Merge branch 'x86-entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/cpuidle.h>
33 #include <linux/slab.h>
34 #include <linux/sysrq.h>
35
36 #include <drm/drm_drv.h>
37 #include <drm/drm_irq.h>
38 #include <drm/i915_drm.h>
39
40 #include "display/intel_display_types.h"
41 #include "display/intel_fifo_underrun.h"
42 #include "display/intel_hotplug.h"
43 #include "display/intel_lpe_audio.h"
44 #include "display/intel_psr.h"
45
46 #include "gt/intel_gt.h"
47 #include "gt/intel_gt_irq.h"
48 #include "gt/intel_gt_pm_irq.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64
65 static const u32 hpd_ilk[HPD_NUM_PINS] = {
66         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
67 };
68
69 static const u32 hpd_ivb[HPD_NUM_PINS] = {
70         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
71 };
72
73 static const u32 hpd_bdw[HPD_NUM_PINS] = {
74         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
75 };
76
77 static const u32 hpd_ibx[HPD_NUM_PINS] = {
78         [HPD_CRT] = SDE_CRT_HOTPLUG,
79         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
83 };
84
85 static const u32 hpd_cpt[HPD_NUM_PINS] = {
86         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
91 };
92
93 static const u32 hpd_spt[HPD_NUM_PINS] = {
94         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
99 };
100
101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
103         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
108 };
109
110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
117 };
118
119 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
126 };
127
128 /* BXT hpd list */
129 static const u32 hpd_bxt[HPD_NUM_PINS] = {
130         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
131         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
132         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
133 };
134
135 static const u32 hpd_gen11[HPD_NUM_PINS] = {
136         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
137         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
138         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
139         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
140 };
141
142 static const u32 hpd_gen12[HPD_NUM_PINS] = {
143         [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
144         [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
145         [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
146         [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
147         [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
148         [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
149 };
150
151 static const u32 hpd_icp[HPD_NUM_PINS] = {
152         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
153         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
154         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
155         [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
156         [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
157         [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
158 };
159
160 static const u32 hpd_mcc[HPD_NUM_PINS] = {
161         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
162         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
163         [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
164 };
165
166 static const u32 hpd_tgp[HPD_NUM_PINS] = {
167         [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
168         [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
169         [HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
170         [HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
171         [HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
172         [HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
173         [HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
174         [HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
175         [HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
176 };
177
178 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
179                     i915_reg_t iir, i915_reg_t ier)
180 {
181         intel_uncore_write(uncore, imr, 0xffffffff);
182         intel_uncore_posting_read(uncore, imr);
183
184         intel_uncore_write(uncore, ier, 0);
185
186         /* IIR can theoretically queue up two events. Be paranoid. */
187         intel_uncore_write(uncore, iir, 0xffffffff);
188         intel_uncore_posting_read(uncore, iir);
189         intel_uncore_write(uncore, iir, 0xffffffff);
190         intel_uncore_posting_read(uncore, iir);
191 }
192
193 void gen2_irq_reset(struct intel_uncore *uncore)
194 {
195         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
196         intel_uncore_posting_read16(uncore, GEN2_IMR);
197
198         intel_uncore_write16(uncore, GEN2_IER, 0);
199
200         /* IIR can theoretically queue up two events. Be paranoid. */
201         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
202         intel_uncore_posting_read16(uncore, GEN2_IIR);
203         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
204         intel_uncore_posting_read16(uncore, GEN2_IIR);
205 }
206
207 /*
208  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
209  */
210 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
211 {
212         u32 val = intel_uncore_read(uncore, reg);
213
214         if (val == 0)
215                 return;
216
217         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
218              i915_mmio_reg_offset(reg), val);
219         intel_uncore_write(uncore, reg, 0xffffffff);
220         intel_uncore_posting_read(uncore, reg);
221         intel_uncore_write(uncore, reg, 0xffffffff);
222         intel_uncore_posting_read(uncore, reg);
223 }
224
225 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
226 {
227         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
228
229         if (val == 0)
230                 return;
231
232         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
233              i915_mmio_reg_offset(GEN2_IIR), val);
234         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
235         intel_uncore_posting_read16(uncore, GEN2_IIR);
236         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
237         intel_uncore_posting_read16(uncore, GEN2_IIR);
238 }
239
240 void gen3_irq_init(struct intel_uncore *uncore,
241                    i915_reg_t imr, u32 imr_val,
242                    i915_reg_t ier, u32 ier_val,
243                    i915_reg_t iir)
244 {
245         gen3_assert_iir_is_zero(uncore, iir);
246
247         intel_uncore_write(uncore, ier, ier_val);
248         intel_uncore_write(uncore, imr, imr_val);
249         intel_uncore_posting_read(uncore, imr);
250 }
251
252 void gen2_irq_init(struct intel_uncore *uncore,
253                    u32 imr_val, u32 ier_val)
254 {
255         gen2_assert_iir_is_zero(uncore);
256
257         intel_uncore_write16(uncore, GEN2_IER, ier_val);
258         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
259         intel_uncore_posting_read16(uncore, GEN2_IMR);
260 }
261
262 /* For display hotplug interrupt */
263 static inline void
264 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
265                                      u32 mask,
266                                      u32 bits)
267 {
268         u32 val;
269
270         lockdep_assert_held(&dev_priv->irq_lock);
271         WARN_ON(bits & ~mask);
272
273         val = I915_READ(PORT_HOTPLUG_EN);
274         val &= ~mask;
275         val |= bits;
276         I915_WRITE(PORT_HOTPLUG_EN, val);
277 }
278
279 /**
280  * i915_hotplug_interrupt_update - update hotplug interrupt enable
281  * @dev_priv: driver private
282  * @mask: bits to update
283  * @bits: bits to enable
284  * NOTE: the HPD enable bits are modified both inside and outside
285  * of an interrupt context. To avoid that read-modify-write cycles
286  * interfer, these bits are protected by a spinlock. Since this
287  * function is usually not called from a context where the lock is
288  * held already, this function acquires the lock itself. A non-locking
289  * version is also available.
290  */
291 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
292                                    u32 mask,
293                                    u32 bits)
294 {
295         spin_lock_irq(&dev_priv->irq_lock);
296         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
297         spin_unlock_irq(&dev_priv->irq_lock);
298 }
299
300 /**
301  * ilk_update_display_irq - update DEIMR
302  * @dev_priv: driver private
303  * @interrupt_mask: mask of interrupt bits to update
304  * @enabled_irq_mask: mask of interrupt bits to enable
305  */
306 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
307                             u32 interrupt_mask,
308                             u32 enabled_irq_mask)
309 {
310         u32 new_val;
311
312         lockdep_assert_held(&dev_priv->irq_lock);
313
314         WARN_ON(enabled_irq_mask & ~interrupt_mask);
315
316         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
317                 return;
318
319         new_val = dev_priv->irq_mask;
320         new_val &= ~interrupt_mask;
321         new_val |= (~enabled_irq_mask & interrupt_mask);
322
323         if (new_val != dev_priv->irq_mask) {
324                 dev_priv->irq_mask = new_val;
325                 I915_WRITE(DEIMR, dev_priv->irq_mask);
326                 POSTING_READ(DEIMR);
327         }
328 }
329
330 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
331 {
332         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
333
334         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
335 }
336
337 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
338 {
339         struct intel_gt *gt = &dev_priv->gt;
340
341         spin_lock_irq(&gt->irq_lock);
342
343         while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
344                 ;
345
346         dev_priv->gt_pm.rps.pm_iir = 0;
347
348         spin_unlock_irq(&gt->irq_lock);
349 }
350
351 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353         struct intel_gt *gt = &dev_priv->gt;
354
355         spin_lock_irq(&gt->irq_lock);
356         gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
357         dev_priv->gt_pm.rps.pm_iir = 0;
358         spin_unlock_irq(&gt->irq_lock);
359 }
360
361 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
362 {
363         struct intel_gt *gt = &dev_priv->gt;
364         struct intel_rps *rps = &dev_priv->gt_pm.rps;
365
366         if (READ_ONCE(rps->interrupts_enabled))
367                 return;
368
369         spin_lock_irq(&gt->irq_lock);
370         WARN_ON_ONCE(rps->pm_iir);
371
372         if (INTEL_GEN(dev_priv) >= 11)
373                 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
374         else
375                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
376
377         rps->interrupts_enabled = true;
378         gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
379
380         spin_unlock_irq(&gt->irq_lock);
381 }
382
383 u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
384 {
385         return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
386 }
387
388 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
389 {
390         struct intel_rps *rps = &dev_priv->gt_pm.rps;
391         struct intel_gt *gt = &dev_priv->gt;
392
393         if (!READ_ONCE(rps->interrupts_enabled))
394                 return;
395
396         spin_lock_irq(&gt->irq_lock);
397         rps->interrupts_enabled = false;
398
399         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
400
401         gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
402
403         spin_unlock_irq(&gt->irq_lock);
404         intel_synchronize_irq(dev_priv);
405
406         /* Now that we will not be generating any more work, flush any
407          * outstanding tasks. As we are called on the RPS idle path,
408          * we will reset the GPU to minimum frequencies, so the current
409          * state of the worker can be discarded.
410          */
411         cancel_work_sync(&rps->work);
412         if (INTEL_GEN(dev_priv) >= 11)
413                 gen11_reset_rps_interrupts(dev_priv);
414         else
415                 gen6_reset_rps_interrupts(dev_priv);
416 }
417
418 void gen9_reset_guc_interrupts(struct intel_guc *guc)
419 {
420         struct intel_gt *gt = guc_to_gt(guc);
421
422         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
423
424         spin_lock_irq(&gt->irq_lock);
425         gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
426         spin_unlock_irq(&gt->irq_lock);
427 }
428
429 void gen9_enable_guc_interrupts(struct intel_guc *guc)
430 {
431         struct intel_gt *gt = guc_to_gt(guc);
432
433         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
434
435         spin_lock_irq(&gt->irq_lock);
436         if (!guc->interrupts.enabled) {
437                 WARN_ON_ONCE(intel_uncore_read(gt->uncore,
438                                                gen6_pm_iir(gt->i915)) &
439                              gt->pm_guc_events);
440                 guc->interrupts.enabled = true;
441                 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
442         }
443         spin_unlock_irq(&gt->irq_lock);
444 }
445
446 void gen9_disable_guc_interrupts(struct intel_guc *guc)
447 {
448         struct intel_gt *gt = guc_to_gt(guc);
449
450         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
451
452         spin_lock_irq(&gt->irq_lock);
453         guc->interrupts.enabled = false;
454
455         gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
456
457         spin_unlock_irq(&gt->irq_lock);
458         intel_synchronize_irq(gt->i915);
459
460         gen9_reset_guc_interrupts(guc);
461 }
462
463 void gen11_reset_guc_interrupts(struct intel_guc *guc)
464 {
465         struct intel_gt *gt = guc_to_gt(guc);
466
467         spin_lock_irq(&gt->irq_lock);
468         gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
469         spin_unlock_irq(&gt->irq_lock);
470 }
471
472 void gen11_enable_guc_interrupts(struct intel_guc *guc)
473 {
474         struct intel_gt *gt = guc_to_gt(guc);
475
476         spin_lock_irq(&gt->irq_lock);
477         if (!guc->interrupts.enabled) {
478                 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
479
480                 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
481                 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
482                 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
483                 guc->interrupts.enabled = true;
484         }
485         spin_unlock_irq(&gt->irq_lock);
486 }
487
488 void gen11_disable_guc_interrupts(struct intel_guc *guc)
489 {
490         struct intel_gt *gt = guc_to_gt(guc);
491
492         spin_lock_irq(&gt->irq_lock);
493         guc->interrupts.enabled = false;
494
495         intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
496         intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
497
498         spin_unlock_irq(&gt->irq_lock);
499         intel_synchronize_irq(gt->i915);
500
501         gen11_reset_guc_interrupts(guc);
502 }
503
504 /**
505  * bdw_update_port_irq - update DE port interrupt
506  * @dev_priv: driver private
507  * @interrupt_mask: mask of interrupt bits to update
508  * @enabled_irq_mask: mask of interrupt bits to enable
509  */
510 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
511                                 u32 interrupt_mask,
512                                 u32 enabled_irq_mask)
513 {
514         u32 new_val;
515         u32 old_val;
516
517         lockdep_assert_held(&dev_priv->irq_lock);
518
519         WARN_ON(enabled_irq_mask & ~interrupt_mask);
520
521         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
522                 return;
523
524         old_val = I915_READ(GEN8_DE_PORT_IMR);
525
526         new_val = old_val;
527         new_val &= ~interrupt_mask;
528         new_val |= (~enabled_irq_mask & interrupt_mask);
529
530         if (new_val != old_val) {
531                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
532                 POSTING_READ(GEN8_DE_PORT_IMR);
533         }
534 }
535
536 /**
537  * bdw_update_pipe_irq - update DE pipe interrupt
538  * @dev_priv: driver private
539  * @pipe: pipe whose interrupt to update
540  * @interrupt_mask: mask of interrupt bits to update
541  * @enabled_irq_mask: mask of interrupt bits to enable
542  */
543 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
544                          enum pipe pipe,
545                          u32 interrupt_mask,
546                          u32 enabled_irq_mask)
547 {
548         u32 new_val;
549
550         lockdep_assert_held(&dev_priv->irq_lock);
551
552         WARN_ON(enabled_irq_mask & ~interrupt_mask);
553
554         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
555                 return;
556
557         new_val = dev_priv->de_irq_mask[pipe];
558         new_val &= ~interrupt_mask;
559         new_val |= (~enabled_irq_mask & interrupt_mask);
560
561         if (new_val != dev_priv->de_irq_mask[pipe]) {
562                 dev_priv->de_irq_mask[pipe] = new_val;
563                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
564                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
565         }
566 }
567
568 /**
569  * ibx_display_interrupt_update - update SDEIMR
570  * @dev_priv: driver private
571  * @interrupt_mask: mask of interrupt bits to update
572  * @enabled_irq_mask: mask of interrupt bits to enable
573  */
574 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
575                                   u32 interrupt_mask,
576                                   u32 enabled_irq_mask)
577 {
578         u32 sdeimr = I915_READ(SDEIMR);
579         sdeimr &= ~interrupt_mask;
580         sdeimr |= (~enabled_irq_mask & interrupt_mask);
581
582         WARN_ON(enabled_irq_mask & ~interrupt_mask);
583
584         lockdep_assert_held(&dev_priv->irq_lock);
585
586         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
587                 return;
588
589         I915_WRITE(SDEIMR, sdeimr);
590         POSTING_READ(SDEIMR);
591 }
592
593 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
594                               enum pipe pipe)
595 {
596         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
597         u32 enable_mask = status_mask << 16;
598
599         lockdep_assert_held(&dev_priv->irq_lock);
600
601         if (INTEL_GEN(dev_priv) < 5)
602                 goto out;
603
604         /*
605          * On pipe A we don't support the PSR interrupt yet,
606          * on pipe B and C the same bit MBZ.
607          */
608         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
609                 return 0;
610         /*
611          * On pipe B and C we don't support the PSR interrupt yet, on pipe
612          * A the same bit is for perf counters which we don't use either.
613          */
614         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
615                 return 0;
616
617         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
618                          SPRITE0_FLIP_DONE_INT_EN_VLV |
619                          SPRITE1_FLIP_DONE_INT_EN_VLV);
620         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
621                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
622         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
623                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
624
625 out:
626         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
627                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
628                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
629                   pipe_name(pipe), enable_mask, status_mask);
630
631         return enable_mask;
632 }
633
634 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
635                           enum pipe pipe, u32 status_mask)
636 {
637         i915_reg_t reg = PIPESTAT(pipe);
638         u32 enable_mask;
639
640         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
641                   "pipe %c: status_mask=0x%x\n",
642                   pipe_name(pipe), status_mask);
643
644         lockdep_assert_held(&dev_priv->irq_lock);
645         WARN_ON(!intel_irqs_enabled(dev_priv));
646
647         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
648                 return;
649
650         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
651         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
652
653         I915_WRITE(reg, enable_mask | status_mask);
654         POSTING_READ(reg);
655 }
656
657 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
658                            enum pipe pipe, u32 status_mask)
659 {
660         i915_reg_t reg = PIPESTAT(pipe);
661         u32 enable_mask;
662
663         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
664                   "pipe %c: status_mask=0x%x\n",
665                   pipe_name(pipe), status_mask);
666
667         lockdep_assert_held(&dev_priv->irq_lock);
668         WARN_ON(!intel_irqs_enabled(dev_priv));
669
670         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
671                 return;
672
673         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
674         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
675
676         I915_WRITE(reg, enable_mask | status_mask);
677         POSTING_READ(reg);
678 }
679
680 static bool i915_has_asle(struct drm_i915_private *dev_priv)
681 {
682         if (!dev_priv->opregion.asle)
683                 return false;
684
685         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
686 }
687
688 /**
689  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
690  * @dev_priv: i915 device private
691  */
692 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
693 {
694         if (!i915_has_asle(dev_priv))
695                 return;
696
697         spin_lock_irq(&dev_priv->irq_lock);
698
699         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
700         if (INTEL_GEN(dev_priv) >= 4)
701                 i915_enable_pipestat(dev_priv, PIPE_A,
702                                      PIPE_LEGACY_BLC_EVENT_STATUS);
703
704         spin_unlock_irq(&dev_priv->irq_lock);
705 }
706
707 /*
708  * This timing diagram depicts the video signal in and
709  * around the vertical blanking period.
710  *
711  * Assumptions about the fictitious mode used in this example:
712  *  vblank_start >= 3
713  *  vsync_start = vblank_start + 1
714  *  vsync_end = vblank_start + 2
715  *  vtotal = vblank_start + 3
716  *
717  *           start of vblank:
718  *           latch double buffered registers
719  *           increment frame counter (ctg+)
720  *           generate start of vblank interrupt (gen4+)
721  *           |
722  *           |          frame start:
723  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
724  *           |          may be shifted forward 1-3 extra lines via PIPECONF
725  *           |          |
726  *           |          |  start of vsync:
727  *           |          |  generate vsync interrupt
728  *           |          |  |
729  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
730  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
731  * ----va---> <-----------------vb--------------------> <--------va-------------
732  *       |          |       <----vs----->                     |
733  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
734  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
735  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
736  *       |          |                                         |
737  *       last visible pixel                                   first visible pixel
738  *                  |                                         increment frame counter (gen3/4)
739  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
740  *
741  * x  = horizontal active
742  * _  = horizontal blanking
743  * hs = horizontal sync
744  * va = vertical active
745  * vb = vertical blanking
746  * vs = vertical sync
747  * vbs = vblank_start (number)
748  *
749  * Summary:
750  * - most events happen at the start of horizontal sync
751  * - frame start happens at the start of horizontal blank, 1-4 lines
752  *   (depending on PIPECONF settings) after the start of vblank
753  * - gen3/4 pixel and frame counter are synchronized with the start
754  *   of horizontal active on the first line of vertical active
755  */
756
757 /* Called from drm generic code, passed a 'crtc', which
758  * we use as a pipe index
759  */
760 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
761 {
762         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
763         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
764         const struct drm_display_mode *mode = &vblank->hwmode;
765         enum pipe pipe = to_intel_crtc(crtc)->pipe;
766         i915_reg_t high_frame, low_frame;
767         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
768         unsigned long irqflags;
769
770         /*
771          * On i965gm TV output the frame counter only works up to
772          * the point when we enable the TV encoder. After that the
773          * frame counter ceases to work and reads zero. We need a
774          * vblank wait before enabling the TV encoder and so we
775          * have to enable vblank interrupts while the frame counter
776          * is still in a working state. However the core vblank code
777          * does not like us returning non-zero frame counter values
778          * when we've told it that we don't have a working frame
779          * counter. Thus we must stop non-zero values leaking out.
780          */
781         if (!vblank->max_vblank_count)
782                 return 0;
783
784         htotal = mode->crtc_htotal;
785         hsync_start = mode->crtc_hsync_start;
786         vbl_start = mode->crtc_vblank_start;
787         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
789
790         /* Convert to pixel count */
791         vbl_start *= htotal;
792
793         /* Start of vblank event occurs at start of hsync */
794         vbl_start -= htotal - hsync_start;
795
796         high_frame = PIPEFRAME(pipe);
797         low_frame = PIPEFRAMEPIXEL(pipe);
798
799         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
800
801         /*
802          * High & low register fields aren't synchronized, so make sure
803          * we get a low value that's stable across two reads of the high
804          * register.
805          */
806         do {
807                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
808                 low   = I915_READ_FW(low_frame);
809                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
810         } while (high1 != high2);
811
812         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
813
814         high1 >>= PIPE_FRAME_HIGH_SHIFT;
815         pixel = low & PIPE_PIXEL_MASK;
816         low >>= PIPE_FRAME_LOW_SHIFT;
817
818         /*
819          * The frame counter increments at beginning of active.
820          * Cook up a vblank counter by also checking the pixel
821          * counter against vblank start.
822          */
823         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
824 }
825
826 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
827 {
828         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
829         enum pipe pipe = to_intel_crtc(crtc)->pipe;
830
831         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
832 }
833
834 /*
835  * On certain encoders on certain platforms, pipe
836  * scanline register will not work to get the scanline,
837  * since the timings are driven from the PORT or issues
838  * with scanline register updates.
839  * This function will use Framestamp and current
840  * timestamp registers to calculate the scanline.
841  */
842 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
843 {
844         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
845         struct drm_vblank_crtc *vblank =
846                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
847         const struct drm_display_mode *mode = &vblank->hwmode;
848         u32 vblank_start = mode->crtc_vblank_start;
849         u32 vtotal = mode->crtc_vtotal;
850         u32 htotal = mode->crtc_htotal;
851         u32 clock = mode->crtc_clock;
852         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
853
854         /*
855          * To avoid the race condition where we might cross into the
856          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
857          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
858          * during the same frame.
859          */
860         do {
861                 /*
862                  * This field provides read back of the display
863                  * pipe frame time stamp. The time stamp value
864                  * is sampled at every start of vertical blank.
865                  */
866                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
867
868                 /*
869                  * The TIMESTAMP_CTR register has the current
870                  * time stamp value.
871                  */
872                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
873
874                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
875         } while (scan_post_time != scan_prev_time);
876
877         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
878                                         clock), 1000 * htotal);
879         scanline = min(scanline, vtotal - 1);
880         scanline = (scanline + vblank_start) % vtotal;
881
882         return scanline;
883 }
884
885 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
886 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
887 {
888         struct drm_device *dev = crtc->base.dev;
889         struct drm_i915_private *dev_priv = to_i915(dev);
890         const struct drm_display_mode *mode;
891         struct drm_vblank_crtc *vblank;
892         enum pipe pipe = crtc->pipe;
893         int position, vtotal;
894
895         if (!crtc->active)
896                 return -1;
897
898         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
899         mode = &vblank->hwmode;
900
901         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
902                 return __intel_get_crtc_scanline_from_timestamp(crtc);
903
904         vtotal = mode->crtc_vtotal;
905         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
906                 vtotal /= 2;
907
908         if (IS_GEN(dev_priv, 2))
909                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
910         else
911                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
912
913         /*
914          * On HSW, the DSL reg (0x70000) appears to return 0 if we
915          * read it just before the start of vblank.  So try it again
916          * so we don't accidentally end up spanning a vblank frame
917          * increment, causing the pipe_update_end() code to squak at us.
918          *
919          * The nature of this problem means we can't simply check the ISR
920          * bit and return the vblank start value; nor can we use the scanline
921          * debug register in the transcoder as it appears to have the same
922          * problem.  We may need to extend this to include other platforms,
923          * but so far testing only shows the problem on HSW.
924          */
925         if (HAS_DDI(dev_priv) && !position) {
926                 int i, temp;
927
928                 for (i = 0; i < 100; i++) {
929                         udelay(1);
930                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
931                         if (temp != position) {
932                                 position = temp;
933                                 break;
934                         }
935                 }
936         }
937
938         /*
939          * See update_scanline_offset() for the details on the
940          * scanline_offset adjustment.
941          */
942         return (position + crtc->scanline_offset) % vtotal;
943 }
944
945 bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
946                               bool in_vblank_irq, int *vpos, int *hpos,
947                               ktime_t *stime, ktime_t *etime,
948                               const struct drm_display_mode *mode)
949 {
950         struct drm_i915_private *dev_priv = to_i915(dev);
951         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
952                                                                 pipe);
953         int position;
954         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
955         unsigned long irqflags;
956         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
957                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
958                 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
959
960         if (WARN_ON(!mode->crtc_clock)) {
961                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
962                                  "pipe %c\n", pipe_name(pipe));
963                 return false;
964         }
965
966         htotal = mode->crtc_htotal;
967         hsync_start = mode->crtc_hsync_start;
968         vtotal = mode->crtc_vtotal;
969         vbl_start = mode->crtc_vblank_start;
970         vbl_end = mode->crtc_vblank_end;
971
972         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
973                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
974                 vbl_end /= 2;
975                 vtotal /= 2;
976         }
977
978         /*
979          * Lock uncore.lock, as we will do multiple timing critical raw
980          * register reads, potentially with preemption disabled, so the
981          * following code must not block on uncore.lock.
982          */
983         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
984
985         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
986
987         /* Get optional system timestamp before query. */
988         if (stime)
989                 *stime = ktime_get();
990
991         if (use_scanline_counter) {
992                 /* No obvious pixelcount register. Only query vertical
993                  * scanout position from Display scan line register.
994                  */
995                 position = __intel_get_crtc_scanline(intel_crtc);
996         } else {
997                 /* Have access to pixelcount since start of frame.
998                  * We can split this into vertical and horizontal
999                  * scanout position.
1000                  */
1001                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003                 /* convert to pixel counts */
1004                 vbl_start *= htotal;
1005                 vbl_end *= htotal;
1006                 vtotal *= htotal;
1007
1008                 /*
1009                  * In interlaced modes, the pixel counter counts all pixels,
1010                  * so one field will have htotal more pixels. In order to avoid
1011                  * the reported position from jumping backwards when the pixel
1012                  * counter is beyond the length of the shorter field, just
1013                  * clamp the position the length of the shorter field. This
1014                  * matches how the scanline counter based position works since
1015                  * the scanline counter doesn't count the two half lines.
1016                  */
1017                 if (position >= vtotal)
1018                         position = vtotal - 1;
1019
1020                 /*
1021                  * Start of vblank interrupt is triggered at start of hsync,
1022                  * just prior to the first active line of vblank. However we
1023                  * consider lines to start at the leading edge of horizontal
1024                  * active. So, should we get here before we've crossed into
1025                  * the horizontal active of the first line in vblank, we would
1026                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027                  * always add htotal-hsync_start to the current pixel position.
1028                  */
1029                 position = (position + htotal - hsync_start) % vtotal;
1030         }
1031
1032         /* Get optional system timestamp after query. */
1033         if (etime)
1034                 *etime = ktime_get();
1035
1036         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040         /*
1041          * While in vblank, position will be negative
1042          * counting up towards 0 at vbl_end. And outside
1043          * vblank, position will be positive counting
1044          * up since vbl_end.
1045          */
1046         if (position >= vbl_start)
1047                 position -= vbl_end;
1048         else
1049                 position += vtotal - vbl_end;
1050
1051         if (use_scanline_counter) {
1052                 *vpos = position;
1053                 *hpos = 0;
1054         } else {
1055                 *vpos = position / htotal;
1056                 *hpos = position - (*vpos * htotal);
1057         }
1058
1059         return true;
1060 }
1061
1062 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063 {
1064         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065         unsigned long irqflags;
1066         int position;
1067
1068         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069         position = __intel_get_crtc_scanline(crtc);
1070         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072         return position;
1073 }
1074
1075 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076 {
1077         struct intel_uncore *uncore = &dev_priv->uncore;
1078         u32 busy_up, busy_down, max_avg, min_avg;
1079         u8 new_delay;
1080
1081         spin_lock(&mchdev_lock);
1082
1083         intel_uncore_write16(uncore,
1084                              MEMINTRSTS,
1085                              intel_uncore_read(uncore, MEMINTRSTS));
1086
1087         new_delay = dev_priv->ips.cur_delay;
1088
1089         intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090         busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091         busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092         max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093         min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095         /* Handle RCS change request from hw */
1096         if (busy_up > max_avg) {
1097                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098                         new_delay = dev_priv->ips.cur_delay - 1;
1099                 if (new_delay < dev_priv->ips.max_delay)
1100                         new_delay = dev_priv->ips.max_delay;
1101         } else if (busy_down < min_avg) {
1102                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103                         new_delay = dev_priv->ips.cur_delay + 1;
1104                 if (new_delay > dev_priv->ips.min_delay)
1105                         new_delay = dev_priv->ips.min_delay;
1106         }
1107
1108         if (ironlake_set_drps(dev_priv, new_delay))
1109                 dev_priv->ips.cur_delay = new_delay;
1110
1111         spin_unlock(&mchdev_lock);
1112
1113         return;
1114 }
1115
1116 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117                         struct intel_rps_ei *ei)
1118 {
1119         ei->ktime = ktime_get_raw();
1120         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122 }
1123
1124 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125 {
1126         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127 }
1128
1129 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130 {
1131         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132         const struct intel_rps_ei *prev = &rps->ei;
1133         struct intel_rps_ei now;
1134         u32 events = 0;
1135
1136         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137                 return 0;
1138
1139         vlv_c0_read(dev_priv, &now);
1140
1141         if (prev->ktime) {
1142                 u64 time, c0;
1143                 u32 render, media;
1144
1145                 time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147                 time *= dev_priv->czclk_freq;
1148
1149                 /* Workload can be split between render + media,
1150                  * e.g. SwapBuffers being blitted in X after being rendered in
1151                  * mesa. To account for this we need to combine both engines
1152                  * into our activity counter.
1153                  */
1154                 render = now.render_c0 - prev->render_c0;
1155                 media = now.media_c0 - prev->media_c0;
1156                 c0 = max(render, media);
1157                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159                 if (c0 > time * rps->power.up_threshold)
1160                         events = GEN6_PM_RP_UP_THRESHOLD;
1161                 else if (c0 < time * rps->power.down_threshold)
1162                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1163         }
1164
1165         rps->ei = now;
1166         return events;
1167 }
1168
1169 static void gen6_pm_rps_work(struct work_struct *work)
1170 {
1171         struct drm_i915_private *dev_priv =
1172                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173         struct intel_gt *gt = &dev_priv->gt;
1174         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175         bool client_boost = false;
1176         int new_delay, adj, min, max;
1177         u32 pm_iir = 0;
1178
1179         spin_lock_irq(&gt->irq_lock);
1180         if (rps->interrupts_enabled) {
1181                 pm_iir = fetch_and_zero(&rps->pm_iir);
1182                 client_boost = atomic_read(&rps->num_waiters);
1183         }
1184         spin_unlock_irq(&gt->irq_lock);
1185
1186         /* Make sure we didn't queue anything we're not going to process. */
1187         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189                 goto out;
1190
1191         mutex_lock(&rps->lock);
1192
1193         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195         adj = rps->last_adj;
1196         new_delay = rps->cur_freq;
1197         min = rps->min_freq_softlimit;
1198         max = rps->max_freq_softlimit;
1199         if (client_boost)
1200                 max = rps->max_freq;
1201         if (client_boost && new_delay < rps->boost_freq) {
1202                 new_delay = rps->boost_freq;
1203                 adj = 0;
1204         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205                 if (adj > 0)
1206                         adj *= 2;
1207                 else /* CHV needs even encode values */
1208                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210                 if (new_delay >= rps->max_freq_softlimit)
1211                         adj = 0;
1212         } else if (client_boost) {
1213                 adj = 0;
1214         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215                 if (rps->cur_freq > rps->efficient_freq)
1216                         new_delay = rps->efficient_freq;
1217                 else if (rps->cur_freq > rps->min_freq_softlimit)
1218                         new_delay = rps->min_freq_softlimit;
1219                 adj = 0;
1220         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221                 if (adj < 0)
1222                         adj *= 2;
1223                 else /* CHV needs even encode values */
1224                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226                 if (new_delay <= rps->min_freq_softlimit)
1227                         adj = 0;
1228         } else { /* unknown event */
1229                 adj = 0;
1230         }
1231
1232         rps->last_adj = adj;
1233
1234         /*
1235          * Limit deboosting and boosting to keep ourselves at the extremes
1236          * when in the respective power modes (i.e. slowly decrease frequencies
1237          * while in the HIGH_POWER zone and slowly increase frequencies while
1238          * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239          * to the next level quickly, and conversely if busy we expect to
1240          * hit a waitboost and rapidly switch into max power.
1241          */
1242         if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243             (adj > 0 && rps->power.mode == LOW_POWER))
1244                 rps->last_adj = 0;
1245
1246         /* sysfs frequency interfaces may have snuck in while servicing the
1247          * interrupt
1248          */
1249         new_delay += adj;
1250         new_delay = clamp_t(int, new_delay, min, max);
1251
1252         if (intel_set_rps(dev_priv, new_delay)) {
1253                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254                 rps->last_adj = 0;
1255         }
1256
1257         mutex_unlock(&rps->lock);
1258
1259 out:
1260         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261         spin_lock_irq(&gt->irq_lock);
1262         if (rps->interrupts_enabled)
1263                 gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264         spin_unlock_irq(&gt->irq_lock);
1265 }
1266
1267
1268 /**
1269  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270  * occurred.
1271  * @work: workqueue struct
1272  *
1273  * Doesn't actually do anything except notify userspace. As a consequence of
1274  * this event, userspace should try to remap the bad rows since statistically
1275  * it is likely the same row is more likely to go bad again.
1276  */
1277 static void ivybridge_parity_work(struct work_struct *work)
1278 {
1279         struct drm_i915_private *dev_priv =
1280                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281         struct intel_gt *gt = &dev_priv->gt;
1282         u32 error_status, row, bank, subbank;
1283         char *parity_event[6];
1284         u32 misccpctl;
1285         u8 slice = 0;
1286
1287         /* We must turn off DOP level clock gating to access the L3 registers.
1288          * In order to prevent a get/put style interface, acquire struct mutex
1289          * any time we access those registers.
1290          */
1291         mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293         /* If we've screwed up tracking, just let the interrupt fire again */
1294         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295                 goto out;
1296
1297         misccpctl = I915_READ(GEN7_MISCCPCTL);
1298         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299         POSTING_READ(GEN7_MISCCPCTL);
1300
1301         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302                 i915_reg_t reg;
1303
1304                 slice--;
1305                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306                         break;
1307
1308                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310                 reg = GEN7_L3CDERRST1(slice);
1311
1312                 error_status = I915_READ(reg);
1313                 row = GEN7_PARITY_ERROR_ROW(error_status);
1314                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1315                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318                 POSTING_READ(reg);
1319
1320                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325                 parity_event[5] = NULL;
1326
1327                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328                                    KOBJ_CHANGE, parity_event);
1329
1330                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331                           slice, row, bank, subbank);
1332
1333                 kfree(parity_event[4]);
1334                 kfree(parity_event[3]);
1335                 kfree(parity_event[2]);
1336                 kfree(parity_event[1]);
1337         }
1338
1339         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341 out:
1342         WARN_ON(dev_priv->l3_parity.which_slice);
1343         spin_lock_irq(&gt->irq_lock);
1344         gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345         spin_unlock_irq(&gt->irq_lock);
1346
1347         mutex_unlock(&dev_priv->drm.struct_mutex);
1348 }
1349
1350 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351 {
1352         switch (pin) {
1353         case HPD_PORT_C:
1354                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355         case HPD_PORT_D:
1356                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357         case HPD_PORT_E:
1358                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359         case HPD_PORT_F:
1360                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361         default:
1362                 return false;
1363         }
1364 }
1365
1366 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367 {
1368         switch (pin) {
1369         case HPD_PORT_D:
1370                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371         case HPD_PORT_E:
1372                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373         case HPD_PORT_F:
1374                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375         case HPD_PORT_G:
1376                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377         case HPD_PORT_H:
1378                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379         case HPD_PORT_I:
1380                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381         default:
1382                 return false;
1383         }
1384 }
1385
1386 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387 {
1388         switch (pin) {
1389         case HPD_PORT_A:
1390                 return val & PORTA_HOTPLUG_LONG_DETECT;
1391         case HPD_PORT_B:
1392                 return val & PORTB_HOTPLUG_LONG_DETECT;
1393         case HPD_PORT_C:
1394                 return val & PORTC_HOTPLUG_LONG_DETECT;
1395         default:
1396                 return false;
1397         }
1398 }
1399
1400 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401 {
1402         switch (pin) {
1403         case HPD_PORT_A:
1404                 return val & ICP_DDIA_HPD_LONG_DETECT;
1405         case HPD_PORT_B:
1406                 return val & ICP_DDIB_HPD_LONG_DETECT;
1407         case HPD_PORT_C:
1408                 return val & TGP_DDIC_HPD_LONG_DETECT;
1409         default:
1410                 return false;
1411         }
1412 }
1413
1414 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415 {
1416         switch (pin) {
1417         case HPD_PORT_C:
1418                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419         case HPD_PORT_D:
1420                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421         case HPD_PORT_E:
1422                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423         case HPD_PORT_F:
1424                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425         default:
1426                 return false;
1427         }
1428 }
1429
1430 static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431 {
1432         switch (pin) {
1433         case HPD_PORT_A:
1434                 return val & ICP_DDIA_HPD_LONG_DETECT;
1435         case HPD_PORT_B:
1436                 return val & ICP_DDIB_HPD_LONG_DETECT;
1437         case HPD_PORT_C:
1438                 return val & TGP_DDIC_HPD_LONG_DETECT;
1439         default:
1440                 return false;
1441         }
1442 }
1443
1444 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445 {
1446         switch (pin) {
1447         case HPD_PORT_D:
1448                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449         case HPD_PORT_E:
1450                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451         case HPD_PORT_F:
1452                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453         case HPD_PORT_G:
1454                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455         case HPD_PORT_H:
1456                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457         case HPD_PORT_I:
1458                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459         default:
1460                 return false;
1461         }
1462 }
1463
1464 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465 {
1466         switch (pin) {
1467         case HPD_PORT_E:
1468                 return val & PORTE_HOTPLUG_LONG_DETECT;
1469         default:
1470                 return false;
1471         }
1472 }
1473
1474 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475 {
1476         switch (pin) {
1477         case HPD_PORT_A:
1478                 return val & PORTA_HOTPLUG_LONG_DETECT;
1479         case HPD_PORT_B:
1480                 return val & PORTB_HOTPLUG_LONG_DETECT;
1481         case HPD_PORT_C:
1482                 return val & PORTC_HOTPLUG_LONG_DETECT;
1483         case HPD_PORT_D:
1484                 return val & PORTD_HOTPLUG_LONG_DETECT;
1485         default:
1486                 return false;
1487         }
1488 }
1489
1490 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491 {
1492         switch (pin) {
1493         case HPD_PORT_A:
1494                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495         default:
1496                 return false;
1497         }
1498 }
1499
1500 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501 {
1502         switch (pin) {
1503         case HPD_PORT_B:
1504                 return val & PORTB_HOTPLUG_LONG_DETECT;
1505         case HPD_PORT_C:
1506                 return val & PORTC_HOTPLUG_LONG_DETECT;
1507         case HPD_PORT_D:
1508                 return val & PORTD_HOTPLUG_LONG_DETECT;
1509         default:
1510                 return false;
1511         }
1512 }
1513
1514 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515 {
1516         switch (pin) {
1517         case HPD_PORT_B:
1518                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519         case HPD_PORT_C:
1520                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521         case HPD_PORT_D:
1522                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523         default:
1524                 return false;
1525         }
1526 }
1527
1528 /*
1529  * Get a bit mask of pins that have triggered, and which ones may be long.
1530  * This can be called multiple times with the same masks to accumulate
1531  * hotplug detection results from several registers.
1532  *
1533  * Note that the caller is expected to zero out the masks initially.
1534  */
1535 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536                                u32 *pin_mask, u32 *long_mask,
1537                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1538                                const u32 hpd[HPD_NUM_PINS],
1539                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540 {
1541         enum hpd_pin pin;
1542
1543         BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545         for_each_hpd_pin(pin) {
1546                 if ((hpd[pin] & hotplug_trigger) == 0)
1547                         continue;
1548
1549                 *pin_mask |= BIT(pin);
1550
1551                 if (long_pulse_detect(pin, dig_hotplug_reg))
1552                         *long_mask |= BIT(pin);
1553         }
1554
1555         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556                          hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
1558 }
1559
1560 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561 {
1562         wake_up_all(&dev_priv->gmbus_wait_queue);
1563 }
1564
1565 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566 {
1567         wake_up_all(&dev_priv->gmbus_wait_queue);
1568 }
1569
1570 #if defined(CONFIG_DEBUG_FS)
1571 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572                                          enum pipe pipe,
1573                                          u32 crc0, u32 crc1,
1574                                          u32 crc2, u32 crc3,
1575                                          u32 crc4)
1576 {
1577         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581         trace_intel_pipe_crc(crtc, crcs);
1582
1583         spin_lock(&pipe_crc->lock);
1584         /*
1585          * For some not yet identified reason, the first CRC is
1586          * bonkers. So let's just wait for the next vblank and read
1587          * out the buggy result.
1588          *
1589          * On GEN8+ sometimes the second CRC is bonkers as well, so
1590          * don't trust that one either.
1591          */
1592         if (pipe_crc->skipped <= 0 ||
1593             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594                 pipe_crc->skipped++;
1595                 spin_unlock(&pipe_crc->lock);
1596                 return;
1597         }
1598         spin_unlock(&pipe_crc->lock);
1599
1600         drm_crtc_add_crc_entry(&crtc->base, true,
1601                                 drm_crtc_accurate_vblank_count(&crtc->base),
1602                                 crcs);
1603 }
1604 #else
1605 static inline void
1606 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607                              enum pipe pipe,
1608                              u32 crc0, u32 crc1,
1609                              u32 crc2, u32 crc3,
1610                              u32 crc4) {}
1611 #endif
1612
1613
1614 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615                                      enum pipe pipe)
1616 {
1617         display_pipe_crc_irq_handler(dev_priv, pipe,
1618                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619                                      0, 0, 0, 0);
1620 }
1621
1622 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623                                      enum pipe pipe)
1624 {
1625         display_pipe_crc_irq_handler(dev_priv, pipe,
1626                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631 }
1632
1633 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634                                       enum pipe pipe)
1635 {
1636         u32 res1, res2;
1637
1638         if (INTEL_GEN(dev_priv) >= 3)
1639                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640         else
1641                 res1 = 0;
1642
1643         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645         else
1646                 res2 = 0;
1647
1648         display_pipe_crc_irq_handler(dev_priv, pipe,
1649                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1650                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652                                      res1, res2);
1653 }
1654
1655 /* The RPS events need forcewake, so we add them to a work queue and mask their
1656  * IMR bits until the work is done. Other interrupts can be processed without
1657  * the work queue. */
1658 void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659 {
1660         struct drm_i915_private *i915 = gt->i915;
1661         struct intel_rps *rps = &i915->gt_pm.rps;
1662         const u32 events = i915->pm_rps_events & pm_iir;
1663
1664         lockdep_assert_held(&gt->irq_lock);
1665
1666         if (unlikely(!events))
1667                 return;
1668
1669         gen6_gt_pm_mask_irq(gt, events);
1670
1671         if (!rps->interrupts_enabled)
1672                 return;
1673
1674         rps->pm_iir |= events;
1675         schedule_work(&rps->work);
1676 }
1677
1678 void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679 {
1680         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681         struct intel_gt *gt = &dev_priv->gt;
1682
1683         if (pm_iir & dev_priv->pm_rps_events) {
1684                 spin_lock(&gt->irq_lock);
1685                 gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686                 if (rps->interrupts_enabled) {
1687                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688                         schedule_work(&rps->work);
1689                 }
1690                 spin_unlock(&gt->irq_lock);
1691         }
1692
1693         if (INTEL_GEN(dev_priv) >= 8)
1694                 return;
1695
1696         if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697                 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699         if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700                 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701 }
1702
1703 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704 {
1705         enum pipe pipe;
1706
1707         for_each_pipe(dev_priv, pipe) {
1708                 I915_WRITE(PIPESTAT(pipe),
1709                            PIPESTAT_INT_STATUS_MASK |
1710                            PIPE_FIFO_UNDERRUN_STATUS);
1711
1712                 dev_priv->pipestat_irq_mask[pipe] = 0;
1713         }
1714 }
1715
1716 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718 {
1719         int pipe;
1720
1721         spin_lock(&dev_priv->irq_lock);
1722
1723         if (!dev_priv->display_irqs_enabled) {
1724                 spin_unlock(&dev_priv->irq_lock);
1725                 return;
1726         }
1727
1728         for_each_pipe(dev_priv, pipe) {
1729                 i915_reg_t reg;
1730                 u32 status_mask, enable_mask, iir_bit = 0;
1731
1732                 /*
1733                  * PIPESTAT bits get signalled even when the interrupt is
1734                  * disabled with the mask bits, and some of the status bits do
1735                  * not generate interrupts at all (like the underrun bit). Hence
1736                  * we need to be careful that we only handle what we want to
1737                  * handle.
1738                  */
1739
1740                 /* fifo underruns are filterered in the underrun handler. */
1741                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743                 switch (pipe) {
1744                 case PIPE_A:
1745                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746                         break;
1747                 case PIPE_B:
1748                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749                         break;
1750                 case PIPE_C:
1751                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752                         break;
1753                 }
1754                 if (iir & iir_bit)
1755                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757                 if (!status_mask)
1758                         continue;
1759
1760                 reg = PIPESTAT(pipe);
1761                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764                 /*
1765                  * Clear the PIPE*STAT regs before the IIR
1766                  *
1767                  * Toggle the enable bits to make sure we get an
1768                  * edge in the ISR pipe event bit if we don't clear
1769                  * all the enabled status bits. Otherwise the edge
1770                  * triggered IIR on i965/g4x wouldn't notice that
1771                  * an interrupt is still pending.
1772                  */
1773                 if (pipe_stats[pipe]) {
1774                         I915_WRITE(reg, pipe_stats[pipe]);
1775                         I915_WRITE(reg, enable_mask);
1776                 }
1777         }
1778         spin_unlock(&dev_priv->irq_lock);
1779 }
1780
1781 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783 {
1784         enum pipe pipe;
1785
1786         for_each_pipe(dev_priv, pipe) {
1787                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788                         drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795         }
1796 }
1797
1798 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800 {
1801         bool blc_event = false;
1802         enum pipe pipe;
1803
1804         for_each_pipe(dev_priv, pipe) {
1805                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806                         drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809                         blc_event = true;
1810
1811                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816         }
1817
1818         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819                 intel_opregion_asle_intr(dev_priv);
1820 }
1821
1822 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824 {
1825         bool blc_event = false;
1826         enum pipe pipe;
1827
1828         for_each_pipe(dev_priv, pipe) {
1829                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830                         drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833                         blc_event = true;
1834
1835                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840         }
1841
1842         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843                 intel_opregion_asle_intr(dev_priv);
1844
1845         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846                 gmbus_irq_handler(dev_priv);
1847 }
1848
1849 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850                                             u32 pipe_stats[I915_MAX_PIPES])
1851 {
1852         enum pipe pipe;
1853
1854         for_each_pipe(dev_priv, pipe) {
1855                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856                         drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863         }
1864
1865         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866                 gmbus_irq_handler(dev_priv);
1867 }
1868
1869 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870 {
1871         u32 hotplug_status = 0, hotplug_status_mask;
1872         int i;
1873
1874         if (IS_G4X(dev_priv) ||
1875             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878         else
1879                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881         /*
1882          * We absolutely have to clear all the pending interrupt
1883          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884          * interrupt bit won't have an edge, and the i965/g4x
1885          * edge triggered IIR will not notice that an interrupt
1886          * is still pending. We can't use PORT_HOTPLUG_EN to
1887          * guarantee the edge as the act of toggling the enable
1888          * bits can itself generate a new hotplug interrupt :(
1889          */
1890         for (i = 0; i < 10; i++) {
1891                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893                 if (tmp == 0)
1894                         return hotplug_status;
1895
1896                 hotplug_status |= tmp;
1897                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898         }
1899
1900         WARN_ONCE(1,
1901                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902                   I915_READ(PORT_HOTPLUG_STAT));
1903
1904         return hotplug_status;
1905 }
1906
1907 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908                                  u32 hotplug_status)
1909 {
1910         u32 pin_mask = 0, long_mask = 0;
1911
1912         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913             IS_CHERRYVIEW(dev_priv)) {
1914                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916                 if (hotplug_trigger) {
1917                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918                                            hotplug_trigger, hotplug_trigger,
1919                                            hpd_status_g4x,
1920                                            i9xx_port_hotplug_long_detect);
1921
1922                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923                 }
1924
1925                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926                         dp_aux_irq_handler(dev_priv);
1927         } else {
1928                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930                 if (hotplug_trigger) {
1931                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932                                            hotplug_trigger, hotplug_trigger,
1933                                            hpd_status_i915,
1934                                            i9xx_port_hotplug_long_detect);
1935                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936                 }
1937         }
1938 }
1939
1940 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941 {
1942         struct drm_i915_private *dev_priv = arg;
1943         irqreturn_t ret = IRQ_NONE;
1944
1945         if (!intel_irqs_enabled(dev_priv))
1946                 return IRQ_NONE;
1947
1948         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951         do {
1952                 u32 iir, gt_iir, pm_iir;
1953                 u32 pipe_stats[I915_MAX_PIPES] = {};
1954                 u32 hotplug_status = 0;
1955                 u32 ier = 0;
1956
1957                 gt_iir = I915_READ(GTIIR);
1958                 pm_iir = I915_READ(GEN6_PMIIR);
1959                 iir = I915_READ(VLV_IIR);
1960
1961                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962                         break;
1963
1964                 ret = IRQ_HANDLED;
1965
1966                 /*
1967                  * Theory on interrupt generation, based on empirical evidence:
1968                  *
1969                  * x = ((VLV_IIR & VLV_IER) ||
1970                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972                  *
1973                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975                  * guarantee the CPU interrupt will be raised again even if we
1976                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977                  * bits this time around.
1978                  */
1979                 I915_WRITE(VLV_MASTER_IER, 0);
1980                 ier = I915_READ(VLV_IER);
1981                 I915_WRITE(VLV_IER, 0);
1982
1983                 if (gt_iir)
1984                         I915_WRITE(GTIIR, gt_iir);
1985                 if (pm_iir)
1986                         I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991                 /* Call regardless, as some status bits might not be
1992                  * signalled in iir */
1993                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996                            I915_LPE_PIPE_B_INTERRUPT))
1997                         intel_lpe_audio_irq_handler(dev_priv);
1998
1999                 /*
2000                  * VLV_IIR is single buffered, and reflects the level
2001                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002                  */
2003                 if (iir)
2004                         I915_WRITE(VLV_IIR, iir);
2005
2006                 I915_WRITE(VLV_IER, ier);
2007                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009                 if (gt_iir)
2010                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011                 if (pm_iir)
2012                         gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014                 if (hotplug_status)
2015                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018         } while (0);
2019
2020         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022         return ret;
2023 }
2024
2025 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026 {
2027         struct drm_i915_private *dev_priv = arg;
2028         irqreturn_t ret = IRQ_NONE;
2029
2030         if (!intel_irqs_enabled(dev_priv))
2031                 return IRQ_NONE;
2032
2033         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036         do {
2037                 u32 master_ctl, iir;
2038                 u32 pipe_stats[I915_MAX_PIPES] = {};
2039                 u32 hotplug_status = 0;
2040                 u32 gt_iir[4];
2041                 u32 ier = 0;
2042
2043                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044                 iir = I915_READ(VLV_IIR);
2045
2046                 if (master_ctl == 0 && iir == 0)
2047                         break;
2048
2049                 ret = IRQ_HANDLED;
2050
2051                 /*
2052                  * Theory on interrupt generation, based on empirical evidence:
2053                  *
2054                  * x = ((VLV_IIR & VLV_IER) ||
2055                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057                  *
2058                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060                  * guarantee the CPU interrupt will be raised again even if we
2061                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062                  * bits this time around.
2063                  */
2064                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2065                 ier = I915_READ(VLV_IER);
2066                 I915_WRITE(VLV_IER, 0);
2067
2068                 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073                 /* Call regardless, as some status bits might not be
2074                  * signalled in iir */
2075                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078                            I915_LPE_PIPE_B_INTERRUPT |
2079                            I915_LPE_PIPE_C_INTERRUPT))
2080                         intel_lpe_audio_irq_handler(dev_priv);
2081
2082                 /*
2083                  * VLV_IIR is single buffered, and reflects the level
2084                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085                  */
2086                 if (iir)
2087                         I915_WRITE(VLV_IIR, iir);
2088
2089                 I915_WRITE(VLV_IER, ier);
2090                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092                 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094                 if (hotplug_status)
2095                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098         } while (0);
2099
2100         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102         return ret;
2103 }
2104
2105 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106                                 u32 hotplug_trigger,
2107                                 const u32 hpd[HPD_NUM_PINS])
2108 {
2109         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111         /*
2112          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113          * unless we touch the hotplug register, even if hotplug_trigger is
2114          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115          * errors.
2116          */
2117         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118         if (!hotplug_trigger) {
2119                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120                         PORTD_HOTPLUG_STATUS_MASK |
2121                         PORTC_HOTPLUG_STATUS_MASK |
2122                         PORTB_HOTPLUG_STATUS_MASK;
2123                 dig_hotplug_reg &= ~mask;
2124         }
2125
2126         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127         if (!hotplug_trigger)
2128                 return;
2129
2130         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131                            dig_hotplug_reg, hpd,
2132                            pch_port_hotplug_long_detect);
2133
2134         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135 }
2136
2137 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138 {
2139         int pipe;
2140         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146                                SDE_AUDIO_POWER_SHIFT);
2147                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148                                  port_name(port));
2149         }
2150
2151         if (pch_iir & SDE_AUX_MASK)
2152                 dp_aux_irq_handler(dev_priv);
2153
2154         if (pch_iir & SDE_GMBUS)
2155                 gmbus_irq_handler(dev_priv);
2156
2157         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163         if (pch_iir & SDE_POISON)
2164                 DRM_ERROR("PCH poison interrupt\n");
2165
2166         if (pch_iir & SDE_FDI_MASK)
2167                 for_each_pipe(dev_priv, pipe)
2168                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169                                          pipe_name(pipe),
2170                                          I915_READ(FDI_RX_IIR(pipe)));
2171
2172         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
2178         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183 }
2184
2185 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186 {
2187         u32 err_int = I915_READ(GEN7_ERR_INT);
2188         enum pipe pipe;
2189
2190         if (err_int & ERR_INT_POISON)
2191                 DRM_ERROR("Poison interrupt\n");
2192
2193         for_each_pipe(dev_priv, pipe) {
2194                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198                         if (IS_IVYBRIDGE(dev_priv))
2199                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200                         else
2201                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202                 }
2203         }
2204
2205         I915_WRITE(GEN7_ERR_INT, err_int);
2206 }
2207
2208 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209 {
2210         u32 serr_int = I915_READ(SERR_INT);
2211         enum pipe pipe;
2212
2213         if (serr_int & SERR_INT_POISON)
2214                 DRM_ERROR("PCH poison interrupt\n");
2215
2216         for_each_pipe(dev_priv, pipe)
2217                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2219
2220         I915_WRITE(SERR_INT, serr_int);
2221 }
2222
2223 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224 {
2225         int pipe;
2226         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232                                SDE_AUDIO_POWER_SHIFT_CPT);
2233                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234                                  port_name(port));
2235         }
2236
2237         if (pch_iir & SDE_AUX_MASK_CPT)
2238                 dp_aux_irq_handler(dev_priv);
2239
2240         if (pch_iir & SDE_GMBUS_CPT)
2241                 gmbus_irq_handler(dev_priv);
2242
2243         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249         if (pch_iir & SDE_FDI_MASK_CPT)
2250                 for_each_pipe(dev_priv, pipe)
2251                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252                                          pipe_name(pipe),
2253                                          I915_READ(FDI_RX_IIR(pipe)));
2254
2255         if (pch_iir & SDE_ERROR_CPT)
2256                 cpt_serr_int_handler(dev_priv);
2257 }
2258
2259 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260                             const u32 *pins)
2261 {
2262         u32 ddi_hotplug_trigger;
2263         u32 tc_hotplug_trigger;
2264         u32 pin_mask = 0, long_mask = 0;
2265
2266         if (HAS_PCH_MCC(dev_priv)) {
2267                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268                 tc_hotplug_trigger = 0;
2269         } else {
2270                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271                 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272         }
2273
2274         if (ddi_hotplug_trigger) {
2275                 u32 dig_hotplug_reg;
2276
2277                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281                                    ddi_hotplug_trigger,
2282                                    dig_hotplug_reg, pins,
2283                                    icp_ddi_port_hotplug_long_detect);
2284         }
2285
2286         if (tc_hotplug_trigger) {
2287                 u32 dig_hotplug_reg;
2288
2289                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293                                    tc_hotplug_trigger,
2294                                    dig_hotplug_reg, pins,
2295                                    icp_tc_port_hotplug_long_detect);
2296         }
2297
2298         if (pin_mask)
2299                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301         if (pch_iir & SDE_GMBUS_ICP)
2302                 gmbus_irq_handler(dev_priv);
2303 }
2304
2305 static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306 {
2307         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308         u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309         u32 pin_mask = 0, long_mask = 0;
2310
2311         if (ddi_hotplug_trigger) {
2312                 u32 dig_hotplug_reg;
2313
2314                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318                                    ddi_hotplug_trigger,
2319                                    dig_hotplug_reg, hpd_tgp,
2320                                    tgp_ddi_port_hotplug_long_detect);
2321         }
2322
2323         if (tc_hotplug_trigger) {
2324                 u32 dig_hotplug_reg;
2325
2326                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330                                    tc_hotplug_trigger,
2331                                    dig_hotplug_reg, hpd_tgp,
2332                                    tgp_tc_port_hotplug_long_detect);
2333         }
2334
2335         if (pin_mask)
2336                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338         if (pch_iir & SDE_GMBUS_ICP)
2339                 gmbus_irq_handler(dev_priv);
2340 }
2341
2342 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343 {
2344         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345                 ~SDE_PORTE_HOTPLUG_SPT;
2346         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347         u32 pin_mask = 0, long_mask = 0;
2348
2349         if (hotplug_trigger) {
2350                 u32 dig_hotplug_reg;
2351
2352                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357                                    spt_port_hotplug_long_detect);
2358         }
2359
2360         if (hotplug2_trigger) {
2361                 u32 dig_hotplug_reg;
2362
2363                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368                                    spt_port_hotplug2_long_detect);
2369         }
2370
2371         if (pin_mask)
2372                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374         if (pch_iir & SDE_GMBUS_CPT)
2375                 gmbus_irq_handler(dev_priv);
2376 }
2377
2378 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379                                 u32 hotplug_trigger,
2380                                 const u32 hpd[HPD_NUM_PINS])
2381 {
2382         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388                            dig_hotplug_reg, hpd,
2389                            ilk_port_hotplug_long_detect);
2390
2391         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392 }
2393
2394 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395                                     u32 de_iir)
2396 {
2397         enum pipe pipe;
2398         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400         if (hotplug_trigger)
2401                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403         if (de_iir & DE_AUX_CHANNEL_A)
2404                 dp_aux_irq_handler(dev_priv);
2405
2406         if (de_iir & DE_GSE)
2407                 intel_opregion_asle_intr(dev_priv);
2408
2409         if (de_iir & DE_POISON)
2410                 DRM_ERROR("Poison interrupt\n");
2411
2412         for_each_pipe(dev_priv, pipe) {
2413                 if (de_iir & DE_PIPE_VBLANK(pipe))
2414                         drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421         }
2422
2423         /* check event from PCH */
2424         if (de_iir & DE_PCH_EVENT) {
2425                 u32 pch_iir = I915_READ(SDEIIR);
2426
2427                 if (HAS_PCH_CPT(dev_priv))
2428                         cpt_irq_handler(dev_priv, pch_iir);
2429                 else
2430                         ibx_irq_handler(dev_priv, pch_iir);
2431
2432                 /* should clear PCH hotplug event before clear CPU irq */
2433                 I915_WRITE(SDEIIR, pch_iir);
2434         }
2435
2436         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437                 ironlake_rps_change_irq_handler(dev_priv);
2438 }
2439
2440 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441                                     u32 de_iir)
2442 {
2443         enum pipe pipe;
2444         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446         if (hotplug_trigger)
2447                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449         if (de_iir & DE_ERR_INT_IVB)
2450                 ivb_err_int_handler(dev_priv);
2451
2452         if (de_iir & DE_EDP_PSR_INT_HSW) {
2453                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455                 intel_psr_irq_handler(dev_priv, psr_iir);
2456                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2457         }
2458
2459         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460                 dp_aux_irq_handler(dev_priv);
2461
2462         if (de_iir & DE_GSE_IVB)
2463                 intel_opregion_asle_intr(dev_priv);
2464
2465         for_each_pipe(dev_priv, pipe) {
2466                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467                         drm_handle_vblank(&dev_priv->drm, pipe);
2468         }
2469
2470         /* check event from PCH */
2471         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472                 u32 pch_iir = I915_READ(SDEIIR);
2473
2474                 cpt_irq_handler(dev_priv, pch_iir);
2475
2476                 /* clear PCH hotplug event before clear CPU irq */
2477                 I915_WRITE(SDEIIR, pch_iir);
2478         }
2479 }
2480
2481 /*
2482  * To handle irqs with the minimum potential races with fresh interrupts, we:
2483  * 1 - Disable Master Interrupt Control.
2484  * 2 - Find the source(s) of the interrupt.
2485  * 3 - Clear the Interrupt Identity bits (IIR).
2486  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487  * 5 - Re-enable Master Interrupt Control.
2488  */
2489 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490 {
2491         struct drm_i915_private *dev_priv = arg;
2492         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493         irqreturn_t ret = IRQ_NONE;
2494
2495         if (!intel_irqs_enabled(dev_priv))
2496                 return IRQ_NONE;
2497
2498         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501         /* disable master interrupt before clearing iir  */
2502         de_ier = I915_READ(DEIER);
2503         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2504
2505         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2506          * interrupts will will be stored on its back queue, and then we'll be
2507          * able to process them after we restore SDEIER (as soon as we restore
2508          * it, we'll get an interrupt if SDEIIR still has something to process
2509          * due to its back queue). */
2510         if (!HAS_PCH_NOP(dev_priv)) {
2511                 sde_ier = I915_READ(SDEIER);
2512                 I915_WRITE(SDEIER, 0);
2513         }
2514
2515         /* Find, clear, then process each source of interrupt */
2516
2517         gt_iir = I915_READ(GTIIR);
2518         if (gt_iir) {
2519                 I915_WRITE(GTIIR, gt_iir);
2520                 ret = IRQ_HANDLED;
2521                 if (INTEL_GEN(dev_priv) >= 6)
2522                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523                 else
2524                         gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525         }
2526
2527         de_iir = I915_READ(DEIIR);
2528         if (de_iir) {
2529                 I915_WRITE(DEIIR, de_iir);
2530                 ret = IRQ_HANDLED;
2531                 if (INTEL_GEN(dev_priv) >= 7)
2532                         ivb_display_irq_handler(dev_priv, de_iir);
2533                 else
2534                         ilk_display_irq_handler(dev_priv, de_iir);
2535         }
2536
2537         if (INTEL_GEN(dev_priv) >= 6) {
2538                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2539                 if (pm_iir) {
2540                         I915_WRITE(GEN6_PMIIR, pm_iir);
2541                         ret = IRQ_HANDLED;
2542                         gen6_rps_irq_handler(dev_priv, pm_iir);
2543                 }
2544         }
2545
2546         I915_WRITE(DEIER, de_ier);
2547         if (!HAS_PCH_NOP(dev_priv))
2548                 I915_WRITE(SDEIER, sde_ier);
2549
2550         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553         return ret;
2554 }
2555
2556 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557                                 u32 hotplug_trigger,
2558                                 const u32 hpd[HPD_NUM_PINS])
2559 {
2560         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566                            dig_hotplug_reg, hpd,
2567                            bxt_port_hotplug_long_detect);
2568
2569         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570 }
2571
2572 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573 {
2574         u32 pin_mask = 0, long_mask = 0;
2575         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577         long_pulse_detect_func long_pulse_detect;
2578         const u32 *hpd;
2579
2580         if (INTEL_GEN(dev_priv) >= 12) {
2581                 long_pulse_detect = gen12_port_hotplug_long_detect;
2582                 hpd = hpd_gen12;
2583         } else {
2584                 long_pulse_detect = gen11_port_hotplug_long_detect;
2585                 hpd = hpd_gen11;
2586         }
2587
2588         if (trigger_tc) {
2589                 u32 dig_hotplug_reg;
2590
2591                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595                                    dig_hotplug_reg, hpd, long_pulse_detect);
2596         }
2597
2598         if (trigger_tbt) {
2599                 u32 dig_hotplug_reg;
2600
2601                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605                                    dig_hotplug_reg, hpd, long_pulse_detect);
2606         }
2607
2608         if (pin_mask)
2609                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610         else
2611                 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612 }
2613
2614 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615 {
2616         u32 mask;
2617
2618         if (INTEL_GEN(dev_priv) >= 12)
2619                 /* TODO: Add AUX entries for USBC */
2620                 return TGL_DE_PORT_AUX_DDIA |
2621                         TGL_DE_PORT_AUX_DDIB |
2622                         TGL_DE_PORT_AUX_DDIC;
2623
2624         mask = GEN8_AUX_CHANNEL_A;
2625         if (INTEL_GEN(dev_priv) >= 9)
2626                 mask |= GEN9_AUX_CHANNEL_B |
2627                         GEN9_AUX_CHANNEL_C |
2628                         GEN9_AUX_CHANNEL_D;
2629
2630         if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631                 mask |= CNL_AUX_CHANNEL_F;
2632
2633         if (IS_GEN(dev_priv, 11))
2634                 mask |= ICL_AUX_CHANNEL_E;
2635
2636         return mask;
2637 }
2638
2639 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640 {
2641         if (INTEL_GEN(dev_priv) >= 9)
2642                 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643         else
2644                 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645 }
2646
2647 static void
2648 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649 {
2650         bool found = false;
2651
2652         if (iir & GEN8_DE_MISC_GSE) {
2653                 intel_opregion_asle_intr(dev_priv);
2654                 found = true;
2655         }
2656
2657         if (iir & GEN8_DE_EDP_PSR) {
2658                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2659
2660                 intel_psr_irq_handler(dev_priv, psr_iir);
2661                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2662                 found = true;
2663         }
2664
2665         if (!found)
2666                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2667 }
2668
2669 static irqreturn_t
2670 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671 {
2672         irqreturn_t ret = IRQ_NONE;
2673         u32 iir;
2674         enum pipe pipe;
2675
2676         if (master_ctl & GEN8_DE_MISC_IRQ) {
2677                 iir = I915_READ(GEN8_DE_MISC_IIR);
2678                 if (iir) {
2679                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680                         ret = IRQ_HANDLED;
2681                         gen8_de_misc_irq_handler(dev_priv, iir);
2682                 } else {
2683                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684                 }
2685         }
2686
2687         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688                 iir = I915_READ(GEN11_DE_HPD_IIR);
2689                 if (iir) {
2690                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691                         ret = IRQ_HANDLED;
2692                         gen11_hpd_irq_handler(dev_priv, iir);
2693                 } else {
2694                         DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695                 }
2696         }
2697
2698         if (master_ctl & GEN8_DE_PORT_IRQ) {
2699                 iir = I915_READ(GEN8_DE_PORT_IIR);
2700                 if (iir) {
2701                         u32 tmp_mask;
2702                         bool found = false;
2703
2704                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705                         ret = IRQ_HANDLED;
2706
2707                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708                                 dp_aux_irq_handler(dev_priv);
2709                                 found = true;
2710                         }
2711
2712                         if (IS_GEN9_LP(dev_priv)) {
2713                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714                                 if (tmp_mask) {
2715                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716                                                             hpd_bxt);
2717                                         found = true;
2718                                 }
2719                         } else if (IS_BROADWELL(dev_priv)) {
2720                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721                                 if (tmp_mask) {
2722                                         ilk_hpd_irq_handler(dev_priv,
2723                                                             tmp_mask, hpd_bdw);
2724                                         found = true;
2725                                 }
2726                         }
2727
2728                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729                                 gmbus_irq_handler(dev_priv);
2730                                 found = true;
2731                         }
2732
2733                         if (!found)
2734                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2735                 }
2736                 else
2737                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738         }
2739
2740         for_each_pipe(dev_priv, pipe) {
2741                 u32 fault_errors;
2742
2743                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744                         continue;
2745
2746                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747                 if (!iir) {
2748                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749                         continue;
2750                 }
2751
2752                 ret = IRQ_HANDLED;
2753                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755                 if (iir & GEN8_PIPE_VBLANK)
2756                         drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764                 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765                 if (fault_errors)
2766                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767                                   pipe_name(pipe),
2768                                   fault_errors);
2769         }
2770
2771         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772             master_ctl & GEN8_DE_PCH_IRQ) {
2773                 /*
2774                  * FIXME(BDW): Assume for now that the new interrupt handling
2775                  * scheme also closed the SDE interrupt handling race we've seen
2776                  * on older pch-split platforms. But this needs testing.
2777                  */
2778                 iir = I915_READ(SDEIIR);
2779                 if (iir) {
2780                         I915_WRITE(SDEIIR, iir);
2781                         ret = IRQ_HANDLED;
2782
2783                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784                                 tgp_irq_handler(dev_priv, iir);
2785                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786                                 icp_irq_handler(dev_priv, iir, hpd_mcc);
2787                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788                                 icp_irq_handler(dev_priv, iir, hpd_icp);
2789                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790                                 spt_irq_handler(dev_priv, iir);
2791                         else
2792                                 cpt_irq_handler(dev_priv, iir);
2793                 } else {
2794                         /*
2795                          * Like on previous PCH there seems to be something
2796                          * fishy going on with forwarding PCH interrupts.
2797                          */
2798                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799                 }
2800         }
2801
2802         return ret;
2803 }
2804
2805 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806 {
2807         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2808
2809         /*
2810          * Now with master disabled, get a sample of level indications
2811          * for this interrupt. Indications will be cleared on related acks.
2812          * New indications can and will light up during processing,
2813          * and will generate new interrupt after enabling master.
2814          */
2815         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816 }
2817
2818 static inline void gen8_master_intr_enable(void __iomem * const regs)
2819 {
2820         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821 }
2822
2823 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824 {
2825         struct drm_i915_private *dev_priv = arg;
2826         void __iomem * const regs = dev_priv->uncore.regs;
2827         u32 master_ctl;
2828         u32 gt_iir[4];
2829
2830         if (!intel_irqs_enabled(dev_priv))
2831                 return IRQ_NONE;
2832
2833         master_ctl = gen8_master_intr_disable(regs);
2834         if (!master_ctl) {
2835                 gen8_master_intr_enable(regs);
2836                 return IRQ_NONE;
2837         }
2838
2839         /* Find, clear, then process each source of interrupt */
2840         gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843         if (master_ctl & ~GEN8_GT_IRQS) {
2844                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845                 gen8_de_irq_handler(dev_priv, master_ctl);
2846                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847         }
2848
2849         gen8_master_intr_enable(regs);
2850
2851         gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853         return IRQ_HANDLED;
2854 }
2855
2856 static u32
2857 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858 {
2859         void __iomem * const regs = gt->uncore->regs;
2860         u32 iir;
2861
2862         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863                 return 0;
2864
2865         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866         if (likely(iir))
2867                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869         return iir;
2870 }
2871
2872 static void
2873 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874 {
2875         if (iir & GEN11_GU_MISC_GSE)
2876                 intel_opregion_asle_intr(gt->i915);
2877 }
2878
2879 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880 {
2881         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2882
2883         /*
2884          * Now with master disabled, get a sample of level indications
2885          * for this interrupt. Indications will be cleared on related acks.
2886          * New indications can and will light up during processing,
2887          * and will generate new interrupt after enabling master.
2888          */
2889         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890 }
2891
2892 static inline void gen11_master_intr_enable(void __iomem * const regs)
2893 {
2894         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895 }
2896
2897 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898 {
2899         struct drm_i915_private * const i915 = arg;
2900         void __iomem * const regs = i915->uncore.regs;
2901         struct intel_gt *gt = &i915->gt;
2902         u32 master_ctl;
2903         u32 gu_misc_iir;
2904
2905         if (!intel_irqs_enabled(i915))
2906                 return IRQ_NONE;
2907
2908         master_ctl = gen11_master_intr_disable(regs);
2909         if (!master_ctl) {
2910                 gen11_master_intr_enable(regs);
2911                 return IRQ_NONE;
2912         }
2913
2914         /* Find, clear, then process each source of interrupt. */
2915         gen11_gt_irq_handler(gt, master_ctl);
2916
2917         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918         if (master_ctl & GEN11_DISPLAY_IRQ) {
2919                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921                 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922                 /*
2923                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924                  * for the display related bits.
2925                  */
2926                 gen8_de_irq_handler(i915, disp_ctl);
2927                 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928         }
2929
2930         gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932         gen11_master_intr_enable(regs);
2933
2934         gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936         return IRQ_HANDLED;
2937 }
2938
2939 /* Called from drm generic code, passed 'crtc' which
2940  * we use as a pipe index
2941  */
2942 int i8xx_enable_vblank(struct drm_crtc *crtc)
2943 {
2944         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946         unsigned long irqflags;
2947
2948         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2950         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952         return 0;
2953 }
2954
2955 int i945gm_enable_vblank(struct drm_crtc *crtc)
2956 {
2957         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959         if (dev_priv->i945gm_vblank.enabled++ == 0)
2960                 schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962         return i8xx_enable_vblank(crtc);
2963 }
2964
2965 int i965_enable_vblank(struct drm_crtc *crtc)
2966 {
2967         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969         unsigned long irqflags;
2970
2971         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972         i915_enable_pipestat(dev_priv, pipe,
2973                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2974         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976         return 0;
2977 }
2978
2979 int ilk_enable_vblank(struct drm_crtc *crtc)
2980 {
2981         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983         unsigned long irqflags;
2984         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988         ilk_enable_display_irq(dev_priv, bit);
2989         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991         /* Even though there is no DMC, frame counter can get stuck when
2992          * PSR is active as no frames are generated.
2993          */
2994         if (HAS_PSR(dev_priv))
2995                 drm_crtc_vblank_restore(crtc);
2996
2997         return 0;
2998 }
2999
3000 int bdw_enable_vblank(struct drm_crtc *crtc)
3001 {
3002         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004         unsigned long irqflags;
3005
3006         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3008         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010         /* Even if there is no DMC, frame counter can get stuck when
3011          * PSR is active as no frames are generated, so check only for PSR.
3012          */
3013         if (HAS_PSR(dev_priv))
3014                 drm_crtc_vblank_restore(crtc);
3015
3016         return 0;
3017 }
3018
3019 /* Called from drm generic code, passed 'crtc' which
3020  * we use as a pipe index
3021  */
3022 void i8xx_disable_vblank(struct drm_crtc *crtc)
3023 {
3024         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026         unsigned long irqflags;
3027
3028         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3030         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031 }
3032
3033 void i945gm_disable_vblank(struct drm_crtc *crtc)
3034 {
3035         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037         i8xx_disable_vblank(crtc);
3038
3039         if (--dev_priv->i945gm_vblank.enabled == 0)
3040                 schedule_work(&dev_priv->i945gm_vblank.work);
3041 }
3042
3043 void i965_disable_vblank(struct drm_crtc *crtc)
3044 {
3045         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047         unsigned long irqflags;
3048
3049         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050         i915_disable_pipestat(dev_priv, pipe,
3051                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3052         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053 }
3054
3055 void ilk_disable_vblank(struct drm_crtc *crtc)
3056 {
3057         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059         unsigned long irqflags;
3060         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064         ilk_disable_display_irq(dev_priv, bit);
3065         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066 }
3067
3068 void bdw_disable_vblank(struct drm_crtc *crtc)
3069 {
3070         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072         unsigned long irqflags;
3073
3074         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077 }
3078
3079 static void i945gm_vblank_work_func(struct work_struct *work)
3080 {
3081         struct drm_i915_private *dev_priv =
3082                 container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084         /*
3085          * Vblank interrupts fail to wake up the device from C3,
3086          * hence we want to prevent C3 usage while vblank interrupts
3087          * are enabled.
3088          */
3089         pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090                               READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091                               dev_priv->i945gm_vblank.c3_disable_latency :
3092                               PM_QOS_DEFAULT_VALUE);
3093 }
3094
3095 static int cstate_disable_latency(const char *name)
3096 {
3097         const struct cpuidle_driver *drv;
3098         int i;
3099
3100         drv = cpuidle_get_driver();
3101         if (!drv)
3102                 return 0;
3103
3104         for (i = 0; i < drv->state_count; i++) {
3105                 const struct cpuidle_state *state = &drv->states[i];
3106
3107                 if (!strcmp(state->name, name))
3108                         return state->exit_latency ?
3109                                 state->exit_latency - 1 : 0;
3110         }
3111
3112         return 0;
3113 }
3114
3115 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116 {
3117         INIT_WORK(&dev_priv->i945gm_vblank.work,
3118                   i945gm_vblank_work_func);
3119
3120         dev_priv->i945gm_vblank.c3_disable_latency =
3121                 cstate_disable_latency("C3");
3122         pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123                            PM_QOS_CPU_DMA_LATENCY,
3124                            PM_QOS_DEFAULT_VALUE);
3125 }
3126
3127 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128 {
3129         cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130         pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131 }
3132
3133 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134 {
3135         struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137         if (HAS_PCH_NOP(dev_priv))
3138                 return;
3139
3140         GEN3_IRQ_RESET(uncore, SDE);
3141
3142         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143                 I915_WRITE(SERR_INT, 0xffffffff);
3144 }
3145
3146 /*
3147  * SDEIER is also touched by the interrupt handler to work around missed PCH
3148  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149  * instead we unconditionally enable all PCH interrupt sources here, but then
3150  * only unmask them as needed with SDEIMR.
3151  *
3152  * This function needs to be called before interrupts are enabled.
3153  */
3154 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155 {
3156         if (HAS_PCH_NOP(dev_priv))
3157                 return;
3158
3159         WARN_ON(I915_READ(SDEIER) != 0);
3160         I915_WRITE(SDEIER, 0xffffffff);
3161         POSTING_READ(SDEIER);
3162 }
3163
3164 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165 {
3166         struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168         if (IS_CHERRYVIEW(dev_priv))
3169                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170         else
3171                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174         intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176         i9xx_pipestat_irq_reset(dev_priv);
3177
3178         GEN3_IRQ_RESET(uncore, VLV_);
3179         dev_priv->irq_mask = ~0u;
3180 }
3181
3182 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183 {
3184         struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186         u32 pipestat_mask;
3187         u32 enable_mask;
3188         enum pipe pipe;
3189
3190         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193         for_each_pipe(dev_priv, pipe)
3194                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199                 I915_LPE_PIPE_A_INTERRUPT |
3200                 I915_LPE_PIPE_B_INTERRUPT;
3201
3202         if (IS_CHERRYVIEW(dev_priv))
3203                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204                         I915_LPE_PIPE_C_INTERRUPT;
3205
3206         WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208         dev_priv->irq_mask = ~enable_mask;
3209
3210         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211 }
3212
3213 /* drm_dma.h hooks
3214 */
3215 static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216 {
3217         struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219         GEN3_IRQ_RESET(uncore, DE);
3220         if (IS_GEN(dev_priv, 7))
3221                 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223         if (IS_HASWELL(dev_priv)) {
3224                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226         }
3227
3228         gen5_gt_irq_reset(&dev_priv->gt);
3229
3230         ibx_irq_reset(dev_priv);
3231 }
3232
3233 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234 {
3235         I915_WRITE(VLV_MASTER_IER, 0);
3236         POSTING_READ(VLV_MASTER_IER);
3237
3238         gen5_gt_irq_reset(&dev_priv->gt);
3239
3240         spin_lock_irq(&dev_priv->irq_lock);
3241         if (dev_priv->display_irqs_enabled)
3242                 vlv_display_irq_reset(dev_priv);
3243         spin_unlock_irq(&dev_priv->irq_lock);
3244 }
3245
3246 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247 {
3248         struct intel_uncore *uncore = &dev_priv->uncore;
3249         int pipe;
3250
3251         gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253         gen8_gt_irq_reset(&dev_priv->gt);
3254
3255         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258         for_each_pipe(dev_priv, pipe)
3259                 if (intel_display_power_is_enabled(dev_priv,
3260                                                    POWER_DOMAIN_PIPE(pipe)))
3261                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267         if (HAS_PCH_SPLIT(dev_priv))
3268                 ibx_irq_reset(dev_priv);
3269 }
3270
3271 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272 {
3273         struct intel_uncore *uncore = &dev_priv->uncore;
3274         int pipe;
3275
3276         gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278         gen11_gt_irq_reset(&dev_priv->gt);
3279
3280         intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285         for_each_pipe(dev_priv, pipe)
3286                 if (intel_display_power_is_enabled(dev_priv,
3287                                                    POWER_DOMAIN_PIPE(pipe)))
3288                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297                 GEN3_IRQ_RESET(uncore, SDE);
3298 }
3299
3300 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301                                      u8 pipe_mask)
3302 {
3303         struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306         enum pipe pipe;
3307
3308         spin_lock_irq(&dev_priv->irq_lock);
3309
3310         if (!intel_irqs_enabled(dev_priv)) {
3311                 spin_unlock_irq(&dev_priv->irq_lock);
3312                 return;
3313         }
3314
3315         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317                                   dev_priv->de_irq_mask[pipe],
3318                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320         spin_unlock_irq(&dev_priv->irq_lock);
3321 }
3322
3323 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324                                      u8 pipe_mask)
3325 {
3326         struct intel_uncore *uncore = &dev_priv->uncore;
3327         enum pipe pipe;
3328
3329         spin_lock_irq(&dev_priv->irq_lock);
3330
3331         if (!intel_irqs_enabled(dev_priv)) {
3332                 spin_unlock_irq(&dev_priv->irq_lock);
3333                 return;
3334         }
3335
3336         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339         spin_unlock_irq(&dev_priv->irq_lock);
3340
3341         /* make sure we're done processing display irqs */
3342         intel_synchronize_irq(dev_priv);
3343 }
3344
3345 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346 {
3347         struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349         I915_WRITE(GEN8_MASTER_IRQ, 0);
3350         POSTING_READ(GEN8_MASTER_IRQ);
3351
3352         gen8_gt_irq_reset(&dev_priv->gt);
3353
3354         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356         spin_lock_irq(&dev_priv->irq_lock);
3357         if (dev_priv->display_irqs_enabled)
3358                 vlv_display_irq_reset(dev_priv);
3359         spin_unlock_irq(&dev_priv->irq_lock);
3360 }
3361
3362 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363                                   const u32 hpd[HPD_NUM_PINS])
3364 {
3365         struct intel_encoder *encoder;
3366         u32 enabled_irqs = 0;
3367
3368         for_each_intel_encoder(&dev_priv->drm, encoder)
3369                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370                         enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372         return enabled_irqs;
3373 }
3374
3375 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376 {
3377         u32 hotplug;
3378
3379         /*
3380          * Enable digital hotplug on the PCH, and configure the DP short pulse
3381          * duration to 2ms (which is the minimum in the Display Port spec).
3382          * The pulse duration bits are reserved on LPT+.
3383          */
3384         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386                      PORTC_PULSE_DURATION_MASK |
3387                      PORTD_PULSE_DURATION_MASK);
3388         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391         /*
3392          * When CPU and PCH are on the same package, port A
3393          * HPD must be enabled in both north and south.
3394          */
3395         if (HAS_PCH_LPT_LP(dev_priv))
3396                 hotplug |= PORTA_HOTPLUG_ENABLE;
3397         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398 }
3399
3400 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401 {
3402         u32 hotplug_irqs, enabled_irqs;
3403
3404         if (HAS_PCH_IBX(dev_priv)) {
3405                 hotplug_irqs = SDE_HOTPLUG_MASK;
3406                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407         } else {
3408                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410         }
3411
3412         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414         ibx_hpd_detection_setup(dev_priv);
3415 }
3416
3417 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418                                     u32 ddi_hotplug_enable_mask,
3419                                     u32 tc_hotplug_enable_mask)
3420 {
3421         u32 hotplug;
3422
3423         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424         hotplug |= ddi_hotplug_enable_mask;
3425         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427         if (tc_hotplug_enable_mask) {
3428                 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429                 hotplug |= tc_hotplug_enable_mask;
3430                 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431         }
3432 }
3433
3434 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435 {
3436         u32 hotplug_irqs, enabled_irqs;
3437
3438         hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443         icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444                                 ICP_TC_HPD_ENABLE_MASK);
3445 }
3446
3447 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448 {
3449         u32 hotplug_irqs, enabled_irqs;
3450
3451         hotplug_irqs = SDE_DDI_MASK_TGP;
3452         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456         icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457 }
3458
3459 static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460 {
3461         u32 hotplug_irqs, enabled_irqs;
3462
3463         hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468         icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469                                 TGP_TC_HPD_ENABLE_MASK);
3470 }
3471
3472 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473 {
3474         u32 hotplug;
3475
3476         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489 }
3490
3491 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492 {
3493         u32 hotplug_irqs, enabled_irqs;
3494         const u32 *hpd;
3495         u32 val;
3496
3497         hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501         val = I915_READ(GEN11_DE_HPD_IMR);
3502         val &= ~hotplug_irqs;
3503         I915_WRITE(GEN11_DE_HPD_IMR, val);
3504         POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506         gen11_hpd_detection_setup(dev_priv);
3507
3508         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509                 tgp_hpd_irq_setup(dev_priv);
3510         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511                 icp_hpd_irq_setup(dev_priv);
3512 }
3513
3514 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515 {
3516         u32 val, hotplug;
3517
3518         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3519         if (HAS_PCH_CNP(dev_priv)) {
3520                 val = I915_READ(SOUTH_CHICKEN1);
3521                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523                 I915_WRITE(SOUTH_CHICKEN1, val);
3524         }
3525
3526         /* Enable digital hotplug on the PCH */
3527         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528         hotplug |= PORTA_HOTPLUG_ENABLE |
3529                    PORTB_HOTPLUG_ENABLE |
3530                    PORTC_HOTPLUG_ENABLE |
3531                    PORTD_HOTPLUG_ENABLE;
3532         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535         hotplug |= PORTE_HOTPLUG_ENABLE;
3536         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537 }
3538
3539 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540 {
3541         u32 hotplug_irqs, enabled_irqs;
3542
3543         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548         spt_hpd_detection_setup(dev_priv);
3549 }
3550
3551 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552 {
3553         u32 hotplug;
3554
3555         /*
3556          * Enable digital hotplug on the CPU, and configure the DP short pulse
3557          * duration to 2ms (which is the minimum in the Display Port spec)
3558          * The pulse duration bits are reserved on HSW+.
3559          */
3560         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3564         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565 }
3566
3567 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568 {
3569         u32 hotplug_irqs, enabled_irqs;
3570
3571         if (INTEL_GEN(dev_priv) >= 8) {
3572                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576         } else if (INTEL_GEN(dev_priv) >= 7) {
3577                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581         } else {
3582                 hotplug_irqs = DE_DP_A_HOTPLUG;
3583                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586         }
3587
3588         ilk_hpd_detection_setup(dev_priv);
3589
3590         ibx_hpd_irq_setup(dev_priv);
3591 }
3592
3593 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594                                       u32 enabled_irqs)
3595 {
3596         u32 hotplug;
3597
3598         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599         hotplug |= PORTA_HOTPLUG_ENABLE |
3600                    PORTB_HOTPLUG_ENABLE |
3601                    PORTC_HOTPLUG_ENABLE;
3602
3603         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604                       hotplug, enabled_irqs);
3605         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607         /*
3608          * For BXT invert bit has to be set based on AOB design
3609          * for HPD detection logic, update it based on VBT fields.
3610          */
3611         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613                 hotplug |= BXT_DDIA_HPD_INVERT;
3614         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616                 hotplug |= BXT_DDIB_HPD_INVERT;
3617         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619                 hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622 }
3623
3624 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625 {
3626         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627 }
3628
3629 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630 {
3631         u32 hotplug_irqs, enabled_irqs;
3632
3633         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639 }
3640
3641 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642 {
3643         u32 mask;
3644
3645         if (HAS_PCH_NOP(dev_priv))
3646                 return;
3647
3648         if (HAS_PCH_IBX(dev_priv))
3649                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652         else
3653                 mask = SDE_GMBUS_CPT;
3654
3655         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656         I915_WRITE(SDEIMR, ~mask);
3657
3658         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659             HAS_PCH_LPT(dev_priv))
3660                 ibx_hpd_detection_setup(dev_priv);
3661         else
3662                 spt_hpd_detection_setup(dev_priv);
3663 }
3664
3665 static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666 {
3667         struct intel_uncore *uncore = &dev_priv->uncore;
3668         u32 display_mask, extra_mask;
3669
3670         if (INTEL_GEN(dev_priv) >= 7) {
3671                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675                               DE_DP_A_HOTPLUG_IVB);
3676         } else {
3677                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679                                 DE_PIPEA_CRC_DONE | DE_POISON);
3680                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682                               DE_DP_A_HOTPLUG);
3683         }
3684
3685         if (IS_HASWELL(dev_priv)) {
3686                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688                 display_mask |= DE_EDP_PSR_INT_HSW;
3689         }
3690
3691         dev_priv->irq_mask = ~display_mask;
3692
3693         ibx_irq_pre_postinstall(dev_priv);
3694
3695         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696                       display_mask | extra_mask);
3697
3698         gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700         ilk_hpd_detection_setup(dev_priv);
3701
3702         ibx_irq_postinstall(dev_priv);
3703
3704         if (IS_IRONLAKE_M(dev_priv)) {
3705                 /* Enable PCU event interrupts
3706                  *
3707                  * spinlocking not required here for correctness since interrupt
3708                  * setup is guaranteed to run in single-threaded context. But we
3709                  * need it to make the assert_spin_locked happy. */
3710                 spin_lock_irq(&dev_priv->irq_lock);
3711                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712                 spin_unlock_irq(&dev_priv->irq_lock);
3713         }
3714 }
3715
3716 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717 {
3718         lockdep_assert_held(&dev_priv->irq_lock);
3719
3720         if (dev_priv->display_irqs_enabled)
3721                 return;
3722
3723         dev_priv->display_irqs_enabled = true;
3724
3725         if (intel_irqs_enabled(dev_priv)) {
3726                 vlv_display_irq_reset(dev_priv);
3727                 vlv_display_irq_postinstall(dev_priv);
3728         }
3729 }
3730
3731 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732 {
3733         lockdep_assert_held(&dev_priv->irq_lock);
3734
3735         if (!dev_priv->display_irqs_enabled)
3736                 return;
3737
3738         dev_priv->display_irqs_enabled = false;
3739
3740         if (intel_irqs_enabled(dev_priv))
3741                 vlv_display_irq_reset(dev_priv);
3742 }
3743
3744
3745 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746 {
3747         gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749         spin_lock_irq(&dev_priv->irq_lock);
3750         if (dev_priv->display_irqs_enabled)
3751                 vlv_display_irq_postinstall(dev_priv);
3752         spin_unlock_irq(&dev_priv->irq_lock);
3753
3754         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755         POSTING_READ(VLV_MASTER_IER);
3756 }
3757
3758 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759 {
3760         struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762         u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763         u32 de_pipe_enables;
3764         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765         u32 de_port_enables;
3766         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767         enum pipe pipe;
3768
3769         if (INTEL_GEN(dev_priv) <= 10)
3770                 de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772         if (INTEL_GEN(dev_priv) >= 9) {
3773                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775                                   GEN9_AUX_CHANNEL_D;
3776                 if (IS_GEN9_LP(dev_priv))
3777                         de_port_masked |= BXT_DE_PORT_GMBUS;
3778         } else {
3779                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780         }
3781
3782         if (INTEL_GEN(dev_priv) >= 11)
3783                 de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785         if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786                 de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789                                            GEN8_PIPE_FIFO_UNDERRUN;
3790
3791         de_port_enables = de_port_masked;
3792         if (IS_GEN9_LP(dev_priv))
3793                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794         else if (IS_BROADWELL(dev_priv))
3795                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797         gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800         for_each_pipe(dev_priv, pipe) {
3801                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803                 if (intel_display_power_is_enabled(dev_priv,
3804                                 POWER_DOMAIN_PIPE(pipe)))
3805                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806                                           dev_priv->de_irq_mask[pipe],
3807                                           de_pipe_enables);
3808         }
3809
3810         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813         if (INTEL_GEN(dev_priv) >= 11) {
3814                 u32 de_hpd_masked = 0;
3815                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816                                      GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819                               de_hpd_enables);
3820                 gen11_hpd_detection_setup(dev_priv);
3821         } else if (IS_GEN9_LP(dev_priv)) {
3822                 bxt_hpd_detection_setup(dev_priv);
3823         } else if (IS_BROADWELL(dev_priv)) {
3824                 ilk_hpd_detection_setup(dev_priv);
3825         }
3826 }
3827
3828 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829 {
3830         if (HAS_PCH_SPLIT(dev_priv))
3831                 ibx_irq_pre_postinstall(dev_priv);
3832
3833         gen8_gt_irq_postinstall(&dev_priv->gt);
3834         gen8_de_irq_postinstall(dev_priv);
3835
3836         if (HAS_PCH_SPLIT(dev_priv))
3837                 ibx_irq_postinstall(dev_priv);
3838
3839         gen8_master_intr_enable(dev_priv->uncore.regs);
3840 }
3841
3842 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843 {
3844         u32 mask = SDE_GMBUS_ICP;
3845
3846         WARN_ON(I915_READ(SDEIER) != 0);
3847         I915_WRITE(SDEIER, 0xffffffff);
3848         POSTING_READ(SDEIER);
3849
3850         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851         I915_WRITE(SDEIMR, ~mask);
3852
3853         if (HAS_PCH_TGP(dev_priv))
3854                 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855                                         TGP_TC_HPD_ENABLE_MASK);
3856         else if (HAS_PCH_MCC(dev_priv))
3857                 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858         else
3859                 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860                                         ICP_TC_HPD_ENABLE_MASK);
3861 }
3862
3863 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864 {
3865         struct intel_uncore *uncore = &dev_priv->uncore;
3866         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869                 icp_irq_postinstall(dev_priv);
3870
3871         gen11_gt_irq_postinstall(&dev_priv->gt);
3872         gen8_de_irq_postinstall(dev_priv);
3873
3874         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878         gen11_master_intr_enable(uncore->regs);
3879         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880 }
3881
3882 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883 {
3884         gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886         spin_lock_irq(&dev_priv->irq_lock);
3887         if (dev_priv->display_irqs_enabled)
3888                 vlv_display_irq_postinstall(dev_priv);
3889         spin_unlock_irq(&dev_priv->irq_lock);
3890
3891         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892         POSTING_READ(GEN8_MASTER_IRQ);
3893 }
3894
3895 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896 {
3897         struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899         i9xx_pipestat_irq_reset(dev_priv);
3900
3901         GEN2_IRQ_RESET(uncore);
3902 }
3903
3904 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905 {
3906         struct intel_uncore *uncore = &dev_priv->uncore;
3907         u16 enable_mask;
3908
3909         intel_uncore_write16(uncore,
3910                              EMR,
3911                              ~(I915_ERROR_PAGE_TABLE |
3912                                I915_ERROR_MEMORY_REFRESH));
3913
3914         /* Unmask the interrupts that we always want on. */
3915         dev_priv->irq_mask =
3916                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918                   I915_MASTER_ERROR_INTERRUPT);
3919
3920         enable_mask =
3921                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923                 I915_MASTER_ERROR_INTERRUPT |
3924                 I915_USER_INTERRUPT;
3925
3926         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928         /* Interrupt setup is already guaranteed to be single-threaded, this is
3929          * just to make the assert_spin_locked check happy. */
3930         spin_lock_irq(&dev_priv->irq_lock);
3931         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933         spin_unlock_irq(&dev_priv->irq_lock);
3934 }
3935
3936 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937                                u16 *eir, u16 *eir_stuck)
3938 {
3939         struct intel_uncore *uncore = &i915->uncore;
3940         u16 emr;
3941
3942         *eir = intel_uncore_read16(uncore, EIR);
3943
3944         if (*eir)
3945                 intel_uncore_write16(uncore, EIR, *eir);
3946
3947         *eir_stuck = intel_uncore_read16(uncore, EIR);
3948         if (*eir_stuck == 0)
3949                 return;
3950
3951         /*
3952          * Toggle all EMR bits to make sure we get an edge
3953          * in the ISR master error bit if we don't clear
3954          * all the EIR bits. Otherwise the edge triggered
3955          * IIR on i965/g4x wouldn't notice that an interrupt
3956          * is still pending. Also some EIR bits can't be
3957          * cleared except by handling the underlying error
3958          * (or by a GPU reset) so we mask any bit that
3959          * remains set.
3960          */
3961         emr = intel_uncore_read16(uncore, EMR);
3962         intel_uncore_write16(uncore, EMR, 0xffff);
3963         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964 }
3965
3966 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967                                    u16 eir, u16 eir_stuck)
3968 {
3969         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971         if (eir_stuck)
3972                 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973 }
3974
3975 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976                                u32 *eir, u32 *eir_stuck)
3977 {
3978         u32 emr;
3979
3980         *eir = I915_READ(EIR);
3981
3982         I915_WRITE(EIR, *eir);
3983
3984         *eir_stuck = I915_READ(EIR);
3985         if (*eir_stuck == 0)
3986                 return;
3987
3988         /*
3989          * Toggle all EMR bits to make sure we get an edge
3990          * in the ISR master error bit if we don't clear
3991          * all the EIR bits. Otherwise the edge triggered
3992          * IIR on i965/g4x wouldn't notice that an interrupt
3993          * is still pending. Also some EIR bits can't be
3994          * cleared except by handling the underlying error
3995          * (or by a GPU reset) so we mask any bit that
3996          * remains set.
3997          */
3998         emr = I915_READ(EMR);
3999         I915_WRITE(EMR, 0xffffffff);
4000         I915_WRITE(EMR, emr | *eir_stuck);
4001 }
4002
4003 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004                                    u32 eir, u32 eir_stuck)
4005 {
4006         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008         if (eir_stuck)
4009                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4010 }
4011
4012 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013 {
4014         struct drm_i915_private *dev_priv = arg;
4015         irqreturn_t ret = IRQ_NONE;
4016
4017         if (!intel_irqs_enabled(dev_priv))
4018                 return IRQ_NONE;
4019
4020         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023         do {
4024                 u32 pipe_stats[I915_MAX_PIPES] = {};
4025                 u16 eir = 0, eir_stuck = 0;
4026                 u16 iir;
4027
4028                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029                 if (iir == 0)
4030                         break;
4031
4032                 ret = IRQ_HANDLED;
4033
4034                 /* Call regardless, as some status bits might not be
4035                  * signalled in iir */
4036                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4039                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043                 if (iir & I915_USER_INTERRUPT)
4044                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4047                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050         } while (0);
4051
4052         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054         return ret;
4055 }
4056
4057 static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058 {
4059         struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061         if (I915_HAS_HOTPLUG(dev_priv)) {
4062                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064         }
4065
4066         i9xx_pipestat_irq_reset(dev_priv);
4067
4068         GEN3_IRQ_RESET(uncore, GEN2_);
4069 }
4070
4071 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072 {
4073         struct intel_uncore *uncore = &dev_priv->uncore;
4074         u32 enable_mask;
4075
4076         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077                           I915_ERROR_MEMORY_REFRESH));
4078
4079         /* Unmask the interrupts that we always want on. */
4080         dev_priv->irq_mask =
4081                 ~(I915_ASLE_INTERRUPT |
4082                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084                   I915_MASTER_ERROR_INTERRUPT);
4085
4086         enable_mask =
4087                 I915_ASLE_INTERRUPT |
4088                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090                 I915_MASTER_ERROR_INTERRUPT |
4091                 I915_USER_INTERRUPT;
4092
4093         if (I915_HAS_HOTPLUG(dev_priv)) {
4094                 /* Enable in IER... */
4095                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096                 /* and unmask in IMR */
4097                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098         }
4099
4100         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4101
4102         /* Interrupt setup is already guaranteed to be single-threaded, this is
4103          * just to make the assert_spin_locked check happy. */
4104         spin_lock_irq(&dev_priv->irq_lock);
4105         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107         spin_unlock_irq(&dev_priv->irq_lock);
4108
4109         i915_enable_asle_pipestat(dev_priv);
4110 }
4111
4112 static irqreturn_t i915_irq_handler(int irq, void *arg)
4113 {
4114         struct drm_i915_private *dev_priv = arg;
4115         irqreturn_t ret = IRQ_NONE;
4116
4117         if (!intel_irqs_enabled(dev_priv))
4118                 return IRQ_NONE;
4119
4120         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
4123         do {
4124                 u32 pipe_stats[I915_MAX_PIPES] = {};
4125                 u32 eir = 0, eir_stuck = 0;
4126                 u32 hotplug_status = 0;
4127                 u32 iir;
4128
4129                 iir = I915_READ(GEN2_IIR);
4130                 if (iir == 0)
4131                         break;
4132
4133                 ret = IRQ_HANDLED;
4134
4135                 if (I915_HAS_HOTPLUG(dev_priv) &&
4136                     iir & I915_DISPLAY_PORT_INTERRUPT)
4137                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139                 /* Call regardless, as some status bits might not be
4140                  * signalled in iir */
4141                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4144                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146                 I915_WRITE(GEN2_IIR, iir);
4147
4148                 if (iir & I915_USER_INTERRUPT)
4149                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4152                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154                 if (hotplug_status)
4155                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158         } while (0);
4159
4160         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162         return ret;
4163 }
4164
4165 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166 {
4167         struct intel_uncore *uncore = &dev_priv->uncore;
4168
4169         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172         i9xx_pipestat_irq_reset(dev_priv);
4173
4174         GEN3_IRQ_RESET(uncore, GEN2_);
4175 }
4176
4177 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178 {
4179         struct intel_uncore *uncore = &dev_priv->uncore;
4180         u32 enable_mask;
4181         u32 error_mask;
4182
4183         /*
4184          * Enable some error detection, note the instruction error mask
4185          * bit is reserved, so we leave it masked.
4186          */
4187         if (IS_G4X(dev_priv)) {
4188                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189                                GM45_ERROR_MEM_PRIV |
4190                                GM45_ERROR_CP_PRIV |
4191                                I915_ERROR_MEMORY_REFRESH);
4192         } else {
4193                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4194                                I915_ERROR_MEMORY_REFRESH);
4195         }
4196         I915_WRITE(EMR, error_mask);
4197
4198         /* Unmask the interrupts that we always want on. */
4199         dev_priv->irq_mask =
4200                 ~(I915_ASLE_INTERRUPT |
4201                   I915_DISPLAY_PORT_INTERRUPT |
4202                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204                   I915_MASTER_ERROR_INTERRUPT);
4205
4206         enable_mask =
4207                 I915_ASLE_INTERRUPT |
4208                 I915_DISPLAY_PORT_INTERRUPT |
4209                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211                 I915_MASTER_ERROR_INTERRUPT |
4212                 I915_USER_INTERRUPT;
4213
4214         if (IS_G4X(dev_priv))
4215                 enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219         /* Interrupt setup is already guaranteed to be single-threaded, this is
4220          * just to make the assert_spin_locked check happy. */
4221         spin_lock_irq(&dev_priv->irq_lock);
4222         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225         spin_unlock_irq(&dev_priv->irq_lock);
4226
4227         i915_enable_asle_pipestat(dev_priv);
4228 }
4229
4230 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231 {
4232         u32 hotplug_en;
4233
4234         lockdep_assert_held(&dev_priv->irq_lock);
4235
4236         /* Note HDMI and DP share hotplug bits */
4237         /* enable bits are the same for all generations */
4238         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239         /* Programming the CRT detection parameters tends
4240            to generate a spurious hotplug event about three
4241            seconds later.  So just do it once.
4242         */
4243         if (IS_G4X(dev_priv))
4244                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247         /* Ignore TV since it's buggy */
4248         i915_hotplug_interrupt_update_locked(dev_priv,
4249                                              HOTPLUG_INT_EN_MASK |
4250                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252                                              hotplug_en);
4253 }
4254
4255 static irqreturn_t i965_irq_handler(int irq, void *arg)
4256 {
4257         struct drm_i915_private *dev_priv = arg;
4258         irqreturn_t ret = IRQ_NONE;
4259
4260         if (!intel_irqs_enabled(dev_priv))
4261                 return IRQ_NONE;
4262
4263         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4265
4266         do {
4267                 u32 pipe_stats[I915_MAX_PIPES] = {};
4268                 u32 eir = 0, eir_stuck = 0;
4269                 u32 hotplug_status = 0;
4270                 u32 iir;
4271
4272                 iir = I915_READ(GEN2_IIR);
4273                 if (iir == 0)
4274                         break;
4275
4276                 ret = IRQ_HANDLED;
4277
4278                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281                 /* Call regardless, as some status bits might not be
4282                  * signalled in iir */
4283                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4286                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288                 I915_WRITE(GEN2_IIR, iir);
4289
4290                 if (iir & I915_USER_INTERRUPT)
4291                         intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293                 if (iir & I915_BSD_USER_INTERRUPT)
4294                         intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4297                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299                 if (hotplug_status)
4300                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303         } while (0);
4304
4305         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307         return ret;
4308 }
4309
4310 /**
4311  * intel_irq_init - initializes irq support
4312  * @dev_priv: i915 device instance
4313  *
4314  * This function initializes all the irq support including work items, timers
4315  * and all the vtables. It does not setup the interrupt itself though.
4316  */
4317 void intel_irq_init(struct drm_i915_private *dev_priv)
4318 {
4319         struct drm_device *dev = &dev_priv->drm;
4320         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321         int i;
4322
4323         if (IS_I945GM(dev_priv))
4324                 i945gm_vblank_work_init(dev_priv);
4325
4326         intel_hpd_init_work(dev_priv);
4327
4328         INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331         for (i = 0; i < MAX_L3_SLICES; ++i)
4332                 dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334         /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335         if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336                 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338         /* Let's track the enabled rps events */
4339         if (IS_VALLEYVIEW(dev_priv))
4340                 /* WaGsvRC0ResidencyMethod:vlv */
4341                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342         else
4343                 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344                                            GEN6_PM_RP_DOWN_THRESHOLD |
4345                                            GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347         /* We share the register with other engine */
4348         if (INTEL_GEN(dev_priv) > 9)
4349                 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351         rps->pm_intrmsk_mbz = 0;
4352
4353         /*
4354          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355          * if GEN6_PM_UP_EI_EXPIRED is masked.
4356          *
4357          * TODO: verify if this can be reproduced on VLV,CHV.
4358          */
4359         if (INTEL_GEN(dev_priv) <= 7)
4360                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362         if (INTEL_GEN(dev_priv) >= 8)
4363                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365         dev->vblank_disable_immediate = true;
4366
4367         /* Most platforms treat the display irq block as an always-on
4368          * power domain. vlv/chv can disable it at runtime and need
4369          * special care to avoid writing any of the display block registers
4370          * outside of the power domain. We defer setting up the display irqs
4371          * in this case to the runtime pm.
4372          */
4373         dev_priv->display_irqs_enabled = true;
4374         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375                 dev_priv->display_irqs_enabled = false;
4376
4377         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4379          * detection, as short HPD storms will occur as a natural part of
4380          * sideband messaging with MST.
4381          * On older platforms however, IRQ storms can occur with both long and
4382          * short pulses, as seen on some G4x systems.
4383          */
4384         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386         if (HAS_GMCH(dev_priv)) {
4387                 if (I915_HAS_HOTPLUG(dev_priv))
4388                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389         } else {
4390                 if (HAS_PCH_MCC(dev_priv))
4391                         /* EHL doesn't need most of gen11_hpd_irq_setup */
4392                         dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393                 else if (INTEL_GEN(dev_priv) >= 11)
4394                         dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395                 else if (IS_GEN9_LP(dev_priv))
4396                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399                 else
4400                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401         }
4402 }
4403
4404 /**
4405  * intel_irq_fini - deinitializes IRQ support
4406  * @i915: i915 device instance
4407  *
4408  * This function deinitializes all the IRQ support.
4409  */
4410 void intel_irq_fini(struct drm_i915_private *i915)
4411 {
4412         int i;
4413
4414         if (IS_I945GM(i915))
4415                 i945gm_vblank_work_fini(i915);
4416
4417         for (i = 0; i < MAX_L3_SLICES; ++i)
4418                 kfree(i915->l3_parity.remap_info[i]);
4419 }
4420
4421 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422 {
4423         if (HAS_GMCH(dev_priv)) {
4424                 if (IS_CHERRYVIEW(dev_priv))
4425                         return cherryview_irq_handler;
4426                 else if (IS_VALLEYVIEW(dev_priv))
4427                         return valleyview_irq_handler;
4428                 else if (IS_GEN(dev_priv, 4))
4429                         return i965_irq_handler;
4430                 else if (IS_GEN(dev_priv, 3))
4431                         return i915_irq_handler;
4432                 else
4433                         return i8xx_irq_handler;
4434         } else {
4435                 if (INTEL_GEN(dev_priv) >= 11)
4436                         return gen11_irq_handler;
4437                 else if (INTEL_GEN(dev_priv) >= 8)
4438                         return gen8_irq_handler;
4439                 else
4440                         return ironlake_irq_handler;
4441         }
4442 }
4443
4444 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445 {
4446         if (HAS_GMCH(dev_priv)) {
4447                 if (IS_CHERRYVIEW(dev_priv))
4448                         cherryview_irq_reset(dev_priv);
4449                 else if (IS_VALLEYVIEW(dev_priv))
4450                         valleyview_irq_reset(dev_priv);
4451                 else if (IS_GEN(dev_priv, 4))
4452                         i965_irq_reset(dev_priv);
4453                 else if (IS_GEN(dev_priv, 3))
4454                         i915_irq_reset(dev_priv);
4455                 else
4456                         i8xx_irq_reset(dev_priv);
4457         } else {
4458                 if (INTEL_GEN(dev_priv) >= 11)
4459                         gen11_irq_reset(dev_priv);
4460                 else if (INTEL_GEN(dev_priv) >= 8)
4461                         gen8_irq_reset(dev_priv);
4462                 else
4463                         ironlake_irq_reset(dev_priv);
4464         }
4465 }
4466
4467 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468 {
4469         if (HAS_GMCH(dev_priv)) {
4470                 if (IS_CHERRYVIEW(dev_priv))
4471                         cherryview_irq_postinstall(dev_priv);
4472                 else if (IS_VALLEYVIEW(dev_priv))
4473                         valleyview_irq_postinstall(dev_priv);
4474                 else if (IS_GEN(dev_priv, 4))
4475                         i965_irq_postinstall(dev_priv);
4476                 else if (IS_GEN(dev_priv, 3))
4477                         i915_irq_postinstall(dev_priv);
4478                 else
4479                         i8xx_irq_postinstall(dev_priv);
4480         } else {
4481                 if (INTEL_GEN(dev_priv) >= 11)
4482                         gen11_irq_postinstall(dev_priv);
4483                 else if (INTEL_GEN(dev_priv) >= 8)
4484                         gen8_irq_postinstall(dev_priv);
4485                 else
4486                         ironlake_irq_postinstall(dev_priv);
4487         }
4488 }
4489
4490 /**
4491  * intel_irq_install - enables the hardware interrupt
4492  * @dev_priv: i915 device instance
4493  *
4494  * This function enables the hardware interrupt handling, but leaves the hotplug
4495  * handling still disabled. It is called after intel_irq_init().
4496  *
4497  * In the driver load and resume code we need working interrupts in a few places
4498  * but don't want to deal with the hassle of concurrent probe and hotplug
4499  * workers. Hence the split into this two-stage approach.
4500  */
4501 int intel_irq_install(struct drm_i915_private *dev_priv)
4502 {
4503         int irq = dev_priv->drm.pdev->irq;
4504         int ret;
4505
4506         /*
4507          * We enable some interrupt sources in our postinstall hooks, so mark
4508          * interrupts as enabled _before_ actually enabling them to avoid
4509          * special cases in our ordering checks.
4510          */
4511         dev_priv->runtime_pm.irqs_enabled = true;
4512
4513         dev_priv->drm.irq_enabled = true;
4514
4515         intel_irq_reset(dev_priv);
4516
4517         ret = request_irq(irq, intel_irq_handler(dev_priv),
4518                           IRQF_SHARED, DRIVER_NAME, dev_priv);
4519         if (ret < 0) {
4520                 dev_priv->drm.irq_enabled = false;
4521                 return ret;
4522         }
4523
4524         intel_irq_postinstall(dev_priv);
4525
4526         return ret;
4527 }
4528
4529 /**
4530  * intel_irq_uninstall - finilizes all irq handling
4531  * @dev_priv: i915 device instance
4532  *
4533  * This stops interrupt and hotplug handling and unregisters and frees all
4534  * resources acquired in the init functions.
4535  */
4536 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537 {
4538         int irq = dev_priv->drm.pdev->irq;
4539
4540         /*
4541          * FIXME we can get called twice during driver load
4542          * error handling due to intel_modeset_cleanup()
4543          * calling us out of sequence. Would be nice if
4544          * it didn't do that...
4545          */
4546         if (!dev_priv->drm.irq_enabled)
4547                 return;
4548
4549         dev_priv->drm.irq_enabled = false;
4550
4551         intel_irq_reset(dev_priv);
4552
4553         free_irq(irq, dev_priv);
4554
4555         intel_hpd_cancel_work(dev_priv);
4556         dev_priv->runtime_pm.irqs_enabled = false;
4557 }
4558
4559 /**
4560  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561  * @dev_priv: i915 device instance
4562  *
4563  * This function is used to disable interrupts at runtime, both in the runtime
4564  * pm and the system suspend/resume code.
4565  */
4566 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567 {
4568         intel_irq_reset(dev_priv);
4569         dev_priv->runtime_pm.irqs_enabled = false;
4570         intel_synchronize_irq(dev_priv);
4571 }
4572
4573 /**
4574  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575  * @dev_priv: i915 device instance
4576  *
4577  * This function is used to enable interrupts at runtime, both in the runtime
4578  * pm and the system suspend/resume code.
4579  */
4580 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581 {
4582         dev_priv->runtime_pm.irqs_enabled = true;
4583         intel_irq_reset(dev_priv);
4584         intel_irq_postinstall(dev_priv);
4585 }
4586
4587 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588 {
4589         /*
4590          * We only use drm_irq_uninstall() at unload and VT switch, so
4591          * this is the only thing we need to check.
4592          */
4593         return dev_priv->runtime_pm.irqs_enabled;
4594 }
4595
4596 void intel_synchronize_irq(struct drm_i915_private *i915)
4597 {
4598         synchronize_irq(i915->drm.pdev->irq);
4599 }