344 out:
1345         WARN_ON(dev_priv->l3_parity.which_slice);
1346         spin_lock_irq(&dev_priv->irq_lock);
1347         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1348         spin_unlock_irq(&dev_priv->irq_lock);
1349
1350         mutex_unlock(&dev_priv->drm.struct_mutex);
1351 }
1352
1353 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1354                                                u32 iir)
1355 {
1356         if (!HAS_L3_DPF(dev_priv))
1357                 return;
1358
1359         spin_lock(&dev_priv->irq_lock);
1360         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1361         spin_unlock(&dev_priv->irq_lock);
1362
1363         iir &= GT_PARITY_ERROR(dev_priv);
1364         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1365                 dev_priv->l3_parity.which_slice |= 1 << 1;
1366
1367         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1368                 dev_priv->l3_parity.which_slice |= 1 << 0;
1369
1370         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1371 }
1372
1373 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1374                                u32 gt_iir)
1375 {
1376         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1377                 notify_ring(dev_priv->engine[RCS]);
1378         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1379                 notify_ring(dev_priv->engine[VCS]);
1380 }
1381
1382 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1383                                u32 gt_iir)
1384 {
1385         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1386                 notify_ring(dev_priv->engine[RCS]);
1387         if (gt_iir & GT_BSD_USER_INTERRUPT)
1388                 notify_ring(dev_priv->engine[VCS]);
1389         if (gt_iir & GT_BLT_USER_INTERRUPT)
1390                 notify_ring(dev_priv->engine[BCS]);
1391
1392         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1393                       GT_BSD_CS_ERROR_INTERRUPT |
1394                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1395                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1396
1397         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1398                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1399 }
1400
1401 static void
1402 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1403 {
1404         struct intel_engine_execlists * const execlists = &engine->execlists;
1405         bool tasklet = false;
1406
1407         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1408                 if (READ_ONCE(engine->execlists.active)) {
1409                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1410                         tasklet = true;
1411                 }
1412         }
1413
1414         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1415                 notify_ring(engine);
1416                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1417         }
1418
1419         if (tasklet)
1420                 tasklet_hi_schedule(&execlists->tasklet);
1421 }
1422
1423 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1424                             u32 master_ctl, u32 gt_iir[4])
1425 {
1426         void __iomem * const regs = i915->regs;
1427
1428 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1429                       GEN8_GT_BCS_IRQ | \
1430                       GEN8_GT_VCS1_IRQ | \
1431                       GEN8_GT_VCS2_IRQ | \
1432                       GEN8_GT_VECS_IRQ | \
1433                       GEN8_GT_PM_IRQ | \
1434                       GEN8_GT_GUC_IRQ)
1435
1436         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1437                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1438                 if (likely(gt_iir[0]))
1439                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1440         }
1441
1442         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1443                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1444                 if (likely(gt_iir[1]))
1445                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1446         }
1447
1448         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1449                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1450                 if (likely(gt_iir[2] & (i915->pm_rps_events |
1451                                         i915->pm_guc_events)))
1452                         raw_reg_write(regs, GEN8_GT_IIR(2),
1453                                       gt_iir[2] & (i915->pm_rps_events |
1454                                                    i915->pm_guc_events));
1455         }
1456
1457         if (master_ctl & GEN8_GT_VECS_IRQ) {
1458                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1459                 if (likely(gt_iir[3]))
1460                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1461         }
1462 }
1463
1464 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1465                                 u32 master_ctl, u32 gt_iir[4])
1466 {
1467         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1468                 gen8_cs_irq_handler(i915->engine[RCS],
1469                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1470                 gen8_cs_irq_handler(i915->engine[BCS],
1471                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1472         }
1473
1474         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1475                 gen8_cs_irq_handler(i915->engine[VCS],
1476                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1477                 gen8_cs_irq_handler(i915->engine[VCS2],
1478                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1479         }
1480
1481         if (master_ctl & GEN8_GT_VECS_IRQ) {
1482                 gen8_cs_irq_handler(i915->engine[VECS],
1483                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1484         }
1485
1486         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1487                 gen6_rps_irq_handler(i915, gt_iir[2]);
1488                 gen9_guc_irq_handler(i915, gt_iir[2]);
1489         }
1490 }
1491
1492 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1493 {
1494         switch (port) {
1495         case PORT_A:
1496                 return val & PORTA_HOTPLUG_LONG_DETECT;
1497         case PORT_B:
1498                 return val & PORTB_HOTPLUG_LONG_DETECT;
1499         case PORT_C:
1500                 return val & PORTC_HOTPLUG_LONG_DETECT;
1501         default:
1502                 return false;
1503         }
1504 }
1505
1506 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1507 {
1508         switch (port) {
1509         case PORT_E:
1510                 return val & PORTE_HOTPLUG_LONG_DETECT;
1511         default:
1512                 return false;
1513         }
1514 }
1515
1516 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1517 {
1518         switch (port) {
1519         case PORT_A:
1520                 return val & PORTA_HOTPLUG_LONG_DETECT;
1521         case PORT_B:
1522                 return val & PORTB_HOTPLUG_LONG_DETECT;
1523         case PORT_C:
1524                 return val & PORTC_HOTPLUG_LONG_DETECT;
1525         case PORT_D:
1526                 return val & PORTD_HOTPLUG_LONG_DETECT;
1527         default:
1528                 return false;
1529         }
1530 }
1531
1532 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1533 {
1534         switch (port) {
1535         case PORT_A:
1536                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1537         default:
1538                 return false;
1539         }
1540 }
1541
1542 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1543 {
1544         switch (port) {
1545         case PORT_B:
1546                 return val & PORTB_HOTPLUG_LONG_DETECT;
1547         case PORT_C:
1548                 return val & PORTC_HOTPLUG_LONG_DETECT;
1549         case PORT_D:
1550                 return val & PORTD_HOTPLUG_LONG_DETECT;
1551         default:
1552                 return false;
1553         }
1554 }
1555
1556 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1557 {
1558         switch (port) {
1559         case PORT_B:
1560                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1561         case PORT_C:
1562                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1563         case PORT_D:
1564                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1565         default:
1566                 return false;
1567         }
1568 }
1569
1570 /*
1571  * Get a bit mask of pins that have triggered, and which ones may be long.
1572  * This can be called multiple times with the same masks to accumulate
1573  * hotplug detection results from several registers.
1574  *
1575  * Note that the caller is expected to zero out the masks initially.
1576  */
1577 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1578                                u32 *pin_mask, u32 *long_mask,
1579                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1580                                const u32 hpd[HPD_NUM_PINS],
1581                                bool long_pulse_detect(enum port port, u32 val))
1582 {
1583         enum port port;
1584         int i;
1585
1586         for_each_hpd_pin(i) {
1587                 if ((hpd[i] & hotplug_trigger) == 0)
1588                         continue;
1589
1590                 *pin_mask |= BIT(i);
1591
1592                 port = intel_hpd_pin_to_port(dev_priv, i);
1593                 if (port == PORT_NONE)
1594                         continue;
1595
1596                 if (long_pulse_detect(port, dig_hotplug_reg))
1597                         *long_mask |= BIT(i);
1598         }
1599
1600         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1601                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1602
1603 }
1604
1605 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1606 {
1607         wake_up_all(&dev_priv->gmbus_wait_queue);
1608 }
1609
1610 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1611 {
1612         wake_up_all(&dev_priv->gmbus_wait_queue);
1613 }
1614
1615 #if defined(CONFIG_DEBUG_FS)
1616 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1617                                          enum pipe pipe,
1618                                          uint32_t crc0, uint32_t crc1,
1619                                          uint32_t crc2, uint32_t crc3,
1620                                          uint32_t crc4)
1621 {
1622         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1623         struct intel_pipe_crc_entry *entry;
1624         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1625         struct drm_driver *driver = dev_priv->drm.driver;
1626         uint32_t crcs[5];
1627         int head, tail;
1628
1629         spin_lock(&pipe_crc->lock);
1630         if (pipe_crc->source) {
1631                 if (!pipe_crc->entries) {
1632                         spin_unlock(&pipe_crc->lock);
1633                         DRM_DEBUG_KMS("spurious interrupt\n");
1634                         return;
1635                 }
1636
1637                 head = pipe_crc->head;
1638                 tail = pipe_crc->tail;
1639
1640                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1641                         spin_unlock(&pipe_crc->lock);
1642                         DRM_ERROR("CRC buffer overflowing\n");
1643                         return;
1644                 }
1645
1646                 entry = &pipe_crc->entries[head];
1647
1648                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1649                 entry->crc[0] = crc0;
1650                 entry->crc[1] = crc1;
1651                 entry->crc[2] = crc2;
1652                 entry->crc[3] = crc3;
1653                 entry->crc[4] = crc4;
1654
1655                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1656                 pipe_crc->head = head;
1657
1658                 spin_unlock(&pipe_crc->lock);
1659
1660                 wake_up_interruptible(&pipe_crc->wq);
1661         } else {
1662                 /*
1663                  * For some not yet identified reason, the first CRC is
1664                  * bonkers. So let's just wait for the next vblank and read
1665                  * out the buggy result.
1666                  *
1667                  * On GEN8+ sometimes the second CRC is bonkers as well, so
1668                  * don't trust that one either.
1669                  */
1670                 if (pipe_crc->skipped == 0 ||
1671                     (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1672                         pipe_crc->skipped++;
1673                         spin_unlock(&pipe_crc->lock);
1674                         return;
1675                 }
1676                 spin_unlock(&pipe_crc->lock);
1677                 crcs[0] = crc0;
1678                 crcs[1] = crc1;
1679                 crcs[2] = crc2;
1680                 crcs[3] = crc3;
1681                 crcs[4] = crc4;
1682                 drm_crtc_add_crc_entry(&crtc->base, true,
1683                                        drm_crtc_accurate_vblank_count(&crtc->base),
1684                                        crcs);
1685         }
1686 }
1687 #else
1688 static inline void
1689 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1690                              enum pipe pipe,
1691                              uint32_t crc0, uint32_t crc1,
1692                              uint32_t crc2, uint32_t crc3,
1693                              uint32_t crc4) {}
1694 #endif
1695
1696
1697 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1698                                      enum pipe pipe)
1699 {
1700         display_pipe_crc_irq_handler(dev_priv, pipe,
1701                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1702                                      0, 0, 0, 0);
1703 }
1704
1705 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1706                                      enum pipe pipe)
1707 {
1708         display_pipe_crc_irq_handler(dev_priv, pipe,
1709                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1710                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1711                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1712                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1713                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1714 }
1715
1716 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1717                                       enum pipe pipe)
1718 {
1719         uint32_t res1, res2;
1720
1721         if (INTEL_GEN(dev_priv) >= 3)
1722                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1723         else
1724                 res1 = 0;
1725
1726         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1727                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1728         else
1729                 res2 = 0;
1730
1731         display_pipe_crc_irq_handler(dev_priv, pipe,
1732                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1733                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1734                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1735                                      res1, res2);
1736 }
1737
1738 /* The RPS events need forcewake, so we add them to a work queue and mask their
1739  * IMR bits until the work is done. Other interrupts can be processed without
1740  * the work queue. */
1741 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1742 {
1743         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1744
1745         if (pm_iir & dev_priv->pm_rps_events) {
1746                 spin_lock(&dev_priv->irq_lock);
1747                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1748                 if (rps->interrupts_enabled) {
1749                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1750                         schedule_work(&rps->work);
1751                 }
1752                 spin_unlock(&dev_priv->irq_lock);
1753         }
1754
1755         if (INTEL_GEN(dev_priv) >= 8)
1756                 return;
1757
1758         if (HAS_VEBOX(dev_priv)) {
1759                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1760                         notify_ring(dev_priv->engine[VECS]);
1761
1762                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1763                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1764         }
1765 }
1766
1767 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1768 {
1769         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1770                 /* Sample the log buffer flush related bits & clear them out now
1771                  * itself from the message identity register to minimize the
1772                  * probability of losing a flush interrupt, when there are back
1773                  * to back flush interrupts.
1774                  * There can be a new flush interrupt, for different log buffer
1775                  * type (like for ISR), whilst Host is handling one (for DPC).
1776                  * Since same bit is used in message register for ISR & DPC, it
1777                  * could happen that GuC sets the bit for 2nd interrupt but Host
1778                  * clears out the bit on handling the 1st interrupt.
1779                  */
1780                 u32 msg, flush;
1781
1782                 msg = I915_READ(SOFT_SCRATCH(15));
1783                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1784                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1785                 if (flush) {
1786                         /* Clear the message bits that are handled */
1787                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1788
1789                         /* Handle flush interrupt in bottom half */
1790                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1791                                    &dev_priv->guc.log.runtime.flush_work);
1792
1793                         dev_priv->guc.log.flush_interrupt_count++;
1794                 } else {
1795                         /* Not clearing of unhandled event bits won't result in
1796                          * re-triggering of the interrupt.
1797                          */
1798                 }
1799         }
1800 }
1801
1802 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1803 {
1804         enum pipe pipe;
1805
1806         for_each_pipe(dev_priv, pipe) {
1807                 I915_WRITE(PIPESTAT(pipe),
1808                            PIPESTAT_INT_STATUS_MASK |
1809                            PIPE_FIFO_UNDERRUN_STATUS);
1810
1811                 dev_priv->pipestat_irq_mask[pipe] = 0;
1812         }
1813 }
1814
1815 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1816                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1817 {
1818         int pipe;
1819
1820         spin_lock(&dev_priv->irq_lock);
1821
1822         if (!dev_priv->display_irqs_enabled) {
1823                 spin_unlock(&dev_priv->irq_lock);
1824                 return;
1825         }
1826
1827         for_each_pipe(dev_priv, pipe) {
1828                 i915_reg_t reg;
1829                 u32 status_mask, enable_mask, iir_bit = 0;
1830
1831                 /*
1832                  * PIPESTAT bits get signalled even when the interrupt is
1833                  * disabled with the mask bits, and some of the status bits do
1834                  * not generate interrupts at all (like the underrun bit). Hence
1835                  * we need to be careful that we only handle what we want to
1836                  * handle.
1837                  */
1838
1839                 /* fifo underruns are filterered in the underrun handler. */
1840                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1841
1842                 switch (pipe) {
1843                 case PIPE_A:
1844                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1845                         break;
1846                 case PIPE_B:
1847                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1848                         break;
1849                 case PIPE_C:
1850                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1851                         break;
1852                 }
1853                 if (iir & iir_bit)
1854                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1855
1856                 if (!status_mask)
1857                         continue;
1858
1859                 reg = PIPESTAT(pipe);
1860                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1861                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1862
1863                 /*
1864                  * Clear the PIPE*STAT regs before the IIR
1865                  */
1866                 if (pipe_stats[pipe])
1867                         I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1868         }
1869         spin_unlock(&dev_priv->irq_lock);
1870 }
1871
1872 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1873                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1874 {
1875         enum pipe pipe;
1876
1877         for_each_pipe(dev_priv, pipe) {
1878                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1879                         drm_handle_vblank(&dev_priv->drm, pipe);
1880
1881                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1882                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1883
1884                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1885                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1886         }
1887 }
1888
1889 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1890                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1891 {
1892         bool blc_event = false;
1893         enum pipe pipe;
1894
1895         for_each_pipe(dev_priv, pipe) {
1896                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1897                         drm_handle_vblank(&dev_priv->drm, pipe);
1898
1899                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1900                         blc_event = true;
1901
1902                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1903                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1904
1905                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1906                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1907         }
1908
1909         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1910                 intel_opregion_asle_intr(dev_priv);
1911 }
1912
1913 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1914                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1915 {
1916         bool blc_event = false;
1917         enum pipe pipe;
1918
1919         for_each_pipe(dev_priv, pipe) {
1920                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1921                         drm_handle_vblank(&dev_priv->drm, pipe);
1922
1923                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1924                         blc_event = true;
1925
1926                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1927                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1928
1929                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1930                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1931         }
1932
1933         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1934                 intel_opregion_asle_intr(dev_priv);
1935
1936         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1937                 gmbus_irq_handler(dev_priv);
1938 }
1939
1940 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1941                                             u32 pipe_stats[I915_MAX_PIPES])
1942 {
1943         enum pipe pipe;
1944
1945         for_each_pipe(dev_priv, pipe) {
1946                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1947                         drm_handle_vblank(&dev_priv->drm, pipe);
1948
1949                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1950                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1951
1952                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1953                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1954         }
1955
1956         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1957                 gmbus_irq_handler(dev_priv);
1958 }
1959
1960 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1961 {
1962         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1963
1964         if (hotplug_status)
1965                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1966
1967         return hotplug_status;
1968 }
1969
1970 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1971                                  u32 hotplug_status)
1972 {
1973         u32 pin_mask = 0, long_mask = 0;
1974
1975         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1976             IS_CHERRYVIEW(dev_priv)) {
1977                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1978
1979                 if (hotplug_trigger) {
1980                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1981                                            hotplug_trigger, hotplug_trigger,
1982                                            hpd_status_g4x,
1983                                            i9xx_port_hotplug_long_detect);
1984
1985                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1986                 }
1987
1988                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1989                         dp_aux_irq_handler(dev_priv);
1990         } else {
1991                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1992
1993                 if (hotplug_trigger) {
1994                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1995                                            hotplug_trigger, hotplug_trigger,
1996                                            hpd_status_i915,
1997                                            i9xx_port_hotplug_long_detect);
1998                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1999                 }
2000         }
2001 }
2002
2003 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2004 {
2005         struct drm_device *dev = arg;
2006         struct drm_i915_private *dev_priv = to_i915(dev);
2007         irqreturn_t ret = IRQ_NONE;
2008
2009         if (!intel_irqs_enabled(dev_priv))
2010                 return IRQ_NONE;
2011
2012         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2013         disable_rpm_wakeref_asserts(dev_priv);
2014
2015         do {
2016                 u32 iir, gt_iir, pm_iir;
2017                 u32 pipe_stats[I915_MAX_PIPES] = {};
2018                 u32 hotplug_status = 0;
2019                 u32 ier = 0;
2020
2021                 gt_iir = I915_READ(GTIIR);
2022                 pm_iir = I915_READ(GEN6_PMIIR);
2023                 iir = I915_READ(VLV_IIR);
2024
2025                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2026                         break;
2027
2028                 ret = IRQ_HANDLED;
2029
2030                 /*
2031                  * Theory on interrupt generation, based on empirical evidence:
2032                  *
2033                  * x = ((VLV_IIR & VLV_IER) ||
2034                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2035                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2036                  *
2037                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2038                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2039                  * guarantee the CPU interrupt will be raised again even if we
2040                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2041                  * bits this time around.
2042                  */
2043                 I915_WRITE(VLV_MASTER_IER, 0);
2044                 ier = I915_READ(VLV_IER);
2045                 I915_WRITE(VLV_IER, 0);
2046
2047                 if (gt_iir)
2048                         I915_WRITE(GTIIR, gt_iir);
2049                 if (pm_iir)
2050                         I915_WRITE(GEN6_PMIIR, pm_iir);
2051
2052                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2053                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2054
2055                 /* Call regardless, as some status bits might not be
2056                  * signalled in iir */
2057                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2058
2059                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2060                            I915_LPE_PIPE_B_INTERRUPT))
2061                         intel_lpe_audio_irq_handler(dev_priv);
2062
2063                 /*
2064                  * VLV_IIR is single buffered, and reflects the level
2065                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2066                  */
2067                 if (iir)
2068                         I915_WRITE(VLV_IIR, iir);
2069
2070                 I915_WRITE(VLV_IER, ier);
2071                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2072                 POSTING_READ(VLV_MASTER_IER);
2073
2074                 if (gt_iir)
2075                         snb_gt_irq_handler(dev_priv, gt_iir);
2076                 if (pm_iir)
2077                         gen6_rps_irq_handler(dev_priv, pm_iir);
2078
2079                 if (hotplug_status)
2080                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2081
2082                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2083         } while (0);
2084
2085         enable_rpm_wakeref_asserts(dev_priv);
2086
2087         return ret;
2088 }
2089
2090 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2091 {
2092         struct drm_device *dev = arg;
2093         struct drm_i915_private *dev_priv = to_i915(dev);
2094         irqreturn_t ret = IRQ_NONE;
2095
2096         if (!intel_irqs_enabled(dev_priv))
2097                 return IRQ_NONE;
2098
2099         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2100         disable_rpm_wakeref_asserts(dev_priv);
2101
2102         do {
2103                 u32 master_ctl, iir;
2104                 u32 pipe_stats[I915_MAX_PIPES] = {};
2105                 u32 hotplug_status = 0;
2106                 u32 gt_iir[4];
2107                 u32 ier = 0;
2108
2109                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2110                 iir = I915_READ(VLV_IIR);
2111
2112                 if (master_ctl == 0 && iir == 0)
2113                         break;
2114
2115                 ret = IRQ_HANDLED;
2116
2117                 /*
2118                  * Theory on interrupt generation, based on empirical evidence:
2119                  *
2120                  * x = ((VLV_IIR & VLV_IER) ||
2121                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2122                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2123                  *
2124                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2125                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2126                  * guarantee the CPU interrupt will be raised again even if we
2127                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2128                  * bits this time around.
2129                  */
2130                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2131                 ier = I915_READ(VLV_IER);
2132                 I915_WRITE(VLV_IER, 0);
2133
2134                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2135
2136                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2137                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2138
2139                 /* Call regardless, as some status bits might not be
2140                  * signalled in iir */
2141                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2142
2143                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2144                            I915_LPE_PIPE_B_INTERRUPT |
2145                            I915_LPE_PIPE_C_INTERRUPT))
2146                         intel_lpe_audio_irq_handler(dev_priv);
2147
2148                 /*
2149                  * VLV_IIR is single buffered, and reflects the level
2150                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2151                  */
2152                 if (iir)
2153                         I915_WRITE(VLV_IIR, iir);
2154
2155                 I915_WRITE(VLV_IER, ier);
2156                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2157                 POSTING_READ(GEN8_MASTER_IRQ);
2158
2159                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2160
2161                 if (hotplug_status)
2162                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2163
2164                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2165         } while (0);
2166
2167         enable_rpm_wakeref_asserts(dev_priv);
2168
2169         return ret;
2170 }
2171
2172 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2173                                 u32 hotplug_trigger,
2174                                 const u32 hpd[HPD_NUM_PINS])
2175 {
2176         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2177
2178         /*
2179          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2180          * unless we touch the hotplug register, even if hotplug_trigger is
2181          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2182          * errors.
2183          */
2184         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2185         if (!hotplug_trigger) {
2186                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2187                         PORTD_HOTPLUG_STATUS_MASK |
2188                         PORTC_HOTPLUG_STATUS_MASK |
2189                         PORTB_HOTPLUG_STATUS_MASK;
2190                 dig_hotplug_reg &= ~mask;
2191         }
2192
2193         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2194         if (!hotplug_trigger)
2195                 return;
2196
2197         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2198                            dig_hotplug_reg, hpd,
2199                            pch_port_hotplug_long_detect);
2200
2201         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2202 }
2203
2204 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2205 {
2206         int pipe;
2207         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2208
2209         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2210
2211         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2212                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2213                                SDE_AUDIO_POWER_SHIFT);
2214                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2215                                  port_name(port));
2216         }
2217
2218         if (pch_iir & SDE_AUX_MASK)
2219                 dp_aux_irq_handler(dev_priv);
2220
2221         if (pch_iir & SDE_GMBUS)
2222                 gmbus_irq_handler(dev_priv);
2223
2224         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2225                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2226
2227         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2228                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2229
2230         if (pch_iir & SDE_POISON)
2231                 DRM_ERROR("PCH poison interrupt\n");
2232
2233         if (pch_iir & SDE_FDI_MASK)
2234                 for_each_pipe(dev_priv, pipe)
2235                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2236                                          pipe_name(pipe),
2237                                          I915_READ(FDI_RX_IIR(pipe)));
2238
2239         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2240                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2241
2242         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2243                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2244
2245         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2246                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2247
2248         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2249                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2250 }
2251
2252 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2253 {
2254         u32 err_int = I915_READ(GEN7_ERR_INT);
2255         enum pipe pipe;
2256
2257         if (err_int & ERR_INT_POISON)
2258                 DRM_ERROR("Poison interrupt\n");
2259
2260         for_each_pipe(dev_priv, pipe) {
2261                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2262                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2263
2264                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2265                         if (IS_IVYBRIDGE(dev_priv))
2266                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2267                         else
2268                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2269                 }
2270         }
2271
2272         I915_WRITE(GEN7_ERR_INT, err_int);
2273 }
2274
2275 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2276 {
2277         u32 serr_int = I915_READ(SERR_INT);
2278         enum pipe pipe;
2279
2280         if (serr_int & SERR_INT_POISON)
2281                 DRM_ERROR("PCH poison interrupt\n");
2282
2283         for_each_pipe(dev_priv, pipe)
2284                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2285                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2286
2287         I915_WRITE(SERR_INT, serr_int);
2288 }
2289
2290 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2291 {
2292         int pipe;
2293         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2294
2295         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2296
2297         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2298                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2299                                SDE_AUDIO_POWER_SHIFT_CPT);
2300                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2301                                  port_name(port));
2302         }
2303
2304         if (pch_iir & SDE_AUX_MASK_CPT)
2305                 dp_aux_irq_handler(dev_priv);
2306
2307         if (pch_iir & SDE_GMBUS_CPT)
2308                 gmbus_irq_handler(dev_priv);
2309
2310         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2311                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2312
2313         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2314                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2315
2316         if (pch_iir & SDE_FDI_MASK_CPT)
2317                 for_each_pipe(dev_priv, pipe)
2318                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2319                                          pipe_name(pipe),
2320                                          I915_READ(FDI_RX_IIR(pipe)));
2321
2322         if (pch_iir & SDE_ERROR_CPT)
2323                 cpt_serr_int_handler(dev_priv);
2324 }
2325
2326 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2327 {
2328         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2329                 ~SDE_PORTE_HOTPLUG_SPT;
2330         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2331         u32 pin_mask = 0, long_mask = 0;
2332
2333         if (hotplug_trigger) {
2334                 u32 dig_hotplug_reg;
2335
2336                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2337                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2338
2339                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2340                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2341                                    spt_port_hotplug_long_detect);
2342         }
2343
2344         if (hotplug2_trigger) {
2345                 u32 dig_hotplug_reg;
2346
2347                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2348                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2349
2350                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2351                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2352                                    spt_port_hotplug2_long_detect);
2353         }
2354
2355         if (pin_mask)
2356                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2357
2358         if (pch_iir & SDE_GMBUS_CPT)
2359                 gmbus_irq_handler(dev_priv);
2360 }
2361
2362 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2363                                 u32 hotplug_trigger,
2364                                 const u32 hpd[HPD_NUM_PINS])
2365 {
2366         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2367
2368         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2369         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2370
2371         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2372                            dig_hotplug_reg, hpd,
2373                            ilk_port_hotplug_long_detect);
2374
2375         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2376 }
2377
2378 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2379                                     u32 de_iir)
2380 {
2381         enum pipe pipe;
2382         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2383
2384         if (hotplug_trigger)
2385                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2386
2387         if (de_iir & DE_AUX_CHANNEL_A)
2388                 dp_aux_irq_handler(dev_priv);
2389
2390         if (de_iir & DE_GSE)
2391                 intel_opregion_asle_intr(dev_priv);
2392
2393         if (de_iir & DE_POISON)
2394                 DRM_ERROR("Poison interrupt\n");
2395
2396         for_each_pipe(dev_priv, pipe) {
2397                 if (de_iir & DE_PIPE_VBLANK(pipe))
2398                         drm_handle_vblank(&dev_priv->drm, pipe);
2399
2400                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2401                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2402
2403                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2404                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2405         }
2406
2407         /* check event from PCH */
2408         if (de_iir & DE_PCH_EVENT) {
2409                 u32 pch_iir = I915_READ(SDEIIR);
2410
2411                 if (HAS_PCH_CPT(dev_priv))
2412                         cpt_irq_handler(dev_priv, pch_iir);
2413                 else
2414                         ibx_irq_handler(dev_priv, pch_iir);
2415
2416                 /* should clear PCH hotplug event before clear CPU irq */
2417                 I915_WRITE(SDEIIR, pch_iir);
2418         }
2419
2420         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2421                 ironlake_rps_change_irq_handler(dev_priv);
2422 }
2423
2424 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2425                                     u32 de_iir)
2426 {
2427         enum pipe pipe;
2428         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2429
2430         if (hotplug_trigger)
2431                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2432
2433         if (de_iir & DE_ERR_INT_IVB)
2434                 ivb_err_int_handler(dev_priv);
2435
2436         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2437                 dp_aux_irq_handler(dev_priv);
2438
2439         if (de_iir & DE_GSE_IVB)
2440                 intel_opregion_asle_intr(dev_priv);
2441
2442         for_each_pipe(dev_priv, pipe) {
2443                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2444                         drm_handle_vblank(&dev_priv->drm, pipe);
2445         }
2446
2447         /* check event from PCH */
2448         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2449                 u32 pch_iir = I915_READ(SDEIIR);
2450
2451                 cpt_irq_handler(dev_priv, pch_iir);
2452
2453                 /* clear PCH hotplug event before clear CPU irq */
2454                 I915_WRITE(SDEIIR, pch_iir);
2455         }
2456 }
2457
2458 /*
2459  * To handle irqs with the minimum potential races with fresh interrupts, we:
2460  * 1 - Disable Master Interrupt Control.
2461  * 2 - Find the source(s) of the interrupt.
2462  * 3 - Clear the Interrupt Identity bits (IIR).
2463  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2464  * 5 - Re-enable Master Interrupt Control.
2465  */
2466 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2467 {
2468         struct drm_device *dev = arg;
2469         struct drm_i915_private *dev_priv = to_i915(dev);
2470         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2471         irqreturn_t ret = IRQ_NONE;
2472
2473         if (!intel_irqs_enabled(dev_priv))
2474                 return IRQ_NONE;
2475
2476         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2477         disable_rpm_wakeref_asserts(dev_priv);
2478
2479         /* disable master interrupt before clearing iir  */
2480         de_ier = I915_READ(DEIER);
2481         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2482         POSTING_READ(DEIER);
2483
2484         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2485          * interrupts will will be stored on its back queue, and then we'll be
2486          * able to process them after we restore SDEIER (as soon as we restore
2487          * it, we'll get an interrupt if SDEIIR still has something to process
2488          * due to its back queue). */
2489         if (!HAS_PCH_NOP(dev_priv)) {
2490                 sde_ier = I915_READ(SDEIER);
2491                 I915_WRITE(SDEIER, 0);
2492                 POSTING_READ(SDEIER);
2493         }
2494
2495         /* Find, clear, then process each source of interrupt */
2496
2497         gt_iir = I915_READ(GTIIR);
2498         if (gt_iir) {
2499                 I915_WRITE(GTIIR, gt_iir);
2500                 ret = IRQ_HANDLED;
2501                 if (INTEL_GEN(dev_priv) >= 6)
2502                         snb_gt_irq_handler(dev_priv, gt_iir);
2503                 else
2504                         ilk_gt_irq_handler(dev_priv, gt_iir);
2505         }
2506
2507         de_iir = I915_READ(DEIIR);
2508         if (de_iir) {
2509                 I915_WRITE(DEIIR, de_iir);
2510                 ret = IRQ_HANDLED;
2511                 if (INTEL_GEN(dev_priv) >= 7)
2512                         ivb_display_irq_handler(dev_priv, de_iir);
2513                 else
2514                         ilk_display_irq_handler(dev_priv, de_iir);
2515         }
2516
2517         if (INTEL_GEN(dev_priv) >= 6) {
2518                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2519                 if (pm_iir) {
2520                         I915_WRITE(GEN6_PMIIR, pm_iir);
2521                         ret = IRQ_HANDLED;
2522                         gen6_rps_irq_handler(dev_priv, pm_iir);
2523                 }
2524         }
2525
2526         I915_WRITE(DEIER, de_ier);
2527         POSTING_READ(DEIER);
2528         if (!HAS_PCH_NOP(dev_priv)) {
2529                 I915_WRITE(SDEIER, sde_ier);
2530                 POSTING_READ(SDEIER);
2531         }
2532
2533         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2534         enable_rpm_wakeref_asserts(dev_priv);
2535
2536         return ret;
2537 }
2538
2539 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2540                                 u32 hotplug_trigger,
2541                                 const u32 hpd[HPD_NUM_PINS])
2542 {
2543         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2544
2545         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2546         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2547
2548         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2549                            dig_hotplug_reg, hpd,
2550                            bxt_port_hotplug_long_detect);
2551
2552         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2553 }
2554
2555 static irqreturn_t
2556 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2557 {
2558         irqreturn_t ret = IRQ_NONE;
2559         u32 iir;
2560         enum pipe pipe;
2561
2562         if (master_ctl & GEN8_DE_MISC_IRQ) {
2563                 iir = I915_READ(GEN8_DE_MISC_IIR);
2564                 if (iir) {
2565                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2566                         ret = IRQ_HANDLED;
2567                         if (iir & GEN8_DE_MISC_GSE)
2568                                 intel_opregion_asle_intr(dev_priv);
2569                         else
2570                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2571                 }
2572                 else
2573                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2574         }
2575
2576         if (master_ctl & GEN8_DE_PORT_IRQ) {
2577                 iir = I915_READ(GEN8_DE_PORT_IIR);
2578                 if (iir) {
2579                         u32 tmp_mask;
2580                         bool found = false;
2581
2582                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2583                         ret = IRQ_HANDLED;
2584
2585                         tmp_mask = GEN8_AUX_CHANNEL_A;
2586                         if (INTEL_GEN(dev_priv) >= 9)
2587                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2588                                             GEN9_AUX_CHANNEL_C |
2589                                             GEN9_AUX_CHANNEL_D;
2590
2591                         if (IS_CNL_WITH_PORT_F(dev_priv))
2592                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2593
2594                         if (iir & tmp_mask) {
2595                                 dp_aux_irq_handler(dev_priv);
2596                                 found = true;
2597                         }
2598
2599                         if (IS_GEN9_LP(dev_priv)) {
2600                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2601                                 if (tmp_mask) {
2602                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2603                                                             hpd_bxt);
2604                                         found = true;
2605                                 }
2606                         } else if (IS_BROADWELL(dev_priv)) {
2607                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2608                                 if (tmp_mask) {
2609                                         ilk_hpd_irq_handler(dev_priv,
2610                                                             tmp_mask, hpd_bdw);
2611                                         found = true;
2612                                 }
2613                         }
2614
2615                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2616                                 gmbus_irq_handler(dev_priv);
2617                                 found = true;
2618                         }
2619
2620                         if (!found)
2621                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2622                 }
2623                 else
2624                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2625         }
2626
2627         for_each_pipe(dev_priv, pipe) {
2628                 u32 fault_errors;
2629
2630                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2631                         continue;
2632
2633                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2634                 if (!iir) {
2635                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2636                         continue;
2637                 }
2638
2639                 ret = IRQ_HANDLED;
2640                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2641
2642                 if (iir & GEN8_PIPE_VBLANK)
2643                         drm_handle_vblank(&dev_priv->drm, pipe);
2644
2645                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2646                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2647
2648                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2649                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2650
2651                 fault_errors = iir;
2652                 if (INTEL_GEN(dev_priv) >= 9)
2653                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2654                 else
2655                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2656
2657                 if (fault_errors)
2658                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2659                                   pipe_name(pipe),
2660                                   fault_errors);
2661         }
2662
2663         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2664             master_ctl & GEN8_DE_PCH_IRQ) {
2665                 /*
2666                  * FIXME(BDW): Assume for now that the new interrupt handling
2667                  * scheme also closed the SDE interrupt handling race we've seen
2668                  * on older pch-split platforms. But this needs testing.
2669                  */
2670                 iir = I915_READ(SDEIIR);
2671                 if (iir) {
2672                         I915_WRITE(SDEIIR, iir);
2673                         ret = IRQ_HANDLED;
2674
2675                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2676                             HAS_PCH_CNP(dev_priv))
2677                                 spt_irq_handler(dev_priv, iir);
2678                         else
2679                                 cpt_irq_handler(dev_priv, iir);
2680                 } else {
2681                         /*
2682                          * Like on previous PCH there seems to be something
2683                          * fishy going on with forwarding PCH interrupts.
2684                          */
2685                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2686                 }
2687         }
2688
2689         return ret;
2690 }
2691
2692 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2693 {
2694         struct drm_i915_private *dev_priv = to_i915(arg);
2695         u32 master_ctl;
2696         u32 gt_iir[4];
2697
2698         if (!intel_irqs_enabled(dev_priv))
2699                 return IRQ_NONE;
2700
2701         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2702         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2703         if (!master_ctl)
2704                 return IRQ_NONE;
2705
2706         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2707
2708         /* Find, clear, then process each source of interrupt */
2709         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2710
2711         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2712         if (master_ctl & ~GEN8_GT_IRQS) {
2713                 disable_rpm_wakeref_asserts(dev_priv);
2714                 gen8_de_irq_handler(dev_priv, master_ctl);
2715                 enable_rpm_wakeref_asserts(dev_priv);
2716         }
2717
2718         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2719
2720         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2721
2722         return IRQ_HANDLED;
2723 }
2724
2725 struct wedge_me {
2726         struct delayed_work work;
2727         struct drm_i915_private *i915;
2728         const char *name;
2729 };
2730
2731 static void wedge_me(struct work_struct *work)
2732 {
2733         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2734
2735         dev_err(w->i915->drm.dev,
2736                 "%s timed out, cancelling all in-flight rendering.\n",
2737                 w->name);
2738         i915_gem_set_wedged(w->i915);
2739 }
2740
2741 static void __init_wedge(struct wedge_me *w,
2742                          struct drm_i915_private *i915,
2743                          long timeout,
2744                          const char *name)
2745 {
2746         w->i915 = i915;
2747         w->name = name;
2748
2749         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2750         schedule_delayed_work(&w->work, timeout);
2751 }
2752
2753 static void __fini_wedge(struct wedge_me *w)
2754 {
2755         cancel_delayed_work_sync(&w->work);
2756         destroy_delayed_work_on_stack(&w->work);
2757         w->i915 = NULL;
2758 }
2759
2760 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2761         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2762              (W)->i915;                                                 \
2763              __fini_wedge((W)))
2764
2765 static __always_inline void
2766 gen11_cs_irq_handler(struct intel_engine_cs * const engine, const u32 iir)
2767 {
2768         gen8_cs_irq_handler(engine, iir, 0);
2769 }
2770
2771 static void
2772 gen11_gt_engine_irq_handler(struct drm_i915_private * const i915,
2773                             const unsigned int bank,
2774                             const unsigned int engine_n,
2775                             const u16 iir)
2776 {
2777         struct intel_engine_cs ** const engine = i915->engine;
2778
2779         switch (bank) {
2780         case 0:
2781                 switch (engine_n) {
2782
2783                 case GEN11_RCS0:
2784                         return gen11_cs_irq_handler(engine[RCS], iir);
2785
2786                 case GEN11_BCS:
2787                         return gen11_cs_irq_handler(engine[BCS], iir);
2788                 }
2789         case 1:
2790                 switch (engine_n) {
2791
2792                 case GEN11_VCS(0):
2793                         return gen11_cs_irq_handler(engine[_VCS(0)], iir);
2794                 case GEN11_VCS(1):
2795                         return gen11_cs_irq_handler(engine[_VCS(1)], iir);
2796                 case GEN11_VCS(2):
2797                         return gen11_cs_irq_handler(engine[_VCS(2)], iir);
2798                 case GEN11_VCS(3):
2799                         return gen11_cs_irq_handler(engine[_VCS(3)], iir);
2800
2801                 case GEN11_VECS(0):
2802                         return gen11_cs_irq_handler(engine[_VECS(0)], iir);
2803                 case GEN11_VECS(1):
2804                         return gen11_cs_irq_handler(engine[_VECS(1)], iir);
2805                 }
2806         }
2807 }
2808
2809 static u32
2810 gen11_gt_engine_intr(struct drm_i915_private * const i915,
2811                      const unsigned int bank, const unsigned int bit)
2812 {
2813         void __iomem * const regs = i915->regs;
2814         u32 timeout_ts;
2815         u32 ident;
2816
2817         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2818
2819         /*
2820          * NB: Specs do not specify how long to spin wait,
2821          * so we do ~100us as an educated guess.
2822          */
2823         timeout_ts = (local_clock() >> 10) + 100;
2824         do {
2825                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2826         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2827                  !time_after32(local_clock() >> 10, timeout_ts));
2828
2829         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2830                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2831                           bank, bit, ident);
2832                 return 0;
2833         }
2834
2835         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2836                       GEN11_INTR_DATA_VALID);
2837
2838         return ident & GEN11_INTR_ENGINE_MASK;
2839 }
2840
2841 static void
2842 gen11_gt_irq_handler(struct drm_i915_private * const i915,
2843                      const u32 master_ctl)
2844 {
2845         void __iomem * const regs = i915->regs;
2846         unsigned int bank;
2847
2848         for (bank = 0; bank < 2; bank++) {
2849                 unsigned long intr_dw;
2850                 unsigned int bit;
2851
2852                 if (!(master_ctl & GEN11_GT_DW_IRQ(bank)))
2853                         continue;
2854
2855                 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
2856
2857                 if (unlikely(!intr_dw)) {
2858                         DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
2859                         continue;
2860                 }
2861
2862                 for_each_set_bit(bit, &intr_dw, 32) {
2863                         const u16 iir = gen11_gt_engine_intr(i915, bank, bit);
2864
2865                         if (unlikely(!iir))
2866                                 continue;
2867
2868                         gen11_gt_engine_irq_handler(i915, bank, bit, iir);
2869                 }
2870
2871                 /* Clear must be after shared has been served for engine */
2872                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
2873         }
2874 }
2875
2876 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2877 {
2878         struct drm_i915_private * const i915 = to_i915(arg);
2879         void __iomem * const regs = i915->regs;
2880         u32 master_ctl;
2881
2882         if (!intel_irqs_enabled(i915))
2883                 return IRQ_NONE;
2884
2885         master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2886         master_ctl &= ~GEN11_MASTER_IRQ;
2887         if (!master_ctl)
2888                 return IRQ_NONE;
2889
2890         /* Disable interrupts. */
2891         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2892
2893         /* Find, clear, then process each source of interrupt. */
2894         gen11_gt_irq_handler(i915, master_ctl);
2895
2896         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2897         if (master_ctl & GEN11_DISPLAY_IRQ) {
2898                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2899
2900                 disable_rpm_wakeref_asserts(i915);
2901                 /*
2902                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2903                  * for the display related bits.
2904                  */
2905                 gen8_de_irq_handler(i915, disp_ctl);
2906                 enable_rpm_wakeref_asserts(i915);
2907         }
2908
2909         /* Acknowledge and enable interrupts. */
2910         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
2911
2912         return IRQ_HANDLED;
2913 }
2914
2915 /**
2916  * i915_reset_device - do process context error handling work
2917  * @dev_priv: i915 device private
2918  *
2919  * Fire an error uevent so userspace can see that a hang or error
2920  * was detected.
2921  */
2922 static void i915_reset_device(struct drm_i915_private *dev_priv)
2923 {
2924         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2925         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2926         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2927         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2928         struct wedge_me w;
2929
2930         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2931
2932         DRM_DEBUG_DRIVER("resetting chip\n");
2933         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2934
2935         /* Use a watchdog to ensure that our reset completes */
2936         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2937                 intel_prepare_reset(dev_priv);
2938
2939                 /* Signal that locked waiters should reset the GPU */
2940                 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2941                 wake_up_all(&dev_priv->gpu_error.wait_queue);
2942
2943                 /* Wait for anyone holding the lock to wakeup, without
2944                  * blocking indefinitely on struct_mutex.
2945                  */
2946                 do {
2947                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2948                                 i915_reset(dev_priv, 0);
2949                                 mutex_unlock(&dev_priv->drm.struct_mutex);
2950                         }
2951                 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2952                                              I915_RESET_HANDOFF,
2953                                              TASK_UNINTERRUPTIBLE,
2954                                              1));
2955
2956                 intel_finish_reset(dev_priv);
2957         }
2958
2959         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2960                 kobject_uevent_env(kobj,
2961                                    KOBJ_CHANGE, reset_done_event);
2962 }
2963
2964 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2965 {
2966         u32 eir;
2967
2968         if (!IS_GEN2(dev_priv))
2969                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2970
2971         if (INTEL_GEN(dev_priv) < 4)
2972                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2973         else
2974                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2975
2976         I915_WRITE(EIR, I915_READ(EIR));
2977         eir = I915_READ(EIR);
2978         if (eir) {
2979                 /*
2980                  * some errors might have become stuck,
2981                  * mask them.
2982                  */
2983                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2984                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2985                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2986         }
2987 }
2988
2989 /**
2990  * i915_handle_error - handle a gpu error
2991  * @dev_priv: i915 device private
2992  * @engine_mask: mask representing engines that are hung
2993  * @fmt: Error message format string
2994  *
2995  * Do some basic checking of register state at error time and
2996  * dump it to the syslog.  Also call i915_capture_error_state() to make
2997  * sure we get a record and make it available in debugfs.  Fire a uevent
2998  * so userspace knows something bad happened (should trigger collection
2999  * of a ring dump etc.).
3000  */
3001 void i915_handle_error(struct drm_i915_private *dev_priv,
3002                        u32 engine_mask,
3003                        const char *fmt, ...)
3004 {
3005         struct intel_engine_cs *engine;
3006         unsigned int tmp;
3007         va_list args;
3008         char error_msg[80];
3009
3010         va_start(args, fmt);
3011         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3012         va_end(args);
3013
3014         /*
3015          * In most cases it's guaranteed that we get here with an RPM
3016          * reference held, for example because there is a pending GPU
3017          * request that won't finish until the reset is done. This
3018          * isn't the case at least when we get here by doing a
3019          * simulated reset via debugfs, so get an RPM reference.
3020          */
3021         intel_runtime_pm_get(dev_priv);
3022
3023         i915_capture_error_state(dev_priv, engine_mask, error_msg);
3024         i915_clear_error_registers(dev_priv);
3025
3026         /*
3027          * Try engine reset when available. We fall back to full reset if
3028          * single reset fails.
3029          */
3030         if (intel_has_reset_engine(dev_priv)) {
3031                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3032                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3033                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3034                                              &dev_priv->gpu_error.flags))
3035                                 continue;
3036
3037                         if (i915_reset_engine(engine, 0) == 0)
3038                                 engine_mask &= ~intel_engine_flag(engine);
3039
3040                         clear_bit(I915_RESET_ENGINE + engine->id,
3041                                   &dev_priv->gpu_error.flags);
3042                         wake_up_bit(&dev_priv->gpu_error.flags,
3043                                     I915_RESET_ENGINE + engine->id);
3044                 }
3045         }
3046
3047         if (!engine_mask)
3048                 goto out;
3049
3050         /* Full reset needs the mutex, stop any other user trying to do so. */
3051         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3052                 wait_event(dev_priv->gpu_error.reset_queue,
3053                            !test_bit(I915_RESET_BACKOFF,
3054                                      &dev_priv->gpu_error.flags));
3055                 goto out;
3056         }
3057
3058         /* Prevent any other reset-engine attempt. */
3059         for_each_engine(engine, dev_priv, tmp) {
3060                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3061                                         &dev_priv->gpu_error.flags))
3062                         wait_on_bit(&dev_priv->gpu_error.flags,
3063                                     I915_RESET_ENGINE + engine->id,
3064                                     TASK_UNINTERRUPTIBLE);
3065         }
3066
3067         i915_reset_device(dev_priv);
3068
3069         for_each_engine(engine, dev_priv, tmp) {
3070                 clear_bit(I915_RESET_ENGINE + engine->id,
3071                           &dev_priv->gpu_error.flags);
3072         }
3073
3074         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3075         wake_up_all(&dev_priv->gpu_error.reset_queue);
3076
3077 out:
3078         intel_runtime_pm_put(dev_priv);
3079 }
3080
3081 /* Called from drm generic code, passed 'crtc' which
3082  * we use as a pipe index
3083  */
3084 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3085 {
3086         struct drm_i915_private *dev_priv = to_i915(dev);
3087         unsigned long irqflags;
3088
3089         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3090         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3091         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3092
3093         return 0;
3094 }
3095
3096 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3097 {
3098         struct drm_i915_private *dev_priv = to_i915(dev);
3099         unsigned long irqflags;
3100
3101         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3102         i915_enable_pipestat(dev_priv, pipe,
3103                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3104         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3105
3106         return 0;
3107 }
3108
3109 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3110 {
3111         struct drm_i915_private *dev_priv = to_i915(dev);
3112         unsigned long irqflags;
3113         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3114                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3115
3116         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3117         ilk_enable_display_irq(dev_priv, bit);
3118         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3119
3120         /* Even though there is no DMC, frame counter can get stuck when
3121          * PSR is active as no frames are generated.
3122          */
3123         if (HAS_PSR(dev_priv))
3124                 drm_vblank_restore(dev, pipe);
3125
3126         return 0;
3127 }
3128
3129 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3130 {
3131         struct drm_i915_private *dev_priv = to_i915(dev);
3132         unsigned long irqflags;
3133
3134         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3135         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3136         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3137
3138         /* Even if there is no DMC, frame counter can get stuck when
3139          * PSR is active as no frames are generated, so check only for PSR.
3140          */
3141         if (HAS_PSR(dev_priv))
3142                 drm_vblank_restore(dev, pipe);
3143
3144         return 0;
3145 }
3146
3147 /* Called from drm generic code, passed 'crtc' which
3148  * we use as a pipe index
3149  */
3150 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3151 {
3152         struct drm_i915_private *dev_priv = to_i915(dev);
3153         unsigned long irqflags;
3154
3155         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3156         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3157         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3158 }
3159
3160 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3161 {
3162         struct drm_i915_private *dev_priv = to_i915(dev);
3163         unsigned long irqflags;
3164
3165         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3166         i915_disable_pipestat(dev_priv, pipe,
3167                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3168         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3169 }
3170
3171 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3172 {
3173         struct drm_i915_private *dev_priv = to_i915(dev);
3174         unsigned long irqflags;
3175         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3176                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3177
3178         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3179         ilk_disable_display_irq(dev_priv, bit);
3180         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3181 }
3182
3183 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3184 {
3185         struct drm_i915_private *dev_priv = to_i915(dev);
3186         unsigned long irqflags;
3187
3188         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3189         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3190         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3191 }
3192
3193 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3194 {
3195         if (HAS_PCH_NOP(dev_priv))
3196                 return;
3197
3198         GEN3_IRQ_RESET(SDE);
3199
3200         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3201                 I915_WRITE(SERR_INT, 0xffffffff);
3202 }
3203
3204 /*
3205  * SDEIER is also touched by the interrupt handler to work around missed PCH
3206  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3207  * instead we unconditionally enable all PCH interrupt sources here, but then
3208  * only unmask them as needed with SDEIMR.
3209  *
3210  * This function needs to be called before interrupts are enabled.
3211  */
3212 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3213 {
3214         struct drm_i915_private *dev_priv = to_i915(dev);
3215
3216         if (HAS_PCH_NOP(dev_priv))
3217                 return;
3218
3219         WARN_ON(I915_READ(SDEIER) != 0);
3220         I915_WRITE(SDEIER, 0xffffffff);
3221         POSTING_READ(SDEIER);
3222 }
3223
3224 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3225 {
3226         GEN3_IRQ_RESET(GT);
3227         if (INTEL_GEN(dev_priv) >= 6)
3228                 GEN3_IRQ_RESET(GEN6_PM);
3229 }
3230
3231 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3232 {
3233         if (IS_CHERRYVIEW(dev_priv))
3234                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3235         else
3236                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3237
3238         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3239         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3240
3241         i9xx_pipestat_irq_reset(dev_priv);
3242
3243         GEN3_IRQ_RESET(VLV_);
3244         dev_priv->irq_mask = ~0u;
3245 }
3246
3247 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3248 {
3249         u32 pipestat_mask;
3250         u32 enable_mask;
3251         enum pipe pipe;
3252
3253         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3254
3255         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3256         for_each_pipe(dev_priv, pipe)
3257                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3258
3259         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3260                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3261                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3262                 I915_LPE_PIPE_A_INTERRUPT |
3263                 I915_LPE_PIPE_B_INTERRUPT;
3264
3265         if (IS_CHERRYVIEW(dev_priv))
3266                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3267                         I915_LPE_PIPE_C_INTERRUPT;
3268
3269         WARN_ON(dev_priv->irq_mask != ~0u);
3270
3271         dev_priv->irq_mask = ~enable_mask;
3272
3273         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3274 }
3275
3276 /* drm_dma.h hooks
3277 */
3278 static void ironlake_irq_reset(struct drm_device *dev)
3279 {
3280         struct drm_i915_private *dev_priv = to_i915(dev);
3281
3282         if (IS_GEN5(dev_priv))
3283                 I915_WRITE(HWSTAM, 0xffffffff);
3284
3285         GEN3_IRQ_RESET(DE);
3286         if (IS_GEN7(dev_priv))
3287                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3288
3289         gen5_gt_irq_reset(dev_priv);
3290
3291         ibx_irq_reset(dev_priv);
3292 }
3293
3294 static void valleyview_irq_reset(struct drm_device *dev)
3295 {
3296         struct drm_i915_private *dev_priv = to_i915(dev);
3297
3298         I915_WRITE(VLV_MASTER_IER, 0);
3299         POSTING_READ(VLV_MASTER_IER);
3300
3301         gen5_gt_irq_reset(dev_priv);
3302
3303         spin_lock_irq(&dev_priv->irq_lock);
3304         if (dev_priv->display_irqs_enabled)
3305                 vlv_display_irq_reset(dev_priv);
3306         spin_unlock_irq(&dev_priv->irq_lock);
3307 }
3308
3309 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3310 {
3311         GEN8_IRQ_RESET_NDX(GT, 0);
3312         GEN8_IRQ_RESET_NDX(GT, 1);
3313         GEN8_IRQ_RESET_NDX(GT, 2);
3314         GEN8_IRQ_RESET_NDX(GT, 3);
3315 }
3316
3317 static void gen8_irq_reset(struct drm_device *dev)
3318 {
3319         struct drm_i915_private *dev_priv = to_i915(dev);
3320         int pipe;
3321
3322         I915_WRITE(GEN8_MASTER_IRQ, 0);
3323         POSTING_READ(GEN8_MASTER_IRQ);
3324
3325         gen8_gt_irq_reset(dev_priv);
3326
3327         for_each_pipe(dev_priv, pipe)
3328                 if (intel_display_power_is_enabled(dev_priv,
3329                                                    POWER_DOMAIN_PIPE(pipe)))
3330                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3331
3332         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3333         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3334         GEN3_IRQ_RESET(GEN8_PCU_);
3335
3336         if (HAS_PCH_SPLIT(dev_priv))
3337                 ibx_irq_reset(dev_priv);
3338 }
3339
3340 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3341 {
3342         /* Disable RCS, BCS, VCS and VECS class engines. */
3343         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3344         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3345
3346         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3347         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3348         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3349         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3350         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3351         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3352 }
3353
3354 static void gen11_irq_reset(struct drm_device *dev)
3355 {
3356         struct drm_i915_private *dev_priv = dev->dev_private;
3357         int pipe;
3358
3359         I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3360         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3361
3362         gen11_gt_irq_reset(dev_priv);
3363
3364         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3365
3366         for_each_pipe(dev_priv, pipe)
3367                 if (intel_display_power_is_enabled(dev_priv,
3368                                                    POWER_DOMAIN_PIPE(pipe)))
3369                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370
3371         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3372         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3373         GEN3_IRQ_RESET(GEN8_PCU_);
3374 }
3375
3376 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3377                                      u8 pipe_mask)
3378 {
3379         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3380         enum pipe pipe;
3381
3382         spin_lock_irq(&dev_priv->irq_lock);
3383
3384         if (!intel_irqs_enabled(dev_priv)) {
3385                 spin_unlock_irq(&dev_priv->irq_lock);
3386                 return;
3387         }
3388
3389         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3390                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3391                                   dev_priv->de_irq_mask[pipe],
3392                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3393
3394         spin_unlock_irq(&dev_priv->irq_lock);
3395 }
3396
3397 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3398                                      u8 pipe_mask)
3399 {
3400         enum pipe pipe;
3401
3402         spin_lock_irq(&dev_priv->irq_lock);
3403
3404         if (!intel_irqs_enabled(dev_priv)) {
3405                 spin_unlock_irq(&dev_priv->irq_lock);
3406                 return;
3407         }
3408
3409         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3410                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3411
3412         spin_unlock_irq(&dev_priv->irq_lock);
3413
3414         /* make sure we're done processing display irqs */
3415         synchronize_irq(dev_priv->drm.irq);
3416 }
3417
3418 static void cherryview_irq_reset(struct drm_device *dev)
3419 {
3420         struct drm_i915_private *dev_priv = to_i915(dev);
3421
3422         I915_WRITE(GEN8_MASTER_IRQ, 0);
3423         POSTING_READ(GEN8_MASTER_IRQ);
3424
3425         gen8_gt_irq_reset(dev_priv);
3426
3427         GEN3_IRQ_RESET(GEN8_PCU_);
3428
3429         spin_lock_irq(&dev_priv->irq_lock);
3430         if (dev_priv->display_irqs_enabled)
3431                 vlv_display_irq_reset(dev_priv);
3432         spin_unlock_irq(&dev_priv->irq_lock);
3433 }
3434
3435 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3436                                   const u32 hpd[HPD_NUM_PINS])
3437 {
3438         struct intel_encoder *encoder;
3439         u32 enabled_irqs = 0;
3440
3441         for_each_intel_encoder(&dev_priv->drm, encoder)
3442                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3443                         enabled_irqs |= hpd[encoder->hpd_pin];
3444
3445         return enabled_irqs;
3446 }
3447
3448 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3449 {
3450         u32 hotplug;
3451
3452         /*
3453          * Enable digital hotplug on the PCH, and configure the DP short pulse
3454          * duration to 2ms (which is the minimum in the Display Port spec).
3455          * The pulse duration bits are reserved on LPT+.
3456          */
3457         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3458         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3459                      PORTC_PULSE_DURATION_MASK |
3460                      PORTD_PULSE_DURATION_MASK);
3461         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3462         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3463         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3464         /*
3465          * When CPU and PCH are on the same package, port A
3466          * HPD must be enabled in both north and south.
3467          */
3468         if (HAS_PCH_LPT_LP(dev_priv))
3469                 hotplug |= PORTA_HOTPLUG_ENABLE;
3470         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3471 }
3472
3473 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3474 {
3475         u32 hotplug_irqs, enabled_irqs;
3476
3477         if (HAS_PCH_IBX(dev_priv)) {
3478                 hotplug_irqs = SDE_HOTPLUG_MASK;
3479                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3480         } else {
3481                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3482                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3483         }
3484
3485         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3486
3487         ibx_hpd_detection_setup(dev_priv);
3488 }
3489
3490 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3491 {
3492         u32 val, hotplug;
3493
3494         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3495         if (HAS_PCH_CNP(dev_priv)) {
3496                 val = I915_READ(SOUTH_CHICKEN1);
3497                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3498                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3499                 I915_WRITE(SOUTH_CHICKEN1, val);
3500         }
3501
3502         /* Enable digital hotplug on the PCH */
3503         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3504         hotplug |= PORTA_HOTPLUG_ENABLE |
3505                    PORTB_HOTPLUG_ENABLE |
3506                    PORTC_HOTPLUG_ENABLE |
3507                    PORTD_HOTPLUG_ENABLE;
3508         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3509
3510         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3511         hotplug |= PORTE_HOTPLUG_ENABLE;
3512         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3513 }
3514
3515 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3516 {
3517         u32 hotplug_irqs, enabled_irqs;
3518
3519         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3520         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3521
3522         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3523
3524         spt_hpd_detection_setup(dev_priv);
3525 }
3526
3527 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3528 {
3529         u32 hotplug;
3530
3531         /*
3532          * Enable digital hotplug on the CPU, and configure the DP short pulse
3533          * duration to 2ms (which is the minimum in the Display Port spec)
3534          * The pulse duration bits are reserved on HSW+.
3535          */
3536         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3537         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3538         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3539                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3540         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3541 }
3542
3543 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3544 {
3545         u32 hotplug_irqs, enabled_irqs;
3546
3547         if (INTEL_GEN(dev_priv) >= 8) {
3548                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3549                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3550
3551                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3552         } else if (INTEL_GEN(dev_priv) >= 7) {
3553                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3554                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3555
3556                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3557         } else {
3558                 hotplug_irqs = DE_DP_A_HOTPLUG;
3559                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3560
3561                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3562         }
3563
3564         ilk_hpd_detection_setup(dev_priv);
3565
3566         ibx_hpd_irq_setup(dev_priv);
3567 }
3568
3569 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3570                                       u32 enabled_irqs)
3571 {
3572         u32 hotplug;
3573
3574         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3575         hotplug |= PORTA_HOTPLUG_ENABLE |
3576                    PORTB_HOTPLUG_ENABLE |
3577                    PORTC_HOTPLUG_ENABLE;
3578
3579         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3580                       hotplug, enabled_irqs);
3581         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3582
3583         /*
3584          * For BXT invert bit has to be set based on AOB design
3585          * for HPD detection logic, update it based on VBT fields.
3586          */
3587         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3588             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3589                 hotplug |= BXT_DDIA_HPD_INVERT;
3590         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3591             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3592                 hotplug |= BXT_DDIB_HPD_INVERT;
3593         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3594             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3595                 hotplug |= BXT_DDIC_HPD_INVERT;
3596
3597         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3598 }
3599
3600 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3601 {
3602         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3603 }
3604
3605 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3606 {
3607         u32 hotplug_irqs, enabled_irqs;
3608
3609         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3610         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3611
3612         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3613
3614         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3615 }
3616
3617 static void ibx_irq_postinstall(struct drm_device *dev)
3618 {
3619         struct drm_i915_private *dev_priv = to_i915(dev);
3620         u32 mask;
3621
3622         if (HAS_PCH_NOP(dev_priv))
3623                 return;
3624
3625         if (HAS_PCH_IBX(dev_priv))
3626                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3627         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3628                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3629         else
3630                 mask = SDE_GMBUS_CPT;
3631
3632         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3633         I915_WRITE(SDEIMR, ~mask);
3634
3635         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3636             HAS_PCH_LPT(dev_priv))
3637                 ibx_hpd_detection_setup(dev_priv);
3638         else
3639                 spt_hpd_detection_setup(dev_priv);
3640 }
3641
3642 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3643 {
3644         struct drm_i915_private *dev_priv = to_i915(dev);
3645         u32 pm_irqs, gt_irqs;
3646
3647         pm_irqs = gt_irqs = 0;
3648
3649         dev_priv->gt_irq_mask = ~0;
3650         if (HAS_L3_DPF(dev_priv)) {
3651                 /* L3 parity interrupt is always unmasked. */
3652                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3653                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3654         }
3655
3656         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3657         if (IS_GEN5(dev_priv)) {
3658                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3659         } else {
3660                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3661         }
3662
3663         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3664
3665         if (INTEL_GEN(dev_priv) >= 6) {
3666                 /*
3667                  * RPS interrupts will get enabled/disabled on demand when RPS
3668                  * itself is enabled/disabled.
3669                  */
3670                 if (HAS_VEBOX(dev_priv)) {
3671                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3672                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3673                 }
3674
3675                 dev_priv->pm_imr = 0xffffffff;
3676                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3677         }
3678 }
3679
3680 static int ironlake_irq_postinstall(struct drm_device *dev)
3681 {
3682         struct drm_i915_private *dev_priv = to_i915(dev);
3683         u32 display_mask, extra_mask;
3684
3685         if (INTEL_GEN(dev_priv) >= 7) {
3686                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3687                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3688                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3689                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3690                               DE_DP_A_HOTPLUG_IVB);
3691         } else {
3692                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3693                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3694                                 DE_PIPEA_CRC_DONE | DE_POISON);
3695                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3696                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3697                               DE_DP_A_HOTPLUG);
3698         }
3699
3700         dev_priv->irq_mask = ~display_mask;
3701
3702         ibx_irq_pre_postinstall(dev);
3703
3704         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3705
3706         gen5_gt_irq_postinstall(dev);
3707
3708         ilk_hpd_detection_setup(dev_priv);
3709
3710         ibx_irq_postinstall(dev);
3711
3712         if (IS_IRONLAKE_M(dev_priv)) {
3713                 /* Enable PCU event interrupts
3714                  *
3715                  * spinlocking not required here for correctness since interrupt
3716                  * setup is guaranteed to run in single-threaded context. But we
3717                  * need it to make the assert_spin_locked happy. */
3718                 spin_lock_irq(&dev_priv->irq_lock);
3719                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3720                 spin_unlock_irq(&dev_priv->irq_lock);
3721         }
3722
3723         return 0;
3724 }
3725
3726 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3727 {
3728         lockdep_assert_held(&dev_priv->irq_lock);
3729
3730         if (dev_priv->display_irqs_enabled)
3731                 return;
3732
3733         dev_priv->display_irqs_enabled = true;
3734
3735         if (intel_irqs_enabled(dev_priv)) {
3736                 vlv_display_irq_reset(dev_priv);
3737                 vlv_display_irq_postinstall(dev_priv);
3738         }
3739 }
3740
3741 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3742 {
3743         lockdep_assert_held(&dev_priv->irq_lock);
3744
3745         if (!dev_priv->display_irqs_enabled)
3746                 return;
3747
3748         dev_priv->display_irqs_enabled = false;
3749
3750         if (intel_irqs_enabled(dev_priv))
3751                 vlv_display_irq_reset(dev_priv);
3752 }
3753
3754
3755 static int valleyview_irq_postinstall(struct drm_device *dev)
3756 {
3757         struct drm_i915_private *dev_priv = to_i915(dev);
3758
3759         gen5_gt_irq_postinstall(dev);
3760
3761         spin_lock_irq(&dev_priv->irq_lock);
3762         if (dev_priv->display_irqs_enabled)
3763                 vlv_display_irq_postinstall(dev_priv);
3764         spin_unlock_irq(&dev_priv->irq_lock);
3765
3766         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3767         POSTING_READ(VLV_MASTER_IER);
3768
3769         return 0;
3770 }
3771
3772 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3773 {
3774         /* These are interrupts we'll toggle with the ring mask register */
3775         uint32_t gt_interrupts[] = {
3776                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3777                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3778                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3779                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3780                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3781                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3782                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3783                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3784                 0,
3785                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3786                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3787                 };
3788
3789         if (HAS_L3_DPF(dev_priv))
3790                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3791
3792         dev_priv->pm_ier = 0x0;
3793         dev_priv->pm_imr = ~dev_priv->pm_ier;
3794         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3795         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3796         /*
3797          * RPS interrupts will get enabled/disabled on demand when RPS itself
3798          * is enabled/disabled. Same wil be the case for GuC interrupts.
3799          */
3800         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3801         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3802 }
3803
3804 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3805 {
3806         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3807         uint32_t de_pipe_enables;
3808         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3809         u32 de_port_enables;
3810         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3811         enum pipe pipe;
3812
3813         if (INTEL_GEN(dev_priv) >= 9) {
3814                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3815                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3816                                   GEN9_AUX_CHANNEL_D;
3817                 if (IS_GEN9_LP(dev_priv))
3818                         de_port_masked |= BXT_DE_PORT_GMBUS;
3819         } else {
3820                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3821         }
3822
3823         if (IS_CNL_WITH_PORT_F(dev_priv))
3824                 de_port_masked |= CNL_AUX_CHANNEL_F;
3825
3826         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3827                                            GEN8_PIPE_FIFO_UNDERRUN;
3828
3829         de_port_enables = de_port_masked;
3830         if (IS_GEN9_LP(dev_priv))
3831                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3832         else if (IS_BROADWELL(dev_priv))
3833                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3834
3835         for_each_pipe(dev_priv, pipe) {
3836                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3837
3838                 if (intel_display_power_is_enabled(dev_priv,
3839                                 POWER_DOMAIN_PIPE(pipe)))
3840                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3841                                           dev_priv->de_irq_mask[pipe],
3842                                           de_pipe_enables);
3843         }
3844
3845         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3846         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3847
3848         if (IS_GEN9_LP(dev_priv))
3849                 bxt_hpd_detection_setup(dev_priv);
3850         else if (IS_BROADWELL(dev_priv))
3851                 ilk_hpd_detection_setup(dev_priv);
3852 }
3853
3854 static int gen8_irq_postinstall(struct drm_device *dev)
3855 {
3856         struct drm_i915_private *dev_priv = to_i915(dev);
3857
3858         if (HAS_PCH_SPLIT(dev_priv))
3859                 ibx_irq_pre_postinstall(dev);
3860
3861         gen8_gt_irq_postinstall(dev_priv);
3862         gen8_de_irq_postinstall(dev_priv);
3863
3864         if (HAS_PCH_SPLIT(dev_priv))
3865                 ibx_irq_postinstall(dev);
3866
3867         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3868         POSTING_READ(GEN8_MASTER_IRQ);
3869
3870         return 0;
3871 }
3872
3873 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3874 {
3875         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
3876
3877         BUILD_BUG_ON(irqs & 0xffff0000);
3878
3879         /* Enable RCS, BCS, VCS and VECS class interrupts. */
3880         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
3881         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
3882
3883         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
3884         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
3885         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
3886         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
3887         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
3888         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
3889
3890         dev_priv->pm_imr = 0xffffffff; /* TODO */
3891 }
3892
3893 static int gen11_irq_postinstall(struct drm_device *dev)
3894 {
3895         struct drm_i915_private *dev_priv = dev->dev_private;
3896
3897         gen11_gt_irq_postinstall(dev_priv);
3898         gen8_de_irq_postinstall(dev_priv);
3899
3900         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3901
3902         I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3903         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3904
3905         return 0;
3906 }
3907
3908 static int cherryview_irq_postinstall(struct drm_device *dev)
3909 {
3910         struct drm_i915_private *dev_priv = to_i915(dev);
3911
3912         gen8_gt_irq_postinstall(dev_priv);
3913
3914         spin_lock_irq(&dev_priv->irq_lock);
3915         if (dev_priv->display_irqs_enabled)
3916                 vlv_display_irq_postinstall(dev_priv);
3917         spin_unlock_irq(&dev_priv->irq_lock);
3918
3919         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3920         POSTING_READ(GEN8_MASTER_IRQ);
3921
3922         return 0;
3923 }
3924
3925 static void i8xx_irq_reset(struct drm_device *dev)
3926 {
3927         struct drm_i915_private *dev_priv = to_i915(dev);
3928
3929         i9xx_pipestat_irq_reset(dev_priv);
3930
3931         I915_WRITE16(HWSTAM, 0xffff);
3932
3933         GEN2_IRQ_RESET();
3934 }
3935
3936 static int i8xx_irq_postinstall(struct drm_device *dev)
3937 {
3938         struct drm_i915_private *dev_priv = to_i915(dev);
3939         u16 enable_mask;
3940
3941         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3942                             I915_ERROR_MEMORY_REFRESH));
3943
3944         /* Unmask the interrupts that we always want on. */
3945         dev_priv->irq_mask =
3946                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3947                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3948
3949         enable_mask =
3950                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952                 I915_USER_INTERRUPT;
3953
3954         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3955
3956         /* Interrupt setup is already guaranteed to be single-threaded, this is
3957          * just to make the assert_spin_locked check happy. */
3958         spin_lock_irq(&dev_priv->irq_lock);
3959         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3961         spin_unlock_irq(&dev_priv->irq_lock);
3962
3963         return 0;
3964 }
3965
3966 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3967 {
3968         struct drm_device *dev = arg;
3969         struct drm_i915_private *dev_priv = to_i915(dev);
3970         irqreturn_t ret = IRQ_NONE;
3971
3972         if (!intel_irqs_enabled(dev_priv))
3973                 return IRQ_NONE;
3974
3975         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3976         disable_rpm_wakeref_asserts(dev_priv);
3977
3978         do {
3979                 u32 pipe_stats[I915_MAX_PIPES] = {};
3980                 u16 iir;
3981
3982                 iir = I915_READ16(IIR);
3983                 if (iir == 0)
3984                         break;
3985
3986                 ret = IRQ_HANDLED;
3987
3988                 /* Call regardless, as some status bits might not be
3989                  * signalled in iir */
3990                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3991
3992                 I915_WRITE16(IIR, iir);
3993
3994                 if (iir & I915_USER_INTERRUPT)
3995                         notify_ring(dev_priv->engine[RCS]);
3996
3997                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3998                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3999
4000                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4001         } while (0);
4002
4003         enable_rpm_wakeref_asserts(dev_priv);
4004
4005         return ret;
4006 }
4007
4008 static void i915_irq_reset(struct drm_device *dev)
4009 {
4010         struct drm_i915_private *dev_priv = to_i915(dev);
4011
4012         if (I915_HAS_HOTPLUG(dev_priv)) {
4013                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4014                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4015         }
4016
4017         i9xx_pipestat_irq_reset(dev_priv);
4018
4019         I915_WRITE(HWSTAM, 0xffffffff);
4020
4021         GEN3_IRQ_RESET();
4022 }
4023
4024 static int i915_irq_postinstall(struct drm_device *dev)
4025 {
4026         struct drm_i915_private *dev_priv = to_i915(dev);
4027         u32 enable_mask;
4028
4029         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4030                           I915_ERROR_MEMORY_REFRESH));
4031
4032         /* Unmask the interrupts that we always want on. */
4033         dev_priv->irq_mask =
4034                 ~(I915_ASLE_INTERRUPT |
4035                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4036                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
4037
4038         enable_mask =
4039                 I915_ASLE_INTERRUPT |
4040                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4041                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4042                 I915_USER_INTERRUPT;
4043
4044         if (I915_HAS_HOTPLUG(dev_priv)) {
4045                 /* Enable in IER... */
4046                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4047                 /* and unmask in IMR */
4048                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4049         }
4050
4051         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4052
4053         /* Interrupt setup is already guaranteed to be single-threaded, this is
4054          * just to make the assert_spin_locked check happy. */
4055         spin_lock_irq(&dev_priv->irq_lock);
4056         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4057         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4058         spin_unlock_irq(&dev_priv->irq_lock);
4059
4060         i915_enable_asle_pipestat(dev_priv);
4061
4062         return 0;
4063 }
4064
4065 static irqreturn_t i915_irq_handler(int irq, void *arg)
4066 {
4067         struct drm_device *dev = arg;
4068         struct drm_i915_private *dev_priv = to_i915(dev);
4069         irqreturn_t ret = IRQ_NONE;
4070
4071         if (!intel_irqs_enabled(dev_priv))
4072                 return IRQ_NONE;
4073
4074         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4075         disable_rpm_wakeref_asserts(dev_priv);
4076
4077         do {
4078                 u32 pipe_stats[I915_MAX_PIPES] = {};
4079                 u32 hotplug_status = 0;
4080                 u32 iir;
4081
4082                 iir = I915_READ(IIR);
4083                 if (iir == 0)
4084                         break;
4085
4086                 ret = IRQ_HANDLED;
4087
4088                 if (I915_HAS_HOTPLUG(dev_priv) &&
4089                     iir & I915_DISPLAY_PORT_INTERRUPT)
4090                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4091
4092                 /* Call regardless, as some status bits might not be
4093                  * signalled in iir */
4094                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4095
4096                 I915_WRITE(IIR, iir);
4097
4098                 if (iir & I915_USER_INTERRUPT)
4099                         notify_ring(dev_priv->engine[RCS]);
4100
4101                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4102                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4103
4104                 if (hotplug_status)
4105                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4106
4107                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4108         } while (0);
4109
4110         enable_rpm_wakeref_asserts(dev_priv);
4111
4112         return ret;
4113 }
4114
4115 static void i965_irq_reset(struct drm_device *dev)
4116 {
4117         struct drm_i915_private *dev_priv = to_i915(dev);
4118
4119         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4120         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4121
4122         i9xx_pipestat_irq_reset(dev_priv);
4123
4124         I915_WRITE(HWSTAM, 0xffffffff);
4125
4126         GEN3_IRQ_RESET();
4127 }
4128
4129 static int i965_irq_postinstall(struct drm_device *dev)
4130 {
4131         struct drm_i915_private *dev_priv = to_i915(dev);
4132         u32 enable_mask;
4133         u32 error_mask;
4134
4135         /*
4136          * Enable some error detection, note the instruction error mask
4137          * bit is reserved, so we leave it masked.
4138          */
4139         if (IS_G4X(dev_priv)) {
4140                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4141                                GM45_ERROR_MEM_PRIV |
4142                                GM45_ERROR_CP_PRIV |
4143                                I915_ERROR_MEMORY_REFRESH);
4144         } else {
4145                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4146                                I915_ERROR_MEMORY_REFRESH);
4147         }
4148         I915_WRITE(EMR, error_mask);
4149
4150         /* Unmask the interrupts that we always want on. */
4151         dev_priv->irq_mask =
4152                 ~(I915_ASLE_INTERRUPT |
4153                   I915_DISPLAY_PORT_INTERRUPT |
4154                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4155                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4156                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4157
4158         enable_mask =
4159                 I915_ASLE_INTERRUPT |
4160                 I915_DISPLAY_PORT_INTERRUPT |
4161                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4162                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4163                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4164                 I915_USER_INTERRUPT;
4165
4166         if (IS_G4X(dev_priv))
4167                 enable_mask |= I915_BSD_USER_INTERRUPT;
4168
4169         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4170
4171         /* Interrupt setup is already guaranteed to be single-threaded, this is
4172          * just to make the assert_spin_locked check happy. */
4173         spin_lock_irq(&dev_priv->irq_lock);
4174         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4175         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4176         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4177         spin_unlock_irq(&dev_priv->irq_lock);
4178
4179         i915_enable_asle_pipestat(dev_priv);
4180
4181         return 0;
4182 }
4183
4184 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4185 {
4186         u32 hotplug_en;
4187
4188         lockdep_assert_held(&dev_priv->irq_lock);
4189
4190         /* Note HDMI and DP share hotplug bits */
4191         /* enable bits are the same for all generations */
4192         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4193         /* Programming the CRT detection parameters tends
4194            to generate a spurious hotplug event about three
4195            seconds later.  So just do it once.
4196         */
4197         if (IS_G4X(dev_priv))
4198                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4199         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4200
4201         /* Ignore TV since it's buggy */
4202         i915_hotplug_interrupt_update_locked(dev_priv,
4203                                              HOTPLUG_INT_EN_MASK |
4204                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4205                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4206                                              hotplug_en);
4207 }
4208
4209 static irqreturn_t i965_irq_handler(int irq, void *arg)
4210 {
4211         struct drm_device *dev = arg;
4212         struct drm_i915_private *dev_priv = to_i915(dev);
4213         irqreturn_t ret = IRQ_NONE;
4214
4215         if (!intel_irqs_enabled(dev_priv))
4216                 return IRQ_NONE;
4217
4218         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4219         disable_rpm_wakeref_asserts(dev_priv);
4220
4221         do {
4222                 u32 pipe_stats[I915_MAX_PIPES] = {};
4223                 u32 hotplug_status = 0;
4224                 u32 iir;
4225
4226                 iir = I915_READ(IIR);
4227                 if (iir == 0)
4228                         break;
4229
4230                 ret = IRQ_HANDLED;
4231
4232                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4233                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4234
4235                 /* Call regardless, as some status bits might not be
4236                  * signalled in iir */
4237                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4238
4239                 I915_WRITE(IIR, iir);
4240
4241                 if (iir & I915_USER_INTERRUPT)
4242                         notify_ring(dev_priv->engine[RCS]);
4243
4244                 if (iir & I915_BSD_USER_INTERRUPT)
4245                         notify_ring(dev_priv->engine[VCS]);
4246
4247                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4248                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4249
4250                 if (hotplug_status)
4251                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4252
4253                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4254         } while (0);
4255
4256         enable_rpm_wakeref_asserts(dev_priv);
4257
4258         return ret;
4259 }
4260
4261 /**
4262  * intel_irq_init - initializes irq support
4263  * @dev_priv: i915 device instance
4264  *
4265  * This function initializes all the irq support including work items, timers
4266  * and all the vtables. It does not setup the interrupt itself though.
4267  */
4268 void intel_irq_init(struct drm_i915_private *dev_priv)
4269 {
4270         struct drm_device *dev = &dev_priv->drm;
4271         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4272         int i;
4273
4274         intel_hpd_init_work(dev_priv);
4275
4276         INIT_WORK(&rps->work, gen6_pm_rps_work);
4277
4278         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4279         for (i = 0; i < MAX_L3_SLICES; ++i)
4280                 dev_priv->l3_parity.remap_info[i] = NULL;
4281
4282         if (HAS_GUC_SCHED(dev_priv))
4283                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4284
4285         /* Let's track the enabled rps events */
4286         if (IS_VALLEYVIEW(dev_priv))
4287                 /* WaGsvRC0ResidencyMethod:vlv */
4288                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4289         else
4290                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4291
4292         rps->pm_intrmsk_mbz = 0;
4293
4294         /*
4295          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4296          * if GEN6_PM_UP_EI_EXPIRED is masked.
4297          *
4298          * TODO: verify if this can be reproduced on VLV,CHV.
4299          */
4300         if (INTEL_GEN(dev_priv) <= 7)
4301                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4302
4303         if (INTEL_GEN(dev_priv) >= 8)
4304                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4305
4306         if (IS_GEN2(dev_priv)) {
4307                 /* Gen2 doesn't have a hardware frame counter */
4308                 dev->max_vblank_count = 0;
4309         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4310                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4311                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4312         } else {
4313                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4314                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4315         }
4316
4317         /*
4318          * Opt out of the vblank disable timer on everything except gen2.
4319          * Gen2 doesn't have a hardware frame counter and so depends on
4320          * vblank interrupts to produce sane vblank seuquence numbers.
4321          */
4322         if (!IS_GEN2(dev_priv))
4323                 dev->vblank_disable_immediate = true;
4324
4325         /* Most platforms treat the display irq block as an always-on
4326          * power domain. vlv/chv can disable it at runtime and need
4327          * special care to avoid writing any of the display block registers
4328          * outside of the power domain. We defer setting up the display irqs
4329          * in this case to the runtime pm.
4330          */
4331         dev_priv->display_irqs_enabled = true;
4332         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4333                 dev_priv->display_irqs_enabled = false;
4334
4335         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4336
4337         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4338         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4339
4340         if (IS_CHERRYVIEW(dev_priv)) {
4341                 dev->driver->irq_handler = cherryview_irq_handler;
4342                 dev->driver->irq_preinstall = cherryview_irq_reset;
4343                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4344                 dev->driver->irq_uninstall = cherryview_irq_reset;
4345                 dev->driver->enable_vblank = i965_enable_vblank;
4346                 dev->driver->disable_vblank = i965_disable_vblank;
4347                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4348         } else if (IS_VALLEYVIEW(dev_priv)) {
4349                 dev->driver->irq_handler = valleyview_irq_handler;
4350                 dev->driver->irq_preinstall = valleyview_irq_reset;
4351                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4352                 dev->driver->irq_uninstall = valleyview_irq_reset;
4353                 dev->driver->enable_vblank = i965_enable_vblank;
4354                 dev->driver->disable_vblank = i965_disable_vblank;
4355                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4356         } else if (INTEL_GEN(dev_priv) >= 11) {
4357                 dev->driver->irq_handler = gen11_irq_handler;
4358                 dev->driver->irq_preinstall = gen11_irq_reset;
4359                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4360                 dev->driver->irq_uninstall = gen11_irq_reset;
4361                 dev->driver->enable_vblank = gen8_enable_vblank;
4362                 dev->driver->disable_vblank = gen8_disable_vblank;
4363                 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4364         } else if (INTEL_GEN(dev_priv) >= 8) {
4365                 dev->driver->irq_handler = gen8_irq_handler;
4366                 dev->driver->irq_preinstall = gen8_irq_reset;
4367                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4368                 dev->driver->irq_uninstall = gen8_irq_reset;
4369                 dev->driver->enable_vblank = gen8_enable_vblank;
4370                 dev->driver->disable_vblank = gen8_disable_vblank;
4371                 if (IS_GEN9_LP(dev_priv))
4372                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4373                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4374                          HAS_PCH_CNP(dev_priv))
4375                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4376                 else
4377                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4378         } else if (HAS_PCH_SPLIT(dev_priv)) {
4379                 dev->driver->irq_handler = ironlake_irq_handler;
4380                 dev->driver->irq_preinstall = ironlake_irq_reset;
4381                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4382                 dev->driver->irq_uninstall = ironlake_irq_reset;
4383                 dev->driver->enable_vblank = ironlake_enable_vblank;
4384                 dev->driver->disable_vblank = ironlake_disable_vblank;
4385                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4386         } else {
4387                 if (IS_GEN2(dev_priv)) {
4388                         dev->driver->irq_preinstall = i8xx_irq_reset;
4389                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4390                         dev->driver->irq_handler = i8xx_irq_handler;
4391                         dev->driver->irq_uninstall = i8xx_irq_reset;
4392                         dev->driver->enable_vblank = i8xx_enable_vblank;
4393                         dev->driver->disable_vblank = i8xx_disable_vblank;
4394                 } else if (IS_GEN3(dev_priv)) {
4395                         dev->driver->irq_preinstall = i915_irq_reset;
4396                         dev->driver->irq_postinstall = i915_irq_postinstall;
4397                         dev->driver->irq_uninstall = i915_irq_reset;
4398                         dev->driver->irq_handler = i915_irq_handler;
4399                         dev->driver->enable_vblank = i8xx_enable_vblank;
4400                         dev->driver->disable_vblank = i8xx_disable_vblank;
4401                 } else {
4402                         dev->driver->irq_preinstall = i965_irq_reset;
4403                         dev->driver->irq_postinstall = i965_irq_postinstall;
4404                         dev->driver->irq_uninstall = i965_irq_reset;
4405                         dev->driver->irq_handler = i965_irq_handler;
4406                         dev->driver->enable_vblank = i965_enable_vblank;
4407                         dev->driver->disable_vblank = i965_disable_vblank;
4408                 }
4409                 if (I915_HAS_HOTPLUG(dev_priv))
4410                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4411         }
4412 }
4413
4414 /**
4415  * intel_irq_fini - deinitializes IRQ support
4416  * @i915: i915 device instance
4417  *
4418  * This function deinitializes all the IRQ support.
4419  */
4420 void intel_irq_fini(struct drm_i915_private *i915)
4421 {
4422         int i;
4423
4424         for (i = 0; i < MAX_L3_SLICES; ++i)
4425                 kfree(i915->l3_parity.remap_info[i]);
4426 }
4427
4428 /**
4429  * intel_irq_install - enables the hardware interrupt
4430  * @dev_priv: i915 device instance
4431  *
4432  * This function enables the hardware interrupt handling, but leaves the hotplug
4433  * handling still disabled. It is called after intel_irq_init().
4434  *
4435  * In the driver load and resume code we need working interrupts in a few places
4436  * but don't want to deal with the hassle of concurrent probe and hotplug
4437  * workers. Hence the split into this two-stage approach.
4438  */
4439 int intel_irq_install(struct drm_i915_private *dev_priv)
4440 {
4441         /*
4442          * We enable some interrupt sources in our postinstall hooks, so mark
4443          * interrupts as enabled _before_ actually enabling them to avoid
4444          * special cases in our ordering checks.
4445          */
4446         dev_priv->runtime_pm.irqs_enabled = true;
4447
4448         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4449 }
4450
4451 /**
4452  * intel_irq_uninstall - finilizes all irq handling
4453  * @dev_priv: i915 device instance
4454  *
4455  * This stops interrupt and hotplug handling and unregisters and frees all
4456  * resources acquired in the init functions.
4457  */
4458 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4459 {
4460         drm_irq_uninstall(&dev_priv->drm);
4461         intel_hpd_cancel_work(dev_priv);
4462         dev_priv->runtime_pm.irqs_enabled = false;
4463 }
4464
4465 /**
4466  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4467  * @dev_priv: i915 device instance
4468  *
4469  * This function is used to disable interrupts at runtime, both in the runtime
4470  * pm and the system suspend/resume code.
4471  */
4472 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4473 {
4474         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4475         dev_priv->runtime_pm.irqs_enabled = false;
4476         synchronize_irq(dev_priv->drm.irq);
4477 }
4478
4479 /**
4480  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4481  * @dev_priv: i915 device instance
4482  *
4483  * This function is used to enable interrupts at runtime, both in the runtime
4484  * pm and the system suspend/resume code.
4485  */
4486 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4487 {
4488         dev_priv->runtime_pm.irqs_enabled = true;
4489         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4490         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4491 }