drm/i915/icl: do a posting read after irq install
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 /**
40  * DOC: interrupt handling
41  *
42  * These functions provide the basic support for enabling and disabling the
43  * interrupt handling support. There's a lot more functionality in i915_irq.c
44  * and related files, but that will be described in separate chapters.
45  */
46
47 static const u32 hpd_ilk[HPD_NUM_PINS] = {
48         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
49 };
50
51 static const u32 hpd_ivb[HPD_NUM_PINS] = {
52         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
53 };
54
55 static const u32 hpd_bdw[HPD_NUM_PINS] = {
56         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
57 };
58
59 static const u32 hpd_ibx[HPD_NUM_PINS] = {
60         [HPD_CRT] = SDE_CRT_HOTPLUG,
61         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
62         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
63         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
64         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
65 };
66
67 static const u32 hpd_cpt[HPD_NUM_PINS] = {
68         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
69         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
70         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
71         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
72         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
73 };
74
75 static const u32 hpd_spt[HPD_NUM_PINS] = {
76         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
77         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
78         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
79         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
80         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
81 };
82
83 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
84         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
85         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
86         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
87         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
88         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
89         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
90 };
91
92 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
93         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
94         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
95         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
96         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
97         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
98         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
99 };
100
101 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
102         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
103         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
104         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
105         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
106         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
107         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
108 };
109
110 /* BXT hpd list */
111 static const u32 hpd_bxt[HPD_NUM_PINS] = {
112         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
113         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
114         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
115 };
116
117 static const u32 hpd_gen11[HPD_NUM_PINS] = {
118         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
119         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
120         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
121         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
122 };
123
124 static const u32 hpd_icp[HPD_NUM_PINS] = {
125         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
126         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
127         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
128         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
129         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
130         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
131 };
132
133 /* IIR can theoretically queue up two events. Be paranoid. */
134 #define GEN8_IRQ_RESET_NDX(type, which) do { \
135         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
136         POSTING_READ(GEN8_##type##_IMR(which)); \
137         I915_WRITE(GEN8_##type##_IER(which), 0); \
138         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
139         POSTING_READ(GEN8_##type##_IIR(which)); \
140         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
141         POSTING_READ(GEN8_##type##_IIR(which)); \
142 } while (0)
143
144 #define GEN3_IRQ_RESET(type) do { \
145         I915_WRITE(type##IMR, 0xffffffff); \
146         POSTING_READ(type##IMR); \
147         I915_WRITE(type##IER, 0); \
148         I915_WRITE(type##IIR, 0xffffffff); \
149         POSTING_READ(type##IIR); \
150         I915_WRITE(type##IIR, 0xffffffff); \
151         POSTING_READ(type##IIR); \
152 } while (0)
153
154 #define GEN2_IRQ_RESET(type) do { \
155         I915_WRITE16(type##IMR, 0xffff); \
156         POSTING_READ16(type##IMR); \
157         I915_WRITE16(type##IER, 0); \
158         I915_WRITE16(type##IIR, 0xffff); \
159         POSTING_READ16(type##IIR); \
160         I915_WRITE16(type##IIR, 0xffff); \
161         POSTING_READ16(type##IIR); \
162 } while (0)
163
164 /*
165  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
166  */
167 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
168                                     i915_reg_t reg)
169 {
170         u32 val = I915_READ(reg);
171
172         if (val == 0)
173                 return;
174
175         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
176              i915_mmio_reg_offset(reg), val);
177         I915_WRITE(reg, 0xffffffff);
178         POSTING_READ(reg);
179         I915_WRITE(reg, 0xffffffff);
180         POSTING_READ(reg);
181 }
182
183 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
184                                     i915_reg_t reg)
185 {
186         u16 val = I915_READ16(reg);
187
188         if (val == 0)
189                 return;
190
191         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
192              i915_mmio_reg_offset(reg), val);
193         I915_WRITE16(reg, 0xffff);
194         POSTING_READ16(reg);
195         I915_WRITE16(reg, 0xffff);
196         POSTING_READ16(reg);
197 }
198
199 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
200         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
201         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
202         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
203         POSTING_READ(GEN8_##type##_IMR(which)); \
204 } while (0)
205
206 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
207         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
208         I915_WRITE(type##IER, (ier_val)); \
209         I915_WRITE(type##IMR, (imr_val)); \
210         POSTING_READ(type##IMR); \
211 } while (0)
212
213 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
214         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
215         I915_WRITE16(type##IER, (ier_val)); \
216         I915_WRITE16(type##IMR, (imr_val)); \
217         POSTING_READ16(type##IMR); \
218 } while (0)
219
220 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
221 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222
223 /* For display hotplug interrupt */
224 static inline void
225 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
226                                      u32 mask,
227                                      u32 bits)
228 {
229         u32 val;
230
231         lockdep_assert_held(&dev_priv->irq_lock);
232         WARN_ON(bits & ~mask);
233
234         val = I915_READ(PORT_HOTPLUG_EN);
235         val &= ~mask;
236         val |= bits;
237         I915_WRITE(PORT_HOTPLUG_EN, val);
238 }
239
240 /**
241  * i915_hotplug_interrupt_update - update hotplug interrupt enable
242  * @dev_priv: driver private
243  * @mask: bits to update
244  * @bits: bits to enable
245  * NOTE: the HPD enable bits are modified both inside and outside
246  * of an interrupt context. To avoid that read-modify-write cycles
247  * interfer, these bits are protected by a spinlock. Since this
248  * function is usually not called from a context where the lock is
249  * held already, this function acquires the lock itself. A non-locking
250  * version is also available.
251  */
252 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
253                                    u32 mask,
254                                    u32 bits)
255 {
256         spin_lock_irq(&dev_priv->irq_lock);
257         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
258         spin_unlock_irq(&dev_priv->irq_lock);
259 }
260
261 static u32
262 gen11_gt_engine_identity(struct drm_i915_private * const i915,
263                          const unsigned int bank, const unsigned int bit);
264
265 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
266                                 const unsigned int bank,
267                                 const unsigned int bit)
268 {
269         void __iomem * const regs = i915->regs;
270         u32 dw;
271
272         lockdep_assert_held(&i915->irq_lock);
273
274         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
275         if (dw & BIT(bit)) {
276                 /*
277                  * According to the BSpec, DW_IIR bits cannot be cleared without
278                  * first servicing the Selector & Shared IIR registers.
279                  */
280                 gen11_gt_engine_identity(i915, bank, bit);
281
282                 /*
283                  * We locked GT INT DW by reading it. If we want to (try
284                  * to) recover from this succesfully, we need to clear
285                  * our bit, otherwise we are locking the register for
286                  * everybody.
287                  */
288                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
289
290                 return true;
291         }
292
293         return false;
294 }
295
296 /**
297  * ilk_update_display_irq - update DEIMR
298  * @dev_priv: driver private
299  * @interrupt_mask: mask of interrupt bits to update
300  * @enabled_irq_mask: mask of interrupt bits to enable
301  */
302 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
303                             u32 interrupt_mask,
304                             u32 enabled_irq_mask)
305 {
306         u32 new_val;
307
308         lockdep_assert_held(&dev_priv->irq_lock);
309
310         WARN_ON(enabled_irq_mask & ~interrupt_mask);
311
312         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
313                 return;
314
315         new_val = dev_priv->irq_mask;
316         new_val &= ~interrupt_mask;
317         new_val |= (~enabled_irq_mask & interrupt_mask);
318
319         if (new_val != dev_priv->irq_mask) {
320                 dev_priv->irq_mask = new_val;
321                 I915_WRITE(DEIMR, dev_priv->irq_mask);
322                 POSTING_READ(DEIMR);
323         }
324 }
325
326 /**
327  * ilk_update_gt_irq - update GTIMR
328  * @dev_priv: driver private
329  * @interrupt_mask: mask of interrupt bits to update
330  * @enabled_irq_mask: mask of interrupt bits to enable
331  */
332 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
333                               u32 interrupt_mask,
334                               u32 enabled_irq_mask)
335 {
336         lockdep_assert_held(&dev_priv->irq_lock);
337
338         WARN_ON(enabled_irq_mask & ~interrupt_mask);
339
340         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
341                 return;
342
343         dev_priv->gt_irq_mask &= ~interrupt_mask;
344         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
345         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
346 }
347
348 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
349 {
350         ilk_update_gt_irq(dev_priv, mask, mask);
351         POSTING_READ_FW(GTIMR);
352 }
353
354 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, u32 mask)
355 {
356         ilk_update_gt_irq(dev_priv, mask, 0);
357 }
358
359 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
360 {
361         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
362
363         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
364 }
365
366 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
367 {
368         if (INTEL_GEN(dev_priv) >= 11)
369                 return GEN11_GPM_WGBOXPERF_INTR_MASK;
370         else if (INTEL_GEN(dev_priv) >= 8)
371                 return GEN8_GT_IMR(2);
372         else
373                 return GEN6_PMIMR;
374 }
375
376 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
377 {
378         if (INTEL_GEN(dev_priv) >= 11)
379                 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
380         else if (INTEL_GEN(dev_priv) >= 8)
381                 return GEN8_GT_IER(2);
382         else
383                 return GEN6_PMIER;
384 }
385
386 /**
387  * snb_update_pm_irq - update GEN6_PMIMR
388  * @dev_priv: driver private
389  * @interrupt_mask: mask of interrupt bits to update
390  * @enabled_irq_mask: mask of interrupt bits to enable
391  */
392 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
393                               u32 interrupt_mask,
394                               u32 enabled_irq_mask)
395 {
396         u32 new_val;
397
398         WARN_ON(enabled_irq_mask & ~interrupt_mask);
399
400         lockdep_assert_held(&dev_priv->irq_lock);
401
402         new_val = dev_priv->pm_imr;
403         new_val &= ~interrupt_mask;
404         new_val |= (~enabled_irq_mask & interrupt_mask);
405
406         if (new_val != dev_priv->pm_imr) {
407                 dev_priv->pm_imr = new_val;
408                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
409                 POSTING_READ(gen6_pm_imr(dev_priv));
410         }
411 }
412
413 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
414 {
415         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
416                 return;
417
418         snb_update_pm_irq(dev_priv, mask, mask);
419 }
420
421 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
422 {
423         snb_update_pm_irq(dev_priv, mask, 0);
424 }
425
426 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
427 {
428         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
429                 return;
430
431         __gen6_mask_pm_irq(dev_priv, mask);
432 }
433
434 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
435 {
436         i915_reg_t reg = gen6_pm_iir(dev_priv);
437
438         lockdep_assert_held(&dev_priv->irq_lock);
439
440         I915_WRITE(reg, reset_mask);
441         I915_WRITE(reg, reset_mask);
442         POSTING_READ(reg);
443 }
444
445 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
446 {
447         lockdep_assert_held(&dev_priv->irq_lock);
448
449         dev_priv->pm_ier |= enable_mask;
450         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
451         gen6_unmask_pm_irq(dev_priv, enable_mask);
452         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
453 }
454
455 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
456 {
457         lockdep_assert_held(&dev_priv->irq_lock);
458
459         dev_priv->pm_ier &= ~disable_mask;
460         __gen6_mask_pm_irq(dev_priv, disable_mask);
461         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
462         /* though a barrier is missing here, but don't really need a one */
463 }
464
465 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
466 {
467         spin_lock_irq(&dev_priv->irq_lock);
468
469         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
470                 ;
471
472         dev_priv->gt_pm.rps.pm_iir = 0;
473
474         spin_unlock_irq(&dev_priv->irq_lock);
475 }
476
477 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
478 {
479         spin_lock_irq(&dev_priv->irq_lock);
480         gen6_reset_pm_iir(dev_priv, GEN6_PM_RPS_EVENTS);
481         dev_priv->gt_pm.rps.pm_iir = 0;
482         spin_unlock_irq(&dev_priv->irq_lock);
483 }
484
485 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
486 {
487         struct intel_rps *rps = &dev_priv->gt_pm.rps;
488
489         if (READ_ONCE(rps->interrupts_enabled))
490                 return;
491
492         spin_lock_irq(&dev_priv->irq_lock);
493         WARN_ON_ONCE(rps->pm_iir);
494
495         if (INTEL_GEN(dev_priv) >= 11)
496                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
497         else
498                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
499
500         rps->interrupts_enabled = true;
501         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
502
503         spin_unlock_irq(&dev_priv->irq_lock);
504 }
505
506 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
507 {
508         struct intel_rps *rps = &dev_priv->gt_pm.rps;
509
510         if (!READ_ONCE(rps->interrupts_enabled))
511                 return;
512
513         spin_lock_irq(&dev_priv->irq_lock);
514         rps->interrupts_enabled = false;
515
516         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
517
518         gen6_disable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
519
520         spin_unlock_irq(&dev_priv->irq_lock);
521         synchronize_irq(dev_priv->drm.irq);
522
523         /* Now that we will not be generating any more work, flush any
524          * outstanding tasks. As we are called on the RPS idle path,
525          * we will reset the GPU to minimum frequencies, so the current
526          * state of the worker can be discarded.
527          */
528         cancel_work_sync(&rps->work);
529         if (INTEL_GEN(dev_priv) >= 11)
530                 gen11_reset_rps_interrupts(dev_priv);
531         else
532                 gen6_reset_rps_interrupts(dev_priv);
533 }
534
535 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
536 {
537         assert_rpm_wakelock_held(dev_priv);
538
539         spin_lock_irq(&dev_priv->irq_lock);
540         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
541         spin_unlock_irq(&dev_priv->irq_lock);
542 }
543
544 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
545 {
546         assert_rpm_wakelock_held(dev_priv);
547
548         spin_lock_irq(&dev_priv->irq_lock);
549         if (!dev_priv->guc.interrupts_enabled) {
550                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
551                                        dev_priv->pm_guc_events);
552                 dev_priv->guc.interrupts_enabled = true;
553                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
554         }
555         spin_unlock_irq(&dev_priv->irq_lock);
556 }
557
558 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
559 {
560         assert_rpm_wakelock_held(dev_priv);
561
562         spin_lock_irq(&dev_priv->irq_lock);
563         dev_priv->guc.interrupts_enabled = false;
564
565         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
566
567         spin_unlock_irq(&dev_priv->irq_lock);
568         synchronize_irq(dev_priv->drm.irq);
569
570         gen9_reset_guc_interrupts(dev_priv);
571 }
572
573 /**
574  * bdw_update_port_irq - update DE port interrupt
575  * @dev_priv: driver private
576  * @interrupt_mask: mask of interrupt bits to update
577  * @enabled_irq_mask: mask of interrupt bits to enable
578  */
579 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
580                                 u32 interrupt_mask,
581                                 u32 enabled_irq_mask)
582 {
583         u32 new_val;
584         u32 old_val;
585
586         lockdep_assert_held(&dev_priv->irq_lock);
587
588         WARN_ON(enabled_irq_mask & ~interrupt_mask);
589
590         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
591                 return;
592
593         old_val = I915_READ(GEN8_DE_PORT_IMR);
594
595         new_val = old_val;
596         new_val &= ~interrupt_mask;
597         new_val |= (~enabled_irq_mask & interrupt_mask);
598
599         if (new_val != old_val) {
600                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
601                 POSTING_READ(GEN8_DE_PORT_IMR);
602         }
603 }
604
605 /**
606  * bdw_update_pipe_irq - update DE pipe interrupt
607  * @dev_priv: driver private
608  * @pipe: pipe whose interrupt to update
609  * @interrupt_mask: mask of interrupt bits to update
610  * @enabled_irq_mask: mask of interrupt bits to enable
611  */
612 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
613                          enum pipe pipe,
614                          u32 interrupt_mask,
615                          u32 enabled_irq_mask)
616 {
617         u32 new_val;
618
619         lockdep_assert_held(&dev_priv->irq_lock);
620
621         WARN_ON(enabled_irq_mask & ~interrupt_mask);
622
623         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
624                 return;
625
626         new_val = dev_priv->de_irq_mask[pipe];
627         new_val &= ~interrupt_mask;
628         new_val |= (~enabled_irq_mask & interrupt_mask);
629
630         if (new_val != dev_priv->de_irq_mask[pipe]) {
631                 dev_priv->de_irq_mask[pipe] = new_val;
632                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
633                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
634         }
635 }
636
637 /**
638  * ibx_display_interrupt_update - update SDEIMR
639  * @dev_priv: driver private
640  * @interrupt_mask: mask of interrupt bits to update
641  * @enabled_irq_mask: mask of interrupt bits to enable
642  */
643 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
644                                   u32 interrupt_mask,
645                                   u32 enabled_irq_mask)
646 {
647         u32 sdeimr = I915_READ(SDEIMR);
648         sdeimr &= ~interrupt_mask;
649         sdeimr |= (~enabled_irq_mask & interrupt_mask);
650
651         WARN_ON(enabled_irq_mask & ~interrupt_mask);
652
653         lockdep_assert_held(&dev_priv->irq_lock);
654
655         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
656                 return;
657
658         I915_WRITE(SDEIMR, sdeimr);
659         POSTING_READ(SDEIMR);
660 }
661
662 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
663                               enum pipe pipe)
664 {
665         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
666         u32 enable_mask = status_mask << 16;
667
668         lockdep_assert_held(&dev_priv->irq_lock);
669
670         if (INTEL_GEN(dev_priv) < 5)
671                 goto out;
672
673         /*
674          * On pipe A we don't support the PSR interrupt yet,
675          * on pipe B and C the same bit MBZ.
676          */
677         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
678                 return 0;
679         /*
680          * On pipe B and C we don't support the PSR interrupt yet, on pipe
681          * A the same bit is for perf counters which we don't use either.
682          */
683         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
684                 return 0;
685
686         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
687                          SPRITE0_FLIP_DONE_INT_EN_VLV |
688                          SPRITE1_FLIP_DONE_INT_EN_VLV);
689         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
690                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
691         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
692                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
693
694 out:
695         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
696                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
697                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
698                   pipe_name(pipe), enable_mask, status_mask);
699
700         return enable_mask;
701 }
702
703 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
704                           enum pipe pipe, u32 status_mask)
705 {
706         i915_reg_t reg = PIPESTAT(pipe);
707         u32 enable_mask;
708
709         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
710                   "pipe %c: status_mask=0x%x\n",
711                   pipe_name(pipe), status_mask);
712
713         lockdep_assert_held(&dev_priv->irq_lock);
714         WARN_ON(!intel_irqs_enabled(dev_priv));
715
716         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
717                 return;
718
719         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
720         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
721
722         I915_WRITE(reg, enable_mask | status_mask);
723         POSTING_READ(reg);
724 }
725
726 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
727                            enum pipe pipe, u32 status_mask)
728 {
729         i915_reg_t reg = PIPESTAT(pipe);
730         u32 enable_mask;
731
732         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
733                   "pipe %c: status_mask=0x%x\n",
734                   pipe_name(pipe), status_mask);
735
736         lockdep_assert_held(&dev_priv->irq_lock);
737         WARN_ON(!intel_irqs_enabled(dev_priv));
738
739         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
740                 return;
741
742         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
743         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
744
745         I915_WRITE(reg, enable_mask | status_mask);
746         POSTING_READ(reg);
747 }
748
749 /**
750  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
751  * @dev_priv: i915 device private
752  */
753 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
754 {
755         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
756                 return;
757
758         spin_lock_irq(&dev_priv->irq_lock);
759
760         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
761         if (INTEL_GEN(dev_priv) >= 4)
762                 i915_enable_pipestat(dev_priv, PIPE_A,
763                                      PIPE_LEGACY_BLC_EVENT_STATUS);
764
765         spin_unlock_irq(&dev_priv->irq_lock);
766 }
767
768 /*
769  * This timing diagram depicts the video signal in and
770  * around the vertical blanking period.
771  *
772  * Assumptions about the fictitious mode used in this example:
773  *  vblank_start >= 3
774  *  vsync_start = vblank_start + 1
775  *  vsync_end = vblank_start + 2
776  *  vtotal = vblank_start + 3
777  *
778  *           start of vblank:
779  *           latch double buffered registers
780  *           increment frame counter (ctg+)
781  *           generate start of vblank interrupt (gen4+)
782  *           |
783  *           |          frame start:
784  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
785  *           |          may be shifted forward 1-3 extra lines via PIPECONF
786  *           |          |
787  *           |          |  start of vsync:
788  *           |          |  generate vsync interrupt
789  *           |          |  |
790  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
791  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
792  * ----va---> <-----------------vb--------------------> <--------va-------------
793  *       |          |       <----vs----->                     |
794  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
795  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
796  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
797  *       |          |                                         |
798  *       last visible pixel                                   first visible pixel
799  *                  |                                         increment frame counter (gen3/4)
800  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
801  *
802  * x  = horizontal active
803  * _  = horizontal blanking
804  * hs = horizontal sync
805  * va = vertical active
806  * vb = vertical blanking
807  * vs = vertical sync
808  * vbs = vblank_start (number)
809  *
810  * Summary:
811  * - most events happen at the start of horizontal sync
812  * - frame start happens at the start of horizontal blank, 1-4 lines
813  *   (depending on PIPECONF settings) after the start of vblank
814  * - gen3/4 pixel and frame counter are synchronized with the start
815  *   of horizontal active on the first line of vertical active
816  */
817
818 /* Called from drm generic code, passed a 'crtc', which
819  * we use as a pipe index
820  */
821 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
822 {
823         struct drm_i915_private *dev_priv = to_i915(dev);
824         i915_reg_t high_frame, low_frame;
825         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
826         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
827         unsigned long irqflags;
828
829         htotal = mode->crtc_htotal;
830         hsync_start = mode->crtc_hsync_start;
831         vbl_start = mode->crtc_vblank_start;
832         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
833                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
834
835         /* Convert to pixel count */
836         vbl_start *= htotal;
837
838         /* Start of vblank event occurs at start of hsync */
839         vbl_start -= htotal - hsync_start;
840
841         high_frame = PIPEFRAME(pipe);
842         low_frame = PIPEFRAMEPIXEL(pipe);
843
844         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
845
846         /*
847          * High & low register fields aren't synchronized, so make sure
848          * we get a low value that's stable across two reads of the high
849          * register.
850          */
851         do {
852                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
853                 low   = I915_READ_FW(low_frame);
854                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
855         } while (high1 != high2);
856
857         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
858
859         high1 >>= PIPE_FRAME_HIGH_SHIFT;
860         pixel = low & PIPE_PIXEL_MASK;
861         low >>= PIPE_FRAME_LOW_SHIFT;
862
863         /*
864          * The frame counter increments at beginning of active.
865          * Cook up a vblank counter by also checking the pixel
866          * counter against vblank start.
867          */
868         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
869 }
870
871 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
872 {
873         struct drm_i915_private *dev_priv = to_i915(dev);
874
875         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
876 }
877
878 /*
879  * On certain encoders on certain platforms, pipe
880  * scanline register will not work to get the scanline,
881  * since the timings are driven from the PORT or issues
882  * with scanline register updates.
883  * This function will use Framestamp and current
884  * timestamp registers to calculate the scanline.
885  */
886 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
887 {
888         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
889         struct drm_vblank_crtc *vblank =
890                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
891         const struct drm_display_mode *mode = &vblank->hwmode;
892         u32 vblank_start = mode->crtc_vblank_start;
893         u32 vtotal = mode->crtc_vtotal;
894         u32 htotal = mode->crtc_htotal;
895         u32 clock = mode->crtc_clock;
896         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
897
898         /*
899          * To avoid the race condition where we might cross into the
900          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
901          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
902          * during the same frame.
903          */
904         do {
905                 /*
906                  * This field provides read back of the display
907                  * pipe frame time stamp. The time stamp value
908                  * is sampled at every start of vertical blank.
909                  */
910                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
911
912                 /*
913                  * The TIMESTAMP_CTR register has the current
914                  * time stamp value.
915                  */
916                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
917
918                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
919         } while (scan_post_time != scan_prev_time);
920
921         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
922                                         clock), 1000 * htotal);
923         scanline = min(scanline, vtotal - 1);
924         scanline = (scanline + vblank_start) % vtotal;
925
926         return scanline;
927 }
928
929 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
930 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
931 {
932         struct drm_device *dev = crtc->base.dev;
933         struct drm_i915_private *dev_priv = to_i915(dev);
934         const struct drm_display_mode *mode;
935         struct drm_vblank_crtc *vblank;
936         enum pipe pipe = crtc->pipe;
937         int position, vtotal;
938
939         if (!crtc->active)
940                 return -1;
941
942         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
943         mode = &vblank->hwmode;
944
945         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
946                 return __intel_get_crtc_scanline_from_timestamp(crtc);
947
948         vtotal = mode->crtc_vtotal;
949         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
950                 vtotal /= 2;
951
952         if (IS_GEN(dev_priv, 2))
953                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
954         else
955                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
956
957         /*
958          * On HSW, the DSL reg (0x70000) appears to return 0 if we
959          * read it just before the start of vblank.  So try it again
960          * so we don't accidentally end up spanning a vblank frame
961          * increment, causing the pipe_update_end() code to squak at us.
962          *
963          * The nature of this problem means we can't simply check the ISR
964          * bit and return the vblank start value; nor can we use the scanline
965          * debug register in the transcoder as it appears to have the same
966          * problem.  We may need to extend this to include other platforms,
967          * but so far testing only shows the problem on HSW.
968          */
969         if (HAS_DDI(dev_priv) && !position) {
970                 int i, temp;
971
972                 for (i = 0; i < 100; i++) {
973                         udelay(1);
974                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
975                         if (temp != position) {
976                                 position = temp;
977                                 break;
978                         }
979                 }
980         }
981
982         /*
983          * See update_scanline_offset() for the details on the
984          * scanline_offset adjustment.
985          */
986         return (position + crtc->scanline_offset) % vtotal;
987 }
988
989 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
990                                      bool in_vblank_irq, int *vpos, int *hpos,
991                                      ktime_t *stime, ktime_t *etime,
992                                      const struct drm_display_mode *mode)
993 {
994         struct drm_i915_private *dev_priv = to_i915(dev);
995         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
996                                                                 pipe);
997         int position;
998         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
999         unsigned long irqflags;
1000
1001         if (WARN_ON(!mode->crtc_clock)) {
1002                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1003                                  "pipe %c\n", pipe_name(pipe));
1004                 return false;
1005         }
1006
1007         htotal = mode->crtc_htotal;
1008         hsync_start = mode->crtc_hsync_start;
1009         vtotal = mode->crtc_vtotal;
1010         vbl_start = mode->crtc_vblank_start;
1011         vbl_end = mode->crtc_vblank_end;
1012
1013         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1014                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1015                 vbl_end /= 2;
1016                 vtotal /= 2;
1017         }
1018
1019         /*
1020          * Lock uncore.lock, as we will do multiple timing critical raw
1021          * register reads, potentially with preemption disabled, so the
1022          * following code must not block on uncore.lock.
1023          */
1024         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1025
1026         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1027
1028         /* Get optional system timestamp before query. */
1029         if (stime)
1030                 *stime = ktime_get();
1031
1032         if (IS_GEN(dev_priv, 2) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1033                 /* No obvious pixelcount register. Only query vertical
1034                  * scanout position from Display scan line register.
1035                  */
1036                 position = __intel_get_crtc_scanline(intel_crtc);
1037         } else {
1038                 /* Have access to pixelcount since start of frame.
1039                  * We can split this into vertical and horizontal
1040                  * scanout position.
1041                  */
1042                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1043
1044                 /* convert to pixel counts */
1045                 vbl_start *= htotal;
1046                 vbl_end *= htotal;
1047                 vtotal *= htotal;
1048
1049                 /*
1050                  * In interlaced modes, the pixel counter counts all pixels,
1051                  * so one field will have htotal more pixels. In order to avoid
1052                  * the reported position from jumping backwards when the pixel
1053                  * counter is beyond the length of the shorter field, just
1054                  * clamp the position the length of the shorter field. This
1055                  * matches how the scanline counter based position works since
1056                  * the scanline counter doesn't count the two half lines.
1057                  */
1058                 if (position >= vtotal)
1059                         position = vtotal - 1;
1060
1061                 /*
1062                  * Start of vblank interrupt is triggered at start of hsync,
1063                  * just prior to the first active line of vblank. However we
1064                  * consider lines to start at the leading edge of horizontal
1065                  * active. So, should we get here before we've crossed into
1066                  * the horizontal active of the first line in vblank, we would
1067                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1068                  * always add htotal-hsync_start to the current pixel position.
1069                  */
1070                 position = (position + htotal - hsync_start) % vtotal;
1071         }
1072
1073         /* Get optional system timestamp after query. */
1074         if (etime)
1075                 *etime = ktime_get();
1076
1077         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1078
1079         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1080
1081         /*
1082          * While in vblank, position will be negative
1083          * counting up towards 0 at vbl_end. And outside
1084          * vblank, position will be positive counting
1085          * up since vbl_end.
1086          */
1087         if (position >= vbl_start)
1088                 position -= vbl_end;
1089         else
1090                 position += vtotal - vbl_end;
1091
1092         if (IS_GEN(dev_priv, 2) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1093                 *vpos = position;
1094                 *hpos = 0;
1095         } else {
1096                 *vpos = position / htotal;
1097                 *hpos = position - (*vpos * htotal);
1098         }
1099
1100         return true;
1101 }
1102
1103 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1104 {
1105         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1106         unsigned long irqflags;
1107         int position;
1108
1109         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1110         position = __intel_get_crtc_scanline(crtc);
1111         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1112
1113         return position;
1114 }
1115
1116 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1117 {
1118         u32 busy_up, busy_down, max_avg, min_avg;
1119         u8 new_delay;
1120
1121         spin_lock(&mchdev_lock);
1122
1123         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1124
1125         new_delay = dev_priv->ips.cur_delay;
1126
1127         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1128         busy_up = I915_READ(RCPREVBSYTUPAVG);
1129         busy_down = I915_READ(RCPREVBSYTDNAVG);
1130         max_avg = I915_READ(RCBMAXAVG);
1131         min_avg = I915_READ(RCBMINAVG);
1132
1133         /* Handle RCS change request from hw */
1134         if (busy_up > max_avg) {
1135                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1136                         new_delay = dev_priv->ips.cur_delay - 1;
1137                 if (new_delay < dev_priv->ips.max_delay)
1138                         new_delay = dev_priv->ips.max_delay;
1139         } else if (busy_down < min_avg) {
1140                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1141                         new_delay = dev_priv->ips.cur_delay + 1;
1142                 if (new_delay > dev_priv->ips.min_delay)
1143                         new_delay = dev_priv->ips.min_delay;
1144         }
1145
1146         if (ironlake_set_drps(dev_priv, new_delay))
1147                 dev_priv->ips.cur_delay = new_delay;
1148
1149         spin_unlock(&mchdev_lock);
1150
1151         return;
1152 }
1153
1154 static void notify_ring(struct intel_engine_cs *engine)
1155 {
1156         const u32 seqno = intel_engine_get_seqno(engine);
1157         struct i915_request *rq = NULL;
1158         struct task_struct *tsk = NULL;
1159         struct intel_wait *wait;
1160
1161         if (unlikely(!engine->breadcrumbs.irq_armed))
1162                 return;
1163
1164         rcu_read_lock();
1165
1166         spin_lock(&engine->breadcrumbs.irq_lock);
1167         wait = engine->breadcrumbs.irq_wait;
1168         if (wait) {
1169                 /*
1170                  * We use a callback from the dma-fence to submit
1171                  * requests after waiting on our own requests. To
1172                  * ensure minimum delay in queuing the next request to
1173                  * hardware, signal the fence now rather than wait for
1174                  * the signaler to be woken up. We still wake up the
1175                  * waiter in order to handle the irq-seqno coherency
1176                  * issues (we may receive the interrupt before the
1177                  * seqno is written, see __i915_request_irq_complete())
1178                  * and to handle coalescing of multiple seqno updates
1179                  * and many waiters.
1180                  */
1181                 if (i915_seqno_passed(seqno, wait->seqno)) {
1182                         struct i915_request *waiter = wait->request;
1183
1184                         if (waiter &&
1185                             !i915_request_signaled(waiter) &&
1186                             intel_wait_check_request(wait, waiter))
1187                                 rq = i915_request_get(waiter);
1188
1189                         tsk = wait->tsk;
1190                 }
1191
1192                 engine->breadcrumbs.irq_count++;
1193         } else {
1194                 if (engine->breadcrumbs.irq_armed)
1195                         __intel_engine_disarm_breadcrumbs(engine);
1196         }
1197         spin_unlock(&engine->breadcrumbs.irq_lock);
1198
1199         if (rq) {
1200                 spin_lock(&rq->lock);
1201                 dma_fence_signal_locked(&rq->fence);
1202                 GEM_BUG_ON(!i915_request_completed(rq));
1203                 spin_unlock(&rq->lock);
1204
1205                 i915_request_put(rq);
1206         }
1207
1208         if (tsk && tsk->state & TASK_NORMAL)
1209                 wake_up_process(tsk);
1210
1211         rcu_read_unlock();
1212
1213         trace_intel_engine_notify(engine, wait);
1214 }
1215
1216 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1217                         struct intel_rps_ei *ei)
1218 {
1219         ei->ktime = ktime_get_raw();
1220         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1221         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1222 }
1223
1224 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1225 {
1226         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1227 }
1228
1229 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1230 {
1231         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1232         const struct intel_rps_ei *prev = &rps->ei;
1233         struct intel_rps_ei now;
1234         u32 events = 0;
1235
1236         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1237                 return 0;
1238
1239         vlv_c0_read(dev_priv, &now);
1240
1241         if (prev->ktime) {
1242                 u64 time, c0;
1243                 u32 render, media;
1244
1245                 time = ktime_us_delta(now.ktime, prev->ktime);
1246
1247                 time *= dev_priv->czclk_freq;
1248
1249                 /* Workload can be split between render + media,
1250                  * e.g. SwapBuffers being blitted in X after being rendered in
1251                  * mesa. To account for this we need to combine both engines
1252                  * into our activity counter.
1253                  */
1254                 render = now.render_c0 - prev->render_c0;
1255                 media = now.media_c0 - prev->media_c0;
1256                 c0 = max(render, media);
1257                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1258
1259                 if (c0 > time * rps->power.up_threshold)
1260                         events = GEN6_PM_RP_UP_THRESHOLD;
1261                 else if (c0 < time * rps->power.down_threshold)
1262                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1263         }
1264
1265         rps->ei = now;
1266         return events;
1267 }
1268
1269 static void gen6_pm_rps_work(struct work_struct *work)
1270 {
1271         struct drm_i915_private *dev_priv =
1272                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1273         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1274         bool client_boost = false;
1275         int new_delay, adj, min, max;
1276         u32 pm_iir = 0;
1277
1278         spin_lock_irq(&dev_priv->irq_lock);
1279         if (rps->interrupts_enabled) {
1280                 pm_iir = fetch_and_zero(&rps->pm_iir);
1281                 client_boost = atomic_read(&rps->num_waiters);
1282         }
1283         spin_unlock_irq(&dev_priv->irq_lock);
1284
1285         /* Make sure we didn't queue anything we're not going to process. */
1286         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1287         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1288                 goto out;
1289
1290         mutex_lock(&dev_priv->pcu_lock);
1291
1292         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1293
1294         adj = rps->last_adj;
1295         new_delay = rps->cur_freq;
1296         min = rps->min_freq_softlimit;
1297         max = rps->max_freq_softlimit;
1298         if (client_boost)
1299                 max = rps->max_freq;
1300         if (client_boost && new_delay < rps->boost_freq) {
1301                 new_delay = rps->boost_freq;
1302                 adj = 0;
1303         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1304                 if (adj > 0)
1305                         adj *= 2;
1306                 else /* CHV needs even encode values */
1307                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1308
1309                 if (new_delay >= rps->max_freq_softlimit)
1310                         adj = 0;
1311         } else if (client_boost) {
1312                 adj = 0;
1313         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1314                 if (rps->cur_freq > rps->efficient_freq)
1315                         new_delay = rps->efficient_freq;
1316                 else if (rps->cur_freq > rps->min_freq_softlimit)
1317                         new_delay = rps->min_freq_softlimit;
1318                 adj = 0;
1319         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1320                 if (adj < 0)
1321                         adj *= 2;
1322                 else /* CHV needs even encode values */
1323                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1324
1325                 if (new_delay <= rps->min_freq_softlimit)
1326                         adj = 0;
1327         } else { /* unknown event */
1328                 adj = 0;
1329         }
1330
1331         rps->last_adj = adj;
1332
1333         /* sysfs frequency interfaces may have snuck in while servicing the
1334          * interrupt
1335          */
1336         new_delay += adj;
1337         new_delay = clamp_t(int, new_delay, min, max);
1338
1339         if (intel_set_rps(dev_priv, new_delay)) {
1340                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1341                 rps->last_adj = 0;
1342         }
1343
1344         mutex_unlock(&dev_priv->pcu_lock);
1345
1346 out:
1347         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1348         spin_lock_irq(&dev_priv->irq_lock);
1349         if (rps->interrupts_enabled)
1350                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1351         spin_unlock_irq(&dev_priv->irq_lock);
1352 }
1353
1354
1355 /**
1356  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1357  * occurred.
1358  * @work: workqueue struct
1359  *
1360  * Doesn't actually do anything except notify userspace. As a consequence of
1361  * this event, userspace should try to remap the bad rows since statistically
1362  * it is likely the same row is more likely to go bad again.
1363  */
1364 static void ivybridge_parity_work(struct work_struct *work)
1365 {
1366         struct drm_i915_private *dev_priv =
1367                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1368         u32 error_status, row, bank, subbank;
1369         char *parity_event[6];
1370         u32 misccpctl;
1371         u8 slice = 0;
1372
1373         /* We must turn off DOP level clock gating to access the L3 registers.
1374          * In order to prevent a get/put style interface, acquire struct mutex
1375          * any time we access those registers.
1376          */
1377         mutex_lock(&dev_priv->drm.struct_mutex);
1378
1379         /* If we've screwed up tracking, just let the interrupt fire again */
1380         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1381                 goto out;
1382
1383         misccpctl = I915_READ(GEN7_MISCCPCTL);
1384         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1385         POSTING_READ(GEN7_MISCCPCTL);
1386
1387         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1388                 i915_reg_t reg;
1389
1390                 slice--;
1391                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1392                         break;
1393
1394                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1395
1396                 reg = GEN7_L3CDERRST1(slice);
1397
1398                 error_status = I915_READ(reg);
1399                 row = GEN7_PARITY_ERROR_ROW(error_status);
1400                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1401                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1402
1403                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1404                 POSTING_READ(reg);
1405
1406                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1407                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1408                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1409                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1410                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1411                 parity_event[5] = NULL;
1412
1413                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1414                                    KOBJ_CHANGE, parity_event);
1415
1416                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1417                           slice, row, bank, subbank);
1418
1419                 kfree(parity_event[4]);
1420                 kfree(parity_event[3]);
1421                 kfree(parity_event[2]);
1422                 kfree(parity_event[1]);
1423         }
1424
1425         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1426
1427 out:
1428         WARN_ON(dev_priv->l3_parity.which_slice);
1429         spin_lock_irq(&dev_priv->irq_lock);
1430         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1431         spin_unlock_irq(&dev_priv->irq_lock);
1432
1433         mutex_unlock(&dev_priv->drm.struct_mutex);
1434 }
1435
1436 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1437                                                u32 iir)
1438 {
1439         if (!HAS_L3_DPF(dev_priv))
1440                 return;
1441
1442         spin_lock(&dev_priv->irq_lock);
1443         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1444         spin_unlock(&dev_priv->irq_lock);
1445
1446         iir &= GT_PARITY_ERROR(dev_priv);
1447         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1448                 dev_priv->l3_parity.which_slice |= 1 << 1;
1449
1450         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1451                 dev_priv->l3_parity.which_slice |= 1 << 0;
1452
1453         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1454 }
1455
1456 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1457                                u32 gt_iir)
1458 {
1459         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1460                 notify_ring(dev_priv->engine[RCS]);
1461         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1462                 notify_ring(dev_priv->engine[VCS]);
1463 }
1464
1465 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1466                                u32 gt_iir)
1467 {
1468         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469                 notify_ring(dev_priv->engine[RCS]);
1470         if (gt_iir & GT_BSD_USER_INTERRUPT)
1471                 notify_ring(dev_priv->engine[VCS]);
1472         if (gt_iir & GT_BLT_USER_INTERRUPT)
1473                 notify_ring(dev_priv->engine[BCS]);
1474
1475         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1476                       GT_BSD_CS_ERROR_INTERRUPT |
1477                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1478                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1479
1480         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1481                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1482 }
1483
1484 static void
1485 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1486 {
1487         bool tasklet = false;
1488
1489         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1490                 tasklet = true;
1491
1492         if (iir & GT_RENDER_USER_INTERRUPT) {
1493                 notify_ring(engine);
1494                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1495         }
1496
1497         if (tasklet)
1498                 tasklet_hi_schedule(&engine->execlists.tasklet);
1499 }
1500
1501 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1502                             u32 master_ctl, u32 gt_iir[4])
1503 {
1504         void __iomem * const regs = i915->regs;
1505
1506 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1507                       GEN8_GT_BCS_IRQ | \
1508                       GEN8_GT_VCS1_IRQ | \
1509                       GEN8_GT_VCS2_IRQ | \
1510                       GEN8_GT_VECS_IRQ | \
1511                       GEN8_GT_PM_IRQ | \
1512                       GEN8_GT_GUC_IRQ)
1513
1514         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1515                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1516                 if (likely(gt_iir[0]))
1517                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1518         }
1519
1520         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1521                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1522                 if (likely(gt_iir[1]))
1523                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1524         }
1525
1526         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1527                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1528                 if (likely(gt_iir[2]))
1529                         raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
1530         }
1531
1532         if (master_ctl & GEN8_GT_VECS_IRQ) {
1533                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1534                 if (likely(gt_iir[3]))
1535                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1536         }
1537 }
1538
1539 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1540                                 u32 master_ctl, u32 gt_iir[4])
1541 {
1542         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1543                 gen8_cs_irq_handler(i915->engine[RCS],
1544                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1545                 gen8_cs_irq_handler(i915->engine[BCS],
1546                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1547         }
1548
1549         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1550                 gen8_cs_irq_handler(i915->engine[VCS],
1551                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1552                 gen8_cs_irq_handler(i915->engine[VCS2],
1553                                     gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1554         }
1555
1556         if (master_ctl & GEN8_GT_VECS_IRQ) {
1557                 gen8_cs_irq_handler(i915->engine[VECS],
1558                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1559         }
1560
1561         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1562                 gen6_rps_irq_handler(i915, gt_iir[2]);
1563                 gen9_guc_irq_handler(i915, gt_iir[2]);
1564         }
1565 }
1566
1567 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1568 {
1569         switch (pin) {
1570         case HPD_PORT_C:
1571                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1572         case HPD_PORT_D:
1573                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1574         case HPD_PORT_E:
1575                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1576         case HPD_PORT_F:
1577                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1578         default:
1579                 return false;
1580         }
1581 }
1582
1583 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1584 {
1585         switch (pin) {
1586         case HPD_PORT_A:
1587                 return val & PORTA_HOTPLUG_LONG_DETECT;
1588         case HPD_PORT_B:
1589                 return val & PORTB_HOTPLUG_LONG_DETECT;
1590         case HPD_PORT_C:
1591                 return val & PORTC_HOTPLUG_LONG_DETECT;
1592         default:
1593                 return false;
1594         }
1595 }
1596
1597 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1598 {
1599         switch (pin) {
1600         case HPD_PORT_A:
1601                 return val & ICP_DDIA_HPD_LONG_DETECT;
1602         case HPD_PORT_B:
1603                 return val & ICP_DDIB_HPD_LONG_DETECT;
1604         default:
1605                 return false;
1606         }
1607 }
1608
1609 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1610 {
1611         switch (pin) {
1612         case HPD_PORT_C:
1613                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1614         case HPD_PORT_D:
1615                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1616         case HPD_PORT_E:
1617                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1618         case HPD_PORT_F:
1619                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1620         default:
1621                 return false;
1622         }
1623 }
1624
1625 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1626 {
1627         switch (pin) {
1628         case HPD_PORT_E:
1629                 return val & PORTE_HOTPLUG_LONG_DETECT;
1630         default:
1631                 return false;
1632         }
1633 }
1634
1635 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1636 {
1637         switch (pin) {
1638         case HPD_PORT_A:
1639                 return val & PORTA_HOTPLUG_LONG_DETECT;
1640         case HPD_PORT_B:
1641                 return val & PORTB_HOTPLUG_LONG_DETECT;
1642         case HPD_PORT_C:
1643                 return val & PORTC_HOTPLUG_LONG_DETECT;
1644         case HPD_PORT_D:
1645                 return val & PORTD_HOTPLUG_LONG_DETECT;
1646         default:
1647                 return false;
1648         }
1649 }
1650
1651 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1652 {
1653         switch (pin) {
1654         case HPD_PORT_A:
1655                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1656         default:
1657                 return false;
1658         }
1659 }
1660
1661 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1662 {
1663         switch (pin) {
1664         case HPD_PORT_B:
1665                 return val & PORTB_HOTPLUG_LONG_DETECT;
1666         case HPD_PORT_C:
1667                 return val & PORTC_HOTPLUG_LONG_DETECT;
1668         case HPD_PORT_D:
1669                 return val & PORTD_HOTPLUG_LONG_DETECT;
1670         default:
1671                 return false;
1672         }
1673 }
1674
1675 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1676 {
1677         switch (pin) {
1678         case HPD_PORT_B:
1679                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1680         case HPD_PORT_C:
1681                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1682         case HPD_PORT_D:
1683                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1684         default:
1685                 return false;
1686         }
1687 }
1688
1689 /*
1690  * Get a bit mask of pins that have triggered, and which ones may be long.
1691  * This can be called multiple times with the same masks to accumulate
1692  * hotplug detection results from several registers.
1693  *
1694  * Note that the caller is expected to zero out the masks initially.
1695  */
1696 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1697                                u32 *pin_mask, u32 *long_mask,
1698                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1699                                const u32 hpd[HPD_NUM_PINS],
1700                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1701 {
1702         enum hpd_pin pin;
1703
1704         for_each_hpd_pin(pin) {
1705                 if ((hpd[pin] & hotplug_trigger) == 0)
1706                         continue;
1707
1708                 *pin_mask |= BIT(pin);
1709
1710                 if (long_pulse_detect(pin, dig_hotplug_reg))
1711                         *long_mask |= BIT(pin);
1712         }
1713
1714         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1715                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1716
1717 }
1718
1719 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1720 {
1721         wake_up_all(&dev_priv->gmbus_wait_queue);
1722 }
1723
1724 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1725 {
1726         wake_up_all(&dev_priv->gmbus_wait_queue);
1727 }
1728
1729 #if defined(CONFIG_DEBUG_FS)
1730 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1731                                          enum pipe pipe,
1732                                          u32 crc0, u32 crc1,
1733                                          u32 crc2, u32 crc3,
1734                                          u32 crc4)
1735 {
1736         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1737         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1738         u32 crcs[5];
1739
1740         spin_lock(&pipe_crc->lock);
1741         /*
1742          * For some not yet identified reason, the first CRC is
1743          * bonkers. So let's just wait for the next vblank and read
1744          * out the buggy result.
1745          *
1746          * On GEN8+ sometimes the second CRC is bonkers as well, so
1747          * don't trust that one either.
1748          */
1749         if (pipe_crc->skipped <= 0 ||
1750             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1751                 pipe_crc->skipped++;
1752                 spin_unlock(&pipe_crc->lock);
1753                 return;
1754         }
1755         spin_unlock(&pipe_crc->lock);
1756
1757         crcs[0] = crc0;
1758         crcs[1] = crc1;
1759         crcs[2] = crc2;
1760         crcs[3] = crc3;
1761         crcs[4] = crc4;
1762         drm_crtc_add_crc_entry(&crtc->base, true,
1763                                 drm_crtc_accurate_vblank_count(&crtc->base),
1764                                 crcs);
1765 }
1766 #else
1767 static inline void
1768 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1769                              enum pipe pipe,
1770                              u32 crc0, u32 crc1,
1771                              u32 crc2, u32 crc3,
1772                              u32 crc4) {}
1773 #endif
1774
1775
1776 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1777                                      enum pipe pipe)
1778 {
1779         display_pipe_crc_irq_handler(dev_priv, pipe,
1780                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1781                                      0, 0, 0, 0);
1782 }
1783
1784 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1785                                      enum pipe pipe)
1786 {
1787         display_pipe_crc_irq_handler(dev_priv, pipe,
1788                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1789                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1790                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1791                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1792                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1793 }
1794
1795 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1796                                       enum pipe pipe)
1797 {
1798         u32 res1, res2;
1799
1800         if (INTEL_GEN(dev_priv) >= 3)
1801                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1802         else
1803                 res1 = 0;
1804
1805         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1806                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1807         else
1808                 res2 = 0;
1809
1810         display_pipe_crc_irq_handler(dev_priv, pipe,
1811                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1812                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1813                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1814                                      res1, res2);
1815 }
1816
1817 /* The RPS events need forcewake, so we add them to a work queue and mask their
1818  * IMR bits until the work is done. Other interrupts can be processed without
1819  * the work queue. */
1820 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1821 {
1822         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1823
1824         if (pm_iir & dev_priv->pm_rps_events) {
1825                 spin_lock(&dev_priv->irq_lock);
1826                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1827                 if (rps->interrupts_enabled) {
1828                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1829                         schedule_work(&rps->work);
1830                 }
1831                 spin_unlock(&dev_priv->irq_lock);
1832         }
1833
1834         if (INTEL_GEN(dev_priv) >= 8)
1835                 return;
1836
1837         if (HAS_VEBOX(dev_priv)) {
1838                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1839                         notify_ring(dev_priv->engine[VECS]);
1840
1841                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1842                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1843         }
1844 }
1845
1846 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1847 {
1848         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1849                 intel_guc_to_host_event_handler(&dev_priv->guc);
1850 }
1851
1852 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1853 {
1854         enum pipe pipe;
1855
1856         for_each_pipe(dev_priv, pipe) {
1857                 I915_WRITE(PIPESTAT(pipe),
1858                            PIPESTAT_INT_STATUS_MASK |
1859                            PIPE_FIFO_UNDERRUN_STATUS);
1860
1861                 dev_priv->pipestat_irq_mask[pipe] = 0;
1862         }
1863 }
1864
1865 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1866                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1867 {
1868         int pipe;
1869
1870         spin_lock(&dev_priv->irq_lock);
1871
1872         if (!dev_priv->display_irqs_enabled) {
1873                 spin_unlock(&dev_priv->irq_lock);
1874                 return;
1875         }
1876
1877         for_each_pipe(dev_priv, pipe) {
1878                 i915_reg_t reg;
1879                 u32 status_mask, enable_mask, iir_bit = 0;
1880
1881                 /*
1882                  * PIPESTAT bits get signalled even when the interrupt is
1883                  * disabled with the mask bits, and some of the status bits do
1884                  * not generate interrupts at all (like the underrun bit). Hence
1885                  * we need to be careful that we only handle what we want to
1886                  * handle.
1887                  */
1888
1889                 /* fifo underruns are filterered in the underrun handler. */
1890                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1891
1892                 switch (pipe) {
1893                 case PIPE_A:
1894                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1895                         break;
1896                 case PIPE_B:
1897                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1898                         break;
1899                 case PIPE_C:
1900                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1901                         break;
1902                 }
1903                 if (iir & iir_bit)
1904                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1905
1906                 if (!status_mask)
1907                         continue;
1908
1909                 reg = PIPESTAT(pipe);
1910                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1911                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1912
1913                 /*
1914                  * Clear the PIPE*STAT regs before the IIR
1915                  *
1916                  * Toggle the enable bits to make sure we get an
1917                  * edge in the ISR pipe event bit if we don't clear
1918                  * all the enabled status bits. Otherwise the edge
1919                  * triggered IIR on i965/g4x wouldn't notice that
1920                  * an interrupt is still pending.
1921                  */
1922                 if (pipe_stats[pipe]) {
1923                         I915_WRITE(reg, pipe_stats[pipe]);
1924                         I915_WRITE(reg, enable_mask);
1925                 }
1926         }
1927         spin_unlock(&dev_priv->irq_lock);
1928 }
1929
1930 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1931                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1932 {
1933         enum pipe pipe;
1934
1935         for_each_pipe(dev_priv, pipe) {
1936                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1937                         drm_handle_vblank(&dev_priv->drm, pipe);
1938
1939                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1940                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1941
1942                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1943                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1944         }
1945 }
1946
1947 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1948                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1949 {
1950         bool blc_event = false;
1951         enum pipe pipe;
1952
1953         for_each_pipe(dev_priv, pipe) {
1954                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1955                         drm_handle_vblank(&dev_priv->drm, pipe);
1956
1957                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1958                         blc_event = true;
1959
1960                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1961                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1962
1963                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1964                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1965         }
1966
1967         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1968                 intel_opregion_asle_intr(dev_priv);
1969 }
1970
1971 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1972                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1973 {
1974         bool blc_event = false;
1975         enum pipe pipe;
1976
1977         for_each_pipe(dev_priv, pipe) {
1978                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1979                         drm_handle_vblank(&dev_priv->drm, pipe);
1980
1981                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1982                         blc_event = true;
1983
1984                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1985                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1986
1987                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1988                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1989         }
1990
1991         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1992                 intel_opregion_asle_intr(dev_priv);
1993
1994         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1995                 gmbus_irq_handler(dev_priv);
1996 }
1997
1998 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1999                                             u32 pipe_stats[I915_MAX_PIPES])
2000 {
2001         enum pipe pipe;
2002
2003         for_each_pipe(dev_priv, pipe) {
2004                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2005                         drm_handle_vblank(&dev_priv->drm, pipe);
2006
2007                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2008                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2009
2010                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2011                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2012         }
2013
2014         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2015                 gmbus_irq_handler(dev_priv);
2016 }
2017
2018 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2019 {
2020         u32 hotplug_status = 0, hotplug_status_mask;
2021         int i;
2022
2023         if (IS_G4X(dev_priv) ||
2024             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2025                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2026                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2027         else
2028                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2029
2030         /*
2031          * We absolutely have to clear all the pending interrupt
2032          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2033          * interrupt bit won't have an edge, and the i965/g4x
2034          * edge triggered IIR will not notice that an interrupt
2035          * is still pending. We can't use PORT_HOTPLUG_EN to
2036          * guarantee the edge as the act of toggling the enable
2037          * bits can itself generate a new hotplug interrupt :(
2038          */
2039         for (i = 0; i < 10; i++) {
2040                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2041
2042                 if (tmp == 0)
2043                         return hotplug_status;
2044
2045                 hotplug_status |= tmp;
2046                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2047         }
2048
2049         WARN_ONCE(1,
2050                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2051                   I915_READ(PORT_HOTPLUG_STAT));
2052
2053         return hotplug_status;
2054 }
2055
2056 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2057                                  u32 hotplug_status)
2058 {
2059         u32 pin_mask = 0, long_mask = 0;
2060
2061         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2062             IS_CHERRYVIEW(dev_priv)) {
2063                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2064
2065                 if (hotplug_trigger) {
2066                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2067                                            hotplug_trigger, hotplug_trigger,
2068                                            hpd_status_g4x,
2069                                            i9xx_port_hotplug_long_detect);
2070
2071                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2072                 }
2073
2074                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2075                         dp_aux_irq_handler(dev_priv);
2076         } else {
2077                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2078
2079                 if (hotplug_trigger) {
2080                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2081                                            hotplug_trigger, hotplug_trigger,
2082                                            hpd_status_i915,
2083                                            i9xx_port_hotplug_long_detect);
2084                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2085                 }
2086         }
2087 }
2088
2089 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2090 {
2091         struct drm_device *dev = arg;
2092         struct drm_i915_private *dev_priv = to_i915(dev);
2093         irqreturn_t ret = IRQ_NONE;
2094
2095         if (!intel_irqs_enabled(dev_priv))
2096                 return IRQ_NONE;
2097
2098         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2099         disable_rpm_wakeref_asserts(dev_priv);
2100
2101         do {
2102                 u32 iir, gt_iir, pm_iir;
2103                 u32 pipe_stats[I915_MAX_PIPES] = {};
2104                 u32 hotplug_status = 0;
2105                 u32 ier = 0;
2106
2107                 gt_iir = I915_READ(GTIIR);
2108                 pm_iir = I915_READ(GEN6_PMIIR);
2109                 iir = I915_READ(VLV_IIR);
2110
2111                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2112                         break;
2113
2114                 ret = IRQ_HANDLED;
2115
2116                 /*
2117                  * Theory on interrupt generation, based on empirical evidence:
2118                  *
2119                  * x = ((VLV_IIR & VLV_IER) ||
2120                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2121                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2122                  *
2123                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2124                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2125                  * guarantee the CPU interrupt will be raised again even if we
2126                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2127                  * bits this time around.
2128                  */
2129                 I915_WRITE(VLV_MASTER_IER, 0);
2130                 ier = I915_READ(VLV_IER);
2131                 I915_WRITE(VLV_IER, 0);
2132
2133                 if (gt_iir)
2134                         I915_WRITE(GTIIR, gt_iir);
2135                 if (pm_iir)
2136                         I915_WRITE(GEN6_PMIIR, pm_iir);
2137
2138                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2139                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2140
2141                 /* Call regardless, as some status bits might not be
2142                  * signalled in iir */
2143                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2144
2145                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2146                            I915_LPE_PIPE_B_INTERRUPT))
2147                         intel_lpe_audio_irq_handler(dev_priv);
2148
2149                 /*
2150                  * VLV_IIR is single buffered, and reflects the level
2151                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2152                  */
2153                 if (iir)
2154                         I915_WRITE(VLV_IIR, iir);
2155
2156                 I915_WRITE(VLV_IER, ier);
2157                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2158
2159                 if (gt_iir)
2160                         snb_gt_irq_handler(dev_priv, gt_iir);
2161                 if (pm_iir)
2162                         gen6_rps_irq_handler(dev_priv, pm_iir);
2163
2164                 if (hotplug_status)
2165                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2166
2167                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2168         } while (0);
2169
2170         enable_rpm_wakeref_asserts(dev_priv);
2171
2172         return ret;
2173 }
2174
2175 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2176 {
2177         struct drm_device *dev = arg;
2178         struct drm_i915_private *dev_priv = to_i915(dev);
2179         irqreturn_t ret = IRQ_NONE;
2180
2181         if (!intel_irqs_enabled(dev_priv))
2182                 return IRQ_NONE;
2183
2184         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2185         disable_rpm_wakeref_asserts(dev_priv);
2186
2187         do {
2188                 u32 master_ctl, iir;
2189                 u32 pipe_stats[I915_MAX_PIPES] = {};
2190                 u32 hotplug_status = 0;
2191                 u32 gt_iir[4];
2192                 u32 ier = 0;
2193
2194                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2195                 iir = I915_READ(VLV_IIR);
2196
2197                 if (master_ctl == 0 && iir == 0)
2198                         break;
2199
2200                 ret = IRQ_HANDLED;
2201
2202                 /*
2203                  * Theory on interrupt generation, based on empirical evidence:
2204                  *
2205                  * x = ((VLV_IIR & VLV_IER) ||
2206                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2207                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2208                  *
2209                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2210                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2211                  * guarantee the CPU interrupt will be raised again even if we
2212                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2213                  * bits this time around.
2214                  */
2215                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2216                 ier = I915_READ(VLV_IER);
2217                 I915_WRITE(VLV_IER, 0);
2218
2219                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2220
2221                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2222                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2223
2224                 /* Call regardless, as some status bits might not be
2225                  * signalled in iir */
2226                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2227
2228                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2229                            I915_LPE_PIPE_B_INTERRUPT |
2230                            I915_LPE_PIPE_C_INTERRUPT))
2231                         intel_lpe_audio_irq_handler(dev_priv);
2232
2233                 /*
2234                  * VLV_IIR is single buffered, and reflects the level
2235                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2236                  */
2237                 if (iir)
2238                         I915_WRITE(VLV_IIR, iir);
2239
2240                 I915_WRITE(VLV_IER, ier);
2241                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2242
2243                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2244
2245                 if (hotplug_status)
2246                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2247
2248                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2249         } while (0);
2250
2251         enable_rpm_wakeref_asserts(dev_priv);
2252
2253         return ret;
2254 }
2255
2256 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2257                                 u32 hotplug_trigger,
2258                                 const u32 hpd[HPD_NUM_PINS])
2259 {
2260         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2261
2262         /*
2263          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2264          * unless we touch the hotplug register, even if hotplug_trigger is
2265          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2266          * errors.
2267          */
2268         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2269         if (!hotplug_trigger) {
2270                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2271                         PORTD_HOTPLUG_STATUS_MASK |
2272                         PORTC_HOTPLUG_STATUS_MASK |
2273                         PORTB_HOTPLUG_STATUS_MASK;
2274                 dig_hotplug_reg &= ~mask;
2275         }
2276
2277         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2278         if (!hotplug_trigger)
2279                 return;
2280
2281         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2282                            dig_hotplug_reg, hpd,
2283                            pch_port_hotplug_long_detect);
2284
2285         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2286 }
2287
2288 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2289 {
2290         int pipe;
2291         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2292
2293         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2294
2295         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2296                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2297                                SDE_AUDIO_POWER_SHIFT);
2298                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2299                                  port_name(port));
2300         }
2301
2302         if (pch_iir & SDE_AUX_MASK)
2303                 dp_aux_irq_handler(dev_priv);
2304
2305         if (pch_iir & SDE_GMBUS)
2306                 gmbus_irq_handler(dev_priv);
2307
2308         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2309                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2310
2311         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2312                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2313
2314         if (pch_iir & SDE_POISON)
2315                 DRM_ERROR("PCH poison interrupt\n");
2316
2317         if (pch_iir & SDE_FDI_MASK)
2318                 for_each_pipe(dev_priv, pipe)
2319                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2320                                          pipe_name(pipe),
2321                                          I915_READ(FDI_RX_IIR(pipe)));
2322
2323         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2324                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2325
2326         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2327                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2328
2329         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2330                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2331
2332         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2333                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2334 }
2335
2336 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2337 {
2338         u32 err_int = I915_READ(GEN7_ERR_INT);
2339         enum pipe pipe;
2340
2341         if (err_int & ERR_INT_POISON)
2342                 DRM_ERROR("Poison interrupt\n");
2343
2344         for_each_pipe(dev_priv, pipe) {
2345                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2346                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2347
2348                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2349                         if (IS_IVYBRIDGE(dev_priv))
2350                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2351                         else
2352                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2353                 }
2354         }
2355
2356         I915_WRITE(GEN7_ERR_INT, err_int);
2357 }
2358
2359 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2360 {
2361         u32 serr_int = I915_READ(SERR_INT);
2362         enum pipe pipe;
2363
2364         if (serr_int & SERR_INT_POISON)
2365                 DRM_ERROR("PCH poison interrupt\n");
2366
2367         for_each_pipe(dev_priv, pipe)
2368                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2369                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2370
2371         I915_WRITE(SERR_INT, serr_int);
2372 }
2373
2374 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2375 {
2376         int pipe;
2377         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2378
2379         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2380
2381         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2382                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2383                                SDE_AUDIO_POWER_SHIFT_CPT);
2384                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2385                                  port_name(port));
2386         }
2387
2388         if (pch_iir & SDE_AUX_MASK_CPT)
2389                 dp_aux_irq_handler(dev_priv);
2390
2391         if (pch_iir & SDE_GMBUS_CPT)
2392                 gmbus_irq_handler(dev_priv);
2393
2394         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2395                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2396
2397         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2398                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2399
2400         if (pch_iir & SDE_FDI_MASK_CPT)
2401                 for_each_pipe(dev_priv, pipe)
2402                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2403                                          pipe_name(pipe),
2404                                          I915_READ(FDI_RX_IIR(pipe)));
2405
2406         if (pch_iir & SDE_ERROR_CPT)
2407                 cpt_serr_int_handler(dev_priv);
2408 }
2409
2410 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2411 {
2412         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2413         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2414         u32 pin_mask = 0, long_mask = 0;
2415
2416         if (ddi_hotplug_trigger) {
2417                 u32 dig_hotplug_reg;
2418
2419                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2420                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2421
2422                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2423                                    ddi_hotplug_trigger,
2424                                    dig_hotplug_reg, hpd_icp,
2425                                    icp_ddi_port_hotplug_long_detect);
2426         }
2427
2428         if (tc_hotplug_trigger) {
2429                 u32 dig_hotplug_reg;
2430
2431                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2432                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2433
2434                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2435                                    tc_hotplug_trigger,
2436                                    dig_hotplug_reg, hpd_icp,
2437                                    icp_tc_port_hotplug_long_detect);
2438         }
2439
2440         if (pin_mask)
2441                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2442
2443         if (pch_iir & SDE_GMBUS_ICP)
2444                 gmbus_irq_handler(dev_priv);
2445 }
2446
2447 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2448 {
2449         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2450                 ~SDE_PORTE_HOTPLUG_SPT;
2451         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2452         u32 pin_mask = 0, long_mask = 0;
2453
2454         if (hotplug_trigger) {
2455                 u32 dig_hotplug_reg;
2456
2457                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2458                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2459
2460                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2461                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2462                                    spt_port_hotplug_long_detect);
2463         }
2464
2465         if (hotplug2_trigger) {
2466                 u32 dig_hotplug_reg;
2467
2468                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2469                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2470
2471                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2472                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2473                                    spt_port_hotplug2_long_detect);
2474         }
2475
2476         if (pin_mask)
2477                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2478
2479         if (pch_iir & SDE_GMBUS_CPT)
2480                 gmbus_irq_handler(dev_priv);
2481 }
2482
2483 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2484                                 u32 hotplug_trigger,
2485                                 const u32 hpd[HPD_NUM_PINS])
2486 {
2487         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2488
2489         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2490         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2491
2492         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2493                            dig_hotplug_reg, hpd,
2494                            ilk_port_hotplug_long_detect);
2495
2496         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2497 }
2498
2499 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2500                                     u32 de_iir)
2501 {
2502         enum pipe pipe;
2503         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2504
2505         if (hotplug_trigger)
2506                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2507
2508         if (de_iir & DE_AUX_CHANNEL_A)
2509                 dp_aux_irq_handler(dev_priv);
2510
2511         if (de_iir & DE_GSE)
2512                 intel_opregion_asle_intr(dev_priv);
2513
2514         if (de_iir & DE_POISON)
2515                 DRM_ERROR("Poison interrupt\n");
2516
2517         for_each_pipe(dev_priv, pipe) {
2518                 if (de_iir & DE_PIPE_VBLANK(pipe))
2519                         drm_handle_vblank(&dev_priv->drm, pipe);
2520
2521                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2522                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2523
2524                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2525                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2526         }
2527
2528         /* check event from PCH */
2529         if (de_iir & DE_PCH_EVENT) {
2530                 u32 pch_iir = I915_READ(SDEIIR);
2531
2532                 if (HAS_PCH_CPT(dev_priv))
2533                         cpt_irq_handler(dev_priv, pch_iir);
2534                 else
2535                         ibx_irq_handler(dev_priv, pch_iir);
2536
2537                 /* should clear PCH hotplug event before clear CPU irq */
2538                 I915_WRITE(SDEIIR, pch_iir);
2539         }
2540
2541         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2542                 ironlake_rps_change_irq_handler(dev_priv);
2543 }
2544
2545 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2546                                     u32 de_iir)
2547 {
2548         enum pipe pipe;
2549         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2550
2551         if (hotplug_trigger)
2552                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2553
2554         if (de_iir & DE_ERR_INT_IVB)
2555                 ivb_err_int_handler(dev_priv);
2556
2557         if (de_iir & DE_EDP_PSR_INT_HSW) {
2558                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2559
2560                 intel_psr_irq_handler(dev_priv, psr_iir);
2561                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2562         }
2563
2564         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2565                 dp_aux_irq_handler(dev_priv);
2566
2567         if (de_iir & DE_GSE_IVB)
2568                 intel_opregion_asle_intr(dev_priv);
2569
2570         for_each_pipe(dev_priv, pipe) {
2571                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2572                         drm_handle_vblank(&dev_priv->drm, pipe);
2573         }
2574
2575         /* check event from PCH */
2576         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2577                 u32 pch_iir = I915_READ(SDEIIR);
2578
2579                 cpt_irq_handler(dev_priv, pch_iir);
2580
2581                 /* clear PCH hotplug event before clear CPU irq */
2582                 I915_WRITE(SDEIIR, pch_iir);
2583         }
2584 }
2585
2586 /*
2587  * To handle irqs with the minimum potential races with fresh interrupts, we:
2588  * 1 - Disable Master Interrupt Control.
2589  * 2 - Find the source(s) of the interrupt.
2590  * 3 - Clear the Interrupt Identity bits (IIR).
2591  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2592  * 5 - Re-enable Master Interrupt Control.
2593  */
2594 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2595 {
2596         struct drm_device *dev = arg;
2597         struct drm_i915_private *dev_priv = to_i915(dev);
2598         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2599         irqreturn_t ret = IRQ_NONE;
2600
2601         if (!intel_irqs_enabled(dev_priv))
2602                 return IRQ_NONE;
2603
2604         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2605         disable_rpm_wakeref_asserts(dev_priv);
2606
2607         /* disable master interrupt before clearing iir  */
2608         de_ier = I915_READ(DEIER);
2609         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2610
2611         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2612          * interrupts will will be stored on its back queue, and then we'll be
2613          * able to process them after we restore SDEIER (as soon as we restore
2614          * it, we'll get an interrupt if SDEIIR still has something to process
2615          * due to its back queue). */
2616         if (!HAS_PCH_NOP(dev_priv)) {
2617                 sde_ier = I915_READ(SDEIER);
2618                 I915_WRITE(SDEIER, 0);
2619         }
2620
2621         /* Find, clear, then process each source of interrupt */
2622
2623         gt_iir = I915_READ(GTIIR);
2624         if (gt_iir) {
2625                 I915_WRITE(GTIIR, gt_iir);
2626                 ret = IRQ_HANDLED;
2627                 if (INTEL_GEN(dev_priv) >= 6)
2628                         snb_gt_irq_handler(dev_priv, gt_iir);
2629                 else
2630                         ilk_gt_irq_handler(dev_priv, gt_iir);
2631         }
2632
2633         de_iir = I915_READ(DEIIR);
2634         if (de_iir) {
2635                 I915_WRITE(DEIIR, de_iir);
2636                 ret = IRQ_HANDLED;
2637                 if (INTEL_GEN(dev_priv) >= 7)
2638                         ivb_display_irq_handler(dev_priv, de_iir);
2639                 else
2640                         ilk_display_irq_handler(dev_priv, de_iir);
2641         }
2642
2643         if (INTEL_GEN(dev_priv) >= 6) {
2644                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2645                 if (pm_iir) {
2646                         I915_WRITE(GEN6_PMIIR, pm_iir);
2647                         ret = IRQ_HANDLED;
2648                         gen6_rps_irq_handler(dev_priv, pm_iir);
2649                 }
2650         }
2651
2652         I915_WRITE(DEIER, de_ier);
2653         if (!HAS_PCH_NOP(dev_priv))
2654                 I915_WRITE(SDEIER, sde_ier);
2655
2656         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2657         enable_rpm_wakeref_asserts(dev_priv);
2658
2659         return ret;
2660 }
2661
2662 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2663                                 u32 hotplug_trigger,
2664                                 const u32 hpd[HPD_NUM_PINS])
2665 {
2666         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2667
2668         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2669         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2670
2671         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2672                            dig_hotplug_reg, hpd,
2673                            bxt_port_hotplug_long_detect);
2674
2675         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2676 }
2677
2678 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2679 {
2680         u32 pin_mask = 0, long_mask = 0;
2681         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2682         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2683
2684         if (trigger_tc) {
2685                 u32 dig_hotplug_reg;
2686
2687                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2688                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2689
2690                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2691                                    dig_hotplug_reg, hpd_gen11,
2692                                    gen11_port_hotplug_long_detect);
2693         }
2694
2695         if (trigger_tbt) {
2696                 u32 dig_hotplug_reg;
2697
2698                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2699                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2700
2701                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2702                                    dig_hotplug_reg, hpd_gen11,
2703                                    gen11_port_hotplug_long_detect);
2704         }
2705
2706         if (pin_mask)
2707                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2708         else
2709                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2710 }
2711
2712 static irqreturn_t
2713 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2714 {
2715         irqreturn_t ret = IRQ_NONE;
2716         u32 iir;
2717         enum pipe pipe;
2718
2719         if (master_ctl & GEN8_DE_MISC_IRQ) {
2720                 iir = I915_READ(GEN8_DE_MISC_IIR);
2721                 if (iir) {
2722                         bool found = false;
2723
2724                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2725                         ret = IRQ_HANDLED;
2726
2727                         if (iir & GEN8_DE_MISC_GSE) {
2728                                 intel_opregion_asle_intr(dev_priv);
2729                                 found = true;
2730                         }
2731
2732                         if (iir & GEN8_DE_EDP_PSR) {
2733                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2734
2735                                 intel_psr_irq_handler(dev_priv, psr_iir);
2736                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2737                                 found = true;
2738                         }
2739
2740                         if (!found)
2741                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2742                 }
2743                 else
2744                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2745         }
2746
2747         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2748                 iir = I915_READ(GEN11_DE_HPD_IIR);
2749                 if (iir) {
2750                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2751                         ret = IRQ_HANDLED;
2752                         gen11_hpd_irq_handler(dev_priv, iir);
2753                 } else {
2754                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2755                 }
2756         }
2757
2758         if (master_ctl & GEN8_DE_PORT_IRQ) {
2759                 iir = I915_READ(GEN8_DE_PORT_IIR);
2760                 if (iir) {
2761                         u32 tmp_mask;
2762                         bool found = false;
2763
2764                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2765                         ret = IRQ_HANDLED;
2766
2767                         tmp_mask = GEN8_AUX_CHANNEL_A;
2768                         if (INTEL_GEN(dev_priv) >= 9)
2769                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2770                                             GEN9_AUX_CHANNEL_C |
2771                                             GEN9_AUX_CHANNEL_D;
2772
2773                         if (INTEL_GEN(dev_priv) >= 11)
2774                                 tmp_mask |= ICL_AUX_CHANNEL_E;
2775
2776                         if (IS_CNL_WITH_PORT_F(dev_priv) ||
2777                             INTEL_GEN(dev_priv) >= 11)
2778                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2779
2780                         if (iir & tmp_mask) {
2781                                 dp_aux_irq_handler(dev_priv);
2782                                 found = true;
2783                         }
2784
2785                         if (IS_GEN9_LP(dev_priv)) {
2786                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2787                                 if (tmp_mask) {
2788                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2789                                                             hpd_bxt);
2790                                         found = true;
2791                                 }
2792                         } else if (IS_BROADWELL(dev_priv)) {
2793                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2794                                 if (tmp_mask) {
2795                                         ilk_hpd_irq_handler(dev_priv,
2796                                                             tmp_mask, hpd_bdw);
2797                                         found = true;
2798                                 }
2799                         }
2800
2801                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2802                                 gmbus_irq_handler(dev_priv);
2803                                 found = true;
2804                         }
2805
2806                         if (!found)
2807                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2808                 }
2809                 else
2810                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2811         }
2812
2813         for_each_pipe(dev_priv, pipe) {
2814                 u32 fault_errors;
2815
2816                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2817                         continue;
2818
2819                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2820                 if (!iir) {
2821                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2822                         continue;
2823                 }
2824
2825                 ret = IRQ_HANDLED;
2826                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2827
2828                 if (iir & GEN8_PIPE_VBLANK)
2829                         drm_handle_vblank(&dev_priv->drm, pipe);
2830
2831                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2832                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2833
2834                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2835                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2836
2837                 fault_errors = iir;
2838                 if (INTEL_GEN(dev_priv) >= 9)
2839                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2840                 else
2841                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2842
2843                 if (fault_errors)
2844                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2845                                   pipe_name(pipe),
2846                                   fault_errors);
2847         }
2848
2849         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2850             master_ctl & GEN8_DE_PCH_IRQ) {
2851                 /*
2852                  * FIXME(BDW): Assume for now that the new interrupt handling
2853                  * scheme also closed the SDE interrupt handling race we've seen
2854                  * on older pch-split platforms. But this needs testing.
2855                  */
2856                 iir = I915_READ(SDEIIR);
2857                 if (iir) {
2858                         I915_WRITE(SDEIIR, iir);
2859                         ret = IRQ_HANDLED;
2860
2861                         if (HAS_PCH_ICP(dev_priv))
2862                                 icp_irq_handler(dev_priv, iir);
2863                         else if (HAS_PCH_SPT(dev_priv) ||
2864                                  HAS_PCH_KBP(dev_priv) ||
2865                                  HAS_PCH_CNP(dev_priv))
2866                                 spt_irq_handler(dev_priv, iir);
2867                         else
2868                                 cpt_irq_handler(dev_priv, iir);
2869                 } else {
2870                         /*
2871                          * Like on previous PCH there seems to be something
2872                          * fishy going on with forwarding PCH interrupts.
2873                          */
2874                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2875                 }
2876         }
2877
2878         return ret;
2879 }
2880
2881 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2882 {
2883         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2884
2885         /*
2886          * Now with master disabled, get a sample of level indications
2887          * for this interrupt. Indications will be cleared on related acks.
2888          * New indications can and will light up during processing,
2889          * and will generate new interrupt after enabling master.
2890          */
2891         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2892 }
2893
2894 static inline void gen8_master_intr_enable(void __iomem * const regs)
2895 {
2896         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2897 }
2898
2899 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2900 {
2901         struct drm_i915_private *dev_priv = to_i915(arg);
2902         void __iomem * const regs = dev_priv->regs;
2903         u32 master_ctl;
2904         u32 gt_iir[4];
2905
2906         if (!intel_irqs_enabled(dev_priv))
2907                 return IRQ_NONE;
2908
2909         master_ctl = gen8_master_intr_disable(regs);
2910         if (!master_ctl) {
2911                 gen8_master_intr_enable(regs);
2912                 return IRQ_NONE;
2913         }
2914
2915         /* Find, clear, then process each source of interrupt */
2916         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2917
2918         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2919         if (master_ctl & ~GEN8_GT_IRQS) {
2920                 disable_rpm_wakeref_asserts(dev_priv);
2921                 gen8_de_irq_handler(dev_priv, master_ctl);
2922                 enable_rpm_wakeref_asserts(dev_priv);
2923         }
2924
2925         gen8_master_intr_enable(regs);
2926
2927         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2928
2929         return IRQ_HANDLED;
2930 }
2931
2932 static u32
2933 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2934                          const unsigned int bank, const unsigned int bit)
2935 {
2936         void __iomem * const regs = i915->regs;
2937         u32 timeout_ts;
2938         u32 ident;
2939
2940         lockdep_assert_held(&i915->irq_lock);
2941
2942         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2943
2944         /*
2945          * NB: Specs do not specify how long to spin wait,
2946          * so we do ~100us as an educated guess.
2947          */
2948         timeout_ts = (local_clock() >> 10) + 100;
2949         do {
2950                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2951         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2952                  !time_after32(local_clock() >> 10, timeout_ts));
2953
2954         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2955                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2956                           bank, bit, ident);
2957                 return 0;
2958         }
2959
2960         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2961                       GEN11_INTR_DATA_VALID);
2962
2963         return ident;
2964 }
2965
2966 static void
2967 gen11_other_irq_handler(struct drm_i915_private * const i915,
2968                         const u8 instance, const u16 iir)
2969 {
2970         if (instance == OTHER_GTPM_INSTANCE)
2971                 return gen6_rps_irq_handler(i915, iir);
2972
2973         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
2974                   instance, iir);
2975 }
2976
2977 static void
2978 gen11_engine_irq_handler(struct drm_i915_private * const i915,
2979                          const u8 class, const u8 instance, const u16 iir)
2980 {
2981         struct intel_engine_cs *engine;
2982
2983         if (instance <= MAX_ENGINE_INSTANCE)
2984                 engine = i915->engine_class[class][instance];
2985         else
2986                 engine = NULL;
2987
2988         if (likely(engine))
2989                 return gen8_cs_irq_handler(engine, iir);
2990
2991         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
2992                   class, instance);
2993 }
2994
2995 static void
2996 gen11_gt_identity_handler(struct drm_i915_private * const i915,
2997                           const u32 identity)
2998 {
2999         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3000         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3001         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3002
3003         if (unlikely(!intr))
3004                 return;
3005
3006         if (class <= COPY_ENGINE_CLASS)
3007                 return gen11_engine_irq_handler(i915, class, instance, intr);
3008
3009         if (class == OTHER_CLASS)
3010                 return gen11_other_irq_handler(i915, instance, intr);
3011
3012         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3013                   class, instance, intr);
3014 }
3015
3016 static void
3017 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3018                       const unsigned int bank)
3019 {
3020         void __iomem * const regs = i915->regs;
3021         unsigned long intr_dw;
3022         unsigned int bit;
3023
3024         lockdep_assert_held(&i915->irq_lock);
3025
3026         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3027
3028         if (unlikely(!intr_dw)) {
3029                 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3030                 return;
3031         }
3032
3033         for_each_set_bit(bit, &intr_dw, 32) {
3034                 const u32 ident = gen11_gt_engine_identity(i915,
3035                                                            bank, bit);
3036
3037                 gen11_gt_identity_handler(i915, ident);
3038         }
3039
3040         /* Clear must be after shared has been served for engine */
3041         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3042 }
3043
3044 static void
3045 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3046                      const u32 master_ctl)
3047 {
3048         unsigned int bank;
3049
3050         spin_lock(&i915->irq_lock);
3051
3052         for (bank = 0; bank < 2; bank++) {
3053                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3054                         gen11_gt_bank_handler(i915, bank);
3055         }
3056
3057         spin_unlock(&i915->irq_lock);
3058 }
3059
3060 static u32
3061 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3062 {
3063         void __iomem * const regs = dev_priv->regs;
3064         u32 iir;
3065
3066         if (!(master_ctl & GEN11_GU_MISC_IRQ))
3067                 return 0;
3068
3069         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3070         if (likely(iir))
3071                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3072
3073         return iir;
3074 }
3075
3076 static void
3077 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3078 {
3079         if (iir & GEN11_GU_MISC_GSE)
3080                 intel_opregion_asle_intr(dev_priv);
3081 }
3082
3083 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
3084 {
3085         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3086
3087         /*
3088          * Now with master disabled, get a sample of level indications
3089          * for this interrupt. Indications will be cleared on related acks.
3090          * New indications can and will light up during processing,
3091          * and will generate new interrupt after enabling master.
3092          */
3093         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3094 }
3095
3096 static inline void gen11_master_intr_enable(void __iomem * const regs)
3097 {
3098         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
3099 }
3100
3101 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3102 {
3103         struct drm_i915_private * const i915 = to_i915(arg);
3104         void __iomem * const regs = i915->regs;
3105         u32 master_ctl;
3106         u32 gu_misc_iir;
3107
3108         if (!intel_irqs_enabled(i915))
3109                 return IRQ_NONE;
3110
3111         master_ctl = gen11_master_intr_disable(regs);
3112         if (!master_ctl) {
3113                 gen11_master_intr_enable(regs);
3114                 return IRQ_NONE;
3115         }
3116
3117         /* Find, clear, then process each source of interrupt. */
3118         gen11_gt_irq_handler(i915, master_ctl);
3119
3120         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3121         if (master_ctl & GEN11_DISPLAY_IRQ) {
3122                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3123
3124                 disable_rpm_wakeref_asserts(i915);
3125                 /*
3126                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3127                  * for the display related bits.
3128                  */
3129                 gen8_de_irq_handler(i915, disp_ctl);
3130                 enable_rpm_wakeref_asserts(i915);
3131         }
3132
3133         gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3134
3135         gen11_master_intr_enable(regs);
3136
3137         gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3138
3139         return IRQ_HANDLED;
3140 }
3141
3142 /* Called from drm generic code, passed 'crtc' which
3143  * we use as a pipe index
3144  */
3145 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3146 {
3147         struct drm_i915_private *dev_priv = to_i915(dev);
3148         unsigned long irqflags;
3149
3150         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3151         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3152         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3153
3154         return 0;
3155 }
3156
3157 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3158 {
3159         struct drm_i915_private *dev_priv = to_i915(dev);
3160         unsigned long irqflags;
3161
3162         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3163         i915_enable_pipestat(dev_priv, pipe,
3164                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3165         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3166
3167         return 0;
3168 }
3169
3170 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3171 {
3172         struct drm_i915_private *dev_priv = to_i915(dev);
3173         unsigned long irqflags;
3174         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3175                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3176
3177         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3178         ilk_enable_display_irq(dev_priv, bit);
3179         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3180
3181         /* Even though there is no DMC, frame counter can get stuck when
3182          * PSR is active as no frames are generated.
3183          */
3184         if (HAS_PSR(dev_priv))
3185                 drm_vblank_restore(dev, pipe);
3186
3187         return 0;
3188 }
3189
3190 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3191 {
3192         struct drm_i915_private *dev_priv = to_i915(dev);
3193         unsigned long irqflags;
3194
3195         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3196         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3197         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3198
3199         /* Even if there is no DMC, frame counter can get stuck when
3200          * PSR is active as no frames are generated, so check only for PSR.
3201          */
3202         if (HAS_PSR(dev_priv))
3203                 drm_vblank_restore(dev, pipe);
3204
3205         return 0;
3206 }
3207
3208 /* Called from drm generic code, passed 'crtc' which
3209  * we use as a pipe index
3210  */
3211 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3212 {
3213         struct drm_i915_private *dev_priv = to_i915(dev);
3214         unsigned long irqflags;
3215
3216         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3217         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3218         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3219 }
3220
3221 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3222 {
3223         struct drm_i915_private *dev_priv = to_i915(dev);
3224         unsigned long irqflags;
3225
3226         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3227         i915_disable_pipestat(dev_priv, pipe,
3228                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3229         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3230 }
3231
3232 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3233 {
3234         struct drm_i915_private *dev_priv = to_i915(dev);
3235         unsigned long irqflags;
3236         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3237                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3238
3239         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3240         ilk_disable_display_irq(dev_priv, bit);
3241         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3242 }
3243
3244 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3245 {
3246         struct drm_i915_private *dev_priv = to_i915(dev);
3247         unsigned long irqflags;
3248
3249         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3250         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3251         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3252 }
3253
3254 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3255 {
3256         if (HAS_PCH_NOP(dev_priv))
3257                 return;
3258
3259         GEN3_IRQ_RESET(SDE);
3260
3261         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3262                 I915_WRITE(SERR_INT, 0xffffffff);
3263 }
3264
3265 /*
3266  * SDEIER is also touched by the interrupt handler to work around missed PCH
3267  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3268  * instead we unconditionally enable all PCH interrupt sources here, but then
3269  * only unmask them as needed with SDEIMR.
3270  *
3271  * This function needs to be called before interrupts are enabled.
3272  */
3273 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3274 {
3275         struct drm_i915_private *dev_priv = to_i915(dev);
3276
3277         if (HAS_PCH_NOP(dev_priv))
3278                 return;
3279
3280         WARN_ON(I915_READ(SDEIER) != 0);
3281         I915_WRITE(SDEIER, 0xffffffff);
3282         POSTING_READ(SDEIER);
3283 }
3284
3285 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3286 {
3287         GEN3_IRQ_RESET(GT);
3288         if (INTEL_GEN(dev_priv) >= 6)
3289                 GEN3_IRQ_RESET(GEN6_PM);
3290 }
3291
3292 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3293 {
3294         if (IS_CHERRYVIEW(dev_priv))
3295                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3296         else
3297                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3298
3299         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3300         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3301
3302         i9xx_pipestat_irq_reset(dev_priv);
3303
3304         GEN3_IRQ_RESET(VLV_);
3305         dev_priv->irq_mask = ~0u;
3306 }
3307
3308 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3309 {
3310         u32 pipestat_mask;
3311         u32 enable_mask;
3312         enum pipe pipe;
3313
3314         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3315
3316         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3317         for_each_pipe(dev_priv, pipe)
3318                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3319
3320         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3321                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3322                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3323                 I915_LPE_PIPE_A_INTERRUPT |
3324                 I915_LPE_PIPE_B_INTERRUPT;
3325
3326         if (IS_CHERRYVIEW(dev_priv))
3327                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3328                         I915_LPE_PIPE_C_INTERRUPT;
3329
3330         WARN_ON(dev_priv->irq_mask != ~0u);
3331
3332         dev_priv->irq_mask = ~enable_mask;
3333
3334         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3335 }
3336
3337 /* drm_dma.h hooks
3338 */
3339 static void ironlake_irq_reset(struct drm_device *dev)
3340 {
3341         struct drm_i915_private *dev_priv = to_i915(dev);
3342
3343         GEN3_IRQ_RESET(DE);
3344         if (IS_GEN(dev_priv, 7))
3345                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3346
3347         if (IS_HASWELL(dev_priv)) {
3348                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3349                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3350         }
3351
3352         gen5_gt_irq_reset(dev_priv);
3353
3354         ibx_irq_reset(dev_priv);
3355 }
3356
3357 static void valleyview_irq_reset(struct drm_device *dev)
3358 {
3359         struct drm_i915_private *dev_priv = to_i915(dev);
3360
3361         I915_WRITE(VLV_MASTER_IER, 0);
3362         POSTING_READ(VLV_MASTER_IER);
3363
3364         gen5_gt_irq_reset(dev_priv);
3365
3366         spin_lock_irq(&dev_priv->irq_lock);
3367         if (dev_priv->display_irqs_enabled)
3368                 vlv_display_irq_reset(dev_priv);
3369         spin_unlock_irq(&dev_priv->irq_lock);
3370 }
3371
3372 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3373 {
3374         GEN8_IRQ_RESET_NDX(GT, 0);
3375         GEN8_IRQ_RESET_NDX(GT, 1);
3376         GEN8_IRQ_RESET_NDX(GT, 2);
3377         GEN8_IRQ_RESET_NDX(GT, 3);
3378 }
3379
3380 static void gen8_irq_reset(struct drm_device *dev)
3381 {
3382         struct drm_i915_private *dev_priv = to_i915(dev);
3383         int pipe;
3384
3385         gen8_master_intr_disable(dev_priv->regs);
3386
3387         gen8_gt_irq_reset(dev_priv);
3388
3389         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3390         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3391
3392         for_each_pipe(dev_priv, pipe)
3393                 if (intel_display_power_is_enabled(dev_priv,
3394                                                    POWER_DOMAIN_PIPE(pipe)))
3395                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3396
3397         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3398         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3399         GEN3_IRQ_RESET(GEN8_PCU_);
3400
3401         if (HAS_PCH_SPLIT(dev_priv))
3402                 ibx_irq_reset(dev_priv);
3403 }
3404
3405 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3406 {
3407         /* Disable RCS, BCS, VCS and VECS class engines. */
3408         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3409         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3410
3411         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3412         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3413         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3414         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3415         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3416         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3417
3418         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3419         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3420 }
3421
3422 static void gen11_irq_reset(struct drm_device *dev)
3423 {
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         int pipe;
3426
3427         gen11_master_intr_disable(dev_priv->regs);
3428
3429         gen11_gt_irq_reset(dev_priv);
3430
3431         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3432
3433         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3434         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3435
3436         for_each_pipe(dev_priv, pipe)
3437                 if (intel_display_power_is_enabled(dev_priv,
3438                                                    POWER_DOMAIN_PIPE(pipe)))
3439                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3440
3441         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3442         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3443         GEN3_IRQ_RESET(GEN11_DE_HPD_);
3444         GEN3_IRQ_RESET(GEN11_GU_MISC_);
3445         GEN3_IRQ_RESET(GEN8_PCU_);
3446
3447         if (HAS_PCH_ICP(dev_priv))
3448                 GEN3_IRQ_RESET(SDE);
3449 }
3450
3451 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3452                                      u8 pipe_mask)
3453 {
3454         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3455         enum pipe pipe;
3456
3457         spin_lock_irq(&dev_priv->irq_lock);
3458
3459         if (!intel_irqs_enabled(dev_priv)) {
3460                 spin_unlock_irq(&dev_priv->irq_lock);
3461                 return;
3462         }
3463
3464         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3465                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3466                                   dev_priv->de_irq_mask[pipe],
3467                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3468
3469         spin_unlock_irq(&dev_priv->irq_lock);
3470 }
3471
3472 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3473                                      u8 pipe_mask)
3474 {
3475         enum pipe pipe;
3476
3477         spin_lock_irq(&dev_priv->irq_lock);
3478
3479         if (!intel_irqs_enabled(dev_priv)) {
3480                 spin_unlock_irq(&dev_priv->irq_lock);
3481                 return;
3482         }
3483
3484         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3485                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3486
3487         spin_unlock_irq(&dev_priv->irq_lock);
3488
3489         /* make sure we're done processing display irqs */
3490         synchronize_irq(dev_priv->drm.irq);
3491 }
3492
3493 static void cherryview_irq_reset(struct drm_device *dev)
3494 {
3495         struct drm_i915_private *dev_priv = to_i915(dev);
3496
3497         I915_WRITE(GEN8_MASTER_IRQ, 0);
3498         POSTING_READ(GEN8_MASTER_IRQ);
3499
3500         gen8_gt_irq_reset(dev_priv);
3501
3502         GEN3_IRQ_RESET(GEN8_PCU_);
3503
3504         spin_lock_irq(&dev_priv->irq_lock);
3505         if (dev_priv->display_irqs_enabled)
3506                 vlv_display_irq_reset(dev_priv);
3507         spin_unlock_irq(&dev_priv->irq_lock);
3508 }
3509
3510 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3511                                   const u32 hpd[HPD_NUM_PINS])
3512 {
3513         struct intel_encoder *encoder;
3514         u32 enabled_irqs = 0;
3515
3516         for_each_intel_encoder(&dev_priv->drm, encoder)
3517                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3518                         enabled_irqs |= hpd[encoder->hpd_pin];
3519
3520         return enabled_irqs;
3521 }
3522
3523 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3524 {
3525         u32 hotplug;
3526
3527         /*
3528          * Enable digital hotplug on the PCH, and configure the DP short pulse
3529          * duration to 2ms (which is the minimum in the Display Port spec).
3530          * The pulse duration bits are reserved on LPT+.
3531          */
3532         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3533         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3534                      PORTC_PULSE_DURATION_MASK |
3535                      PORTD_PULSE_DURATION_MASK);
3536         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3537         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3538         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3539         /*
3540          * When CPU and PCH are on the same package, port A
3541          * HPD must be enabled in both north and south.
3542          */
3543         if (HAS_PCH_LPT_LP(dev_priv))
3544                 hotplug |= PORTA_HOTPLUG_ENABLE;
3545         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3546 }
3547
3548 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3549 {
3550         u32 hotplug_irqs, enabled_irqs;
3551
3552         if (HAS_PCH_IBX(dev_priv)) {
3553                 hotplug_irqs = SDE_HOTPLUG_MASK;
3554                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3555         } else {
3556                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3557                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3558         }
3559
3560         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3561
3562         ibx_hpd_detection_setup(dev_priv);
3563 }
3564
3565 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3566 {
3567         u32 hotplug;
3568
3569         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3570         hotplug |= ICP_DDIA_HPD_ENABLE |
3571                    ICP_DDIB_HPD_ENABLE;
3572         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3573
3574         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3575         hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3576                    ICP_TC_HPD_ENABLE(PORT_TC2) |
3577                    ICP_TC_HPD_ENABLE(PORT_TC3) |
3578                    ICP_TC_HPD_ENABLE(PORT_TC4);
3579         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3580 }
3581
3582 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3583 {
3584         u32 hotplug_irqs, enabled_irqs;
3585
3586         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3587         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3588
3589         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3590
3591         icp_hpd_detection_setup(dev_priv);
3592 }
3593
3594 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3595 {
3596         u32 hotplug;
3597
3598         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3599         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3600                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3601                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3602                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3603         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3604
3605         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3606         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3607                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3608                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3609                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3610         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3611 }
3612
3613 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3614 {
3615         u32 hotplug_irqs, enabled_irqs;
3616         u32 val;
3617
3618         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3619         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3620
3621         val = I915_READ(GEN11_DE_HPD_IMR);
3622         val &= ~hotplug_irqs;
3623         I915_WRITE(GEN11_DE_HPD_IMR, val);
3624         POSTING_READ(GEN11_DE_HPD_IMR);
3625
3626         gen11_hpd_detection_setup(dev_priv);
3627
3628         if (HAS_PCH_ICP(dev_priv))
3629                 icp_hpd_irq_setup(dev_priv);
3630 }
3631
3632 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3633 {
3634         u32 val, hotplug;
3635
3636         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3637         if (HAS_PCH_CNP(dev_priv)) {
3638                 val = I915_READ(SOUTH_CHICKEN1);
3639                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3640                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3641                 I915_WRITE(SOUTH_CHICKEN1, val);
3642         }
3643
3644         /* Enable digital hotplug on the PCH */
3645         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3646         hotplug |= PORTA_HOTPLUG_ENABLE |
3647                    PORTB_HOTPLUG_ENABLE |
3648                    PORTC_HOTPLUG_ENABLE |
3649                    PORTD_HOTPLUG_ENABLE;
3650         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3651
3652         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3653         hotplug |= PORTE_HOTPLUG_ENABLE;
3654         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3655 }
3656
3657 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3658 {
3659         u32 hotplug_irqs, enabled_irqs;
3660
3661         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3662         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3663
3664         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3665
3666         spt_hpd_detection_setup(dev_priv);
3667 }
3668
3669 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3670 {
3671         u32 hotplug;
3672
3673         /*
3674          * Enable digital hotplug on the CPU, and configure the DP short pulse
3675          * duration to 2ms (which is the minimum in the Display Port spec)
3676          * The pulse duration bits are reserved on HSW+.
3677          */
3678         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3679         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3680         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3681                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3682         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3683 }
3684
3685 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3686 {
3687         u32 hotplug_irqs, enabled_irqs;
3688
3689         if (INTEL_GEN(dev_priv) >= 8) {
3690                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3691                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3692
3693                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3694         } else if (INTEL_GEN(dev_priv) >= 7) {
3695                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3696                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3697
3698                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3699         } else {
3700                 hotplug_irqs = DE_DP_A_HOTPLUG;
3701                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3702
3703                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3704         }
3705
3706         ilk_hpd_detection_setup(dev_priv);
3707
3708         ibx_hpd_irq_setup(dev_priv);
3709 }
3710
3711 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3712                                       u32 enabled_irqs)
3713 {
3714         u32 hotplug;
3715
3716         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3717         hotplug |= PORTA_HOTPLUG_ENABLE |
3718                    PORTB_HOTPLUG_ENABLE |
3719                    PORTC_HOTPLUG_ENABLE;
3720
3721         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3722                       hotplug, enabled_irqs);
3723         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3724
3725         /*
3726          * For BXT invert bit has to be set based on AOB design
3727          * for HPD detection logic, update it based on VBT fields.
3728          */
3729         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3730             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3731                 hotplug |= BXT_DDIA_HPD_INVERT;
3732         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3733             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3734                 hotplug |= BXT_DDIB_HPD_INVERT;
3735         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3736             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3737                 hotplug |= BXT_DDIC_HPD_INVERT;
3738
3739         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3740 }
3741
3742 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3743 {
3744         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3745 }
3746
3747 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3748 {
3749         u32 hotplug_irqs, enabled_irqs;
3750
3751         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3752         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3753
3754         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3755
3756         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3757 }
3758
3759 static void ibx_irq_postinstall(struct drm_device *dev)
3760 {
3761         struct drm_i915_private *dev_priv = to_i915(dev);
3762         u32 mask;
3763
3764         if (HAS_PCH_NOP(dev_priv))
3765                 return;
3766
3767         if (HAS_PCH_IBX(dev_priv))
3768                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3769         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3770                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3771         else
3772                 mask = SDE_GMBUS_CPT;
3773
3774         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3775         I915_WRITE(SDEIMR, ~mask);
3776
3777         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3778             HAS_PCH_LPT(dev_priv))
3779                 ibx_hpd_detection_setup(dev_priv);
3780         else
3781                 spt_hpd_detection_setup(dev_priv);
3782 }
3783
3784 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3785 {
3786         struct drm_i915_private *dev_priv = to_i915(dev);
3787         u32 pm_irqs, gt_irqs;
3788
3789         pm_irqs = gt_irqs = 0;
3790
3791         dev_priv->gt_irq_mask = ~0;
3792         if (HAS_L3_DPF(dev_priv)) {
3793                 /* L3 parity interrupt is always unmasked. */
3794                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3795                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3796         }
3797
3798         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3799         if (IS_GEN(dev_priv, 5)) {
3800                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3801         } else {
3802                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3803         }
3804
3805         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3806
3807         if (INTEL_GEN(dev_priv) >= 6) {
3808                 /*
3809                  * RPS interrupts will get enabled/disabled on demand when RPS
3810                  * itself is enabled/disabled.
3811                  */
3812                 if (HAS_VEBOX(dev_priv)) {
3813                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3814                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3815                 }
3816
3817                 dev_priv->pm_imr = 0xffffffff;
3818                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3819         }
3820 }
3821
3822 static int ironlake_irq_postinstall(struct drm_device *dev)
3823 {
3824         struct drm_i915_private *dev_priv = to_i915(dev);
3825         u32 display_mask, extra_mask;
3826
3827         if (INTEL_GEN(dev_priv) >= 7) {
3828                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3829                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3830                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3831                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3832                               DE_DP_A_HOTPLUG_IVB);
3833         } else {
3834                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3835                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3836                                 DE_PIPEA_CRC_DONE | DE_POISON);
3837                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3838                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3839                               DE_DP_A_HOTPLUG);
3840         }
3841
3842         if (IS_HASWELL(dev_priv)) {
3843                 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3844                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3845                 display_mask |= DE_EDP_PSR_INT_HSW;
3846         }
3847
3848         dev_priv->irq_mask = ~display_mask;
3849
3850         ibx_irq_pre_postinstall(dev);
3851
3852         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3853
3854         gen5_gt_irq_postinstall(dev);
3855
3856         ilk_hpd_detection_setup(dev_priv);
3857
3858         ibx_irq_postinstall(dev);
3859
3860         if (IS_IRONLAKE_M(dev_priv)) {
3861                 /* Enable PCU event interrupts
3862                  *
3863                  * spinlocking not required here for correctness since interrupt
3864                  * setup is guaranteed to run in single-threaded context. But we
3865                  * need it to make the assert_spin_locked happy. */
3866                 spin_lock_irq(&dev_priv->irq_lock);
3867                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3868                 spin_unlock_irq(&dev_priv->irq_lock);
3869         }
3870
3871         return 0;
3872 }
3873
3874 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3875 {
3876         lockdep_assert_held(&dev_priv->irq_lock);
3877
3878         if (dev_priv->display_irqs_enabled)
3879                 return;
3880
3881         dev_priv->display_irqs_enabled = true;
3882
3883         if (intel_irqs_enabled(dev_priv)) {
3884                 vlv_display_irq_reset(dev_priv);
3885                 vlv_display_irq_postinstall(dev_priv);
3886         }
3887 }
3888
3889 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3890 {
3891         lockdep_assert_held(&dev_priv->irq_lock);
3892
3893         if (!dev_priv->display_irqs_enabled)
3894                 return;
3895
3896         dev_priv->display_irqs_enabled = false;
3897
3898         if (intel_irqs_enabled(dev_priv))
3899                 vlv_display_irq_reset(dev_priv);
3900 }
3901
3902
3903 static int valleyview_irq_postinstall(struct drm_device *dev)
3904 {
3905         struct drm_i915_private *dev_priv = to_i915(dev);
3906
3907         gen5_gt_irq_postinstall(dev);
3908
3909         spin_lock_irq(&dev_priv->irq_lock);
3910         if (dev_priv->display_irqs_enabled)
3911                 vlv_display_irq_postinstall(dev_priv);
3912         spin_unlock_irq(&dev_priv->irq_lock);
3913
3914         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3915         POSTING_READ(VLV_MASTER_IER);
3916
3917         return 0;
3918 }
3919
3920 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3921 {
3922         /* These are interrupts we'll toggle with the ring mask register */
3923         u32 gt_interrupts[] = {
3924                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3925                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3926                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3927                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3928                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3929                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3930                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3931                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3932                 0,
3933                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3934                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3935                 };
3936
3937         dev_priv->pm_ier = 0x0;
3938         dev_priv->pm_imr = ~dev_priv->pm_ier;
3939         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3940         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3941         /*
3942          * RPS interrupts will get enabled/disabled on demand when RPS itself
3943          * is enabled/disabled. Same wil be the case for GuC interrupts.
3944          */
3945         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3946         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3947 }
3948
3949 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3950 {
3951         u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3952         u32 de_pipe_enables;
3953         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3954         u32 de_port_enables;
3955         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3956         enum pipe pipe;
3957
3958         if (INTEL_GEN(dev_priv) <= 10)
3959                 de_misc_masked |= GEN8_DE_MISC_GSE;
3960
3961         if (INTEL_GEN(dev_priv) >= 9) {
3962                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3963                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3964                                   GEN9_AUX_CHANNEL_D;
3965                 if (IS_GEN9_LP(dev_priv))
3966                         de_port_masked |= BXT_DE_PORT_GMBUS;
3967         } else {
3968                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3969         }
3970
3971         if (INTEL_GEN(dev_priv) >= 11)
3972                 de_port_masked |= ICL_AUX_CHANNEL_E;
3973
3974         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3975                 de_port_masked |= CNL_AUX_CHANNEL_F;
3976
3977         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3978                                            GEN8_PIPE_FIFO_UNDERRUN;
3979
3980         de_port_enables = de_port_masked;
3981         if (IS_GEN9_LP(dev_priv))
3982                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3983         else if (IS_BROADWELL(dev_priv))
3984                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3985
3986         gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3987         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3988
3989         for_each_pipe(dev_priv, pipe) {
3990                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3991
3992                 if (intel_display_power_is_enabled(dev_priv,
3993                                 POWER_DOMAIN_PIPE(pipe)))
3994                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3995                                           dev_priv->de_irq_mask[pipe],
3996                                           de_pipe_enables);
3997         }
3998
3999         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4000         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4001
4002         if (INTEL_GEN(dev_priv) >= 11) {
4003                 u32 de_hpd_masked = 0;
4004                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4005                                      GEN11_DE_TBT_HOTPLUG_MASK;
4006
4007                 GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4008                 gen11_hpd_detection_setup(dev_priv);
4009         } else if (IS_GEN9_LP(dev_priv)) {
4010                 bxt_hpd_detection_setup(dev_priv);
4011         } else if (IS_BROADWELL(dev_priv)) {
4012                 ilk_hpd_detection_setup(dev_priv);
4013         }
4014 }
4015
4016 static int gen8_irq_postinstall(struct drm_device *dev)
4017 {
4018         struct drm_i915_private *dev_priv = to_i915(dev);
4019
4020         if (HAS_PCH_SPLIT(dev_priv))
4021                 ibx_irq_pre_postinstall(dev);
4022
4023         gen8_gt_irq_postinstall(dev_priv);
4024         gen8_de_irq_postinstall(dev_priv);
4025
4026         if (HAS_PCH_SPLIT(dev_priv))
4027                 ibx_irq_postinstall(dev);
4028
4029         gen8_master_intr_enable(dev_priv->regs);
4030
4031         return 0;
4032 }
4033
4034 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4035 {
4036         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4037
4038         BUILD_BUG_ON(irqs & 0xffff0000);
4039
4040         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4041         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4042         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4043
4044         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4045         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4046         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4047         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4048         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4049         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4050
4051         /*
4052          * RPS interrupts will get enabled/disabled on demand when RPS itself
4053          * is enabled/disabled.
4054          */
4055         dev_priv->pm_ier = 0x0;
4056         dev_priv->pm_imr = ~dev_priv->pm_ier;
4057         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4058         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4059 }
4060
4061 static void icp_irq_postinstall(struct drm_device *dev)
4062 {
4063         struct drm_i915_private *dev_priv = to_i915(dev);
4064         u32 mask = SDE_GMBUS_ICP;
4065
4066         WARN_ON(I915_READ(SDEIER) != 0);
4067         I915_WRITE(SDEIER, 0xffffffff);
4068         POSTING_READ(SDEIER);
4069
4070         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4071         I915_WRITE(SDEIMR, ~mask);
4072
4073         icp_hpd_detection_setup(dev_priv);
4074 }
4075
4076 static int gen11_irq_postinstall(struct drm_device *dev)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4080
4081         if (HAS_PCH_ICP(dev_priv))
4082                 icp_irq_postinstall(dev);
4083
4084         gen11_gt_irq_postinstall(dev_priv);
4085         gen8_de_irq_postinstall(dev_priv);
4086
4087         GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4088
4089         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4090
4091         gen11_master_intr_enable(dev_priv->regs);
4092         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4093
4094         return 0;
4095 }
4096
4097 static int cherryview_irq_postinstall(struct drm_device *dev)
4098 {
4099         struct drm_i915_private *dev_priv = to_i915(dev);
4100
4101         gen8_gt_irq_postinstall(dev_priv);
4102
4103         spin_lock_irq(&dev_priv->irq_lock);
4104         if (dev_priv->display_irqs_enabled)
4105                 vlv_display_irq_postinstall(dev_priv);
4106         spin_unlock_irq(&dev_priv->irq_lock);
4107
4108         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4109         POSTING_READ(GEN8_MASTER_IRQ);
4110
4111         return 0;
4112 }
4113
4114 static void i8xx_irq_reset(struct drm_device *dev)
4115 {
4116         struct drm_i915_private *dev_priv = to_i915(dev);
4117
4118         i9xx_pipestat_irq_reset(dev_priv);
4119
4120         GEN2_IRQ_RESET();
4121 }
4122
4123 static int i8xx_irq_postinstall(struct drm_device *dev)
4124 {
4125         struct drm_i915_private *dev_priv = to_i915(dev);
4126         u16 enable_mask;
4127
4128         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4129                             I915_ERROR_MEMORY_REFRESH));
4130
4131         /* Unmask the interrupts that we always want on. */
4132         dev_priv->irq_mask =
4133                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4134                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4135                   I915_MASTER_ERROR_INTERRUPT);
4136
4137         enable_mask =
4138                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4139                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4140                 I915_MASTER_ERROR_INTERRUPT |
4141                 I915_USER_INTERRUPT;
4142
4143         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4144
4145         /* Interrupt setup is already guaranteed to be single-threaded, this is
4146          * just to make the assert_spin_locked check happy. */
4147         spin_lock_irq(&dev_priv->irq_lock);
4148         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4149         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150         spin_unlock_irq(&dev_priv->irq_lock);
4151
4152         return 0;
4153 }
4154
4155 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4156                                u16 *eir, u16 *eir_stuck)
4157 {
4158         u16 emr;
4159
4160         *eir = I915_READ16(EIR);
4161
4162         if (*eir)
4163                 I915_WRITE16(EIR, *eir);
4164
4165         *eir_stuck = I915_READ16(EIR);
4166         if (*eir_stuck == 0)
4167                 return;
4168
4169         /*
4170          * Toggle all EMR bits to make sure we get an edge
4171          * in the ISR master error bit if we don't clear
4172          * all the EIR bits. Otherwise the edge triggered
4173          * IIR on i965/g4x wouldn't notice that an interrupt
4174          * is still pending. Also some EIR bits can't be
4175          * cleared except by handling the underlying error
4176          * (or by a GPU reset) so we mask any bit that
4177          * remains set.
4178          */
4179         emr = I915_READ16(EMR);
4180         I915_WRITE16(EMR, 0xffff);
4181         I915_WRITE16(EMR, emr | *eir_stuck);
4182 }
4183
4184 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4185                                    u16 eir, u16 eir_stuck)
4186 {
4187         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4188
4189         if (eir_stuck)
4190                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4191 }
4192
4193 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4194                                u32 *eir, u32 *eir_stuck)
4195 {
4196         u32 emr;
4197
4198         *eir = I915_READ(EIR);
4199
4200         I915_WRITE(EIR, *eir);
4201
4202         *eir_stuck = I915_READ(EIR);
4203         if (*eir_stuck == 0)
4204                 return;
4205
4206         /*
4207          * Toggle all EMR bits to make sure we get an edge
4208          * in the ISR master error bit if we don't clear
4209          * all the EIR bits. Otherwise the edge triggered
4210          * IIR on i965/g4x wouldn't notice that an interrupt
4211          * is still pending. Also some EIR bits can't be
4212          * cleared except by handling the underlying error
4213          * (or by a GPU reset) so we mask any bit that
4214          * remains set.
4215          */
4216         emr = I915_READ(EMR);
4217         I915_WRITE(EMR, 0xffffffff);
4218         I915_WRITE(EMR, emr | *eir_stuck);
4219 }
4220
4221 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4222                                    u32 eir, u32 eir_stuck)
4223 {
4224         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4225
4226         if (eir_stuck)
4227                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4228 }
4229
4230 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4231 {
4232         struct drm_device *dev = arg;
4233         struct drm_i915_private *dev_priv = to_i915(dev);
4234         irqreturn_t ret = IRQ_NONE;
4235
4236         if (!intel_irqs_enabled(dev_priv))
4237                 return IRQ_NONE;
4238
4239         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4240         disable_rpm_wakeref_asserts(dev_priv);
4241
4242         do {
4243                 u32 pipe_stats[I915_MAX_PIPES] = {};
4244                 u16 eir = 0, eir_stuck = 0;
4245                 u16 iir;
4246
4247                 iir = I915_READ16(IIR);
4248                 if (iir == 0)
4249                         break;
4250
4251                 ret = IRQ_HANDLED;
4252
4253                 /* Call regardless, as some status bits might not be
4254                  * signalled in iir */
4255                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4256
4257                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4258                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4259
4260                 I915_WRITE16(IIR, iir);
4261
4262                 if (iir & I915_USER_INTERRUPT)
4263                         notify_ring(dev_priv->engine[RCS]);
4264
4265                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4266                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4267
4268                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4269         } while (0);
4270
4271         enable_rpm_wakeref_asserts(dev_priv);
4272
4273         return ret;
4274 }
4275
4276 static void i915_irq_reset(struct drm_device *dev)
4277 {
4278         struct drm_i915_private *dev_priv = to_i915(dev);
4279
4280         if (I915_HAS_HOTPLUG(dev_priv)) {
4281                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4282                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4283         }
4284
4285         i9xx_pipestat_irq_reset(dev_priv);
4286
4287         GEN3_IRQ_RESET();
4288 }
4289
4290 static int i915_irq_postinstall(struct drm_device *dev)
4291 {
4292         struct drm_i915_private *dev_priv = to_i915(dev);
4293         u32 enable_mask;
4294
4295         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4296                           I915_ERROR_MEMORY_REFRESH));
4297
4298         /* Unmask the interrupts that we always want on. */
4299         dev_priv->irq_mask =
4300                 ~(I915_ASLE_INTERRUPT |
4301                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4302                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4303                   I915_MASTER_ERROR_INTERRUPT);
4304
4305         enable_mask =
4306                 I915_ASLE_INTERRUPT |
4307                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4308                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4309                 I915_MASTER_ERROR_INTERRUPT |
4310                 I915_USER_INTERRUPT;
4311
4312         if (I915_HAS_HOTPLUG(dev_priv)) {
4313                 /* Enable in IER... */
4314                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4315                 /* and unmask in IMR */
4316                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4317         }
4318
4319         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4320
4321         /* Interrupt setup is already guaranteed to be single-threaded, this is
4322          * just to make the assert_spin_locked check happy. */
4323         spin_lock_irq(&dev_priv->irq_lock);
4324         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4325         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4326         spin_unlock_irq(&dev_priv->irq_lock);
4327
4328         i915_enable_asle_pipestat(dev_priv);
4329
4330         return 0;
4331 }
4332
4333 static irqreturn_t i915_irq_handler(int irq, void *arg)
4334 {
4335         struct drm_device *dev = arg;
4336         struct drm_i915_private *dev_priv = to_i915(dev);
4337         irqreturn_t ret = IRQ_NONE;
4338
4339         if (!intel_irqs_enabled(dev_priv))
4340                 return IRQ_NONE;
4341
4342         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4343         disable_rpm_wakeref_asserts(dev_priv);
4344
4345         do {
4346                 u32 pipe_stats[I915_MAX_PIPES] = {};
4347                 u32 eir = 0, eir_stuck = 0;
4348                 u32 hotplug_status = 0;
4349                 u32 iir;
4350
4351                 iir = I915_READ(IIR);
4352                 if (iir == 0)
4353                         break;
4354
4355                 ret = IRQ_HANDLED;
4356
4357                 if (I915_HAS_HOTPLUG(dev_priv) &&
4358                     iir & I915_DISPLAY_PORT_INTERRUPT)
4359                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4360
4361                 /* Call regardless, as some status bits might not be
4362                  * signalled in iir */
4363                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4364
4365                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4366                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4367
4368                 I915_WRITE(IIR, iir);
4369
4370                 if (iir & I915_USER_INTERRUPT)
4371                         notify_ring(dev_priv->engine[RCS]);
4372
4373                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4374                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4375
4376                 if (hotplug_status)
4377                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4378
4379                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4380         } while (0);
4381
4382         enable_rpm_wakeref_asserts(dev_priv);
4383
4384         return ret;
4385 }
4386
4387 static void i965_irq_reset(struct drm_device *dev)
4388 {
4389         struct drm_i915_private *dev_priv = to_i915(dev);
4390
4391         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4392         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4393
4394         i9xx_pipestat_irq_reset(dev_priv);
4395
4396         GEN3_IRQ_RESET();
4397 }
4398
4399 static int i965_irq_postinstall(struct drm_device *dev)
4400 {
4401         struct drm_i915_private *dev_priv = to_i915(dev);
4402         u32 enable_mask;
4403         u32 error_mask;
4404
4405         /*
4406          * Enable some error detection, note the instruction error mask
4407          * bit is reserved, so we leave it masked.
4408          */
4409         if (IS_G4X(dev_priv)) {
4410                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4411                                GM45_ERROR_MEM_PRIV |
4412                                GM45_ERROR_CP_PRIV |
4413                                I915_ERROR_MEMORY_REFRESH);
4414         } else {
4415                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4416                                I915_ERROR_MEMORY_REFRESH);
4417         }
4418         I915_WRITE(EMR, error_mask);
4419
4420         /* Unmask the interrupts that we always want on. */
4421         dev_priv->irq_mask =
4422                 ~(I915_ASLE_INTERRUPT |
4423                   I915_DISPLAY_PORT_INTERRUPT |
4424                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4425                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4426                   I915_MASTER_ERROR_INTERRUPT);
4427
4428         enable_mask =
4429                 I915_ASLE_INTERRUPT |
4430                 I915_DISPLAY_PORT_INTERRUPT |
4431                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4432                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4433                 I915_MASTER_ERROR_INTERRUPT |
4434                 I915_USER_INTERRUPT;
4435
4436         if (IS_G4X(dev_priv))
4437                 enable_mask |= I915_BSD_USER_INTERRUPT;
4438
4439         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4440
4441         /* Interrupt setup is already guaranteed to be single-threaded, this is
4442          * just to make the assert_spin_locked check happy. */
4443         spin_lock_irq(&dev_priv->irq_lock);
4444         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4445         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4446         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4447         spin_unlock_irq(&dev_priv->irq_lock);
4448
4449         i915_enable_asle_pipestat(dev_priv);
4450
4451         return 0;
4452 }
4453
4454 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4455 {
4456         u32 hotplug_en;
4457
4458         lockdep_assert_held(&dev_priv->irq_lock);
4459
4460         /* Note HDMI and DP share hotplug bits */
4461         /* enable bits are the same for all generations */
4462         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4463         /* Programming the CRT detection parameters tends
4464            to generate a spurious hotplug event about three
4465            seconds later.  So just do it once.
4466         */
4467         if (IS_G4X(dev_priv))
4468                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4469         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4470
4471         /* Ignore TV since it's buggy */
4472         i915_hotplug_interrupt_update_locked(dev_priv,
4473                                              HOTPLUG_INT_EN_MASK |
4474                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4475                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4476                                              hotplug_en);
4477 }
4478
4479 static irqreturn_t i965_irq_handler(int irq, void *arg)
4480 {
4481         struct drm_device *dev = arg;
4482         struct drm_i915_private *dev_priv = to_i915(dev);
4483         irqreturn_t ret = IRQ_NONE;
4484
4485         if (!intel_irqs_enabled(dev_priv))
4486                 return IRQ_NONE;
4487
4488         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4489         disable_rpm_wakeref_asserts(dev_priv);
4490
4491         do {
4492                 u32 pipe_stats[I915_MAX_PIPES] = {};
4493                 u32 eir = 0, eir_stuck = 0;
4494                 u32 hotplug_status = 0;
4495                 u32 iir;
4496
4497                 iir = I915_READ(IIR);
4498                 if (iir == 0)
4499                         break;
4500
4501                 ret = IRQ_HANDLED;
4502
4503                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4504                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4505
4506                 /* Call regardless, as some status bits might not be
4507                  * signalled in iir */
4508                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4509
4510                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4511                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4512
4513                 I915_WRITE(IIR, iir);
4514
4515                 if (iir & I915_USER_INTERRUPT)
4516                         notify_ring(dev_priv->engine[RCS]);
4517
4518                 if (iir & I915_BSD_USER_INTERRUPT)
4519                         notify_ring(dev_priv->engine[VCS]);
4520
4521                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4522                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4523
4524                 if (hotplug_status)
4525                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4526
4527                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4528         } while (0);
4529
4530         enable_rpm_wakeref_asserts(dev_priv);
4531
4532         return ret;
4533 }
4534
4535 /**
4536  * intel_irq_init - initializes irq support
4537  * @dev_priv: i915 device instance
4538  *
4539  * This function initializes all the irq support including work items, timers
4540  * and all the vtables. It does not setup the interrupt itself though.
4541  */
4542 void intel_irq_init(struct drm_i915_private *dev_priv)
4543 {
4544         struct drm_device *dev = &dev_priv->drm;
4545         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4546         int i;
4547
4548         intel_hpd_init_work(dev_priv);
4549
4550         INIT_WORK(&rps->work, gen6_pm_rps_work);
4551
4552         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4553         for (i = 0; i < MAX_L3_SLICES; ++i)
4554                 dev_priv->l3_parity.remap_info[i] = NULL;
4555
4556         if (HAS_GUC_SCHED(dev_priv))
4557                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4558
4559         /* Let's track the enabled rps events */
4560         if (IS_VALLEYVIEW(dev_priv))
4561                 /* WaGsvRC0ResidencyMethod:vlv */
4562                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4563         else
4564                 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4565                                            GEN6_PM_RP_DOWN_THRESHOLD |
4566                                            GEN6_PM_RP_DOWN_TIMEOUT);
4567
4568         rps->pm_intrmsk_mbz = 0;
4569
4570         /*
4571          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4572          * if GEN6_PM_UP_EI_EXPIRED is masked.
4573          *
4574          * TODO: verify if this can be reproduced on VLV,CHV.
4575          */
4576         if (INTEL_GEN(dev_priv) <= 7)
4577                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4578
4579         if (INTEL_GEN(dev_priv) >= 8)
4580                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4581
4582         if (IS_GEN(dev_priv, 2)) {
4583                 /* Gen2 doesn't have a hardware frame counter */
4584                 dev->max_vblank_count = 0;
4585         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4586                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4587                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4588         } else {
4589                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4590                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4591         }
4592
4593         /*
4594          * Opt out of the vblank disable timer on everything except gen2.
4595          * Gen2 doesn't have a hardware frame counter and so depends on
4596          * vblank interrupts to produce sane vblank seuquence numbers.
4597          */
4598         if (!IS_GEN(dev_priv, 2))
4599                 dev->vblank_disable_immediate = true;
4600
4601         /* Most platforms treat the display irq block as an always-on
4602          * power domain. vlv/chv can disable it at runtime and need
4603          * special care to avoid writing any of the display block registers
4604          * outside of the power domain. We defer setting up the display irqs
4605          * in this case to the runtime pm.
4606          */
4607         dev_priv->display_irqs_enabled = true;
4608         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4609                 dev_priv->display_irqs_enabled = false;
4610
4611         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4612         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4613          * detection, as short HPD storms will occur as a natural part of
4614          * sideband messaging with MST.
4615          * On older platforms however, IRQ storms can occur with both long and
4616          * short pulses, as seen on some G4x systems.
4617          */
4618         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4619
4620         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4621         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4622
4623         if (IS_CHERRYVIEW(dev_priv)) {
4624                 dev->driver->irq_handler = cherryview_irq_handler;
4625                 dev->driver->irq_preinstall = cherryview_irq_reset;
4626                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4627                 dev->driver->irq_uninstall = cherryview_irq_reset;
4628                 dev->driver->enable_vblank = i965_enable_vblank;
4629                 dev->driver->disable_vblank = i965_disable_vblank;
4630                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4631         } else if (IS_VALLEYVIEW(dev_priv)) {
4632                 dev->driver->irq_handler = valleyview_irq_handler;
4633                 dev->driver->irq_preinstall = valleyview_irq_reset;
4634                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4635                 dev->driver->irq_uninstall = valleyview_irq_reset;
4636                 dev->driver->enable_vblank = i965_enable_vblank;
4637                 dev->driver->disable_vblank = i965_disable_vblank;
4638                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4639         } else if (INTEL_GEN(dev_priv) >= 11) {
4640                 dev->driver->irq_handler = gen11_irq_handler;
4641                 dev->driver->irq_preinstall = gen11_irq_reset;
4642                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4643                 dev->driver->irq_uninstall = gen11_irq_reset;
4644                 dev->driver->enable_vblank = gen8_enable_vblank;
4645                 dev->driver->disable_vblank = gen8_disable_vblank;
4646                 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4647         } else if (INTEL_GEN(dev_priv) >= 8) {
4648                 dev->driver->irq_handler = gen8_irq_handler;
4649                 dev->driver->irq_preinstall = gen8_irq_reset;
4650                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4651                 dev->driver->irq_uninstall = gen8_irq_reset;
4652                 dev->driver->enable_vblank = gen8_enable_vblank;
4653                 dev->driver->disable_vblank = gen8_disable_vblank;
4654                 if (IS_GEN9_LP(dev_priv))
4655                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4656                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4657                          HAS_PCH_CNP(dev_priv))
4658                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4659                 else
4660                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4661         } else if (HAS_PCH_SPLIT(dev_priv)) {
4662                 dev->driver->irq_handler = ironlake_irq_handler;
4663                 dev->driver->irq_preinstall = ironlake_irq_reset;
4664                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4665                 dev->driver->irq_uninstall = ironlake_irq_reset;
4666                 dev->driver->enable_vblank = ironlake_enable_vblank;
4667                 dev->driver->disable_vblank = ironlake_disable_vblank;
4668                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4669         } else {
4670                 if (IS_GEN(dev_priv, 2)) {
4671                         dev->driver->irq_preinstall = i8xx_irq_reset;
4672                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4673                         dev->driver->irq_handler = i8xx_irq_handler;
4674                         dev->driver->irq_uninstall = i8xx_irq_reset;
4675                         dev->driver->enable_vblank = i8xx_enable_vblank;
4676                         dev->driver->disable_vblank = i8xx_disable_vblank;
4677                 } else if (IS_GEN(dev_priv, 3)) {
4678                         dev->driver->irq_preinstall = i915_irq_reset;
4679                         dev->driver->irq_postinstall = i915_irq_postinstall;
4680                         dev->driver->irq_uninstall = i915_irq_reset;
4681                         dev->driver->irq_handler = i915_irq_handler;
4682                         dev->driver->enable_vblank = i8xx_enable_vblank;
4683                         dev->driver->disable_vblank = i8xx_disable_vblank;
4684                 } else {
4685                         dev->driver->irq_preinstall = i965_irq_reset;
4686                         dev->driver->irq_postinstall = i965_irq_postinstall;
4687                         dev->driver->irq_uninstall = i965_irq_reset;
4688                         dev->driver->irq_handler = i965_irq_handler;
4689                         dev->driver->enable_vblank = i965_enable_vblank;
4690                         dev->driver->disable_vblank = i965_disable_vblank;
4691                 }
4692                 if (I915_HAS_HOTPLUG(dev_priv))
4693                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4694         }
4695 }
4696
4697 /**
4698  * intel_irq_fini - deinitializes IRQ support
4699  * @i915: i915 device instance
4700  *
4701  * This function deinitializes all the IRQ support.
4702  */
4703 void intel_irq_fini(struct drm_i915_private *i915)
4704 {
4705         int i;
4706
4707         for (i = 0; i < MAX_L3_SLICES; ++i)
4708                 kfree(i915->l3_parity.remap_info[i]);
4709 }
4710
4711 /**
4712  * intel_irq_install - enables the hardware interrupt
4713  * @dev_priv: i915 device instance
4714  *
4715  * This function enables the hardware interrupt handling, but leaves the hotplug
4716  * handling still disabled. It is called after intel_irq_init().
4717  *
4718  * In the driver load and resume code we need working interrupts in a few places
4719  * but don't want to deal with the hassle of concurrent probe and hotplug
4720  * workers. Hence the split into this two-stage approach.
4721  */
4722 int intel_irq_install(struct drm_i915_private *dev_priv)
4723 {
4724         /*
4725          * We enable some interrupt sources in our postinstall hooks, so mark
4726          * interrupts as enabled _before_ actually enabling them to avoid
4727          * special cases in our ordering checks.
4728          */
4729         dev_priv->runtime_pm.irqs_enabled = true;
4730
4731         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4732 }
4733
4734 /**
4735  * intel_irq_uninstall - finilizes all irq handling
4736  * @dev_priv: i915 device instance
4737  *
4738  * This stops interrupt and hotplug handling and unregisters and frees all
4739  * resources acquired in the init functions.
4740  */
4741 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4742 {
4743         drm_irq_uninstall(&dev_priv->drm);
4744         intel_hpd_cancel_work(dev_priv);
4745         dev_priv->runtime_pm.irqs_enabled = false;
4746 }
4747
4748 /**
4749  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4750  * @dev_priv: i915 device instance
4751  *
4752  * This function is used to disable interrupts at runtime, both in the runtime
4753  * pm and the system suspend/resume code.
4754  */
4755 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4756 {
4757         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4758         dev_priv->runtime_pm.irqs_enabled = false;
4759         synchronize_irq(dev_priv->drm.irq);
4760 }
4761
4762 /**
4763  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4764  * @dev_priv: i915 device instance
4765  *
4766  * This function is used to enable interrupts at runtime, both in the runtime
4767  * pm and the system suspend/resume code.
4768  */
4769 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4770 {
4771         dev_priv->runtime_pm.irqs_enabled = true;
4772         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4773         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4774 }