drm/i915/icl: GSE interrupt moves from DE_MISC to GU_MISC
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN3_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 #define GEN2_IRQ_RESET(type) do { \
140         I915_WRITE16(type##IMR, 0xffff); \
141         POSTING_READ16(type##IMR); \
142         I915_WRITE16(type##IER, 0); \
143         I915_WRITE16(type##IIR, 0xffff); \
144         POSTING_READ16(type##IIR); \
145         I915_WRITE16(type##IIR, 0xffff); \
146         POSTING_READ16(type##IIR); \
147 } while (0)
148
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153                                     i915_reg_t reg)
154 {
155         u32 val = I915_READ(reg);
156
157         if (val == 0)
158                 return;
159
160         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161              i915_mmio_reg_offset(reg), val);
162         I915_WRITE(reg, 0xffffffff);
163         POSTING_READ(reg);
164         I915_WRITE(reg, 0xffffffff);
165         POSTING_READ(reg);
166 }
167
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u16 val = I915_READ16(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE16(reg, 0xffff);
179         POSTING_READ16(reg);
180         I915_WRITE16(reg, 0xffff);
181         POSTING_READ16(reg);
182 }
183
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188         POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193         I915_WRITE(type##IER, (ier_val)); \
194         I915_WRITE(type##IMR, (imr_val)); \
195         POSTING_READ(type##IMR); \
196 } while (0)
197
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200         I915_WRITE16(type##IER, (ier_val)); \
201         I915_WRITE16(type##IMR, (imr_val)); \
202         POSTING_READ16(type##IMR); \
203 } while (0)
204
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211                                      uint32_t mask,
212                                      uint32_t bits)
213 {
214         uint32_t val;
215
216         lockdep_assert_held(&dev_priv->irq_lock);
217         WARN_ON(bits & ~mask);
218
219         val = I915_READ(PORT_HOTPLUG_EN);
220         val &= ~mask;
221         val |= bits;
222         I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238                                    uint32_t mask,
239                                    uint32_t bits)
240 {
241         spin_lock_irq(&dev_priv->irq_lock);
242         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243         spin_unlock_irq(&dev_priv->irq_lock);
244 }
245
246 static u32
247 gen11_gt_engine_identity(struct drm_i915_private * const i915,
248                          const unsigned int bank, const unsigned int bit);
249
250 bool gen11_reset_one_iir(struct drm_i915_private * const i915,
251                          const unsigned int bank,
252                          const unsigned int bit)
253 {
254         void __iomem * const regs = i915->regs;
255         u32 dw;
256
257         lockdep_assert_held(&i915->irq_lock);
258
259         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
260         if (dw & BIT(bit)) {
261                 /*
262                  * According to the BSpec, DW_IIR bits cannot be cleared without
263                  * first servicing the Selector & Shared IIR registers.
264                  */
265                 gen11_gt_engine_identity(i915, bank, bit);
266
267                 /*
268                  * We locked GT INT DW by reading it. If we want to (try
269                  * to) recover from this succesfully, we need to clear
270                  * our bit, otherwise we are locking the register for
271                  * everybody.
272                  */
273                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
274
275                 return true;
276         }
277
278         return false;
279 }
280
281 /**
282  * ilk_update_display_irq - update DEIMR
283  * @dev_priv: driver private
284  * @interrupt_mask: mask of interrupt bits to update
285  * @enabled_irq_mask: mask of interrupt bits to enable
286  */
287 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
288                             uint32_t interrupt_mask,
289                             uint32_t enabled_irq_mask)
290 {
291         uint32_t new_val;
292
293         lockdep_assert_held(&dev_priv->irq_lock);
294
295         WARN_ON(enabled_irq_mask & ~interrupt_mask);
296
297         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
298                 return;
299
300         new_val = dev_priv->irq_mask;
301         new_val &= ~interrupt_mask;
302         new_val |= (~enabled_irq_mask & interrupt_mask);
303
304         if (new_val != dev_priv->irq_mask) {
305                 dev_priv->irq_mask = new_val;
306                 I915_WRITE(DEIMR, dev_priv->irq_mask);
307                 POSTING_READ(DEIMR);
308         }
309 }
310
311 /**
312  * ilk_update_gt_irq - update GTIMR
313  * @dev_priv: driver private
314  * @interrupt_mask: mask of interrupt bits to update
315  * @enabled_irq_mask: mask of interrupt bits to enable
316  */
317 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
318                               uint32_t interrupt_mask,
319                               uint32_t enabled_irq_mask)
320 {
321         lockdep_assert_held(&dev_priv->irq_lock);
322
323         WARN_ON(enabled_irq_mask & ~interrupt_mask);
324
325         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
326                 return;
327
328         dev_priv->gt_irq_mask &= ~interrupt_mask;
329         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
330         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
331 }
332
333 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
334 {
335         ilk_update_gt_irq(dev_priv, mask, mask);
336         POSTING_READ_FW(GTIMR);
337 }
338
339 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
340 {
341         ilk_update_gt_irq(dev_priv, mask, 0);
342 }
343
344 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
345 {
346         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
347
348         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
349 }
350
351 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
352 {
353         if (INTEL_GEN(dev_priv) >= 11)
354                 return GEN11_GPM_WGBOXPERF_INTR_MASK;
355         else if (INTEL_GEN(dev_priv) >= 8)
356                 return GEN8_GT_IMR(2);
357         else
358                 return GEN6_PMIMR;
359 }
360
361 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
362 {
363         if (INTEL_GEN(dev_priv) >= 11)
364                 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
365         else if (INTEL_GEN(dev_priv) >= 8)
366                 return GEN8_GT_IER(2);
367         else
368                 return GEN6_PMIER;
369 }
370
371 /**
372  * snb_update_pm_irq - update GEN6_PMIMR
373  * @dev_priv: driver private
374  * @interrupt_mask: mask of interrupt bits to update
375  * @enabled_irq_mask: mask of interrupt bits to enable
376  */
377 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
378                               uint32_t interrupt_mask,
379                               uint32_t enabled_irq_mask)
380 {
381         uint32_t new_val;
382
383         WARN_ON(enabled_irq_mask & ~interrupt_mask);
384
385         lockdep_assert_held(&dev_priv->irq_lock);
386
387         new_val = dev_priv->pm_imr;
388         new_val &= ~interrupt_mask;
389         new_val |= (~enabled_irq_mask & interrupt_mask);
390
391         if (new_val != dev_priv->pm_imr) {
392                 dev_priv->pm_imr = new_val;
393                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
394                 POSTING_READ(gen6_pm_imr(dev_priv));
395         }
396 }
397
398 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
399 {
400         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
401                 return;
402
403         snb_update_pm_irq(dev_priv, mask, mask);
404 }
405
406 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
407 {
408         snb_update_pm_irq(dev_priv, mask, 0);
409 }
410
411 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
412 {
413         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
414                 return;
415
416         __gen6_mask_pm_irq(dev_priv, mask);
417 }
418
419 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
420 {
421         i915_reg_t reg = gen6_pm_iir(dev_priv);
422
423         lockdep_assert_held(&dev_priv->irq_lock);
424
425         I915_WRITE(reg, reset_mask);
426         I915_WRITE(reg, reset_mask);
427         POSTING_READ(reg);
428 }
429
430 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
431 {
432         lockdep_assert_held(&dev_priv->irq_lock);
433
434         dev_priv->pm_ier |= enable_mask;
435         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
436         gen6_unmask_pm_irq(dev_priv, enable_mask);
437         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
438 }
439
440 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
441 {
442         lockdep_assert_held(&dev_priv->irq_lock);
443
444         dev_priv->pm_ier &= ~disable_mask;
445         __gen6_mask_pm_irq(dev_priv, disable_mask);
446         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
447         /* though a barrier is missing here, but don't really need a one */
448 }
449
450 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
451 {
452         spin_lock_irq(&dev_priv->irq_lock);
453
454         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
455                 ;
456
457         dev_priv->gt_pm.rps.pm_iir = 0;
458
459         spin_unlock_irq(&dev_priv->irq_lock);
460 }
461
462 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
463 {
464         spin_lock_irq(&dev_priv->irq_lock);
465         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
466         dev_priv->gt_pm.rps.pm_iir = 0;
467         spin_unlock_irq(&dev_priv->irq_lock);
468 }
469
470 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
471 {
472         struct intel_rps *rps = &dev_priv->gt_pm.rps;
473
474         if (READ_ONCE(rps->interrupts_enabled))
475                 return;
476
477         spin_lock_irq(&dev_priv->irq_lock);
478         WARN_ON_ONCE(rps->pm_iir);
479
480         if (INTEL_GEN(dev_priv) >= 11)
481                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
482         else
483                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
484
485         rps->interrupts_enabled = true;
486         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
487
488         spin_unlock_irq(&dev_priv->irq_lock);
489 }
490
491 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
492 {
493         struct intel_rps *rps = &dev_priv->gt_pm.rps;
494
495         if (!READ_ONCE(rps->interrupts_enabled))
496                 return;
497
498         spin_lock_irq(&dev_priv->irq_lock);
499         rps->interrupts_enabled = false;
500
501         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
502
503         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
504
505         spin_unlock_irq(&dev_priv->irq_lock);
506         synchronize_irq(dev_priv->drm.irq);
507
508         /* Now that we will not be generating any more work, flush any
509          * outstanding tasks. As we are called on the RPS idle path,
510          * we will reset the GPU to minimum frequencies, so the current
511          * state of the worker can be discarded.
512          */
513         cancel_work_sync(&rps->work);
514         if (INTEL_GEN(dev_priv) >= 11)
515                 gen11_reset_rps_interrupts(dev_priv);
516         else
517                 gen6_reset_rps_interrupts(dev_priv);
518 }
519
520 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
521 {
522         assert_rpm_wakelock_held(dev_priv);
523
524         spin_lock_irq(&dev_priv->irq_lock);
525         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
526         spin_unlock_irq(&dev_priv->irq_lock);
527 }
528
529 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
530 {
531         assert_rpm_wakelock_held(dev_priv);
532
533         spin_lock_irq(&dev_priv->irq_lock);
534         if (!dev_priv->guc.interrupts_enabled) {
535                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
536                                        dev_priv->pm_guc_events);
537                 dev_priv->guc.interrupts_enabled = true;
538                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
539         }
540         spin_unlock_irq(&dev_priv->irq_lock);
541 }
542
543 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
544 {
545         assert_rpm_wakelock_held(dev_priv);
546
547         spin_lock_irq(&dev_priv->irq_lock);
548         dev_priv->guc.interrupts_enabled = false;
549
550         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
551
552         spin_unlock_irq(&dev_priv->irq_lock);
553         synchronize_irq(dev_priv->drm.irq);
554
555         gen9_reset_guc_interrupts(dev_priv);
556 }
557
558 /**
559  * bdw_update_port_irq - update DE port interrupt
560  * @dev_priv: driver private
561  * @interrupt_mask: mask of interrupt bits to update
562  * @enabled_irq_mask: mask of interrupt bits to enable
563  */
564 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
565                                 uint32_t interrupt_mask,
566                                 uint32_t enabled_irq_mask)
567 {
568         uint32_t new_val;
569         uint32_t old_val;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572
573         WARN_ON(enabled_irq_mask & ~interrupt_mask);
574
575         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
576                 return;
577
578         old_val = I915_READ(GEN8_DE_PORT_IMR);
579
580         new_val = old_val;
581         new_val &= ~interrupt_mask;
582         new_val |= (~enabled_irq_mask & interrupt_mask);
583
584         if (new_val != old_val) {
585                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
586                 POSTING_READ(GEN8_DE_PORT_IMR);
587         }
588 }
589
590 /**
591  * bdw_update_pipe_irq - update DE pipe interrupt
592  * @dev_priv: driver private
593  * @pipe: pipe whose interrupt to update
594  * @interrupt_mask: mask of interrupt bits to update
595  * @enabled_irq_mask: mask of interrupt bits to enable
596  */
597 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
598                          enum pipe pipe,
599                          uint32_t interrupt_mask,
600                          uint32_t enabled_irq_mask)
601 {
602         uint32_t new_val;
603
604         lockdep_assert_held(&dev_priv->irq_lock);
605
606         WARN_ON(enabled_irq_mask & ~interrupt_mask);
607
608         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
609                 return;
610
611         new_val = dev_priv->de_irq_mask[pipe];
612         new_val &= ~interrupt_mask;
613         new_val |= (~enabled_irq_mask & interrupt_mask);
614
615         if (new_val != dev_priv->de_irq_mask[pipe]) {
616                 dev_priv->de_irq_mask[pipe] = new_val;
617                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
618                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
619         }
620 }
621
622 /**
623  * ibx_display_interrupt_update - update SDEIMR
624  * @dev_priv: driver private
625  * @interrupt_mask: mask of interrupt bits to update
626  * @enabled_irq_mask: mask of interrupt bits to enable
627  */
628 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
629                                   uint32_t interrupt_mask,
630                                   uint32_t enabled_irq_mask)
631 {
632         uint32_t sdeimr = I915_READ(SDEIMR);
633         sdeimr &= ~interrupt_mask;
634         sdeimr |= (~enabled_irq_mask & interrupt_mask);
635
636         WARN_ON(enabled_irq_mask & ~interrupt_mask);
637
638         lockdep_assert_held(&dev_priv->irq_lock);
639
640         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
641                 return;
642
643         I915_WRITE(SDEIMR, sdeimr);
644         POSTING_READ(SDEIMR);
645 }
646
647 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
648                               enum pipe pipe)
649 {
650         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
651         u32 enable_mask = status_mask << 16;
652
653         lockdep_assert_held(&dev_priv->irq_lock);
654
655         if (INTEL_GEN(dev_priv) < 5)
656                 goto out;
657
658         /*
659          * On pipe A we don't support the PSR interrupt yet,
660          * on pipe B and C the same bit MBZ.
661          */
662         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
663                 return 0;
664         /*
665          * On pipe B and C we don't support the PSR interrupt yet, on pipe
666          * A the same bit is for perf counters which we don't use either.
667          */
668         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
669                 return 0;
670
671         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
672                          SPRITE0_FLIP_DONE_INT_EN_VLV |
673                          SPRITE1_FLIP_DONE_INT_EN_VLV);
674         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
675                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
676         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
677                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
678
679 out:
680         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
681                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
682                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
683                   pipe_name(pipe), enable_mask, status_mask);
684
685         return enable_mask;
686 }
687
688 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
689                           enum pipe pipe, u32 status_mask)
690 {
691         i915_reg_t reg = PIPESTAT(pipe);
692         u32 enable_mask;
693
694         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
695                   "pipe %c: status_mask=0x%x\n",
696                   pipe_name(pipe), status_mask);
697
698         lockdep_assert_held(&dev_priv->irq_lock);
699         WARN_ON(!intel_irqs_enabled(dev_priv));
700
701         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
702                 return;
703
704         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
705         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
706
707         I915_WRITE(reg, enable_mask | status_mask);
708         POSTING_READ(reg);
709 }
710
711 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
712                            enum pipe pipe, u32 status_mask)
713 {
714         i915_reg_t reg = PIPESTAT(pipe);
715         u32 enable_mask;
716
717         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
718                   "pipe %c: status_mask=0x%x\n",
719                   pipe_name(pipe), status_mask);
720
721         lockdep_assert_held(&dev_priv->irq_lock);
722         WARN_ON(!intel_irqs_enabled(dev_priv));
723
724         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
725                 return;
726
727         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
728         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
729
730         I915_WRITE(reg, enable_mask | status_mask);
731         POSTING_READ(reg);
732 }
733
734 /**
735  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
736  * @dev_priv: i915 device private
737  */
738 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
739 {
740         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
741                 return;
742
743         spin_lock_irq(&dev_priv->irq_lock);
744
745         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
746         if (INTEL_GEN(dev_priv) >= 4)
747                 i915_enable_pipestat(dev_priv, PIPE_A,
748                                      PIPE_LEGACY_BLC_EVENT_STATUS);
749
750         spin_unlock_irq(&dev_priv->irq_lock);
751 }
752
753 /*
754  * This timing diagram depicts the video signal in and
755  * around the vertical blanking period.
756  *
757  * Assumptions about the fictitious mode used in this example:
758  *  vblank_start >= 3
759  *  vsync_start = vblank_start + 1
760  *  vsync_end = vblank_start + 2
761  *  vtotal = vblank_start + 3
762  *
763  *           start of vblank:
764  *           latch double buffered registers
765  *           increment frame counter (ctg+)
766  *           generate start of vblank interrupt (gen4+)
767  *           |
768  *           |          frame start:
769  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
770  *           |          may be shifted forward 1-3 extra lines via PIPECONF
771  *           |          |
772  *           |          |  start of vsync:
773  *           |          |  generate vsync interrupt
774  *           |          |  |
775  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
776  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
777  * ----va---> <-----------------vb--------------------> <--------va-------------
778  *       |          |       <----vs----->                     |
779  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
780  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
781  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
782  *       |          |                                         |
783  *       last visible pixel                                   first visible pixel
784  *                  |                                         increment frame counter (gen3/4)
785  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
786  *
787  * x  = horizontal active
788  * _  = horizontal blanking
789  * hs = horizontal sync
790  * va = vertical active
791  * vb = vertical blanking
792  * vs = vertical sync
793  * vbs = vblank_start (number)
794  *
795  * Summary:
796  * - most events happen at the start of horizontal sync
797  * - frame start happens at the start of horizontal blank, 1-4 lines
798  *   (depending on PIPECONF settings) after the start of vblank
799  * - gen3/4 pixel and frame counter are synchronized with the start
800  *   of horizontal active on the first line of vertical active
801  */
802
803 /* Called from drm generic code, passed a 'crtc', which
804  * we use as a pipe index
805  */
806 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
807 {
808         struct drm_i915_private *dev_priv = to_i915(dev);
809         i915_reg_t high_frame, low_frame;
810         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
811         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
812         unsigned long irqflags;
813
814         htotal = mode->crtc_htotal;
815         hsync_start = mode->crtc_hsync_start;
816         vbl_start = mode->crtc_vblank_start;
817         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
818                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819
820         /* Convert to pixel count */
821         vbl_start *= htotal;
822
823         /* Start of vblank event occurs at start of hsync */
824         vbl_start -= htotal - hsync_start;
825
826         high_frame = PIPEFRAME(pipe);
827         low_frame = PIPEFRAMEPIXEL(pipe);
828
829         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
830
831         /*
832          * High & low register fields aren't synchronized, so make sure
833          * we get a low value that's stable across two reads of the high
834          * register.
835          */
836         do {
837                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
838                 low   = I915_READ_FW(low_frame);
839                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
840         } while (high1 != high2);
841
842         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
843
844         high1 >>= PIPE_FRAME_HIGH_SHIFT;
845         pixel = low & PIPE_PIXEL_MASK;
846         low >>= PIPE_FRAME_LOW_SHIFT;
847
848         /*
849          * The frame counter increments at beginning of active.
850          * Cook up a vblank counter by also checking the pixel
851          * counter against vblank start.
852          */
853         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
854 }
855
856 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
857 {
858         struct drm_i915_private *dev_priv = to_i915(dev);
859
860         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
861 }
862
863 /*
864  * On certain encoders on certain platforms, pipe
865  * scanline register will not work to get the scanline,
866  * since the timings are driven from the PORT or issues
867  * with scanline register updates.
868  * This function will use Framestamp and current
869  * timestamp registers to calculate the scanline.
870  */
871 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
872 {
873         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
874         struct drm_vblank_crtc *vblank =
875                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
876         const struct drm_display_mode *mode = &vblank->hwmode;
877         u32 vblank_start = mode->crtc_vblank_start;
878         u32 vtotal = mode->crtc_vtotal;
879         u32 htotal = mode->crtc_htotal;
880         u32 clock = mode->crtc_clock;
881         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
882
883         /*
884          * To avoid the race condition where we might cross into the
885          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
886          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
887          * during the same frame.
888          */
889         do {
890                 /*
891                  * This field provides read back of the display
892                  * pipe frame time stamp. The time stamp value
893                  * is sampled at every start of vertical blank.
894                  */
895                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
896
897                 /*
898                  * The TIMESTAMP_CTR register has the current
899                  * time stamp value.
900                  */
901                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
902
903                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
904         } while (scan_post_time != scan_prev_time);
905
906         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
907                                         clock), 1000 * htotal);
908         scanline = min(scanline, vtotal - 1);
909         scanline = (scanline + vblank_start) % vtotal;
910
911         return scanline;
912 }
913
914 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
915 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917         struct drm_device *dev = crtc->base.dev;
918         struct drm_i915_private *dev_priv = to_i915(dev);
919         const struct drm_display_mode *mode;
920         struct drm_vblank_crtc *vblank;
921         enum pipe pipe = crtc->pipe;
922         int position, vtotal;
923
924         if (!crtc->active)
925                 return -1;
926
927         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
928         mode = &vblank->hwmode;
929
930         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
931                 return __intel_get_crtc_scanline_from_timestamp(crtc);
932
933         vtotal = mode->crtc_vtotal;
934         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
935                 vtotal /= 2;
936
937         if (IS_GEN2(dev_priv))
938                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
939         else
940                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
941
942         /*
943          * On HSW, the DSL reg (0x70000) appears to return 0 if we
944          * read it just before the start of vblank.  So try it again
945          * so we don't accidentally end up spanning a vblank frame
946          * increment, causing the pipe_update_end() code to squak at us.
947          *
948          * The nature of this problem means we can't simply check the ISR
949          * bit and return the vblank start value; nor can we use the scanline
950          * debug register in the transcoder as it appears to have the same
951          * problem.  We may need to extend this to include other platforms,
952          * but so far testing only shows the problem on HSW.
953          */
954         if (HAS_DDI(dev_priv) && !position) {
955                 int i, temp;
956
957                 for (i = 0; i < 100; i++) {
958                         udelay(1);
959                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
960                         if (temp != position) {
961                                 position = temp;
962                                 break;
963                         }
964                 }
965         }
966
967         /*
968          * See update_scanline_offset() for the details on the
969          * scanline_offset adjustment.
970          */
971         return (position + crtc->scanline_offset) % vtotal;
972 }
973
974 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
975                                      bool in_vblank_irq, int *vpos, int *hpos,
976                                      ktime_t *stime, ktime_t *etime,
977                                      const struct drm_display_mode *mode)
978 {
979         struct drm_i915_private *dev_priv = to_i915(dev);
980         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
981                                                                 pipe);
982         int position;
983         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
984         unsigned long irqflags;
985
986         if (WARN_ON(!mode->crtc_clock)) {
987                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
988                                  "pipe %c\n", pipe_name(pipe));
989                 return false;
990         }
991
992         htotal = mode->crtc_htotal;
993         hsync_start = mode->crtc_hsync_start;
994         vtotal = mode->crtc_vtotal;
995         vbl_start = mode->crtc_vblank_start;
996         vbl_end = mode->crtc_vblank_end;
997
998         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
999                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1000                 vbl_end /= 2;
1001                 vtotal /= 2;
1002         }
1003
1004         /*
1005          * Lock uncore.lock, as we will do multiple timing critical raw
1006          * register reads, potentially with preemption disabled, so the
1007          * following code must not block on uncore.lock.
1008          */
1009         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1010
1011         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1012
1013         /* Get optional system timestamp before query. */
1014         if (stime)
1015                 *stime = ktime_get();
1016
1017         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1018                 /* No obvious pixelcount register. Only query vertical
1019                  * scanout position from Display scan line register.
1020                  */
1021                 position = __intel_get_crtc_scanline(intel_crtc);
1022         } else {
1023                 /* Have access to pixelcount since start of frame.
1024                  * We can split this into vertical and horizontal
1025                  * scanout position.
1026                  */
1027                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1028
1029                 /* convert to pixel counts */
1030                 vbl_start *= htotal;
1031                 vbl_end *= htotal;
1032                 vtotal *= htotal;
1033
1034                 /*
1035                  * In interlaced modes, the pixel counter counts all pixels,
1036                  * so one field will have htotal more pixels. In order to avoid
1037                  * the reported position from jumping backwards when the pixel
1038                  * counter is beyond the length of the shorter field, just
1039                  * clamp the position the length of the shorter field. This
1040                  * matches how the scanline counter based position works since
1041                  * the scanline counter doesn't count the two half lines.
1042                  */
1043                 if (position >= vtotal)
1044                         position = vtotal - 1;
1045
1046                 /*
1047                  * Start of vblank interrupt is triggered at start of hsync,
1048                  * just prior to the first active line of vblank. However we
1049                  * consider lines to start at the leading edge of horizontal
1050                  * active. So, should we get here before we've crossed into
1051                  * the horizontal active of the first line in vblank, we would
1052                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1053                  * always add htotal-hsync_start to the current pixel position.
1054                  */
1055                 position = (position + htotal - hsync_start) % vtotal;
1056         }
1057
1058         /* Get optional system timestamp after query. */
1059         if (etime)
1060                 *etime = ktime_get();
1061
1062         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1063
1064         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1065
1066         /*
1067          * While in vblank, position will be negative
1068          * counting up towards 0 at vbl_end. And outside
1069          * vblank, position will be positive counting
1070          * up since vbl_end.
1071          */
1072         if (position >= vbl_start)
1073                 position -= vbl_end;
1074         else
1075                 position += vtotal - vbl_end;
1076
1077         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1078                 *vpos = position;
1079                 *hpos = 0;
1080         } else {
1081                 *vpos = position / htotal;
1082                 *hpos = position - (*vpos * htotal);
1083         }
1084
1085         return true;
1086 }
1087
1088 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1089 {
1090         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091         unsigned long irqflags;
1092         int position;
1093
1094         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1095         position = __intel_get_crtc_scanline(crtc);
1096         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1097
1098         return position;
1099 }
1100
1101 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1102 {
1103         u32 busy_up, busy_down, max_avg, min_avg;
1104         u8 new_delay;
1105
1106         spin_lock(&mchdev_lock);
1107
1108         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1109
1110         new_delay = dev_priv->ips.cur_delay;
1111
1112         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1113         busy_up = I915_READ(RCPREVBSYTUPAVG);
1114         busy_down = I915_READ(RCPREVBSYTDNAVG);
1115         max_avg = I915_READ(RCBMAXAVG);
1116         min_avg = I915_READ(RCBMINAVG);
1117
1118         /* Handle RCS change request from hw */
1119         if (busy_up > max_avg) {
1120                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1121                         new_delay = dev_priv->ips.cur_delay - 1;
1122                 if (new_delay < dev_priv->ips.max_delay)
1123                         new_delay = dev_priv->ips.max_delay;
1124         } else if (busy_down < min_avg) {
1125                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1126                         new_delay = dev_priv->ips.cur_delay + 1;
1127                 if (new_delay > dev_priv->ips.min_delay)
1128                         new_delay = dev_priv->ips.min_delay;
1129         }
1130
1131         if (ironlake_set_drps(dev_priv, new_delay))
1132                 dev_priv->ips.cur_delay = new_delay;
1133
1134         spin_unlock(&mchdev_lock);
1135
1136         return;
1137 }
1138
1139 static void notify_ring(struct intel_engine_cs *engine)
1140 {
1141         struct i915_request *rq = NULL;
1142         struct intel_wait *wait;
1143
1144         if (!engine->breadcrumbs.irq_armed)
1145                 return;
1146
1147         atomic_inc(&engine->irq_count);
1148         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1149
1150         spin_lock(&engine->breadcrumbs.irq_lock);
1151         wait = engine->breadcrumbs.irq_wait;
1152         if (wait) {
1153                 bool wakeup = engine->irq_seqno_barrier;
1154
1155                 /* We use a callback from the dma-fence to submit
1156                  * requests after waiting on our own requests. To
1157                  * ensure minimum delay in queuing the next request to
1158                  * hardware, signal the fence now rather than wait for
1159                  * the signaler to be woken up. We still wake up the
1160                  * waiter in order to handle the irq-seqno coherency
1161                  * issues (we may receive the interrupt before the
1162                  * seqno is written, see __i915_request_irq_complete())
1163                  * and to handle coalescing of multiple seqno updates
1164                  * and many waiters.
1165                  */
1166                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1167                                       wait->seqno)) {
1168                         struct i915_request *waiter = wait->request;
1169
1170                         wakeup = true;
1171                         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1172                                       &waiter->fence.flags) &&
1173                             intel_wait_check_request(wait, waiter))
1174                                 rq = i915_request_get(waiter);
1175                 }
1176
1177                 if (wakeup)
1178                         wake_up_process(wait->tsk);
1179         } else {
1180                 if (engine->breadcrumbs.irq_armed)
1181                         __intel_engine_disarm_breadcrumbs(engine);
1182         }
1183         spin_unlock(&engine->breadcrumbs.irq_lock);
1184
1185         if (rq) {
1186                 dma_fence_signal(&rq->fence);
1187                 GEM_BUG_ON(!i915_request_completed(rq));
1188                 i915_request_put(rq);
1189         }
1190
1191         trace_intel_engine_notify(engine, wait);
1192 }
1193
1194 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1195                         struct intel_rps_ei *ei)
1196 {
1197         ei->ktime = ktime_get_raw();
1198         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1199         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1200 }
1201
1202 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1203 {
1204         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1205 }
1206
1207 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1208 {
1209         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1210         const struct intel_rps_ei *prev = &rps->ei;
1211         struct intel_rps_ei now;
1212         u32 events = 0;
1213
1214         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1215                 return 0;
1216
1217         vlv_c0_read(dev_priv, &now);
1218
1219         if (prev->ktime) {
1220                 u64 time, c0;
1221                 u32 render, media;
1222
1223                 time = ktime_us_delta(now.ktime, prev->ktime);
1224
1225                 time *= dev_priv->czclk_freq;
1226
1227                 /* Workload can be split between render + media,
1228                  * e.g. SwapBuffers being blitted in X after being rendered in
1229                  * mesa. To account for this we need to combine both engines
1230                  * into our activity counter.
1231                  */
1232                 render = now.render_c0 - prev->render_c0;
1233                 media = now.media_c0 - prev->media_c0;
1234                 c0 = max(render, media);
1235                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1236
1237                 if (c0 > time * rps->up_threshold)
1238                         events = GEN6_PM_RP_UP_THRESHOLD;
1239                 else if (c0 < time * rps->down_threshold)
1240                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1241         }
1242
1243         rps->ei = now;
1244         return events;
1245 }
1246
1247 static void gen6_pm_rps_work(struct work_struct *work)
1248 {
1249         struct drm_i915_private *dev_priv =
1250                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1251         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1252         bool client_boost = false;
1253         int new_delay, adj, min, max;
1254         u32 pm_iir = 0;
1255
1256         spin_lock_irq(&dev_priv->irq_lock);
1257         if (rps->interrupts_enabled) {
1258                 pm_iir = fetch_and_zero(&rps->pm_iir);
1259                 client_boost = atomic_read(&rps->num_waiters);
1260         }
1261         spin_unlock_irq(&dev_priv->irq_lock);
1262
1263         /* Make sure we didn't queue anything we're not going to process. */
1264         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1265         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1266                 goto out;
1267
1268         mutex_lock(&dev_priv->pcu_lock);
1269
1270         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1271
1272         adj = rps->last_adj;
1273         new_delay = rps->cur_freq;
1274         min = rps->min_freq_softlimit;
1275         max = rps->max_freq_softlimit;
1276         if (client_boost)
1277                 max = rps->max_freq;
1278         if (client_boost && new_delay < rps->boost_freq) {
1279                 new_delay = rps->boost_freq;
1280                 adj = 0;
1281         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1282                 if (adj > 0)
1283                         adj *= 2;
1284                 else /* CHV needs even encode values */
1285                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1286
1287                 if (new_delay >= rps->max_freq_softlimit)
1288                         adj = 0;
1289         } else if (client_boost) {
1290                 adj = 0;
1291         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1292                 if (rps->cur_freq > rps->efficient_freq)
1293                         new_delay = rps->efficient_freq;
1294                 else if (rps->cur_freq > rps->min_freq_softlimit)
1295                         new_delay = rps->min_freq_softlimit;
1296                 adj = 0;
1297         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1298                 if (adj < 0)
1299                         adj *= 2;
1300                 else /* CHV needs even encode values */
1301                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1302
1303                 if (new_delay <= rps->min_freq_softlimit)
1304                         adj = 0;
1305         } else { /* unknown event */
1306                 adj = 0;
1307         }
1308
1309         rps->last_adj = adj;
1310
1311         /* sysfs frequency interfaces may have snuck in while servicing the
1312          * interrupt
1313          */
1314         new_delay += adj;
1315         new_delay = clamp_t(int, new_delay, min, max);
1316
1317         if (intel_set_rps(dev_priv, new_delay)) {
1318                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1319                 rps->last_adj = 0;
1320         }
1321
1322         mutex_unlock(&dev_priv->pcu_lock);
1323
1324 out:
1325         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1326         spin_lock_irq(&dev_priv->irq_lock);
1327         if (rps->interrupts_enabled)
1328                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1329         spin_unlock_irq(&dev_priv->irq_lock);
1330 }
1331
1332
1333 /**
1334  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1335  * occurred.
1336  * @work: workqueue struct
1337  *
1338  * Doesn't actually do anything except notify userspace. As a consequence of
1339  * this event, userspace should try to remap the bad rows since statistically
1340  * it is likely the same row is more likely to go bad again.
1341  */
1342 static void ivybridge_parity_work(struct work_struct *work)
1343 {
1344         struct drm_i915_private *dev_priv =
1345                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1346         u32 error_status, row, bank, subbank;
1347         char *parity_event[6];
1348         uint32_t misccpctl;
1349         uint8_t slice = 0;
1350
1351         /* We must turn off DOP level clock gating to access the L3 registers.
1352          * In order to prevent a get/put style interface, acquire struct mutex
1353          * any time we access those registers.
1354          */
1355         mutex_lock(&dev_priv->drm.struct_mutex);
1356
1357         /* If we've screwed up tracking, just let the interrupt fire again */
1358         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1359                 goto out;
1360
1361         misccpctl = I915_READ(GEN7_MISCCPCTL);
1362         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1363         POSTING_READ(GEN7_MISCCPCTL);
1364
1365         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1366                 i915_reg_t reg;
1367
1368                 slice--;
1369                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1370                         break;
1371
1372                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1373
1374                 reg = GEN7_L3CDERRST1(slice);
1375
1376                 error_status = I915_READ(reg);
1377                 row = GEN7_PARITY_ERROR_ROW(error_status);
1378                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1379                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1380
1381                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1382                 POSTING_READ(reg);
1383
1384                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1385                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1386                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1387                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1388                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1389                 parity_event[5] = NULL;
1390
1391                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1392                                    KOBJ_CHANGE, parity_event);
1393
1394                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1395                           slice, row, bank, subbank);
1396
1397                 kfree(parity_event[4]);
1398                 kfree(parity_event[3]);
1399                 kfree(parity_event[2]);
1400                 kfree(parity_event[1]);
1401         }
1402
1403         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1404
1405 out:
1406         WARN_ON(dev_priv->l3_parity.which_slice);
1407         spin_lock_irq(&dev_priv->irq_lock);
1408         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1409         spin_unlock_irq(&dev_priv->irq_lock);
1410
1411         mutex_unlock(&dev_priv->drm.struct_mutex);
1412 }
1413
1414 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1415                                                u32 iir)
1416 {
1417         if (!HAS_L3_DPF(dev_priv))
1418                 return;
1419
1420         spin_lock(&dev_priv->irq_lock);
1421         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1422         spin_unlock(&dev_priv->irq_lock);
1423
1424         iir &= GT_PARITY_ERROR(dev_priv);
1425         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1426                 dev_priv->l3_parity.which_slice |= 1 << 1;
1427
1428         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1429                 dev_priv->l3_parity.which_slice |= 1 << 0;
1430
1431         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1432 }
1433
1434 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1435                                u32 gt_iir)
1436 {
1437         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1438                 notify_ring(dev_priv->engine[RCS]);
1439         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1440                 notify_ring(dev_priv->engine[VCS]);
1441 }
1442
1443 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1444                                u32 gt_iir)
1445 {
1446         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1447                 notify_ring(dev_priv->engine[RCS]);
1448         if (gt_iir & GT_BSD_USER_INTERRUPT)
1449                 notify_ring(dev_priv->engine[VCS]);
1450         if (gt_iir & GT_BLT_USER_INTERRUPT)
1451                 notify_ring(dev_priv->engine[BCS]);
1452
1453         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1454                       GT_BSD_CS_ERROR_INTERRUPT |
1455                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1456                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1457
1458         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1459                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1460 }
1461
1462 static void
1463 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1464 {
1465         struct intel_engine_execlists * const execlists = &engine->execlists;
1466         bool tasklet = false;
1467
1468         if (iir & GT_CONTEXT_SWITCH_INTERRUPT) {
1469                 if (READ_ONCE(engine->execlists.active))
1470                         tasklet = !test_and_set_bit(ENGINE_IRQ_EXECLIST,
1471                                                     &engine->irq_posted);
1472         }
1473
1474         if (iir & GT_RENDER_USER_INTERRUPT) {
1475                 notify_ring(engine);
1476                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1477         }
1478
1479         if (tasklet)
1480                 tasklet_hi_schedule(&execlists->tasklet);
1481 }
1482
1483 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1484                             u32 master_ctl, u32 gt_iir[4])
1485 {
1486         void __iomem * const regs = i915->regs;
1487
1488 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1489                       GEN8_GT_BCS_IRQ | \
1490                       GEN8_GT_VCS1_IRQ | \
1491                       GEN8_GT_VCS2_IRQ | \
1492                       GEN8_GT_VECS_IRQ | \
1493                       GEN8_GT_PM_IRQ | \
1494                       GEN8_GT_GUC_IRQ)
1495
1496         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1497                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1498                 if (likely(gt_iir[0]))
1499                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1500         }
1501
1502         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1503                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1504                 if (likely(gt_iir[1]))
1505                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1506         }
1507
1508         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1509                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1510                 if (likely(gt_iir[2] & (i915->pm_rps_events |
1511                                         i915->pm_guc_events)))
1512                         raw_reg_write(regs, GEN8_GT_IIR(2),
1513                                       gt_iir[2] & (i915->pm_rps_events |
1514                                                    i915->pm_guc_events));
1515         }
1516
1517         if (master_ctl & GEN8_GT_VECS_IRQ) {
1518                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1519                 if (likely(gt_iir[3]))
1520                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1521         }
1522 }
1523
1524 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1525                                 u32 master_ctl, u32 gt_iir[4])
1526 {
1527         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1528                 gen8_cs_irq_handler(i915->engine[RCS],
1529                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1530                 gen8_cs_irq_handler(i915->engine[BCS],
1531                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1532         }
1533
1534         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1535                 gen8_cs_irq_handler(i915->engine[VCS],
1536                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1537                 gen8_cs_irq_handler(i915->engine[VCS2],
1538                                     gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1539         }
1540
1541         if (master_ctl & GEN8_GT_VECS_IRQ) {
1542                 gen8_cs_irq_handler(i915->engine[VECS],
1543                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1544         }
1545
1546         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1547                 gen6_rps_irq_handler(i915, gt_iir[2]);
1548                 gen9_guc_irq_handler(i915, gt_iir[2]);
1549         }
1550 }
1551
1552 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1553 {
1554         switch (port) {
1555         case PORT_A:
1556                 return val & PORTA_HOTPLUG_LONG_DETECT;
1557         case PORT_B:
1558                 return val & PORTB_HOTPLUG_LONG_DETECT;
1559         case PORT_C:
1560                 return val & PORTC_HOTPLUG_LONG_DETECT;
1561         default:
1562                 return false;
1563         }
1564 }
1565
1566 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1567 {
1568         switch (port) {
1569         case PORT_E:
1570                 return val & PORTE_HOTPLUG_LONG_DETECT;
1571         default:
1572                 return false;
1573         }
1574 }
1575
1576 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1577 {
1578         switch (port) {
1579         case PORT_A:
1580                 return val & PORTA_HOTPLUG_LONG_DETECT;
1581         case PORT_B:
1582                 return val & PORTB_HOTPLUG_LONG_DETECT;
1583         case PORT_C:
1584                 return val & PORTC_HOTPLUG_LONG_DETECT;
1585         case PORT_D:
1586                 return val & PORTD_HOTPLUG_LONG_DETECT;
1587         default:
1588                 return false;
1589         }
1590 }
1591
1592 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1593 {
1594         switch (port) {
1595         case PORT_A:
1596                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1597         default:
1598                 return false;
1599         }
1600 }
1601
1602 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1603 {
1604         switch (port) {
1605         case PORT_B:
1606                 return val & PORTB_HOTPLUG_LONG_DETECT;
1607         case PORT_C:
1608                 return val & PORTC_HOTPLUG_LONG_DETECT;
1609         case PORT_D:
1610                 return val & PORTD_HOTPLUG_LONG_DETECT;
1611         default:
1612                 return false;
1613         }
1614 }
1615
1616 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1617 {
1618         switch (port) {
1619         case PORT_B:
1620                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1621         case PORT_C:
1622                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1623         case PORT_D:
1624                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1625         default:
1626                 return false;
1627         }
1628 }
1629
1630 /*
1631  * Get a bit mask of pins that have triggered, and which ones may be long.
1632  * This can be called multiple times with the same masks to accumulate
1633  * hotplug detection results from several registers.
1634  *
1635  * Note that the caller is expected to zero out the masks initially.
1636  */
1637 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1638                                u32 *pin_mask, u32 *long_mask,
1639                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1640                                const u32 hpd[HPD_NUM_PINS],
1641                                bool long_pulse_detect(enum port port, u32 val))
1642 {
1643         enum port port;
1644         int i;
1645
1646         for_each_hpd_pin(i) {
1647                 if ((hpd[i] & hotplug_trigger) == 0)
1648                         continue;
1649
1650                 *pin_mask |= BIT(i);
1651
1652                 port = intel_hpd_pin_to_port(dev_priv, i);
1653                 if (port == PORT_NONE)
1654                         continue;
1655
1656                 if (long_pulse_detect(port, dig_hotplug_reg))
1657                         *long_mask |= BIT(i);
1658         }
1659
1660         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1661                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1662
1663 }
1664
1665 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1666 {
1667         wake_up_all(&dev_priv->gmbus_wait_queue);
1668 }
1669
1670 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1671 {
1672         wake_up_all(&dev_priv->gmbus_wait_queue);
1673 }
1674
1675 #if defined(CONFIG_DEBUG_FS)
1676 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1677                                          enum pipe pipe,
1678                                          uint32_t crc0, uint32_t crc1,
1679                                          uint32_t crc2, uint32_t crc3,
1680                                          uint32_t crc4)
1681 {
1682         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1683         struct intel_pipe_crc_entry *entry;
1684         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1685         struct drm_driver *driver = dev_priv->drm.driver;
1686         uint32_t crcs[5];
1687         int head, tail;
1688
1689         spin_lock(&pipe_crc->lock);
1690         if (pipe_crc->source && !crtc->base.crc.opened) {
1691                 if (!pipe_crc->entries) {
1692                         spin_unlock(&pipe_crc->lock);
1693                         DRM_DEBUG_KMS("spurious interrupt\n");
1694                         return;
1695                 }
1696
1697                 head = pipe_crc->head;
1698                 tail = pipe_crc->tail;
1699
1700                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1701                         spin_unlock(&pipe_crc->lock);
1702                         DRM_ERROR("CRC buffer overflowing\n");
1703                         return;
1704                 }
1705
1706                 entry = &pipe_crc->entries[head];
1707
1708                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1709                 entry->crc[0] = crc0;
1710                 entry->crc[1] = crc1;
1711                 entry->crc[2] = crc2;
1712                 entry->crc[3] = crc3;
1713                 entry->crc[4] = crc4;
1714
1715                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1716                 pipe_crc->head = head;
1717
1718                 spin_unlock(&pipe_crc->lock);
1719
1720                 wake_up_interruptible(&pipe_crc->wq);
1721         } else {
1722                 /*
1723                  * For some not yet identified reason, the first CRC is
1724                  * bonkers. So let's just wait for the next vblank and read
1725                  * out the buggy result.
1726                  *
1727                  * On GEN8+ sometimes the second CRC is bonkers as well, so
1728                  * don't trust that one either.
1729                  */
1730                 if (pipe_crc->skipped <= 0 ||
1731                     (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1732                         pipe_crc->skipped++;
1733                         spin_unlock(&pipe_crc->lock);
1734                         return;
1735                 }
1736                 spin_unlock(&pipe_crc->lock);
1737                 crcs[0] = crc0;
1738                 crcs[1] = crc1;
1739                 crcs[2] = crc2;
1740                 crcs[3] = crc3;
1741                 crcs[4] = crc4;
1742                 drm_crtc_add_crc_entry(&crtc->base, true,
1743                                        drm_crtc_accurate_vblank_count(&crtc->base),
1744                                        crcs);
1745         }
1746 }
1747 #else
1748 static inline void
1749 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1750                              enum pipe pipe,
1751                              uint32_t crc0, uint32_t crc1,
1752                              uint32_t crc2, uint32_t crc3,
1753                              uint32_t crc4) {}
1754 #endif
1755
1756
1757 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1758                                      enum pipe pipe)
1759 {
1760         display_pipe_crc_irq_handler(dev_priv, pipe,
1761                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1762                                      0, 0, 0, 0);
1763 }
1764
1765 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1766                                      enum pipe pipe)
1767 {
1768         display_pipe_crc_irq_handler(dev_priv, pipe,
1769                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1770                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1771                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1772                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1773                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1774 }
1775
1776 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1777                                       enum pipe pipe)
1778 {
1779         uint32_t res1, res2;
1780
1781         if (INTEL_GEN(dev_priv) >= 3)
1782                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1783         else
1784                 res1 = 0;
1785
1786         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1787                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1788         else
1789                 res2 = 0;
1790
1791         display_pipe_crc_irq_handler(dev_priv, pipe,
1792                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1793                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1794                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1795                                      res1, res2);
1796 }
1797
1798 /* The RPS events need forcewake, so we add them to a work queue and mask their
1799  * IMR bits until the work is done. Other interrupts can be processed without
1800  * the work queue. */
1801 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1802 {
1803         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1804
1805         if (pm_iir & dev_priv->pm_rps_events) {
1806                 spin_lock(&dev_priv->irq_lock);
1807                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1808                 if (rps->interrupts_enabled) {
1809                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1810                         schedule_work(&rps->work);
1811                 }
1812                 spin_unlock(&dev_priv->irq_lock);
1813         }
1814
1815         if (INTEL_GEN(dev_priv) >= 8)
1816                 return;
1817
1818         if (HAS_VEBOX(dev_priv)) {
1819                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1820                         notify_ring(dev_priv->engine[VECS]);
1821
1822                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1823                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1824         }
1825 }
1826
1827 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1828 {
1829         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1830                 intel_guc_to_host_event_handler(&dev_priv->guc);
1831 }
1832
1833 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1834 {
1835         enum pipe pipe;
1836
1837         for_each_pipe(dev_priv, pipe) {
1838                 I915_WRITE(PIPESTAT(pipe),
1839                            PIPESTAT_INT_STATUS_MASK |
1840                            PIPE_FIFO_UNDERRUN_STATUS);
1841
1842                 dev_priv->pipestat_irq_mask[pipe] = 0;
1843         }
1844 }
1845
1846 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1847                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1848 {
1849         int pipe;
1850
1851         spin_lock(&dev_priv->irq_lock);
1852
1853         if (!dev_priv->display_irqs_enabled) {
1854                 spin_unlock(&dev_priv->irq_lock);
1855                 return;
1856         }
1857
1858         for_each_pipe(dev_priv, pipe) {
1859                 i915_reg_t reg;
1860                 u32 status_mask, enable_mask, iir_bit = 0;
1861
1862                 /*
1863                  * PIPESTAT bits get signalled even when the interrupt is
1864                  * disabled with the mask bits, and some of the status bits do
1865                  * not generate interrupts at all (like the underrun bit). Hence
1866                  * we need to be careful that we only handle what we want to
1867                  * handle.
1868                  */
1869
1870                 /* fifo underruns are filterered in the underrun handler. */
1871                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1872
1873                 switch (pipe) {
1874                 case PIPE_A:
1875                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1876                         break;
1877                 case PIPE_B:
1878                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1879                         break;
1880                 case PIPE_C:
1881                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1882                         break;
1883                 }
1884                 if (iir & iir_bit)
1885                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1886
1887                 if (!status_mask)
1888                         continue;
1889
1890                 reg = PIPESTAT(pipe);
1891                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1892                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1893
1894                 /*
1895                  * Clear the PIPE*STAT regs before the IIR
1896                  *
1897                  * Toggle the enable bits to make sure we get an
1898                  * edge in the ISR pipe event bit if we don't clear
1899                  * all the enabled status bits. Otherwise the edge
1900                  * triggered IIR on i965/g4x wouldn't notice that
1901                  * an interrupt is still pending.
1902                  */
1903                 if (pipe_stats[pipe]) {
1904                         I915_WRITE(reg, pipe_stats[pipe]);
1905                         I915_WRITE(reg, enable_mask);
1906                 }
1907         }
1908         spin_unlock(&dev_priv->irq_lock);
1909 }
1910
1911 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1912                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1913 {
1914         enum pipe pipe;
1915
1916         for_each_pipe(dev_priv, pipe) {
1917                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1918                         drm_handle_vblank(&dev_priv->drm, pipe);
1919
1920                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1921                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1922
1923                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1924                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1925         }
1926 }
1927
1928 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1929                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1930 {
1931         bool blc_event = false;
1932         enum pipe pipe;
1933
1934         for_each_pipe(dev_priv, pipe) {
1935                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1936                         drm_handle_vblank(&dev_priv->drm, pipe);
1937
1938                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1939                         blc_event = true;
1940
1941                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1942                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1943
1944                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1945                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1946         }
1947
1948         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1949                 intel_opregion_asle_intr(dev_priv);
1950 }
1951
1952 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1953                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1954 {
1955         bool blc_event = false;
1956         enum pipe pipe;
1957
1958         for_each_pipe(dev_priv, pipe) {
1959                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1960                         drm_handle_vblank(&dev_priv->drm, pipe);
1961
1962                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1963                         blc_event = true;
1964
1965                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1966                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1967
1968                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1969                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1970         }
1971
1972         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1973                 intel_opregion_asle_intr(dev_priv);
1974
1975         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1976                 gmbus_irq_handler(dev_priv);
1977 }
1978
1979 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1980                                             u32 pipe_stats[I915_MAX_PIPES])
1981 {
1982         enum pipe pipe;
1983
1984         for_each_pipe(dev_priv, pipe) {
1985                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1986                         drm_handle_vblank(&dev_priv->drm, pipe);
1987
1988                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1989                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1990
1991                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1992                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1993         }
1994
1995         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1996                 gmbus_irq_handler(dev_priv);
1997 }
1998
1999 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2000 {
2001         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2002
2003         if (hotplug_status)
2004                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2005
2006         return hotplug_status;
2007 }
2008
2009 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2010                                  u32 hotplug_status)
2011 {
2012         u32 pin_mask = 0, long_mask = 0;
2013
2014         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2015             IS_CHERRYVIEW(dev_priv)) {
2016                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2017
2018                 if (hotplug_trigger) {
2019                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2020                                            hotplug_trigger, hotplug_trigger,
2021                                            hpd_status_g4x,
2022                                            i9xx_port_hotplug_long_detect);
2023
2024                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2025                 }
2026
2027                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2028                         dp_aux_irq_handler(dev_priv);
2029         } else {
2030                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2031
2032                 if (hotplug_trigger) {
2033                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2034                                            hotplug_trigger, hotplug_trigger,
2035                                            hpd_status_i915,
2036                                            i9xx_port_hotplug_long_detect);
2037                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2038                 }
2039         }
2040 }
2041
2042 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2043 {
2044         struct drm_device *dev = arg;
2045         struct drm_i915_private *dev_priv = to_i915(dev);
2046         irqreturn_t ret = IRQ_NONE;
2047
2048         if (!intel_irqs_enabled(dev_priv))
2049                 return IRQ_NONE;
2050
2051         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2052         disable_rpm_wakeref_asserts(dev_priv);
2053
2054         do {
2055                 u32 iir, gt_iir, pm_iir;
2056                 u32 pipe_stats[I915_MAX_PIPES] = {};
2057                 u32 hotplug_status = 0;
2058                 u32 ier = 0;
2059
2060                 gt_iir = I915_READ(GTIIR);
2061                 pm_iir = I915_READ(GEN6_PMIIR);
2062                 iir = I915_READ(VLV_IIR);
2063
2064                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2065                         break;
2066
2067                 ret = IRQ_HANDLED;
2068
2069                 /*
2070                  * Theory on interrupt generation, based on empirical evidence:
2071                  *
2072                  * x = ((VLV_IIR & VLV_IER) ||
2073                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2074                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2075                  *
2076                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2077                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2078                  * guarantee the CPU interrupt will be raised again even if we
2079                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2080                  * bits this time around.
2081                  */
2082                 I915_WRITE(VLV_MASTER_IER, 0);
2083                 ier = I915_READ(VLV_IER);
2084                 I915_WRITE(VLV_IER, 0);
2085
2086                 if (gt_iir)
2087                         I915_WRITE(GTIIR, gt_iir);
2088                 if (pm_iir)
2089                         I915_WRITE(GEN6_PMIIR, pm_iir);
2090
2091                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2092                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2093
2094                 /* Call regardless, as some status bits might not be
2095                  * signalled in iir */
2096                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2097
2098                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2099                            I915_LPE_PIPE_B_INTERRUPT))
2100                         intel_lpe_audio_irq_handler(dev_priv);
2101
2102                 /*
2103                  * VLV_IIR is single buffered, and reflects the level
2104                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2105                  */
2106                 if (iir)
2107                         I915_WRITE(VLV_IIR, iir);
2108
2109                 I915_WRITE(VLV_IER, ier);
2110                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2111                 POSTING_READ(VLV_MASTER_IER);
2112
2113                 if (gt_iir)
2114                         snb_gt_irq_handler(dev_priv, gt_iir);
2115                 if (pm_iir)
2116                         gen6_rps_irq_handler(dev_priv, pm_iir);
2117
2118                 if (hotplug_status)
2119                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2120
2121                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2122         } while (0);
2123
2124         enable_rpm_wakeref_asserts(dev_priv);
2125
2126         return ret;
2127 }
2128
2129 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2130 {
2131         struct drm_device *dev = arg;
2132         struct drm_i915_private *dev_priv = to_i915(dev);
2133         irqreturn_t ret = IRQ_NONE;
2134
2135         if (!intel_irqs_enabled(dev_priv))
2136                 return IRQ_NONE;
2137
2138         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2139         disable_rpm_wakeref_asserts(dev_priv);
2140
2141         do {
2142                 u32 master_ctl, iir;
2143                 u32 pipe_stats[I915_MAX_PIPES] = {};
2144                 u32 hotplug_status = 0;
2145                 u32 gt_iir[4];
2146                 u32 ier = 0;
2147
2148                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2149                 iir = I915_READ(VLV_IIR);
2150
2151                 if (master_ctl == 0 && iir == 0)
2152                         break;
2153
2154                 ret = IRQ_HANDLED;
2155
2156                 /*
2157                  * Theory on interrupt generation, based on empirical evidence:
2158                  *
2159                  * x = ((VLV_IIR & VLV_IER) ||
2160                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2161                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2162                  *
2163                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2164                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2165                  * guarantee the CPU interrupt will be raised again even if we
2166                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2167                  * bits this time around.
2168                  */
2169                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2170                 ier = I915_READ(VLV_IER);
2171                 I915_WRITE(VLV_IER, 0);
2172
2173                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2174
2175                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2176                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2177
2178                 /* Call regardless, as some status bits might not be
2179                  * signalled in iir */
2180                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2181
2182                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2183                            I915_LPE_PIPE_B_INTERRUPT |
2184                            I915_LPE_PIPE_C_INTERRUPT))
2185                         intel_lpe_audio_irq_handler(dev_priv);
2186
2187                 /*
2188                  * VLV_IIR is single buffered, and reflects the level
2189                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2190                  */
2191                 if (iir)
2192                         I915_WRITE(VLV_IIR, iir);
2193
2194                 I915_WRITE(VLV_IER, ier);
2195                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2196                 POSTING_READ(GEN8_MASTER_IRQ);
2197
2198                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2199
2200                 if (hotplug_status)
2201                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2202
2203                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2204         } while (0);
2205
2206         enable_rpm_wakeref_asserts(dev_priv);
2207
2208         return ret;
2209 }
2210
2211 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2212                                 u32 hotplug_trigger,
2213                                 const u32 hpd[HPD_NUM_PINS])
2214 {
2215         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2216
2217         /*
2218          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2219          * unless we touch the hotplug register, even if hotplug_trigger is
2220          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2221          * errors.
2222          */
2223         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2224         if (!hotplug_trigger) {
2225                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2226                         PORTD_HOTPLUG_STATUS_MASK |
2227                         PORTC_HOTPLUG_STATUS_MASK |
2228                         PORTB_HOTPLUG_STATUS_MASK;
2229                 dig_hotplug_reg &= ~mask;
2230         }
2231
2232         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2233         if (!hotplug_trigger)
2234                 return;
2235
2236         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2237                            dig_hotplug_reg, hpd,
2238                            pch_port_hotplug_long_detect);
2239
2240         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2241 }
2242
2243 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2244 {
2245         int pipe;
2246         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2247
2248         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2249
2250         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2251                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2252                                SDE_AUDIO_POWER_SHIFT);
2253                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2254                                  port_name(port));
2255         }
2256
2257         if (pch_iir & SDE_AUX_MASK)
2258                 dp_aux_irq_handler(dev_priv);
2259
2260         if (pch_iir & SDE_GMBUS)
2261                 gmbus_irq_handler(dev_priv);
2262
2263         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2264                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2265
2266         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2267                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2268
2269         if (pch_iir & SDE_POISON)
2270                 DRM_ERROR("PCH poison interrupt\n");
2271
2272         if (pch_iir & SDE_FDI_MASK)
2273                 for_each_pipe(dev_priv, pipe)
2274                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2275                                          pipe_name(pipe),
2276                                          I915_READ(FDI_RX_IIR(pipe)));
2277
2278         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2279                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2280
2281         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2282                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2283
2284         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2285                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2286
2287         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2288                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2289 }
2290
2291 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2292 {
2293         u32 err_int = I915_READ(GEN7_ERR_INT);
2294         enum pipe pipe;
2295
2296         if (err_int & ERR_INT_POISON)
2297                 DRM_ERROR("Poison interrupt\n");
2298
2299         for_each_pipe(dev_priv, pipe) {
2300                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2301                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2302
2303                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2304                         if (IS_IVYBRIDGE(dev_priv))
2305                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2306                         else
2307                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2308                 }
2309         }
2310
2311         I915_WRITE(GEN7_ERR_INT, err_int);
2312 }
2313
2314 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2315 {
2316         u32 serr_int = I915_READ(SERR_INT);
2317         enum pipe pipe;
2318
2319         if (serr_int & SERR_INT_POISON)
2320                 DRM_ERROR("PCH poison interrupt\n");
2321
2322         for_each_pipe(dev_priv, pipe)
2323                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2324                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2325
2326         I915_WRITE(SERR_INT, serr_int);
2327 }
2328
2329 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2330 {
2331         int pipe;
2332         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2333
2334         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2335
2336         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2337                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2338                                SDE_AUDIO_POWER_SHIFT_CPT);
2339                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2340                                  port_name(port));
2341         }
2342
2343         if (pch_iir & SDE_AUX_MASK_CPT)
2344                 dp_aux_irq_handler(dev_priv);
2345
2346         if (pch_iir & SDE_GMBUS_CPT)
2347                 gmbus_irq_handler(dev_priv);
2348
2349         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2350                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2351
2352         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2353                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2354
2355         if (pch_iir & SDE_FDI_MASK_CPT)
2356                 for_each_pipe(dev_priv, pipe)
2357                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2358                                          pipe_name(pipe),
2359                                          I915_READ(FDI_RX_IIR(pipe)));
2360
2361         if (pch_iir & SDE_ERROR_CPT)
2362                 cpt_serr_int_handler(dev_priv);
2363 }
2364
2365 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2366 {
2367         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2368                 ~SDE_PORTE_HOTPLUG_SPT;
2369         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2370         u32 pin_mask = 0, long_mask = 0;
2371
2372         if (hotplug_trigger) {
2373                 u32 dig_hotplug_reg;
2374
2375                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2376                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2377
2378                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2379                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2380                                    spt_port_hotplug_long_detect);
2381         }
2382
2383         if (hotplug2_trigger) {
2384                 u32 dig_hotplug_reg;
2385
2386                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2387                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2388
2389                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2390                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2391                                    spt_port_hotplug2_long_detect);
2392         }
2393
2394         if (pin_mask)
2395                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2396
2397         if (pch_iir & SDE_GMBUS_CPT)
2398                 gmbus_irq_handler(dev_priv);
2399 }
2400
2401 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2402                                 u32 hotplug_trigger,
2403                                 const u32 hpd[HPD_NUM_PINS])
2404 {
2405         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2406
2407         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2408         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2409
2410         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2411                            dig_hotplug_reg, hpd,
2412                            ilk_port_hotplug_long_detect);
2413
2414         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2415 }
2416
2417 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2418                                     u32 de_iir)
2419 {
2420         enum pipe pipe;
2421         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2422
2423         if (hotplug_trigger)
2424                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2425
2426         if (de_iir & DE_AUX_CHANNEL_A)
2427                 dp_aux_irq_handler(dev_priv);
2428
2429         if (de_iir & DE_GSE)
2430                 intel_opregion_asle_intr(dev_priv);
2431
2432         if (de_iir & DE_POISON)
2433                 DRM_ERROR("Poison interrupt\n");
2434
2435         for_each_pipe(dev_priv, pipe) {
2436                 if (de_iir & DE_PIPE_VBLANK(pipe))
2437                         drm_handle_vblank(&dev_priv->drm, pipe);
2438
2439                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2440                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2441
2442                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2443                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2444         }
2445
2446         /* check event from PCH */
2447         if (de_iir & DE_PCH_EVENT) {
2448                 u32 pch_iir = I915_READ(SDEIIR);
2449
2450                 if (HAS_PCH_CPT(dev_priv))
2451                         cpt_irq_handler(dev_priv, pch_iir);
2452                 else
2453                         ibx_irq_handler(dev_priv, pch_iir);
2454
2455                 /* should clear PCH hotplug event before clear CPU irq */
2456                 I915_WRITE(SDEIIR, pch_iir);
2457         }
2458
2459         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2460                 ironlake_rps_change_irq_handler(dev_priv);
2461 }
2462
2463 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2464                                     u32 de_iir)
2465 {
2466         enum pipe pipe;
2467         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2468
2469         if (hotplug_trigger)
2470                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2471
2472         if (de_iir & DE_ERR_INT_IVB)
2473                 ivb_err_int_handler(dev_priv);
2474
2475         if (de_iir & DE_EDP_PSR_INT_HSW) {
2476                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2477
2478                 intel_psr_irq_handler(dev_priv, psr_iir);
2479                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2480         }
2481
2482         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2483                 dp_aux_irq_handler(dev_priv);
2484
2485         if (de_iir & DE_GSE_IVB)
2486                 intel_opregion_asle_intr(dev_priv);
2487
2488         for_each_pipe(dev_priv, pipe) {
2489                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2490                         drm_handle_vblank(&dev_priv->drm, pipe);
2491         }
2492
2493         /* check event from PCH */
2494         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2495                 u32 pch_iir = I915_READ(SDEIIR);
2496
2497                 cpt_irq_handler(dev_priv, pch_iir);
2498
2499                 /* clear PCH hotplug event before clear CPU irq */
2500                 I915_WRITE(SDEIIR, pch_iir);
2501         }
2502 }
2503
2504 /*
2505  * To handle irqs with the minimum potential races with fresh interrupts, we:
2506  * 1 - Disable Master Interrupt Control.
2507  * 2 - Find the source(s) of the interrupt.
2508  * 3 - Clear the Interrupt Identity bits (IIR).
2509  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2510  * 5 - Re-enable Master Interrupt Control.
2511  */
2512 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2513 {
2514         struct drm_device *dev = arg;
2515         struct drm_i915_private *dev_priv = to_i915(dev);
2516         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2517         irqreturn_t ret = IRQ_NONE;
2518
2519         if (!intel_irqs_enabled(dev_priv))
2520                 return IRQ_NONE;
2521
2522         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2523         disable_rpm_wakeref_asserts(dev_priv);
2524
2525         /* disable master interrupt before clearing iir  */
2526         de_ier = I915_READ(DEIER);
2527         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2528         POSTING_READ(DEIER);
2529
2530         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2531          * interrupts will will be stored on its back queue, and then we'll be
2532          * able to process them after we restore SDEIER (as soon as we restore
2533          * it, we'll get an interrupt if SDEIIR still has something to process
2534          * due to its back queue). */
2535         if (!HAS_PCH_NOP(dev_priv)) {
2536                 sde_ier = I915_READ(SDEIER);
2537                 I915_WRITE(SDEIER, 0);
2538                 POSTING_READ(SDEIER);
2539         }
2540
2541         /* Find, clear, then process each source of interrupt */
2542
2543         gt_iir = I915_READ(GTIIR);
2544         if (gt_iir) {
2545                 I915_WRITE(GTIIR, gt_iir);
2546                 ret = IRQ_HANDLED;
2547                 if (INTEL_GEN(dev_priv) >= 6)
2548                         snb_gt_irq_handler(dev_priv, gt_iir);
2549                 else
2550                         ilk_gt_irq_handler(dev_priv, gt_iir);
2551         }
2552
2553         de_iir = I915_READ(DEIIR);
2554         if (de_iir) {
2555                 I915_WRITE(DEIIR, de_iir);
2556                 ret = IRQ_HANDLED;
2557                 if (INTEL_GEN(dev_priv) >= 7)
2558                         ivb_display_irq_handler(dev_priv, de_iir);
2559                 else
2560                         ilk_display_irq_handler(dev_priv, de_iir);
2561         }
2562
2563         if (INTEL_GEN(dev_priv) >= 6) {
2564                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2565                 if (pm_iir) {
2566                         I915_WRITE(GEN6_PMIIR, pm_iir);
2567                         ret = IRQ_HANDLED;
2568                         gen6_rps_irq_handler(dev_priv, pm_iir);
2569                 }
2570         }
2571
2572         I915_WRITE(DEIER, de_ier);
2573         POSTING_READ(DEIER);
2574         if (!HAS_PCH_NOP(dev_priv)) {
2575                 I915_WRITE(SDEIER, sde_ier);
2576                 POSTING_READ(SDEIER);
2577         }
2578
2579         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2580         enable_rpm_wakeref_asserts(dev_priv);
2581
2582         return ret;
2583 }
2584
2585 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2586                                 u32 hotplug_trigger,
2587                                 const u32 hpd[HPD_NUM_PINS])
2588 {
2589         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2590
2591         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2592         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2593
2594         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2595                            dig_hotplug_reg, hpd,
2596                            bxt_port_hotplug_long_detect);
2597
2598         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2599 }
2600
2601 static irqreturn_t
2602 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2603 {
2604         irqreturn_t ret = IRQ_NONE;
2605         u32 iir;
2606         enum pipe pipe;
2607
2608         if (master_ctl & GEN8_DE_MISC_IRQ) {
2609                 iir = I915_READ(GEN8_DE_MISC_IIR);
2610                 if (iir) {
2611                         bool found = false;
2612
2613                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2614                         ret = IRQ_HANDLED;
2615
2616                         if (iir & GEN8_DE_MISC_GSE) {
2617                                 intel_opregion_asle_intr(dev_priv);
2618                                 found = true;
2619                         }
2620
2621                         if (iir & GEN8_DE_EDP_PSR) {
2622                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2623
2624                                 intel_psr_irq_handler(dev_priv, psr_iir);
2625                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2626                                 found = true;
2627                         }
2628
2629                         if (!found)
2630                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2631                 }
2632                 else
2633                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2634         }
2635
2636         if (master_ctl & GEN8_DE_PORT_IRQ) {
2637                 iir = I915_READ(GEN8_DE_PORT_IIR);
2638                 if (iir) {
2639                         u32 tmp_mask;
2640                         bool found = false;
2641
2642                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2643                         ret = IRQ_HANDLED;
2644
2645                         tmp_mask = GEN8_AUX_CHANNEL_A;
2646                         if (INTEL_GEN(dev_priv) >= 9)
2647                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2648                                             GEN9_AUX_CHANNEL_C |
2649                                             GEN9_AUX_CHANNEL_D;
2650
2651                         if (INTEL_GEN(dev_priv) >= 11)
2652                                 tmp_mask |= ICL_AUX_CHANNEL_E;
2653
2654                         if (IS_CNL_WITH_PORT_F(dev_priv) ||
2655                             INTEL_GEN(dev_priv) >= 11)
2656                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2657
2658                         if (iir & tmp_mask) {
2659                                 dp_aux_irq_handler(dev_priv);
2660                                 found = true;
2661                         }
2662
2663                         if (IS_GEN9_LP(dev_priv)) {
2664                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2665                                 if (tmp_mask) {
2666                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2667                                                             hpd_bxt);
2668                                         found = true;
2669                                 }
2670                         } else if (IS_BROADWELL(dev_priv)) {
2671                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2672                                 if (tmp_mask) {
2673                                         ilk_hpd_irq_handler(dev_priv,
2674                                                             tmp_mask, hpd_bdw);
2675                                         found = true;
2676                                 }
2677                         }
2678
2679                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2680                                 gmbus_irq_handler(dev_priv);
2681                                 found = true;
2682                         }
2683
2684                         if (!found)
2685                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2686                 }
2687                 else
2688                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2689         }
2690
2691         for_each_pipe(dev_priv, pipe) {
2692                 u32 fault_errors;
2693
2694                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2695                         continue;
2696
2697                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2698                 if (!iir) {
2699                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2700                         continue;
2701                 }
2702
2703                 ret = IRQ_HANDLED;
2704                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2705
2706                 if (iir & GEN8_PIPE_VBLANK)
2707                         drm_handle_vblank(&dev_priv->drm, pipe);
2708
2709                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2710                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2711
2712                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2713                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2714
2715                 fault_errors = iir;
2716                 if (INTEL_GEN(dev_priv) >= 9)
2717                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2718                 else
2719                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2720
2721                 if (fault_errors)
2722                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2723                                   pipe_name(pipe),
2724                                   fault_errors);
2725         }
2726
2727         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2728             master_ctl & GEN8_DE_PCH_IRQ) {
2729                 /*
2730                  * FIXME(BDW): Assume for now that the new interrupt handling
2731                  * scheme also closed the SDE interrupt handling race we've seen
2732                  * on older pch-split platforms. But this needs testing.
2733                  */
2734                 iir = I915_READ(SDEIIR);
2735                 if (iir) {
2736                         I915_WRITE(SDEIIR, iir);
2737                         ret = IRQ_HANDLED;
2738
2739                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2740                             HAS_PCH_CNP(dev_priv))
2741                                 spt_irq_handler(dev_priv, iir);
2742                         else
2743                                 cpt_irq_handler(dev_priv, iir);
2744                 } else {
2745                         /*
2746                          * Like on previous PCH there seems to be something
2747                          * fishy going on with forwarding PCH interrupts.
2748                          */
2749                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2750                 }
2751         }
2752
2753         return ret;
2754 }
2755
2756 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2757 {
2758         struct drm_i915_private *dev_priv = to_i915(arg);
2759         u32 master_ctl;
2760         u32 gt_iir[4];
2761
2762         if (!intel_irqs_enabled(dev_priv))
2763                 return IRQ_NONE;
2764
2765         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2766         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2767         if (!master_ctl)
2768                 return IRQ_NONE;
2769
2770         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2771
2772         /* Find, clear, then process each source of interrupt */
2773         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2774
2775         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2776         if (master_ctl & ~GEN8_GT_IRQS) {
2777                 disable_rpm_wakeref_asserts(dev_priv);
2778                 gen8_de_irq_handler(dev_priv, master_ctl);
2779                 enable_rpm_wakeref_asserts(dev_priv);
2780         }
2781
2782         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2783
2784         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2785
2786         return IRQ_HANDLED;
2787 }
2788
2789 struct wedge_me {
2790         struct delayed_work work;
2791         struct drm_i915_private *i915;
2792         const char *name;
2793 };
2794
2795 static void wedge_me(struct work_struct *work)
2796 {
2797         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2798
2799         dev_err(w->i915->drm.dev,
2800                 "%s timed out, cancelling all in-flight rendering.\n",
2801                 w->name);
2802         i915_gem_set_wedged(w->i915);
2803 }
2804
2805 static void __init_wedge(struct wedge_me *w,
2806                          struct drm_i915_private *i915,
2807                          long timeout,
2808                          const char *name)
2809 {
2810         w->i915 = i915;
2811         w->name = name;
2812
2813         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2814         schedule_delayed_work(&w->work, timeout);
2815 }
2816
2817 static void __fini_wedge(struct wedge_me *w)
2818 {
2819         cancel_delayed_work_sync(&w->work);
2820         destroy_delayed_work_on_stack(&w->work);
2821         w->i915 = NULL;
2822 }
2823
2824 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2825         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2826              (W)->i915;                                                 \
2827              __fini_wedge((W)))
2828
2829 static u32
2830 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2831                          const unsigned int bank, const unsigned int bit)
2832 {
2833         void __iomem * const regs = i915->regs;
2834         u32 timeout_ts;
2835         u32 ident;
2836
2837         lockdep_assert_held(&i915->irq_lock);
2838
2839         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2840
2841         /*
2842          * NB: Specs do not specify how long to spin wait,
2843          * so we do ~100us as an educated guess.
2844          */
2845         timeout_ts = (local_clock() >> 10) + 100;
2846         do {
2847                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2848         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2849                  !time_after32(local_clock() >> 10, timeout_ts));
2850
2851         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2852                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2853                           bank, bit, ident);
2854                 return 0;
2855         }
2856
2857         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2858                       GEN11_INTR_DATA_VALID);
2859
2860         return ident;
2861 }
2862
2863 static void
2864 gen11_other_irq_handler(struct drm_i915_private * const i915,
2865                         const u8 instance, const u16 iir)
2866 {
2867         if (instance == OTHER_GTPM_INSTANCE)
2868                 return gen6_rps_irq_handler(i915, iir);
2869
2870         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
2871                   instance, iir);
2872 }
2873
2874 static void
2875 gen11_engine_irq_handler(struct drm_i915_private * const i915,
2876                          const u8 class, const u8 instance, const u16 iir)
2877 {
2878         struct intel_engine_cs *engine;
2879
2880         if (instance <= MAX_ENGINE_INSTANCE)
2881                 engine = i915->engine_class[class][instance];
2882         else
2883                 engine = NULL;
2884
2885         if (likely(engine))
2886                 return gen8_cs_irq_handler(engine, iir);
2887
2888         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
2889                   class, instance);
2890 }
2891
2892 static void
2893 gen11_gt_identity_handler(struct drm_i915_private * const i915,
2894                           const u32 identity)
2895 {
2896         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
2897         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
2898         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
2899
2900         if (unlikely(!intr))
2901                 return;
2902
2903         if (class <= COPY_ENGINE_CLASS)
2904                 return gen11_engine_irq_handler(i915, class, instance, intr);
2905
2906         if (class == OTHER_CLASS)
2907                 return gen11_other_irq_handler(i915, instance, intr);
2908
2909         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
2910                   class, instance, intr);
2911 }
2912
2913 static void
2914 gen11_gt_bank_handler(struct drm_i915_private * const i915,
2915                       const unsigned int bank)
2916 {
2917         void __iomem * const regs = i915->regs;
2918         unsigned long intr_dw;
2919         unsigned int bit;
2920
2921         lockdep_assert_held(&i915->irq_lock);
2922
2923         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
2924
2925         if (unlikely(!intr_dw)) {
2926                 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
2927                 return;
2928         }
2929
2930         for_each_set_bit(bit, &intr_dw, 32) {
2931                 const u32 ident = gen11_gt_engine_identity(i915,
2932                                                            bank, bit);
2933
2934                 gen11_gt_identity_handler(i915, ident);
2935         }
2936
2937         /* Clear must be after shared has been served for engine */
2938         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
2939 }
2940
2941 static void
2942 gen11_gt_irq_handler(struct drm_i915_private * const i915,
2943                      const u32 master_ctl)
2944 {
2945         unsigned int bank;
2946
2947         spin_lock(&i915->irq_lock);
2948
2949         for (bank = 0; bank < 2; bank++) {
2950                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
2951                         gen11_gt_bank_handler(i915, bank);
2952         }
2953
2954         spin_unlock(&i915->irq_lock);
2955 }
2956
2957 static void
2958 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl,
2959                       u32 *iir)
2960 {
2961         void __iomem * const regs = dev_priv->regs;
2962
2963         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2964                 return;
2965
2966         *iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2967         if (likely(*iir))
2968                 raw_reg_write(regs, GEN11_GU_MISC_IIR, *iir);
2969 }
2970
2971 static void
2972 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv,
2973                           const u32 master_ctl, const u32 iir)
2974 {
2975         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2976                 return;
2977
2978         if (unlikely(!iir)) {
2979                 DRM_ERROR("GU_MISC iir blank!\n");
2980                 return;
2981         }
2982
2983         if (iir & GEN11_GU_MISC_GSE)
2984                 intel_opregion_asle_intr(dev_priv);
2985         else
2986                 DRM_ERROR("Unexpected GU_MISC interrupt 0x%x\n", iir);
2987 }
2988
2989 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2990 {
2991         struct drm_i915_private * const i915 = to_i915(arg);
2992         void __iomem * const regs = i915->regs;
2993         u32 master_ctl;
2994         u32 gu_misc_iir;
2995
2996         if (!intel_irqs_enabled(i915))
2997                 return IRQ_NONE;
2998
2999         master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3000         master_ctl &= ~GEN11_MASTER_IRQ;
3001         if (!master_ctl)
3002                 return IRQ_NONE;
3003
3004         /* Disable interrupts. */
3005         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3006
3007         /* Find, clear, then process each source of interrupt. */
3008         gen11_gt_irq_handler(i915, master_ctl);
3009
3010         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3011         if (master_ctl & GEN11_DISPLAY_IRQ) {
3012                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3013
3014                 disable_rpm_wakeref_asserts(i915);
3015                 /*
3016                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3017                  * for the display related bits.
3018                  */
3019                 gen8_de_irq_handler(i915, disp_ctl);
3020                 enable_rpm_wakeref_asserts(i915);
3021         }
3022
3023         gen11_gu_misc_irq_ack(i915, master_ctl, &gu_misc_iir);
3024
3025         /* Acknowledge and enable interrupts. */
3026         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3027
3028         gen11_gu_misc_irq_handler(i915, master_ctl, gu_misc_iir);
3029
3030         return IRQ_HANDLED;
3031 }
3032
3033 static void i915_reset_device(struct drm_i915_private *dev_priv,
3034                               u32 engine_mask,
3035                               const char *reason)
3036 {
3037         struct i915_gpu_error *error = &dev_priv->gpu_error;
3038         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3039         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3040         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3041         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3042         struct wedge_me w;
3043
3044         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3045
3046         DRM_DEBUG_DRIVER("resetting chip\n");
3047         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3048
3049         /* Use a watchdog to ensure that our reset completes */
3050         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3051                 intel_prepare_reset(dev_priv);
3052
3053                 error->reason = reason;
3054                 error->stalled_mask = engine_mask;
3055
3056                 /* Signal that locked waiters should reset the GPU */
3057                 smp_mb__before_atomic();
3058                 set_bit(I915_RESET_HANDOFF, &error->flags);
3059                 wake_up_all(&error->wait_queue);
3060
3061                 /* Wait for anyone holding the lock to wakeup, without
3062                  * blocking indefinitely on struct_mutex.
3063                  */
3064                 do {
3065                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3066                                 i915_reset(dev_priv, engine_mask, reason);
3067                                 mutex_unlock(&dev_priv->drm.struct_mutex);
3068                         }
3069                 } while (wait_on_bit_timeout(&error->flags,
3070                                              I915_RESET_HANDOFF,
3071                                              TASK_UNINTERRUPTIBLE,
3072                                              1));
3073
3074                 error->stalled_mask = 0;
3075                 error->reason = NULL;
3076
3077                 intel_finish_reset(dev_priv);
3078         }
3079
3080         if (!test_bit(I915_WEDGED, &error->flags))
3081                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3082 }
3083
3084 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3085 {
3086         u32 eir;
3087
3088         if (!IS_GEN2(dev_priv))
3089                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3090
3091         if (INTEL_GEN(dev_priv) < 4)
3092                 I915_WRITE(IPEIR, I915_READ(IPEIR));
3093         else
3094                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3095
3096         I915_WRITE(EIR, I915_READ(EIR));
3097         eir = I915_READ(EIR);
3098         if (eir) {
3099                 /*
3100                  * some errors might have become stuck,
3101                  * mask them.
3102                  */
3103                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3104                 I915_WRITE(EMR, I915_READ(EMR) | eir);
3105                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3106         }
3107 }
3108
3109 /**
3110  * i915_handle_error - handle a gpu error
3111  * @dev_priv: i915 device private
3112  * @engine_mask: mask representing engines that are hung
3113  * @flags: control flags
3114  * @fmt: Error message format string
3115  *
3116  * Do some basic checking of register state at error time and
3117  * dump it to the syslog.  Also call i915_capture_error_state() to make
3118  * sure we get a record and make it available in debugfs.  Fire a uevent
3119  * so userspace knows something bad happened (should trigger collection
3120  * of a ring dump etc.).
3121  */
3122 void i915_handle_error(struct drm_i915_private *dev_priv,
3123                        u32 engine_mask,
3124                        unsigned long flags,
3125                        const char *fmt, ...)
3126 {
3127         struct intel_engine_cs *engine;
3128         unsigned int tmp;
3129         char error_msg[80];
3130         char *msg = NULL;
3131
3132         if (fmt) {
3133                 va_list args;
3134
3135                 va_start(args, fmt);
3136                 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3137                 va_end(args);
3138
3139                 msg = error_msg;
3140         }
3141
3142         /*
3143          * In most cases it's guaranteed that we get here with an RPM
3144          * reference held, for example because there is a pending GPU
3145          * request that won't finish until the reset is done. This
3146          * isn't the case at least when we get here by doing a
3147          * simulated reset via debugfs, so get an RPM reference.
3148          */
3149         intel_runtime_pm_get(dev_priv);
3150
3151         engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3152
3153         if (flags & I915_ERROR_CAPTURE) {
3154                 i915_capture_error_state(dev_priv, engine_mask, msg);
3155                 i915_clear_error_registers(dev_priv);
3156         }
3157
3158         /*
3159          * Try engine reset when available. We fall back to full reset if
3160          * single reset fails.
3161          */
3162         if (intel_has_reset_engine(dev_priv)) {
3163                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3164                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3165                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3166                                              &dev_priv->gpu_error.flags))
3167                                 continue;
3168
3169                         if (i915_reset_engine(engine, msg) == 0)
3170                                 engine_mask &= ~intel_engine_flag(engine);
3171
3172                         clear_bit(I915_RESET_ENGINE + engine->id,
3173                                   &dev_priv->gpu_error.flags);
3174                         wake_up_bit(&dev_priv->gpu_error.flags,
3175                                     I915_RESET_ENGINE + engine->id);
3176                 }
3177         }
3178
3179         if (!engine_mask)
3180                 goto out;
3181
3182         /* Full reset needs the mutex, stop any other user trying to do so. */
3183         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3184                 wait_event(dev_priv->gpu_error.reset_queue,
3185                            !test_bit(I915_RESET_BACKOFF,
3186                                      &dev_priv->gpu_error.flags));
3187                 goto out;
3188         }
3189
3190         /* Prevent any other reset-engine attempt. */
3191         for_each_engine(engine, dev_priv, tmp) {
3192                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3193                                         &dev_priv->gpu_error.flags))
3194                         wait_on_bit(&dev_priv->gpu_error.flags,
3195                                     I915_RESET_ENGINE + engine->id,
3196                                     TASK_UNINTERRUPTIBLE);
3197         }
3198
3199         i915_reset_device(dev_priv, engine_mask, msg);
3200
3201         for_each_engine(engine, dev_priv, tmp) {
3202                 clear_bit(I915_RESET_ENGINE + engine->id,
3203                           &dev_priv->gpu_error.flags);
3204         }
3205
3206         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3207         wake_up_all(&dev_priv->gpu_error.reset_queue);
3208
3209 out:
3210         intel_runtime_pm_put(dev_priv);
3211 }
3212
3213 /* Called from drm generic code, passed 'crtc' which
3214  * we use as a pipe index
3215  */
3216 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3217 {
3218         struct drm_i915_private *dev_priv = to_i915(dev);
3219         unsigned long irqflags;
3220
3221         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3222         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3223         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3224
3225         return 0;
3226 }
3227
3228 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3229 {
3230         struct drm_i915_private *dev_priv = to_i915(dev);
3231         unsigned long irqflags;
3232
3233         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3234         i915_enable_pipestat(dev_priv, pipe,
3235                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3236         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3237
3238         return 0;
3239 }
3240
3241 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3242 {
3243         struct drm_i915_private *dev_priv = to_i915(dev);
3244         unsigned long irqflags;
3245         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3246                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3247
3248         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3249         ilk_enable_display_irq(dev_priv, bit);
3250         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3251
3252         /* Even though there is no DMC, frame counter can get stuck when
3253          * PSR is active as no frames are generated.
3254          */
3255         if (HAS_PSR(dev_priv))
3256                 drm_vblank_restore(dev, pipe);
3257
3258         return 0;
3259 }
3260
3261 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3262 {
3263         struct drm_i915_private *dev_priv = to_i915(dev);
3264         unsigned long irqflags;
3265
3266         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3267         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3268         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3269
3270         /* Even if there is no DMC, frame counter can get stuck when
3271          * PSR is active as no frames are generated, so check only for PSR.
3272          */
3273         if (HAS_PSR(dev_priv))
3274                 drm_vblank_restore(dev, pipe);
3275
3276         return 0;
3277 }
3278
3279 /* Called from drm generic code, passed 'crtc' which
3280  * we use as a pipe index
3281  */
3282 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3283 {
3284         struct drm_i915_private *dev_priv = to_i915(dev);
3285         unsigned long irqflags;
3286
3287         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3288         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3289         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3290 }
3291
3292 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3293 {
3294         struct drm_i915_private *dev_priv = to_i915(dev);
3295         unsigned long irqflags;
3296
3297         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3298         i915_disable_pipestat(dev_priv, pipe,
3299                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3300         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3301 }
3302
3303 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3304 {
3305         struct drm_i915_private *dev_priv = to_i915(dev);
3306         unsigned long irqflags;
3307         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3308                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3309
3310         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3311         ilk_disable_display_irq(dev_priv, bit);
3312         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3313 }
3314
3315 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3316 {
3317         struct drm_i915_private *dev_priv = to_i915(dev);
3318         unsigned long irqflags;
3319
3320         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3321         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3322         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3323 }
3324
3325 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3326 {
3327         if (HAS_PCH_NOP(dev_priv))
3328                 return;
3329
3330         GEN3_IRQ_RESET(SDE);
3331
3332         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3333                 I915_WRITE(SERR_INT, 0xffffffff);
3334 }
3335
3336 /*
3337  * SDEIER is also touched by the interrupt handler to work around missed PCH
3338  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3339  * instead we unconditionally enable all PCH interrupt sources here, but then
3340  * only unmask them as needed with SDEIMR.
3341  *
3342  * This function needs to be called before interrupts are enabled.
3343  */
3344 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3345 {
3346         struct drm_i915_private *dev_priv = to_i915(dev);
3347
3348         if (HAS_PCH_NOP(dev_priv))
3349                 return;
3350
3351         WARN_ON(I915_READ(SDEIER) != 0);
3352         I915_WRITE(SDEIER, 0xffffffff);
3353         POSTING_READ(SDEIER);
3354 }
3355
3356 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3357 {
3358         GEN3_IRQ_RESET(GT);
3359         if (INTEL_GEN(dev_priv) >= 6)
3360                 GEN3_IRQ_RESET(GEN6_PM);
3361 }
3362
3363 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3364 {
3365         if (IS_CHERRYVIEW(dev_priv))
3366                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3367         else
3368                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3369
3370         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3371         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3372
3373         i9xx_pipestat_irq_reset(dev_priv);
3374
3375         GEN3_IRQ_RESET(VLV_);
3376         dev_priv->irq_mask = ~0u;
3377 }
3378
3379 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3380 {
3381         u32 pipestat_mask;
3382         u32 enable_mask;
3383         enum pipe pipe;
3384
3385         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3386
3387         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3388         for_each_pipe(dev_priv, pipe)
3389                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3390
3391         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3392                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3393                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3394                 I915_LPE_PIPE_A_INTERRUPT |
3395                 I915_LPE_PIPE_B_INTERRUPT;
3396
3397         if (IS_CHERRYVIEW(dev_priv))
3398                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3399                         I915_LPE_PIPE_C_INTERRUPT;
3400
3401         WARN_ON(dev_priv->irq_mask != ~0u);
3402
3403         dev_priv->irq_mask = ~enable_mask;
3404
3405         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3406 }
3407
3408 /* drm_dma.h hooks
3409 */
3410 static void ironlake_irq_reset(struct drm_device *dev)
3411 {
3412         struct drm_i915_private *dev_priv = to_i915(dev);
3413
3414         if (IS_GEN5(dev_priv))
3415                 I915_WRITE(HWSTAM, 0xffffffff);
3416
3417         GEN3_IRQ_RESET(DE);
3418         if (IS_GEN7(dev_priv))
3419                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3420
3421         if (IS_HASWELL(dev_priv)) {
3422                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3423                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3424         }
3425
3426         gen5_gt_irq_reset(dev_priv);
3427
3428         ibx_irq_reset(dev_priv);
3429 }
3430
3431 static void valleyview_irq_reset(struct drm_device *dev)
3432 {
3433         struct drm_i915_private *dev_priv = to_i915(dev);
3434
3435         I915_WRITE(VLV_MASTER_IER, 0);
3436         POSTING_READ(VLV_MASTER_IER);
3437
3438         gen5_gt_irq_reset(dev_priv);
3439
3440         spin_lock_irq(&dev_priv->irq_lock);
3441         if (dev_priv->display_irqs_enabled)
3442                 vlv_display_irq_reset(dev_priv);
3443         spin_unlock_irq(&dev_priv->irq_lock);
3444 }
3445
3446 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3447 {
3448         GEN8_IRQ_RESET_NDX(GT, 0);
3449         GEN8_IRQ_RESET_NDX(GT, 1);
3450         GEN8_IRQ_RESET_NDX(GT, 2);
3451         GEN8_IRQ_RESET_NDX(GT, 3);
3452 }
3453
3454 static void gen8_irq_reset(struct drm_device *dev)
3455 {
3456         struct drm_i915_private *dev_priv = to_i915(dev);
3457         int pipe;
3458
3459         I915_WRITE(GEN8_MASTER_IRQ, 0);
3460         POSTING_READ(GEN8_MASTER_IRQ);
3461
3462         gen8_gt_irq_reset(dev_priv);
3463
3464         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3465         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3466
3467         for_each_pipe(dev_priv, pipe)
3468                 if (intel_display_power_is_enabled(dev_priv,
3469                                                    POWER_DOMAIN_PIPE(pipe)))
3470                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3471
3472         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3473         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3474         GEN3_IRQ_RESET(GEN8_PCU_);
3475
3476         if (HAS_PCH_SPLIT(dev_priv))
3477                 ibx_irq_reset(dev_priv);
3478 }
3479
3480 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3481 {
3482         /* Disable RCS, BCS, VCS and VECS class engines. */
3483         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3484         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3485
3486         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3487         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3488         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3489         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3490         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3491         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3492
3493         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3494         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3495 }
3496
3497 static void gen11_irq_reset(struct drm_device *dev)
3498 {
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         int pipe;
3501
3502         I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3503         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3504
3505         gen11_gt_irq_reset(dev_priv);
3506
3507         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3508
3509         for_each_pipe(dev_priv, pipe)
3510                 if (intel_display_power_is_enabled(dev_priv,
3511                                                    POWER_DOMAIN_PIPE(pipe)))
3512                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3513
3514         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3515         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3516         GEN3_IRQ_RESET(GEN11_GU_MISC_);
3517         GEN3_IRQ_RESET(GEN8_PCU_);
3518 }
3519
3520 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3521                                      u8 pipe_mask)
3522 {
3523         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3524         enum pipe pipe;
3525
3526         spin_lock_irq(&dev_priv->irq_lock);
3527
3528         if (!intel_irqs_enabled(dev_priv)) {
3529                 spin_unlock_irq(&dev_priv->irq_lock);
3530                 return;
3531         }
3532
3533         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3534                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3535                                   dev_priv->de_irq_mask[pipe],
3536                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3537
3538         spin_unlock_irq(&dev_priv->irq_lock);
3539 }
3540
3541 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3542                                      u8 pipe_mask)
3543 {
3544         enum pipe pipe;
3545
3546         spin_lock_irq(&dev_priv->irq_lock);
3547
3548         if (!intel_irqs_enabled(dev_priv)) {
3549                 spin_unlock_irq(&dev_priv->irq_lock);
3550                 return;
3551         }
3552
3553         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3554                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3555
3556         spin_unlock_irq(&dev_priv->irq_lock);
3557
3558         /* make sure we're done processing display irqs */
3559         synchronize_irq(dev_priv->drm.irq);
3560 }
3561
3562 static void cherryview_irq_reset(struct drm_device *dev)
3563 {
3564         struct drm_i915_private *dev_priv = to_i915(dev);
3565
3566         I915_WRITE(GEN8_MASTER_IRQ, 0);
3567         POSTING_READ(GEN8_MASTER_IRQ);
3568
3569         gen8_gt_irq_reset(dev_priv);
3570
3571         GEN3_IRQ_RESET(GEN8_PCU_);
3572
3573         spin_lock_irq(&dev_priv->irq_lock);
3574         if (dev_priv->display_irqs_enabled)
3575                 vlv_display_irq_reset(dev_priv);
3576         spin_unlock_irq(&dev_priv->irq_lock);
3577 }
3578
3579 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3580                                   const u32 hpd[HPD_NUM_PINS])
3581 {
3582         struct intel_encoder *encoder;
3583         u32 enabled_irqs = 0;
3584
3585         for_each_intel_encoder(&dev_priv->drm, encoder)
3586                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3587                         enabled_irqs |= hpd[encoder->hpd_pin];
3588
3589         return enabled_irqs;
3590 }
3591
3592 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3593 {
3594         u32 hotplug;
3595
3596         /*
3597          * Enable digital hotplug on the PCH, and configure the DP short pulse
3598          * duration to 2ms (which is the minimum in the Display Port spec).
3599          * The pulse duration bits are reserved on LPT+.
3600          */
3601         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3602         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3603                      PORTC_PULSE_DURATION_MASK |
3604                      PORTD_PULSE_DURATION_MASK);
3605         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3606         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3607         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3608         /*
3609          * When CPU and PCH are on the same package, port A
3610          * HPD must be enabled in both north and south.
3611          */
3612         if (HAS_PCH_LPT_LP(dev_priv))
3613                 hotplug |= PORTA_HOTPLUG_ENABLE;
3614         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3615 }
3616
3617 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3618 {
3619         u32 hotplug_irqs, enabled_irqs;
3620
3621         if (HAS_PCH_IBX(dev_priv)) {
3622                 hotplug_irqs = SDE_HOTPLUG_MASK;
3623                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3624         } else {
3625                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3626                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3627         }
3628
3629         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3630
3631         ibx_hpd_detection_setup(dev_priv);
3632 }
3633
3634 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3635 {
3636         u32 val, hotplug;
3637
3638         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3639         if (HAS_PCH_CNP(dev_priv)) {
3640                 val = I915_READ(SOUTH_CHICKEN1);
3641                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3642                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3643                 I915_WRITE(SOUTH_CHICKEN1, val);
3644         }
3645
3646         /* Enable digital hotplug on the PCH */
3647         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3648         hotplug |= PORTA_HOTPLUG_ENABLE |
3649                    PORTB_HOTPLUG_ENABLE |
3650                    PORTC_HOTPLUG_ENABLE |
3651                    PORTD_HOTPLUG_ENABLE;
3652         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3653
3654         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3655         hotplug |= PORTE_HOTPLUG_ENABLE;
3656         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3657 }
3658
3659 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3660 {
3661         u32 hotplug_irqs, enabled_irqs;
3662
3663         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3664         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3665
3666         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3667
3668         spt_hpd_detection_setup(dev_priv);
3669 }
3670
3671 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3672 {
3673         u32 hotplug;
3674
3675         /*
3676          * Enable digital hotplug on the CPU, and configure the DP short pulse
3677          * duration to 2ms (which is the minimum in the Display Port spec)
3678          * The pulse duration bits are reserved on HSW+.
3679          */
3680         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3681         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3682         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3683                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3684         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3685 }
3686
3687 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3688 {
3689         u32 hotplug_irqs, enabled_irqs;
3690
3691         if (INTEL_GEN(dev_priv) >= 8) {
3692                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3693                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3694
3695                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3696         } else if (INTEL_GEN(dev_priv) >= 7) {
3697                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3698                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3699
3700                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3701         } else {
3702                 hotplug_irqs = DE_DP_A_HOTPLUG;
3703                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3704
3705                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3706         }
3707
3708         ilk_hpd_detection_setup(dev_priv);
3709
3710         ibx_hpd_irq_setup(dev_priv);
3711 }
3712
3713 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3714                                       u32 enabled_irqs)
3715 {
3716         u32 hotplug;
3717
3718         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3719         hotplug |= PORTA_HOTPLUG_ENABLE |
3720                    PORTB_HOTPLUG_ENABLE |
3721                    PORTC_HOTPLUG_ENABLE;
3722
3723         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3724                       hotplug, enabled_irqs);
3725         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3726
3727         /*
3728          * For BXT invert bit has to be set based on AOB design
3729          * for HPD detection logic, update it based on VBT fields.
3730          */
3731         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3732             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3733                 hotplug |= BXT_DDIA_HPD_INVERT;
3734         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3735             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3736                 hotplug |= BXT_DDIB_HPD_INVERT;
3737         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3738             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3739                 hotplug |= BXT_DDIC_HPD_INVERT;
3740
3741         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3742 }
3743
3744 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3745 {
3746         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3747 }
3748
3749 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3750 {
3751         u32 hotplug_irqs, enabled_irqs;
3752
3753         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3754         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3755
3756         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3757
3758         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3759 }
3760
3761 static void ibx_irq_postinstall(struct drm_device *dev)
3762 {
3763         struct drm_i915_private *dev_priv = to_i915(dev);
3764         u32 mask;
3765
3766         if (HAS_PCH_NOP(dev_priv))
3767                 return;
3768
3769         if (HAS_PCH_IBX(dev_priv))
3770                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3771         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3772                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3773         else
3774                 mask = SDE_GMBUS_CPT;
3775
3776         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3777         I915_WRITE(SDEIMR, ~mask);
3778
3779         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3780             HAS_PCH_LPT(dev_priv))
3781                 ibx_hpd_detection_setup(dev_priv);
3782         else
3783                 spt_hpd_detection_setup(dev_priv);
3784 }
3785
3786 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3787 {
3788         struct drm_i915_private *dev_priv = to_i915(dev);
3789         u32 pm_irqs, gt_irqs;
3790
3791         pm_irqs = gt_irqs = 0;
3792
3793         dev_priv->gt_irq_mask = ~0;
3794         if (HAS_L3_DPF(dev_priv)) {
3795                 /* L3 parity interrupt is always unmasked. */
3796                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3797                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3798         }
3799
3800         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3801         if (IS_GEN5(dev_priv)) {
3802                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3803         } else {
3804                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3805         }
3806
3807         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3808
3809         if (INTEL_GEN(dev_priv) >= 6) {
3810                 /*
3811                  * RPS interrupts will get enabled/disabled on demand when RPS
3812                  * itself is enabled/disabled.
3813                  */
3814                 if (HAS_VEBOX(dev_priv)) {
3815                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3816                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3817                 }
3818
3819                 dev_priv->pm_imr = 0xffffffff;
3820                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3821         }
3822 }
3823
3824 static int ironlake_irq_postinstall(struct drm_device *dev)
3825 {
3826         struct drm_i915_private *dev_priv = to_i915(dev);
3827         u32 display_mask, extra_mask;
3828
3829         if (INTEL_GEN(dev_priv) >= 7) {
3830                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3831                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3832                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3833                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3834                               DE_DP_A_HOTPLUG_IVB);
3835         } else {
3836                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3837                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3838                                 DE_PIPEA_CRC_DONE | DE_POISON);
3839                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3840                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3841                               DE_DP_A_HOTPLUG);
3842         }
3843
3844         if (IS_HASWELL(dev_priv)) {
3845                 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3846                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3847                 display_mask |= DE_EDP_PSR_INT_HSW;
3848         }
3849
3850         dev_priv->irq_mask = ~display_mask;
3851
3852         ibx_irq_pre_postinstall(dev);
3853
3854         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3855
3856         gen5_gt_irq_postinstall(dev);
3857
3858         ilk_hpd_detection_setup(dev_priv);
3859
3860         ibx_irq_postinstall(dev);
3861
3862         if (IS_IRONLAKE_M(dev_priv)) {
3863                 /* Enable PCU event interrupts
3864                  *
3865                  * spinlocking not required here for correctness since interrupt
3866                  * setup is guaranteed to run in single-threaded context. But we
3867                  * need it to make the assert_spin_locked happy. */
3868                 spin_lock_irq(&dev_priv->irq_lock);
3869                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3870                 spin_unlock_irq(&dev_priv->irq_lock);
3871         }
3872
3873         return 0;
3874 }
3875
3876 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3877 {
3878         lockdep_assert_held(&dev_priv->irq_lock);
3879
3880         if (dev_priv->display_irqs_enabled)
3881                 return;
3882
3883         dev_priv->display_irqs_enabled = true;
3884
3885         if (intel_irqs_enabled(dev_priv)) {
3886                 vlv_display_irq_reset(dev_priv);
3887                 vlv_display_irq_postinstall(dev_priv);
3888         }
3889 }
3890
3891 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3892 {
3893         lockdep_assert_held(&dev_priv->irq_lock);
3894
3895         if (!dev_priv->display_irqs_enabled)
3896                 return;
3897
3898         dev_priv->display_irqs_enabled = false;
3899
3900         if (intel_irqs_enabled(dev_priv))
3901                 vlv_display_irq_reset(dev_priv);
3902 }
3903
3904
3905 static int valleyview_irq_postinstall(struct drm_device *dev)
3906 {
3907         struct drm_i915_private *dev_priv = to_i915(dev);
3908
3909         gen5_gt_irq_postinstall(dev);
3910
3911         spin_lock_irq(&dev_priv->irq_lock);
3912         if (dev_priv->display_irqs_enabled)
3913                 vlv_display_irq_postinstall(dev_priv);
3914         spin_unlock_irq(&dev_priv->irq_lock);
3915
3916         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3917         POSTING_READ(VLV_MASTER_IER);
3918
3919         return 0;
3920 }
3921
3922 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3923 {
3924         /* These are interrupts we'll toggle with the ring mask register */
3925         uint32_t gt_interrupts[] = {
3926                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3927                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3928                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3929                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3930                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3931                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3932                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3933                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3934                 0,
3935                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3936                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3937                 };
3938
3939         if (HAS_L3_DPF(dev_priv))
3940                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3941
3942         dev_priv->pm_ier = 0x0;
3943         dev_priv->pm_imr = ~dev_priv->pm_ier;
3944         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3945         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3946         /*
3947          * RPS interrupts will get enabled/disabled on demand when RPS itself
3948          * is enabled/disabled. Same wil be the case for GuC interrupts.
3949          */
3950         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3951         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3952 }
3953
3954 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3955 {
3956         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3957         uint32_t de_pipe_enables;
3958         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3959         u32 de_port_enables;
3960         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3961         enum pipe pipe;
3962
3963         if (INTEL_GEN(dev_priv) <= 10)
3964                 de_misc_masked |= GEN8_DE_MISC_GSE;
3965
3966         if (INTEL_GEN(dev_priv) >= 9) {
3967                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3968                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3969                                   GEN9_AUX_CHANNEL_D;
3970                 if (IS_GEN9_LP(dev_priv))
3971                         de_port_masked |= BXT_DE_PORT_GMBUS;
3972         } else {
3973                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3974         }
3975
3976         if (INTEL_GEN(dev_priv) >= 11)
3977                 de_port_masked |= ICL_AUX_CHANNEL_E;
3978
3979         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3980                 de_port_masked |= CNL_AUX_CHANNEL_F;
3981
3982         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3983                                            GEN8_PIPE_FIFO_UNDERRUN;
3984
3985         de_port_enables = de_port_masked;
3986         if (IS_GEN9_LP(dev_priv))
3987                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3988         else if (IS_BROADWELL(dev_priv))
3989                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3990
3991         gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3992         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3993
3994         for_each_pipe(dev_priv, pipe) {
3995                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3996
3997                 if (intel_display_power_is_enabled(dev_priv,
3998                                 POWER_DOMAIN_PIPE(pipe)))
3999                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4000                                           dev_priv->de_irq_mask[pipe],
4001                                           de_pipe_enables);
4002         }
4003
4004         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4005         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4006
4007         if (IS_GEN9_LP(dev_priv))
4008                 bxt_hpd_detection_setup(dev_priv);
4009         else if (IS_BROADWELL(dev_priv))
4010                 ilk_hpd_detection_setup(dev_priv);
4011 }
4012
4013 static int gen8_irq_postinstall(struct drm_device *dev)
4014 {
4015         struct drm_i915_private *dev_priv = to_i915(dev);
4016
4017         if (HAS_PCH_SPLIT(dev_priv))
4018                 ibx_irq_pre_postinstall(dev);
4019
4020         gen8_gt_irq_postinstall(dev_priv);
4021         gen8_de_irq_postinstall(dev_priv);
4022
4023         if (HAS_PCH_SPLIT(dev_priv))
4024                 ibx_irq_postinstall(dev);
4025
4026         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4027         POSTING_READ(GEN8_MASTER_IRQ);
4028
4029         return 0;
4030 }
4031
4032 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4033 {
4034         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4035
4036         BUILD_BUG_ON(irqs & 0xffff0000);
4037
4038         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4039         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4040         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4041
4042         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4043         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4044         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4045         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4046         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4047         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4048
4049         /*
4050          * RPS interrupts will get enabled/disabled on demand when RPS itself
4051          * is enabled/disabled.
4052          */
4053         dev_priv->pm_ier = 0x0;
4054         dev_priv->pm_imr = ~dev_priv->pm_ier;
4055         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4056         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4057 }
4058
4059 static int gen11_irq_postinstall(struct drm_device *dev)
4060 {
4061         struct drm_i915_private *dev_priv = dev->dev_private;
4062         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4063
4064         gen11_gt_irq_postinstall(dev_priv);
4065         gen8_de_irq_postinstall(dev_priv);
4066
4067         GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4068
4069         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4070
4071         I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4072         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4073
4074         return 0;
4075 }
4076
4077 static int cherryview_irq_postinstall(struct drm_device *dev)
4078 {
4079         struct drm_i915_private *dev_priv = to_i915(dev);
4080
4081         gen8_gt_irq_postinstall(dev_priv);
4082
4083         spin_lock_irq(&dev_priv->irq_lock);
4084         if (dev_priv->display_irqs_enabled)
4085                 vlv_display_irq_postinstall(dev_priv);
4086         spin_unlock_irq(&dev_priv->irq_lock);
4087
4088         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4089         POSTING_READ(GEN8_MASTER_IRQ);
4090
4091         return 0;
4092 }
4093
4094 static void i8xx_irq_reset(struct drm_device *dev)
4095 {
4096         struct drm_i915_private *dev_priv = to_i915(dev);
4097
4098         i9xx_pipestat_irq_reset(dev_priv);
4099
4100         I915_WRITE16(HWSTAM, 0xffff);
4101
4102         GEN2_IRQ_RESET();
4103 }
4104
4105 static int i8xx_irq_postinstall(struct drm_device *dev)
4106 {
4107         struct drm_i915_private *dev_priv = to_i915(dev);
4108         u16 enable_mask;
4109
4110         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4111                             I915_ERROR_MEMORY_REFRESH));
4112
4113         /* Unmask the interrupts that we always want on. */
4114         dev_priv->irq_mask =
4115                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4116                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
4117
4118         enable_mask =
4119                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121                 I915_USER_INTERRUPT;
4122
4123         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4124
4125         /* Interrupt setup is already guaranteed to be single-threaded, this is
4126          * just to make the assert_spin_locked check happy. */
4127         spin_lock_irq(&dev_priv->irq_lock);
4128         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4129         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4130         spin_unlock_irq(&dev_priv->irq_lock);
4131
4132         return 0;
4133 }
4134
4135 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4136 {
4137         struct drm_device *dev = arg;
4138         struct drm_i915_private *dev_priv = to_i915(dev);
4139         irqreturn_t ret = IRQ_NONE;
4140
4141         if (!intel_irqs_enabled(dev_priv))
4142                 return IRQ_NONE;
4143
4144         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4145         disable_rpm_wakeref_asserts(dev_priv);
4146
4147         do {
4148                 u32 pipe_stats[I915_MAX_PIPES] = {};
4149                 u16 iir;
4150
4151                 iir = I915_READ16(IIR);
4152                 if (iir == 0)
4153                         break;
4154
4155                 ret = IRQ_HANDLED;
4156
4157                 /* Call regardless, as some status bits might not be
4158                  * signalled in iir */
4159                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4160
4161                 I915_WRITE16(IIR, iir);
4162
4163                 if (iir & I915_USER_INTERRUPT)
4164                         notify_ring(dev_priv->engine[RCS]);
4165
4166                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4167                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4168
4169                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4170         } while (0);
4171
4172         enable_rpm_wakeref_asserts(dev_priv);
4173
4174         return ret;
4175 }
4176
4177 static void i915_irq_reset(struct drm_device *dev)
4178 {
4179         struct drm_i915_private *dev_priv = to_i915(dev);
4180
4181         if (I915_HAS_HOTPLUG(dev_priv)) {
4182                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4183                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4184         }
4185
4186         i9xx_pipestat_irq_reset(dev_priv);
4187
4188         I915_WRITE(HWSTAM, 0xffffffff);
4189
4190         GEN3_IRQ_RESET();
4191 }
4192
4193 static int i915_irq_postinstall(struct drm_device *dev)
4194 {
4195         struct drm_i915_private *dev_priv = to_i915(dev);
4196         u32 enable_mask;
4197
4198         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4199                           I915_ERROR_MEMORY_REFRESH));
4200
4201         /* Unmask the interrupts that we always want on. */
4202         dev_priv->irq_mask =
4203                 ~(I915_ASLE_INTERRUPT |
4204                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4205                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
4206
4207         enable_mask =
4208                 I915_ASLE_INTERRUPT |
4209                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211                 I915_USER_INTERRUPT;
4212
4213         if (I915_HAS_HOTPLUG(dev_priv)) {
4214                 /* Enable in IER... */
4215                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4216                 /* and unmask in IMR */
4217                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4218         }
4219
4220         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4221
4222         /* Interrupt setup is already guaranteed to be single-threaded, this is
4223          * just to make the assert_spin_locked check happy. */
4224         spin_lock_irq(&dev_priv->irq_lock);
4225         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4226         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4227         spin_unlock_irq(&dev_priv->irq_lock);
4228
4229         i915_enable_asle_pipestat(dev_priv);
4230
4231         return 0;
4232 }
4233
4234 static irqreturn_t i915_irq_handler(int irq, void *arg)
4235 {
4236         struct drm_device *dev = arg;
4237         struct drm_i915_private *dev_priv = to_i915(dev);
4238         irqreturn_t ret = IRQ_NONE;
4239
4240         if (!intel_irqs_enabled(dev_priv))
4241                 return IRQ_NONE;
4242
4243         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4244         disable_rpm_wakeref_asserts(dev_priv);
4245
4246         do {
4247                 u32 pipe_stats[I915_MAX_PIPES] = {};
4248                 u32 hotplug_status = 0;
4249                 u32 iir;
4250
4251                 iir = I915_READ(IIR);
4252                 if (iir == 0)
4253                         break;
4254
4255                 ret = IRQ_HANDLED;
4256
4257                 if (I915_HAS_HOTPLUG(dev_priv) &&
4258                     iir & I915_DISPLAY_PORT_INTERRUPT)
4259                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4260
4261                 /* Call regardless, as some status bits might not be
4262                  * signalled in iir */
4263                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4264
4265                 I915_WRITE(IIR, iir);
4266
4267                 if (iir & I915_USER_INTERRUPT)
4268                         notify_ring(dev_priv->engine[RCS]);
4269
4270                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4271                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4272
4273                 if (hotplug_status)
4274                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4275
4276                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4277         } while (0);
4278
4279         enable_rpm_wakeref_asserts(dev_priv);
4280
4281         return ret;
4282 }
4283
4284 static void i965_irq_reset(struct drm_device *dev)
4285 {
4286         struct drm_i915_private *dev_priv = to_i915(dev);
4287
4288         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4289         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4290
4291         i9xx_pipestat_irq_reset(dev_priv);
4292
4293         I915_WRITE(HWSTAM, 0xffffffff);
4294
4295         GEN3_IRQ_RESET();
4296 }
4297
4298 static int i965_irq_postinstall(struct drm_device *dev)
4299 {
4300         struct drm_i915_private *dev_priv = to_i915(dev);
4301         u32 enable_mask;
4302         u32 error_mask;
4303
4304         /*
4305          * Enable some error detection, note the instruction error mask
4306          * bit is reserved, so we leave it masked.
4307          */
4308         if (IS_G4X(dev_priv)) {
4309                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4310                                GM45_ERROR_MEM_PRIV |
4311                                GM45_ERROR_CP_PRIV |
4312                                I915_ERROR_MEMORY_REFRESH);
4313         } else {
4314                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4315                                I915_ERROR_MEMORY_REFRESH);
4316         }
4317         I915_WRITE(EMR, error_mask);
4318
4319         /* Unmask the interrupts that we always want on. */
4320         dev_priv->irq_mask =
4321                 ~(I915_ASLE_INTERRUPT |
4322                   I915_DISPLAY_PORT_INTERRUPT |
4323                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4324                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4325                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4326
4327         enable_mask =
4328                 I915_ASLE_INTERRUPT |
4329                 I915_DISPLAY_PORT_INTERRUPT |
4330                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4331                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4332                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4333                 I915_USER_INTERRUPT;
4334
4335         if (IS_G4X(dev_priv))
4336                 enable_mask |= I915_BSD_USER_INTERRUPT;
4337
4338         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4339
4340         /* Interrupt setup is already guaranteed to be single-threaded, this is
4341          * just to make the assert_spin_locked check happy. */
4342         spin_lock_irq(&dev_priv->irq_lock);
4343         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4344         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4345         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4346         spin_unlock_irq(&dev_priv->irq_lock);
4347
4348         i915_enable_asle_pipestat(dev_priv);
4349
4350         return 0;
4351 }
4352
4353 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4354 {
4355         u32 hotplug_en;
4356
4357         lockdep_assert_held(&dev_priv->irq_lock);
4358
4359         /* Note HDMI and DP share hotplug bits */
4360         /* enable bits are the same for all generations */
4361         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4362         /* Programming the CRT detection parameters tends
4363            to generate a spurious hotplug event about three
4364            seconds later.  So just do it once.
4365         */
4366         if (IS_G4X(dev_priv))
4367                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4368         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4369
4370         /* Ignore TV since it's buggy */
4371         i915_hotplug_interrupt_update_locked(dev_priv,
4372                                              HOTPLUG_INT_EN_MASK |
4373                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4374                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4375                                              hotplug_en);
4376 }
4377
4378 static irqreturn_t i965_irq_handler(int irq, void *arg)
4379 {
4380         struct drm_device *dev = arg;
4381         struct drm_i915_private *dev_priv = to_i915(dev);
4382         irqreturn_t ret = IRQ_NONE;
4383
4384         if (!intel_irqs_enabled(dev_priv))
4385                 return IRQ_NONE;
4386
4387         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4388         disable_rpm_wakeref_asserts(dev_priv);
4389
4390         do {
4391                 u32 pipe_stats[I915_MAX_PIPES] = {};
4392                 u32 hotplug_status = 0;
4393                 u32 iir;
4394
4395                 iir = I915_READ(IIR);
4396                 if (iir == 0)
4397                         break;
4398
4399                 ret = IRQ_HANDLED;
4400
4401                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4402                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4403
4404                 /* Call regardless, as some status bits might not be
4405                  * signalled in iir */
4406                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4407
4408                 I915_WRITE(IIR, iir);
4409
4410                 if (iir & I915_USER_INTERRUPT)
4411                         notify_ring(dev_priv->engine[RCS]);
4412
4413                 if (iir & I915_BSD_USER_INTERRUPT)
4414                         notify_ring(dev_priv->engine[VCS]);
4415
4416                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4417                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4418
4419                 if (hotplug_status)
4420                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4421
4422                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4423         } while (0);
4424
4425         enable_rpm_wakeref_asserts(dev_priv);
4426
4427         return ret;
4428 }
4429
4430 /**
4431  * intel_irq_init - initializes irq support
4432  * @dev_priv: i915 device instance
4433  *
4434  * This function initializes all the irq support including work items, timers
4435  * and all the vtables. It does not setup the interrupt itself though.
4436  */
4437 void intel_irq_init(struct drm_i915_private *dev_priv)
4438 {
4439         struct drm_device *dev = &dev_priv->drm;
4440         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4441         int i;
4442
4443         intel_hpd_init_work(dev_priv);
4444
4445         INIT_WORK(&rps->work, gen6_pm_rps_work);
4446
4447         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4448         for (i = 0; i < MAX_L3_SLICES; ++i)
4449                 dev_priv->l3_parity.remap_info[i] = NULL;
4450
4451         if (HAS_GUC_SCHED(dev_priv))
4452                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4453
4454         /* Let's track the enabled rps events */
4455         if (IS_VALLEYVIEW(dev_priv))
4456                 /* WaGsvRC0ResidencyMethod:vlv */
4457                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4458         else
4459                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4460
4461         rps->pm_intrmsk_mbz = 0;
4462
4463         /*
4464          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4465          * if GEN6_PM_UP_EI_EXPIRED is masked.
4466          *
4467          * TODO: verify if this can be reproduced on VLV,CHV.
4468          */
4469         if (INTEL_GEN(dev_priv) <= 7)
4470                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4471
4472         if (INTEL_GEN(dev_priv) >= 8)
4473                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4474
4475         if (IS_GEN2(dev_priv)) {
4476                 /* Gen2 doesn't have a hardware frame counter */
4477                 dev->max_vblank_count = 0;
4478         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4479                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4480                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4481         } else {
4482                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4483                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4484         }
4485
4486         /*
4487          * Opt out of the vblank disable timer on everything except gen2.
4488          * Gen2 doesn't have a hardware frame counter and so depends on
4489          * vblank interrupts to produce sane vblank seuquence numbers.
4490          */
4491         if (!IS_GEN2(dev_priv))
4492                 dev->vblank_disable_immediate = true;
4493
4494         /* Most platforms treat the display irq block as an always-on
4495          * power domain. vlv/chv can disable it at runtime and need
4496          * special care to avoid writing any of the display block registers
4497          * outside of the power domain. We defer setting up the display irqs
4498          * in this case to the runtime pm.
4499          */
4500         dev_priv->display_irqs_enabled = true;
4501         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4502                 dev_priv->display_irqs_enabled = false;
4503
4504         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4505
4506         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4507         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4508
4509         if (IS_CHERRYVIEW(dev_priv)) {
4510                 dev->driver->irq_handler = cherryview_irq_handler;
4511                 dev->driver->irq_preinstall = cherryview_irq_reset;
4512                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4513                 dev->driver->irq_uninstall = cherryview_irq_reset;
4514                 dev->driver->enable_vblank = i965_enable_vblank;
4515                 dev->driver->disable_vblank = i965_disable_vblank;
4516                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4517         } else if (IS_VALLEYVIEW(dev_priv)) {
4518                 dev->driver->irq_handler = valleyview_irq_handler;
4519                 dev->driver->irq_preinstall = valleyview_irq_reset;
4520                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4521                 dev->driver->irq_uninstall = valleyview_irq_reset;
4522                 dev->driver->enable_vblank = i965_enable_vblank;
4523                 dev->driver->disable_vblank = i965_disable_vblank;
4524                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4525         } else if (INTEL_GEN(dev_priv) >= 11) {
4526                 dev->driver->irq_handler = gen11_irq_handler;
4527                 dev->driver->irq_preinstall = gen11_irq_reset;
4528                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4529                 dev->driver->irq_uninstall = gen11_irq_reset;
4530                 dev->driver->enable_vblank = gen8_enable_vblank;
4531                 dev->driver->disable_vblank = gen8_disable_vblank;
4532                 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4533         } else if (INTEL_GEN(dev_priv) >= 8) {
4534                 dev->driver->irq_handler = gen8_irq_handler;
4535                 dev->driver->irq_preinstall = gen8_irq_reset;
4536                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4537                 dev->driver->irq_uninstall = gen8_irq_reset;
4538                 dev->driver->enable_vblank = gen8_enable_vblank;
4539                 dev->driver->disable_vblank = gen8_disable_vblank;
4540                 if (IS_GEN9_LP(dev_priv))
4541                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4542                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4543                          HAS_PCH_CNP(dev_priv))
4544                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4545                 else
4546                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4547         } else if (HAS_PCH_SPLIT(dev_priv)) {
4548                 dev->driver->irq_handler = ironlake_irq_handler;
4549                 dev->driver->irq_preinstall = ironlake_irq_reset;
4550                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4551                 dev->driver->irq_uninstall = ironlake_irq_reset;
4552                 dev->driver->enable_vblank = ironlake_enable_vblank;
4553                 dev->driver->disable_vblank = ironlake_disable_vblank;
4554                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4555         } else {
4556                 if (IS_GEN2(dev_priv)) {
4557                         dev->driver->irq_preinstall = i8xx_irq_reset;
4558                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4559                         dev->driver->irq_handler = i8xx_irq_handler;
4560                         dev->driver->irq_uninstall = i8xx_irq_reset;
4561                         dev->driver->enable_vblank = i8xx_enable_vblank;
4562                         dev->driver->disable_vblank = i8xx_disable_vblank;
4563                 } else if (IS_GEN3(dev_priv)) {
4564                         dev->driver->irq_preinstall = i915_irq_reset;
4565                         dev->driver->irq_postinstall = i915_irq_postinstall;
4566                         dev->driver->irq_uninstall = i915_irq_reset;
4567                         dev->driver->irq_handler = i915_irq_handler;
4568                         dev->driver->enable_vblank = i8xx_enable_vblank;
4569                         dev->driver->disable_vblank = i8xx_disable_vblank;
4570                 } else {
4571                         dev->driver->irq_preinstall = i965_irq_reset;
4572                         dev->driver->irq_postinstall = i965_irq_postinstall;
4573                         dev->driver->irq_uninstall = i965_irq_reset;
4574                         dev->driver->irq_handler = i965_irq_handler;
4575                         dev->driver->enable_vblank = i965_enable_vblank;
4576                         dev->driver->disable_vblank = i965_disable_vblank;
4577                 }
4578                 if (I915_HAS_HOTPLUG(dev_priv))
4579                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4580         }
4581 }
4582
4583 /**
4584  * intel_irq_fini - deinitializes IRQ support
4585  * @i915: i915 device instance
4586  *
4587  * This function deinitializes all the IRQ support.
4588  */
4589 void intel_irq_fini(struct drm_i915_private *i915)
4590 {
4591         int i;
4592
4593         for (i = 0; i < MAX_L3_SLICES; ++i)
4594                 kfree(i915->l3_parity.remap_info[i]);
4595 }
4596
4597 /**
4598  * intel_irq_install - enables the hardware interrupt
4599  * @dev_priv: i915 device instance
4600  *
4601  * This function enables the hardware interrupt handling, but leaves the hotplug
4602  * handling still disabled. It is called after intel_irq_init().
4603  *
4604  * In the driver load and resume code we need working interrupts in a few places
4605  * but don't want to deal with the hassle of concurrent probe and hotplug
4606  * workers. Hence the split into this two-stage approach.
4607  */
4608 int intel_irq_install(struct drm_i915_private *dev_priv)
4609 {
4610         /*
4611          * We enable some interrupt sources in our postinstall hooks, so mark
4612          * interrupts as enabled _before_ actually enabling them to avoid
4613          * special cases in our ordering checks.
4614          */
4615         dev_priv->runtime_pm.irqs_enabled = true;
4616
4617         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4618 }
4619
4620 /**
4621  * intel_irq_uninstall - finilizes all irq handling
4622  * @dev_priv: i915 device instance
4623  *
4624  * This stops interrupt and hotplug handling and unregisters and frees all
4625  * resources acquired in the init functions.
4626  */
4627 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4628 {
4629         drm_irq_uninstall(&dev_priv->drm);
4630         intel_hpd_cancel_work(dev_priv);
4631         dev_priv->runtime_pm.irqs_enabled = false;
4632 }
4633
4634 /**
4635  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4636  * @dev_priv: i915 device instance
4637  *
4638  * This function is used to disable interrupts at runtime, both in the runtime
4639  * pm and the system suspend/resume code.
4640  */
4641 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4642 {
4643         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4644         dev_priv->runtime_pm.irqs_enabled = false;
4645         synchronize_irq(dev_priv->drm.irq);
4646 }
4647
4648 /**
4649  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4650  * @dev_priv: i915 device instance
4651  *
4652  * This function is used to enable interrupts at runtime, both in the runtime
4653  * pm and the system suspend/resume code.
4654  */
4655 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4656 {
4657         dev_priv->runtime_pm.irqs_enabled = true;
4658         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4659         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4660 }