Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43
44 #include "gt/intel_gt.h"
45 #include "gt/intel_gt_irq.h"
46 #include "gt/intel_gt_pm_irq.h"
47 #include "gt/intel_rps.h"
48
49 #include "i915_drv.h"
50 #include "i915_irq.h"
51 #include "i915_trace.h"
52 #include "intel_pm.h"
53
54 /**
55  * DOC: interrupt handling
56  *
57  * These functions provide the basic support for enabling and disabling the
58  * interrupt handling support. There's a lot more functionality in i915_irq.c
59  * and related files, but that will be described in separate chapters.
60  */
61
62 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
63
64 static const u32 hpd_ilk[HPD_NUM_PINS] = {
65         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
66 };
67
68 static const u32 hpd_ivb[HPD_NUM_PINS] = {
69         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
70 };
71
72 static const u32 hpd_bdw[HPD_NUM_PINS] = {
73         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
74 };
75
76 static const u32 hpd_ibx[HPD_NUM_PINS] = {
77         [HPD_CRT] = SDE_CRT_HOTPLUG,
78         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
79         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
80         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
81         [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
82 };
83
84 static const u32 hpd_cpt[HPD_NUM_PINS] = {
85         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
86         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
87         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90 };
91
92 static const u32 hpd_spt[HPD_NUM_PINS] = {
93         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
94         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
95         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
96         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
97         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
98 };
99
100 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
101         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
102         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
103         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
104         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
105         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
106         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
107 };
108
109 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
110         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
111         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
112         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
113         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
114         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
115         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
116 };
117
118 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
119         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
120         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
121         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
122         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
123         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
124         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
125 };
126
127 static const u32 hpd_bxt[HPD_NUM_PINS] = {
128         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
129         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
130         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
131 };
132
133 static const u32 hpd_gen11[HPD_NUM_PINS] = {
134         [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
135         [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
136         [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
137         [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
138 };
139
140 static const u32 hpd_gen12[HPD_NUM_PINS] = {
141         [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
142         [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
143         [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
144         [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
145         [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
146         [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
147 };
148
149 static const u32 hpd_icp[HPD_NUM_PINS] = {
150         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
151         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
152         [HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
153         [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
154         [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
155         [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
156 };
157
158 static const u32 hpd_tgp[HPD_NUM_PINS] = {
159         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
160         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
161         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
162         [HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
163         [HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
164         [HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
165         [HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
166         [HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
167         [HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
168 };
169
170 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
171 {
172         struct i915_hotplug *hpd = &dev_priv->hotplug;
173
174         if (HAS_GMCH(dev_priv)) {
175                 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
176                     IS_CHERRYVIEW(dev_priv))
177                         hpd->hpd = hpd_status_g4x;
178                 else
179                         hpd->hpd = hpd_status_i915;
180                 return;
181         }
182
183         if (INTEL_GEN(dev_priv) >= 12)
184                 hpd->hpd = hpd_gen12;
185         else if (INTEL_GEN(dev_priv) >= 11)
186                 hpd->hpd = hpd_gen11;
187         else if (IS_GEN9_LP(dev_priv))
188                 hpd->hpd = hpd_bxt;
189         else if (INTEL_GEN(dev_priv) >= 8)
190                 hpd->hpd = hpd_bdw;
191         else if (INTEL_GEN(dev_priv) >= 7)
192                 hpd->hpd = hpd_ivb;
193         else
194                 hpd->hpd = hpd_ilk;
195
196         if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
197                 return;
198
199         if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv))
200                 hpd->pch_hpd = hpd_tgp;
201         else if (HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
202                 hpd->pch_hpd = hpd_icp;
203         else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
204                 hpd->pch_hpd = hpd_spt;
205         else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
206                 hpd->pch_hpd = hpd_cpt;
207         else if (HAS_PCH_IBX(dev_priv))
208                 hpd->pch_hpd = hpd_ibx;
209         else
210                 MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
211 }
212
213 static void
214 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
215 {
216         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
217
218         drm_crtc_handle_vblank(&crtc->base);
219 }
220
221 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
222                     i915_reg_t iir, i915_reg_t ier)
223 {
224         intel_uncore_write(uncore, imr, 0xffffffff);
225         intel_uncore_posting_read(uncore, imr);
226
227         intel_uncore_write(uncore, ier, 0);
228
229         /* IIR can theoretically queue up two events. Be paranoid. */
230         intel_uncore_write(uncore, iir, 0xffffffff);
231         intel_uncore_posting_read(uncore, iir);
232         intel_uncore_write(uncore, iir, 0xffffffff);
233         intel_uncore_posting_read(uncore, iir);
234 }
235
236 void gen2_irq_reset(struct intel_uncore *uncore)
237 {
238         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
239         intel_uncore_posting_read16(uncore, GEN2_IMR);
240
241         intel_uncore_write16(uncore, GEN2_IER, 0);
242
243         /* IIR can theoretically queue up two events. Be paranoid. */
244         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
245         intel_uncore_posting_read16(uncore, GEN2_IIR);
246         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
247         intel_uncore_posting_read16(uncore, GEN2_IIR);
248 }
249
250 /*
251  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
252  */
253 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
254 {
255         u32 val = intel_uncore_read(uncore, reg);
256
257         if (val == 0)
258                 return;
259
260         drm_WARN(&uncore->i915->drm, 1,
261                  "Interrupt register 0x%x is not zero: 0x%08x\n",
262                  i915_mmio_reg_offset(reg), val);
263         intel_uncore_write(uncore, reg, 0xffffffff);
264         intel_uncore_posting_read(uncore, reg);
265         intel_uncore_write(uncore, reg, 0xffffffff);
266         intel_uncore_posting_read(uncore, reg);
267 }
268
269 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
270 {
271         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
272
273         if (val == 0)
274                 return;
275
276         drm_WARN(&uncore->i915->drm, 1,
277                  "Interrupt register 0x%x is not zero: 0x%08x\n",
278                  i915_mmio_reg_offset(GEN2_IIR), val);
279         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
280         intel_uncore_posting_read16(uncore, GEN2_IIR);
281         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
282         intel_uncore_posting_read16(uncore, GEN2_IIR);
283 }
284
285 void gen3_irq_init(struct intel_uncore *uncore,
286                    i915_reg_t imr, u32 imr_val,
287                    i915_reg_t ier, u32 ier_val,
288                    i915_reg_t iir)
289 {
290         gen3_assert_iir_is_zero(uncore, iir);
291
292         intel_uncore_write(uncore, ier, ier_val);
293         intel_uncore_write(uncore, imr, imr_val);
294         intel_uncore_posting_read(uncore, imr);
295 }
296
297 void gen2_irq_init(struct intel_uncore *uncore,
298                    u32 imr_val, u32 ier_val)
299 {
300         gen2_assert_iir_is_zero(uncore);
301
302         intel_uncore_write16(uncore, GEN2_IER, ier_val);
303         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
304         intel_uncore_posting_read16(uncore, GEN2_IMR);
305 }
306
307 /* For display hotplug interrupt */
308 static inline void
309 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
310                                      u32 mask,
311                                      u32 bits)
312 {
313         u32 val;
314
315         lockdep_assert_held(&dev_priv->irq_lock);
316         drm_WARN_ON(&dev_priv->drm, bits & ~mask);
317
318         val = I915_READ(PORT_HOTPLUG_EN);
319         val &= ~mask;
320         val |= bits;
321         I915_WRITE(PORT_HOTPLUG_EN, val);
322 }
323
324 /**
325  * i915_hotplug_interrupt_update - update hotplug interrupt enable
326  * @dev_priv: driver private
327  * @mask: bits to update
328  * @bits: bits to enable
329  * NOTE: the HPD enable bits are modified both inside and outside
330  * of an interrupt context. To avoid that read-modify-write cycles
331  * interfer, these bits are protected by a spinlock. Since this
332  * function is usually not called from a context where the lock is
333  * held already, this function acquires the lock itself. A non-locking
334  * version is also available.
335  */
336 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
337                                    u32 mask,
338                                    u32 bits)
339 {
340         spin_lock_irq(&dev_priv->irq_lock);
341         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
342         spin_unlock_irq(&dev_priv->irq_lock);
343 }
344
345 /**
346  * ilk_update_display_irq - update DEIMR
347  * @dev_priv: driver private
348  * @interrupt_mask: mask of interrupt bits to update
349  * @enabled_irq_mask: mask of interrupt bits to enable
350  */
351 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
352                             u32 interrupt_mask,
353                             u32 enabled_irq_mask)
354 {
355         u32 new_val;
356
357         lockdep_assert_held(&dev_priv->irq_lock);
358
359         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
360
361         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
362                 return;
363
364         new_val = dev_priv->irq_mask;
365         new_val &= ~interrupt_mask;
366         new_val |= (~enabled_irq_mask & interrupt_mask);
367
368         if (new_val != dev_priv->irq_mask) {
369                 dev_priv->irq_mask = new_val;
370                 I915_WRITE(DEIMR, dev_priv->irq_mask);
371                 POSTING_READ(DEIMR);
372         }
373 }
374
375 /**
376  * bdw_update_port_irq - update DE port interrupt
377  * @dev_priv: driver private
378  * @interrupt_mask: mask of interrupt bits to update
379  * @enabled_irq_mask: mask of interrupt bits to enable
380  */
381 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
382                                 u32 interrupt_mask,
383                                 u32 enabled_irq_mask)
384 {
385         u32 new_val;
386         u32 old_val;
387
388         lockdep_assert_held(&dev_priv->irq_lock);
389
390         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
391
392         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
393                 return;
394
395         old_val = I915_READ(GEN8_DE_PORT_IMR);
396
397         new_val = old_val;
398         new_val &= ~interrupt_mask;
399         new_val |= (~enabled_irq_mask & interrupt_mask);
400
401         if (new_val != old_val) {
402                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
403                 POSTING_READ(GEN8_DE_PORT_IMR);
404         }
405 }
406
407 /**
408  * bdw_update_pipe_irq - update DE pipe interrupt
409  * @dev_priv: driver private
410  * @pipe: pipe whose interrupt to update
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
415                          enum pipe pipe,
416                          u32 interrupt_mask,
417                          u32 enabled_irq_mask)
418 {
419         u32 new_val;
420
421         lockdep_assert_held(&dev_priv->irq_lock);
422
423         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
424
425         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
426                 return;
427
428         new_val = dev_priv->de_irq_mask[pipe];
429         new_val &= ~interrupt_mask;
430         new_val |= (~enabled_irq_mask & interrupt_mask);
431
432         if (new_val != dev_priv->de_irq_mask[pipe]) {
433                 dev_priv->de_irq_mask[pipe] = new_val;
434                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
435                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
436         }
437 }
438
439 /**
440  * ibx_display_interrupt_update - update SDEIMR
441  * @dev_priv: driver private
442  * @interrupt_mask: mask of interrupt bits to update
443  * @enabled_irq_mask: mask of interrupt bits to enable
444  */
445 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
446                                   u32 interrupt_mask,
447                                   u32 enabled_irq_mask)
448 {
449         u32 sdeimr = I915_READ(SDEIMR);
450         sdeimr &= ~interrupt_mask;
451         sdeimr |= (~enabled_irq_mask & interrupt_mask);
452
453         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
454
455         lockdep_assert_held(&dev_priv->irq_lock);
456
457         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
458                 return;
459
460         I915_WRITE(SDEIMR, sdeimr);
461         POSTING_READ(SDEIMR);
462 }
463
464 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
465                               enum pipe pipe)
466 {
467         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
468         u32 enable_mask = status_mask << 16;
469
470         lockdep_assert_held(&dev_priv->irq_lock);
471
472         if (INTEL_GEN(dev_priv) < 5)
473                 goto out;
474
475         /*
476          * On pipe A we don't support the PSR interrupt yet,
477          * on pipe B and C the same bit MBZ.
478          */
479         if (drm_WARN_ON_ONCE(&dev_priv->drm,
480                              status_mask & PIPE_A_PSR_STATUS_VLV))
481                 return 0;
482         /*
483          * On pipe B and C we don't support the PSR interrupt yet, on pipe
484          * A the same bit is for perf counters which we don't use either.
485          */
486         if (drm_WARN_ON_ONCE(&dev_priv->drm,
487                              status_mask & PIPE_B_PSR_STATUS_VLV))
488                 return 0;
489
490         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
491                          SPRITE0_FLIP_DONE_INT_EN_VLV |
492                          SPRITE1_FLIP_DONE_INT_EN_VLV);
493         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
494                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
495         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
496                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
497
498 out:
499         drm_WARN_ONCE(&dev_priv->drm,
500                       enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
501                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
502                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
503                       pipe_name(pipe), enable_mask, status_mask);
504
505         return enable_mask;
506 }
507
508 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
509                           enum pipe pipe, u32 status_mask)
510 {
511         i915_reg_t reg = PIPESTAT(pipe);
512         u32 enable_mask;
513
514         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
515                       "pipe %c: status_mask=0x%x\n",
516                       pipe_name(pipe), status_mask);
517
518         lockdep_assert_held(&dev_priv->irq_lock);
519         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
520
521         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
522                 return;
523
524         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
525         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
526
527         I915_WRITE(reg, enable_mask | status_mask);
528         POSTING_READ(reg);
529 }
530
531 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
532                            enum pipe pipe, u32 status_mask)
533 {
534         i915_reg_t reg = PIPESTAT(pipe);
535         u32 enable_mask;
536
537         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
538                       "pipe %c: status_mask=0x%x\n",
539                       pipe_name(pipe), status_mask);
540
541         lockdep_assert_held(&dev_priv->irq_lock);
542         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
543
544         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
545                 return;
546
547         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
548         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
549
550         I915_WRITE(reg, enable_mask | status_mask);
551         POSTING_READ(reg);
552 }
553
554 static bool i915_has_asle(struct drm_i915_private *dev_priv)
555 {
556         if (!dev_priv->opregion.asle)
557                 return false;
558
559         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
560 }
561
562 /**
563  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
564  * @dev_priv: i915 device private
565  */
566 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
567 {
568         if (!i915_has_asle(dev_priv))
569                 return;
570
571         spin_lock_irq(&dev_priv->irq_lock);
572
573         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
574         if (INTEL_GEN(dev_priv) >= 4)
575                 i915_enable_pipestat(dev_priv, PIPE_A,
576                                      PIPE_LEGACY_BLC_EVENT_STATUS);
577
578         spin_unlock_irq(&dev_priv->irq_lock);
579 }
580
581 /*
582  * This timing diagram depicts the video signal in and
583  * around the vertical blanking period.
584  *
585  * Assumptions about the fictitious mode used in this example:
586  *  vblank_start >= 3
587  *  vsync_start = vblank_start + 1
588  *  vsync_end = vblank_start + 2
589  *  vtotal = vblank_start + 3
590  *
591  *           start of vblank:
592  *           latch double buffered registers
593  *           increment frame counter (ctg+)
594  *           generate start of vblank interrupt (gen4+)
595  *           |
596  *           |          frame start:
597  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
598  *           |          may be shifted forward 1-3 extra lines via PIPECONF
599  *           |          |
600  *           |          |  start of vsync:
601  *           |          |  generate vsync interrupt
602  *           |          |  |
603  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
604  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
605  * ----va---> <-----------------vb--------------------> <--------va-------------
606  *       |          |       <----vs----->                     |
607  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
608  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
609  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
610  *       |          |                                         |
611  *       last visible pixel                                   first visible pixel
612  *                  |                                         increment frame counter (gen3/4)
613  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
614  *
615  * x  = horizontal active
616  * _  = horizontal blanking
617  * hs = horizontal sync
618  * va = vertical active
619  * vb = vertical blanking
620  * vs = vertical sync
621  * vbs = vblank_start (number)
622  *
623  * Summary:
624  * - most events happen at the start of horizontal sync
625  * - frame start happens at the start of horizontal blank, 1-4 lines
626  *   (depending on PIPECONF settings) after the start of vblank
627  * - gen3/4 pixel and frame counter are synchronized with the start
628  *   of horizontal active on the first line of vertical active
629  */
630
631 /* Called from drm generic code, passed a 'crtc', which
632  * we use as a pipe index
633  */
634 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
635 {
636         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
637         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
638         const struct drm_display_mode *mode = &vblank->hwmode;
639         enum pipe pipe = to_intel_crtc(crtc)->pipe;
640         i915_reg_t high_frame, low_frame;
641         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
642         unsigned long irqflags;
643
644         /*
645          * On i965gm TV output the frame counter only works up to
646          * the point when we enable the TV encoder. After that the
647          * frame counter ceases to work and reads zero. We need a
648          * vblank wait before enabling the TV encoder and so we
649          * have to enable vblank interrupts while the frame counter
650          * is still in a working state. However the core vblank code
651          * does not like us returning non-zero frame counter values
652          * when we've told it that we don't have a working frame
653          * counter. Thus we must stop non-zero values leaking out.
654          */
655         if (!vblank->max_vblank_count)
656                 return 0;
657
658         htotal = mode->crtc_htotal;
659         hsync_start = mode->crtc_hsync_start;
660         vbl_start = mode->crtc_vblank_start;
661         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
662                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
663
664         /* Convert to pixel count */
665         vbl_start *= htotal;
666
667         /* Start of vblank event occurs at start of hsync */
668         vbl_start -= htotal - hsync_start;
669
670         high_frame = PIPEFRAME(pipe);
671         low_frame = PIPEFRAMEPIXEL(pipe);
672
673         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
674
675         /*
676          * High & low register fields aren't synchronized, so make sure
677          * we get a low value that's stable across two reads of the high
678          * register.
679          */
680         do {
681                 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
682                 low   = intel_de_read_fw(dev_priv, low_frame);
683                 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
684         } while (high1 != high2);
685
686         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
687
688         high1 >>= PIPE_FRAME_HIGH_SHIFT;
689         pixel = low & PIPE_PIXEL_MASK;
690         low >>= PIPE_FRAME_LOW_SHIFT;
691
692         /*
693          * The frame counter increments at beginning of active.
694          * Cook up a vblank counter by also checking the pixel
695          * counter against vblank start.
696          */
697         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
698 }
699
700 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
701 {
702         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
703         enum pipe pipe = to_intel_crtc(crtc)->pipe;
704
705         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
706 }
707
708 /*
709  * On certain encoders on certain platforms, pipe
710  * scanline register will not work to get the scanline,
711  * since the timings are driven from the PORT or issues
712  * with scanline register updates.
713  * This function will use Framestamp and current
714  * timestamp registers to calculate the scanline.
715  */
716 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
717 {
718         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
719         struct drm_vblank_crtc *vblank =
720                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
721         const struct drm_display_mode *mode = &vblank->hwmode;
722         u32 vblank_start = mode->crtc_vblank_start;
723         u32 vtotal = mode->crtc_vtotal;
724         u32 htotal = mode->crtc_htotal;
725         u32 clock = mode->crtc_clock;
726         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
727
728         /*
729          * To avoid the race condition where we might cross into the
730          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
731          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
732          * during the same frame.
733          */
734         do {
735                 /*
736                  * This field provides read back of the display
737                  * pipe frame time stamp. The time stamp value
738                  * is sampled at every start of vertical blank.
739                  */
740                 scan_prev_time = intel_de_read_fw(dev_priv,
741                                                   PIPE_FRMTMSTMP(crtc->pipe));
742
743                 /*
744                  * The TIMESTAMP_CTR register has the current
745                  * time stamp value.
746                  */
747                 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
748
749                 scan_post_time = intel_de_read_fw(dev_priv,
750                                                   PIPE_FRMTMSTMP(crtc->pipe));
751         } while (scan_post_time != scan_prev_time);
752
753         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
754                                         clock), 1000 * htotal);
755         scanline = min(scanline, vtotal - 1);
756         scanline = (scanline + vblank_start) % vtotal;
757
758         return scanline;
759 }
760
761 /*
762  * intel_de_read_fw(), only for fast reads of display block, no need for
763  * forcewake etc.
764  */
765 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
766 {
767         struct drm_device *dev = crtc->base.dev;
768         struct drm_i915_private *dev_priv = to_i915(dev);
769         const struct drm_display_mode *mode;
770         struct drm_vblank_crtc *vblank;
771         enum pipe pipe = crtc->pipe;
772         int position, vtotal;
773
774         if (!crtc->active)
775                 return -1;
776
777         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
778         mode = &vblank->hwmode;
779
780         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
781                 return __intel_get_crtc_scanline_from_timestamp(crtc);
782
783         vtotal = mode->crtc_vtotal;
784         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
785                 vtotal /= 2;
786
787         if (IS_GEN(dev_priv, 2))
788                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
789         else
790                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
791
792         /*
793          * On HSW, the DSL reg (0x70000) appears to return 0 if we
794          * read it just before the start of vblank.  So try it again
795          * so we don't accidentally end up spanning a vblank frame
796          * increment, causing the pipe_update_end() code to squak at us.
797          *
798          * The nature of this problem means we can't simply check the ISR
799          * bit and return the vblank start value; nor can we use the scanline
800          * debug register in the transcoder as it appears to have the same
801          * problem.  We may need to extend this to include other platforms,
802          * but so far testing only shows the problem on HSW.
803          */
804         if (HAS_DDI(dev_priv) && !position) {
805                 int i, temp;
806
807                 for (i = 0; i < 100; i++) {
808                         udelay(1);
809                         temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
810                         if (temp != position) {
811                                 position = temp;
812                                 break;
813                         }
814                 }
815         }
816
817         /*
818          * See update_scanline_offset() for the details on the
819          * scanline_offset adjustment.
820          */
821         return (position + crtc->scanline_offset) % vtotal;
822 }
823
824 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
825                                      bool in_vblank_irq,
826                                      int *vpos, int *hpos,
827                                      ktime_t *stime, ktime_t *etime,
828                                      const struct drm_display_mode *mode)
829 {
830         struct drm_device *dev = _crtc->dev;
831         struct drm_i915_private *dev_priv = to_i915(dev);
832         struct intel_crtc *crtc = to_intel_crtc(_crtc);
833         enum pipe pipe = crtc->pipe;
834         int position;
835         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
836         unsigned long irqflags;
837         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
838                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
839                 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
840
841         if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
842                 drm_dbg(&dev_priv->drm,
843                         "trying to get scanoutpos for disabled "
844                         "pipe %c\n", pipe_name(pipe));
845                 return false;
846         }
847
848         htotal = mode->crtc_htotal;
849         hsync_start = mode->crtc_hsync_start;
850         vtotal = mode->crtc_vtotal;
851         vbl_start = mode->crtc_vblank_start;
852         vbl_end = mode->crtc_vblank_end;
853
854         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856                 vbl_end /= 2;
857                 vtotal /= 2;
858         }
859
860         /*
861          * Lock uncore.lock, as we will do multiple timing critical raw
862          * register reads, potentially with preemption disabled, so the
863          * following code must not block on uncore.lock.
864          */
865         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
866
867         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
868
869         /* Get optional system timestamp before query. */
870         if (stime)
871                 *stime = ktime_get();
872
873         if (use_scanline_counter) {
874                 /* No obvious pixelcount register. Only query vertical
875                  * scanout position from Display scan line register.
876                  */
877                 position = __intel_get_crtc_scanline(crtc);
878         } else {
879                 /* Have access to pixelcount since start of frame.
880                  * We can split this into vertical and horizontal
881                  * scanout position.
882                  */
883                 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
884
885                 /* convert to pixel counts */
886                 vbl_start *= htotal;
887                 vbl_end *= htotal;
888                 vtotal *= htotal;
889
890                 /*
891                  * In interlaced modes, the pixel counter counts all pixels,
892                  * so one field will have htotal more pixels. In order to avoid
893                  * the reported position from jumping backwards when the pixel
894                  * counter is beyond the length of the shorter field, just
895                  * clamp the position the length of the shorter field. This
896                  * matches how the scanline counter based position works since
897                  * the scanline counter doesn't count the two half lines.
898                  */
899                 if (position >= vtotal)
900                         position = vtotal - 1;
901
902                 /*
903                  * Start of vblank interrupt is triggered at start of hsync,
904                  * just prior to the first active line of vblank. However we
905                  * consider lines to start at the leading edge of horizontal
906                  * active. So, should we get here before we've crossed into
907                  * the horizontal active of the first line in vblank, we would
908                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
909                  * always add htotal-hsync_start to the current pixel position.
910                  */
911                 position = (position + htotal - hsync_start) % vtotal;
912         }
913
914         /* Get optional system timestamp after query. */
915         if (etime)
916                 *etime = ktime_get();
917
918         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
919
920         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
921
922         /*
923          * While in vblank, position will be negative
924          * counting up towards 0 at vbl_end. And outside
925          * vblank, position will be positive counting
926          * up since vbl_end.
927          */
928         if (position >= vbl_start)
929                 position -= vbl_end;
930         else
931                 position += vtotal - vbl_end;
932
933         if (use_scanline_counter) {
934                 *vpos = position;
935                 *hpos = 0;
936         } else {
937                 *vpos = position / htotal;
938                 *hpos = position - (*vpos * htotal);
939         }
940
941         return true;
942 }
943
944 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
945                                      ktime_t *vblank_time, bool in_vblank_irq)
946 {
947         return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
948                 crtc, max_error, vblank_time, in_vblank_irq,
949                 i915_get_crtc_scanoutpos);
950 }
951
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955         unsigned long irqflags;
956         int position;
957
958         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959         position = __intel_get_crtc_scanline(crtc);
960         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962         return position;
963 }
964
965 /**
966  * ivb_parity_work - Workqueue called when a parity error interrupt
967  * occurred.
968  * @work: workqueue struct
969  *
970  * Doesn't actually do anything except notify userspace. As a consequence of
971  * this event, userspace should try to remap the bad rows since statistically
972  * it is likely the same row is more likely to go bad again.
973  */
974 static void ivb_parity_work(struct work_struct *work)
975 {
976         struct drm_i915_private *dev_priv =
977                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
978         struct intel_gt *gt = &dev_priv->gt;
979         u32 error_status, row, bank, subbank;
980         char *parity_event[6];
981         u32 misccpctl;
982         u8 slice = 0;
983
984         /* We must turn off DOP level clock gating to access the L3 registers.
985          * In order to prevent a get/put style interface, acquire struct mutex
986          * any time we access those registers.
987          */
988         mutex_lock(&dev_priv->drm.struct_mutex);
989
990         /* If we've screwed up tracking, just let the interrupt fire again */
991         if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
992                 goto out;
993
994         misccpctl = I915_READ(GEN7_MISCCPCTL);
995         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
996         POSTING_READ(GEN7_MISCCPCTL);
997
998         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
999                 i915_reg_t reg;
1000
1001                 slice--;
1002                 if (drm_WARN_ON_ONCE(&dev_priv->drm,
1003                                      slice >= NUM_L3_SLICES(dev_priv)))
1004                         break;
1005
1006                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1007
1008                 reg = GEN7_L3CDERRST1(slice);
1009
1010                 error_status = I915_READ(reg);
1011                 row = GEN7_PARITY_ERROR_ROW(error_status);
1012                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1013                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1014
1015                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1016                 POSTING_READ(reg);
1017
1018                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1019                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1020                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1021                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1022                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1023                 parity_event[5] = NULL;
1024
1025                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1026                                    KOBJ_CHANGE, parity_event);
1027
1028                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1029                           slice, row, bank, subbank);
1030
1031                 kfree(parity_event[4]);
1032                 kfree(parity_event[3]);
1033                 kfree(parity_event[2]);
1034                 kfree(parity_event[1]);
1035         }
1036
1037         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1038
1039 out:
1040         drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1041         spin_lock_irq(&gt->irq_lock);
1042         gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1043         spin_unlock_irq(&gt->irq_lock);
1044
1045         mutex_unlock(&dev_priv->drm.struct_mutex);
1046 }
1047
1048 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1049 {
1050         switch (pin) {
1051         case HPD_PORT_C:
1052                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1053         case HPD_PORT_D:
1054                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1055         case HPD_PORT_E:
1056                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1057         case HPD_PORT_F:
1058                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1059         default:
1060                 return false;
1061         }
1062 }
1063
1064 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065 {
1066         switch (pin) {
1067         case HPD_PORT_D:
1068                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1069         case HPD_PORT_E:
1070                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1071         case HPD_PORT_F:
1072                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1073         case HPD_PORT_G:
1074                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1075         case HPD_PORT_H:
1076                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1077         case HPD_PORT_I:
1078                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1079         default:
1080                 return false;
1081         }
1082 }
1083
1084 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085 {
1086         switch (pin) {
1087         case HPD_PORT_A:
1088                 return val & PORTA_HOTPLUG_LONG_DETECT;
1089         case HPD_PORT_B:
1090                 return val & PORTB_HOTPLUG_LONG_DETECT;
1091         case HPD_PORT_C:
1092                 return val & PORTC_HOTPLUG_LONG_DETECT;
1093         default:
1094                 return false;
1095         }
1096 }
1097
1098 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100         switch (pin) {
1101         case HPD_PORT_A:
1102                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1103         case HPD_PORT_B:
1104                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1105         case HPD_PORT_C:
1106                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1107         default:
1108                 return false;
1109         }
1110 }
1111
1112 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113 {
1114         switch (pin) {
1115         case HPD_PORT_C:
1116                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1117         case HPD_PORT_D:
1118                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1119         case HPD_PORT_E:
1120                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1121         case HPD_PORT_F:
1122                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1123         default:
1124                 return false;
1125         }
1126 }
1127
1128 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129 {
1130         switch (pin) {
1131         case HPD_PORT_D:
1132                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1133         case HPD_PORT_E:
1134                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1135         case HPD_PORT_F:
1136                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1137         case HPD_PORT_G:
1138                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1139         case HPD_PORT_H:
1140                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1141         case HPD_PORT_I:
1142                 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1143         default:
1144                 return false;
1145         }
1146 }
1147
1148 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1149 {
1150         switch (pin) {
1151         case HPD_PORT_E:
1152                 return val & PORTE_HOTPLUG_LONG_DETECT;
1153         default:
1154                 return false;
1155         }
1156 }
1157
1158 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1159 {
1160         switch (pin) {
1161         case HPD_PORT_A:
1162                 return val & PORTA_HOTPLUG_LONG_DETECT;
1163         case HPD_PORT_B:
1164                 return val & PORTB_HOTPLUG_LONG_DETECT;
1165         case HPD_PORT_C:
1166                 return val & PORTC_HOTPLUG_LONG_DETECT;
1167         case HPD_PORT_D:
1168                 return val & PORTD_HOTPLUG_LONG_DETECT;
1169         default:
1170                 return false;
1171         }
1172 }
1173
1174 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1175 {
1176         switch (pin) {
1177         case HPD_PORT_A:
1178                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1179         default:
1180                 return false;
1181         }
1182 }
1183
1184 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1185 {
1186         switch (pin) {
1187         case HPD_PORT_B:
1188                 return val & PORTB_HOTPLUG_LONG_DETECT;
1189         case HPD_PORT_C:
1190                 return val & PORTC_HOTPLUG_LONG_DETECT;
1191         case HPD_PORT_D:
1192                 return val & PORTD_HOTPLUG_LONG_DETECT;
1193         default:
1194                 return false;
1195         }
1196 }
1197
1198 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1199 {
1200         switch (pin) {
1201         case HPD_PORT_B:
1202                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1203         case HPD_PORT_C:
1204                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1205         case HPD_PORT_D:
1206                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1207         default:
1208                 return false;
1209         }
1210 }
1211
1212 /*
1213  * Get a bit mask of pins that have triggered, and which ones may be long.
1214  * This can be called multiple times with the same masks to accumulate
1215  * hotplug detection results from several registers.
1216  *
1217  * Note that the caller is expected to zero out the masks initially.
1218  */
1219 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1220                                u32 *pin_mask, u32 *long_mask,
1221                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1222                                const u32 hpd[HPD_NUM_PINS],
1223                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1224 {
1225         enum hpd_pin pin;
1226
1227         BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1228
1229         for_each_hpd_pin(pin) {
1230                 if ((hpd[pin] & hotplug_trigger) == 0)
1231                         continue;
1232
1233                 *pin_mask |= BIT(pin);
1234
1235                 if (long_pulse_detect(pin, dig_hotplug_reg))
1236                         *long_mask |= BIT(pin);
1237         }
1238
1239         drm_dbg(&dev_priv->drm,
1240                 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1241                 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1242
1243 }
1244
1245 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1246 {
1247         wake_up_all(&dev_priv->gmbus_wait_queue);
1248 }
1249
1250 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1251 {
1252         wake_up_all(&dev_priv->gmbus_wait_queue);
1253 }
1254
1255 #if defined(CONFIG_DEBUG_FS)
1256 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1257                                          enum pipe pipe,
1258                                          u32 crc0, u32 crc1,
1259                                          u32 crc2, u32 crc3,
1260                                          u32 crc4)
1261 {
1262         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1263         struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1264         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1265
1266         trace_intel_pipe_crc(crtc, crcs);
1267
1268         spin_lock(&pipe_crc->lock);
1269         /*
1270          * For some not yet identified reason, the first CRC is
1271          * bonkers. So let's just wait for the next vblank and read
1272          * out the buggy result.
1273          *
1274          * On GEN8+ sometimes the second CRC is bonkers as well, so
1275          * don't trust that one either.
1276          */
1277         if (pipe_crc->skipped <= 0 ||
1278             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1279                 pipe_crc->skipped++;
1280                 spin_unlock(&pipe_crc->lock);
1281                 return;
1282         }
1283         spin_unlock(&pipe_crc->lock);
1284
1285         drm_crtc_add_crc_entry(&crtc->base, true,
1286                                 drm_crtc_accurate_vblank_count(&crtc->base),
1287                                 crcs);
1288 }
1289 #else
1290 static inline void
1291 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1292                              enum pipe pipe,
1293                              u32 crc0, u32 crc1,
1294                              u32 crc2, u32 crc3,
1295                              u32 crc4) {}
1296 #endif
1297
1298
1299 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1300                                      enum pipe pipe)
1301 {
1302         display_pipe_crc_irq_handler(dev_priv, pipe,
1303                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1304                                      0, 0, 0, 0);
1305 }
1306
1307 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1308                                      enum pipe pipe)
1309 {
1310         display_pipe_crc_irq_handler(dev_priv, pipe,
1311                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1312                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1313                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1314                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1315                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1316 }
1317
1318 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319                                       enum pipe pipe)
1320 {
1321         u32 res1, res2;
1322
1323         if (INTEL_GEN(dev_priv) >= 3)
1324                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1325         else
1326                 res1 = 0;
1327
1328         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1329                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1330         else
1331                 res2 = 0;
1332
1333         display_pipe_crc_irq_handler(dev_priv, pipe,
1334                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1335                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1336                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1337                                      res1, res2);
1338 }
1339
1340 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1341 {
1342         enum pipe pipe;
1343
1344         for_each_pipe(dev_priv, pipe) {
1345                 I915_WRITE(PIPESTAT(pipe),
1346                            PIPESTAT_INT_STATUS_MASK |
1347                            PIPE_FIFO_UNDERRUN_STATUS);
1348
1349                 dev_priv->pipestat_irq_mask[pipe] = 0;
1350         }
1351 }
1352
1353 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1354                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1355 {
1356         enum pipe pipe;
1357
1358         spin_lock(&dev_priv->irq_lock);
1359
1360         if (!dev_priv->display_irqs_enabled) {
1361                 spin_unlock(&dev_priv->irq_lock);
1362                 return;
1363         }
1364
1365         for_each_pipe(dev_priv, pipe) {
1366                 i915_reg_t reg;
1367                 u32 status_mask, enable_mask, iir_bit = 0;
1368
1369                 /*
1370                  * PIPESTAT bits get signalled even when the interrupt is
1371                  * disabled with the mask bits, and some of the status bits do
1372                  * not generate interrupts at all (like the underrun bit). Hence
1373                  * we need to be careful that we only handle what we want to
1374                  * handle.
1375                  */
1376
1377                 /* fifo underruns are filterered in the underrun handler. */
1378                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1379
1380                 switch (pipe) {
1381                 default:
1382                 case PIPE_A:
1383                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1384                         break;
1385                 case PIPE_B:
1386                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1387                         break;
1388                 case PIPE_C:
1389                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1390                         break;
1391                 }
1392                 if (iir & iir_bit)
1393                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1394
1395                 if (!status_mask)
1396                         continue;
1397
1398                 reg = PIPESTAT(pipe);
1399                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1400                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1401
1402                 /*
1403                  * Clear the PIPE*STAT regs before the IIR
1404                  *
1405                  * Toggle the enable bits to make sure we get an
1406                  * edge in the ISR pipe event bit if we don't clear
1407                  * all the enabled status bits. Otherwise the edge
1408                  * triggered IIR on i965/g4x wouldn't notice that
1409                  * an interrupt is still pending.
1410                  */
1411                 if (pipe_stats[pipe]) {
1412                         I915_WRITE(reg, pipe_stats[pipe]);
1413                         I915_WRITE(reg, enable_mask);
1414                 }
1415         }
1416         spin_unlock(&dev_priv->irq_lock);
1417 }
1418
1419 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1420                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1421 {
1422         enum pipe pipe;
1423
1424         for_each_pipe(dev_priv, pipe) {
1425                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1426                         intel_handle_vblank(dev_priv, pipe);
1427
1428                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1429                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1430
1431                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1432                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1433         }
1434 }
1435
1436 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1437                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1438 {
1439         bool blc_event = false;
1440         enum pipe pipe;
1441
1442         for_each_pipe(dev_priv, pipe) {
1443                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1444                         intel_handle_vblank(dev_priv, pipe);
1445
1446                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1447                         blc_event = true;
1448
1449                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1450                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1451
1452                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1454         }
1455
1456         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1457                 intel_opregion_asle_intr(dev_priv);
1458 }
1459
1460 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1461                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1462 {
1463         bool blc_event = false;
1464         enum pipe pipe;
1465
1466         for_each_pipe(dev_priv, pipe) {
1467                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1468                         intel_handle_vblank(dev_priv, pipe);
1469
1470                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1471                         blc_event = true;
1472
1473                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1474                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1475
1476                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1477                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1478         }
1479
1480         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1481                 intel_opregion_asle_intr(dev_priv);
1482
1483         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484                 gmbus_irq_handler(dev_priv);
1485 }
1486
1487 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1488                                             u32 pipe_stats[I915_MAX_PIPES])
1489 {
1490         enum pipe pipe;
1491
1492         for_each_pipe(dev_priv, pipe) {
1493                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1494                         intel_handle_vblank(dev_priv, pipe);
1495
1496                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498
1499                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1501         }
1502
1503         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1504                 gmbus_irq_handler(dev_priv);
1505 }
1506
1507 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1508 {
1509         u32 hotplug_status = 0, hotplug_status_mask;
1510         int i;
1511
1512         if (IS_G4X(dev_priv) ||
1513             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1514                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1515                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1516         else
1517                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1518
1519         /*
1520          * We absolutely have to clear all the pending interrupt
1521          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1522          * interrupt bit won't have an edge, and the i965/g4x
1523          * edge triggered IIR will not notice that an interrupt
1524          * is still pending. We can't use PORT_HOTPLUG_EN to
1525          * guarantee the edge as the act of toggling the enable
1526          * bits can itself generate a new hotplug interrupt :(
1527          */
1528         for (i = 0; i < 10; i++) {
1529                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1530
1531                 if (tmp == 0)
1532                         return hotplug_status;
1533
1534                 hotplug_status |= tmp;
1535                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1536         }
1537
1538         drm_WARN_ONCE(&dev_priv->drm, 1,
1539                       "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1540                       I915_READ(PORT_HOTPLUG_STAT));
1541
1542         return hotplug_status;
1543 }
1544
1545 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1546                                  u32 hotplug_status)
1547 {
1548         u32 pin_mask = 0, long_mask = 0;
1549         u32 hotplug_trigger;
1550
1551         if (IS_G4X(dev_priv) ||
1552             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1553                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1554         else
1555                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1556
1557         if (hotplug_trigger) {
1558                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1559                                    hotplug_trigger, hotplug_trigger,
1560                                    dev_priv->hotplug.hpd,
1561                                    i9xx_port_hotplug_long_detect);
1562
1563                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1564         }
1565
1566         if ((IS_G4X(dev_priv) ||
1567              IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1568             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1569                 dp_aux_irq_handler(dev_priv);
1570 }
1571
1572 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1573 {
1574         struct drm_i915_private *dev_priv = arg;
1575         irqreturn_t ret = IRQ_NONE;
1576
1577         if (!intel_irqs_enabled(dev_priv))
1578                 return IRQ_NONE;
1579
1580         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1581         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1582
1583         do {
1584                 u32 iir, gt_iir, pm_iir;
1585                 u32 pipe_stats[I915_MAX_PIPES] = {};
1586                 u32 hotplug_status = 0;
1587                 u32 ier = 0;
1588
1589                 gt_iir = I915_READ(GTIIR);
1590                 pm_iir = I915_READ(GEN6_PMIIR);
1591                 iir = I915_READ(VLV_IIR);
1592
1593                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1594                         break;
1595
1596                 ret = IRQ_HANDLED;
1597
1598                 /*
1599                  * Theory on interrupt generation, based on empirical evidence:
1600                  *
1601                  * x = ((VLV_IIR & VLV_IER) ||
1602                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1603                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1604                  *
1605                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1606                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1607                  * guarantee the CPU interrupt will be raised again even if we
1608                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1609                  * bits this time around.
1610                  */
1611                 I915_WRITE(VLV_MASTER_IER, 0);
1612                 ier = I915_READ(VLV_IER);
1613                 I915_WRITE(VLV_IER, 0);
1614
1615                 if (gt_iir)
1616                         I915_WRITE(GTIIR, gt_iir);
1617                 if (pm_iir)
1618                         I915_WRITE(GEN6_PMIIR, pm_iir);
1619
1620                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1621                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1622
1623                 /* Call regardless, as some status bits might not be
1624                  * signalled in iir */
1625                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1626
1627                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1628                            I915_LPE_PIPE_B_INTERRUPT))
1629                         intel_lpe_audio_irq_handler(dev_priv);
1630
1631                 /*
1632                  * VLV_IIR is single buffered, and reflects the level
1633                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1634                  */
1635                 if (iir)
1636                         I915_WRITE(VLV_IIR, iir);
1637
1638                 I915_WRITE(VLV_IER, ier);
1639                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1640
1641                 if (gt_iir)
1642                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1643                 if (pm_iir)
1644                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1645
1646                 if (hotplug_status)
1647                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1648
1649                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1650         } while (0);
1651
1652         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1653
1654         return ret;
1655 }
1656
1657 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1658 {
1659         struct drm_i915_private *dev_priv = arg;
1660         irqreturn_t ret = IRQ_NONE;
1661
1662         if (!intel_irqs_enabled(dev_priv))
1663                 return IRQ_NONE;
1664
1665         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1666         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667
1668         do {
1669                 u32 master_ctl, iir;
1670                 u32 pipe_stats[I915_MAX_PIPES] = {};
1671                 u32 hotplug_status = 0;
1672                 u32 ier = 0;
1673
1674                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1675                 iir = I915_READ(VLV_IIR);
1676
1677                 if (master_ctl == 0 && iir == 0)
1678                         break;
1679
1680                 ret = IRQ_HANDLED;
1681
1682                 /*
1683                  * Theory on interrupt generation, based on empirical evidence:
1684                  *
1685                  * x = ((VLV_IIR & VLV_IER) ||
1686                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1687                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1688                  *
1689                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1690                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1691                  * guarantee the CPU interrupt will be raised again even if we
1692                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1693                  * bits this time around.
1694                  */
1695                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1696                 ier = I915_READ(VLV_IER);
1697                 I915_WRITE(VLV_IER, 0);
1698
1699                 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1700
1701                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1702                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1703
1704                 /* Call regardless, as some status bits might not be
1705                  * signalled in iir */
1706                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1707
1708                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1709                            I915_LPE_PIPE_B_INTERRUPT |
1710                            I915_LPE_PIPE_C_INTERRUPT))
1711                         intel_lpe_audio_irq_handler(dev_priv);
1712
1713                 /*
1714                  * VLV_IIR is single buffered, and reflects the level
1715                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1716                  */
1717                 if (iir)
1718                         I915_WRITE(VLV_IIR, iir);
1719
1720                 I915_WRITE(VLV_IER, ier);
1721                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1722
1723                 if (hotplug_status)
1724                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1725
1726                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1727         } while (0);
1728
1729         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1730
1731         return ret;
1732 }
1733
1734 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735                                 u32 hotplug_trigger)
1736 {
1737         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1738
1739         /*
1740          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1741          * unless we touch the hotplug register, even if hotplug_trigger is
1742          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1743          * errors.
1744          */
1745         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1746         if (!hotplug_trigger) {
1747                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1748                         PORTD_HOTPLUG_STATUS_MASK |
1749                         PORTC_HOTPLUG_STATUS_MASK |
1750                         PORTB_HOTPLUG_STATUS_MASK;
1751                 dig_hotplug_reg &= ~mask;
1752         }
1753
1754         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1755         if (!hotplug_trigger)
1756                 return;
1757
1758         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1759                            hotplug_trigger, dig_hotplug_reg,
1760                            dev_priv->hotplug.pch_hpd,
1761                            pch_port_hotplug_long_detect);
1762
1763         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1764 }
1765
1766 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1767 {
1768         enum pipe pipe;
1769         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1770
1771         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1772
1773         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1774                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1775                                SDE_AUDIO_POWER_SHIFT);
1776                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1777                         port_name(port));
1778         }
1779
1780         if (pch_iir & SDE_AUX_MASK)
1781                 dp_aux_irq_handler(dev_priv);
1782
1783         if (pch_iir & SDE_GMBUS)
1784                 gmbus_irq_handler(dev_priv);
1785
1786         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1787                 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1788
1789         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1790                 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1791
1792         if (pch_iir & SDE_POISON)
1793                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1794
1795         if (pch_iir & SDE_FDI_MASK) {
1796                 for_each_pipe(dev_priv, pipe)
1797                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1798                                 pipe_name(pipe),
1799                                 I915_READ(FDI_RX_IIR(pipe)));
1800         }
1801
1802         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1803                 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1804
1805         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1806                 drm_dbg(&dev_priv->drm,
1807                         "PCH transcoder CRC error interrupt\n");
1808
1809         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1810                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1811
1812         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1813                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1814 }
1815
1816 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1817 {
1818         u32 err_int = I915_READ(GEN7_ERR_INT);
1819         enum pipe pipe;
1820
1821         if (err_int & ERR_INT_POISON)
1822                 drm_err(&dev_priv->drm, "Poison interrupt\n");
1823
1824         for_each_pipe(dev_priv, pipe) {
1825                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1826                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1827
1828                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1829                         if (IS_IVYBRIDGE(dev_priv))
1830                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1831                         else
1832                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1833                 }
1834         }
1835
1836         I915_WRITE(GEN7_ERR_INT, err_int);
1837 }
1838
1839 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1840 {
1841         u32 serr_int = I915_READ(SERR_INT);
1842         enum pipe pipe;
1843
1844         if (serr_int & SERR_INT_POISON)
1845                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1846
1847         for_each_pipe(dev_priv, pipe)
1848                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1849                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1850
1851         I915_WRITE(SERR_INT, serr_int);
1852 }
1853
1854 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1855 {
1856         enum pipe pipe;
1857         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1858
1859         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1860
1861         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1862                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1863                                SDE_AUDIO_POWER_SHIFT_CPT);
1864                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1865                         port_name(port));
1866         }
1867
1868         if (pch_iir & SDE_AUX_MASK_CPT)
1869                 dp_aux_irq_handler(dev_priv);
1870
1871         if (pch_iir & SDE_GMBUS_CPT)
1872                 gmbus_irq_handler(dev_priv);
1873
1874         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1875                 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1876
1877         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1878                 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1879
1880         if (pch_iir & SDE_FDI_MASK_CPT) {
1881                 for_each_pipe(dev_priv, pipe)
1882                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1883                                 pipe_name(pipe),
1884                                 I915_READ(FDI_RX_IIR(pipe)));
1885         }
1886
1887         if (pch_iir & SDE_ERROR_CPT)
1888                 cpt_serr_int_handler(dev_priv);
1889 }
1890
1891 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1892 {
1893         u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1894         u32 pin_mask = 0, long_mask = 0;
1895         bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1896
1897         if (HAS_PCH_TGP(dev_priv)) {
1898                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1899                 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1900                 tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1901         } else if (HAS_PCH_JSP(dev_priv)) {
1902                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1903                 tc_hotplug_trigger = 0;
1904         } else if (HAS_PCH_MCC(dev_priv)) {
1905                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1906                 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1907                 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1908         } else {
1909                 drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1910                          "Unrecognized PCH type 0x%x\n",
1911                          INTEL_PCH_TYPE(dev_priv));
1912
1913                 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1914                 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1915                 tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1916         }
1917
1918         if (ddi_hotplug_trigger) {
1919                 u32 dig_hotplug_reg;
1920
1921                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1922                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1923
1924                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1925                                    ddi_hotplug_trigger, dig_hotplug_reg,
1926                                    dev_priv->hotplug.pch_hpd,
1927                                    icp_ddi_port_hotplug_long_detect);
1928         }
1929
1930         if (tc_hotplug_trigger) {
1931                 u32 dig_hotplug_reg;
1932
1933                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1934                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1935
1936                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1937                                    tc_hotplug_trigger, dig_hotplug_reg,
1938                                    dev_priv->hotplug.pch_hpd,
1939                                    tc_port_hotplug_long_detect);
1940         }
1941
1942         if (pin_mask)
1943                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1944
1945         if (pch_iir & SDE_GMBUS_ICP)
1946                 gmbus_irq_handler(dev_priv);
1947 }
1948
1949 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950 {
1951         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1952                 ~SDE_PORTE_HOTPLUG_SPT;
1953         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1954         u32 pin_mask = 0, long_mask = 0;
1955
1956         if (hotplug_trigger) {
1957                 u32 dig_hotplug_reg;
1958
1959                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1960                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1961
1962                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1963                                    hotplug_trigger, dig_hotplug_reg,
1964                                    dev_priv->hotplug.pch_hpd,
1965                                    spt_port_hotplug_long_detect);
1966         }
1967
1968         if (hotplug2_trigger) {
1969                 u32 dig_hotplug_reg;
1970
1971                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1972                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1973
1974                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1975                                    hotplug2_trigger, dig_hotplug_reg,
1976                                    dev_priv->hotplug.pch_hpd,
1977                                    spt_port_hotplug2_long_detect);
1978         }
1979
1980         if (pin_mask)
1981                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1982
1983         if (pch_iir & SDE_GMBUS_CPT)
1984                 gmbus_irq_handler(dev_priv);
1985 }
1986
1987 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1988                                 u32 hotplug_trigger)
1989 {
1990         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1991
1992         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1993         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1994
1995         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996                            hotplug_trigger, dig_hotplug_reg,
1997                            dev_priv->hotplug.hpd,
1998                            ilk_port_hotplug_long_detect);
1999
2000         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001 }
2002
2003 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2004                                     u32 de_iir)
2005 {
2006         enum pipe pipe;
2007         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2008
2009         if (hotplug_trigger)
2010                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2011
2012         if (de_iir & DE_AUX_CHANNEL_A)
2013                 dp_aux_irq_handler(dev_priv);
2014
2015         if (de_iir & DE_GSE)
2016                 intel_opregion_asle_intr(dev_priv);
2017
2018         if (de_iir & DE_POISON)
2019                 drm_err(&dev_priv->drm, "Poison interrupt\n");
2020
2021         for_each_pipe(dev_priv, pipe) {
2022                 if (de_iir & DE_PIPE_VBLANK(pipe))
2023                         intel_handle_vblank(dev_priv, pipe);
2024
2025                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2026                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2027
2028                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2029                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2030         }
2031
2032         /* check event from PCH */
2033         if (de_iir & DE_PCH_EVENT) {
2034                 u32 pch_iir = I915_READ(SDEIIR);
2035
2036                 if (HAS_PCH_CPT(dev_priv))
2037                         cpt_irq_handler(dev_priv, pch_iir);
2038                 else
2039                         ibx_irq_handler(dev_priv, pch_iir);
2040
2041                 /* should clear PCH hotplug event before clear CPU irq */
2042                 I915_WRITE(SDEIIR, pch_iir);
2043         }
2044
2045         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2046                 gen5_rps_irq_handler(&dev_priv->gt.rps);
2047 }
2048
2049 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2050                                     u32 de_iir)
2051 {
2052         enum pipe pipe;
2053         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2054
2055         if (hotplug_trigger)
2056                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2057
2058         if (de_iir & DE_ERR_INT_IVB)
2059                 ivb_err_int_handler(dev_priv);
2060
2061         if (de_iir & DE_EDP_PSR_INT_HSW) {
2062                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2063
2064                 intel_psr_irq_handler(dev_priv, psr_iir);
2065                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2066         }
2067
2068         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069                 dp_aux_irq_handler(dev_priv);
2070
2071         if (de_iir & DE_GSE_IVB)
2072                 intel_opregion_asle_intr(dev_priv);
2073
2074         for_each_pipe(dev_priv, pipe) {
2075                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2076                         intel_handle_vblank(dev_priv, pipe);
2077         }
2078
2079         /* check event from PCH */
2080         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2081                 u32 pch_iir = I915_READ(SDEIIR);
2082
2083                 cpt_irq_handler(dev_priv, pch_iir);
2084
2085                 /* clear PCH hotplug event before clear CPU irq */
2086                 I915_WRITE(SDEIIR, pch_iir);
2087         }
2088 }
2089
2090 /*
2091  * To handle irqs with the minimum potential races with fresh interrupts, we:
2092  * 1 - Disable Master Interrupt Control.
2093  * 2 - Find the source(s) of the interrupt.
2094  * 3 - Clear the Interrupt Identity bits (IIR).
2095  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2096  * 5 - Re-enable Master Interrupt Control.
2097  */
2098 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2099 {
2100         struct drm_i915_private *dev_priv = arg;
2101         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2102         irqreturn_t ret = IRQ_NONE;
2103
2104         if (!intel_irqs_enabled(dev_priv))
2105                 return IRQ_NONE;
2106
2107         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2108         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2109
2110         /* disable master interrupt before clearing iir  */
2111         de_ier = I915_READ(DEIER);
2112         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2113
2114         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2115          * interrupts will will be stored on its back queue, and then we'll be
2116          * able to process them after we restore SDEIER (as soon as we restore
2117          * it, we'll get an interrupt if SDEIIR still has something to process
2118          * due to its back queue). */
2119         if (!HAS_PCH_NOP(dev_priv)) {
2120                 sde_ier = I915_READ(SDEIER);
2121                 I915_WRITE(SDEIER, 0);
2122         }
2123
2124         /* Find, clear, then process each source of interrupt */
2125
2126         gt_iir = I915_READ(GTIIR);
2127         if (gt_iir) {
2128                 I915_WRITE(GTIIR, gt_iir);
2129                 ret = IRQ_HANDLED;
2130                 if (INTEL_GEN(dev_priv) >= 6)
2131                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2132                 else
2133                         gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2134         }
2135
2136         de_iir = I915_READ(DEIIR);
2137         if (de_iir) {
2138                 I915_WRITE(DEIIR, de_iir);
2139                 ret = IRQ_HANDLED;
2140                 if (INTEL_GEN(dev_priv) >= 7)
2141                         ivb_display_irq_handler(dev_priv, de_iir);
2142                 else
2143                         ilk_display_irq_handler(dev_priv, de_iir);
2144         }
2145
2146         if (INTEL_GEN(dev_priv) >= 6) {
2147                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2148                 if (pm_iir) {
2149                         I915_WRITE(GEN6_PMIIR, pm_iir);
2150                         ret = IRQ_HANDLED;
2151                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
2152                 }
2153         }
2154
2155         I915_WRITE(DEIER, de_ier);
2156         if (!HAS_PCH_NOP(dev_priv))
2157                 I915_WRITE(SDEIER, sde_ier);
2158
2159         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2160         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2161
2162         return ret;
2163 }
2164
2165 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2166                                 u32 hotplug_trigger)
2167 {
2168         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2169
2170         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2171         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2172
2173         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2174                            hotplug_trigger, dig_hotplug_reg,
2175                            dev_priv->hotplug.hpd,
2176                            bxt_port_hotplug_long_detect);
2177
2178         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2179 }
2180
2181 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2182 {
2183         u32 pin_mask = 0, long_mask = 0;
2184         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2185         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2186         long_pulse_detect_func long_pulse_detect;
2187
2188         if (INTEL_GEN(dev_priv) >= 12)
2189                 long_pulse_detect = gen12_port_hotplug_long_detect;
2190         else
2191                 long_pulse_detect = gen11_port_hotplug_long_detect;
2192
2193         if (trigger_tc) {
2194                 u32 dig_hotplug_reg;
2195
2196                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2197                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2198
2199                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2200                                    trigger_tc, dig_hotplug_reg,
2201                                    dev_priv->hotplug.hpd,
2202                                    long_pulse_detect);
2203         }
2204
2205         if (trigger_tbt) {
2206                 u32 dig_hotplug_reg;
2207
2208                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2209                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2210
2211                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2212                                    trigger_tbt, dig_hotplug_reg,
2213                                    dev_priv->hotplug.hpd,
2214                                    long_pulse_detect);
2215         }
2216
2217         if (pin_mask)
2218                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2219         else
2220                 drm_err(&dev_priv->drm,
2221                         "Unexpected DE HPD interrupt 0x%08x\n", iir);
2222 }
2223
2224 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2225 {
2226         u32 mask;
2227
2228         if (INTEL_GEN(dev_priv) >= 12)
2229                 return TGL_DE_PORT_AUX_DDIA |
2230                         TGL_DE_PORT_AUX_DDIB |
2231                         TGL_DE_PORT_AUX_DDIC |
2232                         TGL_DE_PORT_AUX_USBC1 |
2233                         TGL_DE_PORT_AUX_USBC2 |
2234                         TGL_DE_PORT_AUX_USBC3 |
2235                         TGL_DE_PORT_AUX_USBC4 |
2236                         TGL_DE_PORT_AUX_USBC5 |
2237                         TGL_DE_PORT_AUX_USBC6;
2238
2239
2240         mask = GEN8_AUX_CHANNEL_A;
2241         if (INTEL_GEN(dev_priv) >= 9)
2242                 mask |= GEN9_AUX_CHANNEL_B |
2243                         GEN9_AUX_CHANNEL_C |
2244                         GEN9_AUX_CHANNEL_D;
2245
2246         if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2247                 mask |= CNL_AUX_CHANNEL_F;
2248
2249         if (IS_GEN(dev_priv, 11))
2250                 mask |= ICL_AUX_CHANNEL_E;
2251
2252         return mask;
2253 }
2254
2255 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2256 {
2257         if (INTEL_GEN(dev_priv) >= 11)
2258                 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2259         else if (INTEL_GEN(dev_priv) >= 9)
2260                 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2261         else
2262                 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2263 }
2264
2265 static void
2266 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2267 {
2268         bool found = false;
2269
2270         if (iir & GEN8_DE_MISC_GSE) {
2271                 intel_opregion_asle_intr(dev_priv);
2272                 found = true;
2273         }
2274
2275         if (iir & GEN8_DE_EDP_PSR) {
2276                 u32 psr_iir;
2277                 i915_reg_t iir_reg;
2278
2279                 if (INTEL_GEN(dev_priv) >= 12)
2280                         iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2281                 else
2282                         iir_reg = EDP_PSR_IIR;
2283
2284                 psr_iir = I915_READ(iir_reg);
2285                 I915_WRITE(iir_reg, psr_iir);
2286
2287                 if (psr_iir)
2288                         found = true;
2289
2290                 intel_psr_irq_handler(dev_priv, psr_iir);
2291         }
2292
2293         if (!found)
2294                 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2295 }
2296
2297 static irqreturn_t
2298 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2299 {
2300         irqreturn_t ret = IRQ_NONE;
2301         u32 iir;
2302         enum pipe pipe;
2303
2304         if (master_ctl & GEN8_DE_MISC_IRQ) {
2305                 iir = I915_READ(GEN8_DE_MISC_IIR);
2306                 if (iir) {
2307                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2308                         ret = IRQ_HANDLED;
2309                         gen8_de_misc_irq_handler(dev_priv, iir);
2310                 } else {
2311                         drm_err(&dev_priv->drm,
2312                                 "The master control interrupt lied (DE MISC)!\n");
2313                 }
2314         }
2315
2316         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2317                 iir = I915_READ(GEN11_DE_HPD_IIR);
2318                 if (iir) {
2319                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2320                         ret = IRQ_HANDLED;
2321                         gen11_hpd_irq_handler(dev_priv, iir);
2322                 } else {
2323                         drm_err(&dev_priv->drm,
2324                                 "The master control interrupt lied, (DE HPD)!\n");
2325                 }
2326         }
2327
2328         if (master_ctl & GEN8_DE_PORT_IRQ) {
2329                 iir = I915_READ(GEN8_DE_PORT_IIR);
2330                 if (iir) {
2331                         u32 tmp_mask;
2332                         bool found = false;
2333
2334                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2335                         ret = IRQ_HANDLED;
2336
2337                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2338                                 dp_aux_irq_handler(dev_priv);
2339                                 found = true;
2340                         }
2341
2342                         if (IS_GEN9_LP(dev_priv)) {
2343                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2344                                 if (tmp_mask) {
2345                                         bxt_hpd_irq_handler(dev_priv, tmp_mask);
2346                                         found = true;
2347                                 }
2348                         } else if (IS_BROADWELL(dev_priv)) {
2349                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2350                                 if (tmp_mask) {
2351                                         ilk_hpd_irq_handler(dev_priv, tmp_mask);
2352                                         found = true;
2353                                 }
2354                         }
2355
2356                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2357                                 gmbus_irq_handler(dev_priv);
2358                                 found = true;
2359                         }
2360
2361                         if (!found)
2362                                 drm_err(&dev_priv->drm,
2363                                         "Unexpected DE Port interrupt\n");
2364                 }
2365                 else
2366                         drm_err(&dev_priv->drm,
2367                                 "The master control interrupt lied (DE PORT)!\n");
2368         }
2369
2370         for_each_pipe(dev_priv, pipe) {
2371                 u32 fault_errors;
2372
2373                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2374                         continue;
2375
2376                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2377                 if (!iir) {
2378                         drm_err(&dev_priv->drm,
2379                                 "The master control interrupt lied (DE PIPE)!\n");
2380                         continue;
2381                 }
2382
2383                 ret = IRQ_HANDLED;
2384                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2385
2386                 if (iir & GEN8_PIPE_VBLANK)
2387                         intel_handle_vblank(dev_priv, pipe);
2388
2389                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2390                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2391
2392                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2393                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2394
2395                 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2396                 if (fault_errors)
2397                         drm_err(&dev_priv->drm,
2398                                 "Fault errors on pipe %c: 0x%08x\n",
2399                                 pipe_name(pipe),
2400                                 fault_errors);
2401         }
2402
2403         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2404             master_ctl & GEN8_DE_PCH_IRQ) {
2405                 /*
2406                  * FIXME(BDW): Assume for now that the new interrupt handling
2407                  * scheme also closed the SDE interrupt handling race we've seen
2408                  * on older pch-split platforms. But this needs testing.
2409                  */
2410                 iir = I915_READ(SDEIIR);
2411                 if (iir) {
2412                         I915_WRITE(SDEIIR, iir);
2413                         ret = IRQ_HANDLED;
2414
2415                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2416                                 icp_irq_handler(dev_priv, iir);
2417                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2418                                 spt_irq_handler(dev_priv, iir);
2419                         else
2420                                 cpt_irq_handler(dev_priv, iir);
2421                 } else {
2422                         /*
2423                          * Like on previous PCH there seems to be something
2424                          * fishy going on with forwarding PCH interrupts.
2425                          */
2426                         drm_dbg(&dev_priv->drm,
2427                                 "The master control interrupt lied (SDE)!\n");
2428                 }
2429         }
2430
2431         return ret;
2432 }
2433
2434 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2435 {
2436         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2437
2438         /*
2439          * Now with master disabled, get a sample of level indications
2440          * for this interrupt. Indications will be cleared on related acks.
2441          * New indications can and will light up during processing,
2442          * and will generate new interrupt after enabling master.
2443          */
2444         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2445 }
2446
2447 static inline void gen8_master_intr_enable(void __iomem * const regs)
2448 {
2449         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2450 }
2451
2452 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2453 {
2454         struct drm_i915_private *dev_priv = arg;
2455         void __iomem * const regs = dev_priv->uncore.regs;
2456         u32 master_ctl;
2457
2458         if (!intel_irqs_enabled(dev_priv))
2459                 return IRQ_NONE;
2460
2461         master_ctl = gen8_master_intr_disable(regs);
2462         if (!master_ctl) {
2463                 gen8_master_intr_enable(regs);
2464                 return IRQ_NONE;
2465         }
2466
2467         /* Find, queue (onto bottom-halves), then clear each source */
2468         gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2469
2470         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2471         if (master_ctl & ~GEN8_GT_IRQS) {
2472                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2473                 gen8_de_irq_handler(dev_priv, master_ctl);
2474                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2475         }
2476
2477         gen8_master_intr_enable(regs);
2478
2479         return IRQ_HANDLED;
2480 }
2481
2482 static u32
2483 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2484 {
2485         void __iomem * const regs = gt->uncore->regs;
2486         u32 iir;
2487
2488         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2489                 return 0;
2490
2491         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2492         if (likely(iir))
2493                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2494
2495         return iir;
2496 }
2497
2498 static void
2499 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2500 {
2501         if (iir & GEN11_GU_MISC_GSE)
2502                 intel_opregion_asle_intr(gt->i915);
2503 }
2504
2505 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2506 {
2507         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2508
2509         /*
2510          * Now with master disabled, get a sample of level indications
2511          * for this interrupt. Indications will be cleared on related acks.
2512          * New indications can and will light up during processing,
2513          * and will generate new interrupt after enabling master.
2514          */
2515         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2516 }
2517
2518 static inline void gen11_master_intr_enable(void __iomem * const regs)
2519 {
2520         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2521 }
2522
2523 static void
2524 gen11_display_irq_handler(struct drm_i915_private *i915)
2525 {
2526         void __iomem * const regs = i915->uncore.regs;
2527         const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2528
2529         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2530         /*
2531          * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2532          * for the display related bits.
2533          */
2534         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2535         gen8_de_irq_handler(i915, disp_ctl);
2536         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2537                       GEN11_DISPLAY_IRQ_ENABLE);
2538
2539         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2540 }
2541
2542 static __always_inline irqreturn_t
2543 __gen11_irq_handler(struct drm_i915_private * const i915,
2544                     u32 (*intr_disable)(void __iomem * const regs),
2545                     void (*intr_enable)(void __iomem * const regs))
2546 {
2547         void __iomem * const regs = i915->uncore.regs;
2548         struct intel_gt *gt = &i915->gt;
2549         u32 master_ctl;
2550         u32 gu_misc_iir;
2551
2552         if (!intel_irqs_enabled(i915))
2553                 return IRQ_NONE;
2554
2555         master_ctl = intr_disable(regs);
2556         if (!master_ctl) {
2557                 intr_enable(regs);
2558                 return IRQ_NONE;
2559         }
2560
2561         /* Find, queue (onto bottom-halves), then clear each source */
2562         gen11_gt_irq_handler(gt, master_ctl);
2563
2564         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2565         if (master_ctl & GEN11_DISPLAY_IRQ)
2566                 gen11_display_irq_handler(i915);
2567
2568         gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2569
2570         intr_enable(regs);
2571
2572         gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2573
2574         return IRQ_HANDLED;
2575 }
2576
2577 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2578 {
2579         return __gen11_irq_handler(arg,
2580                                    gen11_master_intr_disable,
2581                                    gen11_master_intr_enable);
2582 }
2583
2584 /* Called from drm generic code, passed 'crtc' which
2585  * we use as a pipe index
2586  */
2587 int i8xx_enable_vblank(struct drm_crtc *crtc)
2588 {
2589         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2590         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2591         unsigned long irqflags;
2592
2593         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2594         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2595         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2596
2597         return 0;
2598 }
2599
2600 int i915gm_enable_vblank(struct drm_crtc *crtc)
2601 {
2602         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2603
2604         /*
2605          * Vblank interrupts fail to wake the device up from C2+.
2606          * Disabling render clock gating during C-states avoids
2607          * the problem. There is a small power cost so we do this
2608          * only when vblank interrupts are actually enabled.
2609          */
2610         if (dev_priv->vblank_enabled++ == 0)
2611                 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2612
2613         return i8xx_enable_vblank(crtc);
2614 }
2615
2616 int i965_enable_vblank(struct drm_crtc *crtc)
2617 {
2618         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2619         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2620         unsigned long irqflags;
2621
2622         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2623         i915_enable_pipestat(dev_priv, pipe,
2624                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2625         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2626
2627         return 0;
2628 }
2629
2630 int ilk_enable_vblank(struct drm_crtc *crtc)
2631 {
2632         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2633         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2634         unsigned long irqflags;
2635         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2636                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2637
2638         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2639         ilk_enable_display_irq(dev_priv, bit);
2640         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2641
2642         /* Even though there is no DMC, frame counter can get stuck when
2643          * PSR is active as no frames are generated.
2644          */
2645         if (HAS_PSR(dev_priv))
2646                 drm_crtc_vblank_restore(crtc);
2647
2648         return 0;
2649 }
2650
2651 int bdw_enable_vblank(struct drm_crtc *crtc)
2652 {
2653         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2654         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2655         unsigned long irqflags;
2656
2657         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2658         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2659         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2660
2661         /* Even if there is no DMC, frame counter can get stuck when
2662          * PSR is active as no frames are generated, so check only for PSR.
2663          */
2664         if (HAS_PSR(dev_priv))
2665                 drm_crtc_vblank_restore(crtc);
2666
2667         return 0;
2668 }
2669
2670 /* Called from drm generic code, passed 'crtc' which
2671  * we use as a pipe index
2672  */
2673 void i8xx_disable_vblank(struct drm_crtc *crtc)
2674 {
2675         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2676         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2677         unsigned long irqflags;
2678
2679         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2680         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2681         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682 }
2683
2684 void i915gm_disable_vblank(struct drm_crtc *crtc)
2685 {
2686         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2687
2688         i8xx_disable_vblank(crtc);
2689
2690         if (--dev_priv->vblank_enabled == 0)
2691                 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2692 }
2693
2694 void i965_disable_vblank(struct drm_crtc *crtc)
2695 {
2696         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2697         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2698         unsigned long irqflags;
2699
2700         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2701         i915_disable_pipestat(dev_priv, pipe,
2702                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2703         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2704 }
2705
2706 void ilk_disable_vblank(struct drm_crtc *crtc)
2707 {
2708         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2709         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2710         unsigned long irqflags;
2711         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2712                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2713
2714         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2715         ilk_disable_display_irq(dev_priv, bit);
2716         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2717 }
2718
2719 void bdw_disable_vblank(struct drm_crtc *crtc)
2720 {
2721         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2722         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2723         unsigned long irqflags;
2724
2725         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2726         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2727         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2728 }
2729
2730 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2731 {
2732         struct intel_uncore *uncore = &dev_priv->uncore;
2733
2734         if (HAS_PCH_NOP(dev_priv))
2735                 return;
2736
2737         GEN3_IRQ_RESET(uncore, SDE);
2738
2739         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2740                 I915_WRITE(SERR_INT, 0xffffffff);
2741 }
2742
2743 /*
2744  * SDEIER is also touched by the interrupt handler to work around missed PCH
2745  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2746  * instead we unconditionally enable all PCH interrupt sources here, but then
2747  * only unmask them as needed with SDEIMR.
2748  *
2749  * This function needs to be called before interrupts are enabled.
2750  */
2751 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2752 {
2753         if (HAS_PCH_NOP(dev_priv))
2754                 return;
2755
2756         drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2757         I915_WRITE(SDEIER, 0xffffffff);
2758         POSTING_READ(SDEIER);
2759 }
2760
2761 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2762 {
2763         struct intel_uncore *uncore = &dev_priv->uncore;
2764
2765         if (IS_CHERRYVIEW(dev_priv))
2766                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2767         else
2768                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2769
2770         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2771         intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2772
2773         i9xx_pipestat_irq_reset(dev_priv);
2774
2775         GEN3_IRQ_RESET(uncore, VLV_);
2776         dev_priv->irq_mask = ~0u;
2777 }
2778
2779 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2780 {
2781         struct intel_uncore *uncore = &dev_priv->uncore;
2782
2783         u32 pipestat_mask;
2784         u32 enable_mask;
2785         enum pipe pipe;
2786
2787         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2788
2789         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2790         for_each_pipe(dev_priv, pipe)
2791                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2792
2793         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2794                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2795                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2796                 I915_LPE_PIPE_A_INTERRUPT |
2797                 I915_LPE_PIPE_B_INTERRUPT;
2798
2799         if (IS_CHERRYVIEW(dev_priv))
2800                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2801                         I915_LPE_PIPE_C_INTERRUPT;
2802
2803         drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2804
2805         dev_priv->irq_mask = ~enable_mask;
2806
2807         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2808 }
2809
2810 /* drm_dma.h hooks
2811 */
2812 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2813 {
2814         struct intel_uncore *uncore = &dev_priv->uncore;
2815
2816         GEN3_IRQ_RESET(uncore, DE);
2817         if (IS_GEN(dev_priv, 7))
2818                 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2819
2820         if (IS_HASWELL(dev_priv)) {
2821                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2822                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2823         }
2824
2825         gen5_gt_irq_reset(&dev_priv->gt);
2826
2827         ibx_irq_reset(dev_priv);
2828 }
2829
2830 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2831 {
2832         I915_WRITE(VLV_MASTER_IER, 0);
2833         POSTING_READ(VLV_MASTER_IER);
2834
2835         gen5_gt_irq_reset(&dev_priv->gt);
2836
2837         spin_lock_irq(&dev_priv->irq_lock);
2838         if (dev_priv->display_irqs_enabled)
2839                 vlv_display_irq_reset(dev_priv);
2840         spin_unlock_irq(&dev_priv->irq_lock);
2841 }
2842
2843 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2844 {
2845         struct intel_uncore *uncore = &dev_priv->uncore;
2846         enum pipe pipe;
2847
2848         gen8_master_intr_disable(dev_priv->uncore.regs);
2849
2850         gen8_gt_irq_reset(&dev_priv->gt);
2851
2852         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2853         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2854
2855         for_each_pipe(dev_priv, pipe)
2856                 if (intel_display_power_is_enabled(dev_priv,
2857                                                    POWER_DOMAIN_PIPE(pipe)))
2858                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2859
2860         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2861         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2862         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2863
2864         if (HAS_PCH_SPLIT(dev_priv))
2865                 ibx_irq_reset(dev_priv);
2866 }
2867
2868 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2869 {
2870         struct intel_uncore *uncore = &dev_priv->uncore;
2871         enum pipe pipe;
2872
2873         intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2874
2875         if (INTEL_GEN(dev_priv) >= 12) {
2876                 enum transcoder trans;
2877
2878                 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
2879                         enum intel_display_power_domain domain;
2880
2881                         domain = POWER_DOMAIN_TRANSCODER(trans);
2882                         if (!intel_display_power_is_enabled(dev_priv, domain))
2883                                 continue;
2884
2885                         intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2886                         intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2887                 }
2888         } else {
2889                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2890                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2891         }
2892
2893         for_each_pipe(dev_priv, pipe)
2894                 if (intel_display_power_is_enabled(dev_priv,
2895                                                    POWER_DOMAIN_PIPE(pipe)))
2896                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2897
2898         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2899         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2900         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2901
2902         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2903                 GEN3_IRQ_RESET(uncore, SDE);
2904
2905         /* Wa_14010685332:icl */
2906         if (INTEL_PCH_TYPE(dev_priv) == PCH_ICP) {
2907                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2908                                  SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2909                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2910                                  SBCLK_RUN_REFCLK_DIS, 0);
2911         }
2912 }
2913
2914 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2915 {
2916         struct intel_uncore *uncore = &dev_priv->uncore;
2917
2918         gen11_master_intr_disable(dev_priv->uncore.regs);
2919
2920         gen11_gt_irq_reset(&dev_priv->gt);
2921         gen11_display_irq_reset(dev_priv);
2922
2923         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2924         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2925 }
2926
2927 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2928                                      u8 pipe_mask)
2929 {
2930         struct intel_uncore *uncore = &dev_priv->uncore;
2931
2932         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2933         enum pipe pipe;
2934
2935         spin_lock_irq(&dev_priv->irq_lock);
2936
2937         if (!intel_irqs_enabled(dev_priv)) {
2938                 spin_unlock_irq(&dev_priv->irq_lock);
2939                 return;
2940         }
2941
2942         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2943                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2944                                   dev_priv->de_irq_mask[pipe],
2945                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
2946
2947         spin_unlock_irq(&dev_priv->irq_lock);
2948 }
2949
2950 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2951                                      u8 pipe_mask)
2952 {
2953         struct intel_uncore *uncore = &dev_priv->uncore;
2954         enum pipe pipe;
2955
2956         spin_lock_irq(&dev_priv->irq_lock);
2957
2958         if (!intel_irqs_enabled(dev_priv)) {
2959                 spin_unlock_irq(&dev_priv->irq_lock);
2960                 return;
2961         }
2962
2963         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2964                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2965
2966         spin_unlock_irq(&dev_priv->irq_lock);
2967
2968         /* make sure we're done processing display irqs */
2969         intel_synchronize_irq(dev_priv);
2970 }
2971
2972 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2973 {
2974         struct intel_uncore *uncore = &dev_priv->uncore;
2975
2976         I915_WRITE(GEN8_MASTER_IRQ, 0);
2977         POSTING_READ(GEN8_MASTER_IRQ);
2978
2979         gen8_gt_irq_reset(&dev_priv->gt);
2980
2981         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2982
2983         spin_lock_irq(&dev_priv->irq_lock);
2984         if (dev_priv->display_irqs_enabled)
2985                 vlv_display_irq_reset(dev_priv);
2986         spin_unlock_irq(&dev_priv->irq_lock);
2987 }
2988
2989 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2990                                   const u32 hpd[HPD_NUM_PINS])
2991 {
2992         struct intel_encoder *encoder;
2993         u32 enabled_irqs = 0;
2994
2995         for_each_intel_encoder(&dev_priv->drm, encoder)
2996                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2997                         enabled_irqs |= hpd[encoder->hpd_pin];
2998
2999         return enabled_irqs;
3000 }
3001
3002 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3003 {
3004         u32 hotplug;
3005
3006         /*
3007          * Enable digital hotplug on the PCH, and configure the DP short pulse
3008          * duration to 2ms (which is the minimum in the Display Port spec).
3009          * The pulse duration bits are reserved on LPT+.
3010          */
3011         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3012         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3013                      PORTC_PULSE_DURATION_MASK |
3014                      PORTD_PULSE_DURATION_MASK);
3015         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3016         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3017         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3018         /*
3019          * When CPU and PCH are on the same package, port A
3020          * HPD must be enabled in both north and south.
3021          */
3022         if (HAS_PCH_LPT_LP(dev_priv))
3023                 hotplug |= PORTA_HOTPLUG_ENABLE;
3024         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3025 }
3026
3027 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3028 {
3029         u32 hotplug_irqs, enabled_irqs;
3030
3031         if (HAS_PCH_IBX(dev_priv))
3032                 hotplug_irqs = SDE_HOTPLUG_MASK;
3033         else
3034                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3035
3036         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3037
3038         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3039
3040         ibx_hpd_detection_setup(dev_priv);
3041 }
3042
3043 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3044                                     u32 ddi_hotplug_enable_mask,
3045                                     u32 tc_hotplug_enable_mask)
3046 {
3047         u32 hotplug;
3048
3049         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3050         hotplug |= ddi_hotplug_enable_mask;
3051         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3052
3053         if (tc_hotplug_enable_mask) {
3054                 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3055                 hotplug |= tc_hotplug_enable_mask;
3056                 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3057         }
3058 }
3059
3060 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3061                               u32 sde_ddi_mask, u32 sde_tc_mask,
3062                               u32 ddi_enable_mask, u32 tc_enable_mask)
3063 {
3064         u32 hotplug_irqs, enabled_irqs;
3065
3066         hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3067         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3068
3069         I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3070
3071         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3072
3073         icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3074 }
3075
3076 /*
3077  * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3078  * equivalent of SDE.
3079  */
3080 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3081 {
3082         icp_hpd_irq_setup(dev_priv,
3083                           SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3084                           ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3085 }
3086
3087 /*
3088  * JSP behaves exactly the same as MCC above except that port C is mapped to
3089  * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3090  * masks & tables rather than ICP's masks & tables.
3091  */
3092 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094         icp_hpd_irq_setup(dev_priv,
3095                           SDE_DDI_MASK_TGP, 0,
3096                           TGP_DDI_HPD_ENABLE_MASK, 0);
3097 }
3098
3099 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3100 {
3101         u32 hotplug;
3102
3103         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3104         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3105                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3106                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3107                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3108         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3109
3110         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3111         hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3112                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3113                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3114                    GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3115         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3116 }
3117
3118 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3119 {
3120         u32 hotplug_irqs, enabled_irqs;
3121         u32 val;
3122
3123         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3124         hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3125
3126         val = I915_READ(GEN11_DE_HPD_IMR);
3127         val &= ~hotplug_irqs;
3128         val |= ~enabled_irqs & hotplug_irqs;
3129         I915_WRITE(GEN11_DE_HPD_IMR, val);
3130         POSTING_READ(GEN11_DE_HPD_IMR);
3131
3132         gen11_hpd_detection_setup(dev_priv);
3133
3134         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3135                 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3136                                   TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3137         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3138                 icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3139                                   ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3140 }
3141
3142 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3143 {
3144         u32 val, hotplug;
3145
3146         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3147         if (HAS_PCH_CNP(dev_priv)) {
3148                 val = I915_READ(SOUTH_CHICKEN1);
3149                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3150                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3151                 I915_WRITE(SOUTH_CHICKEN1, val);
3152         }
3153
3154         /* Enable digital hotplug on the PCH */
3155         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3156         hotplug |= PORTA_HOTPLUG_ENABLE |
3157                    PORTB_HOTPLUG_ENABLE |
3158                    PORTC_HOTPLUG_ENABLE |
3159                    PORTD_HOTPLUG_ENABLE;
3160         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3161
3162         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3163         hotplug |= PORTE_HOTPLUG_ENABLE;
3164         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3165 }
3166
3167 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3168 {
3169         u32 hotplug_irqs, enabled_irqs;
3170
3171         if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3172                 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3173
3174         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3175         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3176
3177         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3178
3179         spt_hpd_detection_setup(dev_priv);
3180 }
3181
3182 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3183 {
3184         u32 hotplug;
3185
3186         /*
3187          * Enable digital hotplug on the CPU, and configure the DP short pulse
3188          * duration to 2ms (which is the minimum in the Display Port spec)
3189          * The pulse duration bits are reserved on HSW+.
3190          */
3191         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3192         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3193         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3194                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3195         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3196 }
3197
3198 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3199 {
3200         u32 hotplug_irqs, enabled_irqs;
3201
3202         if (INTEL_GEN(dev_priv) >= 8) {
3203                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3204                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3205
3206                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3207         } else if (INTEL_GEN(dev_priv) >= 7) {
3208                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3209                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3210
3211                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3212         } else {
3213                 hotplug_irqs = DE_DP_A_HOTPLUG;
3214                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3215
3216                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3217         }
3218
3219         ilk_hpd_detection_setup(dev_priv);
3220
3221         ibx_hpd_irq_setup(dev_priv);
3222 }
3223
3224 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3225                                       u32 enabled_irqs)
3226 {
3227         u32 hotplug;
3228
3229         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3230         hotplug |= PORTA_HOTPLUG_ENABLE |
3231                    PORTB_HOTPLUG_ENABLE |
3232                    PORTC_HOTPLUG_ENABLE;
3233
3234         drm_dbg_kms(&dev_priv->drm,
3235                     "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3236                     hotplug, enabled_irqs);
3237         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3238
3239         /*
3240          * For BXT invert bit has to be set based on AOB design
3241          * for HPD detection logic, update it based on VBT fields.
3242          */
3243         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3244             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3245                 hotplug |= BXT_DDIA_HPD_INVERT;
3246         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3247             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3248                 hotplug |= BXT_DDIB_HPD_INVERT;
3249         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3250             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3251                 hotplug |= BXT_DDIC_HPD_INVERT;
3252
3253         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3254 }
3255
3256 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3257 {
3258         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3259 }
3260
3261 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3262 {
3263         u32 hotplug_irqs, enabled_irqs;
3264
3265         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3266         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3267
3268         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3269
3270         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3271 }
3272
3273 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3274 {
3275         u32 mask;
3276
3277         if (HAS_PCH_NOP(dev_priv))
3278                 return;
3279
3280         if (HAS_PCH_IBX(dev_priv))
3281                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3282         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3283                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3284         else
3285                 mask = SDE_GMBUS_CPT;
3286
3287         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3288         I915_WRITE(SDEIMR, ~mask);
3289
3290         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3291             HAS_PCH_LPT(dev_priv))
3292                 ibx_hpd_detection_setup(dev_priv);
3293         else
3294                 spt_hpd_detection_setup(dev_priv);
3295 }
3296
3297 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3298 {
3299         struct intel_uncore *uncore = &dev_priv->uncore;
3300         u32 display_mask, extra_mask;
3301
3302         if (INTEL_GEN(dev_priv) >= 7) {
3303                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3304                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3305                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3306                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3307                               DE_DP_A_HOTPLUG_IVB);
3308         } else {
3309                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3310                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3311                                 DE_PIPEA_CRC_DONE | DE_POISON);
3312                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3313                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3314                               DE_DP_A_HOTPLUG);
3315         }
3316
3317         if (IS_HASWELL(dev_priv)) {
3318                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3319                 display_mask |= DE_EDP_PSR_INT_HSW;
3320         }
3321
3322         dev_priv->irq_mask = ~display_mask;
3323
3324         ibx_irq_pre_postinstall(dev_priv);
3325
3326         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3327                       display_mask | extra_mask);
3328
3329         gen5_gt_irq_postinstall(&dev_priv->gt);
3330
3331         ilk_hpd_detection_setup(dev_priv);
3332
3333         ibx_irq_postinstall(dev_priv);
3334
3335         if (IS_IRONLAKE_M(dev_priv)) {
3336                 /* Enable PCU event interrupts
3337                  *
3338                  * spinlocking not required here for correctness since interrupt
3339                  * setup is guaranteed to run in single-threaded context. But we
3340                  * need it to make the assert_spin_locked happy. */
3341                 spin_lock_irq(&dev_priv->irq_lock);
3342                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3343                 spin_unlock_irq(&dev_priv->irq_lock);
3344         }
3345 }
3346
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349         lockdep_assert_held(&dev_priv->irq_lock);
3350
3351         if (dev_priv->display_irqs_enabled)
3352                 return;
3353
3354         dev_priv->display_irqs_enabled = true;
3355
3356         if (intel_irqs_enabled(dev_priv)) {
3357                 vlv_display_irq_reset(dev_priv);
3358                 vlv_display_irq_postinstall(dev_priv);
3359         }
3360 }
3361
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364         lockdep_assert_held(&dev_priv->irq_lock);
3365
3366         if (!dev_priv->display_irqs_enabled)
3367                 return;
3368
3369         dev_priv->display_irqs_enabled = false;
3370
3371         if (intel_irqs_enabled(dev_priv))
3372                 vlv_display_irq_reset(dev_priv);
3373 }
3374
3375
3376 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3377 {
3378         gen5_gt_irq_postinstall(&dev_priv->gt);
3379
3380         spin_lock_irq(&dev_priv->irq_lock);
3381         if (dev_priv->display_irqs_enabled)
3382                 vlv_display_irq_postinstall(dev_priv);
3383         spin_unlock_irq(&dev_priv->irq_lock);
3384
3385         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3386         POSTING_READ(VLV_MASTER_IER);
3387 }
3388
3389 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3390 {
3391         struct intel_uncore *uncore = &dev_priv->uncore;
3392
3393         u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3394                 GEN8_PIPE_CDCLK_CRC_DONE;
3395         u32 de_pipe_enables;
3396         u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3397         u32 de_port_enables;
3398         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3399         enum pipe pipe;
3400
3401         if (INTEL_GEN(dev_priv) <= 10)
3402                 de_misc_masked |= GEN8_DE_MISC_GSE;
3403
3404         if (IS_GEN9_LP(dev_priv))
3405                 de_port_masked |= BXT_DE_PORT_GMBUS;
3406
3407         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3408                                            GEN8_PIPE_FIFO_UNDERRUN;
3409
3410         de_port_enables = de_port_masked;
3411         if (IS_GEN9_LP(dev_priv))
3412                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3413         else if (IS_BROADWELL(dev_priv))
3414                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3415
3416         if (INTEL_GEN(dev_priv) >= 12) {
3417                 enum transcoder trans;
3418
3419                 for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
3420                         enum intel_display_power_domain domain;
3421
3422                         domain = POWER_DOMAIN_TRANSCODER(trans);
3423                         if (!intel_display_power_is_enabled(dev_priv, domain))
3424                                 continue;
3425
3426                         gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3427                 }
3428         } else {
3429                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3430         }
3431
3432         for_each_pipe(dev_priv, pipe) {
3433                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3434
3435                 if (intel_display_power_is_enabled(dev_priv,
3436                                 POWER_DOMAIN_PIPE(pipe)))
3437                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3438                                           dev_priv->de_irq_mask[pipe],
3439                                           de_pipe_enables);
3440         }
3441
3442         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3443         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3444
3445         if (INTEL_GEN(dev_priv) >= 11) {
3446                 u32 de_hpd_masked = 0;
3447                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3448                                      GEN11_DE_TBT_HOTPLUG_MASK;
3449
3450                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3451                               de_hpd_enables);
3452                 gen11_hpd_detection_setup(dev_priv);
3453         } else if (IS_GEN9_LP(dev_priv)) {
3454                 bxt_hpd_detection_setup(dev_priv);
3455         } else if (IS_BROADWELL(dev_priv)) {
3456                 ilk_hpd_detection_setup(dev_priv);
3457         }
3458 }
3459
3460 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3461 {
3462         if (HAS_PCH_SPLIT(dev_priv))
3463                 ibx_irq_pre_postinstall(dev_priv);
3464
3465         gen8_gt_irq_postinstall(&dev_priv->gt);
3466         gen8_de_irq_postinstall(dev_priv);
3467
3468         if (HAS_PCH_SPLIT(dev_priv))
3469                 ibx_irq_postinstall(dev_priv);
3470
3471         gen8_master_intr_enable(dev_priv->uncore.regs);
3472 }
3473
3474 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3475 {
3476         u32 mask = SDE_GMBUS_ICP;
3477
3478         drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3479         I915_WRITE(SDEIER, 0xffffffff);
3480         POSTING_READ(SDEIER);
3481
3482         gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3483         I915_WRITE(SDEIMR, ~mask);
3484
3485         if (HAS_PCH_TGP(dev_priv))
3486                 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3487                                         TGP_TC_HPD_ENABLE_MASK);
3488         else if (HAS_PCH_JSP(dev_priv))
3489                 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3490         else if (HAS_PCH_MCC(dev_priv))
3491                 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3492                                         ICP_TC_HPD_ENABLE(PORT_TC1));
3493         else
3494                 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3495                                         ICP_TC_HPD_ENABLE_MASK);
3496 }
3497
3498 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3499 {
3500         struct intel_uncore *uncore = &dev_priv->uncore;
3501         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3502
3503         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3504                 icp_irq_postinstall(dev_priv);
3505
3506         gen11_gt_irq_postinstall(&dev_priv->gt);
3507         gen8_de_irq_postinstall(dev_priv);
3508
3509         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3510
3511         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3512
3513         gen11_master_intr_enable(uncore->regs);
3514         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3515 }
3516
3517 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3518 {
3519         gen8_gt_irq_postinstall(&dev_priv->gt);
3520
3521         spin_lock_irq(&dev_priv->irq_lock);
3522         if (dev_priv->display_irqs_enabled)
3523                 vlv_display_irq_postinstall(dev_priv);
3524         spin_unlock_irq(&dev_priv->irq_lock);
3525
3526         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3527         POSTING_READ(GEN8_MASTER_IRQ);
3528 }
3529
3530 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3531 {
3532         struct intel_uncore *uncore = &dev_priv->uncore;
3533
3534         i9xx_pipestat_irq_reset(dev_priv);
3535
3536         GEN2_IRQ_RESET(uncore);
3537 }
3538
3539 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3540 {
3541         struct intel_uncore *uncore = &dev_priv->uncore;
3542         u16 enable_mask;
3543
3544         intel_uncore_write16(uncore,
3545                              EMR,
3546                              ~(I915_ERROR_PAGE_TABLE |
3547                                I915_ERROR_MEMORY_REFRESH));
3548
3549         /* Unmask the interrupts that we always want on. */
3550         dev_priv->irq_mask =
3551                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3552                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3553                   I915_MASTER_ERROR_INTERRUPT);
3554
3555         enable_mask =
3556                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3557                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3558                 I915_MASTER_ERROR_INTERRUPT |
3559                 I915_USER_INTERRUPT;
3560
3561         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3562
3563         /* Interrupt setup is already guaranteed to be single-threaded, this is
3564          * just to make the assert_spin_locked check happy. */
3565         spin_lock_irq(&dev_priv->irq_lock);
3566         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3567         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3568         spin_unlock_irq(&dev_priv->irq_lock);
3569 }
3570
3571 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3572                                u16 *eir, u16 *eir_stuck)
3573 {
3574         struct intel_uncore *uncore = &i915->uncore;
3575         u16 emr;
3576
3577         *eir = intel_uncore_read16(uncore, EIR);
3578
3579         if (*eir)
3580                 intel_uncore_write16(uncore, EIR, *eir);
3581
3582         *eir_stuck = intel_uncore_read16(uncore, EIR);
3583         if (*eir_stuck == 0)
3584                 return;
3585
3586         /*
3587          * Toggle all EMR bits to make sure we get an edge
3588          * in the ISR master error bit if we don't clear
3589          * all the EIR bits. Otherwise the edge triggered
3590          * IIR on i965/g4x wouldn't notice that an interrupt
3591          * is still pending. Also some EIR bits can't be
3592          * cleared except by handling the underlying error
3593          * (or by a GPU reset) so we mask any bit that
3594          * remains set.
3595          */
3596         emr = intel_uncore_read16(uncore, EMR);
3597         intel_uncore_write16(uncore, EMR, 0xffff);
3598         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3599 }
3600
3601 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3602                                    u16 eir, u16 eir_stuck)
3603 {
3604         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3605
3606         if (eir_stuck)
3607                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3608                         eir_stuck);
3609 }
3610
3611 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3612                                u32 *eir, u32 *eir_stuck)
3613 {
3614         u32 emr;
3615
3616         *eir = I915_READ(EIR);
3617
3618         I915_WRITE(EIR, *eir);
3619
3620         *eir_stuck = I915_READ(EIR);
3621         if (*eir_stuck == 0)
3622                 return;
3623
3624         /*
3625          * Toggle all EMR bits to make sure we get an edge
3626          * in the ISR master error bit if we don't clear
3627          * all the EIR bits. Otherwise the edge triggered
3628          * IIR on i965/g4x wouldn't notice that an interrupt
3629          * is still pending. Also some EIR bits can't be
3630          * cleared except by handling the underlying error
3631          * (or by a GPU reset) so we mask any bit that
3632          * remains set.
3633          */
3634         emr = I915_READ(EMR);
3635         I915_WRITE(EMR, 0xffffffff);
3636         I915_WRITE(EMR, emr | *eir_stuck);
3637 }
3638
3639 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3640                                    u32 eir, u32 eir_stuck)
3641 {
3642         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3643
3644         if (eir_stuck)
3645                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3646                         eir_stuck);
3647 }
3648
3649 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3650 {
3651         struct drm_i915_private *dev_priv = arg;
3652         irqreturn_t ret = IRQ_NONE;
3653
3654         if (!intel_irqs_enabled(dev_priv))
3655                 return IRQ_NONE;
3656
3657         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3658         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3659
3660         do {
3661                 u32 pipe_stats[I915_MAX_PIPES] = {};
3662                 u16 eir = 0, eir_stuck = 0;
3663                 u16 iir;
3664
3665                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3666                 if (iir == 0)
3667                         break;
3668
3669                 ret = IRQ_HANDLED;
3670
3671                 /* Call regardless, as some status bits might not be
3672                  * signalled in iir */
3673                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3674
3675                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3676                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3677
3678                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3679
3680                 if (iir & I915_USER_INTERRUPT)
3681                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3682
3683                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3684                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3685
3686                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3687         } while (0);
3688
3689         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3690
3691         return ret;
3692 }
3693
3694 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3695 {
3696         struct intel_uncore *uncore = &dev_priv->uncore;
3697
3698         if (I915_HAS_HOTPLUG(dev_priv)) {
3699                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3700                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3701         }
3702
3703         i9xx_pipestat_irq_reset(dev_priv);
3704
3705         GEN3_IRQ_RESET(uncore, GEN2_);
3706 }
3707
3708 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3709 {
3710         struct intel_uncore *uncore = &dev_priv->uncore;
3711         u32 enable_mask;
3712
3713         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3714                           I915_ERROR_MEMORY_REFRESH));
3715
3716         /* Unmask the interrupts that we always want on. */
3717         dev_priv->irq_mask =
3718                 ~(I915_ASLE_INTERRUPT |
3719                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3720                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3721                   I915_MASTER_ERROR_INTERRUPT);
3722
3723         enable_mask =
3724                 I915_ASLE_INTERRUPT |
3725                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3726                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3727                 I915_MASTER_ERROR_INTERRUPT |
3728                 I915_USER_INTERRUPT;
3729
3730         if (I915_HAS_HOTPLUG(dev_priv)) {
3731                 /* Enable in IER... */
3732                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3733                 /* and unmask in IMR */
3734                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3735         }
3736
3737         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3738
3739         /* Interrupt setup is already guaranteed to be single-threaded, this is
3740          * just to make the assert_spin_locked check happy. */
3741         spin_lock_irq(&dev_priv->irq_lock);
3742         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3743         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3744         spin_unlock_irq(&dev_priv->irq_lock);
3745
3746         i915_enable_asle_pipestat(dev_priv);
3747 }
3748
3749 static irqreturn_t i915_irq_handler(int irq, void *arg)
3750 {
3751         struct drm_i915_private *dev_priv = arg;
3752         irqreturn_t ret = IRQ_NONE;
3753
3754         if (!intel_irqs_enabled(dev_priv))
3755                 return IRQ_NONE;
3756
3757         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3758         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3759
3760         do {
3761                 u32 pipe_stats[I915_MAX_PIPES] = {};
3762                 u32 eir = 0, eir_stuck = 0;
3763                 u32 hotplug_status = 0;
3764                 u32 iir;
3765
3766                 iir = I915_READ(GEN2_IIR);
3767                 if (iir == 0)
3768                         break;
3769
3770                 ret = IRQ_HANDLED;
3771
3772                 if (I915_HAS_HOTPLUG(dev_priv) &&
3773                     iir & I915_DISPLAY_PORT_INTERRUPT)
3774                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3775
3776                 /* Call regardless, as some status bits might not be
3777                  * signalled in iir */
3778                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3779
3780                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3781                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3782
3783                 I915_WRITE(GEN2_IIR, iir);
3784
3785                 if (iir & I915_USER_INTERRUPT)
3786                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3787
3788                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3789                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3790
3791                 if (hotplug_status)
3792                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3793
3794                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3795         } while (0);
3796
3797         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3798
3799         return ret;
3800 }
3801
3802 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3803 {
3804         struct intel_uncore *uncore = &dev_priv->uncore;
3805
3806         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3807         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3808
3809         i9xx_pipestat_irq_reset(dev_priv);
3810
3811         GEN3_IRQ_RESET(uncore, GEN2_);
3812 }
3813
3814 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3815 {
3816         struct intel_uncore *uncore = &dev_priv->uncore;
3817         u32 enable_mask;
3818         u32 error_mask;
3819
3820         /*
3821          * Enable some error detection, note the instruction error mask
3822          * bit is reserved, so we leave it masked.
3823          */
3824         if (IS_G4X(dev_priv)) {
3825                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3826                                GM45_ERROR_MEM_PRIV |
3827                                GM45_ERROR_CP_PRIV |
3828                                I915_ERROR_MEMORY_REFRESH);
3829         } else {
3830                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3831                                I915_ERROR_MEMORY_REFRESH);
3832         }
3833         I915_WRITE(EMR, error_mask);
3834
3835         /* Unmask the interrupts that we always want on. */
3836         dev_priv->irq_mask =
3837                 ~(I915_ASLE_INTERRUPT |
3838                   I915_DISPLAY_PORT_INTERRUPT |
3839                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3840                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3841                   I915_MASTER_ERROR_INTERRUPT);
3842
3843         enable_mask =
3844                 I915_ASLE_INTERRUPT |
3845                 I915_DISPLAY_PORT_INTERRUPT |
3846                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3847                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3848                 I915_MASTER_ERROR_INTERRUPT |
3849                 I915_USER_INTERRUPT;
3850
3851         if (IS_G4X(dev_priv))
3852                 enable_mask |= I915_BSD_USER_INTERRUPT;
3853
3854         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3855
3856         /* Interrupt setup is already guaranteed to be single-threaded, this is
3857          * just to make the assert_spin_locked check happy. */
3858         spin_lock_irq(&dev_priv->irq_lock);
3859         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3860         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3861         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3862         spin_unlock_irq(&dev_priv->irq_lock);
3863
3864         i915_enable_asle_pipestat(dev_priv);
3865 }
3866
3867 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3868 {
3869         u32 hotplug_en;
3870
3871         lockdep_assert_held(&dev_priv->irq_lock);
3872
3873         /* Note HDMI and DP share hotplug bits */
3874         /* enable bits are the same for all generations */
3875         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3876         /* Programming the CRT detection parameters tends
3877            to generate a spurious hotplug event about three
3878            seconds later.  So just do it once.
3879         */
3880         if (IS_G4X(dev_priv))
3881                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3882         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3883
3884         /* Ignore TV since it's buggy */
3885         i915_hotplug_interrupt_update_locked(dev_priv,
3886                                              HOTPLUG_INT_EN_MASK |
3887                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3888                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3889                                              hotplug_en);
3890 }
3891
3892 static irqreturn_t i965_irq_handler(int irq, void *arg)
3893 {
3894         struct drm_i915_private *dev_priv = arg;
3895         irqreturn_t ret = IRQ_NONE;
3896
3897         if (!intel_irqs_enabled(dev_priv))
3898                 return IRQ_NONE;
3899
3900         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3901         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3902
3903         do {
3904                 u32 pipe_stats[I915_MAX_PIPES] = {};
3905                 u32 eir = 0, eir_stuck = 0;
3906                 u32 hotplug_status = 0;
3907                 u32 iir;
3908
3909                 iir = I915_READ(GEN2_IIR);
3910                 if (iir == 0)
3911                         break;
3912
3913                 ret = IRQ_HANDLED;
3914
3915                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3916                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3917
3918                 /* Call regardless, as some status bits might not be
3919                  * signalled in iir */
3920                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3921
3922                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3923                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3924
3925                 I915_WRITE(GEN2_IIR, iir);
3926
3927                 if (iir & I915_USER_INTERRUPT)
3928                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3929
3930                 if (iir & I915_BSD_USER_INTERRUPT)
3931                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3932
3933                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3934                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3935
3936                 if (hotplug_status)
3937                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3938
3939                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3940         } while (0);
3941
3942         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3943
3944         return ret;
3945 }
3946
3947 /**
3948  * intel_irq_init - initializes irq support
3949  * @dev_priv: i915 device instance
3950  *
3951  * This function initializes all the irq support including work items, timers
3952  * and all the vtables. It does not setup the interrupt itself though.
3953  */
3954 void intel_irq_init(struct drm_i915_private *dev_priv)
3955 {
3956         struct drm_device *dev = &dev_priv->drm;
3957         int i;
3958
3959         intel_hpd_init_pins(dev_priv);
3960
3961         intel_hpd_init_work(dev_priv);
3962
3963         INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3964         for (i = 0; i < MAX_L3_SLICES; ++i)
3965                 dev_priv->l3_parity.remap_info[i] = NULL;
3966
3967         /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3968         if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3969                 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3970
3971         dev->vblank_disable_immediate = true;
3972
3973         /* Most platforms treat the display irq block as an always-on
3974          * power domain. vlv/chv can disable it at runtime and need
3975          * special care to avoid writing any of the display block registers
3976          * outside of the power domain. We defer setting up the display irqs
3977          * in this case to the runtime pm.
3978          */
3979         dev_priv->display_irqs_enabled = true;
3980         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3981                 dev_priv->display_irqs_enabled = false;
3982
3983         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3984         /* If we have MST support, we want to avoid doing short HPD IRQ storm
3985          * detection, as short HPD storms will occur as a natural part of
3986          * sideband messaging with MST.
3987          * On older platforms however, IRQ storms can occur with both long and
3988          * short pulses, as seen on some G4x systems.
3989          */
3990         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3991
3992         if (HAS_GMCH(dev_priv)) {
3993                 if (I915_HAS_HOTPLUG(dev_priv))
3994                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3995         } else {
3996                 if (HAS_PCH_JSP(dev_priv))
3997                         dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
3998                 else if (HAS_PCH_MCC(dev_priv))
3999                         dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4000                 else if (INTEL_GEN(dev_priv) >= 11)
4001                         dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4002                 else if (IS_GEN9_LP(dev_priv))
4003                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4004                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4005                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4006                 else
4007                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4008         }
4009 }
4010
4011 /**
4012  * intel_irq_fini - deinitializes IRQ support
4013  * @i915: i915 device instance
4014  *
4015  * This function deinitializes all the IRQ support.
4016  */
4017 void intel_irq_fini(struct drm_i915_private *i915)
4018 {
4019         int i;
4020
4021         for (i = 0; i < MAX_L3_SLICES; ++i)
4022                 kfree(i915->l3_parity.remap_info[i]);
4023 }
4024
4025 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4026 {
4027         if (HAS_GMCH(dev_priv)) {
4028                 if (IS_CHERRYVIEW(dev_priv))
4029                         return cherryview_irq_handler;
4030                 else if (IS_VALLEYVIEW(dev_priv))
4031                         return valleyview_irq_handler;
4032                 else if (IS_GEN(dev_priv, 4))
4033                         return i965_irq_handler;
4034                 else if (IS_GEN(dev_priv, 3))
4035                         return i915_irq_handler;
4036                 else
4037                         return i8xx_irq_handler;
4038         } else {
4039                 if (INTEL_GEN(dev_priv) >= 11)
4040                         return gen11_irq_handler;
4041                 else if (INTEL_GEN(dev_priv) >= 8)
4042                         return gen8_irq_handler;
4043                 else
4044                         return ilk_irq_handler;
4045         }
4046 }
4047
4048 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4049 {
4050         if (HAS_GMCH(dev_priv)) {
4051                 if (IS_CHERRYVIEW(dev_priv))
4052                         cherryview_irq_reset(dev_priv);
4053                 else if (IS_VALLEYVIEW(dev_priv))
4054                         valleyview_irq_reset(dev_priv);
4055                 else if (IS_GEN(dev_priv, 4))
4056                         i965_irq_reset(dev_priv);
4057                 else if (IS_GEN(dev_priv, 3))
4058                         i915_irq_reset(dev_priv);
4059                 else
4060                         i8xx_irq_reset(dev_priv);
4061         } else {
4062                 if (INTEL_GEN(dev_priv) >= 11)
4063                         gen11_irq_reset(dev_priv);
4064                 else if (INTEL_GEN(dev_priv) >= 8)
4065                         gen8_irq_reset(dev_priv);
4066                 else
4067                         ilk_irq_reset(dev_priv);
4068         }
4069 }
4070
4071 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4072 {
4073         if (HAS_GMCH(dev_priv)) {
4074                 if (IS_CHERRYVIEW(dev_priv))
4075                         cherryview_irq_postinstall(dev_priv);
4076                 else if (IS_VALLEYVIEW(dev_priv))
4077                         valleyview_irq_postinstall(dev_priv);
4078                 else if (IS_GEN(dev_priv, 4))
4079                         i965_irq_postinstall(dev_priv);
4080                 else if (IS_GEN(dev_priv, 3))
4081                         i915_irq_postinstall(dev_priv);
4082                 else
4083                         i8xx_irq_postinstall(dev_priv);
4084         } else {
4085                 if (INTEL_GEN(dev_priv) >= 11)
4086                         gen11_irq_postinstall(dev_priv);
4087                 else if (INTEL_GEN(dev_priv) >= 8)
4088                         gen8_irq_postinstall(dev_priv);
4089                 else
4090                         ilk_irq_postinstall(dev_priv);
4091         }
4092 }
4093
4094 /**
4095  * intel_irq_install - enables the hardware interrupt
4096  * @dev_priv: i915 device instance
4097  *
4098  * This function enables the hardware interrupt handling, but leaves the hotplug
4099  * handling still disabled. It is called after intel_irq_init().
4100  *
4101  * In the driver load and resume code we need working interrupts in a few places
4102  * but don't want to deal with the hassle of concurrent probe and hotplug
4103  * workers. Hence the split into this two-stage approach.
4104  */
4105 int intel_irq_install(struct drm_i915_private *dev_priv)
4106 {
4107         int irq = dev_priv->drm.pdev->irq;
4108         int ret;
4109
4110         /*
4111          * We enable some interrupt sources in our postinstall hooks, so mark
4112          * interrupts as enabled _before_ actually enabling them to avoid
4113          * special cases in our ordering checks.
4114          */
4115         dev_priv->runtime_pm.irqs_enabled = true;
4116
4117         dev_priv->drm.irq_enabled = true;
4118
4119         intel_irq_reset(dev_priv);
4120
4121         ret = request_irq(irq, intel_irq_handler(dev_priv),
4122                           IRQF_SHARED, DRIVER_NAME, dev_priv);
4123         if (ret < 0) {
4124                 dev_priv->drm.irq_enabled = false;
4125                 return ret;
4126         }
4127
4128         intel_irq_postinstall(dev_priv);
4129
4130         return ret;
4131 }
4132
4133 /**
4134  * intel_irq_uninstall - finilizes all irq handling
4135  * @dev_priv: i915 device instance
4136  *
4137  * This stops interrupt and hotplug handling and unregisters and frees all
4138  * resources acquired in the init functions.
4139  */
4140 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4141 {
4142         int irq = dev_priv->drm.pdev->irq;
4143
4144         /*
4145          * FIXME we can get called twice during driver probe
4146          * error handling as well as during driver remove due to
4147          * intel_modeset_driver_remove() calling us out of sequence.
4148          * Would be nice if it didn't do that...
4149          */
4150         if (!dev_priv->drm.irq_enabled)
4151                 return;
4152
4153         dev_priv->drm.irq_enabled = false;
4154
4155         intel_irq_reset(dev_priv);
4156
4157         free_irq(irq, dev_priv);
4158
4159         intel_hpd_cancel_work(dev_priv);
4160         dev_priv->runtime_pm.irqs_enabled = false;
4161 }
4162
4163 /**
4164  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4165  * @dev_priv: i915 device instance
4166  *
4167  * This function is used to disable interrupts at runtime, both in the runtime
4168  * pm and the system suspend/resume code.
4169  */
4170 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4171 {
4172         intel_irq_reset(dev_priv);
4173         dev_priv->runtime_pm.irqs_enabled = false;
4174         intel_synchronize_irq(dev_priv);
4175 }
4176
4177 /**
4178  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4179  * @dev_priv: i915 device instance
4180  *
4181  * This function is used to enable interrupts at runtime, both in the runtime
4182  * pm and the system suspend/resume code.
4183  */
4184 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4185 {
4186         dev_priv->runtime_pm.irqs_enabled = true;
4187         intel_irq_reset(dev_priv);
4188         intel_irq_postinstall(dev_priv);
4189 }
4190
4191 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4192 {
4193         /*
4194          * We only use drm_irq_uninstall() at unload and VT switch, so
4195          * this is the only thing we need to check.
4196          */
4197         return dev_priv->runtime_pm.irqs_enabled;
4198 }
4199
4200 void intel_synchronize_irq(struct drm_i915_private *i915)
4201 {
4202         synchronize_irq(i915->drm.pdev->irq);
4203 }