Merge tag 'drm-misc-next-2019-05-24' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/cpuidle.h>
33 #include <linux/slab.h>
34 #include <linux/sysrq.h>
35
36 #include <drm/drm_drv.h>
37 #include <drm/drm_irq.h>
38 #include <drm/i915_drm.h>
39
40 #include "i915_drv.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_psr.h"
44
45 /**
46  * DOC: interrupt handling
47  *
48  * These functions provide the basic support for enabling and disabling the
49  * interrupt handling support. There's a lot more functionality in i915_irq.c
50  * and related files, but that will be described in separate chapters.
51  */
52
53 static const u32 hpd_ilk[HPD_NUM_PINS] = {
54         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
55 };
56
57 static const u32 hpd_ivb[HPD_NUM_PINS] = {
58         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
59 };
60
61 static const u32 hpd_bdw[HPD_NUM_PINS] = {
62         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
63 };
64
65 static const u32 hpd_ibx[HPD_NUM_PINS] = {
66         [HPD_CRT] = SDE_CRT_HOTPLUG,
67         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
68         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
69         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
70         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
71 };
72
73 static const u32 hpd_cpt[HPD_NUM_PINS] = {
74         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
75         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
76         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
77         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
78         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
79 };
80
81 static const u32 hpd_spt[HPD_NUM_PINS] = {
82         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
83         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
84         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
85         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
86         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
87 };
88
89 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
90         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
91         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
92         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
93         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
94         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
95         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
96 };
97
98 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
99         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
100         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
101         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
102         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
103         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
104         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
105 };
106
107 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
108         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
109         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
110         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
111         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
112         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
113         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
114 };
115
116 /* BXT hpd list */
117 static const u32 hpd_bxt[HPD_NUM_PINS] = {
118         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
119         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
120         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
121 };
122
123 static const u32 hpd_gen11[HPD_NUM_PINS] = {
124         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
125         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
126         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
127         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
128 };
129
130 static const u32 hpd_icp[HPD_NUM_PINS] = {
131         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
132         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
133         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
134         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
135         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
136         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
137 };
138
139 static void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
140                            i915_reg_t iir, i915_reg_t ier)
141 {
142         intel_uncore_write(uncore, imr, 0xffffffff);
143         intel_uncore_posting_read(uncore, imr);
144
145         intel_uncore_write(uncore, ier, 0);
146
147         /* IIR can theoretically queue up two events. Be paranoid. */
148         intel_uncore_write(uncore, iir, 0xffffffff);
149         intel_uncore_posting_read(uncore, iir);
150         intel_uncore_write(uncore, iir, 0xffffffff);
151         intel_uncore_posting_read(uncore, iir);
152 }
153
154 static void gen2_irq_reset(struct intel_uncore *uncore)
155 {
156         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
157         intel_uncore_posting_read16(uncore, GEN2_IMR);
158
159         intel_uncore_write16(uncore, GEN2_IER, 0);
160
161         /* IIR can theoretically queue up two events. Be paranoid. */
162         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
163         intel_uncore_posting_read16(uncore, GEN2_IIR);
164         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
165         intel_uncore_posting_read16(uncore, GEN2_IIR);
166 }
167
168 #define GEN8_IRQ_RESET_NDX(uncore, type, which) \
169 ({ \
170         unsigned int which_ = which; \
171         gen3_irq_reset((uncore), GEN8_##type##_IMR(which_), \
172                        GEN8_##type##_IIR(which_), GEN8_##type##_IER(which_)); \
173 })
174
175 #define GEN3_IRQ_RESET(uncore, type) \
176         gen3_irq_reset((uncore), type##IMR, type##IIR, type##IER)
177
178 #define GEN2_IRQ_RESET(uncore) \
179         gen2_irq_reset(uncore)
180
181 /*
182  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
183  */
184 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
185 {
186         u32 val = intel_uncore_read(uncore, reg);
187
188         if (val == 0)
189                 return;
190
191         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
192              i915_mmio_reg_offset(reg), val);
193         intel_uncore_write(uncore, reg, 0xffffffff);
194         intel_uncore_posting_read(uncore, reg);
195         intel_uncore_write(uncore, reg, 0xffffffff);
196         intel_uncore_posting_read(uncore, reg);
197 }
198
199 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
200 {
201         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
202
203         if (val == 0)
204                 return;
205
206         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
207              i915_mmio_reg_offset(GEN2_IIR), val);
208         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
209         intel_uncore_posting_read16(uncore, GEN2_IIR);
210         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
211         intel_uncore_posting_read16(uncore, GEN2_IIR);
212 }
213
214 static void gen3_irq_init(struct intel_uncore *uncore,
215                           i915_reg_t imr, u32 imr_val,
216                           i915_reg_t ier, u32 ier_val,
217                           i915_reg_t iir)
218 {
219         gen3_assert_iir_is_zero(uncore, iir);
220
221         intel_uncore_write(uncore, ier, ier_val);
222         intel_uncore_write(uncore, imr, imr_val);
223         intel_uncore_posting_read(uncore, imr);
224 }
225
226 static void gen2_irq_init(struct intel_uncore *uncore,
227                           u32 imr_val, u32 ier_val)
228 {
229         gen2_assert_iir_is_zero(uncore);
230
231         intel_uncore_write16(uncore, GEN2_IER, ier_val);
232         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
233         intel_uncore_posting_read16(uncore, GEN2_IMR);
234 }
235
236 #define GEN8_IRQ_INIT_NDX(uncore, type, which, imr_val, ier_val) \
237 ({ \
238         unsigned int which_ = which; \
239         gen3_irq_init((uncore), \
240                       GEN8_##type##_IMR(which_), imr_val, \
241                       GEN8_##type##_IER(which_), ier_val, \
242                       GEN8_##type##_IIR(which_)); \
243 })
244
245 #define GEN3_IRQ_INIT(uncore, type, imr_val, ier_val) \
246         gen3_irq_init((uncore), \
247                       type##IMR, imr_val, \
248                       type##IER, ier_val, \
249                       type##IIR)
250
251 #define GEN2_IRQ_INIT(uncore, imr_val, ier_val) \
252         gen2_irq_init((uncore), imr_val, ier_val)
253
254 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
255 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
256
257 /* For display hotplug interrupt */
258 static inline void
259 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
260                                      u32 mask,
261                                      u32 bits)
262 {
263         u32 val;
264
265         lockdep_assert_held(&dev_priv->irq_lock);
266         WARN_ON(bits & ~mask);
267
268         val = I915_READ(PORT_HOTPLUG_EN);
269         val &= ~mask;
270         val |= bits;
271         I915_WRITE(PORT_HOTPLUG_EN, val);
272 }
273
274 /**
275  * i915_hotplug_interrupt_update - update hotplug interrupt enable
276  * @dev_priv: driver private
277  * @mask: bits to update
278  * @bits: bits to enable
279  * NOTE: the HPD enable bits are modified both inside and outside
280  * of an interrupt context. To avoid that read-modify-write cycles
281  * interfer, these bits are protected by a spinlock. Since this
282  * function is usually not called from a context where the lock is
283  * held already, this function acquires the lock itself. A non-locking
284  * version is also available.
285  */
286 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
287                                    u32 mask,
288                                    u32 bits)
289 {
290         spin_lock_irq(&dev_priv->irq_lock);
291         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
292         spin_unlock_irq(&dev_priv->irq_lock);
293 }
294
295 static u32
296 gen11_gt_engine_identity(struct drm_i915_private * const i915,
297                          const unsigned int bank, const unsigned int bit);
298
299 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
300                                 const unsigned int bank,
301                                 const unsigned int bit)
302 {
303         void __iomem * const regs = i915->uncore.regs;
304         u32 dw;
305
306         lockdep_assert_held(&i915->irq_lock);
307
308         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
309         if (dw & BIT(bit)) {
310                 /*
311                  * According to the BSpec, DW_IIR bits cannot be cleared without
312                  * first servicing the Selector & Shared IIR registers.
313                  */
314                 gen11_gt_engine_identity(i915, bank, bit);
315
316                 /*
317                  * We locked GT INT DW by reading it. If we want to (try
318                  * to) recover from this succesfully, we need to clear
319                  * our bit, otherwise we are locking the register for
320                  * everybody.
321                  */
322                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
323
324                 return true;
325         }
326
327         return false;
328 }
329
330 /**
331  * ilk_update_display_irq - update DEIMR
332  * @dev_priv: driver private
333  * @interrupt_mask: mask of interrupt bits to update
334  * @enabled_irq_mask: mask of interrupt bits to enable
335  */
336 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
337                             u32 interrupt_mask,
338                             u32 enabled_irq_mask)
339 {
340         u32 new_val;
341
342         lockdep_assert_held(&dev_priv->irq_lock);
343
344         WARN_ON(enabled_irq_mask & ~interrupt_mask);
345
346         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
347                 return;
348
349         new_val = dev_priv->irq_mask;
350         new_val &= ~interrupt_mask;
351         new_val |= (~enabled_irq_mask & interrupt_mask);
352
353         if (new_val != dev_priv->irq_mask) {
354                 dev_priv->irq_mask = new_val;
355                 I915_WRITE(DEIMR, dev_priv->irq_mask);
356                 POSTING_READ(DEIMR);
357         }
358 }
359
360 /**
361  * ilk_update_gt_irq - update GTIMR
362  * @dev_priv: driver private
363  * @interrupt_mask: mask of interrupt bits to update
364  * @enabled_irq_mask: mask of interrupt bits to enable
365  */
366 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
367                               u32 interrupt_mask,
368                               u32 enabled_irq_mask)
369 {
370         lockdep_assert_held(&dev_priv->irq_lock);
371
372         WARN_ON(enabled_irq_mask & ~interrupt_mask);
373
374         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
375                 return;
376
377         dev_priv->gt_irq_mask &= ~interrupt_mask;
378         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
379         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
380 }
381
382 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
383 {
384         ilk_update_gt_irq(dev_priv, mask, mask);
385         POSTING_READ_FW(GTIMR);
386 }
387
388 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
389 {
390         ilk_update_gt_irq(dev_priv, mask, 0);
391 }
392
393 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
394 {
395         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
396
397         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
398 }
399
400 static void write_pm_imr(struct drm_i915_private *dev_priv)
401 {
402         i915_reg_t reg;
403         u32 mask = dev_priv->pm_imr;
404
405         if (INTEL_GEN(dev_priv) >= 11) {
406                 reg = GEN11_GPM_WGBOXPERF_INTR_MASK;
407                 /* pm is in upper half */
408                 mask = mask << 16;
409         } else if (INTEL_GEN(dev_priv) >= 8) {
410                 reg = GEN8_GT_IMR(2);
411         } else {
412                 reg = GEN6_PMIMR;
413         }
414
415         I915_WRITE(reg, mask);
416         POSTING_READ(reg);
417 }
418
419 static void write_pm_ier(struct drm_i915_private *dev_priv)
420 {
421         i915_reg_t reg;
422         u32 mask = dev_priv->pm_ier;
423
424         if (INTEL_GEN(dev_priv) >= 11) {
425                 reg = GEN11_GPM_WGBOXPERF_INTR_ENABLE;
426                 /* pm is in upper half */
427                 mask = mask << 16;
428         } else if (INTEL_GEN(dev_priv) >= 8) {
429                 reg = GEN8_GT_IER(2);
430         } else {
431                 reg = GEN6_PMIER;
432         }
433
434         I915_WRITE(reg, mask);
435 }
436
437 /**
438  * snb_update_pm_irq - update GEN6_PMIMR
439  * @dev_priv: driver private
440  * @interrupt_mask: mask of interrupt bits to update
441  * @enabled_irq_mask: mask of interrupt bits to enable
442  */
443 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
444                               u32 interrupt_mask,
445                               u32 enabled_irq_mask)
446 {
447         u32 new_val;
448
449         WARN_ON(enabled_irq_mask & ~interrupt_mask);
450
451         lockdep_assert_held(&dev_priv->irq_lock);
452
453         new_val = dev_priv->pm_imr;
454         new_val &= ~interrupt_mask;
455         new_val |= (~enabled_irq_mask & interrupt_mask);
456
457         if (new_val != dev_priv->pm_imr) {
458                 dev_priv->pm_imr = new_val;
459                 write_pm_imr(dev_priv);
460         }
461 }
462
463 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
464 {
465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466                 return;
467
468         snb_update_pm_irq(dev_priv, mask, mask);
469 }
470
471 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
472 {
473         snb_update_pm_irq(dev_priv, mask, 0);
474 }
475
476 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
477 {
478         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
479                 return;
480
481         __gen6_mask_pm_irq(dev_priv, mask);
482 }
483
484 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
485 {
486         i915_reg_t reg = gen6_pm_iir(dev_priv);
487
488         lockdep_assert_held(&dev_priv->irq_lock);
489
490         I915_WRITE(reg, reset_mask);
491         I915_WRITE(reg, reset_mask);
492         POSTING_READ(reg);
493 }
494
495 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
496 {
497         lockdep_assert_held(&dev_priv->irq_lock);
498
499         dev_priv->pm_ier |= enable_mask;
500         write_pm_ier(dev_priv);
501         gen6_unmask_pm_irq(dev_priv, enable_mask);
502         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
503 }
504
505 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
506 {
507         lockdep_assert_held(&dev_priv->irq_lock);
508
509         dev_priv->pm_ier &= ~disable_mask;
510         __gen6_mask_pm_irq(dev_priv, disable_mask);
511         write_pm_ier(dev_priv);
512         /* though a barrier is missing here, but don't really need a one */
513 }
514
515 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
516 {
517         spin_lock_irq(&dev_priv->irq_lock);
518
519         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
520                 ;
521
522         dev_priv->gt_pm.rps.pm_iir = 0;
523
524         spin_unlock_irq(&dev_priv->irq_lock);
525 }
526
527 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
528 {
529         spin_lock_irq(&dev_priv->irq_lock);
530         gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
531         dev_priv->gt_pm.rps.pm_iir = 0;
532         spin_unlock_irq(&dev_priv->irq_lock);
533 }
534
535 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
536 {
537         struct intel_rps *rps = &dev_priv->gt_pm.rps;
538
539         if (READ_ONCE(rps->interrupts_enabled))
540                 return;
541
542         spin_lock_irq(&dev_priv->irq_lock);
543         WARN_ON_ONCE(rps->pm_iir);
544
545         if (INTEL_GEN(dev_priv) >= 11)
546                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
547         else
548                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
549
550         rps->interrupts_enabled = true;
551         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
552
553         spin_unlock_irq(&dev_priv->irq_lock);
554 }
555
556 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
557 {
558         struct intel_rps *rps = &dev_priv->gt_pm.rps;
559
560         if (!READ_ONCE(rps->interrupts_enabled))
561                 return;
562
563         spin_lock_irq(&dev_priv->irq_lock);
564         rps->interrupts_enabled = false;
565
566         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
567
568         gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
569
570         spin_unlock_irq(&dev_priv->irq_lock);
571         synchronize_irq(dev_priv->drm.irq);
572
573         /* Now that we will not be generating any more work, flush any
574          * outstanding tasks. As we are called on the RPS idle path,
575          * we will reset the GPU to minimum frequencies, so the current
576          * state of the worker can be discarded.
577          */
578         cancel_work_sync(&rps->work);
579         if (INTEL_GEN(dev_priv) >= 11)
580                 gen11_reset_rps_interrupts(dev_priv);
581         else
582                 gen6_reset_rps_interrupts(dev_priv);
583 }
584
585 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
586 {
587         assert_rpm_wakelock_held(dev_priv);
588
589         spin_lock_irq(&dev_priv->irq_lock);
590         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
591         spin_unlock_irq(&dev_priv->irq_lock);
592 }
593
594 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
595 {
596         assert_rpm_wakelock_held(dev_priv);
597
598         spin_lock_irq(&dev_priv->irq_lock);
599         if (!dev_priv->guc.interrupts_enabled) {
600                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
601                                        dev_priv->pm_guc_events);
602                 dev_priv->guc.interrupts_enabled = true;
603                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
604         }
605         spin_unlock_irq(&dev_priv->irq_lock);
606 }
607
608 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
609 {
610         assert_rpm_wakelock_held(dev_priv);
611
612         spin_lock_irq(&dev_priv->irq_lock);
613         dev_priv->guc.interrupts_enabled = false;
614
615         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
616
617         spin_unlock_irq(&dev_priv->irq_lock);
618         synchronize_irq(dev_priv->drm.irq);
619
620         gen9_reset_guc_interrupts(dev_priv);
621 }
622
623 /**
624  * bdw_update_port_irq - update DE port interrupt
625  * @dev_priv: driver private
626  * @interrupt_mask: mask of interrupt bits to update
627  * @enabled_irq_mask: mask of interrupt bits to enable
628  */
629 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
630                                 u32 interrupt_mask,
631                                 u32 enabled_irq_mask)
632 {
633         u32 new_val;
634         u32 old_val;
635
636         lockdep_assert_held(&dev_priv->irq_lock);
637
638         WARN_ON(enabled_irq_mask & ~interrupt_mask);
639
640         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
641                 return;
642
643         old_val = I915_READ(GEN8_DE_PORT_IMR);
644
645         new_val = old_val;
646         new_val &= ~interrupt_mask;
647         new_val |= (~enabled_irq_mask & interrupt_mask);
648
649         if (new_val != old_val) {
650                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
651                 POSTING_READ(GEN8_DE_PORT_IMR);
652         }
653 }
654
655 /**
656  * bdw_update_pipe_irq - update DE pipe interrupt
657  * @dev_priv: driver private
658  * @pipe: pipe whose interrupt to update
659  * @interrupt_mask: mask of interrupt bits to update
660  * @enabled_irq_mask: mask of interrupt bits to enable
661  */
662 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
663                          enum pipe pipe,
664                          u32 interrupt_mask,
665                          u32 enabled_irq_mask)
666 {
667         u32 new_val;
668
669         lockdep_assert_held(&dev_priv->irq_lock);
670
671         WARN_ON(enabled_irq_mask & ~interrupt_mask);
672
673         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
674                 return;
675
676         new_val = dev_priv->de_irq_mask[pipe];
677         new_val &= ~interrupt_mask;
678         new_val |= (~enabled_irq_mask & interrupt_mask);
679
680         if (new_val != dev_priv->de_irq_mask[pipe]) {
681                 dev_priv->de_irq_mask[pipe] = new_val;
682                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
683                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
684         }
685 }
686
687 /**
688  * ibx_display_interrupt_update - update SDEIMR
689  * @dev_priv: driver private
690  * @interrupt_mask: mask of interrupt bits to update
691  * @enabled_irq_mask: mask of interrupt bits to enable
692  */
693 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
694                                   u32 interrupt_mask,
695                                   u32 enabled_irq_mask)
696 {
697         u32 sdeimr = I915_READ(SDEIMR);
698         sdeimr &= ~interrupt_mask;
699         sdeimr |= (~enabled_irq_mask & interrupt_mask);
700
701         WARN_ON(enabled_irq_mask & ~interrupt_mask);
702
703         lockdep_assert_held(&dev_priv->irq_lock);
704
705         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
706                 return;
707
708         I915_WRITE(SDEIMR, sdeimr);
709         POSTING_READ(SDEIMR);
710 }
711
712 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
713                               enum pipe pipe)
714 {
715         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
716         u32 enable_mask = status_mask << 16;
717
718         lockdep_assert_held(&dev_priv->irq_lock);
719
720         if (INTEL_GEN(dev_priv) < 5)
721                 goto out;
722
723         /*
724          * On pipe A we don't support the PSR interrupt yet,
725          * on pipe B and C the same bit MBZ.
726          */
727         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
728                 return 0;
729         /*
730          * On pipe B and C we don't support the PSR interrupt yet, on pipe
731          * A the same bit is for perf counters which we don't use either.
732          */
733         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
734                 return 0;
735
736         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
737                          SPRITE0_FLIP_DONE_INT_EN_VLV |
738                          SPRITE1_FLIP_DONE_INT_EN_VLV);
739         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
740                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
741         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
742                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
743
744 out:
745         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
746                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
747                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
748                   pipe_name(pipe), enable_mask, status_mask);
749
750         return enable_mask;
751 }
752
753 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
754                           enum pipe pipe, u32 status_mask)
755 {
756         i915_reg_t reg = PIPESTAT(pipe);
757         u32 enable_mask;
758
759         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
760                   "pipe %c: status_mask=0x%x\n",
761                   pipe_name(pipe), status_mask);
762
763         lockdep_assert_held(&dev_priv->irq_lock);
764         WARN_ON(!intel_irqs_enabled(dev_priv));
765
766         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
767                 return;
768
769         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
770         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
771
772         I915_WRITE(reg, enable_mask | status_mask);
773         POSTING_READ(reg);
774 }
775
776 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
777                            enum pipe pipe, u32 status_mask)
778 {
779         i915_reg_t reg = PIPESTAT(pipe);
780         u32 enable_mask;
781
782         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
783                   "pipe %c: status_mask=0x%x\n",
784                   pipe_name(pipe), status_mask);
785
786         lockdep_assert_held(&dev_priv->irq_lock);
787         WARN_ON(!intel_irqs_enabled(dev_priv));
788
789         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
790                 return;
791
792         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
793         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
794
795         I915_WRITE(reg, enable_mask | status_mask);
796         POSTING_READ(reg);
797 }
798
799 static bool i915_has_asle(struct drm_i915_private *dev_priv)
800 {
801         if (!dev_priv->opregion.asle)
802                 return false;
803
804         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
805 }
806
807 /**
808  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
809  * @dev_priv: i915 device private
810  */
811 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
812 {
813         if (!i915_has_asle(dev_priv))
814                 return;
815
816         spin_lock_irq(&dev_priv->irq_lock);
817
818         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
819         if (INTEL_GEN(dev_priv) >= 4)
820                 i915_enable_pipestat(dev_priv, PIPE_A,
821                                      PIPE_LEGACY_BLC_EVENT_STATUS);
822
823         spin_unlock_irq(&dev_priv->irq_lock);
824 }
825
826 /*
827  * This timing diagram depicts the video signal in and
828  * around the vertical blanking period.
829  *
830  * Assumptions about the fictitious mode used in this example:
831  *  vblank_start >= 3
832  *  vsync_start = vblank_start + 1
833  *  vsync_end = vblank_start + 2
834  *  vtotal = vblank_start + 3
835  *
836  *           start of vblank:
837  *           latch double buffered registers
838  *           increment frame counter (ctg+)
839  *           generate start of vblank interrupt (gen4+)
840  *           |
841  *           |          frame start:
842  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
843  *           |          may be shifted forward 1-3 extra lines via PIPECONF
844  *           |          |
845  *           |          |  start of vsync:
846  *           |          |  generate vsync interrupt
847  *           |          |  |
848  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
849  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
850  * ----va---> <-----------------vb--------------------> <--------va-------------
851  *       |          |       <----vs----->                     |
852  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
853  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
854  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
855  *       |          |                                         |
856  *       last visible pixel                                   first visible pixel
857  *                  |                                         increment frame counter (gen3/4)
858  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
859  *
860  * x  = horizontal active
861  * _  = horizontal blanking
862  * hs = horizontal sync
863  * va = vertical active
864  * vb = vertical blanking
865  * vs = vertical sync
866  * vbs = vblank_start (number)
867  *
868  * Summary:
869  * - most events happen at the start of horizontal sync
870  * - frame start happens at the start of horizontal blank, 1-4 lines
871  *   (depending on PIPECONF settings) after the start of vblank
872  * - gen3/4 pixel and frame counter are synchronized with the start
873  *   of horizontal active on the first line of vertical active
874  */
875
876 /* Called from drm generic code, passed a 'crtc', which
877  * we use as a pipe index
878  */
879 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
880 {
881         struct drm_i915_private *dev_priv = to_i915(dev);
882         struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
883         const struct drm_display_mode *mode = &vblank->hwmode;
884         i915_reg_t high_frame, low_frame;
885         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
886         unsigned long irqflags;
887
888         /*
889          * On i965gm TV output the frame counter only works up to
890          * the point when we enable the TV encoder. After that the
891          * frame counter ceases to work and reads zero. We need a
892          * vblank wait before enabling the TV encoder and so we
893          * have to enable vblank interrupts while the frame counter
894          * is still in a working state. However the core vblank code
895          * does not like us returning non-zero frame counter values
896          * when we've told it that we don't have a working frame
897          * counter. Thus we must stop non-zero values leaking out.
898          */
899         if (!vblank->max_vblank_count)
900                 return 0;
901
902         htotal = mode->crtc_htotal;
903         hsync_start = mode->crtc_hsync_start;
904         vbl_start = mode->crtc_vblank_start;
905         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
906                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
907
908         /* Convert to pixel count */
909         vbl_start *= htotal;
910
911         /* Start of vblank event occurs at start of hsync */
912         vbl_start -= htotal - hsync_start;
913
914         high_frame = PIPEFRAME(pipe);
915         low_frame = PIPEFRAMEPIXEL(pipe);
916
917         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
918
919         /*
920          * High & low register fields aren't synchronized, so make sure
921          * we get a low value that's stable across two reads of the high
922          * register.
923          */
924         do {
925                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
926                 low   = I915_READ_FW(low_frame);
927                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
928         } while (high1 != high2);
929
930         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
931
932         high1 >>= PIPE_FRAME_HIGH_SHIFT;
933         pixel = low & PIPE_PIXEL_MASK;
934         low >>= PIPE_FRAME_LOW_SHIFT;
935
936         /*
937          * The frame counter increments at beginning of active.
938          * Cook up a vblank counter by also checking the pixel
939          * counter against vblank start.
940          */
941         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
942 }
943
944 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
945 {
946         struct drm_i915_private *dev_priv = to_i915(dev);
947
948         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
949 }
950
951 /*
952  * On certain encoders on certain platforms, pipe
953  * scanline register will not work to get the scanline,
954  * since the timings are driven from the PORT or issues
955  * with scanline register updates.
956  * This function will use Framestamp and current
957  * timestamp registers to calculate the scanline.
958  */
959 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
960 {
961         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
962         struct drm_vblank_crtc *vblank =
963                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
964         const struct drm_display_mode *mode = &vblank->hwmode;
965         u32 vblank_start = mode->crtc_vblank_start;
966         u32 vtotal = mode->crtc_vtotal;
967         u32 htotal = mode->crtc_htotal;
968         u32 clock = mode->crtc_clock;
969         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
970
971         /*
972          * To avoid the race condition where we might cross into the
973          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
974          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
975          * during the same frame.
976          */
977         do {
978                 /*
979                  * This field provides read back of the display
980                  * pipe frame time stamp. The time stamp value
981                  * is sampled at every start of vertical blank.
982                  */
983                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
984
985                 /*
986                  * The TIMESTAMP_CTR register has the current
987                  * time stamp value.
988                  */
989                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
990
991                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
992         } while (scan_post_time != scan_prev_time);
993
994         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
995                                         clock), 1000 * htotal);
996         scanline = min(scanline, vtotal - 1);
997         scanline = (scanline + vblank_start) % vtotal;
998
999         return scanline;
1000 }
1001
1002 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
1003 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
1004 {
1005         struct drm_device *dev = crtc->base.dev;
1006         struct drm_i915_private *dev_priv = to_i915(dev);
1007         const struct drm_display_mode *mode;
1008         struct drm_vblank_crtc *vblank;
1009         enum pipe pipe = crtc->pipe;
1010         int position, vtotal;
1011
1012         if (!crtc->active)
1013                 return -1;
1014
1015         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
1016         mode = &vblank->hwmode;
1017
1018         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
1019                 return __intel_get_crtc_scanline_from_timestamp(crtc);
1020
1021         vtotal = mode->crtc_vtotal;
1022         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1023                 vtotal /= 2;
1024
1025         if (IS_GEN(dev_priv, 2))
1026                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
1027         else
1028                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1029
1030         /*
1031          * On HSW, the DSL reg (0x70000) appears to return 0 if we
1032          * read it just before the start of vblank.  So try it again
1033          * so we don't accidentally end up spanning a vblank frame
1034          * increment, causing the pipe_update_end() code to squak at us.
1035          *
1036          * The nature of this problem means we can't simply check the ISR
1037          * bit and return the vblank start value; nor can we use the scanline
1038          * debug register in the transcoder as it appears to have the same
1039          * problem.  We may need to extend this to include other platforms,
1040          * but so far testing only shows the problem on HSW.
1041          */
1042         if (HAS_DDI(dev_priv) && !position) {
1043                 int i, temp;
1044
1045                 for (i = 0; i < 100; i++) {
1046                         udelay(1);
1047                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
1048                         if (temp != position) {
1049                                 position = temp;
1050                                 break;
1051                         }
1052                 }
1053         }
1054
1055         /*
1056          * See update_scanline_offset() for the details on the
1057          * scanline_offset adjustment.
1058          */
1059         return (position + crtc->scanline_offset) % vtotal;
1060 }
1061
1062 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
1063                                      bool in_vblank_irq, int *vpos, int *hpos,
1064                                      ktime_t *stime, ktime_t *etime,
1065                                      const struct drm_display_mode *mode)
1066 {
1067         struct drm_i915_private *dev_priv = to_i915(dev);
1068         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1069                                                                 pipe);
1070         int position;
1071         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1072         unsigned long irqflags;
1073         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
1074                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
1075                 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
1076
1077         if (WARN_ON(!mode->crtc_clock)) {
1078                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1079                                  "pipe %c\n", pipe_name(pipe));
1080                 return false;
1081         }
1082
1083         htotal = mode->crtc_htotal;
1084         hsync_start = mode->crtc_hsync_start;
1085         vtotal = mode->crtc_vtotal;
1086         vbl_start = mode->crtc_vblank_start;
1087         vbl_end = mode->crtc_vblank_end;
1088
1089         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1090                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1091                 vbl_end /= 2;
1092                 vtotal /= 2;
1093         }
1094
1095         /*
1096          * Lock uncore.lock, as we will do multiple timing critical raw
1097          * register reads, potentially with preemption disabled, so the
1098          * following code must not block on uncore.lock.
1099          */
1100         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1101
1102         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1103
1104         /* Get optional system timestamp before query. */
1105         if (stime)
1106                 *stime = ktime_get();
1107
1108         if (use_scanline_counter) {
1109                 /* No obvious pixelcount register. Only query vertical
1110                  * scanout position from Display scan line register.
1111                  */
1112                 position = __intel_get_crtc_scanline(intel_crtc);
1113         } else {
1114                 /* Have access to pixelcount since start of frame.
1115                  * We can split this into vertical and horizontal
1116                  * scanout position.
1117                  */
1118                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1119
1120                 /* convert to pixel counts */
1121                 vbl_start *= htotal;
1122                 vbl_end *= htotal;
1123                 vtotal *= htotal;
1124
1125                 /*
1126                  * In interlaced modes, the pixel counter counts all pixels,
1127                  * so one field will have htotal more pixels. In order to avoid
1128                  * the reported position from jumping backwards when the pixel
1129                  * counter is beyond the length of the shorter field, just
1130                  * clamp the position the length of the shorter field. This
1131                  * matches how the scanline counter based position works since
1132                  * the scanline counter doesn't count the two half lines.
1133                  */
1134                 if (position >= vtotal)
1135                         position = vtotal - 1;
1136
1137                 /*
1138                  * Start of vblank interrupt is triggered at start of hsync,
1139                  * just prior to the first active line of vblank. However we
1140                  * consider lines to start at the leading edge of horizontal
1141                  * active. So, should we get here before we've crossed into
1142                  * the horizontal active of the first line in vblank, we would
1143                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1144                  * always add htotal-hsync_start to the current pixel position.
1145                  */
1146                 position = (position + htotal - hsync_start) % vtotal;
1147         }
1148
1149         /* Get optional system timestamp after query. */
1150         if (etime)
1151                 *etime = ktime_get();
1152
1153         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1154
1155         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1156
1157         /*
1158          * While in vblank, position will be negative
1159          * counting up towards 0 at vbl_end. And outside
1160          * vblank, position will be positive counting
1161          * up since vbl_end.
1162          */
1163         if (position >= vbl_start)
1164                 position -= vbl_end;
1165         else
1166                 position += vtotal - vbl_end;
1167
1168         if (use_scanline_counter) {
1169                 *vpos = position;
1170                 *hpos = 0;
1171         } else {
1172                 *vpos = position / htotal;
1173                 *hpos = position - (*vpos * htotal);
1174         }
1175
1176         return true;
1177 }
1178
1179 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1180 {
1181         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1182         unsigned long irqflags;
1183         int position;
1184
1185         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1186         position = __intel_get_crtc_scanline(crtc);
1187         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1188
1189         return position;
1190 }
1191
1192 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1193 {
1194         u32 busy_up, busy_down, max_avg, min_avg;
1195         u8 new_delay;
1196
1197         spin_lock(&mchdev_lock);
1198
1199         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1200
1201         new_delay = dev_priv->ips.cur_delay;
1202
1203         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1204         busy_up = I915_READ(RCPREVBSYTUPAVG);
1205         busy_down = I915_READ(RCPREVBSYTDNAVG);
1206         max_avg = I915_READ(RCBMAXAVG);
1207         min_avg = I915_READ(RCBMINAVG);
1208
1209         /* Handle RCS change request from hw */
1210         if (busy_up > max_avg) {
1211                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1212                         new_delay = dev_priv->ips.cur_delay - 1;
1213                 if (new_delay < dev_priv->ips.max_delay)
1214                         new_delay = dev_priv->ips.max_delay;
1215         } else if (busy_down < min_avg) {
1216                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1217                         new_delay = dev_priv->ips.cur_delay + 1;
1218                 if (new_delay > dev_priv->ips.min_delay)
1219                         new_delay = dev_priv->ips.min_delay;
1220         }
1221
1222         if (ironlake_set_drps(dev_priv, new_delay))
1223                 dev_priv->ips.cur_delay = new_delay;
1224
1225         spin_unlock(&mchdev_lock);
1226
1227         return;
1228 }
1229
1230 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1231                         struct intel_rps_ei *ei)
1232 {
1233         ei->ktime = ktime_get_raw();
1234         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1235         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1236 }
1237
1238 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1239 {
1240         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1241 }
1242
1243 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1244 {
1245         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1246         const struct intel_rps_ei *prev = &rps->ei;
1247         struct intel_rps_ei now;
1248         u32 events = 0;
1249
1250         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1251                 return 0;
1252
1253         vlv_c0_read(dev_priv, &now);
1254
1255         if (prev->ktime) {
1256                 u64 time, c0;
1257                 u32 render, media;
1258
1259                 time = ktime_us_delta(now.ktime, prev->ktime);
1260
1261                 time *= dev_priv->czclk_freq;
1262
1263                 /* Workload can be split between render + media,
1264                  * e.g. SwapBuffers being blitted in X after being rendered in
1265                  * mesa. To account for this we need to combine both engines
1266                  * into our activity counter.
1267                  */
1268                 render = now.render_c0 - prev->render_c0;
1269                 media = now.media_c0 - prev->media_c0;
1270                 c0 = max(render, media);
1271                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1272
1273                 if (c0 > time * rps->power.up_threshold)
1274                         events = GEN6_PM_RP_UP_THRESHOLD;
1275                 else if (c0 < time * rps->power.down_threshold)
1276                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1277         }
1278
1279         rps->ei = now;
1280         return events;
1281 }
1282
1283 static void gen6_pm_rps_work(struct work_struct *work)
1284 {
1285         struct drm_i915_private *dev_priv =
1286                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1287         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1288         bool client_boost = false;
1289         int new_delay, adj, min, max;
1290         u32 pm_iir = 0;
1291
1292         spin_lock_irq(&dev_priv->irq_lock);
1293         if (rps->interrupts_enabled) {
1294                 pm_iir = fetch_and_zero(&rps->pm_iir);
1295                 client_boost = atomic_read(&rps->num_waiters);
1296         }
1297         spin_unlock_irq(&dev_priv->irq_lock);
1298
1299         /* Make sure we didn't queue anything we're not going to process. */
1300         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1301         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1302                 goto out;
1303
1304         mutex_lock(&dev_priv->pcu_lock);
1305
1306         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1307
1308         adj = rps->last_adj;
1309         new_delay = rps->cur_freq;
1310         min = rps->min_freq_softlimit;
1311         max = rps->max_freq_softlimit;
1312         if (client_boost)
1313                 max = rps->max_freq;
1314         if (client_boost && new_delay < rps->boost_freq) {
1315                 new_delay = rps->boost_freq;
1316                 adj = 0;
1317         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1318                 if (adj > 0)
1319                         adj *= 2;
1320                 else /* CHV needs even encode values */
1321                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1322
1323                 if (new_delay >= rps->max_freq_softlimit)
1324                         adj = 0;
1325         } else if (client_boost) {
1326                 adj = 0;
1327         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1328                 if (rps->cur_freq > rps->efficient_freq)
1329                         new_delay = rps->efficient_freq;
1330                 else if (rps->cur_freq > rps->min_freq_softlimit)
1331                         new_delay = rps->min_freq_softlimit;
1332                 adj = 0;
1333         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1334                 if (adj < 0)
1335                         adj *= 2;
1336                 else /* CHV needs even encode values */
1337                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1338
1339                 if (new_delay <= rps->min_freq_softlimit)
1340                         adj = 0;
1341         } else { /* unknown event */
1342                 adj = 0;
1343         }
1344
1345         rps->last_adj = adj;
1346
1347         /*
1348          * Limit deboosting and boosting to keep ourselves at the extremes
1349          * when in the respective power modes (i.e. slowly decrease frequencies
1350          * while in the HIGH_POWER zone and slowly increase frequencies while
1351          * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1352          * to the next level quickly, and conversely if busy we expect to
1353          * hit a waitboost and rapidly switch into max power.
1354          */
1355         if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1356             (adj > 0 && rps->power.mode == LOW_POWER))
1357                 rps->last_adj = 0;
1358
1359         /* sysfs frequency interfaces may have snuck in while servicing the
1360          * interrupt
1361          */
1362         new_delay += adj;
1363         new_delay = clamp_t(int, new_delay, min, max);
1364
1365         if (intel_set_rps(dev_priv, new_delay)) {
1366                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1367                 rps->last_adj = 0;
1368         }
1369
1370         mutex_unlock(&dev_priv->pcu_lock);
1371
1372 out:
1373         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1374         spin_lock_irq(&dev_priv->irq_lock);
1375         if (rps->interrupts_enabled)
1376                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1377         spin_unlock_irq(&dev_priv->irq_lock);
1378 }
1379
1380
1381 /**
1382  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1383  * occurred.
1384  * @work: workqueue struct
1385  *
1386  * Doesn't actually do anything except notify userspace. As a consequence of
1387  * this event, userspace should try to remap the bad rows since statistically
1388  * it is likely the same row is more likely to go bad again.
1389  */
1390 static void ivybridge_parity_work(struct work_struct *work)
1391 {
1392         struct drm_i915_private *dev_priv =
1393                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1394         u32 error_status, row, bank, subbank;
1395         char *parity_event[6];
1396         u32 misccpctl;
1397         u8 slice = 0;
1398
1399         /* We must turn off DOP level clock gating to access the L3 registers.
1400          * In order to prevent a get/put style interface, acquire struct mutex
1401          * any time we access those registers.
1402          */
1403         mutex_lock(&dev_priv->drm.struct_mutex);
1404
1405         /* If we've screwed up tracking, just let the interrupt fire again */
1406         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1407                 goto out;
1408
1409         misccpctl = I915_READ(GEN7_MISCCPCTL);
1410         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1411         POSTING_READ(GEN7_MISCCPCTL);
1412
1413         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1414                 i915_reg_t reg;
1415
1416                 slice--;
1417                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1418                         break;
1419
1420                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1421
1422                 reg = GEN7_L3CDERRST1(slice);
1423
1424                 error_status = I915_READ(reg);
1425                 row = GEN7_PARITY_ERROR_ROW(error_status);
1426                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1427                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1428
1429                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1430                 POSTING_READ(reg);
1431
1432                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1433                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1434                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1435                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1436                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1437                 parity_event[5] = NULL;
1438
1439                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1440                                    KOBJ_CHANGE, parity_event);
1441
1442                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1443                           slice, row, bank, subbank);
1444
1445                 kfree(parity_event[4]);
1446                 kfree(parity_event[3]);
1447                 kfree(parity_event[2]);
1448                 kfree(parity_event[1]);
1449         }
1450
1451         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1452
1453 out:
1454         WARN_ON(dev_priv->l3_parity.which_slice);
1455         spin_lock_irq(&dev_priv->irq_lock);
1456         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1457         spin_unlock_irq(&dev_priv->irq_lock);
1458
1459         mutex_unlock(&dev_priv->drm.struct_mutex);
1460 }
1461
1462 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1463                                                u32 iir)
1464 {
1465         if (!HAS_L3_DPF(dev_priv))
1466                 return;
1467
1468         spin_lock(&dev_priv->irq_lock);
1469         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1470         spin_unlock(&dev_priv->irq_lock);
1471
1472         iir &= GT_PARITY_ERROR(dev_priv);
1473         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1474                 dev_priv->l3_parity.which_slice |= 1 << 1;
1475
1476         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1477                 dev_priv->l3_parity.which_slice |= 1 << 0;
1478
1479         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1480 }
1481
1482 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1483                                u32 gt_iir)
1484 {
1485         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1486                 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1487         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1488                 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1489 }
1490
1491 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1492                                u32 gt_iir)
1493 {
1494         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1495                 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
1496         if (gt_iir & GT_BSD_USER_INTERRUPT)
1497                 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
1498         if (gt_iir & GT_BLT_USER_INTERRUPT)
1499                 intel_engine_breadcrumbs_irq(dev_priv->engine[BCS0]);
1500
1501         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1502                       GT_BSD_CS_ERROR_INTERRUPT |
1503                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1504                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1505
1506         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1507                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1508 }
1509
1510 static void
1511 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1512 {
1513         bool tasklet = false;
1514
1515         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1516                 tasklet = true;
1517
1518         if (iir & GT_RENDER_USER_INTERRUPT) {
1519                 intel_engine_breadcrumbs_irq(engine);
1520                 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
1521         }
1522
1523         if (tasklet)
1524                 tasklet_hi_schedule(&engine->execlists.tasklet);
1525 }
1526
1527 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1528                             u32 master_ctl, u32 gt_iir[4])
1529 {
1530         void __iomem * const regs = i915->uncore.regs;
1531
1532 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1533                       GEN8_GT_BCS_IRQ | \
1534                       GEN8_GT_VCS0_IRQ | \
1535                       GEN8_GT_VCS1_IRQ | \
1536                       GEN8_GT_VECS_IRQ | \
1537                       GEN8_GT_PM_IRQ | \
1538                       GEN8_GT_GUC_IRQ)
1539
1540         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1541                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1542                 if (likely(gt_iir[0]))
1543                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1544         }
1545
1546         if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1547                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1548                 if (likely(gt_iir[1]))
1549                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1550         }
1551
1552         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1553                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1554                 if (likely(gt_iir[2]))
1555                         raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1556         }
1557
1558         if (master_ctl & GEN8_GT_VECS_IRQ) {
1559                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1560                 if (likely(gt_iir[3]))
1561                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1562         }
1563 }
1564
1565 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1566                                 u32 master_ctl, u32 gt_iir[4])
1567 {
1568         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1569                 gen8_cs_irq_handler(i915->engine[RCS0],
1570                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1571                 gen8_cs_irq_handler(i915->engine[BCS0],
1572                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1573         }
1574
1575         if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
1576                 gen8_cs_irq_handler(i915->engine[VCS0],
1577                                     gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT);
1578                 gen8_cs_irq_handler(i915->engine[VCS1],
1579                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1580         }
1581
1582         if (master_ctl & GEN8_GT_VECS_IRQ) {
1583                 gen8_cs_irq_handler(i915->engine[VECS0],
1584                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1585         }
1586
1587         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1588                 gen6_rps_irq_handler(i915, gt_iir[2]);
1589                 gen9_guc_irq_handler(i915, gt_iir[2]);
1590         }
1591 }
1592
1593 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1594 {
1595         switch (pin) {
1596         case HPD_PORT_C:
1597                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1598         case HPD_PORT_D:
1599                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1600         case HPD_PORT_E:
1601                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1602         case HPD_PORT_F:
1603                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1604         default:
1605                 return false;
1606         }
1607 }
1608
1609 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 {
1611         switch (pin) {
1612         case HPD_PORT_A:
1613                 return val & PORTA_HOTPLUG_LONG_DETECT;
1614         case HPD_PORT_B:
1615                 return val & PORTB_HOTPLUG_LONG_DETECT;
1616         case HPD_PORT_C:
1617                 return val & PORTC_HOTPLUG_LONG_DETECT;
1618         default:
1619                 return false;
1620         }
1621 }
1622
1623 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1624 {
1625         switch (pin) {
1626         case HPD_PORT_A:
1627                 return val & ICP_DDIA_HPD_LONG_DETECT;
1628         case HPD_PORT_B:
1629                 return val & ICP_DDIB_HPD_LONG_DETECT;
1630         default:
1631                 return false;
1632         }
1633 }
1634
1635 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1636 {
1637         switch (pin) {
1638         case HPD_PORT_C:
1639                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1640         case HPD_PORT_D:
1641                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1642         case HPD_PORT_E:
1643                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1644         case HPD_PORT_F:
1645                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1646         default:
1647                 return false;
1648         }
1649 }
1650
1651 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1652 {
1653         switch (pin) {
1654         case HPD_PORT_E:
1655                 return val & PORTE_HOTPLUG_LONG_DETECT;
1656         default:
1657                 return false;
1658         }
1659 }
1660
1661 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1662 {
1663         switch (pin) {
1664         case HPD_PORT_A:
1665                 return val & PORTA_HOTPLUG_LONG_DETECT;
1666         case HPD_PORT_B:
1667                 return val & PORTB_HOTPLUG_LONG_DETECT;
1668         case HPD_PORT_C:
1669                 return val & PORTC_HOTPLUG_LONG_DETECT;
1670         case HPD_PORT_D:
1671                 return val & PORTD_HOTPLUG_LONG_DETECT;
1672         default:
1673                 return false;
1674         }
1675 }
1676
1677 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1678 {
1679         switch (pin) {
1680         case HPD_PORT_A:
1681                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1682         default:
1683                 return false;
1684         }
1685 }
1686
1687 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1688 {
1689         switch (pin) {
1690         case HPD_PORT_B:
1691                 return val & PORTB_HOTPLUG_LONG_DETECT;
1692         case HPD_PORT_C:
1693                 return val & PORTC_HOTPLUG_LONG_DETECT;
1694         case HPD_PORT_D:
1695                 return val & PORTD_HOTPLUG_LONG_DETECT;
1696         default:
1697                 return false;
1698         }
1699 }
1700
1701 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1702 {
1703         switch (pin) {
1704         case HPD_PORT_B:
1705                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1706         case HPD_PORT_C:
1707                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1708         case HPD_PORT_D:
1709                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1710         default:
1711                 return false;
1712         }
1713 }
1714
1715 /*
1716  * Get a bit mask of pins that have triggered, and which ones may be long.
1717  * This can be called multiple times with the same masks to accumulate
1718  * hotplug detection results from several registers.
1719  *
1720  * Note that the caller is expected to zero out the masks initially.
1721  */
1722 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1723                                u32 *pin_mask, u32 *long_mask,
1724                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1725                                const u32 hpd[HPD_NUM_PINS],
1726                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1727 {
1728         enum hpd_pin pin;
1729
1730         for_each_hpd_pin(pin) {
1731                 if ((hpd[pin] & hotplug_trigger) == 0)
1732                         continue;
1733
1734                 *pin_mask |= BIT(pin);
1735
1736                 if (long_pulse_detect(pin, dig_hotplug_reg))
1737                         *long_mask |= BIT(pin);
1738         }
1739
1740         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1741                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1742
1743 }
1744
1745 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1746 {
1747         wake_up_all(&dev_priv->gmbus_wait_queue);
1748 }
1749
1750 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1751 {
1752         wake_up_all(&dev_priv->gmbus_wait_queue);
1753 }
1754
1755 #if defined(CONFIG_DEBUG_FS)
1756 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1757                                          enum pipe pipe,
1758                                          u32 crc0, u32 crc1,
1759                                          u32 crc2, u32 crc3,
1760                                          u32 crc4)
1761 {
1762         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1763         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1764         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1765
1766         trace_intel_pipe_crc(crtc, crcs);
1767
1768         spin_lock(&pipe_crc->lock);
1769         /*
1770          * For some not yet identified reason, the first CRC is
1771          * bonkers. So let's just wait for the next vblank and read
1772          * out the buggy result.
1773          *
1774          * On GEN8+ sometimes the second CRC is bonkers as well, so
1775          * don't trust that one either.
1776          */
1777         if (pipe_crc->skipped <= 0 ||
1778             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1779                 pipe_crc->skipped++;
1780                 spin_unlock(&pipe_crc->lock);
1781                 return;
1782         }
1783         spin_unlock(&pipe_crc->lock);
1784
1785         drm_crtc_add_crc_entry(&crtc->base, true,
1786                                 drm_crtc_accurate_vblank_count(&crtc->base),
1787                                 crcs);
1788 }
1789 #else
1790 static inline void
1791 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1792                              enum pipe pipe,
1793                              u32 crc0, u32 crc1,
1794                              u32 crc2, u32 crc3,
1795                              u32 crc4) {}
1796 #endif
1797
1798
1799 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1800                                      enum pipe pipe)
1801 {
1802         display_pipe_crc_irq_handler(dev_priv, pipe,
1803                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1804                                      0, 0, 0, 0);
1805 }
1806
1807 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808                                      enum pipe pipe)
1809 {
1810         display_pipe_crc_irq_handler(dev_priv, pipe,
1811                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1812                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1813                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1814                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1815                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1816 }
1817
1818 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1819                                       enum pipe pipe)
1820 {
1821         u32 res1, res2;
1822
1823         if (INTEL_GEN(dev_priv) >= 3)
1824                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1825         else
1826                 res1 = 0;
1827
1828         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1829                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1830         else
1831                 res2 = 0;
1832
1833         display_pipe_crc_irq_handler(dev_priv, pipe,
1834                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1835                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1836                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1837                                      res1, res2);
1838 }
1839
1840 /* The RPS events need forcewake, so we add them to a work queue and mask their
1841  * IMR bits until the work is done. Other interrupts can be processed without
1842  * the work queue. */
1843 static void gen11_rps_irq_handler(struct drm_i915_private *i915, u32 pm_iir)
1844 {
1845         struct intel_rps *rps = &i915->gt_pm.rps;
1846         const u32 events = i915->pm_rps_events & pm_iir;
1847
1848         lockdep_assert_held(&i915->irq_lock);
1849
1850         if (unlikely(!events))
1851                 return;
1852
1853         gen6_mask_pm_irq(i915, events);
1854
1855         if (!rps->interrupts_enabled)
1856                 return;
1857
1858         rps->pm_iir |= events;
1859         schedule_work(&rps->work);
1860 }
1861
1862 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1863 {
1864         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1865
1866         if (pm_iir & dev_priv->pm_rps_events) {
1867                 spin_lock(&dev_priv->irq_lock);
1868                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1869                 if (rps->interrupts_enabled) {
1870                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1871                         schedule_work(&rps->work);
1872                 }
1873                 spin_unlock(&dev_priv->irq_lock);
1874         }
1875
1876         if (INTEL_GEN(dev_priv) >= 8)
1877                 return;
1878
1879         if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1880                 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1881
1882         if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1883                 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1884 }
1885
1886 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1887 {
1888         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1889                 intel_guc_to_host_event_handler(&dev_priv->guc);
1890 }
1891
1892 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1893 {
1894         enum pipe pipe;
1895
1896         for_each_pipe(dev_priv, pipe) {
1897                 I915_WRITE(PIPESTAT(pipe),
1898                            PIPESTAT_INT_STATUS_MASK |
1899                            PIPE_FIFO_UNDERRUN_STATUS);
1900
1901                 dev_priv->pipestat_irq_mask[pipe] = 0;
1902         }
1903 }
1904
1905 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1906                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1907 {
1908         int pipe;
1909
1910         spin_lock(&dev_priv->irq_lock);
1911
1912         if (!dev_priv->display_irqs_enabled) {
1913                 spin_unlock(&dev_priv->irq_lock);
1914                 return;
1915         }
1916
1917         for_each_pipe(dev_priv, pipe) {
1918                 i915_reg_t reg;
1919                 u32 status_mask, enable_mask, iir_bit = 0;
1920
1921                 /*
1922                  * PIPESTAT bits get signalled even when the interrupt is
1923                  * disabled with the mask bits, and some of the status bits do
1924                  * not generate interrupts at all (like the underrun bit). Hence
1925                  * we need to be careful that we only handle what we want to
1926                  * handle.
1927                  */
1928
1929                 /* fifo underruns are filterered in the underrun handler. */
1930                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1931
1932                 switch (pipe) {
1933                 case PIPE_A:
1934                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1935                         break;
1936                 case PIPE_B:
1937                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1938                         break;
1939                 case PIPE_C:
1940                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1941                         break;
1942                 }
1943                 if (iir & iir_bit)
1944                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1945
1946                 if (!status_mask)
1947                         continue;
1948
1949                 reg = PIPESTAT(pipe);
1950                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1951                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1952
1953                 /*
1954                  * Clear the PIPE*STAT regs before the IIR
1955                  *
1956                  * Toggle the enable bits to make sure we get an
1957                  * edge in the ISR pipe event bit if we don't clear
1958                  * all the enabled status bits. Otherwise the edge
1959                  * triggered IIR on i965/g4x wouldn't notice that
1960                  * an interrupt is still pending.
1961                  */
1962                 if (pipe_stats[pipe]) {
1963                         I915_WRITE(reg, pipe_stats[pipe]);
1964                         I915_WRITE(reg, enable_mask);
1965                 }
1966         }
1967         spin_unlock(&dev_priv->irq_lock);
1968 }
1969
1970 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1971                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1972 {
1973         enum pipe pipe;
1974
1975         for_each_pipe(dev_priv, pipe) {
1976                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1977                         drm_handle_vblank(&dev_priv->drm, pipe);
1978
1979                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1980                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1981
1982                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1983                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1984         }
1985 }
1986
1987 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1988                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1989 {
1990         bool blc_event = false;
1991         enum pipe pipe;
1992
1993         for_each_pipe(dev_priv, pipe) {
1994                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1995                         drm_handle_vblank(&dev_priv->drm, pipe);
1996
1997                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1998                         blc_event = true;
1999
2000                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2001                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2002
2003                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2004                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2005         }
2006
2007         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2008                 intel_opregion_asle_intr(dev_priv);
2009 }
2010
2011 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2012                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
2013 {
2014         bool blc_event = false;
2015         enum pipe pipe;
2016
2017         for_each_pipe(dev_priv, pipe) {
2018                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2019                         drm_handle_vblank(&dev_priv->drm, pipe);
2020
2021                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2022                         blc_event = true;
2023
2024                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2025                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2026
2027                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2028                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2029         }
2030
2031         if (blc_event || (iir & I915_ASLE_INTERRUPT))
2032                 intel_opregion_asle_intr(dev_priv);
2033
2034         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2035                 gmbus_irq_handler(dev_priv);
2036 }
2037
2038 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2039                                             u32 pipe_stats[I915_MAX_PIPES])
2040 {
2041         enum pipe pipe;
2042
2043         for_each_pipe(dev_priv, pipe) {
2044                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2045                         drm_handle_vblank(&dev_priv->drm, pipe);
2046
2047                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2048                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2049
2050                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2051                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2052         }
2053
2054         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2055                 gmbus_irq_handler(dev_priv);
2056 }
2057
2058 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2059 {
2060         u32 hotplug_status = 0, hotplug_status_mask;
2061         int i;
2062
2063         if (IS_G4X(dev_priv) ||
2064             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2065                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2066                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2067         else
2068                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2069
2070         /*
2071          * We absolutely have to clear all the pending interrupt
2072          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2073          * interrupt bit won't have an edge, and the i965/g4x
2074          * edge triggered IIR will not notice that an interrupt
2075          * is still pending. We can't use PORT_HOTPLUG_EN to
2076          * guarantee the edge as the act of toggling the enable
2077          * bits can itself generate a new hotplug interrupt :(
2078          */
2079         for (i = 0; i < 10; i++) {
2080                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2081
2082                 if (tmp == 0)
2083                         return hotplug_status;
2084
2085                 hotplug_status |= tmp;
2086                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2087         }
2088
2089         WARN_ONCE(1,
2090                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2091                   I915_READ(PORT_HOTPLUG_STAT));
2092
2093         return hotplug_status;
2094 }
2095
2096 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2097                                  u32 hotplug_status)
2098 {
2099         u32 pin_mask = 0, long_mask = 0;
2100
2101         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2102             IS_CHERRYVIEW(dev_priv)) {
2103                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2104
2105                 if (hotplug_trigger) {
2106                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2107                                            hotplug_trigger, hotplug_trigger,
2108                                            hpd_status_g4x,
2109                                            i9xx_port_hotplug_long_detect);
2110
2111                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2112                 }
2113
2114                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2115                         dp_aux_irq_handler(dev_priv);
2116         } else {
2117                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2118
2119                 if (hotplug_trigger) {
2120                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2121                                            hotplug_trigger, hotplug_trigger,
2122                                            hpd_status_i915,
2123                                            i9xx_port_hotplug_long_detect);
2124                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2125                 }
2126         }
2127 }
2128
2129 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2130 {
2131         struct drm_device *dev = arg;
2132         struct drm_i915_private *dev_priv = to_i915(dev);
2133         irqreturn_t ret = IRQ_NONE;
2134
2135         if (!intel_irqs_enabled(dev_priv))
2136                 return IRQ_NONE;
2137
2138         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2139         disable_rpm_wakeref_asserts(dev_priv);
2140
2141         do {
2142                 u32 iir, gt_iir, pm_iir;
2143                 u32 pipe_stats[I915_MAX_PIPES] = {};
2144                 u32 hotplug_status = 0;
2145                 u32 ier = 0;
2146
2147                 gt_iir = I915_READ(GTIIR);
2148                 pm_iir = I915_READ(GEN6_PMIIR);
2149                 iir = I915_READ(VLV_IIR);
2150
2151                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2152                         break;
2153
2154                 ret = IRQ_HANDLED;
2155
2156                 /*
2157                  * Theory on interrupt generation, based on empirical evidence:
2158                  *
2159                  * x = ((VLV_IIR & VLV_IER) ||
2160                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2161                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2162                  *
2163                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2164                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2165                  * guarantee the CPU interrupt will be raised again even if we
2166                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2167                  * bits this time around.
2168                  */
2169                 I915_WRITE(VLV_MASTER_IER, 0);
2170                 ier = I915_READ(VLV_IER);
2171                 I915_WRITE(VLV_IER, 0);
2172
2173                 if (gt_iir)
2174                         I915_WRITE(GTIIR, gt_iir);
2175                 if (pm_iir)
2176                         I915_WRITE(GEN6_PMIIR, pm_iir);
2177
2178                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2179                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2180
2181                 /* Call regardless, as some status bits might not be
2182                  * signalled in iir */
2183                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2184
2185                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2186                            I915_LPE_PIPE_B_INTERRUPT))
2187                         intel_lpe_audio_irq_handler(dev_priv);
2188
2189                 /*
2190                  * VLV_IIR is single buffered, and reflects the level
2191                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2192                  */
2193                 if (iir)
2194                         I915_WRITE(VLV_IIR, iir);
2195
2196                 I915_WRITE(VLV_IER, ier);
2197                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2198
2199                 if (gt_iir)
2200                         snb_gt_irq_handler(dev_priv, gt_iir);
2201                 if (pm_iir)
2202                         gen6_rps_irq_handler(dev_priv, pm_iir);
2203
2204                 if (hotplug_status)
2205                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2206
2207                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2208         } while (0);
2209
2210         enable_rpm_wakeref_asserts(dev_priv);
2211
2212         return ret;
2213 }
2214
2215 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2216 {
2217         struct drm_device *dev = arg;
2218         struct drm_i915_private *dev_priv = to_i915(dev);
2219         irqreturn_t ret = IRQ_NONE;
2220
2221         if (!intel_irqs_enabled(dev_priv))
2222                 return IRQ_NONE;
2223
2224         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2225         disable_rpm_wakeref_asserts(dev_priv);
2226
2227         do {
2228                 u32 master_ctl, iir;
2229                 u32 pipe_stats[I915_MAX_PIPES] = {};
2230                 u32 hotplug_status = 0;
2231                 u32 gt_iir[4];
2232                 u32 ier = 0;
2233
2234                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2235                 iir = I915_READ(VLV_IIR);
2236
2237                 if (master_ctl == 0 && iir == 0)
2238                         break;
2239
2240                 ret = IRQ_HANDLED;
2241
2242                 /*
2243                  * Theory on interrupt generation, based on empirical evidence:
2244                  *
2245                  * x = ((VLV_IIR & VLV_IER) ||
2246                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2247                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2248                  *
2249                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2250                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2251                  * guarantee the CPU interrupt will be raised again even if we
2252                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2253                  * bits this time around.
2254                  */
2255                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2256                 ier = I915_READ(VLV_IER);
2257                 I915_WRITE(VLV_IER, 0);
2258
2259                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2260
2261                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2262                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2263
2264                 /* Call regardless, as some status bits might not be
2265                  * signalled in iir */
2266                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2267
2268                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2269                            I915_LPE_PIPE_B_INTERRUPT |
2270                            I915_LPE_PIPE_C_INTERRUPT))
2271                         intel_lpe_audio_irq_handler(dev_priv);
2272
2273                 /*
2274                  * VLV_IIR is single buffered, and reflects the level
2275                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2276                  */
2277                 if (iir)
2278                         I915_WRITE(VLV_IIR, iir);
2279
2280                 I915_WRITE(VLV_IER, ier);
2281                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2282
2283                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2284
2285                 if (hotplug_status)
2286                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2287
2288                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2289         } while (0);
2290
2291         enable_rpm_wakeref_asserts(dev_priv);
2292
2293         return ret;
2294 }
2295
2296 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2297                                 u32 hotplug_trigger,
2298                                 const u32 hpd[HPD_NUM_PINS])
2299 {
2300         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2301
2302         /*
2303          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2304          * unless we touch the hotplug register, even if hotplug_trigger is
2305          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2306          * errors.
2307          */
2308         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2309         if (!hotplug_trigger) {
2310                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2311                         PORTD_HOTPLUG_STATUS_MASK |
2312                         PORTC_HOTPLUG_STATUS_MASK |
2313                         PORTB_HOTPLUG_STATUS_MASK;
2314                 dig_hotplug_reg &= ~mask;
2315         }
2316
2317         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2318         if (!hotplug_trigger)
2319                 return;
2320
2321         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2322                            dig_hotplug_reg, hpd,
2323                            pch_port_hotplug_long_detect);
2324
2325         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2326 }
2327
2328 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2329 {
2330         int pipe;
2331         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2332
2333         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2334
2335         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2336                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2337                                SDE_AUDIO_POWER_SHIFT);
2338                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2339                                  port_name(port));
2340         }
2341
2342         if (pch_iir & SDE_AUX_MASK)
2343                 dp_aux_irq_handler(dev_priv);
2344
2345         if (pch_iir & SDE_GMBUS)
2346                 gmbus_irq_handler(dev_priv);
2347
2348         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2349                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2350
2351         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2352                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2353
2354         if (pch_iir & SDE_POISON)
2355                 DRM_ERROR("PCH poison interrupt\n");
2356
2357         if (pch_iir & SDE_FDI_MASK)
2358                 for_each_pipe(dev_priv, pipe)
2359                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2360                                          pipe_name(pipe),
2361                                          I915_READ(FDI_RX_IIR(pipe)));
2362
2363         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2364                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2365
2366         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2367                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2368
2369         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2370                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2371
2372         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2373                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2374 }
2375
2376 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2377 {
2378         u32 err_int = I915_READ(GEN7_ERR_INT);
2379         enum pipe pipe;
2380
2381         if (err_int & ERR_INT_POISON)
2382                 DRM_ERROR("Poison interrupt\n");
2383
2384         for_each_pipe(dev_priv, pipe) {
2385                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2386                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2387
2388                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2389                         if (IS_IVYBRIDGE(dev_priv))
2390                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2391                         else
2392                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2393                 }
2394         }
2395
2396         I915_WRITE(GEN7_ERR_INT, err_int);
2397 }
2398
2399 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2400 {
2401         u32 serr_int = I915_READ(SERR_INT);
2402         enum pipe pipe;
2403
2404         if (serr_int & SERR_INT_POISON)
2405                 DRM_ERROR("PCH poison interrupt\n");
2406
2407         for_each_pipe(dev_priv, pipe)
2408                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2409                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2410
2411         I915_WRITE(SERR_INT, serr_int);
2412 }
2413
2414 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2415 {
2416         int pipe;
2417         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2418
2419         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2420
2421         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2422                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2423                                SDE_AUDIO_POWER_SHIFT_CPT);
2424                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2425                                  port_name(port));
2426         }
2427
2428         if (pch_iir & SDE_AUX_MASK_CPT)
2429                 dp_aux_irq_handler(dev_priv);
2430
2431         if (pch_iir & SDE_GMBUS_CPT)
2432                 gmbus_irq_handler(dev_priv);
2433
2434         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2435                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2436
2437         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2438                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2439
2440         if (pch_iir & SDE_FDI_MASK_CPT)
2441                 for_each_pipe(dev_priv, pipe)
2442                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2443                                          pipe_name(pipe),
2444                                          I915_READ(FDI_RX_IIR(pipe)));
2445
2446         if (pch_iir & SDE_ERROR_CPT)
2447                 cpt_serr_int_handler(dev_priv);
2448 }
2449
2450 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2451 {
2452         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2453         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2454         u32 pin_mask = 0, long_mask = 0;
2455
2456         if (ddi_hotplug_trigger) {
2457                 u32 dig_hotplug_reg;
2458
2459                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2460                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2461
2462                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2463                                    ddi_hotplug_trigger,
2464                                    dig_hotplug_reg, hpd_icp,
2465                                    icp_ddi_port_hotplug_long_detect);
2466         }
2467
2468         if (tc_hotplug_trigger) {
2469                 u32 dig_hotplug_reg;
2470
2471                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2472                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2473
2474                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2475                                    tc_hotplug_trigger,
2476                                    dig_hotplug_reg, hpd_icp,
2477                                    icp_tc_port_hotplug_long_detect);
2478         }
2479
2480         if (pin_mask)
2481                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2482
2483         if (pch_iir & SDE_GMBUS_ICP)
2484                 gmbus_irq_handler(dev_priv);
2485 }
2486
2487 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2488 {
2489         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2490                 ~SDE_PORTE_HOTPLUG_SPT;
2491         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2492         u32 pin_mask = 0, long_mask = 0;
2493
2494         if (hotplug_trigger) {
2495                 u32 dig_hotplug_reg;
2496
2497                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2498                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2499
2500                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2501                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2502                                    spt_port_hotplug_long_detect);
2503         }
2504
2505         if (hotplug2_trigger) {
2506                 u32 dig_hotplug_reg;
2507
2508                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2509                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2510
2511                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2512                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2513                                    spt_port_hotplug2_long_detect);
2514         }
2515
2516         if (pin_mask)
2517                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2518
2519         if (pch_iir & SDE_GMBUS_CPT)
2520                 gmbus_irq_handler(dev_priv);
2521 }
2522
2523 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2524                                 u32 hotplug_trigger,
2525                                 const u32 hpd[HPD_NUM_PINS])
2526 {
2527         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2528
2529         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2530         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2531
2532         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2533                            dig_hotplug_reg, hpd,
2534                            ilk_port_hotplug_long_detect);
2535
2536         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2537 }
2538
2539 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2540                                     u32 de_iir)
2541 {
2542         enum pipe pipe;
2543         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2544
2545         if (hotplug_trigger)
2546                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2547
2548         if (de_iir & DE_AUX_CHANNEL_A)
2549                 dp_aux_irq_handler(dev_priv);
2550
2551         if (de_iir & DE_GSE)
2552                 intel_opregion_asle_intr(dev_priv);
2553
2554         if (de_iir & DE_POISON)
2555                 DRM_ERROR("Poison interrupt\n");
2556
2557         for_each_pipe(dev_priv, pipe) {
2558                 if (de_iir & DE_PIPE_VBLANK(pipe))
2559                         drm_handle_vblank(&dev_priv->drm, pipe);
2560
2561                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2562                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2563
2564                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2565                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2566         }
2567
2568         /* check event from PCH */
2569         if (de_iir & DE_PCH_EVENT) {
2570                 u32 pch_iir = I915_READ(SDEIIR);
2571
2572                 if (HAS_PCH_CPT(dev_priv))
2573                         cpt_irq_handler(dev_priv, pch_iir);
2574                 else
2575                         ibx_irq_handler(dev_priv, pch_iir);
2576
2577                 /* should clear PCH hotplug event before clear CPU irq */
2578                 I915_WRITE(SDEIIR, pch_iir);
2579         }
2580
2581         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2582                 ironlake_rps_change_irq_handler(dev_priv);
2583 }
2584
2585 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2586                                     u32 de_iir)
2587 {
2588         enum pipe pipe;
2589         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2590
2591         if (hotplug_trigger)
2592                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2593
2594         if (de_iir & DE_ERR_INT_IVB)
2595                 ivb_err_int_handler(dev_priv);
2596
2597         if (de_iir & DE_EDP_PSR_INT_HSW) {
2598                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2599
2600                 intel_psr_irq_handler(dev_priv, psr_iir);
2601                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2602         }
2603
2604         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2605                 dp_aux_irq_handler(dev_priv);
2606
2607         if (de_iir & DE_GSE_IVB)
2608                 intel_opregion_asle_intr(dev_priv);
2609
2610         for_each_pipe(dev_priv, pipe) {
2611                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2612                         drm_handle_vblank(&dev_priv->drm, pipe);
2613         }
2614
2615         /* check event from PCH */
2616         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2617                 u32 pch_iir = I915_READ(SDEIIR);
2618
2619                 cpt_irq_handler(dev_priv, pch_iir);
2620
2621                 /* clear PCH hotplug event before clear CPU irq */
2622                 I915_WRITE(SDEIIR, pch_iir);
2623         }
2624 }
2625
2626 /*
2627  * To handle irqs with the minimum potential races with fresh interrupts, we:
2628  * 1 - Disable Master Interrupt Control.
2629  * 2 - Find the source(s) of the interrupt.
2630  * 3 - Clear the Interrupt Identity bits (IIR).
2631  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2632  * 5 - Re-enable Master Interrupt Control.
2633  */
2634 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2635 {
2636         struct drm_device *dev = arg;
2637         struct drm_i915_private *dev_priv = to_i915(dev);
2638         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2639         irqreturn_t ret = IRQ_NONE;
2640
2641         if (!intel_irqs_enabled(dev_priv))
2642                 return IRQ_NONE;
2643
2644         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2645         disable_rpm_wakeref_asserts(dev_priv);
2646
2647         /* disable master interrupt before clearing iir  */
2648         de_ier = I915_READ(DEIER);
2649         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2650
2651         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2652          * interrupts will will be stored on its back queue, and then we'll be
2653          * able to process them after we restore SDEIER (as soon as we restore
2654          * it, we'll get an interrupt if SDEIIR still has something to process
2655          * due to its back queue). */
2656         if (!HAS_PCH_NOP(dev_priv)) {
2657                 sde_ier = I915_READ(SDEIER);
2658                 I915_WRITE(SDEIER, 0);
2659         }
2660
2661         /* Find, clear, then process each source of interrupt */
2662
2663         gt_iir = I915_READ(GTIIR);
2664         if (gt_iir) {
2665                 I915_WRITE(GTIIR, gt_iir);
2666                 ret = IRQ_HANDLED;
2667                 if (INTEL_GEN(dev_priv) >= 6)
2668                         snb_gt_irq_handler(dev_priv, gt_iir);
2669                 else
2670                         ilk_gt_irq_handler(dev_priv, gt_iir);
2671         }
2672
2673         de_iir = I915_READ(DEIIR);
2674         if (de_iir) {
2675                 I915_WRITE(DEIIR, de_iir);
2676                 ret = IRQ_HANDLED;
2677                 if (INTEL_GEN(dev_priv) >= 7)
2678                         ivb_display_irq_handler(dev_priv, de_iir);
2679                 else
2680                         ilk_display_irq_handler(dev_priv, de_iir);
2681         }
2682
2683         if (INTEL_GEN(dev_priv) >= 6) {
2684                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2685                 if (pm_iir) {
2686                         I915_WRITE(GEN6_PMIIR, pm_iir);
2687                         ret = IRQ_HANDLED;
2688                         gen6_rps_irq_handler(dev_priv, pm_iir);
2689                 }
2690         }
2691
2692         I915_WRITE(DEIER, de_ier);
2693         if (!HAS_PCH_NOP(dev_priv))
2694                 I915_WRITE(SDEIER, sde_ier);
2695
2696         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2697         enable_rpm_wakeref_asserts(dev_priv);
2698
2699         return ret;
2700 }
2701
2702 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2703                                 u32 hotplug_trigger,
2704                                 const u32 hpd[HPD_NUM_PINS])
2705 {
2706         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2707
2708         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2709         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2710
2711         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2712                            dig_hotplug_reg, hpd,
2713                            bxt_port_hotplug_long_detect);
2714
2715         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2716 }
2717
2718 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2719 {
2720         u32 pin_mask = 0, long_mask = 0;
2721         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2722         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2723
2724         if (trigger_tc) {
2725                 u32 dig_hotplug_reg;
2726
2727                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2728                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2729
2730                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2731                                    dig_hotplug_reg, hpd_gen11,
2732                                    gen11_port_hotplug_long_detect);
2733         }
2734
2735         if (trigger_tbt) {
2736                 u32 dig_hotplug_reg;
2737
2738                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2739                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2740
2741                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2742                                    dig_hotplug_reg, hpd_gen11,
2743                                    gen11_port_hotplug_long_detect);
2744         }
2745
2746         if (pin_mask)
2747                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2748         else
2749                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2750 }
2751
2752 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2753 {
2754         u32 mask = GEN8_AUX_CHANNEL_A;
2755
2756         if (INTEL_GEN(dev_priv) >= 9)
2757                 mask |= GEN9_AUX_CHANNEL_B |
2758                         GEN9_AUX_CHANNEL_C |
2759                         GEN9_AUX_CHANNEL_D;
2760
2761         if (IS_CNL_WITH_PORT_F(dev_priv))
2762                 mask |= CNL_AUX_CHANNEL_F;
2763
2764         if (INTEL_GEN(dev_priv) >= 11)
2765                 mask |= ICL_AUX_CHANNEL_E |
2766                         CNL_AUX_CHANNEL_F;
2767
2768         return mask;
2769 }
2770
2771 static irqreturn_t
2772 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2773 {
2774         irqreturn_t ret = IRQ_NONE;
2775         u32 iir;
2776         enum pipe pipe;
2777
2778         if (master_ctl & GEN8_DE_MISC_IRQ) {
2779                 iir = I915_READ(GEN8_DE_MISC_IIR);
2780                 if (iir) {
2781                         bool found = false;
2782
2783                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2784                         ret = IRQ_HANDLED;
2785
2786                         if (iir & GEN8_DE_MISC_GSE) {
2787                                 intel_opregion_asle_intr(dev_priv);
2788                                 found = true;
2789                         }
2790
2791                         if (iir & GEN8_DE_EDP_PSR) {
2792                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2793
2794                                 intel_psr_irq_handler(dev_priv, psr_iir);
2795                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2796                                 found = true;
2797                         }
2798
2799                         if (!found)
2800                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2801                 }
2802                 else
2803                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2804         }
2805
2806         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2807                 iir = I915_READ(GEN11_DE_HPD_IIR);
2808                 if (iir) {
2809                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2810                         ret = IRQ_HANDLED;
2811                         gen11_hpd_irq_handler(dev_priv, iir);
2812                 } else {
2813                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2814                 }
2815         }
2816
2817         if (master_ctl & GEN8_DE_PORT_IRQ) {
2818                 iir = I915_READ(GEN8_DE_PORT_IIR);
2819                 if (iir) {
2820                         u32 tmp_mask;
2821                         bool found = false;
2822
2823                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2824                         ret = IRQ_HANDLED;
2825
2826                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2827                                 dp_aux_irq_handler(dev_priv);
2828                                 found = true;
2829                         }
2830
2831                         if (IS_GEN9_LP(dev_priv)) {
2832                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2833                                 if (tmp_mask) {
2834                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2835                                                             hpd_bxt);
2836                                         found = true;
2837                                 }
2838                         } else if (IS_BROADWELL(dev_priv)) {
2839                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2840                                 if (tmp_mask) {
2841                                         ilk_hpd_irq_handler(dev_priv,
2842                                                             tmp_mask, hpd_bdw);
2843                                         found = true;
2844                                 }
2845                         }
2846
2847                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2848                                 gmbus_irq_handler(dev_priv);
2849                                 found = true;
2850                         }
2851
2852                         if (!found)
2853                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2854                 }
2855                 else
2856                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2857         }
2858
2859         for_each_pipe(dev_priv, pipe) {
2860                 u32 fault_errors;
2861
2862                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2863                         continue;
2864
2865                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2866                 if (!iir) {
2867                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2868                         continue;
2869                 }
2870
2871                 ret = IRQ_HANDLED;
2872                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2873
2874                 if (iir & GEN8_PIPE_VBLANK)
2875                         drm_handle_vblank(&dev_priv->drm, pipe);
2876
2877                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2878                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2879
2880                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2881                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2882
2883                 fault_errors = iir;
2884                 if (INTEL_GEN(dev_priv) >= 9)
2885                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2886                 else
2887                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2888
2889                 if (fault_errors)
2890                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2891                                   pipe_name(pipe),
2892                                   fault_errors);
2893         }
2894
2895         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2896             master_ctl & GEN8_DE_PCH_IRQ) {
2897                 /*
2898                  * FIXME(BDW): Assume for now that the new interrupt handling
2899                  * scheme also closed the SDE interrupt handling race we've seen
2900                  * on older pch-split platforms. But this needs testing.
2901                  */
2902                 iir = I915_READ(SDEIIR);
2903                 if (iir) {
2904                         I915_WRITE(SDEIIR, iir);
2905                         ret = IRQ_HANDLED;
2906
2907                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2908                                 icp_irq_handler(dev_priv, iir);
2909                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2910                                 spt_irq_handler(dev_priv, iir);
2911                         else
2912                                 cpt_irq_handler(dev_priv, iir);
2913                 } else {
2914                         /*
2915                          * Like on previous PCH there seems to be something
2916                          * fishy going on with forwarding PCH interrupts.
2917                          */
2918                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2919                 }
2920         }
2921
2922         return ret;
2923 }
2924
2925 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2926 {
2927         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2928
2929         /*
2930          * Now with master disabled, get a sample of level indications
2931          * for this interrupt. Indications will be cleared on related acks.
2932          * New indications can and will light up during processing,
2933          * and will generate new interrupt after enabling master.
2934          */
2935         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2936 }
2937
2938 static inline void gen8_master_intr_enable(void __iomem * const regs)
2939 {
2940         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2941 }
2942
2943 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2944 {
2945         struct drm_i915_private *dev_priv = to_i915(arg);
2946         void __iomem * const regs = dev_priv->uncore.regs;
2947         u32 master_ctl;
2948         u32 gt_iir[4];
2949
2950         if (!intel_irqs_enabled(dev_priv))
2951                 return IRQ_NONE;
2952
2953         master_ctl = gen8_master_intr_disable(regs);
2954         if (!master_ctl) {
2955                 gen8_master_intr_enable(regs);
2956                 return IRQ_NONE;
2957         }
2958
2959         /* Find, clear, then process each source of interrupt */
2960         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2961
2962         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2963         if (master_ctl & ~GEN8_GT_IRQS) {
2964                 disable_rpm_wakeref_asserts(dev_priv);
2965                 gen8_de_irq_handler(dev_priv, master_ctl);
2966                 enable_rpm_wakeref_asserts(dev_priv);
2967         }
2968
2969         gen8_master_intr_enable(regs);
2970
2971         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2972
2973         return IRQ_HANDLED;
2974 }
2975
2976 static u32
2977 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2978                          const unsigned int bank, const unsigned int bit)
2979 {
2980         void __iomem * const regs = i915->uncore.regs;
2981         u32 timeout_ts;
2982         u32 ident;
2983
2984         lockdep_assert_held(&i915->irq_lock);
2985
2986         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2987
2988         /*
2989          * NB: Specs do not specify how long to spin wait,
2990          * so we do ~100us as an educated guess.
2991          */
2992         timeout_ts = (local_clock() >> 10) + 100;
2993         do {
2994                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2995         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2996                  !time_after32(local_clock() >> 10, timeout_ts));
2997
2998         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2999                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
3000                           bank, bit, ident);
3001                 return 0;
3002         }
3003
3004         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3005                       GEN11_INTR_DATA_VALID);
3006
3007         return ident;
3008 }
3009
3010 static void
3011 gen11_other_irq_handler(struct drm_i915_private * const i915,
3012                         const u8 instance, const u16 iir)
3013 {
3014         if (instance == OTHER_GTPM_INSTANCE)
3015                 return gen11_rps_irq_handler(i915, iir);
3016
3017         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3018                   instance, iir);
3019 }
3020
3021 static void
3022 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3023                          const u8 class, const u8 instance, const u16 iir)
3024 {
3025         struct intel_engine_cs *engine;
3026
3027         if (instance <= MAX_ENGINE_INSTANCE)
3028                 engine = i915->engine_class[class][instance];
3029         else
3030                 engine = NULL;
3031
3032         if (likely(engine))
3033                 return gen8_cs_irq_handler(engine, iir);
3034
3035         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3036                   class, instance);
3037 }
3038
3039 static void
3040 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3041                           const u32 identity)
3042 {
3043         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3044         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3045         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3046
3047         if (unlikely(!intr))
3048                 return;
3049
3050         if (class <= COPY_ENGINE_CLASS)
3051                 return gen11_engine_irq_handler(i915, class, instance, intr);
3052
3053         if (class == OTHER_CLASS)
3054                 return gen11_other_irq_handler(i915, instance, intr);
3055
3056         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3057                   class, instance, intr);
3058 }
3059
3060 static void
3061 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3062                       const unsigned int bank)
3063 {
3064         void __iomem * const regs = i915->uncore.regs;
3065         unsigned long intr_dw;
3066         unsigned int bit;
3067
3068         lockdep_assert_held(&i915->irq_lock);
3069
3070         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3071
3072         for_each_set_bit(bit, &intr_dw, 32) {
3073                 const u32 ident = gen11_gt_engine_identity(i915, bank, bit);
3074
3075                 gen11_gt_identity_handler(i915, ident);
3076         }
3077
3078         /* Clear must be after shared has been served for engine */
3079         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3080 }
3081
3082 static void
3083 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3084                      const u32 master_ctl)
3085 {
3086         unsigned int bank;
3087
3088         spin_lock(&i915->irq_lock);
3089
3090         for (bank = 0; bank < 2; bank++) {
3091                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3092                         gen11_gt_bank_handler(i915, bank);
3093         }
3094
3095         spin_unlock(&i915->irq_lock);
3096 }
3097
3098 static u32
3099 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3100 {
3101         void __iomem * const regs = dev_priv->uncore.regs;
3102         u32 iir;
3103
3104         if (!(master_ctl & GEN11_GU_MISC_IRQ))
3105                 return 0;
3106
3107         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3108         if (likely(iir))
3109                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3110
3111         return iir;
3112 }
3113
3114 static void
3115 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3116 {
3117         if (iir & GEN11_GU_MISC_GSE)
3118                 intel_opregion_asle_intr(dev_priv);
3119 }
3120
3121 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3122 {
3123         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3124
3125         /*
3126          * Now with master disabled, get a sample of level indications
3127          * for this interrupt. Indications will be cleared on related acks.
3128          * New indications can and will light up during processing,
3129          * and will generate new interrupt after enabling master.
3130          */
3131         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3132 }
3133
3134 static inline void gen11_master_intr_enable(void __iomem * const regs)
3135 {
3136         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3137 }
3138
3139 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3140 {
3141         struct drm_i915_private * const i915 = to_i915(arg);
3142         void __iomem * const regs = i915->uncore.regs;
3143         u32 master_ctl;
3144         u32 gu_misc_iir;
3145
3146         if (!intel_irqs_enabled(i915))
3147                 return IRQ_NONE;
3148
3149         master_ctl = gen11_master_intr_disable(regs);
3150         if (!master_ctl) {
3151                 gen11_master_intr_enable(regs);
3152                 return IRQ_NONE;
3153         }
3154
3155         /* Find, clear, then process each source of interrupt. */
3156         gen11_gt_irq_handler(i915, master_ctl);
3157
3158         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3159         if (master_ctl & GEN11_DISPLAY_IRQ) {
3160                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3161
3162                 disable_rpm_wakeref_asserts(i915);
3163                 /*
3164                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3165                  * for the display related bits.
3166                  */
3167                 gen8_de_irq_handler(i915, disp_ctl);
3168                 enable_rpm_wakeref_asserts(i915);
3169         }
3170
3171         gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3172
3173         gen11_master_intr_enable(regs);
3174
3175         gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3176
3177         return IRQ_HANDLED;
3178 }
3179
3180 /* Called from drm generic code, passed 'crtc' which
3181  * we use as a pipe index
3182  */
3183 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3184 {
3185         struct drm_i915_private *dev_priv = to_i915(dev);
3186         unsigned long irqflags;
3187
3188         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3189         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3190         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3191
3192         return 0;
3193 }
3194
3195 static int i945gm_enable_vblank(struct drm_device *dev, unsigned int pipe)
3196 {
3197         struct drm_i915_private *dev_priv = to_i915(dev);
3198
3199         if (dev_priv->i945gm_vblank.enabled++ == 0)
3200                 schedule_work(&dev_priv->i945gm_vblank.work);
3201
3202         return i8xx_enable_vblank(dev, pipe);
3203 }
3204
3205 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3206 {
3207         struct drm_i915_private *dev_priv = to_i915(dev);
3208         unsigned long irqflags;
3209
3210         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3211         i915_enable_pipestat(dev_priv, pipe,
3212                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3213         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3214
3215         return 0;
3216 }
3217
3218 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3219 {
3220         struct drm_i915_private *dev_priv = to_i915(dev);
3221         unsigned long irqflags;
3222         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3223                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3224
3225         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3226         ilk_enable_display_irq(dev_priv, bit);
3227         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3228
3229         /* Even though there is no DMC, frame counter can get stuck when
3230          * PSR is active as no frames are generated.
3231          */
3232         if (HAS_PSR(dev_priv))
3233                 drm_vblank_restore(dev, pipe);
3234
3235         return 0;
3236 }
3237
3238 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3239 {
3240         struct drm_i915_private *dev_priv = to_i915(dev);
3241         unsigned long irqflags;
3242
3243         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3244         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3245         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3246
3247         /* Even if there is no DMC, frame counter can get stuck when
3248          * PSR is active as no frames are generated, so check only for PSR.
3249          */
3250         if (HAS_PSR(dev_priv))
3251                 drm_vblank_restore(dev, pipe);
3252
3253         return 0;
3254 }
3255
3256 /* Called from drm generic code, passed 'crtc' which
3257  * we use as a pipe index
3258  */
3259 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3260 {
3261         struct drm_i915_private *dev_priv = to_i915(dev);
3262         unsigned long irqflags;
3263
3264         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3265         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3266         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3267 }
3268
3269 static void i945gm_disable_vblank(struct drm_device *dev, unsigned int pipe)
3270 {
3271         struct drm_i915_private *dev_priv = to_i915(dev);
3272
3273         i8xx_disable_vblank(dev, pipe);
3274
3275         if (--dev_priv->i945gm_vblank.enabled == 0)
3276                 schedule_work(&dev_priv->i945gm_vblank.work);
3277 }
3278
3279 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3280 {
3281         struct drm_i915_private *dev_priv = to_i915(dev);
3282         unsigned long irqflags;
3283
3284         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3285         i915_disable_pipestat(dev_priv, pipe,
3286                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3287         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3288 }
3289
3290 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3291 {
3292         struct drm_i915_private *dev_priv = to_i915(dev);
3293         unsigned long irqflags;
3294         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3295                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3296
3297         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3298         ilk_disable_display_irq(dev_priv, bit);
3299         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3300 }
3301
3302 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3303 {
3304         struct drm_i915_private *dev_priv = to_i915(dev);
3305         unsigned long irqflags;
3306
3307         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3308         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3309         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3310 }
3311
3312 static void i945gm_vblank_work_func(struct work_struct *work)
3313 {
3314         struct drm_i915_private *dev_priv =
3315                 container_of(work, struct drm_i915_private, i945gm_vblank.work);
3316
3317         /*
3318          * Vblank interrupts fail to wake up the device from C3,
3319          * hence we want to prevent C3 usage while vblank interrupts
3320          * are enabled.
3321          */
3322         pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3323                               READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3324                               dev_priv->i945gm_vblank.c3_disable_latency :
3325                               PM_QOS_DEFAULT_VALUE);
3326 }
3327
3328 static int cstate_disable_latency(const char *name)
3329 {
3330         const struct cpuidle_driver *drv;
3331         int i;
3332
3333         drv = cpuidle_get_driver();
3334         if (!drv)
3335                 return 0;
3336
3337         for (i = 0; i < drv->state_count; i++) {
3338                 const struct cpuidle_state *state = &drv->states[i];
3339
3340                 if (!strcmp(state->name, name))
3341                         return state->exit_latency ?
3342                                 state->exit_latency - 1 : 0;
3343         }
3344
3345         return 0;
3346 }
3347
3348 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3349 {
3350         INIT_WORK(&dev_priv->i945gm_vblank.work,
3351                   i945gm_vblank_work_func);
3352
3353         dev_priv->i945gm_vblank.c3_disable_latency =
3354                 cstate_disable_latency("C3");
3355         pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3356                            PM_QOS_CPU_DMA_LATENCY,
3357                            PM_QOS_DEFAULT_VALUE);
3358 }
3359
3360 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3361 {
3362         cancel_work_sync(&dev_priv->i945gm_vblank.work);
3363         pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3364 }
3365
3366 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3367 {
3368         struct intel_uncore *uncore = &dev_priv->uncore;
3369
3370         if (HAS_PCH_NOP(dev_priv))
3371                 return;
3372
3373         GEN3_IRQ_RESET(uncore, SDE);
3374
3375         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3376                 I915_WRITE(SERR_INT, 0xffffffff);
3377 }
3378
3379 /*
3380  * SDEIER is also touched by the interrupt handler to work around missed PCH
3381  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3382  * instead we unconditionally enable all PCH interrupt sources here, but then
3383  * only unmask them as needed with SDEIMR.
3384  *
3385  * This function needs to be called before interrupts are enabled.
3386  */
3387 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3388 {
3389         struct drm_i915_private *dev_priv = to_i915(dev);
3390
3391         if (HAS_PCH_NOP(dev_priv))
3392                 return;
3393
3394         WARN_ON(I915_READ(SDEIER) != 0);
3395         I915_WRITE(SDEIER, 0xffffffff);
3396         POSTING_READ(SDEIER);
3397 }
3398
3399 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3400 {
3401         struct intel_uncore *uncore = &dev_priv->uncore;
3402
3403         GEN3_IRQ_RESET(uncore, GT);
3404         if (INTEL_GEN(dev_priv) >= 6)
3405                 GEN3_IRQ_RESET(uncore, GEN6_PM);
3406 }
3407
3408 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3409 {
3410         struct intel_uncore *uncore = &dev_priv->uncore;
3411
3412         if (IS_CHERRYVIEW(dev_priv))
3413                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3414         else
3415                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3416
3417         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3418         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3419
3420         i9xx_pipestat_irq_reset(dev_priv);
3421
3422         GEN3_IRQ_RESET(uncore, VLV_);
3423         dev_priv->irq_mask = ~0u;
3424 }
3425
3426 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3427 {
3428         struct intel_uncore *uncore = &dev_priv->uncore;
3429
3430         u32 pipestat_mask;
3431         u32 enable_mask;
3432         enum pipe pipe;
3433
3434         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3435
3436         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3437         for_each_pipe(dev_priv, pipe)
3438                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3439
3440         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3441                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3442                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3443                 I915_LPE_PIPE_A_INTERRUPT |
3444                 I915_LPE_PIPE_B_INTERRUPT;
3445
3446         if (IS_CHERRYVIEW(dev_priv))
3447                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3448                         I915_LPE_PIPE_C_INTERRUPT;
3449
3450         WARN_ON(dev_priv->irq_mask != ~0u);
3451
3452         dev_priv->irq_mask = ~enable_mask;
3453
3454         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3455 }
3456
3457 /* drm_dma.h hooks
3458 */
3459 static void ironlake_irq_reset(struct drm_device *dev)
3460 {
3461         struct drm_i915_private *dev_priv = to_i915(dev);
3462         struct intel_uncore *uncore = &dev_priv->uncore;
3463
3464         GEN3_IRQ_RESET(uncore, DE);
3465         if (IS_GEN(dev_priv, 7))
3466                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3467
3468         if (IS_HASWELL(dev_priv)) {
3469                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3470                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3471         }
3472
3473         gen5_gt_irq_reset(dev_priv);
3474
3475         ibx_irq_reset(dev_priv);
3476 }
3477
3478 static void valleyview_irq_reset(struct drm_device *dev)
3479 {
3480         struct drm_i915_private *dev_priv = to_i915(dev);
3481
3482         I915_WRITE(VLV_MASTER_IER, 0);
3483         POSTING_READ(VLV_MASTER_IER);
3484
3485         gen5_gt_irq_reset(dev_priv);
3486
3487         spin_lock_irq(&dev_priv->irq_lock);
3488         if (dev_priv->display_irqs_enabled)
3489                 vlv_display_irq_reset(dev_priv);
3490         spin_unlock_irq(&dev_priv->irq_lock);
3491 }
3492
3493 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3494 {
3495         struct intel_uncore *uncore = &dev_priv->uncore;
3496
3497         GEN8_IRQ_RESET_NDX(uncore, GT, 0);
3498         GEN8_IRQ_RESET_NDX(uncore, GT, 1);
3499         GEN8_IRQ_RESET_NDX(uncore, GT, 2);
3500         GEN8_IRQ_RESET_NDX(uncore, GT, 3);
3501 }
3502
3503 static void gen8_irq_reset(struct drm_device *dev)
3504 {
3505         struct drm_i915_private *dev_priv = to_i915(dev);
3506         struct intel_uncore *uncore = &dev_priv->uncore;
3507         int pipe;
3508
3509         gen8_master_intr_disable(dev_priv->uncore.regs);
3510
3511         gen8_gt_irq_reset(dev_priv);
3512
3513         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3514         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3515
3516         for_each_pipe(dev_priv, pipe)
3517                 if (intel_display_power_is_enabled(dev_priv,
3518                                                    POWER_DOMAIN_PIPE(pipe)))
3519                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3520
3521         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3522         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3523         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3524
3525         if (HAS_PCH_SPLIT(dev_priv))
3526                 ibx_irq_reset(dev_priv);
3527 }
3528
3529 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3530 {
3531         /* Disable RCS, BCS, VCS and VECS class engines. */
3532         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3533         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3534
3535         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3536         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3537         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3538         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3539         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3540         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3541
3542         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3543         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3544 }
3545
3546 static void gen11_irq_reset(struct drm_device *dev)
3547 {
3548         struct drm_i915_private *dev_priv = dev->dev_private;
3549         struct intel_uncore *uncore = &dev_priv->uncore;
3550         int pipe;
3551
3552         gen11_master_intr_disable(dev_priv->uncore.regs);
3553
3554         gen11_gt_irq_reset(dev_priv);
3555
3556         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3557
3558         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3559         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3560
3561         for_each_pipe(dev_priv, pipe)
3562                 if (intel_display_power_is_enabled(dev_priv,
3563                                                    POWER_DOMAIN_PIPE(pipe)))
3564                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3565
3566         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3567         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3568         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3569         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3570         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3571
3572         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3573                 GEN3_IRQ_RESET(uncore, SDE);
3574 }
3575
3576 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3577                                      u8 pipe_mask)
3578 {
3579         struct intel_uncore *uncore = &dev_priv->uncore;
3580
3581         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3582         enum pipe pipe;
3583
3584         spin_lock_irq(&dev_priv->irq_lock);
3585
3586         if (!intel_irqs_enabled(dev_priv)) {
3587                 spin_unlock_irq(&dev_priv->irq_lock);
3588                 return;
3589         }
3590
3591         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3592                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3593                                   dev_priv->de_irq_mask[pipe],
3594                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3595
3596         spin_unlock_irq(&dev_priv->irq_lock);
3597 }
3598
3599 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3600                                      u8 pipe_mask)
3601 {
3602         struct intel_uncore *uncore = &dev_priv->uncore;
3603         enum pipe pipe;
3604
3605         spin_lock_irq(&dev_priv->irq_lock);
3606
3607         if (!intel_irqs_enabled(dev_priv)) {
3608                 spin_unlock_irq(&dev_priv->irq_lock);
3609                 return;
3610         }
3611
3612         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3613                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3614
3615         spin_unlock_irq(&dev_priv->irq_lock);
3616
3617         /* make sure we're done processing display irqs */
3618         synchronize_irq(dev_priv->drm.irq);
3619 }
3620
3621 static void cherryview_irq_reset(struct drm_device *dev)
3622 {
3623         struct drm_i915_private *dev_priv = to_i915(dev);
3624         struct intel_uncore *uncore = &dev_priv->uncore;
3625
3626         I915_WRITE(GEN8_MASTER_IRQ, 0);
3627         POSTING_READ(GEN8_MASTER_IRQ);
3628
3629         gen8_gt_irq_reset(dev_priv);
3630
3631         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3632
3633         spin_lock_irq(&dev_priv->irq_lock);
3634         if (dev_priv->display_irqs_enabled)
3635                 vlv_display_irq_reset(dev_priv);
3636         spin_unlock_irq(&dev_priv->irq_lock);
3637 }
3638
3639 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3640                                   const u32 hpd[HPD_NUM_PINS])
3641 {
3642         struct intel_encoder *encoder;
3643         u32 enabled_irqs = 0;
3644
3645         for_each_intel_encoder(&dev_priv->drm, encoder)
3646                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3647                         enabled_irqs |= hpd[encoder->hpd_pin];
3648
3649         return enabled_irqs;
3650 }
3651
3652 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3653 {
3654         u32 hotplug;
3655
3656         /*
3657          * Enable digital hotplug on the PCH, and configure the DP short pulse
3658          * duration to 2ms (which is the minimum in the Display Port spec).
3659          * The pulse duration bits are reserved on LPT+.
3660          */
3661         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3662         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3663                      PORTC_PULSE_DURATION_MASK |
3664                      PORTD_PULSE_DURATION_MASK);
3665         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3666         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3667         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3668         /*
3669          * When CPU and PCH are on the same package, port A
3670          * HPD must be enabled in both north and south.
3671          */
3672         if (HAS_PCH_LPT_LP(dev_priv))
3673                 hotplug |= PORTA_HOTPLUG_ENABLE;
3674         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3675 }
3676
3677 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3678 {
3679         u32 hotplug_irqs, enabled_irqs;
3680
3681         if (HAS_PCH_IBX(dev_priv)) {
3682                 hotplug_irqs = SDE_HOTPLUG_MASK;
3683                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3684         } else {
3685                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3686                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3687         }
3688
3689         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3690
3691         ibx_hpd_detection_setup(dev_priv);
3692 }
3693
3694 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3695 {
3696         u32 hotplug;
3697
3698         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3699         hotplug |= ICP_DDIA_HPD_ENABLE |
3700                    ICP_DDIB_HPD_ENABLE;
3701         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3702
3703         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3704         hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3705                    ICP_TC_HPD_ENABLE(PORT_TC2) |
3706                    ICP_TC_HPD_ENABLE(PORT_TC3) |
3707                    ICP_TC_HPD_ENABLE(PORT_TC4);
3708         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3709 }
3710
3711 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3712 {
3713         u32 hotplug_irqs, enabled_irqs;
3714
3715         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3716         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3717
3718         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3719
3720         icp_hpd_detection_setup(dev_priv);
3721 }
3722
3723 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3724 {
3725         u32 hotplug;
3726
3727         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3728         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3729                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3730                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3731                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3732         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3733
3734         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3735         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3736                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3737                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3738                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3739         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3740 }
3741
3742 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3743 {
3744         u32 hotplug_irqs, enabled_irqs;
3745         u32 val;
3746
3747         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3748         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3749
3750         val = I915_READ(GEN11_DE_HPD_IMR);
3751         val &= ~hotplug_irqs;
3752         I915_WRITE(GEN11_DE_HPD_IMR, val);
3753         POSTING_READ(GEN11_DE_HPD_IMR);
3754
3755         gen11_hpd_detection_setup(dev_priv);
3756
3757         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3758                 icp_hpd_irq_setup(dev_priv);
3759 }
3760
3761 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3762 {
3763         u32 val, hotplug;
3764
3765         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3766         if (HAS_PCH_CNP(dev_priv)) {
3767                 val = I915_READ(SOUTH_CHICKEN1);
3768                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3769                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3770                 I915_WRITE(SOUTH_CHICKEN1, val);
3771         }
3772
3773         /* Enable digital hotplug on the PCH */
3774         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3775         hotplug |= PORTA_HOTPLUG_ENABLE |
3776                    PORTB_HOTPLUG_ENABLE |
3777                    PORTC_HOTPLUG_ENABLE |
3778                    PORTD_HOTPLUG_ENABLE;
3779         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3780
3781         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3782         hotplug |= PORTE_HOTPLUG_ENABLE;
3783         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3784 }
3785
3786 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3787 {
3788         u32 hotplug_irqs, enabled_irqs;
3789
3790         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3791         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3792
3793         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3794
3795         spt_hpd_detection_setup(dev_priv);
3796 }
3797
3798 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3799 {
3800         u32 hotplug;
3801
3802         /*
3803          * Enable digital hotplug on the CPU, and configure the DP short pulse
3804          * duration to 2ms (which is the minimum in the Display Port spec)
3805          * The pulse duration bits are reserved on HSW+.
3806          */
3807         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3808         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3809         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3810                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3811         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3812 }
3813
3814 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3815 {
3816         u32 hotplug_irqs, enabled_irqs;
3817
3818         if (INTEL_GEN(dev_priv) >= 8) {
3819                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3820                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3821
3822                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3823         } else if (INTEL_GEN(dev_priv) >= 7) {
3824                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3825                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3826
3827                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3828         } else {
3829                 hotplug_irqs = DE_DP_A_HOTPLUG;
3830                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3831
3832                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3833         }
3834
3835         ilk_hpd_detection_setup(dev_priv);
3836
3837         ibx_hpd_irq_setup(dev_priv);
3838 }
3839
3840 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3841                                       u32 enabled_irqs)
3842 {
3843         u32 hotplug;
3844
3845         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3846         hotplug |= PORTA_HOTPLUG_ENABLE |
3847                    PORTB_HOTPLUG_ENABLE |
3848                    PORTC_HOTPLUG_ENABLE;
3849
3850         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3851                       hotplug, enabled_irqs);
3852         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3853
3854         /*
3855          * For BXT invert bit has to be set based on AOB design
3856          * for HPD detection logic, update it based on VBT fields.
3857          */
3858         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3859             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3860                 hotplug |= BXT_DDIA_HPD_INVERT;
3861         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3862             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3863                 hotplug |= BXT_DDIB_HPD_INVERT;
3864         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3865             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3866                 hotplug |= BXT_DDIC_HPD_INVERT;
3867
3868         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3869 }
3870
3871 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3872 {
3873         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3874 }
3875
3876 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3877 {
3878         u32 hotplug_irqs, enabled_irqs;
3879
3880         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3881         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3882
3883         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3884
3885         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3886 }
3887
3888 static void ibx_irq_postinstall(struct drm_device *dev)
3889 {
3890         struct drm_i915_private *dev_priv = to_i915(dev);
3891         u32 mask;
3892
3893         if (HAS_PCH_NOP(dev_priv))
3894                 return;
3895
3896         if (HAS_PCH_IBX(dev_priv))
3897                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3898         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3899                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3900         else
3901                 mask = SDE_GMBUS_CPT;
3902
3903         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3904         I915_WRITE(SDEIMR, ~mask);
3905
3906         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3907             HAS_PCH_LPT(dev_priv))
3908                 ibx_hpd_detection_setup(dev_priv);
3909         else
3910                 spt_hpd_detection_setup(dev_priv);
3911 }
3912
3913 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3914 {
3915         struct drm_i915_private *dev_priv = to_i915(dev);
3916         struct intel_uncore *uncore = &dev_priv->uncore;
3917         u32 pm_irqs, gt_irqs;
3918
3919         pm_irqs = gt_irqs = 0;
3920
3921         dev_priv->gt_irq_mask = ~0;
3922         if (HAS_L3_DPF(dev_priv)) {
3923                 /* L3 parity interrupt is always unmasked. */
3924                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3925                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3926         }
3927
3928         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3929         if (IS_GEN(dev_priv, 5)) {
3930                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3931         } else {
3932                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3933         }
3934
3935         GEN3_IRQ_INIT(uncore, GT, dev_priv->gt_irq_mask, gt_irqs);
3936
3937         if (INTEL_GEN(dev_priv) >= 6) {
3938                 /*
3939                  * RPS interrupts will get enabled/disabled on demand when RPS
3940                  * itself is enabled/disabled.
3941                  */
3942                 if (HAS_ENGINE(dev_priv, VECS0)) {
3943                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3944                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3945                 }
3946
3947                 dev_priv->pm_imr = 0xffffffff;
3948                 GEN3_IRQ_INIT(uncore, GEN6_PM, dev_priv->pm_imr, pm_irqs);
3949         }
3950 }
3951
3952 static int ironlake_irq_postinstall(struct drm_device *dev)
3953 {
3954         struct drm_i915_private *dev_priv = to_i915(dev);
3955         struct intel_uncore *uncore = &dev_priv->uncore;
3956         u32 display_mask, extra_mask;
3957
3958         if (INTEL_GEN(dev_priv) >= 7) {
3959                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3960                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3961                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3962                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3963                               DE_DP_A_HOTPLUG_IVB);
3964         } else {
3965                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3966                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3967                                 DE_PIPEA_CRC_DONE | DE_POISON);
3968                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3969                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3970                               DE_DP_A_HOTPLUG);
3971         }
3972
3973         if (IS_HASWELL(dev_priv)) {
3974                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3975                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3976                 display_mask |= DE_EDP_PSR_INT_HSW;
3977         }
3978
3979         dev_priv->irq_mask = ~display_mask;
3980
3981         ibx_irq_pre_postinstall(dev);
3982
3983         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3984                       display_mask | extra_mask);
3985
3986         gen5_gt_irq_postinstall(dev);
3987
3988         ilk_hpd_detection_setup(dev_priv);
3989
3990         ibx_irq_postinstall(dev);
3991
3992         if (IS_IRONLAKE_M(dev_priv)) {
3993                 /* Enable PCU event interrupts
3994                  *
3995                  * spinlocking not required here for correctness since interrupt
3996                  * setup is guaranteed to run in single-threaded context. But we
3997                  * need it to make the assert_spin_locked happy. */
3998                 spin_lock_irq(&dev_priv->irq_lock);
3999                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4000                 spin_unlock_irq(&dev_priv->irq_lock);
4001         }
4002
4003         return 0;
4004 }
4005
4006 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4007 {
4008         lockdep_assert_held(&dev_priv->irq_lock);
4009
4010         if (dev_priv->display_irqs_enabled)
4011                 return;
4012
4013         dev_priv->display_irqs_enabled = true;
4014
4015         if (intel_irqs_enabled(dev_priv)) {
4016                 vlv_display_irq_reset(dev_priv);
4017                 vlv_display_irq_postinstall(dev_priv);
4018         }
4019 }
4020
4021 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4022 {
4023         lockdep_assert_held(&dev_priv->irq_lock);
4024
4025         if (!dev_priv->display_irqs_enabled)
4026                 return;
4027
4028         dev_priv->display_irqs_enabled = false;
4029
4030         if (intel_irqs_enabled(dev_priv))
4031                 vlv_display_irq_reset(dev_priv);
4032 }
4033
4034
4035 static int valleyview_irq_postinstall(struct drm_device *dev)
4036 {
4037         struct drm_i915_private *dev_priv = to_i915(dev);
4038
4039         gen5_gt_irq_postinstall(dev);
4040
4041         spin_lock_irq(&dev_priv->irq_lock);
4042         if (dev_priv->display_irqs_enabled)
4043                 vlv_display_irq_postinstall(dev_priv);
4044         spin_unlock_irq(&dev_priv->irq_lock);
4045
4046         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4047         POSTING_READ(VLV_MASTER_IER);
4048
4049         return 0;
4050 }
4051
4052 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4053 {
4054         struct intel_uncore *uncore = &dev_priv->uncore;
4055
4056         /* These are interrupts we'll toggle with the ring mask register */
4057         u32 gt_interrupts[] = {
4058                 (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4059                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4060                  GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4061                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT),
4062
4063                 (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4064                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
4065                  GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4066                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT),
4067
4068                 0,
4069
4070                 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4071                  GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT)
4072         };
4073
4074         dev_priv->pm_ier = 0x0;
4075         dev_priv->pm_imr = ~dev_priv->pm_ier;
4076         GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4077         GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4078         /*
4079          * RPS interrupts will get enabled/disabled on demand when RPS itself
4080          * is enabled/disabled. Same wil be the case for GuC interrupts.
4081          */
4082         GEN8_IRQ_INIT_NDX(uncore, GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4083         GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4084 }
4085
4086 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4087 {
4088         struct intel_uncore *uncore = &dev_priv->uncore;
4089
4090         u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4091         u32 de_pipe_enables;
4092         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4093         u32 de_port_enables;
4094         u32 de_misc_masked = GEN8_DE_EDP_PSR;
4095         enum pipe pipe;
4096
4097         if (INTEL_GEN(dev_priv) <= 10)
4098                 de_misc_masked |= GEN8_DE_MISC_GSE;
4099
4100         if (INTEL_GEN(dev_priv) >= 9) {
4101                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4102                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4103                                   GEN9_AUX_CHANNEL_D;
4104                 if (IS_GEN9_LP(dev_priv))
4105                         de_port_masked |= BXT_DE_PORT_GMBUS;
4106         } else {
4107                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4108         }
4109
4110         if (INTEL_GEN(dev_priv) >= 11)
4111                 de_port_masked |= ICL_AUX_CHANNEL_E;
4112
4113         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4114                 de_port_masked |= CNL_AUX_CHANNEL_F;
4115
4116         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4117                                            GEN8_PIPE_FIFO_UNDERRUN;
4118
4119         de_port_enables = de_port_masked;
4120         if (IS_GEN9_LP(dev_priv))
4121                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4122         else if (IS_BROADWELL(dev_priv))
4123                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4124
4125         gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
4126         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4127
4128         for_each_pipe(dev_priv, pipe) {
4129                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4130
4131                 if (intel_display_power_is_enabled(dev_priv,
4132                                 POWER_DOMAIN_PIPE(pipe)))
4133                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
4134                                           dev_priv->de_irq_mask[pipe],
4135                                           de_pipe_enables);
4136         }
4137
4138         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4139         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4140
4141         if (INTEL_GEN(dev_priv) >= 11) {
4142                 u32 de_hpd_masked = 0;
4143                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4144                                      GEN11_DE_TBT_HOTPLUG_MASK;
4145
4146                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
4147                               de_hpd_enables);
4148                 gen11_hpd_detection_setup(dev_priv);
4149         } else if (IS_GEN9_LP(dev_priv)) {
4150                 bxt_hpd_detection_setup(dev_priv);
4151         } else if (IS_BROADWELL(dev_priv)) {
4152                 ilk_hpd_detection_setup(dev_priv);
4153         }
4154 }
4155
4156 static int gen8_irq_postinstall(struct drm_device *dev)
4157 {
4158         struct drm_i915_private *dev_priv = to_i915(dev);
4159
4160         if (HAS_PCH_SPLIT(dev_priv))
4161                 ibx_irq_pre_postinstall(dev);
4162
4163         gen8_gt_irq_postinstall(dev_priv);
4164         gen8_de_irq_postinstall(dev_priv);
4165
4166         if (HAS_PCH_SPLIT(dev_priv))
4167                 ibx_irq_postinstall(dev);
4168
4169         gen8_master_intr_enable(dev_priv->uncore.regs);
4170
4171         return 0;
4172 }
4173
4174 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4175 {
4176         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4177
4178         BUILD_BUG_ON(irqs & 0xffff0000);
4179
4180         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4181         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4182         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4183
4184         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4185         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4186         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4187         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4188         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4189         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4190
4191         /*
4192          * RPS interrupts will get enabled/disabled on demand when RPS itself
4193          * is enabled/disabled.
4194          */
4195         dev_priv->pm_ier = 0x0;
4196         dev_priv->pm_imr = ~dev_priv->pm_ier;
4197         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4198         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4199 }
4200
4201 static void icp_irq_postinstall(struct drm_device *dev)
4202 {
4203         struct drm_i915_private *dev_priv = to_i915(dev);
4204         u32 mask = SDE_GMBUS_ICP;
4205
4206         WARN_ON(I915_READ(SDEIER) != 0);
4207         I915_WRITE(SDEIER, 0xffffffff);
4208         POSTING_READ(SDEIER);
4209
4210         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
4211         I915_WRITE(SDEIMR, ~mask);
4212
4213         icp_hpd_detection_setup(dev_priv);
4214 }
4215
4216 static int gen11_irq_postinstall(struct drm_device *dev)
4217 {
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         struct intel_uncore *uncore = &dev_priv->uncore;
4220         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4221
4222         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4223                 icp_irq_postinstall(dev);
4224
4225         gen11_gt_irq_postinstall(dev_priv);
4226         gen8_de_irq_postinstall(dev_priv);
4227
4228         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4229
4230         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4231
4232         gen11_master_intr_enable(dev_priv->uncore.regs);
4233         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4234
4235         return 0;
4236 }
4237
4238 static int cherryview_irq_postinstall(struct drm_device *dev)
4239 {
4240         struct drm_i915_private *dev_priv = to_i915(dev);
4241
4242         gen8_gt_irq_postinstall(dev_priv);
4243
4244         spin_lock_irq(&dev_priv->irq_lock);
4245         if (dev_priv->display_irqs_enabled)
4246                 vlv_display_irq_postinstall(dev_priv);
4247         spin_unlock_irq(&dev_priv->irq_lock);
4248
4249         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4250         POSTING_READ(GEN8_MASTER_IRQ);
4251
4252         return 0;
4253 }
4254
4255 static void i8xx_irq_reset(struct drm_device *dev)
4256 {
4257         struct drm_i915_private *dev_priv = to_i915(dev);
4258         struct intel_uncore *uncore = &dev_priv->uncore;
4259
4260         i9xx_pipestat_irq_reset(dev_priv);
4261
4262         GEN2_IRQ_RESET(uncore);
4263 }
4264
4265 static int i8xx_irq_postinstall(struct drm_device *dev)
4266 {
4267         struct drm_i915_private *dev_priv = to_i915(dev);
4268         struct intel_uncore *uncore = &dev_priv->uncore;
4269         u16 enable_mask;
4270
4271         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4272                             I915_ERROR_MEMORY_REFRESH));
4273
4274         /* Unmask the interrupts that we always want on. */
4275         dev_priv->irq_mask =
4276                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4277                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4278                   I915_MASTER_ERROR_INTERRUPT);
4279
4280         enable_mask =
4281                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4282                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4283                 I915_MASTER_ERROR_INTERRUPT |
4284                 I915_USER_INTERRUPT;
4285
4286         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
4287
4288         /* Interrupt setup is already guaranteed to be single-threaded, this is
4289          * just to make the assert_spin_locked check happy. */
4290         spin_lock_irq(&dev_priv->irq_lock);
4291         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4292         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4293         spin_unlock_irq(&dev_priv->irq_lock);
4294
4295         return 0;
4296 }
4297
4298 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4299                                u16 *eir, u16 *eir_stuck)
4300 {
4301         u16 emr;
4302
4303         *eir = I915_READ16(EIR);
4304
4305         if (*eir)
4306                 I915_WRITE16(EIR, *eir);
4307
4308         *eir_stuck = I915_READ16(EIR);
4309         if (*eir_stuck == 0)
4310                 return;
4311
4312         /*
4313          * Toggle all EMR bits to make sure we get an edge
4314          * in the ISR master error bit if we don't clear
4315          * all the EIR bits. Otherwise the edge triggered
4316          * IIR on i965/g4x wouldn't notice that an interrupt
4317          * is still pending. Also some EIR bits can't be
4318          * cleared except by handling the underlying error
4319          * (or by a GPU reset) so we mask any bit that
4320          * remains set.
4321          */
4322         emr = I915_READ16(EMR);
4323         I915_WRITE16(EMR, 0xffff);
4324         I915_WRITE16(EMR, emr | *eir_stuck);
4325 }
4326
4327 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4328                                    u16 eir, u16 eir_stuck)
4329 {
4330         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4331
4332         if (eir_stuck)
4333                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4334 }
4335
4336 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4337                                u32 *eir, u32 *eir_stuck)
4338 {
4339         u32 emr;
4340
4341         *eir = I915_READ(EIR);
4342
4343         I915_WRITE(EIR, *eir);
4344
4345         *eir_stuck = I915_READ(EIR);
4346         if (*eir_stuck == 0)
4347                 return;
4348
4349         /*
4350          * Toggle all EMR bits to make sure we get an edge
4351          * in the ISR master error bit if we don't clear
4352          * all the EIR bits. Otherwise the edge triggered
4353          * IIR on i965/g4x wouldn't notice that an interrupt
4354          * is still pending. Also some EIR bits can't be
4355          * cleared except by handling the underlying error
4356          * (or by a GPU reset) so we mask any bit that
4357          * remains set.
4358          */
4359         emr = I915_READ(EMR);
4360         I915_WRITE(EMR, 0xffffffff);
4361         I915_WRITE(EMR, emr | *eir_stuck);
4362 }
4363
4364 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4365                                    u32 eir, u32 eir_stuck)
4366 {
4367         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4368
4369         if (eir_stuck)
4370                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4371 }
4372
4373 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4374 {
4375         struct drm_device *dev = arg;
4376         struct drm_i915_private *dev_priv = to_i915(dev);
4377         irqreturn_t ret = IRQ_NONE;
4378
4379         if (!intel_irqs_enabled(dev_priv))
4380                 return IRQ_NONE;
4381
4382         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4383         disable_rpm_wakeref_asserts(dev_priv);
4384
4385         do {
4386                 u32 pipe_stats[I915_MAX_PIPES] = {};
4387                 u16 eir = 0, eir_stuck = 0;
4388                 u16 iir;
4389
4390                 iir = I915_READ16(GEN2_IIR);
4391                 if (iir == 0)
4392                         break;
4393
4394                 ret = IRQ_HANDLED;
4395
4396                 /* Call regardless, as some status bits might not be
4397                  * signalled in iir */
4398                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4399
4400                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4401                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4402
4403                 I915_WRITE16(GEN2_IIR, iir);
4404
4405                 if (iir & I915_USER_INTERRUPT)
4406                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4407
4408                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4409                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4410
4411                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4412         } while (0);
4413
4414         enable_rpm_wakeref_asserts(dev_priv);
4415
4416         return ret;
4417 }
4418
4419 static void i915_irq_reset(struct drm_device *dev)
4420 {
4421         struct drm_i915_private *dev_priv = to_i915(dev);
4422         struct intel_uncore *uncore = &dev_priv->uncore;
4423
4424         if (I915_HAS_HOTPLUG(dev_priv)) {
4425                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4426                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4427         }
4428
4429         i9xx_pipestat_irq_reset(dev_priv);
4430
4431         GEN3_IRQ_RESET(uncore, GEN2_);
4432 }
4433
4434 static int i915_irq_postinstall(struct drm_device *dev)
4435 {
4436         struct drm_i915_private *dev_priv = to_i915(dev);
4437         struct intel_uncore *uncore = &dev_priv->uncore;
4438         u32 enable_mask;
4439
4440         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4441                           I915_ERROR_MEMORY_REFRESH));
4442
4443         /* Unmask the interrupts that we always want on. */
4444         dev_priv->irq_mask =
4445                 ~(I915_ASLE_INTERRUPT |
4446                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4447                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4448                   I915_MASTER_ERROR_INTERRUPT);
4449
4450         enable_mask =
4451                 I915_ASLE_INTERRUPT |
4452                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4453                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4454                 I915_MASTER_ERROR_INTERRUPT |
4455                 I915_USER_INTERRUPT;
4456
4457         if (I915_HAS_HOTPLUG(dev_priv)) {
4458                 /* Enable in IER... */
4459                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4460                 /* and unmask in IMR */
4461                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4462         }
4463
4464         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4465
4466         /* Interrupt setup is already guaranteed to be single-threaded, this is
4467          * just to make the assert_spin_locked check happy. */
4468         spin_lock_irq(&dev_priv->irq_lock);
4469         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4470         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4471         spin_unlock_irq(&dev_priv->irq_lock);
4472
4473         i915_enable_asle_pipestat(dev_priv);
4474
4475         return 0;
4476 }
4477
4478 static irqreturn_t i915_irq_handler(int irq, void *arg)
4479 {
4480         struct drm_device *dev = arg;
4481         struct drm_i915_private *dev_priv = to_i915(dev);
4482         irqreturn_t ret = IRQ_NONE;
4483
4484         if (!intel_irqs_enabled(dev_priv))
4485                 return IRQ_NONE;
4486
4487         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4488         disable_rpm_wakeref_asserts(dev_priv);
4489
4490         do {
4491                 u32 pipe_stats[I915_MAX_PIPES] = {};
4492                 u32 eir = 0, eir_stuck = 0;
4493                 u32 hotplug_status = 0;
4494                 u32 iir;
4495
4496                 iir = I915_READ(GEN2_IIR);
4497                 if (iir == 0)
4498                         break;
4499
4500                 ret = IRQ_HANDLED;
4501
4502                 if (I915_HAS_HOTPLUG(dev_priv) &&
4503                     iir & I915_DISPLAY_PORT_INTERRUPT)
4504                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4505
4506                 /* Call regardless, as some status bits might not be
4507                  * signalled in iir */
4508                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4509
4510                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4511                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4512
4513                 I915_WRITE(GEN2_IIR, iir);
4514
4515                 if (iir & I915_USER_INTERRUPT)
4516                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4517
4518                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4519                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4520
4521                 if (hotplug_status)
4522                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4523
4524                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4525         } while (0);
4526
4527         enable_rpm_wakeref_asserts(dev_priv);
4528
4529         return ret;
4530 }
4531
4532 static void i965_irq_reset(struct drm_device *dev)
4533 {
4534         struct drm_i915_private *dev_priv = to_i915(dev);
4535         struct intel_uncore *uncore = &dev_priv->uncore;
4536
4537         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4538         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4539
4540         i9xx_pipestat_irq_reset(dev_priv);
4541
4542         GEN3_IRQ_RESET(uncore, GEN2_);
4543 }
4544
4545 static int i965_irq_postinstall(struct drm_device *dev)
4546 {
4547         struct drm_i915_private *dev_priv = to_i915(dev);
4548         struct intel_uncore *uncore = &dev_priv->uncore;
4549         u32 enable_mask;
4550         u32 error_mask;
4551
4552         /*
4553          * Enable some error detection, note the instruction error mask
4554          * bit is reserved, so we leave it masked.
4555          */
4556         if (IS_G4X(dev_priv)) {
4557                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4558                                GM45_ERROR_MEM_PRIV |
4559                                GM45_ERROR_CP_PRIV |
4560                                I915_ERROR_MEMORY_REFRESH);
4561         } else {
4562                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4563                                I915_ERROR_MEMORY_REFRESH);
4564         }
4565         I915_WRITE(EMR, error_mask);
4566
4567         /* Unmask the interrupts that we always want on. */
4568         dev_priv->irq_mask =
4569                 ~(I915_ASLE_INTERRUPT |
4570                   I915_DISPLAY_PORT_INTERRUPT |
4571                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4572                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4573                   I915_MASTER_ERROR_INTERRUPT);
4574
4575         enable_mask =
4576                 I915_ASLE_INTERRUPT |
4577                 I915_DISPLAY_PORT_INTERRUPT |
4578                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4579                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4580                 I915_MASTER_ERROR_INTERRUPT |
4581                 I915_USER_INTERRUPT;
4582
4583         if (IS_G4X(dev_priv))
4584                 enable_mask |= I915_BSD_USER_INTERRUPT;
4585
4586         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4587
4588         /* Interrupt setup is already guaranteed to be single-threaded, this is
4589          * just to make the assert_spin_locked check happy. */
4590         spin_lock_irq(&dev_priv->irq_lock);
4591         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4592         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4593         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4594         spin_unlock_irq(&dev_priv->irq_lock);
4595
4596         i915_enable_asle_pipestat(dev_priv);
4597
4598         return 0;
4599 }
4600
4601 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4602 {
4603         u32 hotplug_en;
4604
4605         lockdep_assert_held(&dev_priv->irq_lock);
4606
4607         /* Note HDMI and DP share hotplug bits */
4608         /* enable bits are the same for all generations */
4609         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4610         /* Programming the CRT detection parameters tends
4611            to generate a spurious hotplug event about three
4612            seconds later.  So just do it once.
4613         */
4614         if (IS_G4X(dev_priv))
4615                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4616         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4617
4618         /* Ignore TV since it's buggy */
4619         i915_hotplug_interrupt_update_locked(dev_priv,
4620                                              HOTPLUG_INT_EN_MASK |
4621                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4622                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4623                                              hotplug_en);
4624 }
4625
4626 static irqreturn_t i965_irq_handler(int irq, void *arg)
4627 {
4628         struct drm_device *dev = arg;
4629         struct drm_i915_private *dev_priv = to_i915(dev);
4630         irqreturn_t ret = IRQ_NONE;
4631
4632         if (!intel_irqs_enabled(dev_priv))
4633                 return IRQ_NONE;
4634
4635         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4636         disable_rpm_wakeref_asserts(dev_priv);
4637
4638         do {
4639                 u32 pipe_stats[I915_MAX_PIPES] = {};
4640                 u32 eir = 0, eir_stuck = 0;
4641                 u32 hotplug_status = 0;
4642                 u32 iir;
4643
4644                 iir = I915_READ(GEN2_IIR);
4645                 if (iir == 0)
4646                         break;
4647
4648                 ret = IRQ_HANDLED;
4649
4650                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4651                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4652
4653                 /* Call regardless, as some status bits might not be
4654                  * signalled in iir */
4655                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4656
4657                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4658                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4659
4660                 I915_WRITE(GEN2_IIR, iir);
4661
4662                 if (iir & I915_USER_INTERRUPT)
4663                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4664
4665                 if (iir & I915_BSD_USER_INTERRUPT)
4666                         intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4667
4668                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4669                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4670
4671                 if (hotplug_status)
4672                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4673
4674                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4675         } while (0);
4676
4677         enable_rpm_wakeref_asserts(dev_priv);
4678
4679         return ret;
4680 }
4681
4682 /**
4683  * intel_irq_init - initializes irq support
4684  * @dev_priv: i915 device instance
4685  *
4686  * This function initializes all the irq support including work items, timers
4687  * and all the vtables. It does not setup the interrupt itself though.
4688  */
4689 void intel_irq_init(struct drm_i915_private *dev_priv)
4690 {
4691         struct drm_device *dev = &dev_priv->drm;
4692         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4693         int i;
4694
4695         if (IS_I945GM(dev_priv))
4696                 i945gm_vblank_work_init(dev_priv);
4697
4698         intel_hpd_init_work(dev_priv);
4699
4700         INIT_WORK(&rps->work, gen6_pm_rps_work);
4701
4702         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4703         for (i = 0; i < MAX_L3_SLICES; ++i)
4704                 dev_priv->l3_parity.remap_info[i] = NULL;
4705
4706         if (HAS_GUC_SCHED(dev_priv))
4707                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4708
4709         /* Let's track the enabled rps events */
4710         if (IS_VALLEYVIEW(dev_priv))
4711                 /* WaGsvRC0ResidencyMethod:vlv */
4712                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4713         else
4714                 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4715                                            GEN6_PM_RP_DOWN_THRESHOLD |
4716                                            GEN6_PM_RP_DOWN_TIMEOUT);
4717
4718         /* We share the register with other engine */
4719         if (INTEL_GEN(dev_priv) > 9)
4720                 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4721
4722         rps->pm_intrmsk_mbz = 0;
4723
4724         /*
4725          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4726          * if GEN6_PM_UP_EI_EXPIRED is masked.
4727          *
4728          * TODO: verify if this can be reproduced on VLV,CHV.
4729          */
4730         if (INTEL_GEN(dev_priv) <= 7)
4731                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4732
4733         if (INTEL_GEN(dev_priv) >= 8)
4734                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4735
4736         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4737                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4738         else if (INTEL_GEN(dev_priv) >= 3)
4739                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4740
4741         dev->vblank_disable_immediate = true;
4742
4743         /* Most platforms treat the display irq block as an always-on
4744          * power domain. vlv/chv can disable it at runtime and need
4745          * special care to avoid writing any of the display block registers
4746          * outside of the power domain. We defer setting up the display irqs
4747          * in this case to the runtime pm.
4748          */
4749         dev_priv->display_irqs_enabled = true;
4750         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4751                 dev_priv->display_irqs_enabled = false;
4752
4753         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4754         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4755          * detection, as short HPD storms will occur as a natural part of
4756          * sideband messaging with MST.
4757          * On older platforms however, IRQ storms can occur with both long and
4758          * short pulses, as seen on some G4x systems.
4759          */
4760         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4761
4762         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4763         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4764
4765         if (IS_CHERRYVIEW(dev_priv)) {
4766                 dev->driver->irq_handler = cherryview_irq_handler;
4767                 dev->driver->irq_preinstall = cherryview_irq_reset;
4768                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4769                 dev->driver->irq_uninstall = cherryview_irq_reset;
4770                 dev->driver->enable_vblank = i965_enable_vblank;
4771                 dev->driver->disable_vblank = i965_disable_vblank;
4772                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4773         } else if (IS_VALLEYVIEW(dev_priv)) {
4774                 dev->driver->irq_handler = valleyview_irq_handler;
4775                 dev->driver->irq_preinstall = valleyview_irq_reset;
4776                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4777                 dev->driver->irq_uninstall = valleyview_irq_reset;
4778                 dev->driver->enable_vblank = i965_enable_vblank;
4779                 dev->driver->disable_vblank = i965_disable_vblank;
4780                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4781         } else if (INTEL_GEN(dev_priv) >= 11) {
4782                 dev->driver->irq_handler = gen11_irq_handler;
4783                 dev->driver->irq_preinstall = gen11_irq_reset;
4784                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4785                 dev->driver->irq_uninstall = gen11_irq_reset;
4786                 dev->driver->enable_vblank = gen8_enable_vblank;
4787                 dev->driver->disable_vblank = gen8_disable_vblank;
4788                 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4789         } else if (INTEL_GEN(dev_priv) >= 8) {
4790                 dev->driver->irq_handler = gen8_irq_handler;
4791                 dev->driver->irq_preinstall = gen8_irq_reset;
4792                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4793                 dev->driver->irq_uninstall = gen8_irq_reset;
4794                 dev->driver->enable_vblank = gen8_enable_vblank;
4795                 dev->driver->disable_vblank = gen8_disable_vblank;
4796                 if (IS_GEN9_LP(dev_priv))
4797                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4798                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4799                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4800                 else
4801                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4802         } else if (HAS_PCH_SPLIT(dev_priv)) {
4803                 dev->driver->irq_handler = ironlake_irq_handler;
4804                 dev->driver->irq_preinstall = ironlake_irq_reset;
4805                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4806                 dev->driver->irq_uninstall = ironlake_irq_reset;
4807                 dev->driver->enable_vblank = ironlake_enable_vblank;
4808                 dev->driver->disable_vblank = ironlake_disable_vblank;
4809                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4810         } else {
4811                 if (IS_GEN(dev_priv, 2)) {
4812                         dev->driver->irq_preinstall = i8xx_irq_reset;
4813                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4814                         dev->driver->irq_handler = i8xx_irq_handler;
4815                         dev->driver->irq_uninstall = i8xx_irq_reset;
4816                         dev->driver->enable_vblank = i8xx_enable_vblank;
4817                         dev->driver->disable_vblank = i8xx_disable_vblank;
4818                 } else if (IS_I945GM(dev_priv)) {
4819                         dev->driver->irq_preinstall = i915_irq_reset;
4820                         dev->driver->irq_postinstall = i915_irq_postinstall;
4821                         dev->driver->irq_uninstall = i915_irq_reset;
4822                         dev->driver->irq_handler = i915_irq_handler;
4823                         dev->driver->enable_vblank = i945gm_enable_vblank;
4824                         dev->driver->disable_vblank = i945gm_disable_vblank;
4825                 } else if (IS_GEN(dev_priv, 3)) {
4826                         dev->driver->irq_preinstall = i915_irq_reset;
4827                         dev->driver->irq_postinstall = i915_irq_postinstall;
4828                         dev->driver->irq_uninstall = i915_irq_reset;
4829                         dev->driver->irq_handler = i915_irq_handler;
4830                         dev->driver->enable_vblank = i8xx_enable_vblank;
4831                         dev->driver->disable_vblank = i8xx_disable_vblank;
4832                 } else {
4833                         dev->driver->irq_preinstall = i965_irq_reset;
4834                         dev->driver->irq_postinstall = i965_irq_postinstall;
4835                         dev->driver->irq_uninstall = i965_irq_reset;
4836                         dev->driver->irq_handler = i965_irq_handler;
4837                         dev->driver->enable_vblank = i965_enable_vblank;
4838                         dev->driver->disable_vblank = i965_disable_vblank;
4839                 }
4840                 if (I915_HAS_HOTPLUG(dev_priv))
4841                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4842         }
4843 }
4844
4845 /**
4846  * intel_irq_fini - deinitializes IRQ support
4847  * @i915: i915 device instance
4848  *
4849  * This function deinitializes all the IRQ support.
4850  */
4851 void intel_irq_fini(struct drm_i915_private *i915)
4852 {
4853         int i;
4854
4855         if (IS_I945GM(i915))
4856                 i945gm_vblank_work_fini(i915);
4857
4858         for (i = 0; i < MAX_L3_SLICES; ++i)
4859                 kfree(i915->l3_parity.remap_info[i]);
4860 }
4861
4862 /**
4863  * intel_irq_install - enables the hardware interrupt
4864  * @dev_priv: i915 device instance
4865  *
4866  * This function enables the hardware interrupt handling, but leaves the hotplug
4867  * handling still disabled. It is called after intel_irq_init().
4868  *
4869  * In the driver load and resume code we need working interrupts in a few places
4870  * but don't want to deal with the hassle of concurrent probe and hotplug
4871  * workers. Hence the split into this two-stage approach.
4872  */
4873 int intel_irq_install(struct drm_i915_private *dev_priv)
4874 {
4875         /*
4876          * We enable some interrupt sources in our postinstall hooks, so mark
4877          * interrupts as enabled _before_ actually enabling them to avoid
4878          * special cases in our ordering checks.
4879          */
4880         dev_priv->runtime_pm.irqs_enabled = true;
4881
4882         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4883 }
4884
4885 /**
4886  * intel_irq_uninstall - finilizes all irq handling
4887  * @dev_priv: i915 device instance
4888  *
4889  * This stops interrupt and hotplug handling and unregisters and frees all
4890  * resources acquired in the init functions.
4891  */
4892 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4893 {
4894         drm_irq_uninstall(&dev_priv->drm);
4895         intel_hpd_cancel_work(dev_priv);
4896         dev_priv->runtime_pm.irqs_enabled = false;
4897 }
4898
4899 /**
4900  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4901  * @dev_priv: i915 device instance
4902  *
4903  * This function is used to disable interrupts at runtime, both in the runtime
4904  * pm and the system suspend/resume code.
4905  */
4906 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4907 {
4908         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4909         dev_priv->runtime_pm.irqs_enabled = false;
4910         synchronize_irq(dev_priv->drm.irq);
4911 }
4912
4913 /**
4914  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4915  * @dev_priv: i915 device instance
4916  *
4917  * This function is used to enable interrupts at runtime, both in the runtime
4918  * pm and the system suspend/resume code.
4919  */
4920 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4921 {
4922         dev_priv->runtime_pm.irqs_enabled = true;
4923         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4924         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4925 }