Merge branch 'linux-5.6' of git://github.com/skeggsb/linux into drm-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 #include <drm/i915_drm.h>
38
39 #include "display/intel_display_types.h"
40 #include "display/intel_fifo_underrun.h"
41 #include "display/intel_hotplug.h"
42 #include "display/intel_lpe_audio.h"
43 #include "display/intel_psr.h"
44
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64
65 static const u32 hpd_ilk[HPD_NUM_PINS] = {
66         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
67 };
68
69 static const u32 hpd_ivb[HPD_NUM_PINS] = {
70         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
71 };
72
73 static const u32 hpd_bdw[HPD_NUM_PINS] = {
74         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
75 };
76
77 static const u32 hpd_ibx[HPD_NUM_PINS] = {
78         [HPD_CRT] = SDE_CRT_HOTPLUG,
79         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
83 };
84
85 static const u32 hpd_cpt[HPD_NUM_PINS] = {
86         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
91 };
92
93 static const u32 hpd_spt[HPD_NUM_PINS] = {
94         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
99 };
100
101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
103         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
108 };
109
110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
117 };
118
119 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
126 };
127
128 /* BXT hpd list */
129 static const u32 hpd_bxt[HPD_NUM_PINS] = {
130         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
131         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
132         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
133 };
134
135 static const u32 hpd_gen11[HPD_NUM_PINS] = {
136         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
137         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
138         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
139         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
140 };
141
142 static const u32 hpd_gen12[HPD_NUM_PINS] = {
143         [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
144         [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
145         [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
146         [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
147         [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
148         [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
149 };
150
151 static const u32 hpd_icp[HPD_NUM_PINS] = {
152         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
153         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
154         [HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
155         [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
156         [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
157         [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
158 };
159
160 static const u32 hpd_tgp[HPD_NUM_PINS] = {
161         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
162         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
163         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
164         [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
165         [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
166         [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
167         [HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
168         [HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
169         [HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
170 };
171
172 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
173                     i915_reg_t iir, i915_reg_t ier)
174 {
175         intel_uncore_write(uncore, imr, 0xffffffff);
176         intel_uncore_posting_read(uncore, imr);
177
178         intel_uncore_write(uncore, ier, 0);
179
180         /* IIR can theoretically queue up two events. Be paranoid. */
181         intel_uncore_write(uncore, iir, 0xffffffff);
182         intel_uncore_posting_read(uncore, iir);
183         intel_uncore_write(uncore, iir, 0xffffffff);
184         intel_uncore_posting_read(uncore, iir);
185 }
186
187 void gen2_irq_reset(struct intel_uncore *uncore)
188 {
189         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
190         intel_uncore_posting_read16(uncore, GEN2_IMR);
191
192         intel_uncore_write16(uncore, GEN2_IER, 0);
193
194         /* IIR can theoretically queue up two events. Be paranoid. */
195         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
196         intel_uncore_posting_read16(uncore, GEN2_IIR);
197         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
198         intel_uncore_posting_read16(uncore, GEN2_IIR);
199 }
200
201 /*
202  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
203  */
204 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
205 {
206         u32 val = intel_uncore_read(uncore, reg);
207
208         if (val == 0)
209                 return;
210
211         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
212              i915_mmio_reg_offset(reg), val);
213         intel_uncore_write(uncore, reg, 0xffffffff);
214         intel_uncore_posting_read(uncore, reg);
215         intel_uncore_write(uncore, reg, 0xffffffff);
216         intel_uncore_posting_read(uncore, reg);
217 }
218
219 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
220 {
221         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
222
223         if (val == 0)
224                 return;
225
226         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
227              i915_mmio_reg_offset(GEN2_IIR), val);
228         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
229         intel_uncore_posting_read16(uncore, GEN2_IIR);
230         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
231         intel_uncore_posting_read16(uncore, GEN2_IIR);
232 }
233
234 void gen3_irq_init(struct intel_uncore *uncore,
235                    i915_reg_t imr, u32 imr_val,
236                    i915_reg_t ier, u32 ier_val,
237                    i915_reg_t iir)
238 {
239         gen3_assert_iir_is_zero(uncore, iir);
240
241         intel_uncore_write(uncore, ier, ier_val);
242         intel_uncore_write(uncore, imr, imr_val);
243         intel_uncore_posting_read(uncore, imr);
244 }
245
246 void gen2_irq_init(struct intel_uncore *uncore,
247                    u32 imr_val, u32 ier_val)
248 {
249         gen2_assert_iir_is_zero(uncore);
250
251         intel_uncore_write16(uncore, GEN2_IER, ier_val);
252         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
253         intel_uncore_posting_read16(uncore, GEN2_IMR);
254 }
255
256 /* For display hotplug interrupt */
257 static inline void
258 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
259                                      u32 mask,
260                                      u32 bits)
261 {
262         u32 val;
263
264         lockdep_assert_held(&dev_priv->irq_lock);
265         WARN_ON(bits & ~mask);
266
267         val = I915_READ(PORT_HOTPLUG_EN);
268         val &= ~mask;
269         val |= bits;
270         I915_WRITE(PORT_HOTPLUG_EN, val);
271 }
272
273 /**
274  * i915_hotplug_interrupt_update - update hotplug interrupt enable
275  * @dev_priv: driver private
276  * @mask: bits to update
277  * @bits: bits to enable
278  * NOTE: the HPD enable bits are modified both inside and outside
279  * of an interrupt context. To avoid that read-modify-write cycles
280  * interfer, these bits are protected by a spinlock. Since this
281  * function is usually not called from a context where the lock is
282  * held already, this function acquires the lock itself. A non-locking
283  * version is also available.
284  */
285 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
286                                    u32 mask,
287                                    u32 bits)
288 {
289         spin_lock_irq(&dev_priv->irq_lock);
290         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
291         spin_unlock_irq(&dev_priv->irq_lock);
292 }
293
294 /**
295  * ilk_update_display_irq - update DEIMR
296  * @dev_priv: driver private
297  * @interrupt_mask: mask of interrupt bits to update
298  * @enabled_irq_mask: mask of interrupt bits to enable
299  */
300 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
301                             u32 interrupt_mask,
302                             u32 enabled_irq_mask)
303 {
304         u32 new_val;
305
306         lockdep_assert_held(&dev_priv->irq_lock);
307
308         WARN_ON(enabled_irq_mask & ~interrupt_mask);
309
310         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
311                 return;
312
313         new_val = dev_priv->irq_mask;
314         new_val &= ~interrupt_mask;
315         new_val |= (~enabled_irq_mask & interrupt_mask);
316
317         if (new_val != dev_priv->irq_mask) {
318                 dev_priv->irq_mask = new_val;
319                 I915_WRITE(DEIMR, dev_priv->irq_mask);
320                 POSTING_READ(DEIMR);
321         }
322 }
323
324 /**
325  * bdw_update_port_irq - update DE port interrupt
326  * @dev_priv: driver private
327  * @interrupt_mask: mask of interrupt bits to update
328  * @enabled_irq_mask: mask of interrupt bits to enable
329  */
330 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
331                                 u32 interrupt_mask,
332                                 u32 enabled_irq_mask)
333 {
334         u32 new_val;
335         u32 old_val;
336
337         lockdep_assert_held(&dev_priv->irq_lock);
338
339         WARN_ON(enabled_irq_mask & ~interrupt_mask);
340
341         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342                 return;
343
344         old_val = I915_READ(GEN8_DE_PORT_IMR);
345
346         new_val = old_val;
347         new_val &= ~interrupt_mask;
348         new_val |= (~enabled_irq_mask & interrupt_mask);
349
350         if (new_val != old_val) {
351                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
352                 POSTING_READ(GEN8_DE_PORT_IMR);
353         }
354 }
355
356 /**
357  * bdw_update_pipe_irq - update DE pipe interrupt
358  * @dev_priv: driver private
359  * @pipe: pipe whose interrupt to update
360  * @interrupt_mask: mask of interrupt bits to update
361  * @enabled_irq_mask: mask of interrupt bits to enable
362  */
363 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
364                          enum pipe pipe,
365                          u32 interrupt_mask,
366                          u32 enabled_irq_mask)
367 {
368         u32 new_val;
369
370         lockdep_assert_held(&dev_priv->irq_lock);
371
372         WARN_ON(enabled_irq_mask & ~interrupt_mask);
373
374         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
375                 return;
376
377         new_val = dev_priv->de_irq_mask[pipe];
378         new_val &= ~interrupt_mask;
379         new_val |= (~enabled_irq_mask & interrupt_mask);
380
381         if (new_val != dev_priv->de_irq_mask[pipe]) {
382                 dev_priv->de_irq_mask[pipe] = new_val;
383                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
384                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
385         }
386 }
387
388 /**
389  * ibx_display_interrupt_update - update SDEIMR
390  * @dev_priv: driver private
391  * @interrupt_mask: mask of interrupt bits to update
392  * @enabled_irq_mask: mask of interrupt bits to enable
393  */
394 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
395                                   u32 interrupt_mask,
396                                   u32 enabled_irq_mask)
397 {
398         u32 sdeimr = I915_READ(SDEIMR);
399         sdeimr &= ~interrupt_mask;
400         sdeimr |= (~enabled_irq_mask & interrupt_mask);
401
402         WARN_ON(enabled_irq_mask & ~interrupt_mask);
403
404         lockdep_assert_held(&dev_priv->irq_lock);
405
406         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
407                 return;
408
409         I915_WRITE(SDEIMR, sdeimr);
410         POSTING_READ(SDEIMR);
411 }
412
413 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
414                               enum pipe pipe)
415 {
416         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
417         u32 enable_mask = status_mask << 16;
418
419         lockdep_assert_held(&dev_priv->irq_lock);
420
421         if (INTEL_GEN(dev_priv) < 5)
422                 goto out;
423
424         /*
425          * On pipe A we don't support the PSR interrupt yet,
426          * on pipe B and C the same bit MBZ.
427          */
428         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
429                 return 0;
430         /*
431          * On pipe B and C we don't support the PSR interrupt yet, on pipe
432          * A the same bit is for perf counters which we don't use either.
433          */
434         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
435                 return 0;
436
437         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
438                          SPRITE0_FLIP_DONE_INT_EN_VLV |
439                          SPRITE1_FLIP_DONE_INT_EN_VLV);
440         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
441                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
442         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
443                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
444
445 out:
446         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
447                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
448                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
449                   pipe_name(pipe), enable_mask, status_mask);
450
451         return enable_mask;
452 }
453
454 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
455                           enum pipe pipe, u32 status_mask)
456 {
457         i915_reg_t reg = PIPESTAT(pipe);
458         u32 enable_mask;
459
460         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
461                   "pipe %c: status_mask=0x%x\n",
462                   pipe_name(pipe), status_mask);
463
464         lockdep_assert_held(&dev_priv->irq_lock);
465         WARN_ON(!intel_irqs_enabled(dev_priv));
466
467         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
468                 return;
469
470         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
471         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
472
473         I915_WRITE(reg, enable_mask | status_mask);
474         POSTING_READ(reg);
475 }
476
477 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
478                            enum pipe pipe, u32 status_mask)
479 {
480         i915_reg_t reg = PIPESTAT(pipe);
481         u32 enable_mask;
482
483         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
484                   "pipe %c: status_mask=0x%x\n",
485                   pipe_name(pipe), status_mask);
486
487         lockdep_assert_held(&dev_priv->irq_lock);
488         WARN_ON(!intel_irqs_enabled(dev_priv));
489
490         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
491                 return;
492
493         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
494         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
495
496         I915_WRITE(reg, enable_mask | status_mask);
497         POSTING_READ(reg);
498 }
499
500 static bool i915_has_asle(struct drm_i915_private *dev_priv)
501 {
502         if (!dev_priv->opregion.asle)
503                 return false;
504
505         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
506 }
507
508 /**
509  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
510  * @dev_priv: i915 device private
511  */
512 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
513 {
514         if (!i915_has_asle(dev_priv))
515                 return;
516
517         spin_lock_irq(&dev_priv->irq_lock);
518
519         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
520         if (INTEL_GEN(dev_priv) >= 4)
521                 i915_enable_pipestat(dev_priv, PIPE_A,
522                                      PIPE_LEGACY_BLC_EVENT_STATUS);
523
524         spin_unlock_irq(&dev_priv->irq_lock);
525 }
526
527 /*
528  * This timing diagram depicts the video signal in and
529  * around the vertical blanking period.
530  *
531  * Assumptions about the fictitious mode used in this example:
532  *  vblank_start >= 3
533  *  vsync_start = vblank_start + 1
534  *  vsync_end = vblank_start + 2
535  *  vtotal = vblank_start + 3
536  *
537  *           start of vblank:
538  *           latch double buffered registers
539  *           increment frame counter (ctg+)
540  *           generate start of vblank interrupt (gen4+)
541  *           |
542  *           |          frame start:
543  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
544  *           |          may be shifted forward 1-3 extra lines via PIPECONF
545  *           |          |
546  *           |          |  start of vsync:
547  *           |          |  generate vsync interrupt
548  *           |          |  |
549  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
550  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
551  * ----va---> <-----------------vb--------------------> <--------va-------------
552  *       |          |       <----vs----->                     |
553  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
554  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
555  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
556  *       |          |                                         |
557  *       last visible pixel                                   first visible pixel
558  *                  |                                         increment frame counter (gen3/4)
559  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
560  *
561  * x  = horizontal active
562  * _  = horizontal blanking
563  * hs = horizontal sync
564  * va = vertical active
565  * vb = vertical blanking
566  * vs = vertical sync
567  * vbs = vblank_start (number)
568  *
569  * Summary:
570  * - most events happen at the start of horizontal sync
571  * - frame start happens at the start of horizontal blank, 1-4 lines
572  *   (depending on PIPECONF settings) after the start of vblank
573  * - gen3/4 pixel and frame counter are synchronized with the start
574  *   of horizontal active on the first line of vertical active
575  */
576
577 /* Called from drm generic code, passed a 'crtc', which
578  * we use as a pipe index
579  */
580 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
581 {
582         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
583         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
584         const struct drm_display_mode *mode = &vblank->hwmode;
585         enum pipe pipe = to_intel_crtc(crtc)->pipe;
586         i915_reg_t high_frame, low_frame;
587         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
588         unsigned long irqflags;
589
590         /*
591          * On i965gm TV output the frame counter only works up to
592          * the point when we enable the TV encoder. After that the
593          * frame counter ceases to work and reads zero. We need a
594          * vblank wait before enabling the TV encoder and so we
595          * have to enable vblank interrupts while the frame counter
596          * is still in a working state. However the core vblank code
597          * does not like us returning non-zero frame counter values
598          * when we've told it that we don't have a working frame
599          * counter. Thus we must stop non-zero values leaking out.
600          */
601         if (!vblank->max_vblank_count)
602                 return 0;
603
604         htotal = mode->crtc_htotal;
605         hsync_start = mode->crtc_hsync_start;
606         vbl_start = mode->crtc_vblank_start;
607         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
608                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
609
610         /* Convert to pixel count */
611         vbl_start *= htotal;
612
613         /* Start of vblank event occurs at start of hsync */
614         vbl_start -= htotal - hsync_start;
615
616         high_frame = PIPEFRAME(pipe);
617         low_frame = PIPEFRAMEPIXEL(pipe);
618
619         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
620
621         /*
622          * High & low register fields aren't synchronized, so make sure
623          * we get a low value that's stable across two reads of the high
624          * register.
625          */
626         do {
627                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
628                 low   = I915_READ_FW(low_frame);
629                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
630         } while (high1 != high2);
631
632         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
633
634         high1 >>= PIPE_FRAME_HIGH_SHIFT;
635         pixel = low & PIPE_PIXEL_MASK;
636         low >>= PIPE_FRAME_LOW_SHIFT;
637
638         /*
639          * The frame counter increments at beginning of active.
640          * Cook up a vblank counter by also checking the pixel
641          * counter against vblank start.
642          */
643         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
644 }
645
646 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
647 {
648         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
649         enum pipe pipe = to_intel_crtc(crtc)->pipe;
650
651         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
652 }
653
654 /*
655  * On certain encoders on certain platforms, pipe
656  * scanline register will not work to get the scanline,
657  * since the timings are driven from the PORT or issues
658  * with scanline register updates.
659  * This function will use Framestamp and current
660  * timestamp registers to calculate the scanline.
661  */
662 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
663 {
664         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
665         struct drm_vblank_crtc *vblank =
666                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
667         const struct drm_display_mode *mode = &vblank->hwmode;
668         u32 vblank_start = mode->crtc_vblank_start;
669         u32 vtotal = mode->crtc_vtotal;
670         u32 htotal = mode->crtc_htotal;
671         u32 clock = mode->crtc_clock;
672         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
673
674         /*
675          * To avoid the race condition where we might cross into the
676          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
677          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
678          * during the same frame.
679          */
680         do {
681                 /*
682                  * This field provides read back of the display
683                  * pipe frame time stamp. The time stamp value
684                  * is sampled at every start of vertical blank.
685                  */
686                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
687
688                 /*
689                  * The TIMESTAMP_CTR register has the current
690                  * time stamp value.
691                  */
692                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
693
694                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
695         } while (scan_post_time != scan_prev_time);
696
697         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
698                                         clock), 1000 * htotal);
699         scanline = min(scanline, vtotal - 1);
700         scanline = (scanline + vblank_start) % vtotal;
701
702         return scanline;
703 }
704
705 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
706 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
707 {
708         struct drm_device *dev = crtc->base.dev;
709         struct drm_i915_private *dev_priv = to_i915(dev);
710         const struct drm_display_mode *mode;
711         struct drm_vblank_crtc *vblank;
712         enum pipe pipe = crtc->pipe;
713         int position, vtotal;
714
715         if (!crtc->active)
716                 return -1;
717
718         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
719         mode = &vblank->hwmode;
720
721         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
722                 return __intel_get_crtc_scanline_from_timestamp(crtc);
723
724         vtotal = mode->crtc_vtotal;
725         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
726                 vtotal /= 2;
727
728         if (IS_GEN(dev_priv, 2))
729                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
730         else
731                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
732
733         /*
734          * On HSW, the DSL reg (0x70000) appears to return 0 if we
735          * read it just before the start of vblank.  So try it again
736          * so we don't accidentally end up spanning a vblank frame
737          * increment, causing the pipe_update_end() code to squak at us.
738          *
739          * The nature of this problem means we can't simply check the ISR
740          * bit and return the vblank start value; nor can we use the scanline
741          * debug register in the transcoder as it appears to have the same
742          * problem.  We may need to extend this to include other platforms,
743          * but so far testing only shows the problem on HSW.
744          */
745         if (HAS_DDI(dev_priv) && !position) {
746                 int i, temp;
747
748                 for (i = 0; i < 100; i++) {
749                         udelay(1);
750                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
751                         if (temp != position) {
752                                 position = temp;
753                                 break;
754                         }
755                 }
756         }
757
758         /*
759          * See update_scanline_offset() for the details on the
760          * scanline_offset adjustment.
761          */
762         return (position + crtc->scanline_offset) % vtotal;
763 }
764
765 bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int index,
766                               bool in_vblank_irq, int *vpos, int *hpos,
767                               ktime_t *stime, ktime_t *etime,
768                               const struct drm_display_mode *mode)
769 {
770         struct drm_i915_private *dev_priv = to_i915(dev);
771         struct intel_crtc *crtc = to_intel_crtc(drm_crtc_from_index(dev, index));
772         enum pipe pipe = crtc->pipe;
773         int position;
774         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
775         unsigned long irqflags;
776         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
777                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
778                 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
779
780         if (WARN_ON(!mode->crtc_clock)) {
781                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
782                                  "pipe %c\n", pipe_name(pipe));
783                 return false;
784         }
785
786         htotal = mode->crtc_htotal;
787         hsync_start = mode->crtc_hsync_start;
788         vtotal = mode->crtc_vtotal;
789         vbl_start = mode->crtc_vblank_start;
790         vbl_end = mode->crtc_vblank_end;
791
792         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
793                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
794                 vbl_end /= 2;
795                 vtotal /= 2;
796         }
797
798         /*
799          * Lock uncore.lock, as we will do multiple timing critical raw
800          * register reads, potentially with preemption disabled, so the
801          * following code must not block on uncore.lock.
802          */
803         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
804
805         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
806
807         /* Get optional system timestamp before query. */
808         if (stime)
809                 *stime = ktime_get();
810
811         if (use_scanline_counter) {
812                 /* No obvious pixelcount register. Only query vertical
813                  * scanout position from Display scan line register.
814                  */
815                 position = __intel_get_crtc_scanline(crtc);
816         } else {
817                 /* Have access to pixelcount since start of frame.
818                  * We can split this into vertical and horizontal
819                  * scanout position.
820                  */
821                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
822
823                 /* convert to pixel counts */
824                 vbl_start *= htotal;
825                 vbl_end *= htotal;
826                 vtotal *= htotal;
827
828                 /*
829                  * In interlaced modes, the pixel counter counts all pixels,
830                  * so one field will have htotal more pixels. In order to avoid
831                  * the reported position from jumping backwards when the pixel
832                  * counter is beyond the length of the shorter field, just
833                  * clamp the position the length of the shorter field. This
834                  * matches how the scanline counter based position works since
835                  * the scanline counter doesn't count the two half lines.
836                  */
837                 if (position >= vtotal)
838                         position = vtotal - 1;
839
840                 /*
841                  * Start of vblank interrupt is triggered at start of hsync,
842                  * just prior to the first active line of vblank. However we
843                  * consider lines to start at the leading edge of horizontal
844                  * active. So, should we get here before we've crossed into
845                  * the horizontal active of the first line in vblank, we would
846                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
847                  * always add htotal-hsync_start to the current pixel position.
848                  */
849                 position = (position + htotal - hsync_start) % vtotal;
850         }
851
852         /* Get optional system timestamp after query. */
853         if (etime)
854                 *etime = ktime_get();
855
856         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
857
858         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
859
860         /*
861          * While in vblank, position will be negative
862          * counting up towards 0 at vbl_end. And outside
863          * vblank, position will be positive counting
864          * up since vbl_end.
865          */
866         if (position >= vbl_start)
867                 position -= vbl_end;
868         else
869                 position += vtotal - vbl_end;
870
871         if (use_scanline_counter) {
872                 *vpos = position;
873                 *hpos = 0;
874         } else {
875                 *vpos = position / htotal;
876                 *hpos = position - (*vpos * htotal);
877         }
878
879         return true;
880 }
881
882 int intel_get_crtc_scanline(struct intel_crtc *crtc)
883 {
884         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
885         unsigned long irqflags;
886         int position;
887
888         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
889         position = __intel_get_crtc_scanline(crtc);
890         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
891
892         return position;
893 }
894
895 /**
896  * ivb_parity_work - Workqueue called when a parity error interrupt
897  * occurred.
898  * @work: workqueue struct
899  *
900  * Doesn't actually do anything except notify userspace. As a consequence of
901  * this event, userspace should try to remap the bad rows since statistically
902  * it is likely the same row is more likely to go bad again.
903  */
904 static void ivb_parity_work(struct work_struct *work)
905 {
906         struct drm_i915_private *dev_priv =
907                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
908         struct intel_gt *gt = &dev_priv->gt;
909         u32 error_status, row, bank, subbank;
910         char *parity_event[6];
911         u32 misccpctl;
912         u8 slice = 0;
913
914         /* We must turn off DOP level clock gating to access the L3 registers.
915          * In order to prevent a get/put style interface, acquire struct mutex
916          * any time we access those registers.
917          */
918         mutex_lock(&dev_priv->drm.struct_mutex);
919
920         /* If we've screwed up tracking, just let the interrupt fire again */
921         if (WARN_ON(!dev_priv->l3_parity.which_slice))
922                 goto out;
923
924         misccpctl = I915_READ(GEN7_MISCCPCTL);
925         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
926         POSTING_READ(GEN7_MISCCPCTL);
927
928         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
929                 i915_reg_t reg;
930
931                 slice--;
932                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
933                         break;
934
935                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
936
937                 reg = GEN7_L3CDERRST1(slice);
938
939                 error_status = I915_READ(reg);
940                 row = GEN7_PARITY_ERROR_ROW(error_status);
941                 bank = GEN7_PARITY_ERROR_BANK(error_status);
942                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
943
944                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
945                 POSTING_READ(reg);
946
947                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
948                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
949                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
950                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
951                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
952                 parity_event[5] = NULL;
953
954                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
955                                    KOBJ_CHANGE, parity_event);
956
957                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
958                           slice, row, bank, subbank);
959
960                 kfree(parity_event[4]);
961                 kfree(parity_event[3]);
962                 kfree(parity_event[2]);
963                 kfree(parity_event[1]);
964         }
965
966         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
967
968 out:
969         WARN_ON(dev_priv->l3_parity.which_slice);
970         spin_lock_irq(&gt->irq_lock);
971         gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
972         spin_unlock_irq(&gt->irq_lock);
973
974         mutex_unlock(&dev_priv->drm.struct_mutex);
975 }
976
977 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
978 {
979         switch (pin) {
980         case HPD_PORT_C:
981                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
982         case HPD_PORT_D:
983                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
984         case HPD_PORT_E:
985                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
986         case HPD_PORT_F:
987                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
988         default:
989                 return false;
990         }
991 }
992
993 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
994 {
995         switch (pin) {
996         case HPD_PORT_D:
997                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
998         case HPD_PORT_E:
999                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1000         case HPD_PORT_F:
1001                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1002         case HPD_PORT_G:
1003                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1004         case HPD_PORT_H:
1005                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1006         case HPD_PORT_I:
1007                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1008         default:
1009                 return false;
1010         }
1011 }
1012
1013 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1014 {
1015         switch (pin) {
1016         case HPD_PORT_A:
1017                 return val & PORTA_HOTPLUG_LONG_DETECT;
1018         case HPD_PORT_B:
1019                 return val & PORTB_HOTPLUG_LONG_DETECT;
1020         case HPD_PORT_C:
1021                 return val & PORTC_HOTPLUG_LONG_DETECT;
1022         default:
1023                 return false;
1024         }
1025 }
1026
1027 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1028 {
1029         switch (pin) {
1030         case HPD_PORT_A:
1031                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1032         case HPD_PORT_B:
1033                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1034         case HPD_PORT_C:
1035                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1036         default:
1037                 return false;
1038         }
1039 }
1040
1041 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1042 {
1043         switch (pin) {
1044         case HPD_PORT_C:
1045                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1046         case HPD_PORT_D:
1047                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1048         case HPD_PORT_E:
1049                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1050         case HPD_PORT_F:
1051                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1052         default:
1053                 return false;
1054         }
1055 }
1056
1057 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1058 {
1059         switch (pin) {
1060         case HPD_PORT_D:
1061                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1062         case HPD_PORT_E:
1063                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1064         case HPD_PORT_F:
1065                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1066         case HPD_PORT_G:
1067                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1068         case HPD_PORT_H:
1069                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1070         case HPD_PORT_I:
1071                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1072         default:
1073                 return false;
1074         }
1075 }
1076
1077 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1078 {
1079         switch (pin) {
1080         case HPD_PORT_E:
1081                 return val & PORTE_HOTPLUG_LONG_DETECT;
1082         default:
1083                 return false;
1084         }
1085 }
1086
1087 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1088 {
1089         switch (pin) {
1090         case HPD_PORT_A:
1091                 return val & PORTA_HOTPLUG_LONG_DETECT;
1092         case HPD_PORT_B:
1093                 return val & PORTB_HOTPLUG_LONG_DETECT;
1094         case HPD_PORT_C:
1095                 return val & PORTC_HOTPLUG_LONG_DETECT;
1096         case HPD_PORT_D:
1097                 return val & PORTD_HOTPLUG_LONG_DETECT;
1098         default:
1099                 return false;
1100         }
1101 }
1102
1103 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1104 {
1105         switch (pin) {
1106         case HPD_PORT_A:
1107                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1108         default:
1109                 return false;
1110         }
1111 }
1112
1113 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115         switch (pin) {
1116         case HPD_PORT_B:
1117                 return val & PORTB_HOTPLUG_LONG_DETECT;
1118         case HPD_PORT_C:
1119                 return val & PORTC_HOTPLUG_LONG_DETECT;
1120         case HPD_PORT_D:
1121                 return val & PORTD_HOTPLUG_LONG_DETECT;
1122         default:
1123                 return false;
1124         }
1125 }
1126
1127 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1128 {
1129         switch (pin) {
1130         case HPD_PORT_B:
1131                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1132         case HPD_PORT_C:
1133                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1134         case HPD_PORT_D:
1135                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1136         default:
1137                 return false;
1138         }
1139 }
1140
1141 /*
1142  * Get a bit mask of pins that have triggered, and which ones may be long.
1143  * This can be called multiple times with the same masks to accumulate
1144  * hotplug detection results from several registers.
1145  *
1146  * Note that the caller is expected to zero out the masks initially.
1147  */
1148 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1149                                u32 *pin_mask, u32 *long_mask,
1150                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1151                                const u32 hpd[HPD_NUM_PINS],
1152                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1153 {
1154         enum hpd_pin pin;
1155
1156         BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1157
1158         for_each_hpd_pin(pin) {
1159                 if ((hpd[pin] & hotplug_trigger) == 0)
1160                         continue;
1161
1162                 *pin_mask |= BIT(pin);
1163
1164                 if (long_pulse_detect(pin, dig_hotplug_reg))
1165                         *long_mask |= BIT(pin);
1166         }
1167
1168         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1169                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1170
1171 }
1172
1173 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1174 {
1175         wake_up_all(&dev_priv->gmbus_wait_queue);
1176 }
1177
1178 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1179 {
1180         wake_up_all(&dev_priv->gmbus_wait_queue);
1181 }
1182
1183 #if defined(CONFIG_DEBUG_FS)
1184 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1185                                          enum pipe pipe,
1186                                          u32 crc0, u32 crc1,
1187                                          u32 crc2, u32 crc3,
1188                                          u32 crc4)
1189 {
1190         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1191         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1192         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1193
1194         trace_intel_pipe_crc(crtc, crcs);
1195
1196         spin_lock(&pipe_crc->lock);
1197         /*
1198          * For some not yet identified reason, the first CRC is
1199          * bonkers. So let's just wait for the next vblank and read
1200          * out the buggy result.
1201          *
1202          * On GEN8+ sometimes the second CRC is bonkers as well, so
1203          * don't trust that one either.
1204          */
1205         if (pipe_crc->skipped <= 0 ||
1206             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1207                 pipe_crc->skipped++;
1208                 spin_unlock(&pipe_crc->lock);
1209                 return;
1210         }
1211         spin_unlock(&pipe_crc->lock);
1212
1213         drm_crtc_add_crc_entry(&crtc->base, true,
1214                                 drm_crtc_accurate_vblank_count(&crtc->base),
1215                                 crcs);
1216 }
1217 #else
1218 static inline void
1219 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1220                              enum pipe pipe,
1221                              u32 crc0, u32 crc1,
1222                              u32 crc2, u32 crc3,
1223                              u32 crc4) {}
1224 #endif
1225
1226
1227 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1228                                      enum pipe pipe)
1229 {
1230         display_pipe_crc_irq_handler(dev_priv, pipe,
1231                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1232                                      0, 0, 0, 0);
1233 }
1234
1235 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1236                                      enum pipe pipe)
1237 {
1238         display_pipe_crc_irq_handler(dev_priv, pipe,
1239                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1240                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1241                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1242                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1243                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1244 }
1245
1246 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1247                                       enum pipe pipe)
1248 {
1249         u32 res1, res2;
1250
1251         if (INTEL_GEN(dev_priv) >= 3)
1252                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1253         else
1254                 res1 = 0;
1255
1256         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1257                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1258         else
1259                 res2 = 0;
1260
1261         display_pipe_crc_irq_handler(dev_priv, pipe,
1262                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1263                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1264                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1265                                      res1, res2);
1266 }
1267
1268 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1269 {
1270         enum pipe pipe;
1271
1272         for_each_pipe(dev_priv, pipe) {
1273                 I915_WRITE(PIPESTAT(pipe),
1274                            PIPESTAT_INT_STATUS_MASK |
1275                            PIPE_FIFO_UNDERRUN_STATUS);
1276
1277                 dev_priv->pipestat_irq_mask[pipe] = 0;
1278         }
1279 }
1280
1281 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1282                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1283 {
1284         enum pipe pipe;
1285
1286         spin_lock(&dev_priv->irq_lock);
1287
1288         if (!dev_priv->display_irqs_enabled) {
1289                 spin_unlock(&dev_priv->irq_lock);
1290                 return;
1291         }
1292
1293         for_each_pipe(dev_priv, pipe) {
1294                 i915_reg_t reg;
1295                 u32 status_mask, enable_mask, iir_bit = 0;
1296
1297                 /*
1298                  * PIPESTAT bits get signalled even when the interrupt is
1299                  * disabled with the mask bits, and some of the status bits do
1300                  * not generate interrupts at all (like the underrun bit). Hence
1301                  * we need to be careful that we only handle what we want to
1302                  * handle.
1303                  */
1304
1305                 /* fifo underruns are filterered in the underrun handler. */
1306                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1307
1308                 switch (pipe) {
1309                 default:
1310                 case PIPE_A:
1311                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1312                         break;
1313                 case PIPE_B:
1314                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1315                         break;
1316                 case PIPE_C:
1317                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1318                         break;
1319                 }
1320                 if (iir & iir_bit)
1321                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1322
1323                 if (!status_mask)
1324                         continue;
1325
1326                 reg = PIPESTAT(pipe);
1327                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1328                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1329
1330                 /*
1331                  * Clear the PIPE*STAT regs before the IIR
1332                  *
1333                  * Toggle the enable bits to make sure we get an
1334                  * edge in the ISR pipe event bit if we don't clear
1335                  * all the enabled status bits. Otherwise the edge
1336                  * triggered IIR on i965/g4x wouldn't notice that
1337                  * an interrupt is still pending.
1338                  */
1339                 if (pipe_stats[pipe]) {
1340                         I915_WRITE(reg, pipe_stats[pipe]);
1341                         I915_WRITE(reg, enable_mask);
1342                 }
1343         }
1344         spin_unlock(&dev_priv->irq_lock);
1345 }
1346
1347 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1348                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1349 {
1350         enum pipe pipe;
1351
1352         for_each_pipe(dev_priv, pipe) {
1353                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1354                         drm_handle_vblank(&dev_priv->drm, pipe);
1355
1356                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1357                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1358
1359                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1360                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1361         }
1362 }
1363
1364 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1365                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1366 {
1367         bool blc_event = false;
1368         enum pipe pipe;
1369
1370         for_each_pipe(dev_priv, pipe) {
1371                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1372                         drm_handle_vblank(&dev_priv->drm, pipe);
1373
1374                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1375                         blc_event = true;
1376
1377                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1378                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1379
1380                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1381                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1382         }
1383
1384         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1385                 intel_opregion_asle_intr(dev_priv);
1386 }
1387
1388 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1389                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1390 {
1391         bool blc_event = false;
1392         enum pipe pipe;
1393
1394         for_each_pipe(dev_priv, pipe) {
1395                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1396                         drm_handle_vblank(&dev_priv->drm, pipe);
1397
1398                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1399                         blc_event = true;
1400
1401                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1402                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1403
1404                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1405                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1406         }
1407
1408         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1409                 intel_opregion_asle_intr(dev_priv);
1410
1411         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1412                 gmbus_irq_handler(dev_priv);
1413 }
1414
1415 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1416                                             u32 pipe_stats[I915_MAX_PIPES])
1417 {
1418         enum pipe pipe;
1419
1420         for_each_pipe(dev_priv, pipe) {
1421                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1422                         drm_handle_vblank(&dev_priv->drm, pipe);
1423
1424                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1425                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1426
1427                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1428                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1429         }
1430
1431         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1432                 gmbus_irq_handler(dev_priv);
1433 }
1434
1435 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1436 {
1437         u32 hotplug_status = 0, hotplug_status_mask;
1438         int i;
1439
1440         if (IS_G4X(dev_priv) ||
1441             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1442                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1443                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1444         else
1445                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1446
1447         /*
1448          * We absolutely have to clear all the pending interrupt
1449          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1450          * interrupt bit won't have an edge, and the i965/g4x
1451          * edge triggered IIR will not notice that an interrupt
1452          * is still pending. We can't use PORT_HOTPLUG_EN to
1453          * guarantee the edge as the act of toggling the enable
1454          * bits can itself generate a new hotplug interrupt :(
1455          */
1456         for (i = 0; i < 10; i++) {
1457                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1458
1459                 if (tmp == 0)
1460                         return hotplug_status;
1461
1462                 hotplug_status |= tmp;
1463                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1464         }
1465
1466         WARN_ONCE(1,
1467                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1468                   I915_READ(PORT_HOTPLUG_STAT));
1469
1470         return hotplug_status;
1471 }
1472
1473 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1474                                  u32 hotplug_status)
1475 {
1476         u32 pin_mask = 0, long_mask = 0;
1477
1478         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1479             IS_CHERRYVIEW(dev_priv)) {
1480                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1481
1482                 if (hotplug_trigger) {
1483                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1484                                            hotplug_trigger, hotplug_trigger,
1485                                            hpd_status_g4x,
1486                                            i9xx_port_hotplug_long_detect);
1487
1488                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1489                 }
1490
1491                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1492                         dp_aux_irq_handler(dev_priv);
1493         } else {
1494                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1495
1496                 if (hotplug_trigger) {
1497                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1498                                            hotplug_trigger, hotplug_trigger,
1499                                            hpd_status_i915,
1500                                            i9xx_port_hotplug_long_detect);
1501                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1502                 }
1503         }
1504 }
1505
1506 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1507 {
1508         struct drm_i915_private *dev_priv = arg;
1509         irqreturn_t ret = IRQ_NONE;
1510
1511         if (!intel_irqs_enabled(dev_priv))
1512                 return IRQ_NONE;
1513
1514         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1515         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1516
1517         do {
1518                 u32 iir, gt_iir, pm_iir;
1519                 u32 pipe_stats[I915_MAX_PIPES] = {};
1520                 u32 hotplug_status = 0;
1521                 u32 ier = 0;
1522
1523                 gt_iir = I915_READ(GTIIR);
1524                 pm_iir = I915_READ(GEN6_PMIIR);
1525                 iir = I915_READ(VLV_IIR);
1526
1527                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1528                         break;
1529
1530                 ret = IRQ_HANDLED;
1531
1532                 /*
1533                  * Theory on interrupt generation, based on empirical evidence:
1534                  *
1535                  * x = ((VLV_IIR & VLV_IER) ||
1536                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1537                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1538                  *
1539                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1540                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1541                  * guarantee the CPU interrupt will be raised again even if we
1542                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1543                  * bits this time around.
1544                  */
1545                 I915_WRITE(VLV_MASTER_IER, 0);
1546                 ier = I915_READ(VLV_IER);
1547                 I915_WRITE(VLV_IER, 0);
1548
1549                 if (gt_iir)
1550                         I915_WRITE(GTIIR, gt_iir);
1551                 if (pm_iir)
1552                         I915_WRITE(GEN6_PMIIR, pm_iir);
1553
1554                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1555                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1556
1557                 /* Call regardless, as some status bits might not be
1558                  * signalled in iir */
1559                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1560
1561                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1562                            I915_LPE_PIPE_B_INTERRUPT))
1563                         intel_lpe_audio_irq_handler(dev_priv);
1564
1565                 /*
1566                  * VLV_IIR is single buffered, and reflects the level
1567                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1568                  */
1569                 if (iir)
1570                         I915_WRITE(VLV_IIR, iir);
1571
1572                 I915_WRITE(VLV_IER, ier);
1573                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1574
1575                 if (gt_iir)
1576                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1577                 if (pm_iir)
1578                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1579
1580                 if (hotplug_status)
1581                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1582
1583                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1584         } while (0);
1585
1586         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1587
1588         return ret;
1589 }
1590
1591 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1592 {
1593         struct drm_i915_private *dev_priv = arg;
1594         irqreturn_t ret = IRQ_NONE;
1595
1596         if (!intel_irqs_enabled(dev_priv))
1597                 return IRQ_NONE;
1598
1599         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1600         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1601
1602         do {
1603                 u32 master_ctl, iir;
1604                 u32 pipe_stats[I915_MAX_PIPES] = {};
1605                 u32 hotplug_status = 0;
1606                 u32 gt_iir[4];
1607                 u32 ier = 0;
1608
1609                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1610                 iir = I915_READ(VLV_IIR);
1611
1612                 if (master_ctl == 0 && iir == 0)
1613                         break;
1614
1615                 ret = IRQ_HANDLED;
1616
1617                 /*
1618                  * Theory on interrupt generation, based on empirical evidence:
1619                  *
1620                  * x = ((VLV_IIR & VLV_IER) ||
1621                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1622                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1623                  *
1624                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1625                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1626                  * guarantee the CPU interrupt will be raised again even if we
1627                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1628                  * bits this time around.
1629                  */
1630                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1631                 ier = I915_READ(VLV_IER);
1632                 I915_WRITE(VLV_IER, 0);
1633
1634                 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
1635
1636                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1637                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1638
1639                 /* Call regardless, as some status bits might not be
1640                  * signalled in iir */
1641                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1642
1643                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1644                            I915_LPE_PIPE_B_INTERRUPT |
1645                            I915_LPE_PIPE_C_INTERRUPT))
1646                         intel_lpe_audio_irq_handler(dev_priv);
1647
1648                 /*
1649                  * VLV_IIR is single buffered, and reflects the level
1650                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1651                  */
1652                 if (iir)
1653                         I915_WRITE(VLV_IIR, iir);
1654
1655                 I915_WRITE(VLV_IER, ier);
1656                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1657
1658                 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
1659
1660                 if (hotplug_status)
1661                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1662
1663                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1664         } while (0);
1665
1666         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667
1668         return ret;
1669 }
1670
1671 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1672                                 u32 hotplug_trigger,
1673                                 const u32 hpd[HPD_NUM_PINS])
1674 {
1675         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1676
1677         /*
1678          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1679          * unless we touch the hotplug register, even if hotplug_trigger is
1680          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1681          * errors.
1682          */
1683         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1684         if (!hotplug_trigger) {
1685                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1686                         PORTD_HOTPLUG_STATUS_MASK |
1687                         PORTC_HOTPLUG_STATUS_MASK |
1688                         PORTB_HOTPLUG_STATUS_MASK;
1689                 dig_hotplug_reg &= ~mask;
1690         }
1691
1692         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1693         if (!hotplug_trigger)
1694                 return;
1695
1696         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1697                            dig_hotplug_reg, hpd,
1698                            pch_port_hotplug_long_detect);
1699
1700         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1701 }
1702
1703 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1704 {
1705         enum pipe pipe;
1706         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1707
1708         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1709
1710         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1711                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1712                                SDE_AUDIO_POWER_SHIFT);
1713                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1714                                  port_name(port));
1715         }
1716
1717         if (pch_iir & SDE_AUX_MASK)
1718                 dp_aux_irq_handler(dev_priv);
1719
1720         if (pch_iir & SDE_GMBUS)
1721                 gmbus_irq_handler(dev_priv);
1722
1723         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1724                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1725
1726         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1727                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1728
1729         if (pch_iir & SDE_POISON)
1730                 DRM_ERROR("PCH poison interrupt\n");
1731
1732         if (pch_iir & SDE_FDI_MASK)
1733                 for_each_pipe(dev_priv, pipe)
1734                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1735                                          pipe_name(pipe),
1736                                          I915_READ(FDI_RX_IIR(pipe)));
1737
1738         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1739                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1740
1741         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1742                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1743
1744         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1745                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1746
1747         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1748                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1749 }
1750
1751 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1752 {
1753         u32 err_int = I915_READ(GEN7_ERR_INT);
1754         enum pipe pipe;
1755
1756         if (err_int & ERR_INT_POISON)
1757                 DRM_ERROR("Poison interrupt\n");
1758
1759         for_each_pipe(dev_priv, pipe) {
1760                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1761                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1762
1763                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1764                         if (IS_IVYBRIDGE(dev_priv))
1765                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1766                         else
1767                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1768                 }
1769         }
1770
1771         I915_WRITE(GEN7_ERR_INT, err_int);
1772 }
1773
1774 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1775 {
1776         u32 serr_int = I915_READ(SERR_INT);
1777         enum pipe pipe;
1778
1779         if (serr_int & SERR_INT_POISON)
1780                 DRM_ERROR("PCH poison interrupt\n");
1781
1782         for_each_pipe(dev_priv, pipe)
1783                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1784                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1785
1786         I915_WRITE(SERR_INT, serr_int);
1787 }
1788
1789 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1790 {
1791         enum pipe pipe;
1792         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1793
1794         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
1795
1796         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1797                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1798                                SDE_AUDIO_POWER_SHIFT_CPT);
1799                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1800                                  port_name(port));
1801         }
1802
1803         if (pch_iir & SDE_AUX_MASK_CPT)
1804                 dp_aux_irq_handler(dev_priv);
1805
1806         if (pch_iir & SDE_GMBUS_CPT)
1807                 gmbus_irq_handler(dev_priv);
1808
1809         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1810                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1811
1812         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1813                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1814
1815         if (pch_iir & SDE_FDI_MASK_CPT)
1816                 for_each_pipe(dev_priv, pipe)
1817                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1818                                          pipe_name(pipe),
1819                                          I915_READ(FDI_RX_IIR(pipe)));
1820
1821         if (pch_iir & SDE_ERROR_CPT)
1822                 cpt_serr_int_handler(dev_priv);
1823 }
1824
1825 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1826 {
1827         u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1828         u32 pin_mask = 0, long_mask = 0;
1829         bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1830         const u32 *pins;
1831
1832         if (HAS_PCH_TGP(dev_priv)) {
1833                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1834                 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1835                 tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1836                 pins = hpd_tgp;
1837         } else if (HAS_PCH_JSP(dev_priv)) {
1838                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1839                 tc_hotplug_trigger = 0;
1840                 pins = hpd_tgp;
1841         } else if (HAS_PCH_MCC(dev_priv)) {
1842                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1843                 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1844                 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1845                 pins = hpd_icp;
1846         } else {
1847                 WARN(!HAS_PCH_ICP(dev_priv),
1848                      "Unrecognized PCH type 0x%x\n", INTEL_PCH_TYPE(dev_priv));
1849
1850                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1851                 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1852                 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1853                 pins = hpd_icp;
1854         }
1855
1856         if (ddi_hotplug_trigger) {
1857                 u32 dig_hotplug_reg;
1858
1859                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1860                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1861
1862                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1863                                    ddi_hotplug_trigger,
1864                                    dig_hotplug_reg, pins,
1865                                    icp_ddi_port_hotplug_long_detect);
1866         }
1867
1868         if (tc_hotplug_trigger) {
1869                 u32 dig_hotplug_reg;
1870
1871                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1872                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1873
1874                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1875                                    tc_hotplug_trigger,
1876                                    dig_hotplug_reg, pins,
1877                                    tc_port_hotplug_long_detect);
1878         }
1879
1880         if (pin_mask)
1881                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1882
1883         if (pch_iir & SDE_GMBUS_ICP)
1884                 gmbus_irq_handler(dev_priv);
1885 }
1886
1887 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1888 {
1889         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1890                 ~SDE_PORTE_HOTPLUG_SPT;
1891         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1892         u32 pin_mask = 0, long_mask = 0;
1893
1894         if (hotplug_trigger) {
1895                 u32 dig_hotplug_reg;
1896
1897                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1898                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1899
1900                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1901                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
1902                                    spt_port_hotplug_long_detect);
1903         }
1904
1905         if (hotplug2_trigger) {
1906                 u32 dig_hotplug_reg;
1907
1908                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1909                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1910
1911                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1912                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
1913                                    spt_port_hotplug2_long_detect);
1914         }
1915
1916         if (pin_mask)
1917                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1918
1919         if (pch_iir & SDE_GMBUS_CPT)
1920                 gmbus_irq_handler(dev_priv);
1921 }
1922
1923 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1924                                 u32 hotplug_trigger,
1925                                 const u32 hpd[HPD_NUM_PINS])
1926 {
1927         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1928
1929         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1930         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1931
1932         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1933                            dig_hotplug_reg, hpd,
1934                            ilk_port_hotplug_long_detect);
1935
1936         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1937 }
1938
1939 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
1940                                     u32 de_iir)
1941 {
1942         enum pipe pipe;
1943         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1944
1945         if (hotplug_trigger)
1946                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
1947
1948         if (de_iir & DE_AUX_CHANNEL_A)
1949                 dp_aux_irq_handler(dev_priv);
1950
1951         if (de_iir & DE_GSE)
1952                 intel_opregion_asle_intr(dev_priv);
1953
1954         if (de_iir & DE_POISON)
1955                 DRM_ERROR("Poison interrupt\n");
1956
1957         for_each_pipe(dev_priv, pipe) {
1958                 if (de_iir & DE_PIPE_VBLANK(pipe))
1959                         drm_handle_vblank(&dev_priv->drm, pipe);
1960
1961                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1962                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1963
1964                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1965                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1966         }
1967
1968         /* check event from PCH */
1969         if (de_iir & DE_PCH_EVENT) {
1970                 u32 pch_iir = I915_READ(SDEIIR);
1971
1972                 if (HAS_PCH_CPT(dev_priv))
1973                         cpt_irq_handler(dev_priv, pch_iir);
1974                 else
1975                         ibx_irq_handler(dev_priv, pch_iir);
1976
1977                 /* should clear PCH hotplug event before clear CPU irq */
1978                 I915_WRITE(SDEIIR, pch_iir);
1979         }
1980
1981         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
1982                 gen5_rps_irq_handler(&dev_priv->gt.rps);
1983 }
1984
1985 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
1986                                     u32 de_iir)
1987 {
1988         enum pipe pipe;
1989         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
1990
1991         if (hotplug_trigger)
1992                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
1993
1994         if (de_iir & DE_ERR_INT_IVB)
1995                 ivb_err_int_handler(dev_priv);
1996
1997         if (de_iir & DE_EDP_PSR_INT_HSW) {
1998                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
1999
2000                 intel_psr_irq_handler(dev_priv, psr_iir);
2001                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2002         }
2003
2004         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2005                 dp_aux_irq_handler(dev_priv);
2006
2007         if (de_iir & DE_GSE_IVB)
2008                 intel_opregion_asle_intr(dev_priv);
2009
2010         for_each_pipe(dev_priv, pipe) {
2011                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2012                         drm_handle_vblank(&dev_priv->drm, pipe);
2013         }
2014
2015         /* check event from PCH */
2016         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2017                 u32 pch_iir = I915_READ(SDEIIR);
2018
2019                 cpt_irq_handler(dev_priv, pch_iir);
2020
2021                 /* clear PCH hotplug event before clear CPU irq */
2022                 I915_WRITE(SDEIIR, pch_iir);
2023         }
2024 }
2025
2026 /*
2027  * To handle irqs with the minimum potential races with fresh interrupts, we:
2028  * 1 - Disable Master Interrupt Control.
2029  * 2 - Find the source(s) of the interrupt.
2030  * 3 - Clear the Interrupt Identity bits (IIR).
2031  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2032  * 5 - Re-enable Master Interrupt Control.
2033  */
2034 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2035 {
2036         struct drm_i915_private *dev_priv = arg;
2037         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2038         irqreturn_t ret = IRQ_NONE;
2039
2040         if (!intel_irqs_enabled(dev_priv))
2041                 return IRQ_NONE;
2042
2043         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2044         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2045
2046         /* disable master interrupt before clearing iir  */
2047         de_ier = I915_READ(DEIER);
2048         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2049
2050         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2051          * interrupts will will be stored on its back queue, and then we'll be
2052          * able to process them after we restore SDEIER (as soon as we restore
2053          * it, we'll get an interrupt if SDEIIR still has something to process
2054          * due to its back queue). */
2055         if (!HAS_PCH_NOP(dev_priv)) {
2056                 sde_ier = I915_READ(SDEIER);
2057                 I915_WRITE(SDEIER, 0);
2058         }
2059
2060         /* Find, clear, then process each source of interrupt */
2061
2062         gt_iir = I915_READ(GTIIR);
2063         if (gt_iir) {
2064                 I915_WRITE(GTIIR, gt_iir);
2065                 ret = IRQ_HANDLED;
2066                 if (INTEL_GEN(dev_priv) >= 6)
2067                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2068                 else
2069                         gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2070         }
2071
2072         de_iir = I915_READ(DEIIR);
2073         if (de_iir) {
2074                 I915_WRITE(DEIIR, de_iir);
2075                 ret = IRQ_HANDLED;
2076                 if (INTEL_GEN(dev_priv) >= 7)
2077                         ivb_display_irq_handler(dev_priv, de_iir);
2078                 else
2079                         ilk_display_irq_handler(dev_priv, de_iir);
2080         }
2081
2082         if (INTEL_GEN(dev_priv) >= 6) {
2083                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2084                 if (pm_iir) {
2085                         I915_WRITE(GEN6_PMIIR, pm_iir);
2086                         ret = IRQ_HANDLED;
2087                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
2088                 }
2089         }
2090
2091         I915_WRITE(DEIER, de_ier);
2092         if (!HAS_PCH_NOP(dev_priv))
2093                 I915_WRITE(SDEIER, sde_ier);
2094
2095         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2096         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2097
2098         return ret;
2099 }
2100
2101 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2102                                 u32 hotplug_trigger,
2103                                 const u32 hpd[HPD_NUM_PINS])
2104 {
2105         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2106
2107         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2108         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2109
2110         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2111                            dig_hotplug_reg, hpd,
2112                            bxt_port_hotplug_long_detect);
2113
2114         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2115 }
2116
2117 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2118 {
2119         u32 pin_mask = 0, long_mask = 0;
2120         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2121         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2122         long_pulse_detect_func long_pulse_detect;
2123         const u32 *hpd;
2124
2125         if (INTEL_GEN(dev_priv) >= 12) {
2126                 long_pulse_detect = gen12_port_hotplug_long_detect;
2127                 hpd = hpd_gen12;
2128         } else {
2129                 long_pulse_detect = gen11_port_hotplug_long_detect;
2130                 hpd = hpd_gen11;
2131         }
2132
2133         if (trigger_tc) {
2134                 u32 dig_hotplug_reg;
2135
2136                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2137                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2138
2139                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2140                                    dig_hotplug_reg, hpd, long_pulse_detect);
2141         }
2142
2143         if (trigger_tbt) {
2144                 u32 dig_hotplug_reg;
2145
2146                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2147                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2148
2149                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2150                                    dig_hotplug_reg, hpd, long_pulse_detect);
2151         }
2152
2153         if (pin_mask)
2154                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2155         else
2156                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2157 }
2158
2159 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2160 {
2161         u32 mask;
2162
2163         if (INTEL_GEN(dev_priv) >= 12)
2164                 return TGL_DE_PORT_AUX_DDIA |
2165                         TGL_DE_PORT_AUX_DDIB |
2166                         TGL_DE_PORT_AUX_DDIC |
2167                         TGL_DE_PORT_AUX_USBC1 |
2168                         TGL_DE_PORT_AUX_USBC2 |
2169                         TGL_DE_PORT_AUX_USBC3 |
2170                         TGL_DE_PORT_AUX_USBC4 |
2171                         TGL_DE_PORT_AUX_USBC5 |
2172                         TGL_DE_PORT_AUX_USBC6;
2173
2174
2175         mask = GEN8_AUX_CHANNEL_A;
2176         if (INTEL_GEN(dev_priv) >= 9)
2177                 mask |= GEN9_AUX_CHANNEL_B |
2178                         GEN9_AUX_CHANNEL_C |
2179                         GEN9_AUX_CHANNEL_D;
2180
2181         if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2182                 mask |= CNL_AUX_CHANNEL_F;
2183
2184         if (IS_GEN(dev_priv, 11))
2185                 mask |= ICL_AUX_CHANNEL_E;
2186
2187         return mask;
2188 }
2189
2190 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2191 {
2192         if (INTEL_GEN(dev_priv) >= 11)
2193                 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2194         else if (INTEL_GEN(dev_priv) >= 9)
2195                 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2196         else
2197                 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2198 }
2199
2200 static void
2201 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2202 {
2203         bool found = false;
2204
2205         if (iir & GEN8_DE_MISC_GSE) {
2206                 intel_opregion_asle_intr(dev_priv);
2207                 found = true;
2208         }
2209
2210         if (iir & GEN8_DE_EDP_PSR) {
2211                 u32 psr_iir;
2212                 i915_reg_t iir_reg;
2213
2214                 if (INTEL_GEN(dev_priv) >= 12)
2215                         iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2216                 else
2217                         iir_reg = EDP_PSR_IIR;
2218
2219                 psr_iir = I915_READ(iir_reg);
2220                 I915_WRITE(iir_reg, psr_iir);
2221
2222                 if (psr_iir)
2223                         found = true;
2224
2225                 intel_psr_irq_handler(dev_priv, psr_iir);
2226         }
2227
2228         if (!found)
2229                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2230 }
2231
2232 static irqreturn_t
2233 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2234 {
2235         irqreturn_t ret = IRQ_NONE;
2236         u32 iir;
2237         enum pipe pipe;
2238
2239         if (master_ctl & GEN8_DE_MISC_IRQ) {
2240                 iir = I915_READ(GEN8_DE_MISC_IIR);
2241                 if (iir) {
2242                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2243                         ret = IRQ_HANDLED;
2244                         gen8_de_misc_irq_handler(dev_priv, iir);
2245                 } else {
2246                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2247                 }
2248         }
2249
2250         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2251                 iir = I915_READ(GEN11_DE_HPD_IIR);
2252                 if (iir) {
2253                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2254                         ret = IRQ_HANDLED;
2255                         gen11_hpd_irq_handler(dev_priv, iir);
2256                 } else {
2257                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2258                 }
2259         }
2260
2261         if (master_ctl & GEN8_DE_PORT_IRQ) {
2262                 iir = I915_READ(GEN8_DE_PORT_IIR);
2263                 if (iir) {
2264                         u32 tmp_mask;
2265                         bool found = false;
2266
2267                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2268                         ret = IRQ_HANDLED;
2269
2270                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2271                                 dp_aux_irq_handler(dev_priv);
2272                                 found = true;
2273                         }
2274
2275                         if (IS_GEN9_LP(dev_priv)) {
2276                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2277                                 if (tmp_mask) {
2278                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2279                                                             hpd_bxt);
2280                                         found = true;
2281                                 }
2282                         } else if (IS_BROADWELL(dev_priv)) {
2283                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2284                                 if (tmp_mask) {
2285                                         ilk_hpd_irq_handler(dev_priv,
2286                                                             tmp_mask, hpd_bdw);
2287                                         found = true;
2288                                 }
2289                         }
2290
2291                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2292                                 gmbus_irq_handler(dev_priv);
2293                                 found = true;
2294                         }
2295
2296                         if (!found)
2297                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2298                 }
2299                 else
2300                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2301         }
2302
2303         for_each_pipe(dev_priv, pipe) {
2304                 u32 fault_errors;
2305
2306                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2307                         continue;
2308
2309                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2310                 if (!iir) {
2311                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2312                         continue;
2313                 }
2314
2315                 ret = IRQ_HANDLED;
2316                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2317
2318                 if (iir & GEN8_PIPE_VBLANK)
2319                         drm_handle_vblank(&dev_priv->drm, pipe);
2320
2321                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2322                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2323
2324                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2325                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2326
2327                 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2328                 if (fault_errors)
2329                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2330                                   pipe_name(pipe),
2331                                   fault_errors);
2332         }
2333
2334         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2335             master_ctl & GEN8_DE_PCH_IRQ) {
2336                 /*
2337                  * FIXME(BDW): Assume for now that the new interrupt handling
2338                  * scheme also closed the SDE interrupt handling race we've seen
2339                  * on older pch-split platforms. But this needs testing.
2340                  */
2341                 iir = I915_READ(SDEIIR);
2342                 if (iir) {
2343                         I915_WRITE(SDEIIR, iir);
2344                         ret = IRQ_HANDLED;
2345
2346                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2347                                 icp_irq_handler(dev_priv, iir);
2348                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2349                                 spt_irq_handler(dev_priv, iir);
2350                         else
2351                                 cpt_irq_handler(dev_priv, iir);
2352                 } else {
2353                         /*
2354                          * Like on previous PCH there seems to be something
2355                          * fishy going on with forwarding PCH interrupts.
2356                          */
2357                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2358                 }
2359         }
2360
2361         return ret;
2362 }
2363
2364 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2365 {
2366         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2367
2368         /*
2369          * Now with master disabled, get a sample of level indications
2370          * for this interrupt. Indications will be cleared on related acks.
2371          * New indications can and will light up during processing,
2372          * and will generate new interrupt after enabling master.
2373          */
2374         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2375 }
2376
2377 static inline void gen8_master_intr_enable(void __iomem * const regs)
2378 {
2379         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2380 }
2381
2382 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2383 {
2384         struct drm_i915_private *dev_priv = arg;
2385         void __iomem * const regs = dev_priv->uncore.regs;
2386         u32 master_ctl;
2387         u32 gt_iir[4];
2388
2389         if (!intel_irqs_enabled(dev_priv))
2390                 return IRQ_NONE;
2391
2392         master_ctl = gen8_master_intr_disable(regs);
2393         if (!master_ctl) {
2394                 gen8_master_intr_enable(regs);
2395                 return IRQ_NONE;
2396         }
2397
2398         /* Find, clear, then process each source of interrupt */
2399         gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2400
2401         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2402         if (master_ctl & ~GEN8_GT_IRQS) {
2403                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2404                 gen8_de_irq_handler(dev_priv, master_ctl);
2405                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2406         }
2407
2408         gen8_master_intr_enable(regs);
2409
2410         gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2411
2412         return IRQ_HANDLED;
2413 }
2414
2415 static u32
2416 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2417 {
2418         void __iomem * const regs = gt->uncore->regs;
2419         u32 iir;
2420
2421         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2422                 return 0;
2423
2424         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2425         if (likely(iir))
2426                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2427
2428         return iir;
2429 }
2430
2431 static void
2432 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2433 {
2434         if (iir & GEN11_GU_MISC_GSE)
2435                 intel_opregion_asle_intr(gt->i915);
2436 }
2437
2438 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2439 {
2440         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2441
2442         /*
2443          * Now with master disabled, get a sample of level indications
2444          * for this interrupt. Indications will be cleared on related acks.
2445          * New indications can and will light up during processing,
2446          * and will generate new interrupt after enabling master.
2447          */
2448         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2449 }
2450
2451 static inline void gen11_master_intr_enable(void __iomem * const regs)
2452 {
2453         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2454 }
2455
2456 static void
2457 gen11_display_irq_handler(struct drm_i915_private *i915)
2458 {
2459         void __iomem * const regs = i915->uncore.regs;
2460         const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2461
2462         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2463         /*
2464          * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2465          * for the display related bits.
2466          */
2467         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2468         gen8_de_irq_handler(i915, disp_ctl);
2469         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2470                       GEN11_DISPLAY_IRQ_ENABLE);
2471
2472         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2473 }
2474
2475 static __always_inline irqreturn_t
2476 __gen11_irq_handler(struct drm_i915_private * const i915,
2477                     u32 (*intr_disable)(void __iomem * const regs),
2478                     void (*intr_enable)(void __iomem * const regs))
2479 {
2480         void __iomem * const regs = i915->uncore.regs;
2481         struct intel_gt *gt = &i915->gt;
2482         u32 master_ctl;
2483         u32 gu_misc_iir;
2484
2485         if (!intel_irqs_enabled(i915))
2486                 return IRQ_NONE;
2487
2488         master_ctl = intr_disable(regs);
2489         if (!master_ctl) {
2490                 intr_enable(regs);
2491                 return IRQ_NONE;
2492         }
2493
2494         /* Find, clear, then process each source of interrupt. */
2495         gen11_gt_irq_handler(gt, master_ctl);
2496
2497         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2498         if (master_ctl & GEN11_DISPLAY_IRQ)
2499                 gen11_display_irq_handler(i915);
2500
2501         gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2502
2503         intr_enable(regs);
2504
2505         gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2506
2507         return IRQ_HANDLED;
2508 }
2509
2510 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2511 {
2512         return __gen11_irq_handler(arg,
2513                                    gen11_master_intr_disable,
2514                                    gen11_master_intr_enable);
2515 }
2516
2517 /* Called from drm generic code, passed 'crtc' which
2518  * we use as a pipe index
2519  */
2520 int i8xx_enable_vblank(struct drm_crtc *crtc)
2521 {
2522         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2523         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2524         unsigned long irqflags;
2525
2526         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2527         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2528         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2529
2530         return 0;
2531 }
2532
2533 int i915gm_enable_vblank(struct drm_crtc *crtc)
2534 {
2535         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2536
2537         /*
2538          * Vblank interrupts fail to wake the device up from C2+.
2539          * Disabling render clock gating during C-states avoids
2540          * the problem. There is a small power cost so we do this
2541          * only when vblank interrupts are actually enabled.
2542          */
2543         if (dev_priv->vblank_enabled++ == 0)
2544                 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2545
2546         return i8xx_enable_vblank(crtc);
2547 }
2548
2549 int i965_enable_vblank(struct drm_crtc *crtc)
2550 {
2551         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2552         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2553         unsigned long irqflags;
2554
2555         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2556         i915_enable_pipestat(dev_priv, pipe,
2557                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2558         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2559
2560         return 0;
2561 }
2562
2563 int ilk_enable_vblank(struct drm_crtc *crtc)
2564 {
2565         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2566         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2567         unsigned long irqflags;
2568         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2569                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2570
2571         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2572         ilk_enable_display_irq(dev_priv, bit);
2573         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2574
2575         /* Even though there is no DMC, frame counter can get stuck when
2576          * PSR is active as no frames are generated.
2577          */
2578         if (HAS_PSR(dev_priv))
2579                 drm_crtc_vblank_restore(crtc);
2580
2581         return 0;
2582 }
2583
2584 int bdw_enable_vblank(struct drm_crtc *crtc)
2585 {
2586         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2587         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2588         unsigned long irqflags;
2589
2590         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2591         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2592         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2593
2594         /* Even if there is no DMC, frame counter can get stuck when
2595          * PSR is active as no frames are generated, so check only for PSR.
2596          */
2597         if (HAS_PSR(dev_priv))
2598                 drm_crtc_vblank_restore(crtc);
2599
2600         return 0;
2601 }
2602
2603 /* Called from drm generic code, passed 'crtc' which
2604  * we use as a pipe index
2605  */
2606 void i8xx_disable_vblank(struct drm_crtc *crtc)
2607 {
2608         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2609         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2610         unsigned long irqflags;
2611
2612         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2613         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2614         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2615 }
2616
2617 void i915gm_disable_vblank(struct drm_crtc *crtc)
2618 {
2619         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2620
2621         i8xx_disable_vblank(crtc);
2622
2623         if (--dev_priv->vblank_enabled == 0)
2624                 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2625 }
2626
2627 void i965_disable_vblank(struct drm_crtc *crtc)
2628 {
2629         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2630         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2631         unsigned long irqflags;
2632
2633         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2634         i915_disable_pipestat(dev_priv, pipe,
2635                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2636         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2637 }
2638
2639 void ilk_disable_vblank(struct drm_crtc *crtc)
2640 {
2641         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2642         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2643         unsigned long irqflags;
2644         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2645                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2646
2647         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2648         ilk_disable_display_irq(dev_priv, bit);
2649         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2650 }
2651
2652 void bdw_disable_vblank(struct drm_crtc *crtc)
2653 {
2654         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2655         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2656         unsigned long irqflags;
2657
2658         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2659         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2660         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2661 }
2662
2663 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2664 {
2665         struct intel_uncore *uncore = &dev_priv->uncore;
2666
2667         if (HAS_PCH_NOP(dev_priv))
2668                 return;
2669
2670         GEN3_IRQ_RESET(uncore, SDE);
2671
2672         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2673                 I915_WRITE(SERR_INT, 0xffffffff);
2674 }
2675
2676 /*
2677  * SDEIER is also touched by the interrupt handler to work around missed PCH
2678  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2679  * instead we unconditionally enable all PCH interrupt sources here, but then
2680  * only unmask them as needed with SDEIMR.
2681  *
2682  * This function needs to be called before interrupts are enabled.
2683  */
2684 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2685 {
2686         if (HAS_PCH_NOP(dev_priv))
2687                 return;
2688
2689         WARN_ON(I915_READ(SDEIER) != 0);
2690         I915_WRITE(SDEIER, 0xffffffff);
2691         POSTING_READ(SDEIER);
2692 }
2693
2694 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2695 {
2696         struct intel_uncore *uncore = &dev_priv->uncore;
2697
2698         if (IS_CHERRYVIEW(dev_priv))
2699                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2700         else
2701                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2702
2703         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2704         intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2705
2706         i9xx_pipestat_irq_reset(dev_priv);
2707
2708         GEN3_IRQ_RESET(uncore, VLV_);
2709         dev_priv->irq_mask = ~0u;
2710 }
2711
2712 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2713 {
2714         struct intel_uncore *uncore = &dev_priv->uncore;
2715
2716         u32 pipestat_mask;
2717         u32 enable_mask;
2718         enum pipe pipe;
2719
2720         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2721
2722         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2723         for_each_pipe(dev_priv, pipe)
2724                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2725
2726         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2727                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2728                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2729                 I915_LPE_PIPE_A_INTERRUPT |
2730                 I915_LPE_PIPE_B_INTERRUPT;
2731
2732         if (IS_CHERRYVIEW(dev_priv))
2733                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2734                         I915_LPE_PIPE_C_INTERRUPT;
2735
2736         WARN_ON(dev_priv->irq_mask != ~0u);
2737
2738         dev_priv->irq_mask = ~enable_mask;
2739
2740         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2741 }
2742
2743 /* drm_dma.h hooks
2744 */
2745 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2746 {
2747         struct intel_uncore *uncore = &dev_priv->uncore;
2748
2749         GEN3_IRQ_RESET(uncore, DE);
2750         if (IS_GEN(dev_priv, 7))
2751                 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2752
2753         if (IS_HASWELL(dev_priv)) {
2754                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2755                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2756         }
2757
2758         gen5_gt_irq_reset(&dev_priv->gt);
2759
2760         ibx_irq_reset(dev_priv);
2761 }
2762
2763 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2764 {
2765         I915_WRITE(VLV_MASTER_IER, 0);
2766         POSTING_READ(VLV_MASTER_IER);
2767
2768         gen5_gt_irq_reset(&dev_priv->gt);
2769
2770         spin_lock_irq(&dev_priv->irq_lock);
2771         if (dev_priv->display_irqs_enabled)
2772                 vlv_display_irq_reset(dev_priv);
2773         spin_unlock_irq(&dev_priv->irq_lock);
2774 }
2775
2776 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2777 {
2778         struct intel_uncore *uncore = &dev_priv->uncore;
2779         enum pipe pipe;
2780
2781         gen8_master_intr_disable(dev_priv->uncore.regs);
2782
2783         gen8_gt_irq_reset(&dev_priv->gt);
2784
2785         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2786         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2787
2788         for_each_pipe(dev_priv, pipe)
2789                 if (intel_display_power_is_enabled(dev_priv,
2790                                                    POWER_DOMAIN_PIPE(pipe)))
2791                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2792
2793         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2794         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2795         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2796
2797         if (HAS_PCH_SPLIT(dev_priv))
2798                 ibx_irq_reset(dev_priv);
2799 }
2800
2801 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2802 {
2803         struct intel_uncore *uncore = &dev_priv->uncore;
2804         enum pipe pipe;
2805
2806         intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2807
2808         if (INTEL_GEN(dev_priv) >= 12) {
2809                 enum transcoder trans;
2810
2811                 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
2812                         enum intel_display_power_domain domain;
2813
2814                         domain = POWER_DOMAIN_TRANSCODER(trans);
2815                         if (!intel_display_power_is_enabled(dev_priv, domain))
2816                                 continue;
2817
2818                         intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2819                         intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2820                 }
2821         } else {
2822                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2823                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2824         }
2825
2826         for_each_pipe(dev_priv, pipe)
2827                 if (intel_display_power_is_enabled(dev_priv,
2828                                                    POWER_DOMAIN_PIPE(pipe)))
2829                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2830
2831         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2832         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2833         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2834
2835         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2836                 GEN3_IRQ_RESET(uncore, SDE);
2837 }
2838
2839 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2840 {
2841         struct intel_uncore *uncore = &dev_priv->uncore;
2842
2843         gen11_master_intr_disable(dev_priv->uncore.regs);
2844
2845         gen11_gt_irq_reset(&dev_priv->gt);
2846         gen11_display_irq_reset(dev_priv);
2847
2848         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2849         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2850 }
2851
2852 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2853                                      u8 pipe_mask)
2854 {
2855         struct intel_uncore *uncore = &dev_priv->uncore;
2856
2857         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2858         enum pipe pipe;
2859
2860         spin_lock_irq(&dev_priv->irq_lock);
2861
2862         if (!intel_irqs_enabled(dev_priv)) {
2863                 spin_unlock_irq(&dev_priv->irq_lock);
2864                 return;
2865         }
2866
2867         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2868                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2869                                   dev_priv->de_irq_mask[pipe],
2870                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
2871
2872         spin_unlock_irq(&dev_priv->irq_lock);
2873 }
2874
2875 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2876                                      u8 pipe_mask)
2877 {
2878         struct intel_uncore *uncore = &dev_priv->uncore;
2879         enum pipe pipe;
2880
2881         spin_lock_irq(&dev_priv->irq_lock);
2882
2883         if (!intel_irqs_enabled(dev_priv)) {
2884                 spin_unlock_irq(&dev_priv->irq_lock);
2885                 return;
2886         }
2887
2888         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2889                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2890
2891         spin_unlock_irq(&dev_priv->irq_lock);
2892
2893         /* make sure we're done processing display irqs */
2894         intel_synchronize_irq(dev_priv);
2895 }
2896
2897 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2898 {
2899         struct intel_uncore *uncore = &dev_priv->uncore;
2900
2901         I915_WRITE(GEN8_MASTER_IRQ, 0);
2902         POSTING_READ(GEN8_MASTER_IRQ);
2903
2904         gen8_gt_irq_reset(&dev_priv->gt);
2905
2906         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2907
2908         spin_lock_irq(&dev_priv->irq_lock);
2909         if (dev_priv->display_irqs_enabled)
2910                 vlv_display_irq_reset(dev_priv);
2911         spin_unlock_irq(&dev_priv->irq_lock);
2912 }
2913
2914 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2915                                   const u32 hpd[HPD_NUM_PINS])
2916 {
2917         struct intel_encoder *encoder;
2918         u32 enabled_irqs = 0;
2919
2920         for_each_intel_encoder(&dev_priv->drm, encoder)
2921                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2922                         enabled_irqs |= hpd[encoder->hpd_pin];
2923
2924         return enabled_irqs;
2925 }
2926
2927 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
2928 {
2929         u32 hotplug;
2930
2931         /*
2932          * Enable digital hotplug on the PCH, and configure the DP short pulse
2933          * duration to 2ms (which is the minimum in the Display Port spec).
2934          * The pulse duration bits are reserved on LPT+.
2935          */
2936         hotplug = I915_READ(PCH_PORT_HOTPLUG);
2937         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
2938                      PORTC_PULSE_DURATION_MASK |
2939                      PORTD_PULSE_DURATION_MASK);
2940         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2941         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2942         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2943         /*
2944          * When CPU and PCH are on the same package, port A
2945          * HPD must be enabled in both north and south.
2946          */
2947         if (HAS_PCH_LPT_LP(dev_priv))
2948                 hotplug |= PORTA_HOTPLUG_ENABLE;
2949         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2950 }
2951
2952 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
2953 {
2954         u32 hotplug_irqs, enabled_irqs;
2955
2956         if (HAS_PCH_IBX(dev_priv)) {
2957                 hotplug_irqs = SDE_HOTPLUG_MASK;
2958                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
2959         } else {
2960                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2961                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
2962         }
2963
2964         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2965
2966         ibx_hpd_detection_setup(dev_priv);
2967 }
2968
2969 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
2970                                     u32 ddi_hotplug_enable_mask,
2971                                     u32 tc_hotplug_enable_mask)
2972 {
2973         u32 hotplug;
2974
2975         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
2976         hotplug |= ddi_hotplug_enable_mask;
2977         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
2978
2979         if (tc_hotplug_enable_mask) {
2980                 hotplug = I915_READ(SHOTPLUG_CTL_TC);
2981                 hotplug |= tc_hotplug_enable_mask;
2982                 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
2983         }
2984 }
2985
2986 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
2987                               u32 sde_ddi_mask, u32 sde_tc_mask,
2988                               u32 ddi_enable_mask, u32 tc_enable_mask,
2989                               const u32 *pins)
2990 {
2991         u32 hotplug_irqs, enabled_irqs;
2992
2993         hotplug_irqs = sde_ddi_mask | sde_tc_mask;
2994         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, pins);
2995
2996         I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
2997
2998         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2999
3000         icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3001 }
3002
3003 /*
3004  * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3005  * equivalent of SDE.
3006  */
3007 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3008 {
3009         icp_hpd_irq_setup(dev_priv,
3010                           SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3011                           ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1),
3012                           hpd_icp);
3013 }
3014
3015 /*
3016  * JSP behaves exactly the same as MCC above except that port C is mapped to
3017  * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3018  * masks & tables rather than ICP's masks & tables.
3019  */
3020 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3021 {
3022         icp_hpd_irq_setup(dev_priv,
3023                           SDE_DDI_MASK_TGP, 0,
3024                           TGP_DDI_HPD_ENABLE_MASK, 0,
3025                           hpd_tgp);
3026 }
3027
3028 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3029 {
3030         u32 hotplug;
3031
3032         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3033         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3034                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3035                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3036                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3037         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3038
3039         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3040         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3041                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3042                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3043                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3044         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3045 }
3046
3047 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3048 {
3049         u32 hotplug_irqs, enabled_irqs;
3050         const u32 *hpd;
3051         u32 val;
3052
3053         hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3054         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3055         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3056
3057         val = I915_READ(GEN11_DE_HPD_IMR);
3058         val &= ~hotplug_irqs;
3059         I915_WRITE(GEN11_DE_HPD_IMR, val);
3060         POSTING_READ(GEN11_DE_HPD_IMR);
3061
3062         gen11_hpd_detection_setup(dev_priv);
3063
3064         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3065                 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3066                                   TGP_DDI_HPD_ENABLE_MASK,
3067                                   TGP_TC_HPD_ENABLE_MASK, hpd_tgp);
3068         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3069                 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3070                                   ICP_DDI_HPD_ENABLE_MASK,
3071                                   ICP_TC_HPD_ENABLE_MASK, hpd_icp);
3072 }
3073
3074 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3075 {
3076         u32 val, hotplug;
3077
3078         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3079         if (HAS_PCH_CNP(dev_priv)) {
3080                 val = I915_READ(SOUTH_CHICKEN1);
3081                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3082                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3083                 I915_WRITE(SOUTH_CHICKEN1, val);
3084         }
3085
3086         /* Enable digital hotplug on the PCH */
3087         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3088         hotplug |= PORTA_HOTPLUG_ENABLE |
3089                    PORTB_HOTPLUG_ENABLE |
3090                    PORTC_HOTPLUG_ENABLE |
3091                    PORTD_HOTPLUG_ENABLE;
3092         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3093
3094         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3095         hotplug |= PORTE_HOTPLUG_ENABLE;
3096         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3097 }
3098
3099 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3100 {
3101         u32 hotplug_irqs, enabled_irqs;
3102
3103         if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3104                 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3105
3106         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3107         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3108
3109         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3110
3111         spt_hpd_detection_setup(dev_priv);
3112 }
3113
3114 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3115 {
3116         u32 hotplug;
3117
3118         /*
3119          * Enable digital hotplug on the CPU, and configure the DP short pulse
3120          * duration to 2ms (which is the minimum in the Display Port spec)
3121          * The pulse duration bits are reserved on HSW+.
3122          */
3123         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3124         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3125         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3126                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3127         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3128 }
3129
3130 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3131 {
3132         u32 hotplug_irqs, enabled_irqs;
3133
3134         if (INTEL_GEN(dev_priv) >= 8) {
3135                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3136                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3137
3138                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3139         } else if (INTEL_GEN(dev_priv) >= 7) {
3140                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3141                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3142
3143                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3144         } else {
3145                 hotplug_irqs = DE_DP_A_HOTPLUG;
3146                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3147
3148                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3149         }
3150
3151         ilk_hpd_detection_setup(dev_priv);
3152
3153         ibx_hpd_irq_setup(dev_priv);
3154 }
3155
3156 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3157                                       u32 enabled_irqs)
3158 {
3159         u32 hotplug;
3160
3161         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3162         hotplug |= PORTA_HOTPLUG_ENABLE |
3163                    PORTB_HOTPLUG_ENABLE |
3164                    PORTC_HOTPLUG_ENABLE;
3165
3166         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3167                       hotplug, enabled_irqs);
3168         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3169
3170         /*
3171          * For BXT invert bit has to be set based on AOB design
3172          * for HPD detection logic, update it based on VBT fields.
3173          */
3174         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3175             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3176                 hotplug |= BXT_DDIA_HPD_INVERT;
3177         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3178             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3179                 hotplug |= BXT_DDIB_HPD_INVERT;
3180         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3181             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3182                 hotplug |= BXT_DDIC_HPD_INVERT;
3183
3184         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3185 }
3186
3187 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3188 {
3189         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3190 }
3191
3192 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3193 {
3194         u32 hotplug_irqs, enabled_irqs;
3195
3196         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3197         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3198
3199         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3200
3201         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3202 }
3203
3204 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3205 {
3206         u32 mask;
3207
3208         if (HAS_PCH_NOP(dev_priv))
3209                 return;
3210
3211         if (HAS_PCH_IBX(dev_priv))
3212                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3213         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3214                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3215         else
3216                 mask = SDE_GMBUS_CPT;
3217
3218         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3219         I915_WRITE(SDEIMR, ~mask);
3220
3221         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3222             HAS_PCH_LPT(dev_priv))
3223                 ibx_hpd_detection_setup(dev_priv);
3224         else
3225                 spt_hpd_detection_setup(dev_priv);
3226 }
3227
3228 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3229 {
3230         struct intel_uncore *uncore = &dev_priv->uncore;
3231         u32 display_mask, extra_mask;
3232
3233         if (INTEL_GEN(dev_priv) >= 7) {
3234                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3235                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3236                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3237                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3238                               DE_DP_A_HOTPLUG_IVB);
3239         } else {
3240                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3241                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3242                                 DE_PIPEA_CRC_DONE | DE_POISON);
3243                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3244                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3245                               DE_DP_A_HOTPLUG);
3246         }
3247
3248         if (IS_HASWELL(dev_priv)) {
3249                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3250                 display_mask |= DE_EDP_PSR_INT_HSW;
3251         }
3252
3253         dev_priv->irq_mask = ~display_mask;
3254
3255         ibx_irq_pre_postinstall(dev_priv);
3256
3257         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3258                       display_mask | extra_mask);
3259
3260         gen5_gt_irq_postinstall(&dev_priv->gt);
3261
3262         ilk_hpd_detection_setup(dev_priv);
3263
3264         ibx_irq_postinstall(dev_priv);
3265
3266         if (IS_IRONLAKE_M(dev_priv)) {
3267                 /* Enable PCU event interrupts
3268                  *
3269                  * spinlocking not required here for correctness since interrupt
3270                  * setup is guaranteed to run in single-threaded context. But we
3271                  * need it to make the assert_spin_locked happy. */
3272                 spin_lock_irq(&dev_priv->irq_lock);
3273                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3274                 spin_unlock_irq(&dev_priv->irq_lock);
3275         }
3276 }
3277
3278 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3279 {
3280         lockdep_assert_held(&dev_priv->irq_lock);
3281
3282         if (dev_priv->display_irqs_enabled)
3283                 return;
3284
3285         dev_priv->display_irqs_enabled = true;
3286
3287         if (intel_irqs_enabled(dev_priv)) {
3288                 vlv_display_irq_reset(dev_priv);
3289                 vlv_display_irq_postinstall(dev_priv);
3290         }
3291 }
3292
3293 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3294 {
3295         lockdep_assert_held(&dev_priv->irq_lock);
3296
3297         if (!dev_priv->display_irqs_enabled)
3298                 return;
3299
3300         dev_priv->display_irqs_enabled = false;
3301
3302         if (intel_irqs_enabled(dev_priv))
3303                 vlv_display_irq_reset(dev_priv);
3304 }
3305
3306
3307 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3308 {
3309         gen5_gt_irq_postinstall(&dev_priv->gt);
3310
3311         spin_lock_irq(&dev_priv->irq_lock);
3312         if (dev_priv->display_irqs_enabled)
3313                 vlv_display_irq_postinstall(dev_priv);
3314         spin_unlock_irq(&dev_priv->irq_lock);
3315
3316         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3317         POSTING_READ(VLV_MASTER_IER);
3318 }
3319
3320 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3321 {
3322         struct intel_uncore *uncore = &dev_priv->uncore;
3323
3324         u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3325         u32 de_pipe_enables;
3326         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3327         u32 de_port_enables;
3328         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3329         enum pipe pipe;
3330
3331         if (INTEL_GEN(dev_priv) <= 10)
3332                 de_misc_masked |= GEN8_DE_MISC_GSE;
3333
3334         if (INTEL_GEN(dev_priv) >= 9) {
3335                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3336                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3337                                   GEN9_AUX_CHANNEL_D;
3338                 if (IS_GEN9_LP(dev_priv))
3339                         de_port_masked |= BXT_DE_PORT_GMBUS;
3340         } else {
3341                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3342         }
3343
3344         if (INTEL_GEN(dev_priv) >= 11)
3345                 de_port_masked |= ICL_AUX_CHANNEL_E;
3346
3347         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3348                 de_port_masked |= CNL_AUX_CHANNEL_F;
3349
3350         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3351                                            GEN8_PIPE_FIFO_UNDERRUN;
3352
3353         de_port_enables = de_port_masked;
3354         if (IS_GEN9_LP(dev_priv))
3355                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3356         else if (IS_BROADWELL(dev_priv))
3357                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3358
3359         if (INTEL_GEN(dev_priv) >= 12) {
3360                 enum transcoder trans;
3361
3362                 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
3363                         enum intel_display_power_domain domain;
3364
3365                         domain = POWER_DOMAIN_TRANSCODER(trans);
3366                         if (!intel_display_power_is_enabled(dev_priv, domain))
3367                                 continue;
3368
3369                         gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3370                 }
3371         } else {
3372                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3373         }
3374
3375         for_each_pipe(dev_priv, pipe) {
3376                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3377
3378                 if (intel_display_power_is_enabled(dev_priv,
3379                                 POWER_DOMAIN_PIPE(pipe)))
3380                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3381                                           dev_priv->de_irq_mask[pipe],
3382                                           de_pipe_enables);
3383         }
3384
3385         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3386         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3387
3388         if (INTEL_GEN(dev_priv) >= 11) {
3389                 u32 de_hpd_masked = 0;
3390                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3391                                      GEN11_DE_TBT_HOTPLUG_MASK;
3392
3393                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3394                               de_hpd_enables);
3395                 gen11_hpd_detection_setup(dev_priv);
3396         } else if (IS_GEN9_LP(dev_priv)) {
3397                 bxt_hpd_detection_setup(dev_priv);
3398         } else if (IS_BROADWELL(dev_priv)) {
3399                 ilk_hpd_detection_setup(dev_priv);
3400         }
3401 }
3402
3403 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3404 {
3405         if (HAS_PCH_SPLIT(dev_priv))
3406                 ibx_irq_pre_postinstall(dev_priv);
3407
3408         gen8_gt_irq_postinstall(&dev_priv->gt);
3409         gen8_de_irq_postinstall(dev_priv);
3410
3411         if (HAS_PCH_SPLIT(dev_priv))
3412                 ibx_irq_postinstall(dev_priv);
3413
3414         gen8_master_intr_enable(dev_priv->uncore.regs);
3415 }
3416
3417 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3418 {
3419         u32 mask = SDE_GMBUS_ICP;
3420
3421         WARN_ON(I915_READ(SDEIER) != 0);
3422         I915_WRITE(SDEIER, 0xffffffff);
3423         POSTING_READ(SDEIER);
3424
3425         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3426         I915_WRITE(SDEIMR, ~mask);
3427
3428         if (HAS_PCH_TGP(dev_priv))
3429                 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3430                                         TGP_TC_HPD_ENABLE_MASK);
3431         else if (HAS_PCH_JSP(dev_priv))
3432                 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3433         else if (HAS_PCH_MCC(dev_priv))
3434                 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3435                                         ICP_TC_HPD_ENABLE(PORT_TC1));
3436         else
3437                 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3438                                         ICP_TC_HPD_ENABLE_MASK);
3439 }
3440
3441 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3442 {
3443         struct intel_uncore *uncore = &dev_priv->uncore;
3444         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3445
3446         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3447                 icp_irq_postinstall(dev_priv);
3448
3449         gen11_gt_irq_postinstall(&dev_priv->gt);
3450         gen8_de_irq_postinstall(dev_priv);
3451
3452         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3453
3454         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3455
3456         gen11_master_intr_enable(uncore->regs);
3457         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3458 }
3459
3460 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3461 {
3462         gen8_gt_irq_postinstall(&dev_priv->gt);
3463
3464         spin_lock_irq(&dev_priv->irq_lock);
3465         if (dev_priv->display_irqs_enabled)
3466                 vlv_display_irq_postinstall(dev_priv);
3467         spin_unlock_irq(&dev_priv->irq_lock);
3468
3469         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3470         POSTING_READ(GEN8_MASTER_IRQ);
3471 }
3472
3473 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3474 {
3475         struct intel_uncore *uncore = &dev_priv->uncore;
3476
3477         i9xx_pipestat_irq_reset(dev_priv);
3478
3479         GEN2_IRQ_RESET(uncore);
3480 }
3481
3482 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3483 {
3484         struct intel_uncore *uncore = &dev_priv->uncore;
3485         u16 enable_mask;
3486
3487         intel_uncore_write16(uncore,
3488                              EMR,
3489                              ~(I915_ERROR_PAGE_TABLE |
3490                                I915_ERROR_MEMORY_REFRESH));
3491
3492         /* Unmask the interrupts that we always want on. */
3493         dev_priv->irq_mask =
3494                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3495                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3496                   I915_MASTER_ERROR_INTERRUPT);
3497
3498         enable_mask =
3499                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3500                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3501                 I915_MASTER_ERROR_INTERRUPT |
3502                 I915_USER_INTERRUPT;
3503
3504         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3505
3506         /* Interrupt setup is already guaranteed to be single-threaded, this is
3507          * just to make the assert_spin_locked check happy. */
3508         spin_lock_irq(&dev_priv->irq_lock);
3509         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3510         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3511         spin_unlock_irq(&dev_priv->irq_lock);
3512 }
3513
3514 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3515                                u16 *eir, u16 *eir_stuck)
3516 {
3517         struct intel_uncore *uncore = &i915->uncore;
3518         u16 emr;
3519
3520         *eir = intel_uncore_read16(uncore, EIR);
3521
3522         if (*eir)
3523                 intel_uncore_write16(uncore, EIR, *eir);
3524
3525         *eir_stuck = intel_uncore_read16(uncore, EIR);
3526         if (*eir_stuck == 0)
3527                 return;
3528
3529         /*
3530          * Toggle all EMR bits to make sure we get an edge
3531          * in the ISR master error bit if we don't clear
3532          * all the EIR bits. Otherwise the edge triggered
3533          * IIR on i965/g4x wouldn't notice that an interrupt
3534          * is still pending. Also some EIR bits can't be
3535          * cleared except by handling the underlying error
3536          * (or by a GPU reset) so we mask any bit that
3537          * remains set.
3538          */
3539         emr = intel_uncore_read16(uncore, EMR);
3540         intel_uncore_write16(uncore, EMR, 0xffff);
3541         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3542 }
3543
3544 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3545                                    u16 eir, u16 eir_stuck)
3546 {
3547         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3548
3549         if (eir_stuck)
3550                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3551 }
3552
3553 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3554                                u32 *eir, u32 *eir_stuck)
3555 {
3556         u32 emr;
3557
3558         *eir = I915_READ(EIR);
3559
3560         I915_WRITE(EIR, *eir);
3561
3562         *eir_stuck = I915_READ(EIR);
3563         if (*eir_stuck == 0)
3564                 return;
3565
3566         /*
3567          * Toggle all EMR bits to make sure we get an edge
3568          * in the ISR master error bit if we don't clear
3569          * all the EIR bits. Otherwise the edge triggered
3570          * IIR on i965/g4x wouldn't notice that an interrupt
3571          * is still pending. Also some EIR bits can't be
3572          * cleared except by handling the underlying error
3573          * (or by a GPU reset) so we mask any bit that
3574          * remains set.
3575          */
3576         emr = I915_READ(EMR);
3577         I915_WRITE(EMR, 0xffffffff);
3578         I915_WRITE(EMR, emr | *eir_stuck);
3579 }
3580
3581 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3582                                    u32 eir, u32 eir_stuck)
3583 {
3584         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3585
3586         if (eir_stuck)
3587                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
3588 }
3589
3590 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3591 {
3592         struct drm_i915_private *dev_priv = arg;
3593         irqreturn_t ret = IRQ_NONE;
3594
3595         if (!intel_irqs_enabled(dev_priv))
3596                 return IRQ_NONE;
3597
3598         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3599         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3600
3601         do {
3602                 u32 pipe_stats[I915_MAX_PIPES] = {};
3603                 u16 eir = 0, eir_stuck = 0;
3604                 u16 iir;
3605
3606                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3607                 if (iir == 0)
3608                         break;
3609
3610                 ret = IRQ_HANDLED;
3611
3612                 /* Call regardless, as some status bits might not be
3613                  * signalled in iir */
3614                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3615
3616                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3617                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3618
3619                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3620
3621                 if (iir & I915_USER_INTERRUPT)
3622                         intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3623
3624                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3625                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3626
3627                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3628         } while (0);
3629
3630         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3631
3632         return ret;
3633 }
3634
3635 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3636 {
3637         struct intel_uncore *uncore = &dev_priv->uncore;
3638
3639         if (I915_HAS_HOTPLUG(dev_priv)) {
3640                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3641                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3642         }
3643
3644         i9xx_pipestat_irq_reset(dev_priv);
3645
3646         GEN3_IRQ_RESET(uncore, GEN2_);
3647 }
3648
3649 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3650 {
3651         struct intel_uncore *uncore = &dev_priv->uncore;
3652         u32 enable_mask;
3653
3654         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3655                           I915_ERROR_MEMORY_REFRESH));
3656
3657         /* Unmask the interrupts that we always want on. */
3658         dev_priv->irq_mask =
3659                 ~(I915_ASLE_INTERRUPT |
3660                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3661                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3662                   I915_MASTER_ERROR_INTERRUPT);
3663
3664         enable_mask =
3665                 I915_ASLE_INTERRUPT |
3666                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3667                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3668                 I915_MASTER_ERROR_INTERRUPT |
3669                 I915_USER_INTERRUPT;
3670
3671         if (I915_HAS_HOTPLUG(dev_priv)) {
3672                 /* Enable in IER... */
3673                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3674                 /* and unmask in IMR */
3675                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3676         }
3677
3678         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3679
3680         /* Interrupt setup is already guaranteed to be single-threaded, this is
3681          * just to make the assert_spin_locked check happy. */
3682         spin_lock_irq(&dev_priv->irq_lock);
3683         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3684         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3685         spin_unlock_irq(&dev_priv->irq_lock);
3686
3687         i915_enable_asle_pipestat(dev_priv);
3688 }
3689
3690 static irqreturn_t i915_irq_handler(int irq, void *arg)
3691 {
3692         struct drm_i915_private *dev_priv = arg;
3693         irqreturn_t ret = IRQ_NONE;
3694
3695         if (!intel_irqs_enabled(dev_priv))
3696                 return IRQ_NONE;
3697
3698         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3699         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3700
3701         do {
3702                 u32 pipe_stats[I915_MAX_PIPES] = {};
3703                 u32 eir = 0, eir_stuck = 0;
3704                 u32 hotplug_status = 0;
3705                 u32 iir;
3706
3707                 iir = I915_READ(GEN2_IIR);
3708                 if (iir == 0)
3709                         break;
3710
3711                 ret = IRQ_HANDLED;
3712
3713                 if (I915_HAS_HOTPLUG(dev_priv) &&
3714                     iir & I915_DISPLAY_PORT_INTERRUPT)
3715                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3716
3717                 /* Call regardless, as some status bits might not be
3718                  * signalled in iir */
3719                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3720
3721                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3722                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3723
3724                 I915_WRITE(GEN2_IIR, iir);
3725
3726                 if (iir & I915_USER_INTERRUPT)
3727                         intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3728
3729                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3730                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3731
3732                 if (hotplug_status)
3733                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3734
3735                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3736         } while (0);
3737
3738         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3739
3740         return ret;
3741 }
3742
3743 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3744 {
3745         struct intel_uncore *uncore = &dev_priv->uncore;
3746
3747         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3748         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3749
3750         i9xx_pipestat_irq_reset(dev_priv);
3751
3752         GEN3_IRQ_RESET(uncore, GEN2_);
3753 }
3754
3755 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3756 {
3757         struct intel_uncore *uncore = &dev_priv->uncore;
3758         u32 enable_mask;
3759         u32 error_mask;
3760
3761         /*
3762          * Enable some error detection, note the instruction error mask
3763          * bit is reserved, so we leave it masked.
3764          */
3765         if (IS_G4X(dev_priv)) {
3766                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3767                                GM45_ERROR_MEM_PRIV |
3768                                GM45_ERROR_CP_PRIV |
3769                                I915_ERROR_MEMORY_REFRESH);
3770         } else {
3771                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3772                                I915_ERROR_MEMORY_REFRESH);
3773         }
3774         I915_WRITE(EMR, error_mask);
3775
3776         /* Unmask the interrupts that we always want on. */
3777         dev_priv->irq_mask =
3778                 ~(I915_ASLE_INTERRUPT |
3779                   I915_DISPLAY_PORT_INTERRUPT |
3780                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3781                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3782                   I915_MASTER_ERROR_INTERRUPT);
3783
3784         enable_mask =
3785                 I915_ASLE_INTERRUPT |
3786                 I915_DISPLAY_PORT_INTERRUPT |
3787                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3788                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3789                 I915_MASTER_ERROR_INTERRUPT |
3790                 I915_USER_INTERRUPT;
3791
3792         if (IS_G4X(dev_priv))
3793                 enable_mask |= I915_BSD_USER_INTERRUPT;
3794
3795         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3796
3797         /* Interrupt setup is already guaranteed to be single-threaded, this is
3798          * just to make the assert_spin_locked check happy. */
3799         spin_lock_irq(&dev_priv->irq_lock);
3800         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3801         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3802         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3803         spin_unlock_irq(&dev_priv->irq_lock);
3804
3805         i915_enable_asle_pipestat(dev_priv);
3806 }
3807
3808 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3809 {
3810         u32 hotplug_en;
3811
3812         lockdep_assert_held(&dev_priv->irq_lock);
3813
3814         /* Note HDMI and DP share hotplug bits */
3815         /* enable bits are the same for all generations */
3816         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3817         /* Programming the CRT detection parameters tends
3818            to generate a spurious hotplug event about three
3819            seconds later.  So just do it once.
3820         */
3821         if (IS_G4X(dev_priv))
3822                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3823         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3824
3825         /* Ignore TV since it's buggy */
3826         i915_hotplug_interrupt_update_locked(dev_priv,
3827                                              HOTPLUG_INT_EN_MASK |
3828                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3829                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3830                                              hotplug_en);
3831 }
3832
3833 static irqreturn_t i965_irq_handler(int irq, void *arg)
3834 {
3835         struct drm_i915_private *dev_priv = arg;
3836         irqreturn_t ret = IRQ_NONE;
3837
3838         if (!intel_irqs_enabled(dev_priv))
3839                 return IRQ_NONE;
3840
3841         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3842         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3843
3844         do {
3845                 u32 pipe_stats[I915_MAX_PIPES] = {};
3846                 u32 eir = 0, eir_stuck = 0;
3847                 u32 hotplug_status = 0;
3848                 u32 iir;
3849
3850                 iir = I915_READ(GEN2_IIR);
3851                 if (iir == 0)
3852                         break;
3853
3854                 ret = IRQ_HANDLED;
3855
3856                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3857                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3858
3859                 /* Call regardless, as some status bits might not be
3860                  * signalled in iir */
3861                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3862
3863                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3864                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3865
3866                 I915_WRITE(GEN2_IIR, iir);
3867
3868                 if (iir & I915_USER_INTERRUPT)
3869                         intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3870
3871                 if (iir & I915_BSD_USER_INTERRUPT)
3872                         intel_engine_signal_breadcrumbs(dev_priv->engine[VCS0]);
3873
3874                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3875                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3876
3877                 if (hotplug_status)
3878                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3879
3880                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3881         } while (0);
3882
3883         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3884
3885         return ret;
3886 }
3887
3888 /**
3889  * intel_irq_init - initializes irq support
3890  * @dev_priv: i915 device instance
3891  *
3892  * This function initializes all the irq support including work items, timers
3893  * and all the vtables. It does not setup the interrupt itself though.
3894  */
3895 void intel_irq_init(struct drm_i915_private *dev_priv)
3896 {
3897         struct drm_device *dev = &dev_priv->drm;
3898         int i;
3899
3900         intel_hpd_init_work(dev_priv);
3901
3902         INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3903         for (i = 0; i < MAX_L3_SLICES; ++i)
3904                 dev_priv->l3_parity.remap_info[i] = NULL;
3905
3906         /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3907         if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3908                 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3909
3910         dev->vblank_disable_immediate = true;
3911
3912         /* Most platforms treat the display irq block as an always-on
3913          * power domain. vlv/chv can disable it at runtime and need
3914          * special care to avoid writing any of the display block registers
3915          * outside of the power domain. We defer setting up the display irqs
3916          * in this case to the runtime pm.
3917          */
3918         dev_priv->display_irqs_enabled = true;
3919         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3920                 dev_priv->display_irqs_enabled = false;
3921
3922         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3923         /* If we have MST support, we want to avoid doing short HPD IRQ storm
3924          * detection, as short HPD storms will occur as a natural part of
3925          * sideband messaging with MST.
3926          * On older platforms however, IRQ storms can occur with both long and
3927          * short pulses, as seen on some G4x systems.
3928          */
3929         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3930
3931         if (HAS_GMCH(dev_priv)) {
3932                 if (I915_HAS_HOTPLUG(dev_priv))
3933                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3934         } else {
3935                 if (HAS_PCH_JSP(dev_priv))
3936                         dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
3937                 else if (HAS_PCH_MCC(dev_priv))
3938                         dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
3939                 else if (INTEL_GEN(dev_priv) >= 11)
3940                         dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
3941                 else if (IS_GEN9_LP(dev_priv))
3942                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
3943                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
3944                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
3945                 else
3946                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
3947         }
3948 }
3949
3950 /**
3951  * intel_irq_fini - deinitializes IRQ support
3952  * @i915: i915 device instance
3953  *
3954  * This function deinitializes all the IRQ support.
3955  */
3956 void intel_irq_fini(struct drm_i915_private *i915)
3957 {
3958         int i;
3959
3960         for (i = 0; i < MAX_L3_SLICES; ++i)
3961                 kfree(i915->l3_parity.remap_info[i]);
3962 }
3963
3964 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
3965 {
3966         if (HAS_GMCH(dev_priv)) {
3967                 if (IS_CHERRYVIEW(dev_priv))
3968                         return cherryview_irq_handler;
3969                 else if (IS_VALLEYVIEW(dev_priv))
3970                         return valleyview_irq_handler;
3971                 else if (IS_GEN(dev_priv, 4))
3972                         return i965_irq_handler;
3973                 else if (IS_GEN(dev_priv, 3))
3974                         return i915_irq_handler;
3975                 else
3976                         return i8xx_irq_handler;
3977         } else {
3978                 if (INTEL_GEN(dev_priv) >= 11)
3979                         return gen11_irq_handler;
3980                 else if (INTEL_GEN(dev_priv) >= 8)
3981                         return gen8_irq_handler;
3982                 else
3983                         return ilk_irq_handler;
3984         }
3985 }
3986
3987 static void intel_irq_reset(struct drm_i915_private *dev_priv)
3988 {
3989         if (HAS_GMCH(dev_priv)) {
3990                 if (IS_CHERRYVIEW(dev_priv))
3991                         cherryview_irq_reset(dev_priv);
3992                 else if (IS_VALLEYVIEW(dev_priv))
3993                         valleyview_irq_reset(dev_priv);
3994                 else if (IS_GEN(dev_priv, 4))
3995                         i965_irq_reset(dev_priv);
3996                 else if (IS_GEN(dev_priv, 3))
3997                         i915_irq_reset(dev_priv);
3998                 else
3999                         i8xx_irq_reset(dev_priv);
4000         } else {
4001                 if (INTEL_GEN(dev_priv) >= 11)
4002                         gen11_irq_reset(dev_priv);
4003                 else if (INTEL_GEN(dev_priv) >= 8)
4004                         gen8_irq_reset(dev_priv);
4005                 else
4006                         ilk_irq_reset(dev_priv);
4007         }
4008 }
4009
4010 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4011 {
4012         if (HAS_GMCH(dev_priv)) {
4013                 if (IS_CHERRYVIEW(dev_priv))
4014                         cherryview_irq_postinstall(dev_priv);
4015                 else if (IS_VALLEYVIEW(dev_priv))
4016                         valleyview_irq_postinstall(dev_priv);
4017                 else if (IS_GEN(dev_priv, 4))
4018                         i965_irq_postinstall(dev_priv);
4019                 else if (IS_GEN(dev_priv, 3))
4020                         i915_irq_postinstall(dev_priv);
4021                 else
4022                         i8xx_irq_postinstall(dev_priv);
4023         } else {
4024                 if (INTEL_GEN(dev_priv) >= 11)
4025                         gen11_irq_postinstall(dev_priv);
4026                 else if (INTEL_GEN(dev_priv) >= 8)
4027                         gen8_irq_postinstall(dev_priv);
4028                 else
4029                         ilk_irq_postinstall(dev_priv);
4030         }
4031 }
4032
4033 /**
4034  * intel_irq_install - enables the hardware interrupt
4035  * @dev_priv: i915 device instance
4036  *
4037  * This function enables the hardware interrupt handling, but leaves the hotplug
4038  * handling still disabled. It is called after intel_irq_init().
4039  *
4040  * In the driver load and resume code we need working interrupts in a few places
4041  * but don't want to deal with the hassle of concurrent probe and hotplug
4042  * workers. Hence the split into this two-stage approach.
4043  */
4044 int intel_irq_install(struct drm_i915_private *dev_priv)
4045 {
4046         int irq = dev_priv->drm.pdev->irq;
4047         int ret;
4048
4049         /*
4050          * We enable some interrupt sources in our postinstall hooks, so mark
4051          * interrupts as enabled _before_ actually enabling them to avoid
4052          * special cases in our ordering checks.
4053          */
4054         dev_priv->runtime_pm.irqs_enabled = true;
4055
4056         dev_priv->drm.irq_enabled = true;
4057
4058         intel_irq_reset(dev_priv);
4059
4060         ret = request_irq(irq, intel_irq_handler(dev_priv),
4061                           IRQF_SHARED, DRIVER_NAME, dev_priv);
4062         if (ret < 0) {
4063                 dev_priv->drm.irq_enabled = false;
4064                 return ret;
4065         }
4066
4067         intel_irq_postinstall(dev_priv);
4068
4069         return ret;
4070 }
4071
4072 /**
4073  * intel_irq_uninstall - finilizes all irq handling
4074  * @dev_priv: i915 device instance
4075  *
4076  * This stops interrupt and hotplug handling and unregisters and frees all
4077  * resources acquired in the init functions.
4078  */
4079 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4080 {
4081         int irq = dev_priv->drm.pdev->irq;
4082
4083         /*
4084          * FIXME we can get called twice during driver probe
4085          * error handling as well as during driver remove due to
4086          * intel_modeset_driver_remove() calling us out of sequence.
4087          * Would be nice if it didn't do that...
4088          */
4089         if (!dev_priv->drm.irq_enabled)
4090                 return;
4091
4092         dev_priv->drm.irq_enabled = false;
4093
4094         intel_irq_reset(dev_priv);
4095
4096         free_irq(irq, dev_priv);
4097
4098         intel_hpd_cancel_work(dev_priv);
4099         dev_priv->runtime_pm.irqs_enabled = false;
4100 }
4101
4102 /**
4103  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4104  * @dev_priv: i915 device instance
4105  *
4106  * This function is used to disable interrupts at runtime, both in the runtime
4107  * pm and the system suspend/resume code.
4108  */
4109 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4110 {
4111         intel_irq_reset(dev_priv);
4112         dev_priv->runtime_pm.irqs_enabled = false;
4113         intel_synchronize_irq(dev_priv);
4114 }
4115
4116 /**
4117  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4118  * @dev_priv: i915 device instance
4119  *
4120  * This function is used to enable interrupts at runtime, both in the runtime
4121  * pm and the system suspend/resume code.
4122  */
4123 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4124 {
4125         dev_priv->runtime_pm.irqs_enabled = true;
4126         intel_irq_reset(dev_priv);
4127         intel_irq_postinstall(dev_priv);
4128 }
4129
4130 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4131 {
4132         /*
4133          * We only use drm_irq_uninstall() at unload and VT switch, so
4134          * this is the only thing we need to check.
4135          */
4136         return dev_priv->runtime_pm.irqs_enabled;
4137 }
4138
4139 void intel_synchronize_irq(struct drm_i915_private *i915)
4140 {
4141         synchronize_irq(i915->drm.pdev->irq);
4142 }